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Announcements

Hope you had a good spring break.
Thanks to those who completed the midterm evaluation.
Looking ahead:

- We have finished the classical robotics part of the course.

- Final five weeks will cover advanced topics.
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Learning Outcomes

After today’s lecture, you will:

 Understand the motivation for reinforcement learning (RL) in robotics.
 Understand when RL is (and is not) a good tool in robotics.
 Understand how to define an RL problem.

 Be able to identify key classes of RL methods for robot control problems.
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What is Reinforcement Learning?

* Type of machine learning that focuses on learning from rewards and trial
and error interaction.

 The learning agent takes actions, receives rewards and over time learns
to take actions that lead to the most reward. ' -
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* Think: training a dog to do tricks.



Why (and why not) RL in robotics?

* Opportunities:

e Well-suited for tasks where success can be defined but the correct actions to achieve success
are unclear.

* Well-suited for addressing unknown environments.
* Well-suited for changing environments.
* Challenges:
 May require long training times.
* |n some cases, we already have good existing controllers (e.g., basic inverse kinematics)

e Success may be difficult to define.
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Be an RL Agent”

* You (as a class) are the learning agent.

 [hree actions: stand, clap, or wave

« Observations: colors € {red, blue, orange, pink}
 Rewards: depends on color you see and action you take.
* Goal: find the optimal policy.

* Policy: mapping from colors to actions.

* Optimal policy: policy that gives you the most reward.

* - -
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Be an RL Agent

 How did you learn?

e What structure does the world have?

Stand

» Clap

Wave
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Reinforcement Learning Problems

o States: 3x4 grid

* Observations: colors

* For our discussion, states and observations will be treated the same.
e Actions: stand, clap, wave

e Rewards: +1, +2, -1, or +10

e State transitions dependent on action chosen.

Josiah Hanna, University of Wisconsin — Madison



General Reinforcement Learning

States: s € &

Actions: a € &

Rewards: R ~ r(s, a)

State transitions: S ~ p( - |s,a)  Markov!

Goal: Find a policy, 7 : & — &, that maximizes cumulative reward.
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General Reinforcement Learning
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Returns and Episodes

The return is the discounted sum of future rewards:
. 2
G =R +YR,+ YR+ ...

Recursive definition: G, = R, | + yG,, ;.

Episodes are subsequences of interaction that begin in some initial state
and end In a special terminal state.

The initial state of one episode is independent of interaction in the
preceding episode.
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Value functions

e State transitions and rewards are stochastic so we define the utility of
states and actions in terms of expected return.

» The expected return from a state, v_(s), is only well-defined with respect to
a particular policy, &. (Why?)

e State-value and action-value functions are always defined in terms of some
policy.

V]Z'(S) — _][[Gt‘St — S] — 71-[ 2 }/th_l_k_l_l ‘Sl‘ — S]
k=0

q.(s,a) = E,[G,|S, =s5,A, =a]l =E,| Z 7’th+1«+1 |5, = 5,A,=d]
k=0
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Bellman Equations: Recursive Relationship of
State Values

v .(s) :=E_[G|S, = s]

AR+ Y6y | S; = 5]

Definition of return

Definition of state value

AR (S D[S, = 5]

qJZ'(S’ Cl) — _ﬂ[Rl‘+1 T }/qﬂ(SHl’ ﬂ(St+1)) ‘ St — S’At — Cl]
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Optimality
Agent’s objective: find the policy that maximizes v_(s) for all s.

The optimal policy is the policy that has maximal value in all states. T >
if v_.(s) > v_(s) for all states and possible policies.

Possibly multiple, but always at least one optimal policy in a finite MDP.

* Also, deterministic and Markovian, I.e., action selection only depends on
the current state.

7*(s) = argmax g .(s,a) 9@ =ERy +1vp(SD S = 5,4, = d

A
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Dynamic Programming in RL

 (Goal: compute value functions and then use them to compute optimal
policies.

* Turn Bellman equations into value function updates.
» Vs, initialize vy(s), e.9., vo(s) < 0.

 Loop over states and make the update:

Vk+1(S) < Zﬂ(CIlS)Z ZP(S/,I/"S, Cl)[l"+ }/Vk(S,)]

= E, IR 1 +rvi(Sy )]
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Policy lteration

» Use dynamic programming to compute v_(s) for the current policy z. How
can we improve 77

e Alternate:

_ Set 7'(s) « arg max Z p(s,rls,a)lr+yv (s')]

s’ r
» Then repeat dynamic programming to compute v _..

 Procedure monotonically improves the policy and converges to >

Josiah Hanna, University of Wisconsin — Madison



SARSA

Key limitation of dynamic programming: must know the transition and reward function.

Goal: want to learn from (S, A,, R, 1,5, 1, A, ) transition tuples.

Temporal-difference learning of action-values:

G105 Ap) < @ (S, A + al R+ vqi (S 15 A1) — (S5, A ]

* Essentially, approximating the exact dynamic programming computation.

At a high level, it's the same policy iteration scheme from the previous slide.

 Evaluate 7z, using transition tuples obtained by running 7z, in the agent’s environment.
» Make 7, ; e-greedy with respect to ¢g;. Why?

It only converges to q* If exploration is reduced.
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Q-Learning

e Q-learning: an alternative to SARSA:
Qk+l(Sta Az) « Qk(Sta At) T a[Rt+1 T Y mE}X Qk(SH-la al) o Qk(Sta At)]
d
o Converges to q* for any sufficiently exploratory exploration policy.

* The underlying algorithm for Deep Q-networks, which was a landmark
result in the history of RL.

Derivative algorithms: DQN, Rainbow, BBF, QT-Opt
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https://www.youtube.com/watch?v=TmPfTpjtdgg

Q-Learning for Continuous Actions

Qk+1(Sta At) — Qk(Sta At) T a[Rt+1 T /4 ma,X Qk(SH-la Cl/) D Qk(Sta At)]

 The max over the action space is difficult to compute when actions take on
real-values. Why?

 One idea: use optimization to find the best action.
 Examples: cross-entropy method, gradient ascent
e But can be slow.

 Another idea: discretize the action space.

 Sometimes works but loses precision in control.
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Deterministic Actor-Critic

Gir1(Sp A) = @S A) + alR,y + y max gy(Syy 1, @) — gi(S, A))]
A
* Final idea: learn a policy that outputs the maximizing action.

o Uy(s) — a.

. Learn 6 such that g, (s, uy(s)) = max g,(s, a).

A

o 041 < 0.+ aVoqils, py(s))

 Actor: the policy u,.

» Critic: the action-value function, trained with SARSA to estimate g, .

Derivative algorithms: DDPG, TD3, Soft actor-critic Josiah Hanna, University of Wisconsin — Madison



Stochastic Policy Gradient RL

So far we have only considered deterministic policies.

Policy gradient methods use a differentiable and stochastic policy (e.g., a
neural network) and learn policy parameters with gradient ascent.

nyals) =Pr(A, =alSs, =s;0)
J(0) = vﬂg(s()) for some special start state s,

0,1 < 0, +aV,J0,)
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Stochastic Policy Gradient Theorem

J(O) := v, (s9) = ), myalsy) ) p(ssr| s, @)r+ yv, (s)]

Vol (0) & ) ) uy($)q,(s,a) Vymyal s)

e The direction in which an infinitesimally small change to @ produces the
maximum increase in J(6).

» V,J(0) does not depend on any gradients of the state transition function,
D.
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REINFORCE

» V,J(0) can only be estimated.

V@ﬂ@(a ‘ St)

VoJ(0) < E[ ) Vor(a|S)q (S, a)] =E[ ) myal St)mqﬂ(b’t, a)]

» Finally, replace g,(s, a) with G,.

® Hk-l—l N 6’k + aGtV(gln ﬂQ(AZ‘ ‘ St)

Derivative algorithms: TRPO, PPO, GRPO
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REINFORCE

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for r,

Input: a differentiable policy parameterization m(als, @)
Algorithm parameter: step size a > 0

Initialize policy parameter 8 € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1,Ar_1, R, following 7 (-|-,0)
Loop for each step of the episode t =0,1,...,7T — 1:
G, o of R,
0« 0+ .. VInm(A¢|S:, 6)

Usually dropped In practice

Is the policy gradient a gradient? Nota and Thomas. 2020.
Bias in Natural Actor-Critic Algorithms. Thomas. 2014.
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Actor-Critic Methods

 REINFORCE uses the return following an action to determine which
actions are reinforced.

* Actor-critic methods use learned value functions to drive policy changes.
e Actor: the policy.

e (Critic: value function.

e 0., < 0,+a0,Vylnn(A,|S,) O, < R +yv(S,. ) — V(S)

Derivative algorithms: A2C, soft actor-critic, PPO
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Actor-Critic Methods

One-step Actor—Critic (episodic), for estimating 79 =~ .,

Input: a differentiable policy parameterization 7 (a|s, )
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: step sizes a? > 0, a% > 0

Initialize policy parameter @ € RY and state-value weights w € R¢ (e.g., to 0)
Loop forever (for each episode):
Initialize S (first state of episode)
I+ 1
Loop while S is not terminal (for each time step):
A~ 7(-]S,0)
Take action A, observe S’, R
§d — R+~9(S",w) —9(S,w) (if S’ is terminal, then ©(S’,w) = 0)
w— w4+ aVoVo(S,w)
0+ 0+a’I5VIinm(AlS,0)

g
S« 5
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Model-Free RL
Vm Policy Gradient methods

Actor-Critic Methods

Q-learning
SARSA
DQN

Trust-region

policy
optimization

DDPG
A2C

Soft Actor-Critic
(SAC)

TD3

Proximal Policy
Optimization
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Summary

Today we covered:
1. The reinforcement learning problem definition.
2. Basic algorithms for RL.

3. Discussion of advantages and challenges with using RL.
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Action ltems

Complete homework 4

Begin robot learning reading
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