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Announcements
Midterm next Tuesday (March 18) from 5:45 - 7:15pm in CS 1221.


Grading: HW 2 is underway, everything else has been graded and returned 
to you.


Midterm survey. Please complete ASAP!



Josiah Hanna, University of Wisconsin — Madison

Learning Outcomes
After today’s lecture, you will:


• Be able to define the inverse kinematics problem.
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Forward Kinematics
Task space: 


Position of a robot’s end-effector. Assume .


Joint space:


Space of possible robot configurations (e.g., angle of all joints). Assume .


Forward kinematics is the mapping from joint space to task space:


, where  and .


Given a robot’s joint configuration, determine where its end-effector is relative to a base frame of 
reference. Why useful?


ℝn

ℝm

r = f(q) r ∈ ℝm q ∈ ℝn
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DH Convention
DH convention provides a method for specifying a transform between a 
reference frame centered on one joint to that at another.


Let the transform at joint n be .


Transform for the entire arm is .


To rotate [x, y, z], we matrix multiply [x, y, z, 1] to obtain [x’, y’, z’, 1].


n
n−1T

F(q) = 2
1T

3
2T⋯n

n−1T
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Forward Kinematics under DH Convention

.


Note that F is a function of the robot’s configuration, .


End-effector position in end-effector frame is [0, 0, 0]


Putting this together, . 

F(q) = 2
1T⋯n

n−1T

q

f(q) = F(q) ⋅ [0,0,0,1]
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Differential Kinematics
• Relate velocity of end-effector to velocity of joints.


• Forward kinematics: .


• Velocity:  where  is the Jacobian of the robot’s 
end-effector with respect to its configuration.

r = f(q)

·r = J(q) ⋅ [ ·q1, . . . ·qn] J(q)

J =

∂x
∂q1

∂x
∂q2

⋯ ∂x
∂qn

∂y
∂q1

∂y
∂q2

⋯ ∂y
∂qn

∂θ
∂q1

∂θ
∂q2

⋯ ∂θ
∂qn
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Differential Drive Kinematics
• Differential drive: two independently controlled wheels. Why useful?


• Holonomic vs. non-holonomic: configuration determines a unique position in task 
space.

ω =
Vr − Vl

l
R =

l
2

Vl + Vr

Vr − Vl

𝙸𝙲𝙲 = [x − R sin θ, y + R cos θ]

: wheel radius

: left wheel velocity

: right wheel velocity


: distance between wheels

r·ϕl·ϕr
d
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Kinematics Practice
Consider the two-link robot arm shown here. 
What is the transformation matrix for the 
position of the joint between the links?


Hint: you can ignore the z-axis so the 
matrix should be 3x3.
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Kinematics Practice
Consider the two-link robot arm shown here. 
What is the transformation matrix for the 
position of the joint between the links?


Hint: you can ignore the z-axis so the 
matrix should be 3x3.

2
1T =

cos α −sin α l1 cos α
sin α cos α l1 sin α

0 0 1
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Inverse Kinematics
Task space: 


Position of a robot’s end-effector. Assume .


Joint space:


Space of possible robot configurations (e.g., angle of all joints). Assume .


Inverse kinematics is the mapping from a point in task space to joint space:


, where  and .


Given a desired position of the end-effector, determine the robot’s joint configuration to put the end-
effector there. Why useful?


Note: not all desired positions are achievable. Set of achievable positions = the robot’s workspace.

ℝn

ℝm

q = f −1(r) r ∈ ℝm q ∈ ℝn
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Inverse Kinematics
For a target end-effector position, we may have:


- No feasible configurations.


- A single feasible configuration.


- Many feasible configurations.


How to determine?


https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9793576
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IK Example
2 link arm Given:  

Determine: 
(x, y, θ)

α, β

cos θ = cos(α + β)
x = l2 cos(α + β) + l1 cos α
y = l2 sin(α + β) + l1 sin α}From forward 

kinematics

θ = α + β

cos α =
l2 cos θ − x

l1
sin α =

l2 sin θ − y
l1

Then solve for :α, β
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General IK Approach
In general, it may be challenging to solve for  directly.


Instead, try to find .


Specify a loss: 





Use optimization to find the minimizer, .

f −1(r)

̂q ≈ f −1(r)

lr(q) = | |r − F(q) | |2

q*

Assuming l1 = l2 = 1
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Differential IK
Recall differential kinematics:  where  is the 
Jacobian of  and  is the time derivative of  (i.e., rate of change in ).


Differential IK: given a desired velocity in task space, determine the desired 
velocity that achieves it.


First idea: use . Problem?


Second idea: use the pseudo-inverse, . Problem?


Third idea: damp joint velocities. 

·r = J(q) ⋅ ·q J(q) ∈ ℝm×n

f(q) ·q q q

J−1(q) ⋅ ·r = ·q

J+(q)

Δq = (J⊤J + λ2I)−1J+e
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IK for Differential Drive
Given desired change in x, y, and , compute 
velocity for left and right wheel to achieve it.


Step 1: transform desired  to desired .


Step 2: solve for 


Note: ignore  as we assume the robot cannot 
move sideways.

θ

·x, ·y, ·θ ·xR, ·θR

·ϕl,
·ϕr

·yR
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IK in Practice
Targets not set in isolation.


Can use task knowledge to select 
joint configurations strategically.

https://graphics.cs.wisc.edu/Papers/2018/RMG18a/
https://graphics.cs.wisc.edu/Papers/2024/WSG24/
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Summary
• Reviewed forward kinematics.


• Introduced inverse kinematics.


• Introduced differential inverse kinematics.



Josiah Hanna, University of Wisconsin — Madison

Action Items
• Planning reading for next week; send a reading response by 12 pm on 

Monday.


• Midterm: on Tuesday!


