Autonomous Robotics Planning Josiah Hanna University of Wisconsin — Madison ## Announcements Midterm TONIGHT in CS 1221. Grading: HW 2 is underway, everything else has been graded and returned to you. Midterm survey. Please complete ASAP! Office hours: today at 1pm # Learning Outcomes After today's lecture, you will: - Be able to formulate planning problems in robotics. - Be able to identify key algorithms for graph-based planning. - Understand strengths and weaknesses of graph-based planning in robotics. # Components so far # Motion Control # Path Planning - Find a sequence of states that lead from an initial state to a goal state. - Typically want the shortest or lowest cost path among all valid paths. - Why useful? # Configuration Space # Graph-based Planning • Properties: completeness, optimality, space & time complexity. ## General Structure - Start at one state (usually the start state). - Add neighbors of the start state to some data structure, f. - while f is not empty: - Remove a state, n, from f. - Check if n is the goal state. - If not, add the neighbors of n to f. #### Breadth-First Search #### Uniform Cost Search #### Like BFS, but keeps track of cost - Expand least cost node - Data structure: priority queue - Properties: - Complete - Optimal (if weight lower bounded by ε) - Time $O(b^{C*/\epsilon})$ - Space $O(b^{C^*/\epsilon})$ C* is optimal path cost to goal. ϵ is cost of edge with smallest cost. Credit: DecorumBY # Djikstra's Algorithm AKA Uniform Cost Search ## A* Search - Use a heuristic function to speed-up search. - Heuristic must be admissible: non-negative and never over-estimates the cost-to-goal. - A* is uniform cost search with g(s) + c(s, s') + h(s') as the cost for s'. # A* Search • Use a heuristic function to speed-up search. | _ | _ | | | | | | | | | _ | | |---|----------|----------|----------|----------|----------|----------|---------|----------|----------|---|--| | | | 9+
9 | 10+
8 | 11+
7 | | | | | | | | | | 9+
9 | 8+
8 | 9+
7 | 10+
6 | 11+
5 | | | | | G | | | | 8+
10 | 7+
9 | 8+
8 | 9+
7 | 10+
6 | 11+
5 | | | | | | | | 7+
11 | 6+
10 | 7+
9 | | | | | | | | | | | 6+
12 | 5+
11 | 6+
10 | | | | | | | | | | | 5+ | 4+
12 | 5+
11 | 6+
10 | 7+
9 | 8+
8 | 9+
7 | 10+
6 | 11+
5 | | | | | 4+
14 | 3+
13 | 4+
12 | 5+
11 | 6+
10 | 7+
9 | 8+
8 | 10+
7 | | | | | | 3+
15 | 2+
14 | 3+
13 | 4+
12 | 5+
11 | 6+
10 | | | | | | | | 2+
16 | 1+
15 | 2+
14 | 3+
13 | 4+
12 | 5+
11 | | | | | | | | 1+
17 | S | 1+
15 | 2+
14 | 3+
13 | 4+
12 | | | | | | | | | 1+
17 | 2+
16 | 3+
15 | 4+
14 | 5+
13 | 9+
9 | 10+
8 | 11+
7 | 12+
6 | 13+
5 | 14+
4 | 15+
3 | | | | |----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | 9+
9 | 8+
8 | 9+
7 | 10+
6 | 11+
5 | 12+
4 | 13+
3 | 14+
2 | 15+
1 | G | | | 8+
10 | 7+
9 | 8+
8 | 9+
7 | 10+
6 | 11+
5 | 12+
4 | 13+
3 | 14+
2 | 15+
1 | | | 7+
11 | 6+
10 | 7+
9 | | | | | | | 14+
2 | 15+
3 | | 6+
12 | 5+
11 | 6+
10 | | | | | | | 13+
3 | 14+
4 | | 5+ | 4+
12 | 5+
11 | 6+
10 | 7+
9 | 8+
8 | 9+
7 | 10+
6 | 11+
5 | 12+
4 | 13+
5 | | 4+
14 | 3+
13 | 4+
12 | 5+
11 | 6+
10 | 7+
9 | 8+
8 | 10+
7 | 11+
6 | 12+
5 | | | 3+
15 | 2+
14 | 3+
13 | 4+
12 | 5+
11 | 6+
10 | | | | | | | 2+
16 | 1+
15 | 2+
14 | 3+
13 | 4+
12 | 5+
11 | | | | | | | 1+
17 | S | 1+
15 | 2+
14 | 3+
13 | 4+
12 | | | | | | | | 1+
17 | 2+
16 | 3+
15 | 4+
14 | 5+
13 | | | | | | | | | | | | | | | | | | #### A* Search #### Origins: robots and planning Shakey the Robot, 1960's Credit: Wiki Animation: finding a path around obstacle Credit: Wiki ### D* Search - Search backward from goal to start to compute shortest paths to goal. - As the robot encounters obstacles, update the path costs. - Avoids full re-planning. - When is this useful? ## Strengths / Weaknesses of Graph Planning #### • Strengths: - Deterministic and discrete makes it possible to proof properties like completeness. - Many robotics planning problems are naturally formulated as discrete planning problems. #### Weaknesses: - Need to discretize the state space if continuous. Then only have resolution completeness. - May require large amounts of memory or large computation time. # Summary - Discussed graph-based planning - Introduced several different graph-based planning algorithms. ### Action Items • RL reading due after Spring Break; send a reading response by 12 pm on Monday after SB. Midterm: tonight!