# Introduction to Human-Robot Interaction

Dakota Sullivan, Yuna Hwang, Christine Lee | Spring 2025

## **Review of Last Class**

- 1. Introduced Don Norman's Gulf Model in the context of HRI
- 2. Explored methods to address these HRI challenges
- 3. Understood existing efforts to address the Gulf of Execution in HRI

# **Learning Outcomes**

- 1. Exploring the Gulf of Evaluation
- 2. Examining current works to address this challenge in HRI
- 3. Discussing learning paradigms in HRI

## **Gulf of Execution**



→ The Gulf of Execution is the difference between a **users intentions** and **what the system allows.** 

## **Gulf of Execution in HRI**



#### reality

**Visual Sensing** 

Facial detection

**Verbal Sensing** 

Speech

**Touch Sensing** 

None

## **Gulf of Execution in HRI**



#### response

Gaze

Speech

Mobility

**Gestures** 

**Text on Interface** 

## **Gulf of Evaluation**



→ The Gulf of Evaluation is the difference between a **system's output** and the **ability of the user to interpret and evaluate** the output in terms of their goals.

## **Gulf of Evaluation in HRI**



#### interpretation



## **Gulf of Evaluation in HRI**

#### Easy evaluation of robot actions





## **Gulf of Evaluation in HRI**

#### Difficult evaluation of robot actions





## **Activity 1: Identifying the Gulf of Evaluation**

What are some examples of a mismatch between a technology's output and a user's ability to evaluate and interpret that output (i.e., Gulf of Evaluation)?





#### Steps

- 1. What is a technology you regularly use?
- 2. What is an output that technology produces?
- 3. What difficulties do you have in understanding that output?
- 4. Is this an example of the Gulf of Evaluation?

## **Review of HRI Methods**

#### **Analysis**

→ Understanding the problem space, the users, their contexts, and the technology

#### **Synthesis**

→ Generating design solutions based on the analysis. Includes ideation, sketching, modeling, prototyping etc.

#### **Evaluation**

→ Testing whether solution effectively address identified problems and meets user needs.

## design process

The design process viewed as "problem solving" (Jones, 1976), "problem seeking" (Peña, 1987) or "turning existing situations into preferred" (Simon, 1969) is a variation on the creative process.



### **Review of HRI Methods**

#### **Analysis**

- → Methods:
  - Ethnography
  - Contextual inquiry
  - Diary studies
  - ♦ Task analysis

#### **Synthesis**

- → Methods:
  - Participatory design
  - ♦ Scenario-based design
  - Prototyping
  - ♦ Wizard-of-Oz

#### **Evaluation**

- → Methods:
  - Usability testing
  - User studies
  - Field deployments

**Gulf of Evaluation:** users often struggle to understand **why** a robot did something unexpected or different from what they requested.







- Studies how **automated repair and explanations** help users understand and respond to robot behavior when **conflicts** arise.
- Focuses on developing **repair + explanation (REX) strategies** for unexpected robot outcomes (e.g., conflicting requests, ambiguous user commands, or robot limitations).









→ **Motivation**: It may not be clear where a robot is attempting to go based on its navigation path



→ **Goal**: Create navigation paths that are **unambiguous**, so that only one goal destination appears reasonable

→ Addressing the Gulf of Evaluation: Develop new navigation strategies that generate paths with only one clear goal destination



Legible





Explicable

Predictable



# **Activity 2: Addressing the Gulf of Evaluation**

Given your examples of the Gulf of Evaluation from Activity 1, how might you apply HRI methods (e.g., ethnography, participatory design, prototyping, or usability testing) to address this gap?





#### Steps

- 1. What is a technology you regularly use?
- 2. What difficulties do you have in understanding that output?
- 3. What method might you be able to use to address this problem?
- 4. When applied, how does the method address this problem?



"Can a robot **learn** to infer the mapping between system outputs and the user's feedback?"

"Learning means knowing which first-order systems can counter which disturbances by remembering those that succeeded in the past."





0 - 0 Reacting



0 - 2 Learning



1 - 2 Managing and Entertaining

- 1. Is a reinforcement learning agent a first or a second order learning system?
- 2. Can closed-loop systems use feedback incorrectly to steer away from the user's goals over time?
- 3. Could these systems be applied to social systems like classrooms or communities? For instance, is a school an interactive or collaborative system depending on how much students co-create their learning?

Overcoming robot failures by human suggestions



Learning relationship between the robot state variables and the corrective actions

\*uses a technique called – Learning from Demonstration (LfD)



# **Review of Learning Outcomes**

- 1. Exploring the Gulf of Evaluation
- 2. Examining current works to address this challenge in HRI
- 3. Discussing learning paradigms in HRI