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Announcements
Hope you had a good spring break.


Thanks to those who completed the midterm evaluation.


Looking ahead:


- We have finished the classical robotics part of the course.


- Final five weeks will cover advanced topics.
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Learning Outcomes
After today’s lecture, you will:


• Understand the motivation for reinforcement learning (RL) in robotics.


• Understand when RL is (and is not) a good tool in robotics.


• Understand how to define an RL problem.


• Be able to identify key classes of RL methods for robot control problems.
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What is Reinforcement Learning?

• Type of machine learning that focuses on learning from rewards and trial 
and error interaction.


• The learning agent takes actions, receives rewards, and over time learns 
to take actions that lead to the most reward.


• Think: training a dog to do tricks.
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Why (and why not) RL in robotics?
• Opportunities:


• Well-suited for tasks where success can be defined but the correct actions to achieve success 
are unclear.


• Well-suited for addressing unknown environments.


• Well-suited for changing environments.


• Challenges:


• May require long training times.


• In some cases, we already have good existing controllers (e.g., basic inverse kinematics)


• Success may be difficult to define.
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Be an RL Agent*
• You (as a class) are the learning agent.


• Three actions: stand, clap, or wave


• Observations: colors 


• Rewards: depends on color you see and action you take.


• Goal: find the optimal policy.


• Policy: mapping from colors to actions.


• Optimal policy: policy that gives you the most reward.

∈ {red, blue, orange, pink}

* Activity credit to Peter Stone.
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Be an RL Agent

• How did you learn?


• What structure does the world have?
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Reinforcement Learning Problems
• States: 3x4 grid


• Observations: colors


• For our discussion, states and observations will be treated the same.


• Actions: stand, clap, wave


• Rewards: +1, +2, -1, or +10


• State transitions dependent on action chosen.
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General Reinforcement Learning

• States: 


• Actions: 


• Rewards: 


• State transitions: 


• Goal: Find a policy, , that maximizes cumulative reward.

s ∈ 𝒮

a ∈ 𝒜

R ∼ r(s, a)

S ∼ p( ⋅ |s, a)

π : 𝒮 → 𝒜

Markov!
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General Reinforcement Learning

. . . St, At, Rt+1, St+1, At+1, . . .

St+1, Rt+1 ∼ p( ⋅ |St, At) At+1 ← π(St+1)
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Returns and Episodes
• The return is the discounted sum of future rewards: 

.


• Recursive definition: .


• Episodes are subsequences of interaction that begin in some initial state 
and end in a special terminal state. 


• The initial state of one episode is independent of interaction in the 
preceding episode.

Gt := Rt+1 + γRt+2 + γ2Rt+2 + . . .

Gt = Rt+1 + γGt+1
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Value functions
• State transitions and rewards are stochastic so we define the utility of 

states and actions in terms of expected return. 

• The expected return from a state, , is only well-defined with respect to 
a particular policy, . (Why?) 

• State-value and action-value functions are always defined in terms of some 
policy.

vπ(s)
π

vπ(s) = 𝔼π[Gt |St = s] = 𝔼π[∑
k=0

γkRt+k+1 |St = s]

qπ(s, a) = 𝔼π[Gt |St = s, At = a] = 𝔼π[∑
k=0

γkRt+k+1 |St = s, At = a]
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Bellman Equations: Recursive Relationship of 
State Values

Page 59 of “Reinforcement Learning: An Introduction”

vπ(s) := 𝔼π[Gt |St = s]

= 𝔼π[Rt+1 + γGt+1 |St = s]Definition of return

Definition of state value = 𝔼π[Rt+1 + γvπ(St+1) |St = s]

qπ(s, a) = 𝔼π[Rt+1 + γqπ(St+1, π(St+1)) |St = s, At = a]
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Optimality
• Agent’s objective: find the policy that maximizes  for all s.


• The optimal policy is the policy that has maximal value in all states.  
if  for all states and possible policies.


• Possibly multiple, but always at least one optimal policy in a finite MDP.


• Also, deterministic and Markovian, i.e., action selection only depends on 
the current state.


•

vπ(s)

π⋆ ≥ π
vπ⋆(s) ≥ vπ(s)

π⋆(s) = arg max
a

qπ⋆(s, a) qπ⋆(s, a) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s, At = a]
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Dynamic Programming in RL
• Goal: compute value functions and then use them to compute optimal 

policies.


• Turn Bellman equations into value function updates.


• , initialize , e.g., .


• Loop over states and make the update:

∀s v0(s) v0(s) ← 0

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

= 𝔼π[Rt+1 + γvk(St+1)]
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Policy Iteration
• Use dynamic programming to compute  for the current policy . How 

can we improve ?


• Alternate:


• Set 


• Then repeat dynamic programming to compute .


• Procedure monotonically improves the policy and converges to .

vπ(s) π
π

π′￼(s) ← arg max
a ∑

s′￼,r

p(s′￼, r |s, a)[r + γvπ(s′￼)]

vπ′￼

π⋆

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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S A R S A
• Key limitation of dynamic programming: must know the transition and reward function.


• Goal: want to learn from  transition tuples.


• Temporal-difference learning of action-values:


• Essentially, approximating the exact dynamic programming computation.


• At a high level, it's the same policy iteration scheme from the previous slide.


• Evaluate  using transition tuples obtained by running  in the agent’s environment.


• Make  -greedy with respect to . Why?


• It only converges to  if exploration is reduced.

(St, At, Rt+1, St+1, At+1)

πk πk

πk+1 ϵ qk

q⋆

qk+1(St, At) ← qk(St, At) + α[Rt+1 + γqk(St+1, At+1) − qk(St, At)]
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Q-Learning
• Q-learning: an alternative to SARSA:


• Converges to  for any sufficiently exploratory exploration policy.


• The underlying algorithm for Deep Q-networks, which was a landmark 
result in the history of RL. 

q⋆

qk+1(St, At) ← qk(St, At) + α[Rt+1 + γ max
a′￼

qk(St+1, a′￼) − qk(St, At)]

Derivative algorithms: DQN, Rainbow, BBF, QT-Opt

https://www.youtube.com/watch?v=TmPfTpjtdgg
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Q-Learning for Continuous Actions

• The max over the action space is difficult to compute when actions take on 
real-values. Why?


• One idea: use optimization to find the best action.


• Examples: cross-entropy method, gradient ascent


• But can be slow.


• Another idea: discretize the action space.


• Sometimes works but loses precision in control.

qk+1(St, At) ← qk(St, At) + α[Rt+1 + γ max
a′￼

qk(St+1, a′￼) − qk(St, At)]
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Deterministic Actor-Critic

• Final idea: learn a policy that outputs the maximizing action.


• .


• Learn  such that .


• 


• Actor: the policy .


• Critic: the action-value function, trained with SARSA to estimate .

μθ(s) → a

θ qk(s, μθ(s)) ≈ max
a

qk(s, a)

θt+1 ← θt + α∇θqk(s, μθ(s))

μθ

qμθ

qk+1(St, At) ← qk(St, At) + α[Rt+1 + γ max
a′￼

qk(St+1, a′￼) − qk(St, At)]

Derivative algorithms: DDPG, TD3, Soft actor-critic
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Stochastic Policy Gradient RL
• So far we have only considered deterministic policies.


• Policy gradient methods use a differentiable and stochastic policy (e.g., a 
neural network) and learn policy parameters with gradient ascent.


• 


•  for some special start state .


•

πθ(a |s) = Pr(At = a |St = s; θ)

J(θ) = vπθ
(s0) s0

θk+1 ← θk + α∇θJ(θk)
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Stochastic Policy Gradient Theorem

• 


• 


• The direction in which an infinitesimally small change to  produces the 
maximum increase in .


•  does not depend on any gradients of the state transition function,  
.

J(θ) := vπθ
(s0) = ∑

a

πθ(a |s0)∑
s′￼,r

p(s′￼, r |s0, a)[r + γvπθ
(s′￼)]

∇θJ(θ) ∝ ∑
s

∑
a

μθ(s)qπθ
(s, a)∇θπθ(a |s)

θ
J(θ)

∇θJ(θ)
p
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REINFORCE
•  can only be estimated.


• 


• Finally, replace  with .


•

∇θJ(θ)

∇θJ(θ) ∝ E[∑
a

∇θπ(a |St)qπ(St, a)] = E[∑
a

πθ(a |St)
∇θπθ(a |St)

πθ(a |St)
qπ(St, a)]

qπ(s, a) Gt

θk+1 ← θk + αGt ∇θln πθ(At |St)

Derivative algorithms: TRPO, PPO, GRPO



Josiah Hanna, University of Wisconsin — Madison

REINFORCE

Usually dropped in practice

Bias in Natural Actor-Critic Algorithms. Thomas. 2014.
Is the policy gradient a gradient? Nota and Thomas. 2020.



Josiah Hanna, University of Wisconsin — Madison

Actor-Critic Methods

• REINFORCE uses the return following an action to determine which 
actions are reinforced.


• Actor-critic methods use learned value functions to drive policy changes.


• Actor: the policy.


• Critic: value function.


•               θt+1 ← θt + αδt ∇θln π(At |St) δt ← Rt+1 + γ ̂v(St+1) − ̂v(St)

Derivative algorithms: A2C, soft actor-critic, PPO
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Actor-Critic Methods
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Model-Free RL

Value-based methods Policy Gradient methods

Actor-Critic Methods

DDPG

A2C


Soft Actor-Critic 
(SAC)

TD3

Trust-region 
policy 

optimization

Proximal Policy 

Optimization

Q-learning

SARSA

DQN
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Summary
Today we covered:


1. The reinforcement learning problem definition.


2. Basic algorithms for RL.


3. Discussion of advantages and challenges with using RL.
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Action Items
Complete homework 4


Begin robot learning reading


