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Learning Outcomes
After today’s lecture, you will:


• Be able to specify the key assumptions underlying the extended Kalman 
filters.


• Understand the extended Kalman filter as an approximation of the Kalman 
filter.


• Understand the strengths and limitations of extended Kalman filters.
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Kalman Filter Applications

Robot Localization Autonomous driving [e.g., 1]

[1] https://arxiv.org/pdf/2004.05965

Object Tracking
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Linear Gaussian Systems
We make the following assumptions on the robot’s environment:


• States, controls, and observations are vectors:  and  and 
. 


• State transition and observation function are linear Gaussians:


•  +  where , ,  and
.


•  where , , and . 

x ∈ Rd u ∈ Rk

z ∈ Rm

xt = Axt−1 + But wt wt ∼ 𝒩(0,Q) A ∈ Rd×d B ∈ Rd×k

Q ∈ Rd×d

zt = Hxt + vt vt ∼ 𝒩(0,R) H ∈ Rm×d R ∈ Rm×m

⟹ p(xt |xt−1, ut) = 𝒩(x; Axt−1 + But, Q)

⟹ g(zt |xt) = 𝒩(z; Hxt, R)
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Kalman Filter
• The Kalman filter is a Bayes filter that represents  with a Gaussian 

distribution, .


• The initial belief is Gaussian: .


• Under our assumptions, the posterior remains a Gaussian distribution using 
the updates from the Bayes filter:


• Intuition for correctness: plug Gaussian beliefs and linear Gaussian system 
state transitions and observations into Bayes filter updates.

𝚋𝚎𝚕(xt)
𝒩(μt, Σt)

𝚋𝚎𝚕(x0) = 𝒩(x0; μ0, Σ0)

p(xt |z1:t, u1:t) = 𝒩(xt; μt, Σt)
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The Kalman Filter as a Bayes Filter
• Initialize belief:


• Prediction:


• Correction:

𝚋𝚎𝚕(xt) = ∫ p(xt |xt−1, ut)𝚋𝚎𝚕(xt−1)dxt−1

μ̄t = Aμt−1 + But

Σt = ATΣA + R

𝚋𝚎𝚕(xt) = ηg(zt |xt)𝚋𝚎𝚕(xt)

Kt = ΣtH⊤(HΣtH⊤ + Q)−1

μt = μ̄t + Kt(zt − Hμ̄t)

Σt = (I − KtH)Σt

𝚋𝚎𝚕(x0) = 𝒩(x0, μ0, Σ0)
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The Kalman Gain

•  is called the Kalman gain at time-step .


• Use univariate case with  to build intuition:


• The Kalman gain tells you how much to trust the prediction vs the 
observation.


• Small gain implies the measurement is less reliable and the belief is 
updated less from the prediction belief.

Kt t

H = 1

Kt = ΣtH⊤(HΣtH⊤ + R)−1

Kt =
σ̄2

t

σ̄2
t + R

Uncertainty from prediction step

Total uncertainty 
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Illustration of Kalman Filter Updates

Belief after motion Observation Probability

New belief
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Advantages / Disadvantages
• Kalman filters:


• Can be used for continuous state spaces.


• Are optimal filters if our assumptions hold.


• Are very efficient; polynomial in state and observation dimensionality.


• But…


• Randomness may not be Gaussian.


• Most robotics systems are nonlinear.
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Non-linear Gaussian Systems
Let’s change our assumptions to allow non-linearity:


• States, controls, and observations are vectors:  and  and 
. 


• State transition and observation function are non-linear Gaussians:


•  +  where , , and  is a non-linear 
function.


•  where , , and  is a non-linear 
function. 

x ∈ Rd u ∈ Rk

z ∈ Rm

xt = f(xt−1, ut) wt wt ∼ 𝒩(0,Q) Q ∈ Rd×d f

zt = h(xt) + vt vt ∼ 𝒩(0,R) R ∈ Rm×m h
⟹ p(xt |xt−1, ut) = 𝒩(x; g(xt−1, ut), Q)

⟹ g(zt |xt) = 𝒩(z; h(xt), R)
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Why do we need linearity?
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Why do we need linearity?
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Why do we need linearity?
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Calculus Review: Partial Derivatives

• Given a function, .


• The partial derivative  captures the rate 

of change of  as one of the  increases.


• The gradient is the vector of partial 

derivatives: 

f(x1, . . . , xn)

∂f
∂xi

f xi

∇x f = [
∂f
∂x1

, . . . ,
∂f
∂xn

]
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Calculus Review: Jacobian Matrix

• Given a function, .


• Equivalently,  and .


• The Jacobian, , is the matrix of partial derivatives of .


• Entry  captures how fast  is changing as  
increases.

f : Rn → Rm

x = (x1, . . . , xn) f(x) = ( f1(x), . . . , fm(x))

J f

(i, j) fi(x) xj

https://discourse.julialang.org/t/visualizing-jacobians-gradients-hows-this/36799

J =

∂f1
∂x1

∂f1
∂x2

⋯ ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

⋯ ∂f2
∂xn

⋮ ⋮ ⋱ ⋮
∂fm
∂x1

∂fm
∂x2

⋯
∂fm
∂xn
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• Goal is to approximate a given function  (possibly non-linear) with a linear 
function.

f

Calculus Review: Taylor Series Expansion

f(x) ≈ f(x0) + (x − x0)
∂f
∂x

x=x0

 has one input and one output.f

f(x) ≈ f(x0) + J⊤(x − x0)

 has multiple inputs and outputs.f



Josiah Hanna, University of Wisconsin — Madison

Extended Kalman Filter
• Intuition for EKF: linearize the non-linear system with a Taylor expansion and 

then apply Kalman filtering to the linearized system.


•  where  is the Jacobian of  at 
.


•  where  is the Jacobian of  at .


• Note: the expansion point is set to be the mean of the current belief.


• Can also view the basic Kalman filter as a special case of EKF when  and  
are linear functions.

f(xt−1, ut) ≈ f(μt−1, ut) + G⊤
t (xt−1 − μt−1) Gt f

μt−1

h(xt) ≈ h(μt) + H⊤
t (xt − μt) Ht h μt

f g

Kt = ΣtH⊤(HΣtH⊤ + Q)−1
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Expanding at the Mean

Kt = ΣtH⊤(HΣtH⊤ + Q)−1
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Expanding at the Mean

Kt = ΣtH⊤(HΣtH⊤ + Q)−1
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• Initialize belief:


• Prediction:


• Correction:

Kalman Filter Extended Kalman Filter

Extended Kalman Filter

μ̄t = Aμt−1 + But

Σt = ATΣA + R

Kt = ΣtH⊤(HΣtH⊤ + Q)−1

μt = μ̄t + Kt(zt − Hμ̄t)

Σt = (I − KtH)Σt

𝒩(x0, μ0, Σ0)

μ̄t = f(μt−1, ut)

Σt = GT
t ΣGt + R

μt = μ̄t + Kt(zt − h(μ̄t))

Σt = (I − KtHt)Σt

Kt = ΣtH⊤
t (HtΣtH⊤

t + R)−1
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Advantages / Disadvantages
• Extended Kalman filters:


• Same strengths of Kalman filters (except optimality)


• Relax the assumption of linear state transitions and observations.


• Widely used.


• But…


• Lose optimality guarantees.


• Taylor expansion can be a bad approximation for highly non-linear systems.


• If learning models, need accurate estimation of gradients.
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Tracking multiple hypotheses
• Gaussians are unimodal distributions — key 

limitation of KF and EKF.


• One extension of KFs and EKFs is to use a 
Gaussian mixture model representation.


• Each possible mode is represented by a 
different Gaussian and updates are similar to 
KF/EKF updates.


• But, must include mechanisms for splitting 
or pruning individual modes when they 
become very unlikely.
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Practice
• A robot is using the following model of its environment:


•  where  is Gaussian noise and  and  
are matrices. The Jacobian of  is .


•  where  is Gaussian noise,  is a matrix, and the 
Jacobian of  is .

f(xt−1, ut) = Axt−1 + But + wt wt A B
f A

g(xt) = Hxt + vt vt H
g H

What are the extended Kalman filter updates under this model?
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Practice
• A robot is using the following model of its environment:


•  where  is Gaussian noise and  and  
are matrices. The Jacobian of  is .


•  where  is Gaussian noise,  is a matrix, and the 
Jacobian of  is .

f(xt−1, ut) = Axt−1 + But + wt wt A B
f A

g(xt) = Hxt + vt vt H
g H

What are the extended Kalman filter updates under this model?

Note that  and  are already linear functions. Consequently, the EKF reduces to the KF.f g
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Summary

• Extended the linear Gaussian model to the non-linear Gaussian model.


• Introduced the extended Kalman filter as a generalization of the Kalman 
filter for non-linear Gaussian assumption.


• Discussed pros and cons of the EKF.
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Action Items

• Read on particle filter for next week; send a reading response by 12 pm 
on Monday.


