Autonomous Robotics

Monte Carlo Localization

Josiah Hanna
University of Wisconsin — Madison

Some figures taken from Probabilistic Robotics and Drew Bagnell’s course notes.



Programming Assignment #2

e Questions?
e (Go over action-less filters

e Comments?



Learning Outcomes

After today’s lecture, you will;
 Review the particle filter

 Be able to describe and formalize the robot localization problem.
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Particle Filter Applications

After Incorporating 65
Ultrasound Scans

45
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Particle Filter Applications
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Particle Filter Applications
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Particle Filter Applications

65 ultrasound scans



Particle Filters

« Belief is represented by a set of particles, {(x, w;)}.

1
. Robot takes action i, and then observes z,. Set w; < N
 Update particles:
N
° xl ~ . xl, U .
ot P L0 ) bel(x) = ) w;- 1{x/ =x)
¢ Wi W *pE )X ) i=1

N
Normalize weights so that Z w; = 1.
i=1

« Sample N new particles (with replacement) to form a new particle set.
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Particle Filter lllustration
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Particle Filter lllustration
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I p(s)

S
| (L 1 L L R [ N LU U R ¥ TN [ [ U W [

S
| [ I | Wi I L onm | — Il | NN (L 11 WA .

Josiah Hanna, University of Wisconsin — Madison



Comparison to Kalman Filters

 Both filters can work in continuous state spaces.

» Particle filters > (Extended)KF:
 Can approximate any belief distribution (compare to Kalman/EKF).
* Approximate inference that scales with computation.

* (Extended)KF > Particle filters
* Gaussian noise and dynamics are linear or can be linearized.
 Computationally efficient.

 Exact inference with fixed computation.
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KLD-Sampler

 Estimate the error between the particle
approximation of belief and true posterior, bel(x,).

 Use a histogram approximation of the particle-
based belief.

 Kullback-Leibler divergence (KLD): a measure of
similarity between two probability distributions.

o KLD-sampling determines the number of particles
that keep the error (KL-divergence) below some

threshold, €, with probability 1 — 0.

0.12 P(X)
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Kullback-Leibler Divergence
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L ocalization Problem

 Estimate a robot’s pose as it moves in an environment.

 Small changes to our formal model of the autonomous robot problem:

» X, will refer to the robot’s pose in some global coordinate system.

« p(x.|x._;,u,) is the robot’s motion model, formalizing changes to the pose after an
action is taken.

o State and transition model are no longer attempting to capture all relevant factors.

 Markov localization: Bayes filters and their extensions applied to the localization problem.

* Pose is usually not sensed directly.
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Localization Taxonomy

* Position-tracking: estimate the robot’s current pose given observations,
controls, and knowledge of the initial state.

. bel(xt) — P(Xt | X0> £1:10 ul:t)

* Global localization: estimate the robot’s current pose given observations
and controls.

» bel(x) = p(x, |z Uy.y)

o Kidnapped robot problem: the robot is teleported to some other location
during operation and must recognize this and then relocalize.
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Position-Tracking
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Static vs Dynamic

Static vs. Dynamic

o Static: only the robot’s pose changes in the
environment.

 Dynamic: other factors change in the
environment.

How to handle dynamic factors?

- Add new state variables to track

- Filter out the effect of those variables.

https://www.epfl.ch/labs/vita/research/planning/crowd-robot-interaction/
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Passive vs Active

e Active: the robot takes actions that help
localization. How?

* Information-gathering actions

* Remaining in easy to localize areas, e.qg.,
wall-following.

 Passive: the robot’s actions are guided by
some other goal.
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Monte Carlo Localization

Particle filter applied for Markov localization.
How to initialize particles?
How to handle failures?

 Add random particles. How many? How to choose them?
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Monte Carlo Localization
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Summary

 Reviewed the particle filter and discussed extensions.
* Introduced the localization problem.

* Discussed considerations of the particle filter for localization problems.
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Action ltems

 Work on programming assignment #2.

 Read on SLAM for next week; send a reading response by 12 pm on
Monday.
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