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Programming Assignments

• Thoughts?
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Learning Outcomes
After today’s lecture, you will:


• Be able to specify the key assumptions for Kalman filters.


• Be able to specify the steps of a Kalman filter.


• Gain intuition for how the updates affect beliefs.
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Kalman Filter Applications

Robot Localization Autonomous driving [e.g., 1]

[1] https://arxiv.org/pdf/2004.05965

Object Tracking
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Univariate ( 


Multivariate ( )

x ∈ R)

x ∈ Rd

Review: Gaussian Distributions

x ∼ 𝒩(μ, σ2) p(x) =
1

2πσ
e− (x − μ)2

2σ2

x ∼ 𝒩(μ, Σ)

p(x) =
1

(2π)d/2 |Σ |1/2 e− 1
2 (x−μ)⊤Σ−1(x−μ)
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Fact 1: A linear function of a Gaussian random variable is Gaussian:


 and   


Fact 2: If two independent random variables each have a Gaussian 
distribution, then the product of their distributions is Gaussian:


 and   


X ∼ 𝒩(μ, σ2) Y = aX + b ⟹ Y ∼ 𝒩(aμ + b, a2σ2)

X ∼ 𝒩(μ1, σ2
1) Y ∼ 𝒩(μ2, σ2

2) ⟹ p(X)p(Y) = 𝒩(x; μ̄, σ̄2)

Properties of Gaussians (univariate case)

μ̄ =
σ2

2

σ2
1 + σ2

2
μ1 +

σ2
1

σ2
1 + σ2

2
μ2 σ̄ =

1
σ−2

1 + σ−2
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Fact 1: A linear function of a Gaussian random variable is Gaussian:


 and   


Fact 2: If two independent random variables each have a Gaussian 
distribution, then the product of their distributions is Gaussian:


 and   


X ∼ 𝒩(μ, Σ) Y = AX + B ⟹ Y ∼ 𝒩(Aμ + B, A⊤ΣA)

X ∼ 𝒩(μ1, Σ1) Y ∼ 𝒩(μ2, Σ2) ⟹ p(X)p(Y) = 𝒩(x; μ̄, Σ)

Properties of Gaussians (multi-variate case)

μ̄ =
Σ2

Σ1 + Σ2
μ1 +

Σ1

Σ1 + Σ2
μ2 Σ =

1
Σ−1

1 + Σ−1
2
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Linear Gaussian Systems
We make the following assumptions on the robot’s environment:


• States, controls, and observations are vectors:  and  and 
. 


• State transition and observation function are linear Gaussians:


•  +  where , ,  and
.


•  where , , and . 

x ∈ Rd u ∈ Rk

z ∈ Rm

xt = Axt−1 + But wt wt ∼ 𝒩(0,Q) A ∈ Rd×d B ∈ Rd×k

Q ∈ Rd×d

zt = Hxt + vt vt ∼ 𝒩(0,R) H ∈ Rm×d R ∈ Rm×m

⟹ p(xt |xt−1, ut) = 𝒩(x; Axt−1 + But, Q)

⟹ g(zt |xt) = 𝒩(z; Hxt, R)
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Example of a Linear Gaussian System
• Consider a robot moving in a 2D plane. 


• State is , i.e., position and velocity


• Action is , i.e., acceleration


• Observation is noisy position: .


•            


•

x = [x, ·x, y, ·y]

u = [··x, ··y]

z = [x̃, ỹ]

xt = A1,1xt−1 + A1,2
·xt−1 + B1,1

··xt + wt(0) ·xt = A2,2
·xt−1B2,1

··xt + wt(1)

x̃t = H1,1xt + vt(0) Similar transition and observation 
definitions for the y-coordinate.
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Kalman Filter
• The Kalman filter is a Bayes filter that represents  with a Gaussian 

distribution, .


• The initial belief is Gaussian: .


• Under our assumptions, the posterior remains a Gaussian distribution using 
the updates from the Bayes filter:


• Intuition for correctness: plug Gaussian beliefs and linear Gaussian system 
state transitions and observations into Bayes filter updates.

𝚋𝚎𝚕(xt)
𝒩(μt, Σt)

𝚋𝚎𝚕(x0) = 𝒩(x0; μ0, Σ0)

p(xt |z1:t, u1:t) = 𝒩(xt; μt, Σt)
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The Kalman Filter as a Bayes Filter
• Initialize belief:


• Prediction:


• Correction:

𝚋𝚎𝚕(xt) = ∫ p(xt |xt−1, ut)𝚋𝚎𝚕(xt−1)dxt−1

μ̄t = Aμt−1 + But

Σt = ATΣA + R

𝚋𝚎𝚕(xt) = ηg(zt |xt)𝚋𝚎𝚕(xt)

Kt = ΣtH⊤(HΣtH⊤ + Q)−1

μt = μ̄t + Kt(zt − Hμ̄t)

Σt = (I − KtH)Σt

𝚋𝚎𝚕(x0) = 𝒩(x0, μ0, Σ0)
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The Kalman Gain

•  is called the Kalman gain at time-step .


• Use univariate case with  to build intuition:


• The Kalman gain tells you how much to trust the prediction vs the 
observation.


• Small gain implies the measurement is less reliable and the belief is 
updated less from the prediction belief.

Kt t

H = 1

Kt = ΣtH⊤(HΣtH⊤ + R)−1

Kt =
σ̄2

t

σ̄2
t + R

Uncertainty from prediction step

Total uncertainty 
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Illustration of Kalman Filter Updates

Belief after motion Observation Probability

New belief
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Advantages / Disadvantages
• Kalman filters:


• Can be used for continuous state spaces.


• Are optimal filters if our assumptions hold.


• Are very efficient; polynomial in state and observation dimensionality.


• But…


• Randomness may not be Gaussian.


• Most robotics systems are nonlinear.
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Practice
• Robot is moving along the x-axis and has state given by its x-coordinate. 

It’s action is a desired velocity and it observes a noisy observation of its 
coordinate. The initial belief is  and .μ0 = 0 σ0 = 1

xt = xt−1 + ut + wt where wt ∼ 𝒩(0,1)
zt = xt + vt where vt ∼ 𝒩(0,2)

Compute the robot’s belief about its location after it takes action  and 
observes 

u1 = 1
zt = 2
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Practice
• Robot is moving along the x-axis and has state given by its x-coordinate. 

It’s action is a desired velocity and it observes a noisy observation of its 
coordinate. The initial belief is  and .μ0 = 0 σ0 = 1
xt = xt−1 + ut + wt where wt ∼ 𝒩(0,1)
zt = xt + vt where vt ∼ 𝒩(0,2)

Compute the robot’s belief about its location after it takes action  and 
observes 

u1 = 1
zt = 2

Prediction 
 μ̄t = Aμ0 + But = μ0 + ut = 0 + 1 = 1

Σ1 = A⊤Σ0A + Q = (1)(1)(1) + 1 = 2

Correction 

 

 

K1 =
σ̄2

1

σ̄2
1 + R

=
2

2 + 2
= 1/2

μ1 = μ̄0 + K1(z − Hx1) = 1 +
1
2

(2 − 1) = 3/2

Σ1 = (I − K1H)Σ1 = (1 − 1/2)2 = 1
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Summary

• Introduced the linear Gaussian model.


• Introduced the basic Kalman filter as an instantiation of the Bayes filter 
under a linear Gaussian assumption.


• Saw an example of how updates change the belief.



Josiah Hanna, University of Wisconsin — Madison

Action Items

• Read on particle filter for next week; send a reading response by 12 pm 
on Monday.


