Autonomous Robotics

Inverse Kinematics

Josiah Hanna University of Wisconsin — Madison

Announcements

Midterm next Tuesday (March 18) from 5:45 - 7:15pm in CS 1221.

Grading: HW 2 is underway, everything else has been graded and returned to you.

Midterm survey. Please complete ASAP!

Learning Outcomes

After today's lecture, you will:

Be able to define the inverse kinematics problem.

Forward Kinematics

Task space:

Position of a robot's end-effector. Assume \mathbb{R}^n .

Joint space:

Space of possible robot configurations (e.g., angle of all joints). Assume \mathbb{R}^m .

Forward kinematics is the mapping from joint space to task space:

$$r = f(q)$$
, where $r \in \mathbb{R}^m$ and $q \in \mathbb{R}^n$.

Given a robot's joint configuration, determine where its end-effector is relative to a base frame of reference. Why useful?

DH Convention

DH convention provides a method for specifying a transform between a reference frame centered on one joint to that at another.

Let the transform at joint n be $\binom{n}{n-1}T$.

Transform for the entire arm is $F(q) = {}^2T_2^3T \cdots {}^n_{n-1}T$.

To rotate [x, y, z], we matrix multiply [x, y, z, 1] to obtain [x', y', z', 1].

Forward Kinematics under DH Convention

$$F(q) = {}_1^2 T \cdots {}_{n-1}^n T.$$

Note that F is a function of the robot's configuration, q.

End-effector position in end-effector frame is [0, 0, 0]

Putting this together, $f(q) = F(q) \cdot [0,0,0,1]$.

Differential Kinematics

- Relate velocity of end-effector to velocity of joints.
- Forward kinematics: r = f(q).
- Velocity: $\dot{r} = J(q) \cdot [\dot{q}_1, \dots \dot{q}_n]$ where J(q) is the Jacobian of the robot's end-effector with respect to its configuration.

$$J = \begin{bmatrix} \frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} & \dots & \frac{\partial x}{\partial q_n} \\ \frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2} & \dots & \frac{\partial y}{\partial q_n} \\ \frac{\partial \theta}{\partial q_1} & \frac{\partial \theta}{\partial q_2} & \dots & \frac{\partial \theta}{\partial q_n} \end{bmatrix}$$

Differential Drive Kinematics

Differential drive: two independently controlled wheels. Why useful?

$$\begin{bmatrix} \dot{x_I} \\ \dot{y_I} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \cos(\theta) - \sin(\theta) \ 0 \\ \sin(\theta) \ \cos(\theta) \ 0 \\ 0 \ 0 \end{bmatrix} \begin{bmatrix} \frac{r\dot{\phi_l}}{2} + \frac{r\dot{\phi_r}}{2} \\ 0 \\ \frac{\dot{\phi_r}r}{d} - \frac{\dot{\phi_l}r}{d} \end{bmatrix}$$

 $\dot{\phi}_r$: right wheel velocity

d: distance between wheels

$$\begin{array}{c} r: \text{ wheel radius} \\ \dot{\phi}_l: \text{ left wheel velocity} \\ \dot{\phi}_r: \text{ right wheel velocity} \\ \text{distance between wheels} \end{array} \begin{bmatrix} \dot{x_R} \\ \dot{y_R} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2} & \frac{r}{2} \\ 0 & 0 \\ \frac{r}{d} - \frac{r}{d} \end{bmatrix} \begin{bmatrix} \dot{\phi}_l \\ \dot{\phi}_r \end{bmatrix} = \begin{bmatrix} \frac{\partial x_R}{\partial \dot{\phi}_l} & \frac{\partial x_R}{\partial \dot{\phi}_r} \\ \frac{\partial y_R}{\partial \dot{\phi}_l} & \frac{\partial \theta}{\partial \dot{\phi}_l} \end{bmatrix} \begin{bmatrix} \dot{\phi}_l \\ \dot{\phi}_r \end{bmatrix}$$

Holonomic vs. non-holonomic: configuration determines a unique position in task space.

Kinematics Practice

Consider the two-link robot arm shown here. What is the transformation matrix for the position of the joint between the links?

Hint: you can ignore the z-axis so the matrix should be 3x3.

Kinematics Practice

Consider the two-link robot arm shown here. What is the transformation matrix for the position of the joint between the links?

Hint: you can ignore the z-axis so the matrix should be 3x3.

Inverse Kinematics

Task space:

Position of a robot's end-effector. Assume \mathbb{R}^n .

Joint space:

Space of possible robot configurations (e.g., angle of all joints). Assume \mathbb{R}^m .

Inverse kinematics is the mapping from a point in task space to joint space:

$$q = f^{-1}(r)$$
, where $r \in \mathbb{R}^m$ and $q \in \mathbb{R}^n$.

Given a desired position of the end-effector, determine the robot's joint configuration to put the end-effector there. Why useful?

Note: not all desired positions are achievable. Set of achievable positions = the robot's workspace.

Inverse Kinematics

For a target end-effector position, we may have:

- No feasible configurations.
- A single feasible configuration.
- Many feasible configurations.

How to determine?

IK Example

Given: (x, y, θ)

Determine: α, β

$$\cos \theta = \cos(\alpha + \beta)$$

$$x = l_2 \cos(\alpha + \beta) + l_1 \cos \alpha$$

$$y = l_2 \sin(\alpha + \beta) + l_1 \sin \alpha$$

From forward kinematics

Then solve for α, β :

$$\theta = \alpha + \beta$$

$$\cos \alpha = \frac{l_2 \cos \theta - x}{l_1} \quad \sin \alpha = \frac{l_2 \sin \theta - y}{l_1}$$

General IK Approach

In general, it may be challenging to solve for $f^{-1}(r)$ directly.

Instead, try to find $\hat{q} \approx f^{-1}(r)$.

Specify a loss:

$$l_r(q) = ||r - F(q)||_2$$

Use optimization to find the minimizer, q^* .

$$f_{x,y}(\alpha,\beta)=\sqrt{(s_{\alpha\beta}+s_{\alpha}-y)^2+(c_{\alpha\beta}+c_{\alpha}-x)^2}$$
 Assuming $l_1=l_2=1$

Differential IK

Recall differential kinematics: $\dot{r} = J(q) \cdot \dot{q}$ where $J(q) \in \mathbb{R}^{m \times n}$ is the Jacobian of f(q) and \dot{q} is the time derivative of q (i.e., rate of change in q).

Differential IK: given a desired velocity in task space, determine the desired velocity that achieves it.

First idea: use $J^{-1}(q) \cdot \dot{r} = \dot{q}$. Problem?

Second idea: use the pseudo-inverse, $J^+(q)$. Problem?

Third idea: damp joint velocities. $\Delta q = (J^{\mathsf{T}}J + \lambda^2 I)^{-1}J^+e$

IK for Differential Drive

Given desired change in x, y, and θ , compute velocity for left and right wheel to achieve it.

Step 1: transform desired $\dot{x}, \dot{y}, \dot{\theta}$ to desired $\dot{x}_R, \dot{\theta}_R$.

Step 2: solve for $\dot{\phi}_l, \dot{\phi}_r$

$$\begin{bmatrix} \dot{x_R} \\ \dot{y_R} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2} & \frac{r}{2} \\ 0 & 0 \\ \frac{r}{d} - \frac{r}{d} \end{bmatrix} \begin{bmatrix} \dot{\phi_l} \\ \dot{\phi_r} \end{bmatrix} = \begin{bmatrix} \frac{\partial x_R}{\partial \dot{\phi_l}} & \frac{\partial x_R}{\partial \dot{\phi_l}} \\ \frac{\partial y_R}{\partial \dot{\phi_l}} & \frac{\partial y_R}{\partial \dot{\phi_l}} \\ \frac{\partial \theta}{\partial \dot{\phi_l}} & \frac{\partial \theta}{\partial \dot{\phi_l}} \end{bmatrix} \begin{bmatrix} \dot{\phi_l} \\ \dot{\phi_r} \end{bmatrix}$$

Note: ignore \dot{y}_R as we assume the robot cannot move sideways.

IK in Practice

Targets not set in isolation.

Can use task knowledge to select joint configurations strategically.

Perform a reconfiguration

Summary

- Reviewed forward kinematics.
- Introduced inverse kinematics.
- Introduced differential inverse kinematics.

Action Items

- Planning reading for next week; send a reading response by 12 pm on Monday.
- Midterm: on Tuesday!