Autonomous Robotics

Robot Learning from Demonstration

Josiah Hanna University of Wisconsin — Madison

Slide credit: Sonia Chernova

Announcements

Final project released today.

Learning Outcomes

After today's lecture, you will:

- Understand the imitation learning problem setting.
- Be able to describe key challenges that arise when teaching a robot to perform a task.

Motivation

- No need for robot experts.
- Natural way to program robot skills.
- Add new skills on the fly.
- We have lots of data recording people doing things!

Terminology

- Imitation learning (IL)
- Behavior cloning (BC)
- Learning from Demonstration (LfD)
- Programming by Demonstration (PbD)
- Mimicry

Formalism

- Basic formalism:
 - Given a dataset of the form $\{(s_i, a_i)\}_{i=1}^m$.
 - Goal: learn a policy π such that $\pi(s_i) \approx a_i$.
- Intuition: copy the behavior in the dataset.
- There are many variations of this basic setup.
 - Example: BC from Observation: given state-only trajectories $\{(s_1, \ldots s_T)\}$, learn a policy that reproduces these trajectories. Why is this hard?

Basic Approach

- Imitation learning is a *supervised* learning problem.
 - States are inputs, demonstrator's actions are labels.
 - Can be classification or regression depending on control space.
- One issue: many supervised learning algorithms assume inputs are independent of each other during training and testing. Problem?
 - Small mistakes by the learner may compound over time.

Solution: The DAgger Approach

- 1. First, collect demonstrations from the expert.
- 2. Repeat:
 - 1. Use supervised learning to imitate the demonstrator $\rightarrow \pi_i$
 - 2. Collect more demonstrations but sometimes use π_i to take actions.
 - Still, record expert actions in every state visited.
 - 3. Supervised learning on the new dataset $\rightarrow \pi_{i+1}$
- 3. At each step, increase the proportion of states where π_i takes the action instead of the expert.

Correspondence Problem

Motion Capture

Mapping between Humans and Robots

Object-based

End effector-based

Teleoperation

Kinesthetic Teaching

Keyframe Demonstrations

Causal Confusion

- The demonstrator is running some policy that depends on some state variables that the observer can observe in the world.
- Depending on its sensors, the robot can observe / estimate some set of variables that may be different than the demonstrators.

Inverse Reinforcement Learning

- Basic formalism:
 - Given a dataset of the form $\{(s_i, a_i)\}_{i=1}^m$.
 - Goal: learn a reward function such that $\pi^*(s) \approx a$, where π^* is the optimal policy for the learned reward function.
- Intuition: learn demonstrator's intention rather than simply mimicking their actions. Why useful?
 - Potentially generalizes better to new scenarios.
 - Can attempt to surpass the demonstrator.

Inverse Reinforcement Learning

$$S_{t+1} \sim p(\cdot \mid S_t, A_t)$$

$$A_{t+1} \leftarrow \pi(S_{t+1})$$

$$A_{t+1} \leftarrow \pi(S_{t+1})$$

Inverse Reinforcement Learning

Helicopter tricks [Abbeel et al. 2007]

Summary

Today we covered:

- 1. The imitation learning problem, issues, and approaches.
- 2. Introduced and discussed inverse reinforcement learning.

Action Items

Human-robot interaction readings posted.

Begin final project.