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Many images from Lavalle, Planning Algorithms



n Problem
n Given start state xS, goal state xG
n Asked for: a sequence of control inputs that leads from start to goal

n Why tricky?
n Need to avoid obstacles

n For systems with underactuated dynamics: can’t simply move along 
any coordinate at will

n E.g., car, helicopter, airplane, but also robot manipulator hitting joint limits
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Motion planning



= { x |  x is a pose of the robot}

n obstacles à configuration space obstacles

Configuration Space (C-Space)

Workspace Configuration Space

(2 DOF: translation only, no rotation)

free space
obstacles
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Probabilistic Roadmap (PRM)
Free/feasible spaceSpace Ân forbidden space



Configurations are sampled by picking coordinates at random
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Probabilistic Roadmap (PRM)
Configurations are sampled by picking coordinates at random



Sampled configurations are tested for collision

Probabilistic Roadmap (PRM)



The collision-free configurations are retained as milestones

Probabilistic Roadmap (PRM)



Each milestone is linked by straight paths to its nearest neighbors
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The collision-free links are retained as local paths to form the PRM

Probabilistic Roadmap (PRM)
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The start and goal configurations are included as milestones

Probabilistic Roadmap (PRM)



The PRM is searched for a path from s to g
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g

Probabilistic Roadmap (PRM)



n Initialize set of points with xS and xG
n Randomly sample points in configuration space

n Connect nearby points if they can be reached from each other

n Find path from xS to xG in the graph

n Alternatively: keep track of connected components incrementally, and 
declare success when xS and xG are in same connected component

Probabilistic Roadmap



1.  Connecting neighboring points: Only easy for holonomic systems (i.e., for which 
you can move each degree of freedom at will at any time).  Generally requires 
solving a Boundary Value Problem

2. Collision checking: 

Often takes majority of time in applications (see Lavalle)

PRM: Challenges

Typically solved without collision 
checking; later verified if valid by 
collision checking



n Pro:
n Probabilistically complete: i.e., with probability one, if run for long 

enough the graph will contain a solution path if one exists.

n Cons:
n Required to solve 2-point boundary value problem

n Build graph over entire state space, which might be unnecessarily 
expensive when what’s needed is connecting specific start and goal

PRM’s Pros and Cons
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Rapidly exploring Random Tree (RRT)
Steve LaValle (98)

n Basic idea:
n Build up a tree through generating “next states” in the tree by 

executing random controls

n However: not exactly above to ensure good coverage



RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal 
state with probability 1%, this ensures it attempts to connect to goal semi-regularly
SELECT_INPUT(): often a few inputs are sampled, and one that results in x_new closest to 
x_rand is retained; sometimes optimization is run to find the best input

Rapidly exploring Random Tree (RRT)



Rapidly exploring Random Tree (RRT)
n Select random point, and expand nearest vertex towards it

n Biases samples towards largest Voronoi region



Rapidly exploring Random Tree (RRT)

Source: LaValle and Kuffner 01



n NEAREST_NEIGHBOR(xrand, T): need to find (approximate) 
nearest neighbor efficiently
n KD Trees data structure (upto 20-D)  [e.g., FLANN]

n Locality Sensitive Hashing

n SELECT_INPUT(xrand, xnear)
n Two point boundary value problem

n If too hard to solve, often just select best out of a set of control sequences.  
This set could be random, or some well chosen set of primitives.

RRT Practicalities



Growing RRT

Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.gif



n Volume swept out by unidirectional RRT:

xS

Bi-directional RRT

xG xS xG

n Volume swept out by bi-directional RRT:

n Difference more and more pronounced as dimensionality increases



n Planning around obstacles or through narrow passages can 
often be easier in one direction than the other

Multi-directional RRT



n Asymptotically optimal

n Main idea:
n Swap new point in as parent for nearby vertices who can be reached 

along shorter path through new point than through their original 
(current) parent

RRT*



RRT*

Source: Karaman and Frazzoli
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Source: Karaman and Frazzoli

RRT RRT*
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Randomized motion planners tend to find not so great paths for 
execution: very jagged, often much longer than necessary.

à In practice: do smoothing before using the path

n Shortcutting: 
n along the found path, pick two vertices xt1, xt2 and try to connect them 

directly (skipping over all intermediate vertices)

n Nonlinear optimization for optimal control (trajopt)
n Allows to specify an objective function that includes smoothness in 

state, control, small control inputs, etc.

Smoothing


