Autonomous Robotics

Particle Filters

Josiah Hanna University of Wisconsin — Madison

Learning Outcomes

After today's lecture, you will:

- Understand particle approximations of belief distributions.
- Be able to compute a robot's state estimate using a set of weighted particles.
- Understand the weighting and re-sampling schemes used by particlebased methods.

After Incorporating 65 Ultrasound Scans

Particle-based Beliefs

- Difficult to exactly represent the robot's belief in continuous or large state spaces.
 - Bayes filter is usually intractable.
 - Kalman filter and EKF restrict to Gaussian beliefs.
- New idea: the robot represents its belief with a set of N particles.
 - Each particle represents a possible robot state.
 - Particles are explicitly or implicitly weighted based on the likelihood the robot is in a particular state.
 - Known as a non-parametric belief representation.

Illustration of Particle-Based Beliefs

Importance Sampling

Computing the Mean State

- In state estimation, you often want summary statistics:
 - What state is the robot expected to be in?
 - How spread out is the robot's belief.
- Expected value of robot's state is a weighted average:

$$\mu_t = \sum_{i=1}^{N} w_i x_t^i \qquad \text{bel}(x_t) = \sum_{i=1}^{N} w_i \cdot \mathbf{1} \{ x_t^i = x_t \}$$

Normalized Importance Sampling

- Belief is represented by a set of particles, $\{(x_i^t, w_i)\}$.
- Robot takes action u_t and then observes z_t .
- Update particles:
 - $x_{t+1}^i \sim p(\cdot \mid x_t^i, u_t)$
 - $w_i \leftarrow w_i * p(z_t | x_{t+1}^i)$

Intuition: Each particle represents a path through the state space and weights represent the plausibility of the path.

Problem: Most paths become unlikely very quickly.

Effective sample size:

$$w_i = 1. \frac{1}{\sum_{i=1}^{N} (w_i)^2}$$

Normalize weights so that $\sum_{i=1}^{\infty} w_i = 1$.

Particle Filters

- Belief is represented by a set of particles, $\{(x_i^t, w_i)\}$.
- Robot takes action u_t and then observes z_t . Set $w_i \leftarrow \frac{1}{N}$.
- Update particles:
 - $x_{t+1}^i \sim p(\cdot \mid x_t^i, u_t)$
 - $w_i \leftarrow w_i * p(z_t | x_{t+1}^i)$
 - Normalize weights so that $\sum_{i=1}^{N} w_i = 1$.
 - Sample N new particles (with replacement) to form a new particle set.

Particle Filters

Figure 1: Resampling

- Survival of the fittest particles.
- Randomly select particles according to their weights.
 - . Reset weights to $\frac{1}{N}$ after each iteration. Why?

$$\mu_t = \sum_{i=1}^{N} w_i x_t^i$$

Particle Filter Illustration

Particle Filter Illustration

Low Variance Resampler

Figure 1: Resampling

Advantages / Disadvantages

- Particle filters:
 - Can be used for continuous state spaces.
 - Can approximate any belief distribution (compare to Kalman/EKF).
 - Scale with computation
- But...
 - Only approximate belief.
 - Limited for high-dimensional state-spaces.

Loss of Diversity

Good observation models are bad?

Summary

- Saw examples of particle-based belief representations.
- Discussed differences between NIS and particle filters.
- Discussed pitfalls and remedies for particle filters.

Action Items

- Work on programming assignment #2.
- Read on SLAM for next week; send a reading response by 12 pm on Monday.