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Programming Assignments

* Thoughts?



Learning Outcomes

After today’s lecture, you will;
 Be able to specify the key assumptions for Kalman filters.
 Be able to specify the steps of a Kalman filter.

e Gain intuition for how the updates affect beliefs.

Josiah Hanna, University of Wisconsin — Madison



Kalman Filter Applications

Robot Localization Autonomous driving [e.g., 1]

Filter starts with Estimate improves
rouch estimate as mare data used

Object Tracking
[1] httpS:// arxiv.org/ pdf/ 2004.05965 Josiah Hanna, University of Wisconsin — Madison



Review: Gaussian Distributions

Univariate (x € R)
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Properties of Gaussians (univariate case)

Fact 1: A linear function of a Gaussian random variable is Gaussian:

X~ Nu,6°)andY =aX+b =Y ~ N(au + b, a’*c?)

Fact 2: If two independent random variables each have a Gaussian
distribution, then the product of their distributions is Gaussian:

X ~ Ny, 02) and Y ~ N (5, 63) = pX)p(Y) = N (x; 1, 5)
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Properties of Gaussians (multi-variate case)

Fact 1: A linear function of a Gaussian random variable is Gaussian:

X~ N (pu,X)andY=AX+B=Y ~ N (Au+ B,A'TA)

Fact 2: If two independent random variables each have a Gaussian
distribution, then the product of their distributions is Gaussian:

X~ N, 2 and Y ~ N (py, Zy) = p(X)p(Y) = N (x; i, X)
> >, 1
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Linear Gaussian Systems

We make the following assumptions on the robot’s environment:

e States, controls, and observations are vectors: x &€ R% and u € R¥ and
z € R™,

e State transition and observation function are linear Gaussians:

e x,=Ax,_; + Bu, + w,where w, ~ #(0,0), A € R4 B € R and
Q € R™. — p(x|x,_,u) =N(x;Ax,_; + Bu,, Q)

» 7= Hx,+v,wherev, ~ /(O,R), H € R™4 and R € R™ ™,
— g(zt\xt) — */’/(Z; sza R)
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Example of a Linear Gaussian System

* Consider a robot moving in a 2D plane.
« Stateis x =[x, X, Vy, V], i.e., position and velocity
e Actionisu = |X, Y|, i.e., acceleration
« Observation is noisy position: z = | X, .

o X, = Ay T AKX + By X+ w(0) X = AgpX; 1By 1 X, + wl)

Similar transition and observation
definitions for the y-coordinate.

. %= H, 1, + v,(0)
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Kalman Filter

The Kalman filter is a Bayes filter that represents bel(x,) with a Gaussian
distribution, A/ (u,, 2,).

The initial belief is Gaussian: bel(xy) = A (xy; K> 20)-

Under our assumptions, the posterior remains a Gaussian distribution using
the updates from the Bayes filter:

p(xt‘zlzv ul:t) — '/V(xt; Hys Zt)

Intuition for correctness: plug Gaussian beliefs and linear Gaussian system
state transitions and observations into Bayes filter updates.
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The Kalman Filter as a Bayes Filter

e |nitialize belief:
bel(xO) — '/V(x()a /’t()a 2())

e Prediction: )
My = A//tt—l + Bu,

bel(x,) = Jp(xtlxt_l, u)bel(x,_;)dx,_,

e Correction:

Y =A'ZA+R

My = /Zt T Kt(zt T H/Zz)
> =(—-KH)Z,

bel(xz) — ﬂg(zt | xt)bel(xt)
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The Kalman Gain

K=XH'HZH"+R)"!

+ K, is called the Kalman gain at time-step .

e Use univariate case with H = 1 to build intuition:

K O t2 Uncertainty from prediction step
L 5t2 + R Total uncertainty

 The Kalman gain tells you how much to trust the prediction vs the
observation.

 Small gain implies the measurement is less reliable and the belief is
updated less from the prediction belief.
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llustration of Kalman Filter Updates

QZ - - 0z -

a1s - . Q15 -

Belief after motion Observation Probability
New belief
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Advantages / Disadvantages

« Kalman filters:

e Can be used for continuous state spaces.

* Are optimal filters if our assumptions hold.

* Are very efficient; polynomial in state and observation dimensionality.
* But...

 Randomness may not be Gaussian.

 Most robotics systems are nonlinear.
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Practice

 Robot is moving along the x-axis and has state given by its x-coordinate.
It’s action is a desired velocity and it observes a noisy observation of its

coordinate. The initial belief is gy, = 0 and ¢, = 1.
x,=x,_, +u +w wherew, ~ 4/(0,1)
z,=x,+v, where v, ~ /(0,2)

Compute the robot’s belief about its location after it takes action u; = 1 and
observes 7, = 2
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Practice

 Robot is moving along the x-axis and has state given by its x-coordinate.
It’s action is a desired velocity and it observes a noisy observation of its

coordinate. The initial belief is gy, = 0 and ¢, = 1.
x,=x,_, +u +w wherew, ~ 4/(0,1)
z,=x,+v, where v, ~ /(0,2)

Compute the robot’s belief about its location after it takes action #;, = 1 and

observes 7. = 2 .
X Correction

6

2
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ﬂ1=ﬂo+K1(Z—HX1)=1+5(2—1)=3/2
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Prediction
//zt:A//lO+Bl/lt://iO+Mt:O+ 1 — 1
Y, =AZ A+ 0= +1=2



Summary

 |ntroduced the linear Gaussian model.

* Introduced the basic Kalman filter as an instantiation of the Bayes filter
under a linear Gaussian assumption.

e Saw an example of how updates change the belief.
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Action ltems

 Read on particle filter for next week; send a reading response by 12 pm
on Monday.
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