Autonomous Robotics

Particle Filters
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Some figures taken from Probabilistic Robotics and Drew Bagnell’s course notes.



Learning Outcomes

After today’s lecture, you will;
 Understand particle approximations of belief distributions.

 Be able to compute a robot’s state estimate using a set of weighted
particles.

 Understand the weighting and re-sampling schemes used by particle-
based methods.
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Particle Filter Applications
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Particle-based Beliefs

e Difficult to exactly represent the robot’s belief in continuous or large state spaces.

 Bayes filter is usually intractable.
e Kalman filter and EKF restrict to Gaussian beliefs.

* New idea: the robot represents its belief with a set of N particles.
 Each particle represents a possible robot state.

* Particles are explicitly or implicitly weighted based on the likelihood the robot is
In a particular state.

« Known as a non-parametric belief representation.
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lllustration of Particle-Based Beliefs




Importance Sampling
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Computing the Mean State

e |n state estimation, you often want summary statistics:
 \What state is the robot expected to be in?
« How spread out is the robot’s belief.

 EXxpected value of robot’s state is a weighted average:

N N
=) W bel(x) = Y w;- 1{x/ =x}
=1 =1
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Normalized Importance Sampling

« Belief is represented by a set of particles, {(x/, w;)}.

» Robot takes action i, and then observes z..

 Update particles:

Intuition: Each particle represents a path through the state

. xtl |~ p( -] xtl’ ’/‘t) space and weights represent the plausibility of the path.

. Problem: Most paths become unlikely very quickly.
e W; < W p(z,|x, )

Effective sample size:

N 1
Normalize weights so that 21 w, = 1. Zi\; 1 (W)
=
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Particle Filters

« Belief is represented by a set of particles, {(x, w;)}.

1
N

. Robot takes action u, and then observes z,. Set w; <

 Update particles:
° 'xtl_|_1 Np( ) ‘xtla ut)

¢ W; < Wi*p(zt‘x;+1)

N
Normalize weights so that Z w; = 1.
i=1

« Sample N new particles (with replacement) to form a new particle set.
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Particle Filters
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Figure 1: Resampling

* Survival of the fittest particles.

 Randomly select particles according to their weights.

1

. Reset weights to — after each iteration. Why?
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Particle Filter lllustration
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Particle Filter lllustration
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Low Variance Resampler
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Advantages / Disadvantages

* Particle filters:
e Can be used for continuous state spaces.
 Can approximate any belief distribution (compare to Kalman/EKF).
e Scale with computation
 But...
* Only approximate belief.

* Limited for high-dimensional state-spaces.
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Loss of Diversity

duplicates
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(Good observation models are bad?

p(z|z)




Summary

e Saw examples of particle-based belief representations.
* Discussed differences between NIS and particle filters.

* Discussed pitfalls and remedies for particle filters.
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Action ltems

 Work on programming assignment #2.

 Read on SLAM for next week; send a reading response by 12 pm on
Monday.
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