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Announcements

Final project key dates:
April 29: deadline to be included in final tournament.
May 2: final deadline

Course evaluations are now available.

Josiah Hanna, University of Wisconsin — Madison



Learning Outcomes

After today’s lecture, you will;
 Have applied your robotics knowledge to design an autonomous vehicle.
 Have learned about the prediction problem in autonomous driving.

 Be able to compare and contrast modular vs end-to-end approaches to
autonomous driving.
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Autonomous Driving

Car equipped with sensors:
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Standard control interface (steering wheel, accelerator, brake).
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Architecture Choice
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End-to-End Architecture
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https://danieldavenport.medium.com/the-future-of-autonomous-driving-integrating-zero-shot-learning-modular-planning-
and-foundation-6eeebede1bee
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Moaular

Strengths:

1. Decomposition of complex problem into
well understood sub-parts.

2. Interpretable
3. Debuggable
Weaknesses:

1. Components are tuned in isolation; not as
one unified whole.

2. Error In one component propagates to the
next one.
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Group Activity: Wisconsin Driving

Design an autonomous driving system that can drive around UW —
Madison’s campus in a snow storm.

First, discuss how your vehicle will represent and identify state:
* What variables will be included in your state representation?
 \What sensors will you need to identify this state?

 \What state estimation techniques do you expect to be useful here?
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Prediction

Given the recent history of other agents, determine
where they will be at future time instances.

Challenges: o
- Need to predict over long time horizons. % B I3
- Need to model how other agents will react to one F i "‘-'7{';_]:};
another. . ‘ 2!
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- Ambiguity in the state of the world.

PRECOG: PREdiction Conditioned On Goals 1in Visual Multi-Agent Settings Josiah Hanna, University of Wisconsin — Madison



Ambiguity in Prediction
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Prediction via Deep Learning

Collect a dataset of scenes with other agents.

Train a neural network to predict where all agents will go based on where you’'ve seen
them drive so far.
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- Lacks interpretabillity.
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Prediction via Inverse Planning

Assume that agents behave approximately rationally.

Future trajectories are more likely if they match optimal behavior.

Algorithm 1 Goal and Occluded Factor Inference (GOFI)

StrengthS' Input: vehicle 7, state estimates $,.,, possible goals G, set
of occluded factor 2

Returns: occluded factor probabilities Pr (2]8%.;) and goal
probabilities p(g*|5%.,, 2)
B Interpretable' 1: Set prior probabilities p(g*), p(z) (e.g. uniform)
2: for all z € Z do
3:  for all ¢ € G* do

Weaknesses: 4: s’{’fT — PLANQPTIMAL(éﬁ,gi, 2)
5: c* < cost(syly, 2)
6: si 1.7 < PLANOPTIMAL(S}, ¢', 2)

] ] " ] ] ] o 8+Z 8

- Sensitive to how optimality is defined. A SR PP
: ‘ ‘ 1:7
9: L(51.+l9%,2) < exp(B(c* —cT))

L . 10: Pr(z[31,) o< 35 L(81.119,2) p(9)p(2) |
- Optimality assumption may be strong. 11: Pr(g?|31,, 2) < L(31,l9°, 2) p(g")p(2)/p(2]81.1)

12: Return Pr(z|8%.,), Pr(g*|8%.,, 2)
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Planning

Control is performed over multiple time-scales.
Route planner determines the vehicle’s route.

Motion planner determines an initial path for completing each step of the
route.

Trajectory optimization provides a smooth and collision-free path.

Trajectory tracking (e.g., PD control) to select final commands.
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End-to-end Approaches

Strengths:

1. The entire system is optimized toward the goal of the system.
2. In theory, more robust to the effect of error propagation.

3. Potentially more robust to misspecified world representations.
Weaknesses:

1. Lacks interpretablility, debuggabillity

2. Difficult to develop: RL + neuroevoluton are data inefficient; supervised learning
requires labelled data.
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Group Activity: Wisconsin Driving

Design an autonomous driving system that can drive around UW — Madison’s
campus In a snow storm.

Now, discuss how your vehicle will make decisions:

Hierarchical planning? End-to-end? Hybrid?

If hierarchical planning, what levels will you have in the hierarchy.

If end-to-end, how will you train decision-making”?

For all methods, when will you be confident that decision-making is

performant?
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Connected Vehicles

We developed a ne:N intersection

control paradignu called AIM.
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https://www.youtube.com/watch?v=4pbAI40dK0A

Autonomous Driving: where are we?

Undeniably, a lot of progress in the past decade.

Still, considerable debate on how close the field is to level 5 autonomy.

FORECASTS: http://www.driverless-future.com/?page id=384 March 27, 2017

NVIDIA to introduce level-4 enabling system by 2018 (2017)

NuTonomy to provide self-driving taxi services in Singapore by 2018, expand to 10 cities around world by 2020 (2076)
Delphi and MobilEye to provide off-the-shelf self-driving system by 2019 (2016)

Ford CEQO announces fully autonomous vehicles for mobility services by 2021 (2076) <t

Volkswagen expects first self driving cars on the market by 2019 (2076)

GM: Autonomous cars could be deployed by 2020 or sooner (2076)

Ford's head of product development: autonomous vehicle on the market by 2020 (2076) =

Baidu's Chief Scientist expects large number of self-driving cars on the road by 2019 (2076)

First autonomous Toyota to be available in 2020 (2015)

Elon Musk now expects first fully autonomous Tesla by 2018, approved by 2021 (2015)

US Sec Trans: Driverless cars will be in use all over the world by 2025 (20175)

Uber fleet to be driverless by 2030 (2015) =

Ford CEQ expects fully autonomous cars by 2020 (2075) ==

Next generation Audi A8 capable of fully autonomous driving in 2017 (2074)

Jaguar and Land-Rover to provide fully autonomous cars by 2024 says Director of Research and Technology (2074)
Fully autonomous vehicles could be ready by 2025, predicts Daimler chairman (2074) <=

Nissan to provide fully autonomous vehicles by 2020 (2073) e

Truly autonomous cars to populate roads by 2028-2032 estimates insurance think tank executive (20713)
Continental to make fully autonomous driving a reality by 2025 (2012)

https://rodneybrooks.com/predictions-scorecard-2025-january-01/ Josiah Hanna, University of Wisconsin — Madison



Can humans just supervise?

One potential approach is to let the vehicle do most of the driving and just
let the human intervene as needed.

- Potentially have a person in a call center intervene remotely.

What challenges do you see happening here?
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Summary

Today we covered:
1. Architectures for autonomous driving.
2. Discussed the prediction problem in autonomous driving.

3. Designed systems for autonomous driving,.
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Action ltems

Societal impacts reading for next week.

Final project.
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