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Reading Responses

• Overall, great responses. Grades are published.


• If you submitted, then you likely received most of the 10 possible points.


• Sometimes, points were lost when responses lacked detail 
demonstrating the text had been read.


• Reading on Kalman filter is now available on the course website.
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Programming Assignments

• Due Tuesday (2/11) at 9:30am


• Any questions?


• Any comments?
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Learning Outcomes
After today’s lecture, you will:


• Be able to implement the Bayes filter algorithm for recursive state 
estimation.


• Explain the strengths and weaknesses of the Bayes filter for real robot 
systems.


• Explain the difference between filtering and smoothing.
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Probabilistic Interaction Model

Environment

Robot

xt ∼ p(xt−1, ut)
zt ∼ g(xt)

ut

𝚋𝚎𝚕(xt) = p(xt |z1:t, u1:t)

zt

 is the probability of  given .g(z |x) z x

 is the probability of  given the 
environment is in state  and control  is taken.
p(xt |xt−1, ut) xt

xt−1 ut
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States
• State: all variables in a robot’s environment that impact the future.


• You have to define in your implementation.


• State variables can be continuous. Example: robot pose .


• State variables can be discrete. Example: 


• Assumptions:


• We know the state space, full set of possible states.


• Markov assumption: 

(x, y, θ) ∈ R3

𝚍𝚘𝚘𝚛 ∈ {𝚘𝚙𝚎𝚗, 𝚌𝚕𝚘𝚜𝚎𝚍}

p(xt |xt−1, ut) = p(xt |x0:t−1, u1:t)
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Dependency Graph

• Directed graphical model: nodes are variables and edges represent direct 
dependencies.


• Graph enables easy checking of conditional independence.


• Two nodes, A and B are conditionally independent given C if the node 
for C blocks all directed paths from A to B.*

* Represents a simplification of conditional independence check.
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Fantastic models and where to find them

• State estimation requires models of the state transition and observation 
functions,  and .


• In practice, you have to model these using data and/or knowledge of 
physics.


• Poor modeling  poor state estimation.

p(xt |xt−1, ut) g(zt |xt)

≈
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Fantastic models and where to find them
• One approach: use machine learning and data .


• Choose a set of candidate models, . Example: neural networks.


• Select most likely , given .


• Similarly, for the observation model:


• What could be a problem here?

D = (x0:T, u1:T, z1:T)

𝒫

p ∈ 𝒫 D
p ← arg max

p′￼

T

∑
t=1

log p′￼(xt |xt−1, ut)

g ← arg max
g′￼

T

∑
t=1

log g′￼(zt |xt)
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State Estimation
• Define robot’s belief as . 


• At time , the robot has observed  and knows it has taken actions .


• Goal: Compute the posterior such that . 


• Computation should not grow with .


• Why necessary?


• Assumptions: know models  and , have initial belief .

𝚋𝚎𝚕(xt)

t z1:t u1:t

𝚋𝚎𝚕(xt) = p(xt |z1:t, u1:t)

t

p g 𝚋𝚎𝚕(x0)
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Illustration

g(z |x)

𝚋𝚎𝚕(x)

x
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Naive Approach







 and .

p(xt |z1:t, u1:t) = ∑
x1:t−1

p(x1:t |z1:t, u1:t)

p(x1:t |z1:t, u1:t) = η ⋅ p(x1:t, z1:t |u1:t) = η ⋅ p(z1:t |x1:t)p(x1:t |u1:t)

p(z1:t |x1:t) =
t

∏
i=1

g(zi |xi) p(x1:t |u1:t) =
t

∏
i=1

p(xi |xi−1, ui)

# of terms grows exponentially!!
Bayes rule on the full sequence:

Expand the inside of the summation:
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Bayes Filter

• Predict: 

• Correct:

𝚋𝚎𝚕(xt) ← ∑
xt−1

p(xt |xt−1, ut)𝚋𝚎𝚕(xt−1) 𝚋𝚎𝚕(xt) ← ∫xt−1

p(xt |xt−1, ut)𝚋𝚎𝚕(xt−1)dxt−1

𝚋𝚎𝚕(xt) ← ηg(zt |xt)𝚋𝚎𝚕(xt)

η = ∑
xt

g(zt |xt)𝚋𝚎𝚕(xt) η = ∫ xtg(zt |xt)𝚋𝚎𝚕(xt)dxt

Discrete States Continuous States
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Bayes Filter Example

Credit: Probabilistic Robotics

Prediction increases uncertainty; Correction 
step decreases uncertainty.
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Bayes Filter Derivation
•  

•  

•  

•  

•  

•

𝚋𝚎𝚕(xt) = p(xt |z1:t, u1:t)

= ηp(zt |xt, z1:t−1, u1:t)p(xt |z1:t−1, u1:t)

= ηp(zt |xt)p(xt |z1:t−1, u1:t)

= ηp(zt |xt)∫ p(xt |z1:t−1, u1:t, xt−1)p(xt−1 |z1:t−1, u1:t)dxt−1

= ηp(zt |xt)∫ p(xt |xt−1, ut)p(xt−1 |z1:t−1, u1:t)dxt−1

= ηp(zt |xt)∫ p(xt |xt−1, ut)p(xt−1 |z1:t−1, u1:t−1)dxt−1

Bayes Rule

Markov Assumption

Markov Assumption

Markov Assumption

Law of total probability
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Limitations

• Intractable in general case. Why?


• Summation/integration over state space.


• Special cases can be tractable, e.g., Kalman Filter assumes linear 
Gaussian models.


• Approximation possible, e.g., Extended KF, Particle Filter
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Practical Strategies

• Use special cases (more on this next week).


• Simplify state representation but watch out for Markov violations!


• Discretize continuous states


• Dimensionality reduction
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Smoothing
• What is it? 

• Use new observations to refine past beliefs.


• Expect  for  to be more reliable than .


• Why? 

• Future observations provide information about the past.


• Can use for offline map estimation or machine learning.

p(xt |z1:T, u1:T) T > t p(xt |z1:t, u1:t)
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Bayes Smoother

• Forward pass: Bayes filter over the data. Get  for .


• Backward pass:


• 


•

𝚋𝚎𝚕(xt) t ∈ {1,...,T}

𝚋𝚎𝚕′￼(xT) ← 𝚋𝚎𝚕(xT)

𝚋𝚎𝚕′￼(xt) ← 𝚋𝚎𝚕(xt) ⋅ ∑
xt+1

p(xt+1 ∣ xt, ut+1) ⋅ 𝚋𝚎𝚕′￼(xt+1)
𝚋𝚎𝚕(xt+1)

Belief from prediction
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Summary

• Introduced problem of state estimation.


• Introduced Bayes filter as a method for state estimation.


• Discussed limitations of Bayes filter.


• Introduced Bayes smoother.
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Action Items

• Complete the first programming assignment on control.


• Read on Kalman filter for next week; send a reading response by 12 pm 
on Monday.


