

# Autonomous Robotics

## Forward Kinematics

Josiah Hanna  
University of Wisconsin — Madison

# Homework 3

Questions?

# Learning Outcomes

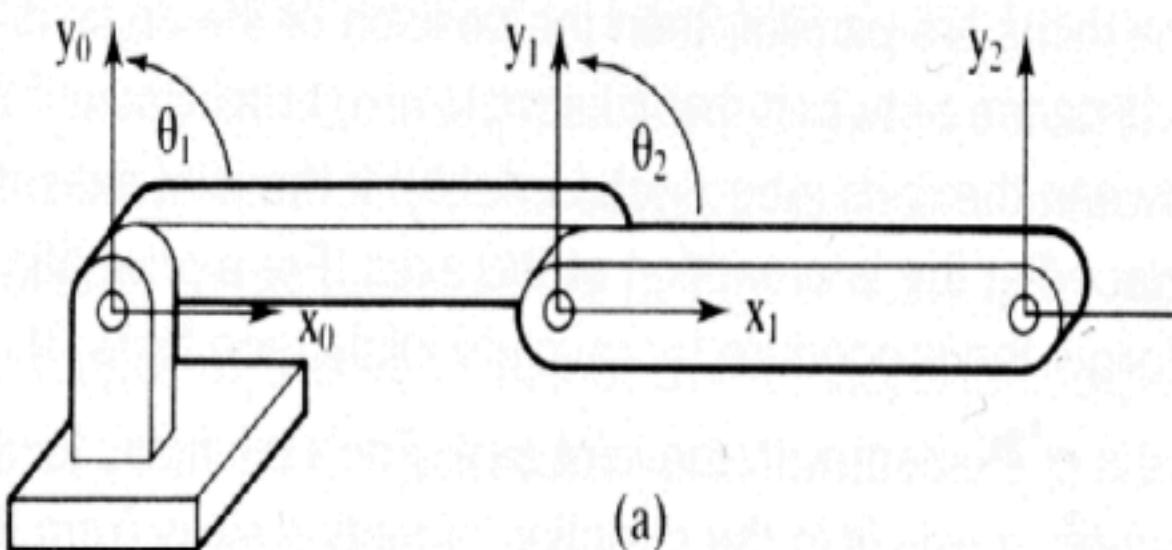
After today's lecture, you will:

- Be able to describe the forward kinematics process.
- Understand forward kinematics calculations as repeated frame transforms.

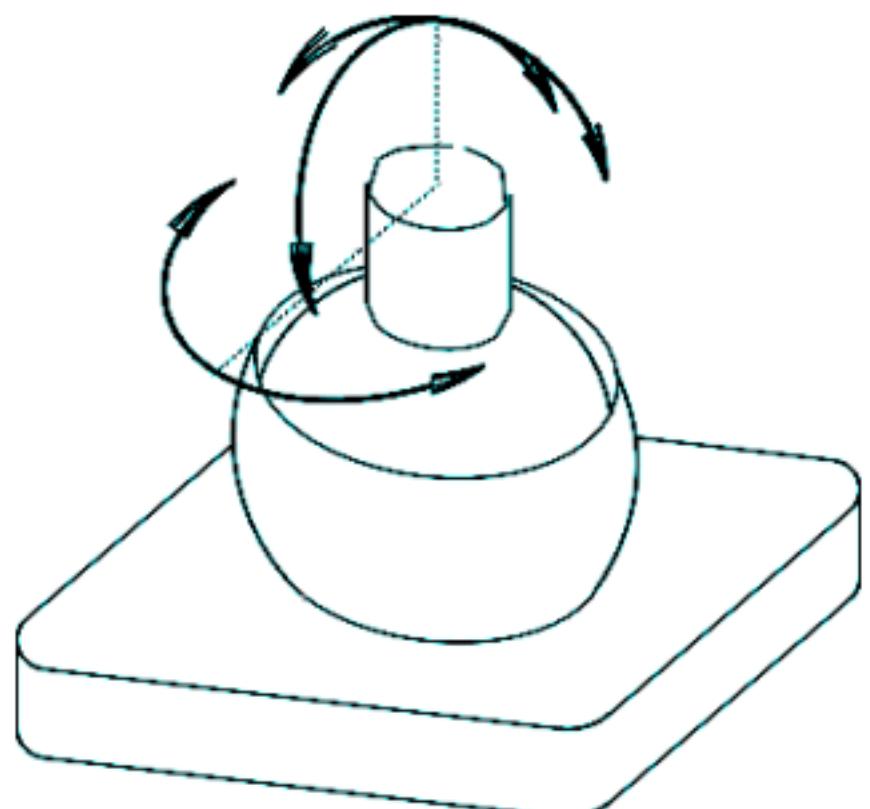
# Degrees of Freedom

- The number of independent parameters that can fully define a robot's configuration.
- **Link:** Single rigid body.
- **Joint:** connection between links

# Joint Types



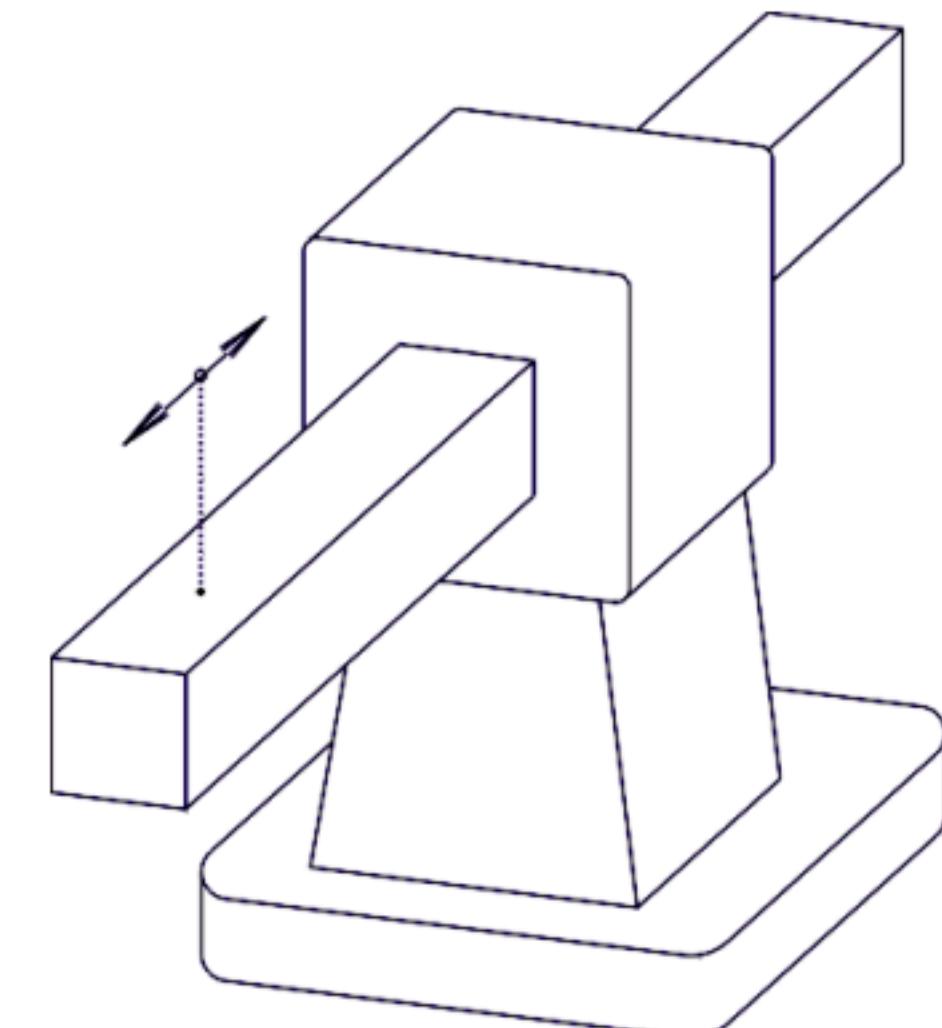
Revolute Joint  
1 DOF ( Variable -  $\theta$ )



Spherical Joint  
3 DOF ( Variables -  $\theta_1, \theta_2, \theta_3$  )



Prismatic Joint  
1 DOF (linear) (Variables - d)



# Forward Kinematics

Task space:

Position of a robot's end-effector. Assume  $\mathbb{R}^n$ .

Joint space:

Space of possible robot configurations (e.g., angle of all joints). Assume  $\mathbb{R}^m$ .

Forward kinematics is the mapping from joint space to task space:

$$r = f(q), \text{ where } r \in \mathbb{R}^m \text{ and } q \in \mathbb{R}^n.$$

Given a robot's joint configuration, determine where its end-effector is relative to a base frame of reference. Why useful?

# Reference Frame

Coordinate system from which rotations and translations are based.

Given a vector  $x \in \mathbf{R}^d$ :

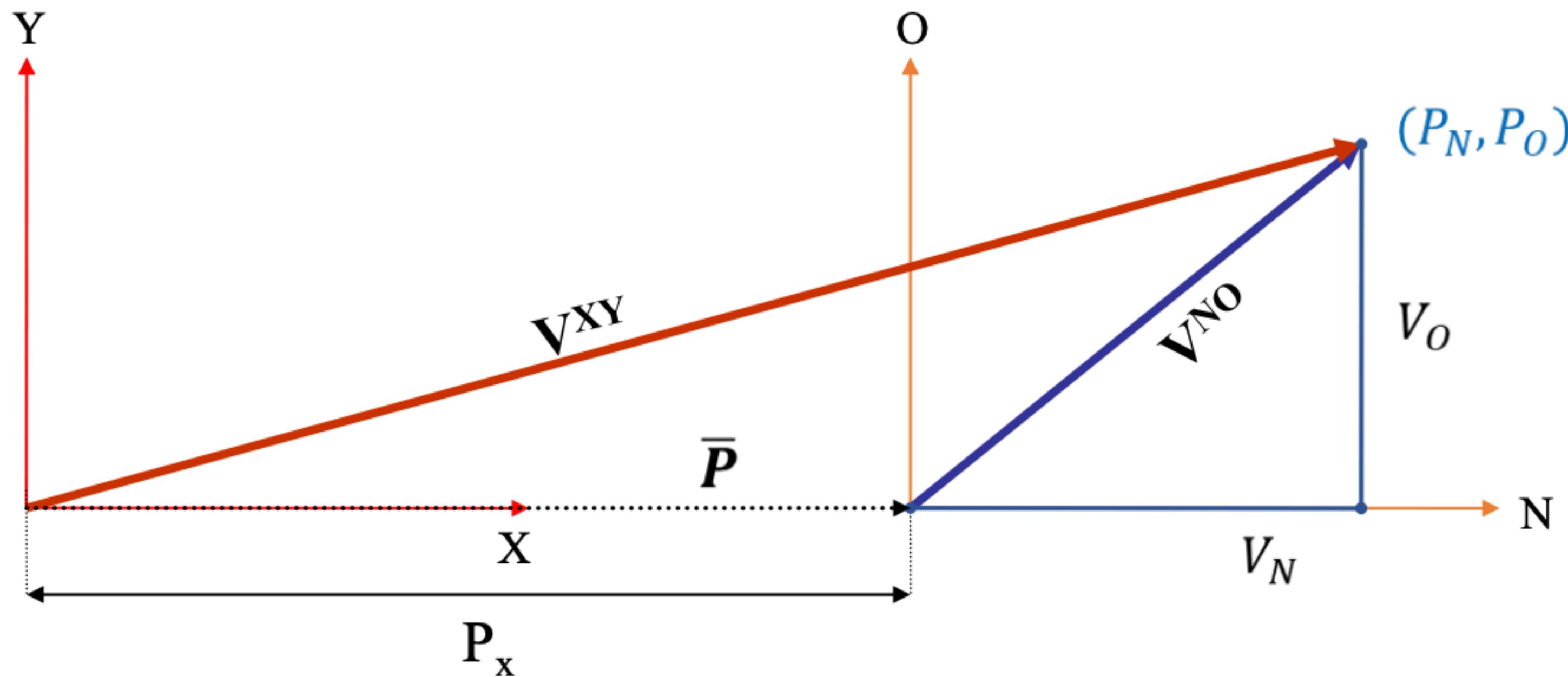
For  $c \in \mathbf{R}^d$ , we call  $x + c$  a **translation** of  $x$ .

For  $A \in \mathbf{R}^{d \times d}$ , we call  $Ax$  a rotation of  $x$ .

# Translating Frames

Given a vector  $x \in \mathbf{R}^d$ :

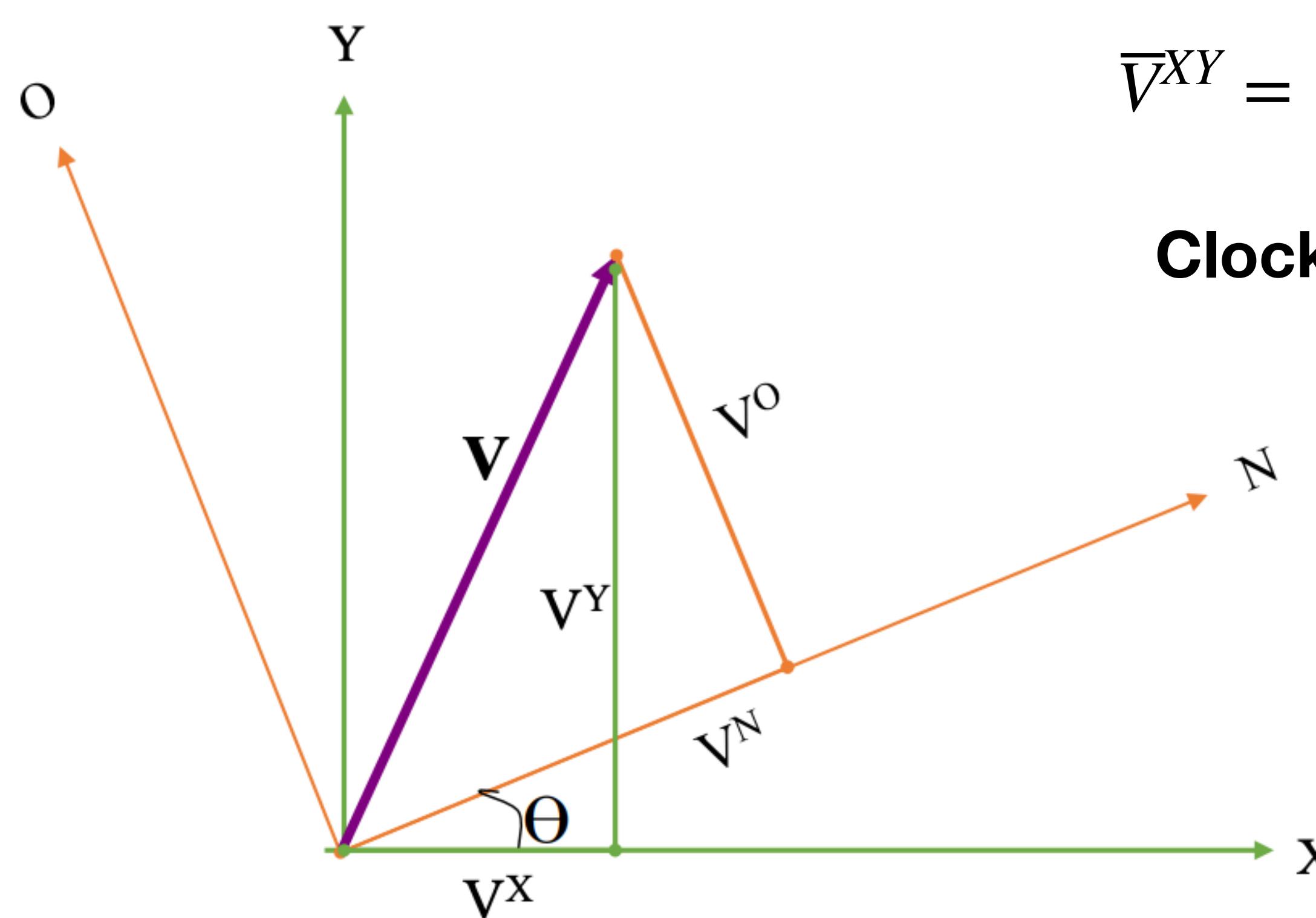
For  $c \in \mathbf{R}^d$ , we call  $x + c$  a **translation** of  $x$ .



# Rotating Frames

Given a vector  $x \in \mathbf{R}^d$ :

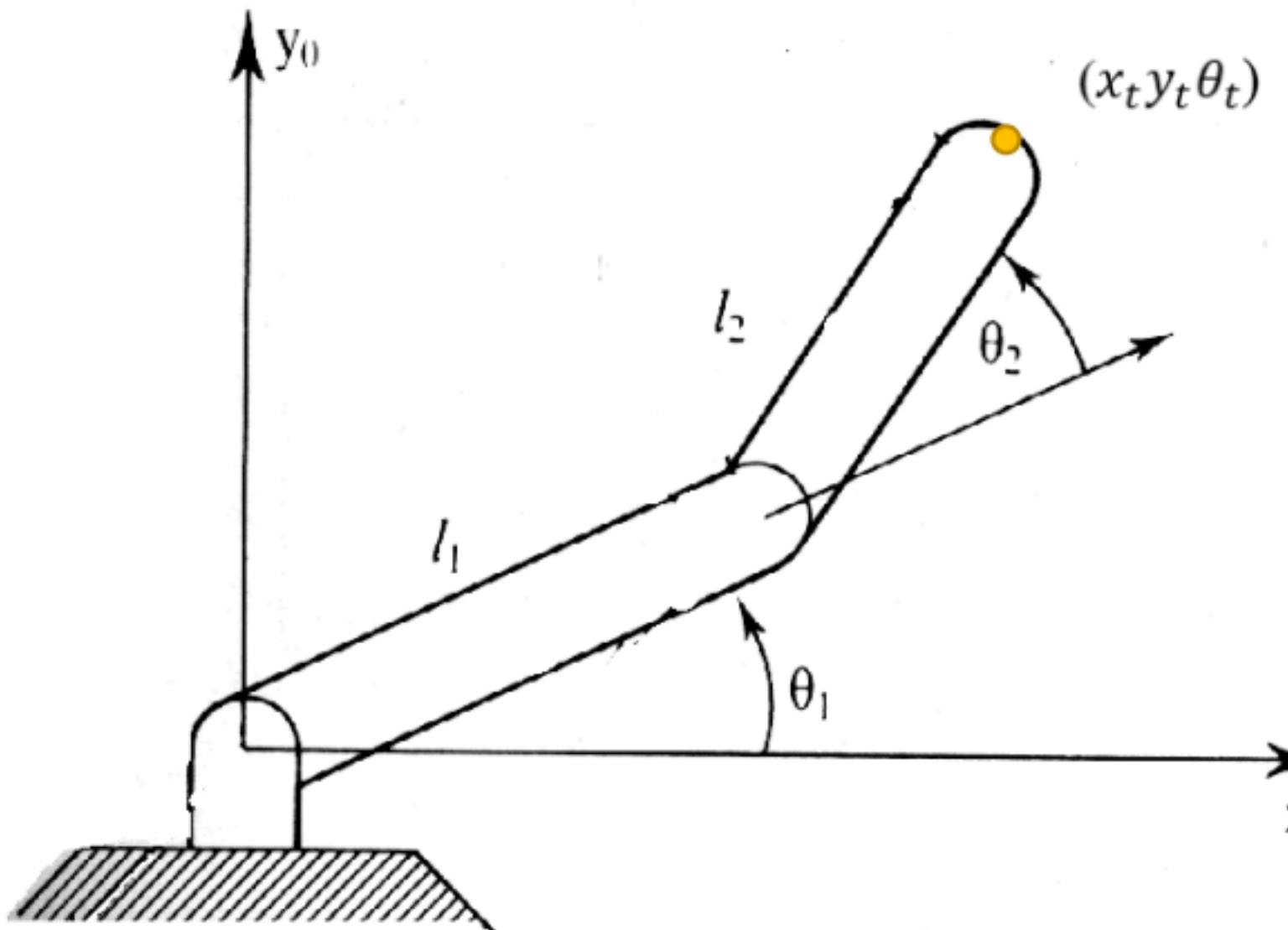
For  $A \in \mathbf{R}^{d \times d}$ , we call  $Ax$  a rotation of  $x$ .



$$\bar{V}^{XY} = \begin{bmatrix} \cos(\theta_1) & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix} \bar{V}^{NO}$$

**Clockwise rotation matrix**

# Arm Kinematics

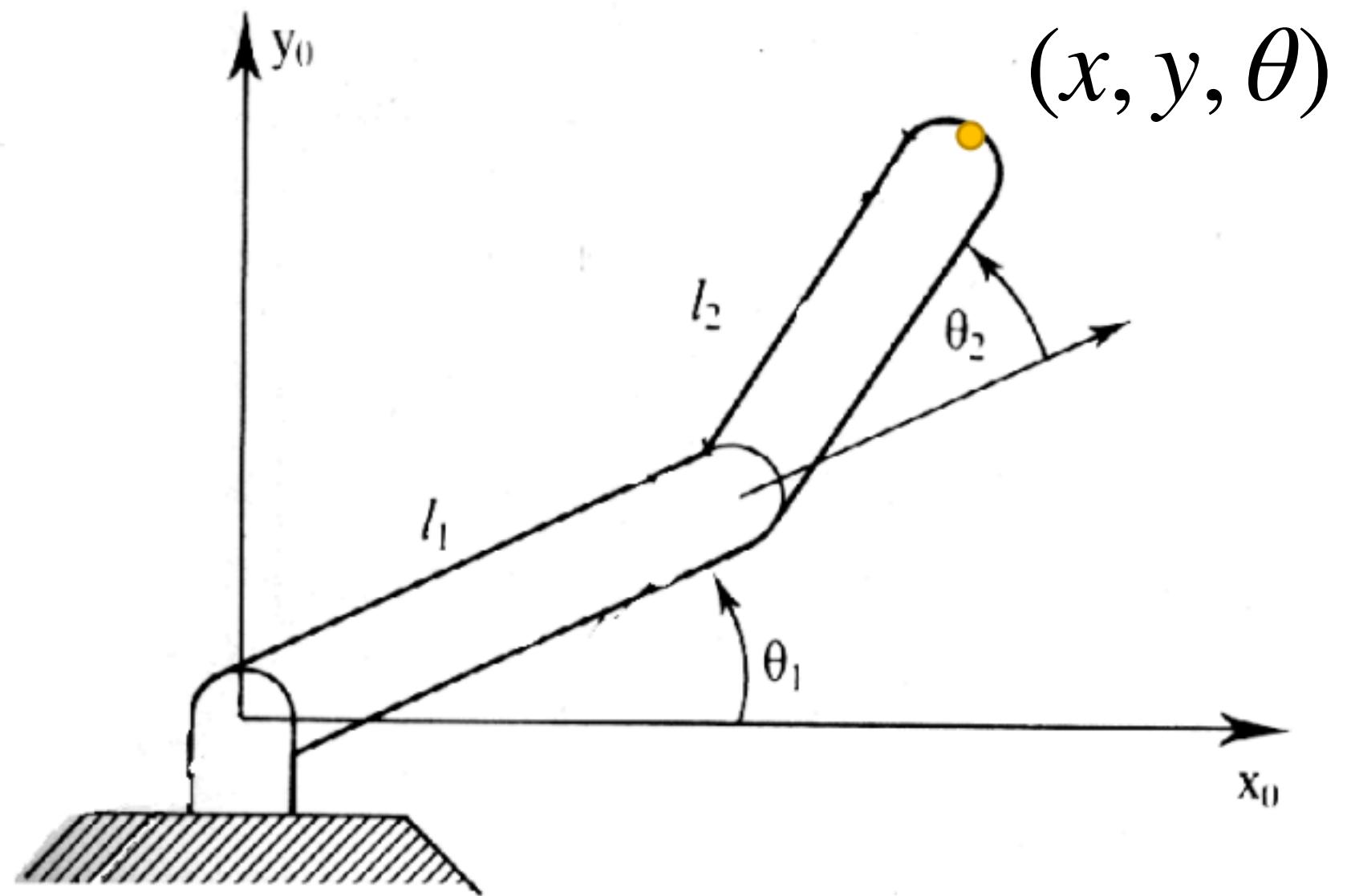


## Set up:

- You have a two-link arm with base at the origin.
- The first link has length  $l_1$  and is at angle  $\theta_1$ .
- The second link has length  $l_2$  and is at angle  $\theta_2$ .

What is the position and orientation of the end-effector?

# Arm Kinematics: Direct Approach

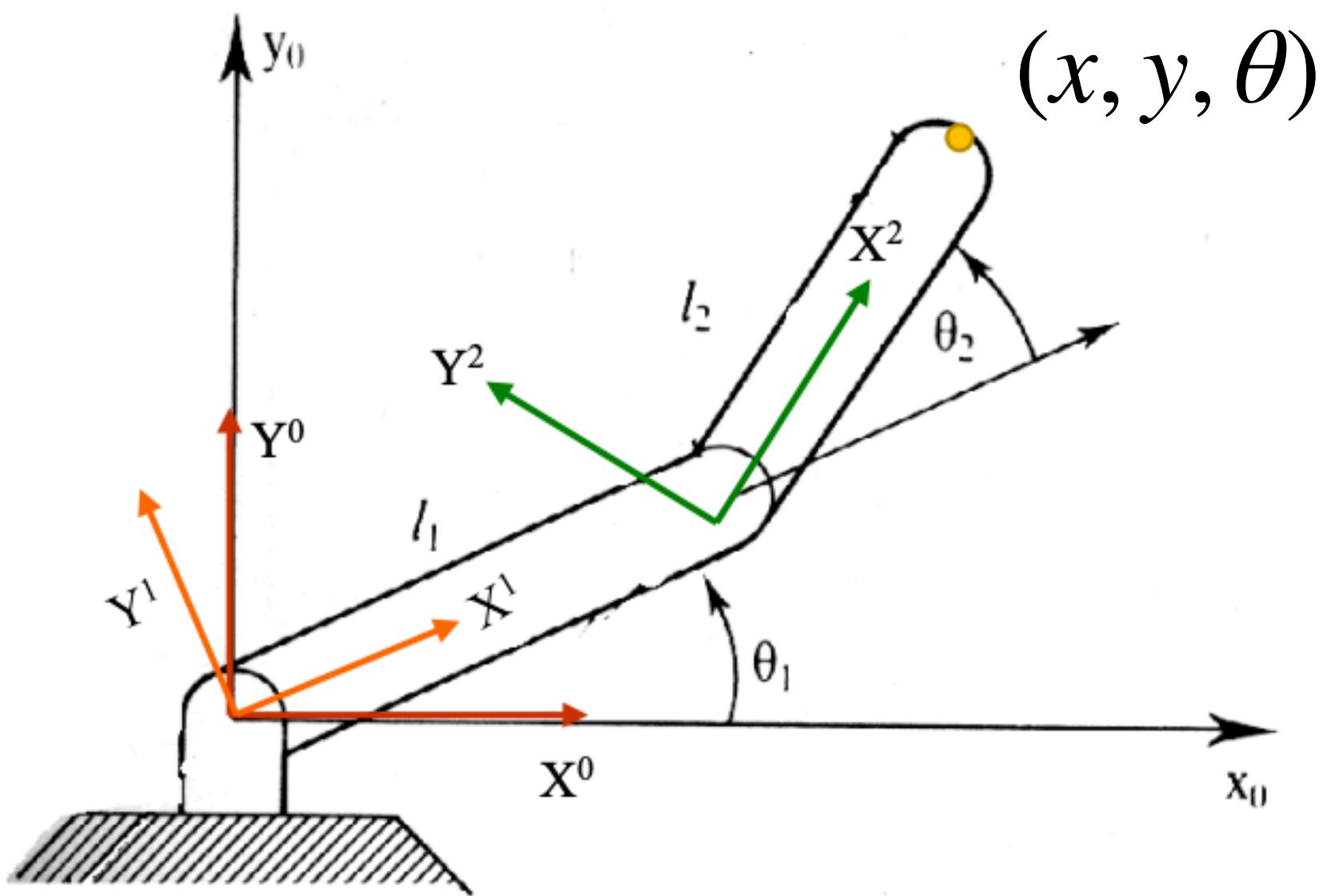


$$\theta = \theta_1 + \theta_2$$

$$x = l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2)$$

$$y = l_1 \sin(\theta_1) + l_2 \sin(\theta_1 + \theta_2)$$

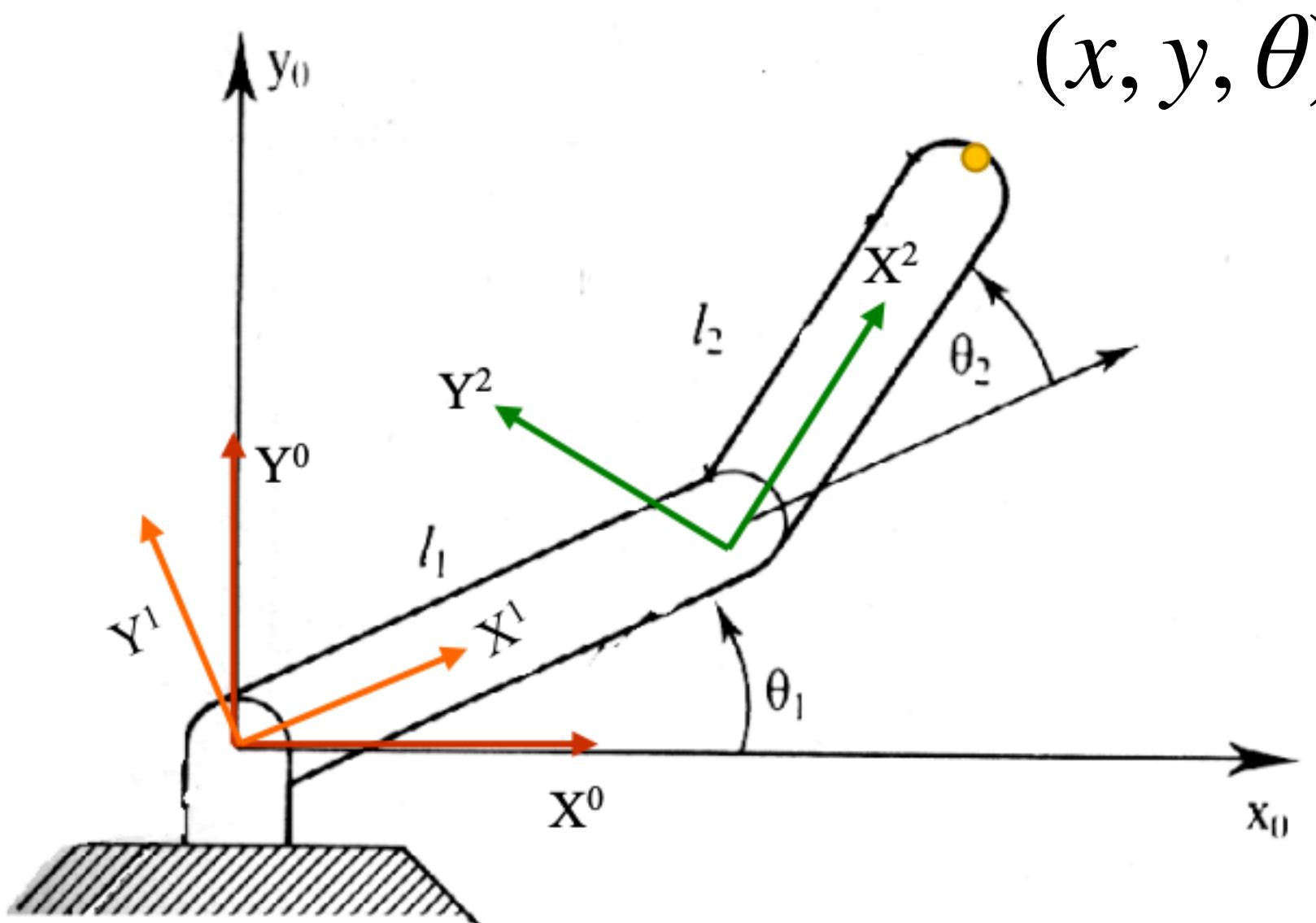
# Arm Kinematics



- In the  $X^0Y^0$  frame, the  $X^1Y^1$  frame is at orientation  $\begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{bmatrix}$ .

$$\bar{V}^{X^0Y^0} = \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{bmatrix} \bar{V}^{X^1Y^1}$$

# Arm Kinematics

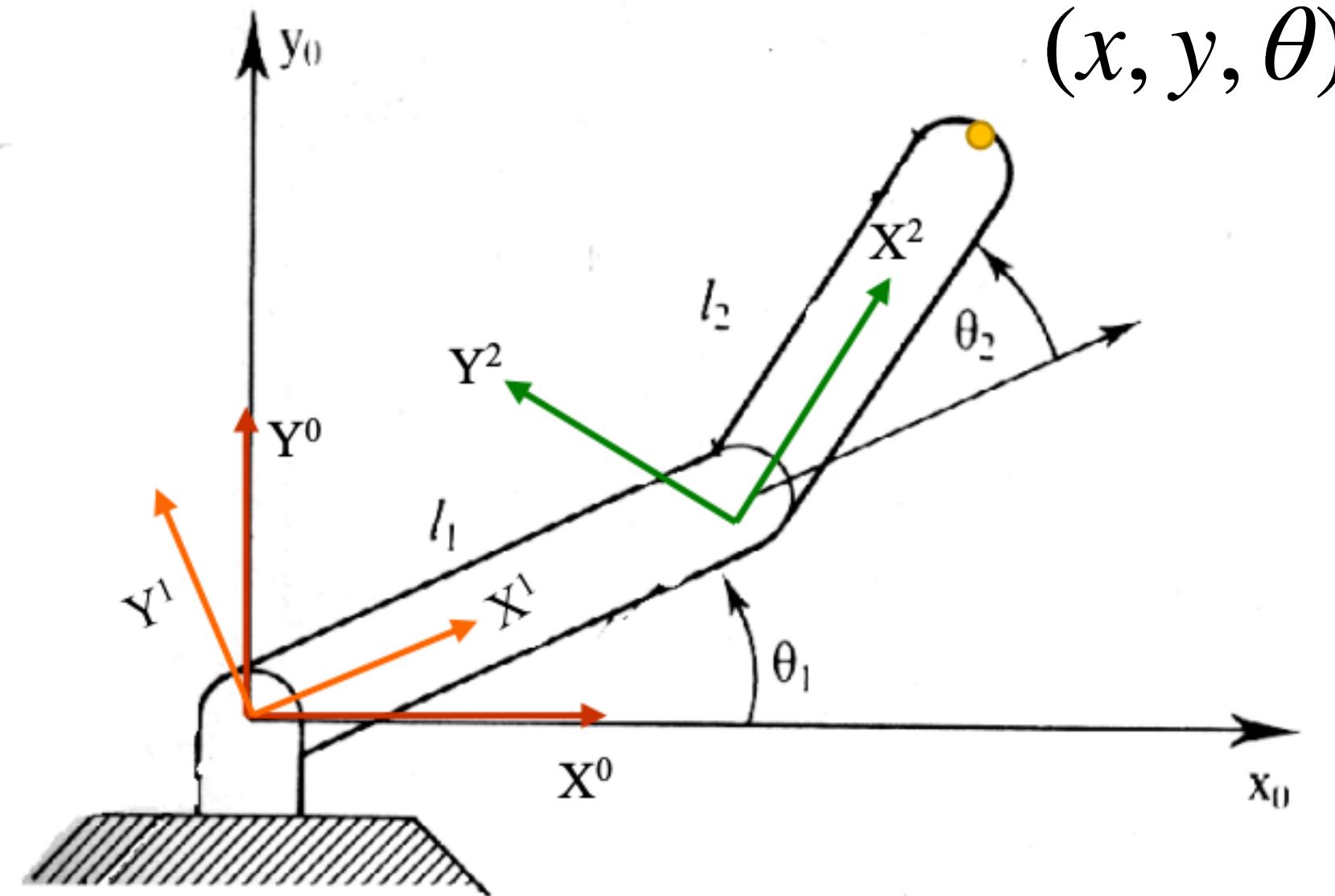


- In the  $X0Y0$  frame, the  $X1X1$  frame is at orientation  $\begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{bmatrix}$ .

- In the  $X1Y1$  frame, the  $X2X2$  frame is at position  $\begin{bmatrix} l_1 \\ 0 \end{bmatrix}$  and orientation  $\begin{bmatrix} \cos(\theta_2) & -\sin(\theta_2) \\ \sin(\theta_2) & \cos(\theta_2) \end{bmatrix}$ .

$$\bar{V}^{X0Y0} = \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{bmatrix} \left( \begin{bmatrix} l_1 \\ 0 \end{bmatrix} + \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{bmatrix} \bar{V}^{X2Y2} \right)$$

# Arm Kinematics

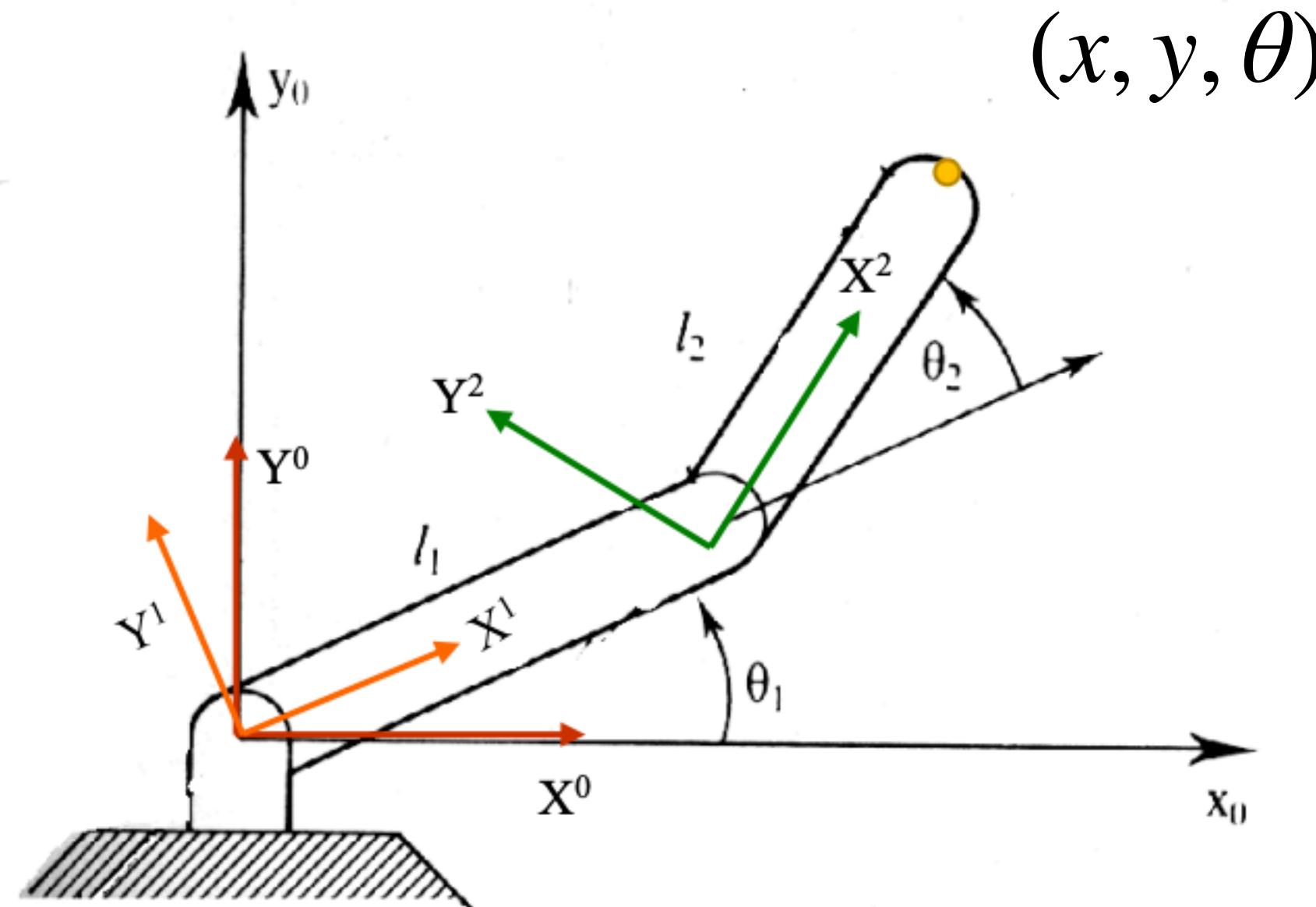


- In the  $X0Y0$  frame, the  $X1X1$  frame is at orientation  $\begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{bmatrix}$ .
- In the  $X1Y1$  frame, the  $X2X2$  frame is at position  $\begin{bmatrix} l_1 \\ 0 \end{bmatrix}$  and orientation  $\begin{bmatrix} \cos(\theta_2) & -\sin(\theta_2) \\ \sin(\theta_2) & \cos(\theta_2) \end{bmatrix}$ .
- In the  $X2Y2$  frame, the end effector is at position  $\begin{bmatrix} l_2 \\ 0 \end{bmatrix}$ .

$$\bar{V}^{X0Y0} = \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{bmatrix} \left( \begin{bmatrix} l_1 \\ 0 \end{bmatrix} + \begin{bmatrix} \cos \theta_2 & \sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{bmatrix} \begin{bmatrix} l_2 \\ 0 \end{bmatrix} \right)$$

# Arm Kinematics

Can write series of rotations and translations as a single matrix



$$f(q) = \begin{bmatrix} c_{\alpha\beta} & -s_{\alpha\beta} & 0 & l_2 c_{\alpha\beta} + l_1 c_{\alpha} \\ s_{\alpha\beta} & c_{\alpha\beta} & 0 & l_2 s_{\alpha\beta} + l_1 s_{\alpha} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$c_{\theta} = \cos \theta$$

$$s_{\theta} = \sin \theta$$

$$\bar{V}^{X_0Y_0} = f(q) \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

# Denavit-Hartenberg (DH) Representation

- Forward kinematics is a chain of transformations applied to put the end-effector in a base frame.
- A reference frame is defined at each joint.
- DH Convention gives a basic recipe for defining the transformation from one joint to the next in terms of:
  - Length of the link between the joints.
  - The angle between the x-axis of the frames for each joint.
  - [In 3 dimensions]: the offset of the z-axis of the two joints and the angle between the z-axes.

# Denavit-Hartenberg (DH) Representation

- Can write a single matrix to transform a point in joint n's frame into joint n-1's frame.

$${}_{n-1}^n T = \left[ \begin{array}{ccc|c} \cos \theta_n & -\sin \theta_n \cos \alpha_n & \sin \theta_n \sin \alpha_n & r_n \cos \theta_n \\ \sin \theta_n & \cos \theta_n \cos \alpha_n & -\cos \theta_n \sin \alpha_n & r_n \sin \theta_n \\ 0 & \sin \alpha_n & \cos \alpha_n & d_n \\ \hline 0 & 0 & 0 & 1 \end{array} \right] = \left[ \begin{array}{c|c} R & t \\ \hline 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{array} \right]$$

- Let the point be  $[x, y, z]$ . Concatenate 1 to end to obtain  $[x, y, z, 1]$  and then apply  ${}_{n-1}^n T$ .

$$[x', y', z', 1] = {}_{n-1}^n T [x, y, z, 1]^\top$$

# Differential Kinematics

- Relate velocity of end-effector to velocity of joints.
- Forward kinematics:  $r = f(q)$ .
- Velocity:  $\dot{r} = J(q) \cdot [\dot{q}_1, \dots, \dot{q}_n]$  where  $J(q)$  is the Jacobian of the robot's end-effector with respect to its configuration.

$$J = \begin{bmatrix} \frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} & \dots & \frac{\partial x}{\partial q_n} \\ \frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2} & \dots & \frac{\partial y}{\partial q_n} \\ \frac{\partial \theta}{\partial q_1} & \frac{\partial \theta}{\partial q_2} & \dots & \frac{\partial \theta}{\partial q_n} \end{bmatrix}$$

# Differential Drive Kinematics

- Differential drive: two independently controlled wheels. Why useful?

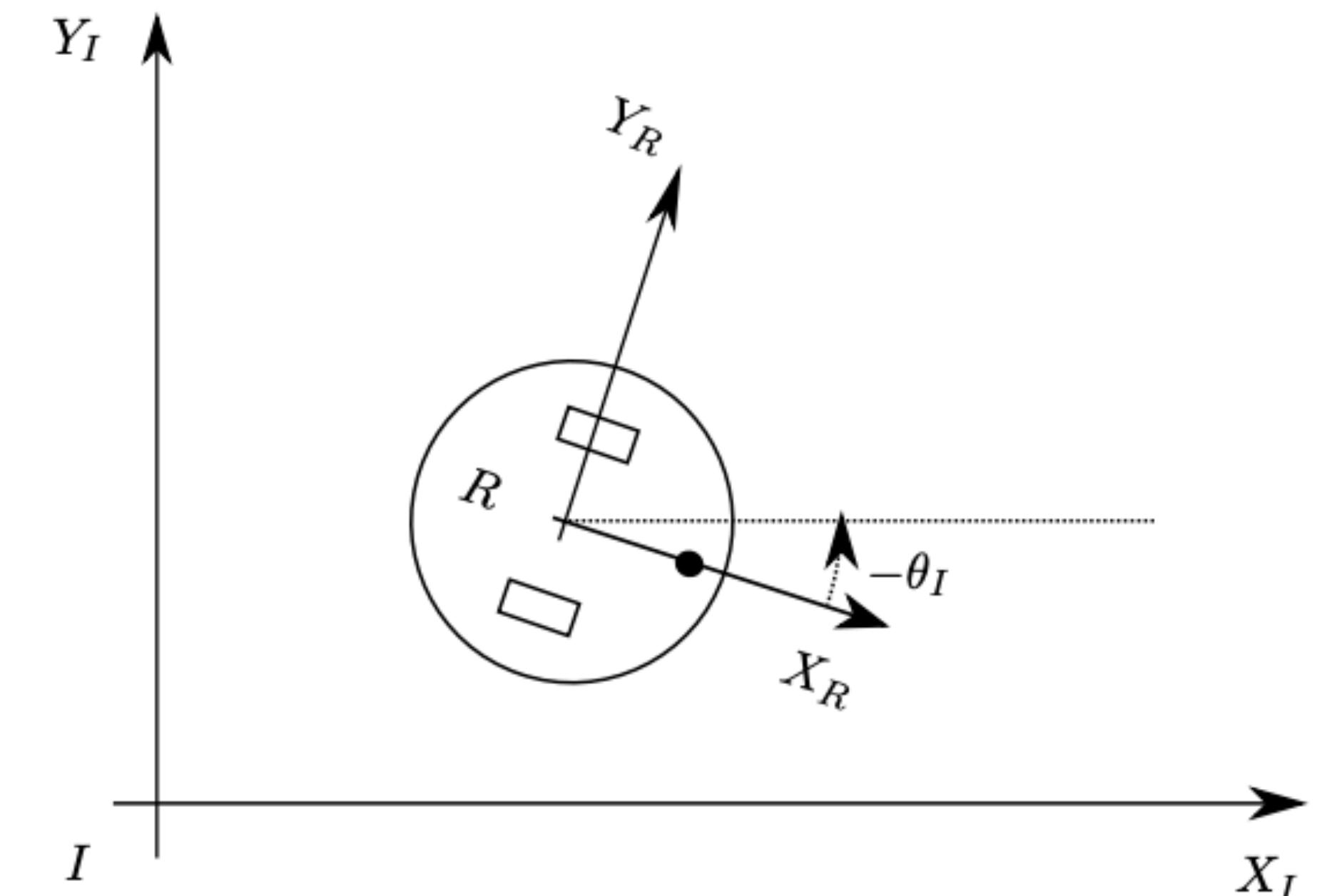
$$\begin{bmatrix} \dot{x}_I \\ \dot{y}_I \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{r\dot{\phi}_l}{2} + \frac{r\dot{\phi}_r}{2} \\ 0 \\ \frac{\dot{\phi}_r r}{d} - \frac{\dot{\phi}_l r}{d} \end{bmatrix}$$

$r$ : wheel radius

$\dot{\phi}_l$ : left wheel velocity

$\dot{\phi}_r$ : right wheel velocity

$d$ : distance between wheels



- Holonomic vs. non-holonomic: configuration determines a unique position in task space.

# Odometry

- Calculating pose of robot in inertial frame.

$$\begin{bmatrix} x_I(T) \\ y_I(T) \\ \theta(T) \end{bmatrix} = \int_0^T \begin{bmatrix} \dot{x}_I(t) \\ \dot{y}_I(t) \\ \dot{\theta}(t) \end{bmatrix} dt \approx \sum_{k=0}^{k=T} \begin{bmatrix} \Delta x_I(k) \\ \Delta y_I(k) \\ \Delta \theta(k) \end{bmatrix} \Delta t$$

- Approximation leads to errors in calculation (“drift”).

# Summary

- Defined basic kinematics terminology: degrees of freedom, joint, link.
- Introduced forward kinematics for a robot arm as a chain of transformations.
- Described the kinematics of a differential drive robot.

# Action Items

- Planning reading for next week; send a reading response by 12 pm on Monday.
- SLAM assignment due Thursday.
- Midterm: 1 week from today