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Learning Outcomes

After today’s lecture, you will;

 Understand the foundational topics in probability necessary for this
course.

 Be able to describe the fundamental parts of a general model of robot-
environment interaction.
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Why probability?

* Represent uncertainty in the world.

 Represent beliefs about the state of the world.
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Probabillity in robotics

 Represent beliefs about the true state
of the world.

* Represent uncertainty about the
effects of actions.

* Represent uncertainty about what
observation is produced in different

states.
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Discrete Random Variables

Let X be a random variable that takes on a value x € ', where X is a set with a
finite number of elements.

 Example: the result of rolling a single dice.

p(X = x) is the probability that X takes on the value x.

Y p(X=x)=1land Vx,0 <p(X=x) < 1.

For compactness, write p(x).

p Is a probability mass function.
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Continuous Random Variables

Or X could be a random variable that takes on a value x € 2, where X is a
continuous set.

 Example: the height of the first person you see after leaving this classroom.

p(X = x) is the probability that X takes on the value x.

[ p(X =x)dx=1and Vx, p(X =x) > 0.

X

p Is a probability density function.
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Random Sampling

e Sampling is assigning a value to a random variable according to some
probability distribution (either a pmf or a pdf).

 Example: roll a dice and observe the outcome.

« Write X ~ p to denote that variable X has value distributed according to p.
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Joint Distributions

 Move from one variable to multiple variables.

e Joint distribution of Xand Y: p(X = a, Y = b)

 Why? Work with multiple types of uncertainty and model interactions.
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Marginal Distributions

 Given a joint distribution: P(X = a, Y = b)

— Get the distribution in just one variable:

P(X=a)=),P(X=aY =0

— This is the “marginal” distribution of X.

— “Marginalize out” the other variable, Y.



Basics: Marginal Probability

P(X=a)=),P(X=aY =b)

Sunny | Cloudy | Rainy

hot | 150/365 | 40/365 | 5/3635

cold | 50/365 | 60/365 | 60/365

' 190 170°
: .3607 360 -

P(hot), P(cold)




Probability Tables

« Write our distributions as tables

e # of entries? 6.

— If we have n variables with k values, we get k" entries
— Big! For a 1080p screen, 12 bit color, size of table: 10749989

— No way of writing down all the terms.




Independence

« Two random variables are independent if
P(X,Y)=P(X)P(Y)

« Why useful? Go from k" entries in a table to ~ kn.

e Collapse joint distribution into the product of
marginals.



Conditional Probability

o Express how knowledge of one variable changes belief
about another variable,

P(X =a,Y =b)
P(Y =1b)

P(X =alY =b) =

« Variables can be conditionally independent:
P(X,Y\|Z)=P(X|Z)P(Y|Z)



Conditional Independence Example

Average
Monthly
Temperature

(£)

Bayesian Network: nodes are
variables and edges show
probabilistic dependencies.

Monthly

lce Cream
Sales (X)

Monthly
Crime Rate
(Y)

pX=a,Y=>0)# pX =a)plY=>)



Conditional Independence Example

Average
Monthly
Temperature

(£)

Monthly

lce Cream
Sales (X)

Monthly
Crime Rate
(Y)

pX=a,Y=b|Z=c)=pX=a|Z=c)p(Y=b|Z = c)



Reasoning With Conditional Distributions

 Inference: compute probability given evidence P(F|S)

e Evaluating probabilities:

— Wake up with a sore throat.
— Do | have the flu?

« Logicapproach: S = F

— Joo strong.

— Can be much more complex!



Using Bayes’ Rule

 Want: P(F|5)

. Bayes’ Rule: P(F|S)= 25 — P(SI\D%I;(F)

e Parts:
_ P(S) = Sore throat rate

— P(F) = 01 Flu rate
-  P(S|F)=0.9 Sore throat rate among flu sufferers

So: P(F|S)=0.09




Using Bayes’ Rule

e Interpretation P(F|S)=0.09

— Much higher chance of flu than normal rate (0.01).
— Very different from  P(S|F) =10.9

e 90% of folks with flu have a sore throat.

e But, only 9% of folks with a sore throat have flu.

EVIDENCE
Acass —_—
L ——— N T

e |dea: update probabilities from evidence —




Bayesian Inference

 Fancy name for what we just did. Terminology:

E|H)P(H)
P(E)

o His the hypothesis

e EFisthe evidence

p|E) = 2

h
L
|




Bayesian Inference

e Terminology:

P(E|H)P(H) —— Pprior

P(HIE) = =5

e Prior: estimate of the probability without evidence



Bayesian Inference

e Terminology:

-
P(E|H)P(H)

P(E)

P(H|E) =

o Likelihood: probability of evidence given a hypothesis.



Bayesian Inference

e Terminology:

E|H)P(H)
P(E)

p(i|E) = 24
|

Posterior

o Posterior: probability of hypothesis given evidence.



Quick Quiz

A robot is placed in front of a door that has an equal probability of being open or
closed. The robot has a sensor that measures if the door is open or closed. With
probability 0.75, the sensor gives the correct measurement and otherwise gives the
opposite response. The robot receives two independent sensor readings that both

indicate the door is open. What is a Bayesian robot’s posterior belief about the true
state of the door?



Quick Quiz

A robot is placed in front of a door that has an equal probability of being open or
closed. The robot has a sensor that measures if the door is open or closed. With
probability 0.75, the sensor gives the correct measurement and otherwise gives the
opposite response. The robot receives two independent sensor readings that both

indicate the door is open. What is a Bayesian robot’s posterior belief about the true

state of the door?
p(D9 019 02)

p(Olv 02)
_ p(D)p(O, |D)p(0,| D)
p(D)p(O; | D)p(O,| D) + p(D)p(O, | D)p(O,| D)

p(D ‘ 019 02) —
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Quick Quiz

A robot is placed in front of a door that has an equal probability of being open or
closed. The robot has a sensor that measures if the door is open or closed. With
probability 0.75, the sensor gives the correct measurement and otherwise gives the
opposite response. The robot receives two independent sensor readings that both

indicate the door is open. What is a Bayesian robot’s posterior belief about the true
state of the door?

First update:

1 3
p(D|0,) x p(D)p(O;|D) = (7)(=) = 3/8
2 4 ——> p(D|0)) =3/4

. _ _ I 1
p(D|0;) x p(D)p(O,|D) = (5)(1) = 1/8



Quick Quiz

A robot is placed in front of a door that has an equal probability of being open or
closed. The robot has a sensor that measures if the door is open or closed. With
probability 0.75, the sensor gives the correct measurement and otherwise gives the
opposite response. The robot receives two independent sensor readings that both
indicate the door is open. What is a Bayesian robot’s posterior belief about the true

?
state of the door: Note: p(O, | D, O,) = p(O, | D) by

Second update: independence assumption.

3 3
pD] 0, 0,) x p(D|0)p(O,| D, 0,) = (Z)(Z) = 9/16

_ _ _ 1 1
p(D |0, 0,) x p(D|0)p(O,| D, O,) = (Z)(Z) = 1/16
: p(D ‘ 01, 02) = 9/10 (Bayes Filter (Week 3))



Learning Outcomes

After today’s lecture, you will;

 Understand the foundational topics in probability necessary for this
course.

 Be able to describe the fundamental parts of a general model of
robot-environment interaction.
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States

From Probabilistic Robotics: the collection of all aspects of the robot and
its environment that can impact the future.

Examples: robot pose, battery life, location of people, velocity
Aspects that change (dynamic state) vs aspects that don’t (static state).

In robotics, state variables often take on continuous values.

3

« Example: The pose of a robot in a plane is a point in |

Notation: X, Is the state at time t.
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Observations

Information about the state of the environment at a moment in time.

Perceived by the robot through its sensors.

* Also called measurements or percepts.

Typically, do NOT fully reveal the state.

 Observations can be noisy. Example: lidar scan returns noisy distance readings.

 Observations can be partial. Example: occlusion hides some aspects of state.

Notation: z, or (sometimes) y, is the observation at time t.
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Markov Assumption

* We will assume that the state is defined in a way that is sufficient for
predicting the future.

» Call this a complete or Markov state. Control at time t.

» Formally, we say that p(x,, { | x,, utyqx/”\x@:t, Up-,)-

 Knowing the past does not help you predict the next state any better.

* This assumption is for developing tractable algorithms and often only
holds approximately in practice.
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Probabilistic Interaction Model

Zt< > ut

X, ~ p(X,_q, u,)

a4
2(z| x) is the probability of z given x. Zt g (xt)

p(x, | x,_,u,) is the probability of x, given the

environment is in state x,_; and control u, is taken. Josiah Hanng, University of Wisconsin — Madison



Deterministic Interaction Model

;< H (yt)

C Robot >
Enwronment

X« F(x,u) o X Flx, Mt)

+1 Yy ' X, 1 < xt+xAt

Vir1 < Gx4q)
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Summary

* Review of key probability concepts: distributions, joint, marginal,
conditional, conditional independence, Bayes rule, Bayesian inference.

e |Introduced robot-environment interaction model:
o States, observations, actions
 Markov assumption.

e |nteraction models.
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Action ltems

Join Piazza and Gradescope.

Complete the background survey: https.//forms.gle/
AdfNdyJM6wWSLdoTNS8

[Optional but encouraged] Download Webots and complete a tutorial.

Send a reading response by 12pm on Monday.
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