Autonomous Robotics

Kalman Filtering

Josiah Hanna University of Wisconsin — Madison

Programming Assignments

• Thoughts?

Learning Outcomes

After today's lecture, you will:

- Be able to specify the key assumptions for Kalman filters.
- Be able to specify the steps of a Kalman filter.
- Gain intuition for how the updates affect beliefs.

Kalman Filter Applications

Robot Localization

Autonomous driving [e.g., 1]

Review: Gaussian Distributions

Univariate ($x \in \mathbf{R}$)

$$x \sim \mathcal{N}(\mu, \sigma^2) \qquad p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Multivariate ($x \in \mathbf{R}^d$)

$$x \sim \mathcal{N}(\mu, \Sigma)$$

$$p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu)}$$

Properties of Gaussians (univariate case)

Fact 1: A linear function of a Gaussian random variable is Gaussian:

$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 and $Y = aX + b \Longrightarrow Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$

Fact 2: If two independent random variables each have a Gaussian distribution, then the product of their distributions is Gaussian:

$$X \sim \mathcal{N}(\mu_1, \sigma_1^2) \text{ and } Y \sim \mathcal{N}(\mu_2, \sigma_2^2) \Longrightarrow p(X)p(Y) = \mathcal{N}(x; \bar{\mu}, \bar{\sigma}^2)$$

$$\bar{\mu} = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} \mu_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \mu_2 \qquad \bar{\sigma} = \frac{1}{\sigma_1^{-2} + \sigma_2^{-2}}$$

Properties of Gaussians (multi-variate case)

Fact 1: A linear function of a Gaussian random variable is Gaussian:

$$X \sim \mathcal{N}(\mu, \Sigma)$$
 and $Y = AX + B \Longrightarrow Y \sim \mathcal{N}(A\mu + B, A^{\mathsf{T}}\Sigma A)$

Fact 2: If two independent random variables each have a Gaussian distribution, then the product of their distributions is Gaussian:

$$X \sim \mathcal{N}(\mu_1, \Sigma_1) \text{ and } Y \sim \mathcal{N}(\mu_2, \Sigma_2) \Longrightarrow p(X)p(Y) = \mathcal{N}(x; \bar{\mu}, \overline{\Sigma})$$

$$\bar{\mu} = \frac{\Sigma_2}{\Sigma_1 + \Sigma_2} \mu_1 + \frac{\Sigma_1}{\Sigma_1 + \Sigma_2} \mu_2 \qquad \overline{\Sigma} = \frac{1}{\Sigma_1^{-1} + \Sigma_2^{-1}}$$

Linear Gaussian Systems

We make the following assumptions on the robot's environment:

- States, controls, and observations are vectors: $x \in \mathbf{R}^d$ and $u \in \mathbf{R}^k$ and $z \in \mathbf{R}^m$.
- State transition and observation function are linear Gaussians:
 - $x_t = Ax_{t-1} + Bu_t + w_t$ where $w_t \sim \mathcal{N}(0,Q), A \in \mathbf{R}^{d \times d}, B \in \mathbf{R}^{d \times k}$ and $Q \in \mathbf{R}^{d \times d}$. $\Longrightarrow p(x_t | x_{t-1}, u_t) = \mathcal{N}(x; Ax_{t-1} + Bu_t, Q)$
 - $z_t = Hx_t + v_t$ where $v_t \sim \mathcal{N}(0,R), H \in \mathbf{R}^{m \times d}$, and $R \in \mathbf{R}^{m \times m}$. $\implies g(z_t | x_t) = \mathcal{N}(z; Hx_t, R)$

Example of a Linear Gaussian System

- Consider a robot moving in a 2D plane.
 - State is $x = [x, \dot{x}, y, \dot{y}]$, i.e., position and velocity
 - Action is $u = [\ddot{x}, \ddot{y}]$, i.e., acceleration
 - Observation is noisy position: $z = [\tilde{x}, \tilde{y}]$.

•
$$x_t = A_{1,1}x_{t-1} + A_{1,2}\dot{x}_{t-1} + B_{1,1}\ddot{x}_t + w_t(0)$$
 \dot{x}_t

•
$$\tilde{x}_t = H_{1,1}x_t + v_t(0)$$

$$\dot{x}_t = A_{2,2} \dot{x}_{t-1} B_{2,1} \ddot{x}_t + w_t(1)$$

Similar transition and observation definitions for the y-coordinate.

Kalman Filter

- The Kalman filter is a Bayes filter that represents bel(x_t) with a Gaussian distribution, $\mathcal{N}(\mu_t, \Sigma_t)$.
- The initial belief is Gaussian: bel $(x_0) = \mathcal{N}(x_0; \mu_0, \Sigma_0)$.
- Under our assumptions, the posterior remains a Gaussian distribution using the updates from the Bayes filter:

$$p(x_t | z_{1:t}, u_{1:t}) = \mathcal{N}(x_t; \mu_t, \Sigma_t)$$

• Intuition for correctness: plug Gaussian beliefs and linear Gaussian system state transitions and observations into Bayes filter updates.

The Kalman Filter as a Bayes Filter

Initialize belief:

$$bel(x_0) = \mathcal{N}(x_0, \mu_0, \Sigma_0)$$

Prediction:

$$\overline{\text{bel}}(x_t) = \int p(x_t | x_{t-1}, u_t) \text{bel}(x_{t-1}) dx_{t-1}$$

Correction:

$$bel(x_t) = \eta g(z_t | x_t) \overline{bel}(x_t)$$

$$\bar{\mu}_t = A\mu_{t-1} + Bu_t$$

$$\bar{\Sigma}_t = A^T \Sigma A + R$$

$$\mu_t = \bar{\mu}_t + K_t (z_t - H\bar{\mu}_t)$$

$$\Sigma_t = (I - K_t H) \bar{\Sigma}_t$$

The Kalman Gain

$$K_t = \overline{\Sigma}_t H^{\mathsf{T}} (H \overline{\Sigma}_t H^{\mathsf{T}} + R)^{-1}$$

- K_t is called the Kalman gain at time-step t.
- Use univariate case with H=1 to build intuition:

$$K_t = \frac{\bar{\sigma}_t^2}{\bar{\sigma}_t^2 + R} \qquad \begin{array}{c} \text{Uncertainty from prediction step} \\ \text{Total uncertainty} \end{array}$$

- The Kalman gain tells you how much to trust the prediction vs the observation.
- Small gain implies the measurement is less reliable and the belief is updated less from the prediction belief.

Illustration of Kalman Filter Updates

Belief after motion

Observation Probability

Advantages / Disadvantages

- Kalman filters:
 - Can be used for continuous state spaces.
 - Are optimal filters if our assumptions hold.
 - Are very efficient; polynomial in state and observation dimensionality.
- But...
 - Randomness may not be Gaussian.
 - Most robotics systems are nonlinear.

Practice

• Robot is moving along the x-axis and has state given by its x-coordinate. It's action is a desired velocity and it observes a noisy observation of its coordinate. The initial belief is $\mu_0 = 0$ and $\sigma_0 = 1$.

$$x_t = x_{t-1} + u_t + w_t$$
 where $w_t \sim \mathcal{N}(0,1)$

$$z_t = x_t + v_t$$
 where $v_t \sim \mathcal{N}(0,2)$

Compute the robot's belief about its location after it takes action $u_1=1$ and observes $z_t=2$

Practice

• Robot is moving along the x-axis and has state given by its x-coordinate. It's action is a desired velocity and it observes a noisy observation of its coordinate. The initial belief is $\mu_0 = 0$ and $\sigma_0 = 1$.

$$x_t = x_{t-1} + u_t + w_t \text{ where } w_t \sim \mathcal{N}(0,1)$$

$$z_t = x_t + v_t \text{ where } v_t \sim \mathcal{N}(0,2)$$

Compute the robot's belief about its location after it takes action $u_1 = 1$ and observes $z_t = 2$

Prediction

$$\bar{\mu}_t = A\mu_0 + Bu_t = \mu_0 + u_t = 0 + 1 = 1$$

$$\bar{\Sigma}_1 = A^{\mathsf{T}} \Sigma_0 A + Q = (1)(1)(1) + 1 = 2$$

Correction
$$K_{1} = \frac{\bar{\sigma}_{1}^{2}}{\bar{\sigma}_{1}^{2} + R} = \frac{2}{2 + 2} = 1/2$$

$$\mu_{1} = \bar{\mu}_{0} + K_{1}(z - Hx_{1}) = 1 + \frac{1}{2}(2 - 1) = 3/2$$

$$\Sigma_{1} = (I - K_{1}H)\overline{\Sigma}_{1} = (1 - 1/2)2 = 1$$

Summary

- Introduced the linear Gaussian model.
- Introduced the basic Kalman filter as an instantiation of the Bayes filter under a linear Gaussian assumption.
- Saw an example of how updates change the belief.

Action Items

 Read on particle filter for next week; send a reading response by 12 pm on Monday.