
CS 287 Advanced Robotics (Fall 2019)
Lecture 9: Motion Planning

Lecture by: Huazhe (Harry) Xu
Slides by: Pieter Abbeel

UC Berkeley EECS

Many images from Lavalle, Planning Algorithms

n Problem
n Given start state xS, goal state xG
n Asked for: a sequence of control inputs that leads from start to goal

n Why tricky?
n Need to avoid obstacles

n For systems with underactuated dynamics: can’t simply move along
any coordinate at will

n E.g., car, helicopter, airplane, but also robot manipulator hitting joint limits

Motion Planning

Examples

Examples

Examples

n Configuration Space

n Optimization-based Motion Planning

n Sampling-based Motion Planning

n Probabilistic Roadmap

n Rapidly-exploring Random Trees (RRTs)

n Smoothing

Motion Planning: Outline

n Configuration Space

n Optimization-based Motion Planning

n Sampling-based Motion Planning

n Probabilistic Roadmap

n Rapidly-exploring Random Trees (RRTs)

n Smoothing

Motion Planning: Outline

Motion planning

= { x | x is a pose of the robot}

n obstacles à configuration space obstacles

Configuration Space (C-Space)

Workspace Configuration Space

(2 DOF: translation only, no rotation)

free space
obstacles

n Configuration Space

n Optimization-based Motion Planning

n Sampling-based Motion Planning

n Probabilistic Roadmap

n Rapidly-exploring Random Trees (RRTs)

n Smoothing

Motion Planning: Outline

Probabilistic Roadmap (PRM)
Free/feasible spaceSpace Ân forbidden space

Configurations are sampled by picking coordinates at random

Probabilistic Roadmap (PRM)

Probabilistic Roadmap (PRM)
Configurations are sampled by picking coordinates at random

Sampled configurations are tested for collision

Probabilistic Roadmap (PRM)

The collision-free configurations are retained as milestones

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

The collision-free links are retained as local paths to form the PRM

Probabilistic Roadmap (PRM)

s

g

The start and goal configurations are included as milestones

Probabilistic Roadmap (PRM)

The PRM is searched for a path from s to g

s

g

Probabilistic Roadmap (PRM)

n Initialize set of points with xS and xG
n Randomly sample points in configuration space

n Connect nearby points if they can be reached from each other

n Find path from xS to xG in the graph

n Alternatively: keep track of connected components incrementally, and
declare success when xS and xG are in same connected component

Probabilistic Roadmap

1. Connecting neighboring points: Only easy for holonomic systems (i.e., for which
you can move each degree of freedom at will at any time). Generally requires
solving a Boundary Value Problem

2. Collision checking:

Often takes majority of time in applications (see Lavalle)

PRM: Challenges

Typically solved without collision
checking; later verified if valid by
collision checking

n Pro:
n Probabilistically complete: i.e., with probability one, if run for long

enough the graph will contain a solution path if one exists.

n Cons:
n Required to solve 2-point boundary value problem

n Build graph over entire state space, which might be unnecessarily
expensive when what’s needed is connecting specific start and goal

PRM’s Pros and Cons

n Configuration Space

n Optimization-based Motion Planning

n Sampling-based Motion Planning

n Probabilistic Roadmap

n Rapidly-exploring Random Trees (RRTs)

n Smoothing

Motion Planning: Outline

Rapidly exploring Random Tree (RRT)
Steve LaValle (98)

n Basic idea:
n Build up a tree through generating “next states” in the tree by

executing random controls

n However: not exactly above to ensure good coverage

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal
state with probability 1%, this ensures it attempts to connect to goal semi-regularly
SELECT_INPUT(): often a few inputs are sampled, and one that results in x_new closest to
x_rand is retained; sometimes optimization is run to find the best input

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)
n Select random point, and expand nearest vertex towards it

n Biases samples towards largest Voronoi region

Rapidly exploring Random Tree (RRT)

Source: LaValle and Kuffner 01

n NEAREST_NEIGHBOR(xrand, T): need to find (approximate)
nearest neighbor efficiently
n KD Trees data structure (upto 20-D) [e.g., FLANN]

n Locality Sensitive Hashing

n SELECT_INPUT(xrand, xnear)
n Two point boundary value problem

n If too hard to solve, often just select best out of a set of control sequences.
This set could be random, or some well chosen set of primitives.

RRT Practicalities

Growing RRT

Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.gif

n Volume swept out by unidirectional RRT:

xS

Bi-directional RRT

xG xS xG

n Volume swept out by bi-directional RRT:

n Difference more and more pronounced as dimensionality increases

n Planning around obstacles or through narrow passages can
often be easier in one direction than the other

Multi-directional RRT

n Asymptotically optimal

n Main idea:
n Swap new point in as parent for nearby vertices who can be reached

along shorter path through new point than through their original
(current) parent

RRT*

RRT*

Source: Karaman and Frazzoli

RRT

RRT*

RRT*

Source: Karaman and Frazzoli

RRT RRT*

n Configuration Space

n Optimization-based Motion Planning

n Sampling-based Motion Planning

n Probabilistic Roadmap

n Rapidly-exploring Random Trees (RRTs)

n Smoothing

Motion Planning: Outline

Randomized motion planners tend to find not so great paths for
execution: very jagged, often much longer than necessary.

à In practice: do smoothing before using the path

n Shortcutting:
n along the found path, pick two vertices xt1, xt2 and try to connect them

directly (skipping over all intermediate vertices)

n Nonlinear optimization for optimal control (trajopt)
n Allows to specify an objective function that includes smoothness in

state, control, small control inputs, etc.

Smoothing

