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Programming Assignments

• Due Tuesday (2/11) at 9:30am


• Any questions?


• Any comments?
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Learning Outcomes
After today’s lecture, you will:


• Have reviewed the Bayes Filter from last time.


• Explain the difference between filtering and smoothing.


• Be able to work out potential exam problems related to Bayes Filter.
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Probabilistic Interaction Model

Environment

Robot

xt ∼ p(xt−1, ut)
zt ∼ g(xt)

ut

𝚋𝚎𝚕(xt) = p(xt |z1:t, u1:t)

zt

 is the probability of  given .g(z |x) z x

 is the probability of  given the 
environment is in state  and control  is taken.
p(xt |xt−1, ut) xt

xt−1 ut

Markov assumption: p(xt |xt−1, ut) = p(xt |x0:t−1, u1:t)
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State Estimation
• Define robot’s belief as . 


• At time , the robot has observed  and knows it has taken actions .


• Goal: Compute the posterior such that . 


• Computation should not grow with .


• Why necessary?


• Assumptions: know models  and , have initial belief .

𝚋𝚎𝚕(xt)

t z1:t u1:t

𝚋𝚎𝚕(xt) = p(xt |z1:t, u1:t)

t

p g 𝚋𝚎𝚕(x0)
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Illustration

g(z |x)

𝚋𝚎𝚕(x)

x
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Bayes Filter

• Predict: 

• Correct:

𝚋𝚎𝚕(xt) ← ∑
xt−1

p(xt |xt−1, ut)𝚋𝚎𝚕(xt−1) 𝚋𝚎𝚕(xt) ← ∫xt−1

p(xt |xt−1, ut)𝚋𝚎𝚕(xt−1)dxt−1

𝚋𝚎𝚕(xt) ← η−1g(zt |xt)𝚋𝚎𝚕(xt)

η = ∑
xt

g(zt |xt)𝚋𝚎𝚕(xt) η = ∫ xtg(zt |xt)𝚋𝚎𝚕(xt)dxt

Discrete States Continuous States
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Alternative Bayes Filter

• Receive data, 


• If  is control data:


• Else (  is sensor data):

dt

dt

dt

𝚋𝚎𝚕(xt) ← ∑
xt−1

p(xt |xt−1, dt)𝚋𝚎𝚕(xt−1)

𝚋𝚎𝚕(xt) ← η−1g(zt |xt)𝚋𝚎𝚕(xt)η = ∑
xt

g(zt |xt)𝚋𝚎𝚕(xt)
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Bayes Filter Example

Credit: Probabilistic Robotics

Prediction increases uncertainty; Correction 
step decreases uncertainty.
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Limitations

• Intractable in general case. Why?


• Summation/integration over state space.


• Special cases can be tractable, e.g., Kalman Filter assumes linear 
Gaussian models.


• Approximation possible, e.g., Extended KF, Particle Filter
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Smoothing
• What is it? 

• Estimate  for .


• Use new observations to refine past beliefs.


• Compare to filtering: Expect  to be more accurate than .


• Why? 

• Future observations provide information about the past.


• Can use inference offline for learning, e.g., map estimation or improving models.

p(xt |z1:T, u1:T) T > t

p(xt |z1:T, u1:T) p(xt |z1:t, u1:t)
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Bayes Smoother

• Forward pass: Bayes filter over the data. Get  for .


• Backward (smoothing) pass:


• 


• Work backwards in time from  to  using the update:

𝚋𝚎𝚕(xt) t ∈ {1,...,T}

𝚋𝚎𝚕′ (xT) ← 𝚋𝚎𝚕(xT)

T 1

Belief from filtering

The belief at the final time-step is just 
the belief from the filter.

𝚋𝚎𝚕′ (xt) ← 𝚋𝚎𝚕(xt) ⋅ ∑
xt+1

p(xt+1 ∣ xt, ut+1) ⋅ 𝚋𝚎𝚕′ (xt+1)
𝚋𝚎𝚕(xt+1)
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Bayes Smoother

State estimates from a Kalman filter and RTS smoother — instantiations of Bayes filter and smoother.
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Bayes Smoother Derivation
p(xt |z1:T, u1:T) = ∫xt+1

p(xt, xt+1 |z1:T, u1:T)dxt+1

= ∫xt+1

p(xt |xt+1, z1:T, u1:T)p(xt+1 |z1:t, u1:t)dxt+1

= ∫xt+1

p(xt |xt+1, z1:t+1, u1:t+1)𝚋𝚎𝚕′ (xt+1)dxt+1

= ∫xt+1

p(xt+1 |xt, z1:t+1, u1:t+1)p(xt |z1:t+1, u1:t+1)
p(xt+1 |z1:t+1, u1:t+1)

𝚋𝚎𝚕′ (xt+1)dxt+1

= ∫xt+1

p(xt+1 |xt, ut+1)𝚋𝚎𝚕(xt)
𝚋𝚎𝚕(xt+1)

𝚋𝚎𝚕′ (xt+1)dxt+1

Law of total probability

(Reverse marginalization)

Definition of conditional 
probability

Markov property and 
smoothed belief definition

Bayes

Markov and belief definitions
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Filtering Practice
Mobile robot with binary observations  and location 

. 

Observation probabilities:  and otherwise .

Initial belief: , i.e., equal probability of any start state.

Movement: the robot can move left (decrease x) or right (increase x). Actions fail with 
probability 0.2 and move the robot one unit in the intended direction with probability 
0.8. If the robot is in state  and moves right then it remains in  with 
probability 1. A similar transition occurs if the robot moves left in .


The robot moves right and observes . What is its new belief under one step of 
Bayes Filter?


z ∈ {𝚍𝚘𝚘𝚛, 𝚗𝚘 − 𝚍𝚘𝚘𝚛}
x ∈ {1,2,3}

g(𝚍𝚘𝚘𝚛 |x = 2) = 0.8 p(𝚍𝚘𝚘𝚛 |x) = 0.1
𝚋𝚎𝚕(x0) = 1/3

x = 3 x = 3
x = 1

𝚍𝚘𝚘𝚛
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Smoothing Practice
Mobile robot with binary observations  and location 

. 

Observation probabilities:  and otherwise .

Initial belief: , i.e., equal probability of any start state.

Movement: the robot can move left (decrease x) or right (increase x). Actions fail with 
probability 0.2 and move the robot one unit in the intended direction with probability 
0.8. If the robot is in state  and moves right then it remains in  with 
probability 1. A similar transition occurs if the robot moves left in .


The robot moves right and observes . Compute a revised belief about its initial 
state using the Bayes smoother?


z ∈ {𝚍𝚘𝚘𝚛, 𝚗𝚘 − 𝚍𝚘𝚘𝚛}
x ∈ {1,2,3}

g(𝚍𝚘𝚘𝚛 |x = 2) = 0.8 p(𝚍𝚘𝚘𝚛 |x) = 0.1
𝚋𝚎𝚕(x0) = 1/3

x = 3 x = 3
x = 1

𝚍𝚘𝚘𝚛
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Summary

• Reviewed problem of state estimation.


• Reviewed Bayes filter as a method for state estimation.


• Discussed limitations of the Bayes filter.


• Introduced Bayes smoother.
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Action Items

• Complete the first programming assignment on control.


• Read on Kalman filter for next week; send a reading response by 12 pm 
on Monday.


