CS 287 Advanced Robotics (Fall 2019)
Lecture 9: Motion Planning

Lecture by: Huazhe (Harry) Xu
Slides by: Pieter Abbeel

UC Berkeley EECS

Many images from Lavalle, Planning Algorithms

Motion Planning

= Problem

= Given start state X, goal state Xg

= Asked for: a sequence of control inputs that leads from start to goal

= Why tricky?
= Need to avoid obstacles

= For systems with underactuated dynamics: can’t simply move along
any coordinate at will

= E.g., car, helicopter, airplane, but also robot manipulator hitting joint limits

Examples

Examples

Examples

Motion Planning: Outline

m Configuration Space
m Optimization-based Motion Planning

m Sampling-based Motion Planning
= Probabilistic Roadmap
= Rapidly-exploring Random Trees (RRTSs)

= Smoothing

Motion Planning: Outline

m Configuration Space
m Optimization-based Motion Planning

m Sampling-based Motion Planning
= Probabilistic Roadmap
= Rapidly-exploring Random Trees (RRTSs)

= Smoothing

Motion planning

conf-3
‘ conf-1
conf-2
i
f
i

Pelb

®shou

Configuration Space (C-Space)

={x | xis a pose of the robot}

= obstacles = configuration space obstacles

Workspace Configuration Space

(2 DOF: translation only, no rotation)

obstacles ..

Motion Planning: Outline

m Configuration Space
m Optimization-based Motion Planning

m Sampling-based Motion Planning
= Probabilistic Roadmap
= Rapidly-exploring Random Trees (RRTSs)

= Smoothing

Probabilistic Roadmap (PRM)

Space R" forbidden space Free/feasible space
AN

4

Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random

Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random

Probabilistic Roadmap (PRM)

Sampled configurations are tested for collision

Probabilistic Roadmap (PRM)

The collision-free configurations are retained as milestones

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

The collision-free links are retained as local paths to form the PRM

)

i

Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones

)

i

Probabilistic Roadmap (PRM)

The PRM is searched for a path fromsto g

Probabilistic Roadmap

Initialize set of points with Xg and Xg
Randomly sample points in configuration space
Connect nearby points if they can be reached from each other

Find path from X to X in the graph

= Alternatively: keep track of connected components incrementally, and
declare success when Xs and X are in same connected component

PRM: Challenges

1. Connecting neighboring points: Only easy for holonomic systems (i.e., for which
you can move each degree of freedom at will at any time). Generally requires

solving a Boundary Value Problem
Typically solved without collision

checking; later verified if valid by
collision checking

min, , ||ull
s.t. Ty = f(ay,uy) VE
uy € Uy
Ty € Xy
Lo =TS

Xt =z¢
2. Collision checking:

Often takes majority of time in applications (see Lavalle)

PRM’s Pros and Cons

m Pro:

= Probabilistically complete: i.e., with probability one, if run for long
enough the graph will contain a solution path if one exists.

= Cons:
= Required to solve 2-point boundary value problem

= Build graph over entire state space, which might be unnecessarily
expensive when what’s needed is connecting specific start and goal

Motion Planning: Outline

m Configuration Space
m Optimization-based Motion Planning

m Sampling-based Motion Planning
= Probabilistic Roadmap
= Rapidly-exploring Random Trees (RRTs)

= Smoothing

Rapidly exploring Random Tree (RRT)

Steve LaValle (98)

m Basicidea:

= Build up a tree through generating “next states” in the tree by
executing random controls

= However: not exactly above to ensure good coverage

Rapidly exploring Random Tree (RRT)

GENERATE_RRT (x;pt, K, At)
1 T .init(zine);
2 for k=1to K do
3 Zrand < RANDOM_STATE();
4 Tnear ¢ NEAREST_NEIGHBOR(z)qnd, T);
5 u < SELECT INPUT(Zrand, Tnear);
6 Tnew — NEW_STATE(Z,cqr, u, At);
7 T .add_vertex(Z e);
8 T-add—edge(xneara Lnew u);
9 Return 7

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal
state with probability 1%, this ensures it attempts to connect to goal semi-regularly
SELECT_INPUT(): often a few inputs are sampled, and one that results in x_new closest to
x_rand is retained; sometimes optimization is run to find the best input

Rapidly exploring Random Tree (RRT)

= Select random point, and expand nearest vertex towards it

= Biases samples towards largest Voronoi region

Rapidly exploring Random Tree (RRT)

N

— i)
N\

\ W

‘/

RS

Source: LaValle and Kuffner 01

RRT Practicalities

= NEAREST_NEIGHBOR(X,,,q4, T): need to find (approximate)
nearest neighbor efficiently

= KD Trees data structure (upto 20-D) [e.g., FLANN]

= Locality Sensitive Hashing

s SELECT_INPUT(X,2nds Xnear)

= Two point boundary value problem

= |f too hard to solve, often just select best out of a set of control sequences.
This set could be random, or some well chosen set of primitives.

Growing RRT

S
b
It
&eﬁk E'
£ terations 390 teratons

Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.gif

Bi-directional RRT

= Volume swept out by unidirectional RRT: = Volume swept out by bi-directional RRT:

= Difference more and more pronounced as dimensionality increases

Multi-directional RRT

= Planning around obstacles or through narrow passages can
often be easier in one direction than the other

@ ‘/@
qr qG
(a) (b)

RRT*

= Asymptotically optimal

= Main idea:

= Swap new point in as parent for nearby vertices who can be reached
along shorter path through new point than through their original
(current) parent

RRT :

RRT* * I3 =%

Source: Karaman and Frazzoli

——

10 TR : e ECA A T ~ U AT Rt e e
- d { - ?q::? ’3‘ QQ% b Sl TR N i

ST KB il ST A’:uz;w.z‘ﬁg% ¥

y ._ ’ ol Yool .]

LA
4

LA

T T A o oo

A v: NS & A BTN SV

P iﬁ"‘.‘.- At ﬁ&&é‘?
0 6 8

10

Source: Karaman and Frazzoli

Motion Planning: Outline

m Configuration Space
m Optimization-based Motion Planning

m Sampling-based Motion Planning
= Probabilistic Roadmap
= Rapidly-exploring Random Trees (RRTSs)

= Smoothing

Smoothing

Randomized motion planners tend to find not so great paths for
execution: very jagged, often much longer than necessary.

- In practice: do smoothing before using the path

m Shortcutting:

= along the found path, pick two vertices X,,, X, and try to connect them
directly (skipping over all intermediate vertices)

s Nonlinear optimization for optimal control (trajopt)

= Allows to specify an objective function that includes smoothness in
state, control, small control inputs, etc.

