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Announcements
Homework 4 due on Tuesday.
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Midterm Evaluations
• Things to improve on:


• Homework: Homework open-endedness / difficulty / fun


• Communication: Piazza response time


• Lecture: More detail on slides, increase pace, math can be a challenge


• Liked so far:


• Lecture: complementing readings, improves understanding


• Homework: improved understanding of topics


• Communication: Professor availability, able to find information on the website
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Learning Outcomes
After today’s lecture, you will:


• Be able to identify key classes of RL methods for robot control problems.


• Be able to identify key challenges of RL in robotics and describe solutions 
to these challenges.
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General Reinforcement Learning

. . . St, At, Rt+1, St+1, At+1, . . .

St+1, Rt+1 ∼ p( ⋅ |St, At) At+1 ← π(St+1)
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Q-Learning
• Q-learning: an alternative to SARSA:


• Converges to  if data comes from any sufficiently exploratory 
exploration policy.


• On-policy vs off-policy?


• The underlying algorithm for Deep Q-networks, which was a landmark 
result in the history of RL. 

q⋆

qk+1(St, At) ← qk(St, At) + α[Rt+1 + γ max
a′ 

qk(St+1, a′ ) − qk(St, At)]

Derivative algorithms: DQN, Rainbow, BBF, QT-Opt



• Traditionally, RL algorithms are developed with a tabular representation in 
mind.


• Value functions and policies are represented as look-up tables.


• Need function approximation to scale.


• Modern choice: deep neural networks.

Deep Q-learning

Mnih et al, "Human-level control through deep reinforcement learning"
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Q-Learning for Continuous Actions

• The max over the action space is difficult to compute when actions take on 
real-values. Why?


• One idea: use optimization to find the best action.


• Examples: cross-entropy method, gradient ascent


• But can be slow.


• Another idea: discretize the action space.


• Sometimes works but loses precision in control.

qk+1(St, At) ← qk(St, At) + α[Rt+1 + γ max
a′ 

qk(St+1, a′ ) − qk(St, At)]
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Deterministic Actor-Critic

• Final idea: learn a parameterized policy that outputs the maximizing action.


• , e.g., a neural network.


• Learn  such that .


• 


• Actor: the policy .


• Critic: the action-value function, trained with SARSA to estimate .

μθ(s) → a

θ qk(s, μθ(s)) ≈ max
a

qk(s, a)

θt+1 ← θt + α∇θqk(s, μθ(s))

μθ

qμθ

qk+1(St, At) ← qk(St, At) + α[Rt+1 + γ max
a′ 

qk(St+1, a′ ) − qk(St, At)]

Derivative algorithms: DDPG, TD3, Soft actor-critic

∇θqk(s, μθ(s)) = ∇aqk(s, a)∇θ μθ(s) |a=μθ(s)
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Stochastic Policy Gradient RL
• So far we have only considered deterministic policies ( ).


• Policy gradient methods use a differentiable and stochastic policy (e.g., a 
neural network) and learn policy parameters with gradient ascent.


• 


•  for some special start state .


•

π(s) = a

πθ(a |s) = Pr(At = a |St = s; θ)

J(θ) = vπθ
(s0) s0

θk+1 ← θk + α∇θJ(θk)
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Stochastic Policy Gradient Theorem

• 


• 


• The direction in which an infinitesimally small change to  produces the 
maximum increase in .


•  does not depend on any gradients of the state transition function,  
.

J(θ) := vπθ
(s0) = ∑

a

πθ(a |s0)∑
s′ ,r

p(s′ , r |s0, a)[r + γvπθ
(s′ )]

∇θJ(θ) ∝ ∑
s

∑
a

μθ(s)qπθ
(s, a)∇θπθ(a |s)

θ
J(θ)

∇θJ(θ)
p
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REINFORCE
•  can only be estimated.


• 


• Finally, replace  with the return that follows .


•

∇θJ(θ)

∇θJ(θ) ∝ E[∇θlog πθ(At |St)qπ(St, At)] ≈ qπ(St, At)∇θlog πθ(At |St)

qπ(St, At) Gt

θk+1 ← θk + αGt ∇θlog πθ(At |St)

Derivative algorithms: TRPO, PPO, GRPO
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REINFORCE

Usually dropped in practice

Bias in Natural Actor-Critic Algorithms. Thomas. 2014.
Is the policy gradient a gradient? Nota and Thomas. 2020.
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Actor-Critic Methods

• REINFORCE uses the return following an action to determine which 
actions are reinforced.


• Actor-critic methods use learned value functions to drive policy changes.


• Actor: the policy.


• Critic: value function (trained to minimize prediction error).


•               θt+1 ← θt + αδt ∇θlog π(At |St) δt ← Rt+1 + γ ̂v(St+1) − ̂v(St)

Derivative algorithms: A2C, soft actor-critic, PPO
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Actor-Critic Methods
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Model-Free RL

Value-based methods Policy Gradient methods

Actor-Critic Methods

DDPG

A2C


Soft Actor-Critic 
(SAC)

TD3

Trust-region 
policy 

optimization

Proximal Policy 

Optimization

Q-learning

SARSA

DQN
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Challenges in RL for Robotics
Problem: where do rewards come from?


Need to balance defining the objective with learnability (may require 
“shaping” rewards).


Solution:


- Manually tuning a reward by hand.


- Inverse reinforcement learning: infer a reward from demonstrations.


- Potential-based shaping to preserve optimal policy. 
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Challenges in RL for Robotics
Problem: how many actions must be taken before an optimal policy is 
learned?


Solution:


- Learn in a simulator and transfer to the physical robot.


- Initialize the policy well.


- Data augmentation
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Multi-fidelity Sim2Real

19

Generate 
diverse 

situations for 
robust 

behaviors

Abstract away low-level 
details for scalability Train in simulator, deploy 

to the real robot.
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Data Augmentation

Corrado et al. 2024 (RLC) Corrado and Hanna 2024 (ICLR)
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Challenges in RL for Robotics
Problem: actions during learning may harm the robot or those around it.


Solution:


- Learn in a simulator and transfer to the physical robot.


- Offline reinforcement learning (no interaction during learning)


- Off-policy evaluation


- Add safety layers into a robot’s control architecture
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Offline Policy Evaluation

D = {(𝚜𝚝𝚊𝚝𝚎, ai, ri, s′ i)}m
i=1

Offline Policy 
Evaluation

Use evaluation to decide 
whether to deploy new policy.

Data collected 
from existing 

deployed 
autonomous 

systems.

New and 
untested policy

Historic 
deployment 

data
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Safety

A Joint Imitation-Reinforcement Learning Framework for Reduced Baseline Regret. Dey et al. 2021.

https://www.youtube.com/watch?v=hPO-Oxk1Xm0


Josiah Hanna, University of Wisconsin — MadisonA Walk in the Park: Learning to Walk in 20 Minutes With Model-Free Reinforcement Learning. Smith et al. 2022.

Case Study: Robot Locomotion

https://www.youtube.com/watch?v=YO1USfn6sHY
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Case Study: Robot Soccer



Josiah Hanna, University of Wisconsin — Madison

Summary
Today we covered:


1. Basic algorithms for RL in robotics.


2. Discussion of advantages and challenges with using RL.


3. Some case studies of RL in robotics.
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Action Items
Complete homework 4


Begin robot learning reading


