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Learning Outcomes

After today’s lecture, you will;

 Be able to specify the key assumptions underlying the extended Kalman
filters.

 Understand the extended Kalman filter as an approximation of the Kalman
filter.

 Understand the strengths and limitations of extended Kalman filters.
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Kalman Filter Applications

Robot Localization Autonomous driving [e.g., 1]

Filter starts with Estimate improves
rouch estimate as mare data used

Object Tracking
[1] httpS:// arxiv.org/ pdf/ 2004.05965 Josiah Hanna, University of Wisconsin — Madison



Linear Gaussian Systems

We make the following assumptions on the robot’s environment:

e States, controls, and observations are vectors: x &€ R% and u € R¥ and
z € R™,

e State transition and observation function are linear Gaussians:

e x,=Ax,_; + Bu, + w,where w, ~ #(0,0), A € R4 B € R and
Q € R™. — p(x|x,_,u) =N(x;Ax,_; + Bu,, Q)

» 7= Hx,+v,wherev, ~ /(O,R), H € R™4 and R € R™ ™,
— g(zt\xt) — */’/(Z; sza R)
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Kalman Filter

The Kalman filter is a Bayes filter that represents bel(x,) with a Gaussian
distribution, A/ (u,, 2,).

The initial belief is Gaussian: bel(xy) = A (xy; K> 20)-

Under our assumptions, the posterior remains a Gaussian distribution using
the updates from the Bayes filter:

p(xt‘zlzv ul:t) — '/V(xt; Hys Zt)

Intuition for correctness: plug Gaussian beliefs and linear Gaussian system
state transitions and observations into Bayes filter updates.

Josiah Hanna, University of Wisconsin — Madison



The Kalman Filter as a Bayes Filter

e |nitialize belief:

bel(xO) — '/V(x()a /’t()a Z())

e Prediction:

f; = Ap,_y + Bu,
bel(x,) = | p(x,|x._,u)bel(x,_,)dx,_,

> =A'2A+R
e (Correction:
/’tt — /Zt + Kt(zz o H/Zt)

> = —-KH)Z,

bel(x) = ng(z | x,)bel(x,)
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The Kalman Gain

K=XH'HZH"+R)"!

+ K, is called the Kalman gain at time-step .

e Use univariate case with H = 1 to build intuition:

K O t2 Uncertainty from prediction step
L 5t2 + R Total uncertainty

 The Kalman gain tells you how much to trust the prediction vs the
observation.

 Small gain implies the measurement is less reliable and the belief is
updated less from the prediction belief.
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llustration of Kalman Filter Updates

QZ - - 0z -

a1s - . Q15 -

Belief after motion Observation Probability
New belief
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Advantages / Disadvantages

« Kalman filters:

e Can be used for continuous state spaces.

* Are optimal filters if our assumptions hold.

* Are very efficient; polynomial in state and observation dimensionality.
* But...

 Randomness may not be Gaussian.

 Most robotics systems are nonlinear.
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Non-linear Gaussian Systems

Let’s change our assumptions to allow non-linearity:

. States, controls, and observations are vectors: x € R% and u € R* and
z € R™.

e State transition and observation function are non-linear Gaussians:

e x, = f(x,_;,u,) + w, where w, ~ 4 (0,0), O € R and fis a non-linear
function.
=> p(xt | xt—la ut) — '/’/(xa g(xt—la ut)a Q)
e 7, = h(x,) + v, where v, ~ N (0,R), R € R"™", and h is a non-linear
function.
= 8(z|x) = N (z; h(x), R)
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Why do we need linearity?

6| 6
piy)= N{y;ap+b,a%c?) — =X+ b
®  Mean of piy)
)
4
N -
3
2
1 - 1 +
0 05 1 1.5 0 0.5 1
6 | |
pE) = N(x; p, o7)
&= Mean of p{x)
e 4]
2 !
0 +
e} nR 1

Josiah Hanna, University of Wisconsin — Madison



Why do we need linearity?
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Why do we need linearity?
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Calculus Review: Partial Derivatives

» Given a function, f(x,...,x,).

of

. I'he partial derivative — captures the rate

0x, o AR RN

of change of f as one of the x; increases.

 The gradient is the vector of partial

| » \.__ \.. \. t .J g .
af af R - YAr

derivatives: V_ f=[—....,—
o [dxl 8xn]



Calculus Review: Jacobian Matrix

 Given a function, f : R" — R",

» Equivalently, x = (x,...,x,) and f(x) = (f;(x),...,[, (X))

» The Jacobian, J, is the matrix of partial derivatives of /.

N % 9

0x;  0x, 0x,,

- Entry (7, /) captures how fast f,(x) is changing as x; oh o of,
increases. J= o o, o,
O I o/

Pl

https://discourse.julialang.org/t/visualizing-jacobians-gradients-hows-this/36799 Josiah Hanna, University of Wisconsin — Madison



Calculus Review: Taylor Series Expansion

» Goal is to approximate a given function f (possibly non-linear) with a linear

function.

Cubic function and its First Order Taylor Expansion
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J(x) = f(xp) + (x — xp)

Quadratic function and its First Order Taylor Expansion
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f has multiple inputs and outputs.

) = flxg) +J 7 (x = xo)
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Extended Kalman Filter

Intuition for EKF: linearize the non-linear system with a Taylor expansion and
then apply Kalman filtering to the linearized system.

fOx_,u) ~ flu,_,u)+ G, (x_; — u,_,) where G, is the Jacobian of f at
Fi—1-

h(x) ~ h(u,) + H,' (x, — u,) where H, is the Jacobian of /1 at y..
Note: the expansion point is set to be the mean of the current belief.

Can also view the basic Kalman filter as a special case of EKF when fand g
are linear functions.
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Expanding at the Mean
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Expanding at the Mean
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Extended Kalman Filter

e |nitialize belief: N (xo, Hos Zo)
Kalman Filter Extended Kalman Filter
o My = A/’tt—l + Bu, M, :f(ﬂt—b I/tt)
e Prediction:
Y =A'XA+R X =G/'ZG,+R
* Correction: H, = p,+ Kz, — Hji,) H, = p, + Kz, — h(jz,))

> = —-KH)?Z, > =(I—-KH)T,

K=XH'(HXH'+R)"!
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Advantages / Disadvantages

 Extended Kalman filters:
 Same strengths of Kalman filters (except optimality)
* Relax the assumption of linear state transitions and observations.
* Widely used.
 But...
* Lose optimality guarantees.
* Taylor expansion can be a bad approximation for highly non-linear systems.

* |f learning models, need accurate estimation of gradients.
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Tracking multiple hypotheses

* (Gaussians are unimodal distributions — key
limitation of KF and EKF.

e One extension of KFs and EKFs is to use a
Gaussian mixture model representation.

 Each possible mode is represented by a

different Gaussian and updates are similar to
KF/EKF updates.

* But, must include mechanisms for splitting
or pruning individual modes when they
become very unlikely.
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Practice

* A robot is using the following model of its environment:

e f(x,_y,u,) = Ax,_, + Bu, + w, where w, is Gaussian noise and A and B
are matrices. The Jacobian of fis A.

» g(x,) = Hx, + v, where v, is Gaussian noise, H is a matrix, and the
Jacobian of g is H.

What are the extended Kalman filter updates under this model?
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Practice

* A robot is using the following model of its environment:

e f(x,_y,u,) = Ax,_, + Bu, + w, where w, is Gaussian noise and A and B
are matrices. The Jacobian of fis A.

» g(x,) = Hx, + v, where v, is Gaussian noise, H is a matrix, and the
Jacobian of g is H.

What are the extended Kalman filter updates under this model?

Note that f and ¢ are already linear functions. Consequently, the EKF reduces to the KF.
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Summary

e Extended the linear Gaussian model to the non-linear Gaussian model.

* Introduced the extended Kalman filter as a generalization of the Kalman
filter for non-linear Gaussian assumption.

e Discussed pros and cons of the EKF.
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Action ltems

 Read on particle filter for next week; send a reading response by 12 pm
on Monday.
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