Autonomous Robotics

Reinforcement Learning II

Josiah Hanna University of Wisconsin — Madison

Announcements

Homework 4 due on Tuesday.

Midterm Evaluations

- Things to improve on:
 - Homework: Homework open-endedness / difficulty / fun
 - Communication: Piazza response time
 - Lecture: More detail on slides, increase pace, math can be a challenge
- Liked so far:
 - Lecture: complementing readings, improves understanding
 - Homework: improved understanding of topics
 - Communication: Professor availability, able to find information on the website

Learning Outcomes

After today's lecture, you will:

- Be able to identify key classes of RL methods for robot control problems.
- Be able to identify key challenges of RL in robotics and describe solutions to these challenges.

General Reinforcement Learning

$$...S_{t}, A_{t}, R_{t+1}, S_{t+1}, A_{t+1}, ...$$

$$S_{t+1}, R_{t+1} \sim p(\cdot | S_{t}, A_{t})$$

$$A_{t+1} \leftarrow \pi(S_{t+1}, A_{t+1})$$

Q-Learning

Q-learning: an alternative to SARSA:

$$q_{k+1}(S_t, A_t) \leftarrow q_k(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a'} q_k(S_{t+1}, a') - q_k(S_t, A_t)]$$

- Converges to q^* if data comes from any sufficiently exploratory exploration policy.
- On-policy vs off-policy?
- The underlying algorithm for Deep Q-networks, which was a landmark result in the history of RL.

Derivative algorithms: DQN, Rainbow, BBF, QT-Opt

Deep Q-learning

- Traditionally, RL algorithms are developed with a tabular representation in mind.
 - Value functions and policies are represented as look-up tables.
- Need function approximation to scale.
- Modern choice: deep neural networks.

Q-Learning for Continuous Actions

$$q_{k+1}(S_t, A_t) \leftarrow q_k(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a'} q_k(S_{t+1}, a') - q_k(S_t, A_t)]$$

- The max over the action space is difficult to compute when actions take on real-values. Why?
- One idea: use optimization to find the best action.
 - Examples: cross-entropy method, gradient ascent
 - But can be slow.
- Another idea: discretize the action space.
 - Sometimes works but loses precision in control.

Deterministic Actor-Critic

$$q_{k+1}(S_t, A_t) \leftarrow q_k(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a'} q_k(S_{t+1}, a') - q_k(S_t, A_t)]$$

- Final idea: learn a parameterized policy that outputs the maximizing action.
 - $\mu_{\theta}(s) \rightarrow a$, e.g., a neural network.
- Learn θ such that $q_k(s, \mu_{\theta}(s)) \approx \max_{a} q_k(s, a)$.

•
$$\theta_{t+1} \leftarrow \theta_t + \alpha \nabla_{\theta} q_k(s, \mu_{\theta}(s))$$
 $\nabla_{\theta} q_k(s, \mu_{\theta}(s)) = \nabla_a q_k(s, a) \nabla_{\theta} \mu_{\theta}(s) \Big|_{a=\mu_{\theta}(s)}$

- Actor: the policy μ_{θ} .
- Critic: the action-value function, trained with SARSA to estimate $q_{\mu_{\theta}}$.

Derivative algorithms: DDPG, TD3, Soft actor-critic

Stochastic Policy Gradient RL

- So far we have only considered deterministic policies ($\pi(s) = a$).
- Policy gradient methods use a differentiable and stochastic policy (e.g., a neural network) and learn policy parameters with gradient ascent.

•
$$\pi_{\theta}(a \mid s) = \Pr(A_t = a \mid S_t = s; \theta)$$

• $J(\theta) = v_{\pi_{\theta}}(s_0)$ for some special start state s_0 .

•
$$\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} J(\theta_k)$$

Stochastic Policy Gradient Theorem

$$J(\theta) := v_{\pi_{\theta}}(s_0) = \sum_{a} \pi_{\theta}(a \mid s_0) \sum_{s',r} p(s',r \mid s_0,a) [r + \gamma v_{\pi_{\theta}}(s')]$$

$$\nabla_{\theta} J(\theta) \propto \sum_{s} \sum_{a} \mu_{\theta}(s) q_{\pi_{\theta}}(s, a) \nabla_{\theta} \pi_{\theta}(a \mid s)$$

- The direction in which an infinitesimally small change to θ produces the maximum increase in $J(\theta)$.
- $\nabla_{\theta} J(\theta)$ does not depend on any gradients of the state transition function, p.

REINFORCE

- $\nabla_{\theta} J(\theta)$ can only be estimated.
- $\nabla_{\theta} J(\theta) \propto \mathbf{E}[\nabla_{\theta} \log \pi_{\theta}(A_t | S_t) q_{\pi}(S_t, A_t)] \approx q_{\pi}(S_t, A_t) \nabla_{\theta} \log \pi_{\theta}(A_t | S_t)$
- Finally, replace $q_{\pi}(S_t, A_t)$ with the return that follows G_t .
- $\theta_{k+1} \leftarrow \theta_k + \alpha G_t \nabla_{\theta} \log \pi_{\theta}(A_t | S_t)$

REINFORCE

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_*

```
Input: a differentiable policy parameterization \pi(a|s, \theta)
```

Algorithm parameter: step size $\alpha > 0$

Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ (e.g., to **0**)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \boldsymbol{\theta})$

Loop for each step of the episode t = 0, 1, ..., T - 1:

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G \nabla \ln \pi (A_t | S_t, \boldsymbol{\theta})$$

$$(G_t)$$

Usually dropped in practice

Is the policy gradient a gradient? Nota and Thomas. 2020. Bias in Natural Actor-Critic Algorithms. Thomas. 2014.

Actor-Critic Methods

- REINFORCE uses the return following an action to determine which actions are reinforced.
- Actor-critic methods use learned value functions to drive policy changes.
 - Actor: the policy.
 - Critic: value function (trained to minimize prediction error).

•
$$\theta_{t+1} \leftarrow \theta_t + \alpha \delta_t \nabla_{\theta} \log \pi (A_t | S_t)$$

$$\delta_t \leftarrow R_{t+1} + \gamma \hat{v}(S_{t+1}) - \hat{v}(S_t)$$

Derivative algorithms: A2C, soft actor-critic, PPO

Actor-Critic Methods

```
One-step Actor-Critic (episodic), for estimating \pi_{\theta} \approx \pi_*
Input: a differentiable policy parameterization \pi(a|s, \theta)
Input: a differentiable state-value function parameterization \hat{v}(s, \mathbf{w})
Parameters: step sizes \alpha^{\theta} > 0, \alpha^{\mathbf{w}} > 0
Initialize policy parameter \boldsymbol{\theta} \in \mathbb{R}^{d'} and state-value weights \mathbf{w} \in \mathbb{R}^{d} (e.g., to 0)
Loop forever (for each episode):
    Initialize S (first state of episode)
    I \leftarrow 1
    Loop while S is not terminal (for each time step):
         A \sim \pi(\cdot|S, \boldsymbol{\theta})
         Take action A, observe S', R
         \delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})
                                                                   (if S' is terminal, then \hat{v}(S',\mathbf{w}) \doteq 0)
         \mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S, \mathbf{w})
         \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} I \delta \nabla \ln \pi(A|S, \boldsymbol{\theta})
```

Model-Free RL

Challenges in RL for Robotics

Problem: where do rewards come from?

Need to balance defining the objective with learnability (may require "shaping" rewards).

Solution:

- Manually tuning a reward by hand.
- Inverse reinforcement learning: infer a reward from demonstrations.
- Potential-based shaping to preserve optimal policy.

Challenges in RL for Robotics

Problem: how many actions must be taken before an optimal policy is learned?

Solution:

- Learn in a simulator and transfer to the physical robot.
- Initialize the policy well.
- Data augmentation

Multi-fidelity Sim2Real

Generate
diverse
situations for
robust
behaviors

Abstract away low-level details for scalability

Train in simulator, deploy to the real robot.

Data Augmentation

Corrado et al. 2024 (RLC)

Corrado and Hanna 2024 (ICLR)

Challenges in RL for Robotics

Problem: actions during learning may harm the robot or those around it.

Solution:

- Learn in a simulator and transfer to the physical robot.
- Offline reinforcement learning (no interaction during learning)
- Off-policy evaluation
- Add safety layers into a robot's control architecture

Offline Policy Evaluation

Safety

Case Study: Robot Locomotion

Case Study: Robot Soccer

Full Game State Estimate

Summary

Today we covered:

- 1. Basic algorithms for RL in robotics.
- 2. Discussion of advantages and challenges with using RL.
- 3. Some case studies of RL in robotics.

Action Items

Complete homework 4

Begin robot learning reading