
Autonomous Robotics
Reinforcement Learning I

Josiah Hanna

University of Wisconsin — Madison

Josiah Hanna, University of Wisconsin — Madison

Announcements
Hope you had a good spring break.

Thanks to those who completed the midterm evaluation.

Looking ahead:

- We have finished the classical robotics part of the course.

- Final five weeks will cover advanced topics.

Josiah Hanna, University of Wisconsin — Madison

Learning Outcomes
After today’s lecture, you will:

• Understand the motivation for reinforcement learning (RL) in robotics.

• Understand when RL is (and is not) a good tool in robotics.

• Understand how to define an RL problem.

• Be able to identify key classes of RL methods for robot control problems.

Josiah Hanna, University of Wisconsin — Madison

What is Reinforcement Learning?

• Type of machine learning that focuses on learning from rewards and trial
and error interaction.

• The learning agent takes actions, receives rewards, and over time learns
to take actions that lead to the most reward.

• Think: training a dog to do tricks.

Josiah Hanna, University of Wisconsin — Madison

Why (and why not) RL in robotics?
• Opportunities:

• Well-suited for tasks where success can be defined but the correct actions to achieve success
are unclear.

• Well-suited for addressing unknown environments.

• Well-suited for changing environments.

• Challenges:

• May require long training times.

• In some cases, we already have good existing controllers (e.g., basic inverse kinematics)

• Success may be difficult to define.

Josiah Hanna, University of Wisconsin — Madison

Be an RL Agent*
• You (as a class) are the learning agent.

• Three actions: stand, clap, or wave

• Observations: colors

• Rewards: depends on color you see and action you take.

• Goal: find the optimal policy.

• Policy: mapping from colors to actions.

• Optimal policy: policy that gives you the most reward.

∈ {red, blue, orange, pink}

* Activity credit to Peter Stone.

Josiah Hanna, University of Wisconsin — Madison

Be an RL Agent

• How did you learn?

• What structure does the world have?

Josiah Hanna, University of Wisconsin — Madison

Reinforcement Learning Problems
• States: 3x4 grid

• Observations: colors

• For our discussion, states and observations will be treated the same.

• Actions: stand, clap, wave

• Rewards: +1, +2, -1, or +10

• State transitions dependent on action chosen.

Josiah Hanna, University of Wisconsin — Madison

General Reinforcement Learning

• States:

• Actions:

• Rewards:

• State transitions:

• Goal: Find a policy, , that maximizes cumulative reward.

s ∈ 𝒮

a ∈ 𝒜

R ∼ r(s, a)

S ∼ p(⋅ |s, a)

π : 𝒮 → 𝒜

Markov!

Josiah Hanna, University of Wisconsin — Madison

General Reinforcement Learning

. . . St, At, Rt+1, St+1, At+1, . . .

St+1, Rt+1 ∼ p(⋅ |St, At) At+1 ← π(St+1)

Josiah Hanna, University of Wisconsin — Madison

Returns and Episodes
• The return is the discounted sum of future rewards:

.

• Recursive definition: .

• Episodes are subsequences of interaction that begin in some initial state
and end in a special terminal state.

• The initial state of one episode is independent of interaction in the
preceding episode.

Gt := Rt+1 + γRt+2 + γ2Rt+2 + . . .

Gt = Rt+1 + γGt+1

Josiah Hanna, University of Wisconsin — Madison

Value functions
• State transitions and rewards are stochastic so we define the utility of

states and actions in terms of expected return.

• The expected return from a state, , is only well-defined with respect to
a particular policy, . (Why?)

• State-value and action-value functions are always defined in terms of some
policy.

vπ(s)
π

vπ(s) = 𝔼π[Gt |St = s] = 𝔼π[∑
k=0

γkRt+k+1 |St = s]

qπ(s, a) = 𝔼π[Gt |St = s, At = a] = 𝔼π[∑
k=0

γkRt+k+1 |St = s, At = a]

Josiah Hanna, University of Wisconsin — Madison

Bellman Equations: Recursive Relationship of
State Values

Page 59 of “Reinforcement Learning: An Introduction”

vπ(s) := 𝔼π[Gt |St = s]

= 𝔼π[Rt+1 + γGt+1 |St = s]Definition of return

Definition of state value = 𝔼π[Rt+1 + γvπ(St+1) |St = s]

qπ(s, a) = 𝔼π[Rt+1 + γqπ(St+1, π(St+1)) |St = s, At = a]

Josiah Hanna, University of Wisconsin — Madison

Optimality
• Agent’s objective: find the policy that maximizes for all s.

• The optimal policy is the policy that has maximal value in all states.
if for all states and possible policies.

• Possibly multiple, but always at least one optimal policy in a finite MDP.

• Also, deterministic and Markovian, i.e., action selection only depends on
the current state.

•

vπ(s)

π⋆ ≥ π
vπ⋆(s) ≥ vπ(s)

π⋆(s) = arg max
a

qπ⋆(s, a) qπ⋆(s, a) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s, At = a]

Josiah Hanna, University of Wisconsin — Madison

Dynamic Programming in RL
• Goal: compute value functions and then use them to compute optimal

policies.

• Turn Bellman equations into value function updates.

• , initialize , e.g., .

• Loop over states and make the update:

∀s v0(s) v0(s) ← 0

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

= 𝔼π[Rt+1 + γvk(St+1)]

Josiah Hanna, University of Wisconsin — Madison

Policy Iteration
• Use dynamic programming to compute for the current policy . How

can we improve ?

• Alternate:

• Set

• Then repeat dynamic programming to compute .

• Procedure monotonically improves the policy and converges to .

vπ(s) π
π

π′￼(s) ← arg max
a ∑

s′￼,r

p(s′￼, r |s, a)[r + γvπ(s′￼)]

vπ′￼

π⋆

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

Josiah Hanna, University of Wisconsin — Madison

S A R S A
• Key limitation of dynamic programming: must know the transition and reward function.

• Goal: want to learn from transition tuples.

• Temporal-difference learning of action-values:

• Essentially, approximating the exact dynamic programming computation.

• At a high level, it's the same policy iteration scheme from the previous slide.

• Evaluate using transition tuples obtained by running in the agent’s environment.

• Make -greedy with respect to . Why?

• It only converges to if exploration is reduced.

(St, At, Rt+1, St+1, At+1)

πk πk

πk+1 ϵ qk

q⋆

qk+1(St, At) ← qk(St, At) + α[Rt+1 + γqk(St+1, At+1) − qk(St, At)]

Josiah Hanna, University of Wisconsin — Madison

Q-Learning
• Q-learning: an alternative to SARSA:

• Converges to for any sufficiently exploratory exploration policy.

• The underlying algorithm for Deep Q-networks, which was a landmark
result in the history of RL.

q⋆

qk+1(St, At) ← qk(St, At) + α[Rt+1 + γ max
a′￼

qk(St+1, a′￼) − qk(St, At)]

Derivative algorithms: DQN, Rainbow, BBF, QT-Opt

https://www.youtube.com/watch?v=TmPfTpjtdgg

Josiah Hanna, University of Wisconsin — Madison

Q-Learning for Continuous Actions

• The max over the action space is difficult to compute when actions take on
real-values. Why?

• One idea: use optimization to find the best action.

• Examples: cross-entropy method, gradient ascent

• But can be slow.

• Another idea: discretize the action space.

• Sometimes works but loses precision in control.

qk+1(St, At) ← qk(St, At) + α[Rt+1 + γ max
a′￼

qk(St+1, a′￼) − qk(St, At)]

Josiah Hanna, University of Wisconsin — Madison

Deterministic Actor-Critic

• Final idea: learn a policy that outputs the maximizing action.

• .

• Learn such that .

•

• Actor: the policy .

• Critic: the action-value function, trained with SARSA to estimate .

μθ(s) → a

θ qk(s, μθ(s)) ≈ max
a

qk(s, a)

θt+1 ← θt + α∇θqk(s, μθ(s))

μθ

qμθ

qk+1(St, At) ← qk(St, At) + α[Rt+1 + γ max
a′￼

qk(St+1, a′￼) − qk(St, At)]

Derivative algorithms: DDPG, TD3, Soft actor-critic

Josiah Hanna, University of Wisconsin — Madison

Stochastic Policy Gradient RL
• So far we have only considered deterministic policies.

• Policy gradient methods use a differentiable and stochastic policy (e.g., a
neural network) and learn policy parameters with gradient ascent.

•

• for some special start state .

•

πθ(a |s) = Pr(At = a |St = s; θ)

J(θ) = vπθ
(s0) s0

θk+1 ← θk + α∇θJ(θk)

Josiah Hanna, University of Wisconsin — Madison

Stochastic Policy Gradient Theorem

•

•

• The direction in which an infinitesimally small change to produces the
maximum increase in .

• does not depend on any gradients of the state transition function,
.

J(θ) := vπθ
(s0) = ∑

a

πθ(a |s0)∑
s′￼,r

p(s′￼, r |s0, a)[r + γvπθ
(s′￼)]

∇θJ(θ) ∝ ∑
s

∑
a

μθ(s)qπθ
(s, a)∇θπθ(a |s)

θ
J(θ)

∇θJ(θ)
p

Josiah Hanna, University of Wisconsin — Madison

REINFORCE
• can only be estimated.

•

• Finally, replace with .

•

∇θJ(θ)

∇θJ(θ) ∝ E[∑
a

∇θπ(a |St)qπ(St, a)] = E[∑
a

πθ(a |St)
∇θπθ(a |St)

πθ(a |St)
qπ(St, a)]

qπ(s, a) Gt

θk+1 ← θk + αGt ∇θln πθ(At |St)

Derivative algorithms: TRPO, PPO, GRPO

Josiah Hanna, University of Wisconsin — Madison

REINFORCE

Usually dropped in practice

Bias in Natural Actor-Critic Algorithms. Thomas. 2014.
Is the policy gradient a gradient? Nota and Thomas. 2020.

Josiah Hanna, University of Wisconsin — Madison

Actor-Critic Methods

• REINFORCE uses the return following an action to determine which
actions are reinforced.

• Actor-critic methods use learned value functions to drive policy changes.

• Actor: the policy.

• Critic: value function.

• θt+1 ← θt + αδt ∇θln π(At |St) δt ← Rt+1 + γ ̂v(St+1) − ̂v(St)

Derivative algorithms: A2C, soft actor-critic, PPO

Josiah Hanna, University of Wisconsin — Madison

Actor-Critic Methods

Josiah Hanna, University of Wisconsin — Madison

Model-Free RL

Value-based methods Policy Gradient methods

Actor-Critic Methods

DDPG

A2C

Soft Actor-Critic
(SAC)

TD3

Trust-region
policy

optimization

Proximal Policy

Optimization

Q-learning

SARSA

DQN

Josiah Hanna, University of Wisconsin — Madison

Summary
Today we covered:

1. The reinforcement learning problem definition.

2. Basic algorithms for RL.

3. Discussion of advantages and challenges with using RL.

Josiah Hanna, University of Wisconsin — Madison

Action Items
Complete homework 4

Begin robot learning reading

