Autonomous Robotics

Monte Carlo Localization

Josiah Hanna University of Wisconsin — Madison

Programming Assignment #2

- Questions?
 - Go over action-less filters
- Comments?

Learning Outcomes

After today's lecture, you will:

- Review the particle filter
- Be able to describe and formalize the robot localization problem.

After Incorporating 65 Ultrasound Scans

Initial particles

10 ultrasound scans

65 ultrasound scans

Particle Filters

- Belief is represented by a set of particles, $\{(x_i^t, w_i)\}$.
- Robot takes action u_t and then observes z_t . Set $w_i \leftarrow \frac{1}{N}$.
- Update particles:

•
$$x_{t+1}^i \sim p(\cdot \mid x_t^i, u_t)$$

•
$$w_i \leftarrow w_i * p(z_t | x_{t+1}^i)$$

$$bel(x_t) = \sum_{i=1}^{N} w_i \cdot 1\{x_t^i = x_t\}$$

- Normalize weights so that $\sum_{i=1}^{N} w_i = 1$.
- Sample N new particles (with replacement) to form a new particle set.

Particle Filter Illustration

Particle Filter Illustration

Comparison to Kalman Filters

- Both filters can work in continuous state spaces.
- Particle filters > (Extended)KF:
 - Can approximate any belief distribution (compare to Kalman/EKF).
 - Approximate inference that scales with computation.
- (Extended)KF > Particle filters
 - Gaussian noise and dynamics are linear or can be linearized.
 - Computationally efficient.
 - Exact inference with fixed computation.

KLD-Sampler

- Estimate the error between the particle approximation of belief and true posterior, $bel(x_t)$.
 - Use a histogram approximation of the particlebased belief.
- Kullback-Leibler divergence (KLD): a measure of similarity between two probability distributions.
- KLD-sampling determines the number of particles that keep the error (KL-divergence) below some threshold, ϵ , with probability $1-\delta$.

Kullback-Leibler Divergence

Localization Problem

- Estimate a robot's pose as it moves in an environment.
- Small changes to our formal model of the autonomous robot problem:
 - x_t will refer to the robot's pose in some global coordinate system.
 - $p(x_t | x_{t-1}, u_t)$ is the robot's motion model, formalizing changes to the pose after an action is taken.
 - State and transition model are no longer attempting to capture all relevant factors.
- Markov localization: Bayes filters and their extensions applied to the localization problem.
- Pose is usually not sensed directly.

Localization Taxonomy

 Position-tracking: estimate the robot's current pose given observations, controls, and knowledge of the initial state.

• bel
$$(x_t) = p(x_t | x_0, z_{1:t}, u_{1:t})$$

 Global localization: estimate the robot's current pose given observations and controls.

• bel
$$(x_t) = p(x_t | z_{1:t}, u_{1:t})$$

 Kidnapped robot problem: the robot is teleported to some other location during operation and must recognize this and then relocalize.

Position-Tracking

Actual Trajectory

Trajectory from Odometry

Trajectory from position-tracking

Static vs Dynamic

Static vs. Dynamic

- Static: only the robot's pose changes in the environment.
- Dynamic: other factors change in the environment.

How to handle dynamic factors?

- Add new state variables to track
- Filter out the effect of those variables.

Passive vs Active

- Active: the robot takes actions that help localization. How?
 - Information-gathering actions
 - Remaining in easy to localize areas, e.g., wall-following.
- Passive: the robot's actions are guided by some other goal.

Monte Carlo Localization

- Particle filter applied for Markov localization.
- How to initialize particles?
- How to handle failures?
 - Add random particles. How many? How to choose them?

Monte Carlo Localization

Summary

- Reviewed the particle filter and discussed extensions.
- Introduced the localization problem.
- Discussed considerations of the particle filter for localization problems.

Action Items

- Work on programming assignment #2.
- Read on SLAM for next week; send a reading response by 12 pm on Monday.