Autonomous Robotics

Robots and LLMs

Josiah Hanna University of Wisconsin — Madison

Announcements

Final project released today.

Learning Outcomes

After today's lecture, you will:

- Understand what it means for a robot's knowledge to be grounded.
- Understand how LLMs can be used in robotics and how they go beyond other learning approaches.

Motivation for LLMs in Robotics

- Provide robots with common-sense reasoning.
- Allow robots to learn from repositories of human knowledge (i.e., the internet)

Grounding

- Knowledge is mapped to the physical senses and actions of a robot.
 - Example: "Pick up the red cup."

What sequence of controls will accomplish this instruction?

What does a red cup look like in a camera image?

Prior Work (2014): RoboBrain

'Robo Brain' mines the Internet to teach robots

By <u>Bill Steele</u>

August 25, 2014

Large Language Models

- Large neural networks that take text input and generate text output.
 - Formally, model p(nextword | prompt + previouswords).
 - Generate outputs one word at a time by sampling from this distribution.
 - The basic training procedure is self-supervised classification: take segments of words from a large text corpora and predict the next word that follows.
- Old idea but now **significantly** scaled up with internet scale data, datacenters of GPUs, and the transformer neural network architecture.

Language Models

 Basic idea: use probabilistic models to assign a probability to a sentence:

$$P(W) = P(w_1, w_2, \dots, w_n) \text{ or } P(w_{\text{next}} | w_1, w_2 \dots)$$

- Goes back to Claude Shannon
 - "Father of Information Theory"
 - Information theory: letters

Zero-order approximation	XFOML RXKHRJFFJUJ ALPWXFWJXYJ FFJEYVJCQSGHYD QPAAMKBZAACIBZLKJQD
First-order approximation	OCRO HLO RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL
Second-order approximation	ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE
Third-order approximation	IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE
First-order word approximation	REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE HE THE A IN CAME

Large Language Models (cont'd)

- Self-supervised pre-training doesn't produce a highly useful model.
- So typically follow with some type of fine-tuning:
 - Supervised fine-tuning: human annotators provide better outputs and model imitates those (imitation learning).
 - RLHF: human annotators rank responses, learn a reward function (IRL), and then use RL with the learned reward.

Ungrounded LLMs

- No matter how sophisticated the outputs of an LLM are, they are not grounded in physical experience and ability.
- VLM: vision-language models.

LLMs can identify potential skills to complete a task.

Value functions predict probability of a skill succeeding in a state.

SayCan: combine both to identify skills with a high probability of task

success.

- First, assume that we already have a skill library, Π , and for $\pi \in \Pi$ we know the probability that π can be successfully executed, $p(\verb|success||s,\mathscr{E}_\pi)$.
 - "If I ask robot to do \mathcal{C}_n , will it do it?"
 - Called a value or affordance function.
- When given a prompt, i, for a new task, the robot scores all skills with $p(\verb|success||s,\ell_\pi)p(\ell_\pi|i)$ and takes the skill most likely to succeed.

Value Function Training

- Skills in the skill library come from either behavior cloning or reinforcement learning.
 - Each skill is a policy $(\pi:S\to A)$ and also has a short text description, \mathcal{E}_n .
- Now, given a skill, we need to learn $p(success | s, \ell_n)$.
 - Equivalent to $v_{\pi}(s)$ for an MDP where the reward is zero except for upon success.
 - Learn the success probability with temporal difference learning.

Human: I spilled my coke, can you bring me something to clean it up?

Robot: I would

- 1. Find a sponge
- 2. Pick up the sponge
- 3. Bring it to you
- 4. Done

LLMs and Robots

- Strengths:
 - Take advantage of internet-scale data to help robots understand the world.
 - LLMs have demonstrated remarkable capabilities resembling advanced reasoning and problem solving —> use to inform robot action.
- Weaknesses & open questions:
 - Large models have a high storage footprint and inference cost.
 - Models may hallucinate.
 - Robots have a different embodiment than humans; knowledge may not transfer.
 - Continual learning?

Code Generation for Robots

Summary

Today we covered:

- 1. What it means for language to be grounded.
- 2. Why LLMs are not grounded.
- 3. The SayCan approach as an example method for grounding advanced LLMs.

Action Items

Human-robot interaction readings for next week.

Begin final project.