
GSLPI: a Cost-based Query Progress Indicator

Jiexing Li #1, Rimma V. Nehme ∗2, Jeffrey Naughton #3

#Computer Sciences, University of Wisconsin – Madison
1
jxli@cs.wisc.edu

3
naughton@cs.wisc.edu

∗Microsoft Jim Gray Systems Lab
2
rimman@microsoft.com

Abstract—Progress indicators for SQL queries were first pub-
lished in 2004 with the simultaneous and independent proposals
from Chaudhuri et al. and Luo et al. In this paper, we implement
both progress indicators in the same commercial RDBMS to
investigate their performance. We summarize common cases in
which they are both accurate and cases in which they fail to
provide reliable estimates. Although there are differences in their
performance, much more striking is the similarity in the errors
they make due to a common simplifying uniform future speed
assumption. While the developers of these progress indicators
were aware that this assumption could cause errors, they neither
explored how large the errors might be nor did they investigate
the feasibility of removing the assumption. To rectify this we
propose a new query progress indicator, similar to these early
progress indicators but without the uniform speed assumption.
Experiments show that on the TPC-H benchmark, on queries
for which the original progress indicators have errors up to 30X
the query running time, the new progress indicator is accurate
to within 10 percent. We also discuss the sources of the errors
that still remain and shed some light on what would need to be
done to eliminate them.

I. INTRODUCTION

Many modern software systems provide progress indicators

(PIs) for long-running tasks (e.g., file downloads and software

installations). Typically, a progress indicator estimates how

much of the task has been completed and when the task will

finish. Figure 1 shows an example of a progress indicator that

we are trying to develop for database queries. It continuously

updates the elapsed time, estimated remaining time and per-

centage of completion for a given query.

Cancel

75%

Query Progress: 75% Completed

Elapsed time: 04:15:27
Estimated time: 01:25:09

Fig. 1. Estimated remaining time

Most commercial database vendors provide tools for mon-

itoring queries (e.g., DB2 [1], Teradata [2], Microsoft SQL

Server [3], and Oracle [4]). However, none of the existing tools

in commercial DBMSs provides accurate progress estimates

at a fine granularity. The first progress indicates, the MSRPI

[5] and the WiscPI [6]1, were first published by two different

1We name the progress indicators after the institutions where they were
developed.

research institutes independently in the same conference. The

variants [7], [8], [9], [10] of the MSRPI and the WiscPI, were

proposed later to explore issues such as broadening the class

of queries handled, or investigating the interaction between

concurrent queries, or reducing cardinality estimation errors.

Despite the passage of time, no work has addressed the quality

of the original progress indicators on the problems for which

they were proposed.

Accordingly, in this work we implemented both the MSRPI

and the WiscPI in the same software and hardware framework

and studied their performance using the TPC-H benchmark.

Depending on different query characteristics, we found that

there are cases where the MSRPI and the WiscPI are expected

to be accurate, and cases in which they fail to provide reliable

estimates. For the cases in which they are inaccurate, although

there are differences in their performance, the most striking

thing we found is that the estimation errors mostly arise from

a common simplifying uniform future speed assumption: at

any point in a query’s execution, the time to process a unit

of work is uniform throughout the remainder of its execution,

where a unit of work is one GetNext() call for the MSRPI

and one byte processed for the WiscPI, respectively. While

the inventors of the MSRPI and the WiscPI were aware that

this assumption could cause inaccuracies, presumably they

adopted it to simplify the problem to produce approximate

estimates. They did not explore the impact of this assumption

on the accuracy of progress indicators. As it is shown by

our experiments, this assumption leads to highly inaccurate

progress estimates. For some TPC-H queries, the remaining

time estimates provided by these two progress indicators are

30 times longer than the actual remaining time. Since their

variants inherit this uniform speed assumption, we expect

similar performance from them.

Inspired by this observation, we designed and implemented

a new cost-based progress indicator, called GSLPI, to rectify

the problem. The basic idea of GSLPI is to decompose an exe-

cution plan into a set of speed-independent pipelines delimited

by blocking/semi-blocking operators. Then for each pipeline,

we estimate its speed of processing the remaining work by

utilizing its wall-clock pipeline cost. Our experimental results

indicate that our approach produces more accurate progress

estimates than just making uniform speed assumptions. For

some of the TPC-H queries, our progress indicator reduces

the estimation errors by more than an order of magnitude.

Finally, we summarize the challenges that we encountered

during the development of GSLPI. Similar to the MSRPI

and the WiscPI, our progress indicator also suffers from the

well known difficulties of cardinality estimation inherited from

the query optimizer. Some of the challenges are still open

questions, e.g., skewed data layout, speed fluctuations inside

pipelines, etc. We hope that our work can bring these issues

to the attention of other researchers and serve as a foundation

of building more accurate progress indicators.

The rest of the paper is organized as follows. Section II

describes the details of the MSRPI and the WiscPI. Sec-

tion III presents our experimental evaluation of these two

progress indicators. Section IV elaborates on our new cost-

based progress indicator. Section V discusses how to refine

cardinality and cost estimates by using runtime information.

Section VI experimentally confirms the effectiveness of our

techniques and discusses some remaining challenges that need

to be resolved. Section VII briefly reviews the previous work

that is related to ours. Finally, Section VIII concludes the paper

with directions for future work.

II. PRELIMINARIES

In this section, we give a brief overview of the MSRPI

and the WiscPI for database queries. Their techniques serve

as basic knowledge to understand the discussion in Section III

and our new progress indicator in Section IV.

To estimate the progress of a given query, both the MSRPI

and the WiscPI use an execution plan, which is a tree of

physical operators chosen by the query optimizer. The physical

operators include the most commonly used operators in a

DBMS such as Table Scan, Index Scan, Index Seek, Filter,

Hash Join, Merge Join, Nested Loops (NL) Join, Index Nested

Loops (INL) Join, Group-by (Hash-based), Sort and Compute

Scalar. An operator is referred to as a blocking operator if it

does not produce any output before it has processed all tuples

in as least one of its inputs. An execution plan is divided

into a set of pipelines delimited by blocking operators (e.g.,

Hash Join, Group-by and Sort). A pipeline consists of a set

of concurrently running operators. The goal of partitioning an

execution plan into multiple pipelines is to gain more insight

into the intermediate progress of a query execution.

Every pipeline has a set of driver nodes. They are the set of

all leaf nodes of the pipeline, except those that are in the inner

subtree of a Nested Loops/Index Nested Loops join. Once a

pipeline has processed all the tuples in its driver nodes, it

finishes execution. In general, for certain pipelines to start

executing, one or more other pipelines have to complete. An

execution plan can be viewed as a partial order of pipelines,

denoted as P1, .. Pp according to the order in which they

are scheduled, where p is the number of pipelines in the

plan. Figure 2 shows an example execution plan that contains

three pipelines (the driver nodes of the pipelines are shaded).

Note that this is not the only way for dividing plans into

pipelines. In fact, the MSRPI and the WiscPI deploy two

slightly different but essentially equivalent ways for division.

The MSRPI prefers to put a blocking operator together with its

descendants which provide input for it, while the WiscPI binds

a blocking operator with its upper operator which consumes

its output. In Figure 2, we follow the definition used in the

MSRPI. For the WiscPI, its three pipelines are P1 = {Table

Scan A, Filter}, P2 = {Table Scan B}, and P3 = {Hash Join,

Sort}. Both definitions of pipeline are equally adoptable for

our solution in Section IV.

Table Scan A

Table Scan BFilter

Hash Join

SortP�
P�

P�
Fig. 2. An execution plan with 3 pipelines

The MSRPI calculates a query’s progress based on the

number of GetNext() calls. The total work done by a query is

the total number of GetNext() calls issued by all operators in

its execution plan. The MSRPI models a query’s completion

percentage as the fraction of the total number of GetNext()

calls that have finished. More formally, suppose the execution

plan has n operators. Let Ni (1 ≤ i ≤ n) be the total

number of tuples output by operator Opi (which indicates the

number of GetNext() calls made by that operator) throughout

the execution of the query, and let Ki be the number of

tuples processed by operator Opi so far. The fraction of a

query executed is percent =
P

n
i=1

KiP
n
i=1

Ni
. This GetNext() model

assumes that the total time required to execute the query is

amortized across multiple GetNext() calls, and therefore the

percentage of GetNext() calls done thus far is a good indicator

of the time taken by the query.

The WiscPI estimates the remaining query execution time

by deploying a model based on the number of bytes processed.

It keeps track of the total number of bytes that have not been

processed Ui (1 ≤ i ≤ p) in the input and output for each

pipeline Pi. The remaining work for a query is therefore the

sum of Ui for all pipelines in its plan. Additionally, it records

the number of bytes Si that have been processed by each

pipeline Pi in the past T seconds, where T is a pre-defined

parameter. The total number of bytes processed in the past T
seconds can be thought of as the estimated execution speed

of the query. Thus the estimated remaining execution time is

RT =
Pp

i=1
UiPp

i=1
Si

.

Though the MSRPI does not explicitly give a formula for

remaining time estimation, it assumes that the percentage

of GetNext() calls done thus far is a good indicator of the

progress it has made toward completion. This corresponds

to the idea that if p% of GetNext() calls have finished,

then p% of execution time has elapsed. In other words, the

remaining (100 − p)% of GetNext() calls take (100 − p)%
of the execution time. We adopt this interpretation to convert

percentage completion for the MSRPI to time remaining.

III. EVALUATING MSRPI AND WISCPI

In this section, we present our experimental evaluation of

the MSRPI and the WiscPI on an isolated system where only

the given query is running. We also summarize the cases in

which they are accurate and the cases in which they fail to

provide good estimates.

A. When Are They Accurate?

While the MSRPI and the WiscPI represent units of work

for a SQL query differently for each progress estimate, they

both assume that each unit of work in the unexecuted portions

takes the same amount of time to process, regardless of which

pipeline this unit of work belongs to. The speed is assumed to

be uniform for the remainder of query and equal to the speed in

the past T seconds. We implemented both the MSRPI and the

WiscPI in Microsoft SQL Server 11 [11] – the latest version of

SQL Server, and tested their performance for different queries.

For the WiscPI, we set the the number of bytes processed by an

operator to be the number of finished GetNext() calls times the

average tuple width. The work of a pipeline is the sum of the

number of bytes processed by the input and output operators

of the pipeline. The datasets and the system setup we used in

our experiments can be found in Section VI. We set T to be

10 seconds, which is the same as in [6].

Table Scan
[Partsupp]

(a) Query 1 (b) Query 2 (c) Query 3

Table Scan
[Lineitem]

Hash Match
(Suppkey)

Table Scan
[Lineitem]

Hash Match
(Orderkey)

1.5x10� 6.0x10�1.5x10�
6.0x10�1.0x10�Compute

Scalar
Compute
Scalar1 1

Fig. 3. Execution plans for tested queries

Query 1: select * from partsupp

The first query that we tested is Query 1 as illustrated above.

Its execution plan is shown in Figure 3a. It consists of only one

pipeline, which contains a single scan operator with the output

cardinality shown next to it. Figure 4a plots the remaining

time estimated by the MSRPI, the WiscPI and the PerfectPI.

The PerfectPI is a fictitious ideal progress indicator that knows

exactly how much time is left for a query. Figure 4b shows that

the rate of GetNext() calls is approximately constant. We omit

the graph depicting the speed in terms of the number of bytes,

as it is also approximately constant. Since the speed is stable,

both PIs can accurately estimate query progresses. From this

example, we can generalize the idea to queries containing a

single pipeline: when a query consists of a single, uniform-

speed pipeline, the MSRPI and the WiscPI should be able to

accurately estimate the remaining query execution time.

Query 2: select count(distinct suppkey) from lineitem

The second query we tested is Query 2, which consists of

two pipelines (see Figure 3b). The first pipeline scans tuples in

lineitem table. In the second pipeline, the Hash Match operator

first computes a hash value for each suppkey value and inserts

it into a hash table; subsequently, after all the suppkey values

have been inserted, the Compute Scalar operator counts the

number of distinct suppkey values in the hash table to produce

the final answer.

120

100

80

60

40

20

0
12010080604020

time (sec)

estimated remaining time (sec)

MSRPI
WiscPI

PerfectPI

7x10
5

6x10
5

5x10
5

4x10
5

12010080604020
time (sec)

speed of GetNext() calls

(a) Progress estimation (b) Speed of GetNext() calls

Fig. 4. Test results for Query 1

The progress estimates produced and the speed of GetNext()

calls are shown in Figure 5a and 5b, respectively. Although

Query 2 contains two different pipelines that process tuples at

varying speeds, the estimated remaining time is still accurate.

Looking further into the query execution, we found that almost

all the execution time has been spent on the first pipeline, and

nearly all the GetNext() calls were issued within the same

pipeline. We refer to such a pipeline as a dominating pipeline.

The speed of GetNext() calls is stable throughout the query

(see Figure 5b), since its non-dominating pipeline has almost

no effect on the speed. Based on this observation, we can

generalize to the following: As long as PIs have an accurate

speed estimate for the dominating pipeline, the remaining

time estimate for the query will be accurate, even if they use

inaccurate estimates for the other pipelines.

90

70

50

30

10

9070503010
time (sec)

estimated remaining time (sec)

MSRPI
WiscPI

PerfectPI

8x10
6

6x10
6

4x10
6

2x10
6

0
9070503010

time (sec)

speed of GetNext() calls

(a) Progress estimation (b) Speed of GetNext() calls

Fig. 5. Test results for Query 2

B. When Are They Not Accurate?

Unfortunately, there are many queries that do not fall into

the cases described above. For example, for the queries in

the TPC-H benchmark [12], we found that out of 22 queries

only Q1 contains a dominating pipeline, and only Q6 contains

a single pipeline. The rest of the queries typically contain

between 3 and 9 different pipelines. In the following, we

evaluate the performance of the progress indicators when a

query has non-uniform speeds.

Query 3: select count(distinct orderkey) from lineitem

To understand the behavior of these PIs when a query

contains multiple pipelines, we tested Query 3, which is

similar to Query 2, as shown in Figure 3c . We increased

the number of GetNext() calls in the Hash Match operator

by changing the hash key to orderkey, which contains more

distinct values.

110

90

70

50

30

10

9070503010
time (sec)

estimated remaining time (sec)

MSRPI
WiscPI

PerfectPI

18x10
6

15x10
6

12x10
6

9x10
6

6x10
6

9070503010
time (sec)

speed of GetNext() calls

(a) Progress estimation (b) Speed of GetNext calls

Fig. 6. Test results for Query 3

The test results for Query 3 can be seen in Figure 6. The

first pipeline P1 processes about 6.7 × 106 GetNext() calls

in 10 seconds, while the second pipeline P2 can finish 1.5 ×
107 GetNext() calls in only 3 seconds. The main reason is

that tuples processed by P1 are brought from disk to main

memory, while tuples processed by P2 are already in memory.

When the first pipeline is running, if the PIs use the speed of

P1 to estimate the remaining time of P2 (that has not yet

started), they get (1.5 × 107)/(6.7 × 106) ≈ 22.4 seconds,

which is about 20 seconds slower than the actual execution

time. As a result, the remaining time estimated by the MSRPI

and the WiscPI is about 20 seconds longer than the PerfectPI.

If P2 contained more tuples, or it could process tuples faster,

the gap between the estimated and the true remaining time

would increase. From this example, we can see that the MSRPI

and the WiscPI make errors when the speeds of pipelines are

different and there is no dominating pipeline.

Q� Q� Q� Q� Q	
8x10

6

6x10
6

4x10
6

2x10
6

0
1301109070503010

time (sec)

speed of GetNext() calls

(a) Speed of GetNext() calls

P7

P6

P5

P4

P3

P2

P1

1301109070503010
time (sec)

pipeline

(b) Pipeline execution time

Fig. 7. Experiment results for TPC-H Q1 to Q5

TPC-H Example: To have a better understanding of the speed

of a query, we tested the speed of GetNext() calls for all 22

TPC-H queries. Nearly all the queries exhibit different speeds

in different execution periods, except for Q1 and Q6. As we

have mentioned before, Q1 contains a dominating pipeline and

Q6 contains a single pipeline. Figure 7a shows the speeds of

the GetNext() calls for the first 5 TPC-H queries. As can be

seen, four of them change their speeds dramatically during

the execution. The execution times of the pipelines in each

query are plotted in Figure 7b. For a given query, the length

of the horizontal line segment on Pi (1 ≤ i ≤ 7) indicates

the execution time spent on processing pipeline Pi, and the

vertical line segment that goes from Pi to Pi+1 (1 ≤ i ≤ 6)

denotes the end of the execution of Pi and the beginning of

the execution of Pi+1. If we compare the speed changing

points with the pipeline switching points in Figure 7a and

7b, we can see that when a query switches from one pipeline

to another, its processing speed also changes. During the

execution of a pipeline, the speed of processing usually tends

to be approximately constant.

The assumption made by the MSRPI and the WiscPI that

the speed of the unexecuted portions of the query is equal

to the speed in the past T seconds, contradicts the reality that

many queries have dramatically different processing speeds for

different pipelines. As a result, these PIs produce inaccurate

progress estimates.

IV. OUR PROPOSED PI: GSLPI

In this section, we present GSLPI2: a new cost-based

progress indicator for SQL queries. The distinguishing char-

acteristics of GSLPI include: (1) the decomposition of an

execution plan into a set of speed-independent pipelines, (2)

the utilization of the wall-clock pipeline cost to represent the

cost of a pipeline, and (3) the estimation of the speed of each

future pipeline based on its wall-clock pipeline cost.

A. Speed-Independent Pipelines

From Figure 7, we can see that each pipeline processes

tuples at its own speed, and this speed is usually stable during

its execution. Motivated by this observation, we developed

an approach for estimating the speed for each individual

pipeline. In [5], [6], execution plans are divided into pipelines

by blocking operators, and a pipeline may contain a Nested

Loops/Index Nested Loops join and its inner and outer sub-

trees, as shown in Figure 8a.

In the case that the physical implementation of the join

is an (Index) Block Nested Loops (BNL) join, it behaves

like a semi-blocking operator. Note that a Hash Join is a

blocking operator, since it must consume all tuples from the

build relation before it can produce any output. Compared to

Hash Join, (Index) BNL Join must first consume a certain

number of tuples from its inner subtree before it can process

its outer subtree and produce output. Since the inner/outer

subtrees may include different relations and operators, they

may process tuples at different speeds. Furthermore, when one

of them is executing and another one is halted, the speed of

the executing operator(s) is independent of the speed of other

operator(s). If we group both inner and outer subtrees into a

single pipeline, we may mix up two sets of operators with

different speeds. Such a combination will cause difficulties in

2Named after Jim Gray Systems Lab, where the progress indicator was
developed.

accurate estimations of how fast the pipeline is running. To

separate operators processing tuples at different speeds from

each other, we define a speed-independent pipeline.

Table Scan A Index Seek B

Index Nested
Loops Join

Table Scan A Index Seek B

(a) Pipelines for MsPI and WiscPI (b) Pipelines for GSLPI

Index Nested
Loops Join

Fig. 8. Pipelines for progress indicators

Definition 1: A speed-independent pipeline is a group of

interconnected operators that execute concurrently and process

tuples at a speed independent of the speeds of other operators

(in other pipelines) in the execution plan.

Based on the above definition, we break an execution plan

into a set of speed-independent pipelines and estimate their

speeds. A breaking point in a plan is a blocking or semi-

blocking operator. Since we introduce additional breaking

points (semi-blocking operators), we may break a “traditional”

pipeline into finer pieces. For simplicity of discussion, we refer

to a speed-independent pipeline as a “pipeline” in the rest of

the paper. The driver nodes of a pipeline are defined as the

set of all leaf nodes in the pipeline. Figure 8b shows the new

pipelines and driver nodes. We adopt the model of work in

terms of the number of GetNext() calls involved, and define

the work of a pipeline as the total number of GetNext() calls

in the driver nodes of a pipeline. The speed of a pipeline is the

amount of work that has been done for the pipeline in the past

T seconds, where T is a user-set parameter. Next, we describe

our approach to predict the speed for each unfinished pipeline

using estimated CPU and I/O costs provided by the query

optimizer. The method proposed here is equally applicable

to the model where work is defined as the number of bytes

processed.

B. Total and Wall-clock Costs

To process tuples, each operator in a pipeline needs to

perform CPU and/or I/O tasks. The cost of these tasks repre-

sents the “cost of the pipeline”, which is the actual amount

of work that takes time to finish. In addition, we make a

distinction between total and wall-clock pipeline costs, which

is imperative for remaining time estimation.

Definition 2: The total pipeline cost is the total amount of

CPU and I/O done by a pipeline from its beginning until the

end. The wall-clock pipeline cost is the maximum amount

of non-overlapping CPU and I/O done by a pipeline from its

beginning until the end.

The difference between the total and the wall-clock pipeline

costs is that the total pipeline cost represents the total amount

of work that “must be done” by a pipeline during its execution,

regardless of whether the execution is parallelized or not. The

wall-clock pipeline cost, on the other hand, identifies the non-

overlapping parts of work and finds the most expensive one.

For example, consider a plan that consists of only a Table

Scan operator on lineitem. It has only one pipeline P1, which

is similar to the bottom pipeline depicted in Figure 3b. Let

us assume that the cost of the operator obtained from the

optimizer is CPU cost = 66 and I/O cost = 767. Here, the

total cost denoted Tol(P1) is 833, while the wall-clock cost

Clk(P1) is equal to 767. Since CPU and I/O tasks can be

performed in parallel by this operator, the execution time is

dominated by the I/O cost, and the CPU cost has a trivial

contribution to the overall execution time.

1) Redistribution of Costs: When an execution plan is

chosen and returned by a query optimizer, it typically includes

both CPU and I/O costs for each operator. Intuitively, one

might think that we can just sum up the CPU and I/O costs

of all operators in a pipeline to get its total cost. We found,

however, that sometimes this is not true in practice. For an

operator Op contained in a pipeline P , it is possible that part

of the “work” of Op may be done during the execution of

other pipelines. Consider the query from Figure 3b where P1

works as a producer providing tuples to be consumed by P2.

After a tuple is fetched from the base table by P1, the tuple

will be immediately inserted into the hash table by the Hash

Match operator. When P1 is running, P2 does not generate

any output tuples, since it needs to wait until all of the tuples

output by P1 have been inserted into the hash table. After

P1 is finished, P2 reads tuples from the hash table and counts

the number of distinct tuples. Though the work of building the

hash table is done by an operator that belongs to P2, it actually

occurs during the execution of P1 and affects the execution

time of P1. Thus, the corresponding cost should be added to

P1 and subtracted from P2. We consider this kind of cost to

be the post-processing cost of P1 that provides the data and

the pre-processing cost of P2 that consumes the data.

To do this cost redistribution, for each piece of work we

must determine in which pipelines the work is done and how

much of that work is done in each of the pipelines. If an

operator is in the middle of a pipeline, all the work done is

within the life span of the pipeline. However, there are two

operators that are exceptions: Hash Join and Group-By (Hash-

based). If these operators are at the boundaries of a pipeline,

part of their work is done in the producer pipeline(s), and

part of their work is executed in the consumer pipeline(s). To

redistribute the cost of a Hash Match or a Hash Join operator,

we must first understand how much of the CPU and I/O is

done by each pipeline. The better we can do the distribution,

the more precise the time estimation can be attained by the

progress indicator. For simplicity, we approximate each part

of the work using a set of actions that take roughly the same

amount of CPU and I/O.

For a Hash Match operator, the first part (done by the

producer pipeline) is to build the hash table. The insertion

of a tuple into a hash table contains the following actions: (1)

reading the tuple, (2) computing the hash value, (3) finding

the right bucket, (4) assigning an empty slot, and (5) inserting

the tuple into the hash table. The second part (done by the

consumer pipeline) consists of only one action: reading the

tuples from the hash table. Let the number of input tuples be

a, and the number of output tuples be b. The cost assigned

to the producer pipeline is: 5a/(5a + b) × cost, and the cost

assigned to the consumer pipeline is b/(5a + b) × cost (the

cost represents CPU or I/O cost).

Similarly, for a Hash Join operator, its first execution part

(done by producer pipeline) consists of building the hash table,

and the second part (done by consumer pipeline) is responsible

for probing the hash table and outputting the result tuples. The

probe by a tuple is modeled as reading the tuple, computing

its hash value, finding the right bucket, finding the right tuple

and doing the join. Suppose the build child contains a1 tuples

and the probe child has a2 tuples, and b tuples are output

as a result. The cost assigned to the producer pipeline is:

5a1/(5a1 + 5a2 + b) × cost, and the cost assigned to the

consumer pipeline is: (5a2 + b)/(5a1 + 5a2 + b) × cost.
Note that the need for cost redistribution is not due to our

definition of pipeline. The Hash Match operator in Figure 3b

is doing work for both P1 and P2, thus it is tricky to allocate

it to one of the pipelines. In this paper, we assign it to P2.

One may use a different definition and assign it to P1, or even

assign it to both P1 and P2. But eventually, we will still end up

with the problem of how much of the work of this operator is

done by pipeline P1 and P2, respectively. As a result, we can

adopt either of these three pipeline definitions as long as we

can distribute the cost to the corresponding pipeline correctly.

2) Calculating the Costs: To calculate the wall-clock cost

for a pipeline, we must know which parts of the work in

the pipeline overlap. In this section, we present the details

of our solution for a simple case, where only one processor

and one disk are used for processing a query. However, the

idea can be extended to a scenario where multiple proces-

sors and disks are used for processing. Since there is one

processor and one disk available, the CPU cost and the I/O

costs of each operator are expected to overlap. For a set

of operators that execute concurrently in the same pipeline,

their CPU and I/O costs also overlap. Thus, the wall-clock

pipeline cost Clk(P) of a pipeline P is as follows: Clk(P)
= max(

∑m

i=1 CPU(Opi) + post CPU(P) − pre CPU(P),∑m

i=1 IO(Opi) + post IO(P) − pre IO(P)), where m is

the number of operators in P and post and pre denote

the post processing and pre processing CPU or I/O cost of a

pipeline, respectively. Next, we extend the concepts of total

and wall-clock costs of a pipeline to the entire query, and

formally define them as follows:

Definition 3: The total query cost is the total amount of

CPU and I/O done by a query, and the wall-clock query cost

is the maximum amount of non-overlapping CPU and I/O.

Since there is no overlapping work between different pipelines,

the wall-clock query cost is the sum of the wall-clock pipeline

costs of all pipelines. To understand these different costs

better, we calculated these costs for Query 2 and Query 3

(from Figure 3). The CPU and I/O costs obtained from SQL

Server for Table Scan[Lineitem] are 66 and 767, for Hash

Match(Suppkey) are 275 and 0, and for Hash Match(Orderkey)

are 670 and 0, respectively. The cost of Compute Scalar is

ignored since it is almost 0. The total and wall-clock costs for

pipelines and queries are depicted in Table I.

The Hash Match operator in Query 3 needs to do much more

CPU than the same operator in Query 2. As a result, the total

query cost (1503) for Query 3 is obviously larger than the

total query cost for Query 2 (1108). But from the table, we

can observe that the actual execution time of Query 3 is only

slightly longer than that of Query 2. The reason is that for both

queries, most of the CPU work required to be done by Hash

Match is done by pipeline P1, and pipeline P1 spends a lot of

time doing I/O, which dominates the execution time compared

to CPU. As a result, both P1s in Query 2 and Query 3 take

about 90 seconds to finish, and both P2s finish fast, since they

have only a little CPU to do (compared with P1). For Query

3, we observe that while the number of GetNext() calls issued

by P2 is about 25% of that issued by P1, the actual execution

time is much lower than 25% of P1’s execution time. This is

because tuples processed by P2 are in memory and the average

CPU or I/O needed for each tuple in P2 is much lower than

that in P1.

Query Q Pipeline P Tol(P) Clk(P) Tol(Q) Clk(Q) Exe. Time

Query 2
P1 1107.9 767

1108 767.1 90 (sec)
P2 0.1 0.1

Query 3
P1 1471 767

1503 799 93 (sec)
P2 32 32

TABLE I
COMPARISON OF THE COSTS

In summary, having more GetNext() calls or bytes to process

does not imply more CPU or I/O to do, thus it does not lead

to longer execution time. The CPU and/or I/O is the actual

“work” which needs to be done by a pipeline and takes time

to finish; the non-overlapping part of the work (represented by

wall-clock pipeline cost) determines the execution time.

C. Speed Estimation

To estimate the remaining time of a pipeline, we must

know how fast it can process its work. Given a pipeline, the

driver nodes provide sources of tuples to be processed by

the remaining operators. We assume that the total amount of

CPU and I/O is amortized across all tuples provided by the

driver nodes. How fast tuples are being processed by the driver

nodes reflects how fast the CPU and I/O requests are being

processed by the entire pipeline. For the purpose of remaining

time estimation, it is sufficient for us to consider the total

number of tuples in the driver nodes as the total work, and

the rate of processing these tuples as the speed.

Estimating the speed for an executing pipeline is straightfor-

ward, and the number of tuples processed by its driver nodes

in the past T seconds is considered as its processing speed. For

a pipeline that is pending, we can predict its speed based on its

wall-clock pipeline cost and how fast the system can process

CPU and I/O tasks. For a pipeline Pi, suppose its wall-clock

cost is Ci, and the total number of tuples in its driver nodes is

Ni, among which Ki have been processed. Let Si be the speed

that Pi can process its tuples in driver nodes. Without loss of

generality, suppose that P1 is the running pipeline and P2 is

the pipeline of which the speed that we want to predict. We

assume that the system can process the same amount of CPU

or I/O for a query in every T seconds. Let S1 be the speed of

P1, and S2 be the speed of P2 that needs to be predicted. We

have C1

N1

× S1 = C2

N2

× S2. Then the speed of P2 is:

S2 = S1 ×
C1 × N2

N1 × C2

.

The remaining time for an unfinished Pi can be estimated

as (Ni−Ki)/Si, and the remaining time for the entire query is

the sum of the remaining time of all pipelines. In the formula

above, the amount of CPU or I/O processed for this query in

T seconds equals the amount of cost finished by the running

pipeline in the past T seconds. In case the running pipeline

has random speed fluctuation, we can take the average rate for

processing the CPU or I/O by the running pipeline in the past

to smooth the estimation.

The new speed estimate for an unfinished pipeline using its

wall-clock pipeline cost can be much closer to its actual speed

than one generated using the uniform speed assumption. For

example, for Query 3 in Figure 6, when P1 is running, the

speed of P2 is estimated as 6.7 × 106 × 767×1.5×107

6×107
×32

≈ 4 ×
107 GetNext() calls per 10 seconds. The estimated remaining

time of P2 is 1.5×107

4×107 × 10 ≈ 3.75 seconds, which is close to

the actual value (about 3 seconds). By contrast, the MSRPI

assumes that S2 = S1 ≈ 6.7 × 106, and gives an estimate of

22.4 seconds.

V. UTILIZING RUNTIME INFORMATION

As is the case in query optimization, a key challenge for

progress indicators is to accurately estimate cardinalities and

costs of operators in the query plan. In the following, we

describe how to collect execution feedback to continuously

refine the cardinality and cost estimates.

A. Refining Cardinality Estimates

Both the MSRPI and the WiscPI collect information to

refine cardinality estimates. The refinement in the MSRPI

is based on refining upper/lower bounds of cardinality esti-

mates [5], while the WiscPI relies on linear interpolation [6].

Since these two methods are compatible and each provides

additional information for refining cardinalities, we adopt

both upper/lower bounds and linear interpolation to refine

cardinality estimates.

Before GSLPI estimates the remaining time of a query, the

cardinality of each unfinished operator is first computed using

linear interpolation. For an operator in a running pipeline, the

percentage of the tuples in the driver nodes that have been

processed is used to refine the output cardinality. Let Ed be

the input cardinality of the driver node and Kd of them have

been processed, then the percentage of the tuples that has been

processed is p = Kd/Ed. For an operator (other than driver

nodes) in the same pipeline, suppose its original estimate of

cardinality is E1 (before the pipeline has started executing)

and it has processed K tuples. The new cardinality estimate

based on linear interpolation is then E2 = K/p. In case that

the pipeline has only one driver node, a heuristic formula is

used to estimate the final output: E = p×E2+(1−p)×E1. In

cases where a pipeline contains more than one driver node, the

driver node which finishes processing relatively fast is chosen

to calculate the value of p. Then the upper bound and the lower

bound are calculated for each unfinished operator and are used

to further refine their cardinality estimate. Intuitively, for each

operator the estimated number of output tuples should never

be less than the number of tuples seen so far (i.e., the lower

bound). For most operators except joins, the estimated number

of output tuples should never exceed the number of input

tuples (i.e., the upper bound). For more details on upper/lower

bounds, we refer the reader to [5].

Normally, the output cardinality of an operator does not

affect the costs of other operators, unless it is a descendant of

those operators. However, if the operator is in the outer subtree

of a Nested Loops (NL) join or an Index Nested Loops (INL)

join, it may affect both the CPU and I/O costs of the operators

in the inner subtree. If the outer subtree produces more (fewer)

tuples for the NL/INL join, the number of executions of the

inner subtree may increase (decrease) as well (this is known as

as Rebinds and Rewinds in SQL Server [13]). As a result, for

a NL/INL join, the estimated output cardinality of the outer

subtree should be propagated to the inner subtree to refine

the CPU and I/O cost of the operators. Take the query plan

in Figure 8 for example. If the number of tuples produced

by Table Scan operator increases, the number of index seeks

done by inner subtree also increases. Suppose the original and

updated estimated output tuples for the outer subtree is E1 and

E2, respectively. Let Ex1 be the original estimated number

of executions of the inner subtree. Then the updated number

of executions of the inner subtree is Ex2 = E2/E1 × Ex1.

The updated cost (CPU or I/O) for each operator in the inner

subtree is the cost for one execution times the updated number

of executions.

B. Refining Cost Estimates

Since the wall-clock pipeline cost is critical to the accu-

racy of GSLPI, when the cardinality estimate of an operator

changes, we also need to revise its cost estimate accordingly.

The cost refinement is based on algebraic properties of the op-

erator. For every operator, we use a function f to approximate

its cost estimate with respect to its properties and cardinalities.

If the cost of an operation increases linearly with the input

cardinalities (e.g., Table Scan, Index Scan, Filter, etc.), the

function is simply f(N) = N , where N is the input cardinality

of the operator. Suppose C1 is the cost (CPU or I/O) obtained

from the optimizer for an operator when its input cardinality

is N1. When its input cardinality changes to N2, its cost gets

updated to C2 = C1 × N2

N1
. For costs that do not increase

linearly with respect to input, a more complicated function is

used.

Estimating I/O costs is even more error-prone than estimat-

ing CPU costs. This is due to the following two reasons: (1)

the memory granted to the query may be different from the

available memory assumption made by the optimizer, and (2)

the execution of an operator may bring in the data needed

by another operator that runs sometime later. To alleviate the

problem caused by I/O estimation error, we introduce two

heuristic methods to eliminate the I/O cost of an operator,

if it does not need to do any I/O (e.g., all the data can

fit in memory). We first consider the maximum amount of

memory required by a pipeline. For a non-blocking operator

in a pipeline, a small fraction of memory is sufficient, since

once a tuple is output by a non-blocking operator, it will

be immediately propagated on to the next operator (if there

is any). For a blocking operator, tuples are collected in the

operator until all the input tuples are consumed, therefore,

blocking operators are memory consuming and take up most

of the memory. Thus, given a pipeline, the memory-consuming

operators include (i) a Sort or a Group-by (Hash-based)

operator providing data for the pipeline, (ii) a Hash Match

or a NL/INL join operator inside a pipeline, and (iii) a

blocking operator that takes in the output tuples of the pipeline.

We ignore the amount of memory used by the non-blocking

operators. Then the maximum amount of memory required

by a pipeline is defined as the total amount of memory that

is needed to hold the data for the three types of memory-

consuming operators above.

If the memory available is more than the maximum amount

of memory required by a pipeline, none of these memory

consuming operators needs to do any I/O when their cor-

responding pipeline executes. Thus, we can safely remove

this part of I/O cost from the wall-clock pipeline cost of the

pipeline. Let Pi and Pj (i < j) be two different pipelines

that contain a same subtree of operators, which generate the

same intermediate results. In this case, SQL Server will detect

the common subtrees and try to reuse the intermediate results.

We check whether the intermediate results generated by Pi

are still in memory when Pj runs. Let Mi be the maximum

amount of memory required by pipeline Pi, and Sizer be the

size of the intermediate results. If
∑j

k=i Mk + Sizer is less

than the available memory for this query, the data brought in

by Pi should still be in memory when Pj runs. We subtract all

the costs (both CPU and I/O) of the operators in the subtree

from the wall-clock pipeline cost of Pj .

VI. EXPERIMENTAL EVALUATION

This section presents experimental results showing the ef-

fectiveness of our proposed techniques. We first describe the

experimental setup, and then evaluate the performance of our

progress indicator and compare it to the MSRPI and the

WiscPI.

A. Experimental Setup

We implemented all three progress indicators in Microsoft

SQL Server 11. Our experiments use a TPC-H 10GB database

with all tables stored on a single disk. We measured the

performance of the progress indicators using all 22 queries

in the TPC-H benchmark. Most of them contain more than 8

operators and 4 different pipelines. The experiments were run

on a machine with an Intel Core 2 Duo CPU, with 8 gigabytes

of memory. In the experiments, only the database server was

executing, and we run each query one at a time. When a query

is running, a progress indicator wakes up periodically (every

10 seconds, which is the same as the setting in [6]), collects the

runtime information, and estimates the remaining execution

time of the query. For all queries, GSLPI provides progress

estimates with less than 1% overhead, and this is similar to

the overhead introduced by the MSRPI or the WiscPI. With a

smaller T , the PIs could adapt quicker to changes in speed, but

it would not substantially improve the performance of either

the MSRPI or the WiscPI with respect to the main issue (the

uniform speed assumption) we address.

B. Effectiveness of Speed-independent Pipeline

To justify the necessity of using semi-blocking operators for

dividing pipelines, we tested Query 4, a simple and easy to

understand example that well illustrate our point. Its execution

plan is shown in Figure 9, which contains a Nested Loops join

operator. The remaining time predictions made by the MSRPI,

the WiscPI and GSLPI are ploted in Figure 10.

Query 4: select * from nation loop join customer on

nationkey = 1

Index Seek
Nation

Index Scan
Customer

Nested
Loops Join

Fig. 9. The execution plan of Query 4

90

70

50

30

10

9070503010
time (sec)

estimated remaining time (sec)

MSRPI
WiscPI
GSLPI

PerfectPI

Fig. 10. Progress estimation for Query 4

For the MSRPI and the WiscPI, all operators belong to

the same pipeline, and the driver node is the Index Seek

Nation operator (refer to Section II for its definition). The

MSRPI makes a driver node hypothesis, which says that the

overall query progress can be estimated by the progress of

only the driver node(s) of the pipeline. Unfortunately, this

is not true for pipelines containing semi-blocking operators,

where the execution of the inner subtree is independent of

the execution of the outer subtree. For example, when the

Index Seek operator in Query 4 finishes processing all its

tuples at the very beginning, the MSRPI assumes that the

entire pipeline is finished, and its estimated remaining time

is 0 after that. But in fact, the Nested Loop operator and

its inner subtree are still running and takes about 90 seconds

to finish. The WiscPI makes a similar assumption about the

driver node(s) (called dominant input(s) in the original paper).

Although it uses a heuristic formula to smooth fluctuations,

which prevents it from jumping to 0 directly, its estimates are

still not quite accurate. Our GSLPI splits the query plan into

two speed-independent pipelines, which truly represent two

sets of operators that run independently, thus produces accurate

predictions. For TPCH queries, we also observe similar cases

in which the inner subtree starts running independently after

the outer subtree consumes a certain amount of tuples and

halts. For these cases, GSLPI exhibits better performance.

C. Effectiveness of Wall-clock Pipeline Cost

In this section, we examine the accuracy of our progress

indicator. We first show the overall performance of GSLPI

for TPC-H queries, then provide an analysis for our progress

indicator and compare its remaining time estimates with the

other progress indicators.

1) Overall Performance: To evaluate the performance of

our progress indicator, we employ the evaluation metric called

estimation error used in [5], [14]. Assume that the query

starts at t0 and ends at tn. Then let ti (t0 ≤ ti ≤ tn)

be the time when the progress estimation is taken, and

RTi be the estimated remaining time. Together with RTi,

a progress indicator also returns a value fi derived from

RTi to indicate the percentage of the time completed: fi =
100(ti − t0)/(RTi + ti − t0). The estimation error at time ti
is defined as:

ei = |
100(ti − t0)

(tn − t0)
− fi|,

where 100(ti−t0)/(tn−t0) represents the actual percent-time

done. For each query, we calculate its average and maximum

estimation error. The results are shown in Table II. As we

can see from the table, the average error is typically small

(only 3 of them are above 5%), and the maximum error is

usually below 10%. The larger errors in the estimates made by

our progress indicator (e.g., Q3, Q12, Q20 and Q21) are due

to the cardinality estimation errors inherited from the query

optimizer (see the verification in Section VI-E).

Query Mean Max Query Mean Max

Q1 0.5% 0.6% Q12 10.5% 24.7%

Q2 0.9% 1.9% Q13 1.2% 3.5%

Q3 4.0% 10.4% Q14 1.0% 2.2%

Q4 1.5% 8.5% Q15 0.1% 0.5%

Q5 2.4% 10.3% Q16 1.6% 4.0%

Q6 0.3% 0.7% Q17 0.5% 0.9%

Q7 3.6% 9.4% Q18 0.3% 1.6%

Q8 3.2% 8.2% Q19 0.2% 0.5%

Q9 1.3% 6.3% Q20 16.8% 41.1%

Q10 1.7% 7.7% Q21 5.7% 16.0%

Q11 1.1% 3.2% Q22 1.1% 3.6%

TABLE II
ESTIMATION ERRORS IN TPC-H QUERIES

2) Utility of Wall-clock Pipeline Cost: In this experiment

we use TPC-H query Q1 to show the necessity of redistributing

the CPU and I/O costs to the pipelines where the actual work

is being done. We tested and compared our GSLPI against a

modified version that does not perform redistribution. The non-

redistributing version of our progress indicator simply sums

up the CPU and I/O costs of all operators inside a pipeline

respectively, and chooses the larger value as the cost of the

pipeline. We use GSLPIdis to denote our original GSLPI,

which redistributes the cost to get the wall-clock pipeline costs,

and GSLPInod to denote the variant. The comparison of these

two progress indicators for Q1 is depicted in Figure 11.

120

100

80

60

40

20

0
9070503010

time (sec)

estimated remaining time (sec)

GSLPIdis
GSLPInod
PerfectPI

Fig. 11. Progress estimation for Q1

The graph above illustrates that GSLPIdis is almost identical

to the PerfectPI, while the estimates of GSLPInod are at least

40% longer than the actual remaining time. The reason is when

the first pipeline in Q1 scans a table, it also does most of the

work (building the hash table) for the Hash Match operator in

the second pipeline. Since I/O takes a longer time to finish, the

execution time for building the hash table (by doing CPU) is

excluded from the estimates. Without redistribution, GSLPInod

assumes that this part of work is done in the second pipeline,

and it takes about 32 seconds. This assumption leads to the

error gap between GSLPInod and the PerfectPI in the graph.

The improved WiscPI [8] suggested an idea of using the

CPU and I/O costs of the input and output operators in the

pipeline to scale its speed. It also does not consider the

redistribution of the costs among the pipelines as well. As

a result, in the best case the improved WiscPI can provide

estimates similar to that in GSLPInod. Since Hash Match

and Group-By operators are common in query plans (e.g.,

21 out of 22 TPC-H execution plans chosen by the SQL

Server optimizer contain this kind of operator), the idea of cost

redistribution must be deployed if better progress estimates are

desired. By introducing the wall-clock pipeline cost, we are

able to address this problem and get more accurate estimates.
3) Comparison of Progress Estimates: In this section, we

show that using wall-clock pipeline costs to scale the speeds

of the pipelines leads to better estimates than making the

uniform speed assumption. We tested all the TPC-H queries

and compared the estimates provided by the MSRPI, the

WiscPI, GSLPI and the PerfectPI. From our experiments, we

observed improvements for 20 queries (for the remaining 2

queries, all the progress indicators produce accurate results).

We illustrate the results for Q12 in Figure 12a. Q12 takes

about 120 seconds to finish, and it spends around 90 seconds

on P1 and around 30 seconds on P2. Although it has 4 different

pipelines, only the first two pipelines are important in our

discussion (the other two finish very fast). When P1 is running,

the estimates of both the MSRPI and the WiscPI are over 4000

seconds, which are far away from the PerfectPI as plotted at

the bottom in the figure. GSLPI has an average estimation

error of only 10.5%.

To identify the reasons for the errors made by the MSRPI

and the WiscPI, we measured the speed of GetNext() calls.

GSLPI PerfectPIMSRPI WiscPI
5000

4000

3000

2000

1000

0
12010080604020

time (sec)

estimated remaining time (sec)
400

300

200

100

0
10080604020

time (sec)

estimated remaining time (sec)
2500

2000

1500

1000

500

0
130100704010

time (sec)

estimated remaining time (sec)
90

70

50

30

10

9070503010
time (sec)

estimated remaining time (sec)

(a) Query Q12 (b) Query Q14 (c) Query Q10 (d) Query Q19

Fig. 12. Progress estimation for TPC-H queries

As illustrated in Figure 13, the GetNext() calls speed of P1

is much slower than that of P2. In fact, P1 processes about

3.4×104 GetNext() calls every 10 seconds, while P2 processes

5×106 GetNext() calls in the same amount of time. Since P2

has 1.56×107 GetNext() calls, if it also processed tuples with

the same speed as P1 (the uniform speed assumption), it should

take more than 4000 seconds to finish. However, in reality

it finishes in about 30 seconds. Similarly, for the WiscPI,

the number of bytes processed (computed as the number of

GetNext() calls times the average tuple size) is also slow for

P1 and fast for P2. As a result, it generates similar progress

estimates. GSLPI, on the other hand, utilizes the wall-clock

pipeline costs of P1 and P2 to estimate the speed of P2 when

P1 is running. Since the wall-clock pipeline cost of P2 is

smaller than that of P1 and the number of GetNext() calls

in P2 is much larger than that in P1, the per tuple cost of P2

becomes far smaller than P1, which suggests that each tuple

in P2 takes much less time to process. By taking advantage

of this information, GSLPI can obtain a more accurate speed

estimate for P2 and produce a more precise remaining time

estimate.

6x10
6

5x10
6

4x10
6

3x10
6

2x10
6

1x10
6

0
12010080604020

time (sec)

speed of GetNext() calls

Fig. 13. Speed of GetNext() calls for Q12

As shown in Figure 12b, we obtain similar results for TPC-

H Q14 for the same reason. The performance of the MSRPI

and the WiscPI is better compared to that for Q12, but the

estimated remaining time is still much longer than the actual

remaining time. The GSLPI’s results, however, are nearly

identical to the PerfectPI’s estimates.

If we compare the MSRPI against the WiscPI, we can

see that the WiscPI is the winner for Q12 and Q14. But

according to our understanding, it is challenging to tell which

one produces more accurate estimates in general. Figure 12c

demonstrates a case where the MSRPI performs better than the

WiscPI. For these two queries, a slow pipeline Ps starts first,

and both progress indicators must estimate the speed of the fast

pipeline Pf that runs later. When Ps is running, WiscPI takes

the product of the speed of GetNext() calls and the average

tuple size of Ps and uses it as the speed of Pf . If the average

tuple size of Ps and Pf are the same, the estimates made by

the MSRPI and the WiscPI will be the same. But in Q14, the

average tuple size of the slow pipeline happens to be larger

than that of the fast pipeline, thus, the WiscPI ends up using

a faster speed for Pf . As a result, the WiscPI provides more

accurate progress estimates. The opposite case, where the slow

pipeline has a smaller average tuple size, happens in Q10,

which makes the MSRPI perform better. Since more tuples or

bytes does not necessarily imply longer execution time, using

them for time estimation is inadequate.

The three example queries above demonstrate that when

a slow pipeline runs first, both the MSRPI and the WiscPI

overestimate the execution time for the queries. However,

GSLPI is able to address this problem by using the wall-

clock pipeline cost approach. Figure 12d shows a case when

a fast pipeline starts first. In this case, both the MSRPI and

the WiscPI underestimate the execution time, whereas GSLPI

also handles this case successfully.

D. Effectiveness of I/O Elimination Heuristics

To show the effectiveness of the proposed I/O elimination

heuristics, we tested another modified version of GSLPInoh,

where no elimination heuristics are used. In this section,

we compare the performance of GSLPInoh with our original

progress indicator, denoted as GSLPIheu here. Significant

improvements can be observed for two queries, namely Q11

and Q18. Figure 14 shows the result for Q18. As can be

seen, GSLheu progress indicator is almost identical to the

PerfectPI, while GSLnoh underestimates the execution time

at the beginning. When we look into the execution plan, we

find that there is one Hash Match operator, which behaves very

different from what is suggested by the query optimizer. The

I/O cost provided by the optimizer for this operator indicates

that it should have some I/O work to do, but when the query

is running, it obtains enough resources to store the entire hash

table in the main memory. Thus, no I/O is actually performed.

GSLnoh does not consider this runtime information: when the

first pipeline P1 is running at the beginning, GSLnoh assumes

that P1 is performing the I/O and gets a bigger wall-clock

pipeline cost for P1. Since no I/O is actually performed and

tuples get processed quickly, GSLnoh believes that the system

processes the CPU or the I/O tasks fast, and thus the query will

finish in a short time. GSLheu, on the other hand, collects the

runtime information for memory. Since the granted memory

is more than the required memory, GSLheu subtracts the I/O

cost from the Hash Match operator’s cost. The revised I/O cost

depicts more accurately what happens in reality.

180

150

120

90

60

30

0
180150120906030

time (sec)

estimated remaining time (sec)

GSLPIheu
GSLPInoh
PerfectPI

Fig. 14. Progress estimation for Q18

E. Verification

For all the TPC-H queries that we tested, most of the esti-

mation errors made by GSLPI are actually due to cardinality

estimation errors. To verify this, we tested our progress indi-

cator based on true cardinalities (obtained after one execution

of the query). For the problematic queries shown in Table

II, significant improvement occurs to Q3 Q12, Q20, and Q21.

Figure 15 shows the estimated remaining time with the actual

cardinalities (denoted GSLPIact) and the cardinalities obtained

from the optimizer at compile-time (denoted as our original

progress indicator GSLPIest). Since the cardinality estimates

for 5 time-consuming operators (in 3 different pipelines) are

significantly wrong, this leads to most of the remaining time

estimates to become quite inaccurate as well. With the true

cardinalities, GSLPI can successfully estimate the speed of

each pipeline, thus the remaining time of the query.

320

240

160

80

0
32024016080

time (sec)

estimated remaining time (sec)

GSLPIest
GSLPIact
PerfectPI

Fig. 15. Progress estimation for Q21

F. Accurate Progress Estimations Challenges

In the above sections, we illustrate the improvement that we

made over the MSRPI and the WiscPI. In the following, we

present the challenges that we encountered, with a hope of in-

spiring the development of more accurate progress indicators.

A key challenge for GSLPI (as well as for any other

progress indicators) is accurate cardinality estimation. This

problem has been faced by query optimizers for a long time,

and all the progress indicators proposed so far suffer from

the cardinality estimation errors. As we mentioned above,

cardinality estimation errors contribute to most of the errors

made by GSLPI. In addition, if we can not provide a robust

guarantee for the problem of cardinality estimation, it is im-

possible for us to develop a progress indicator with guarantees.

Even if we could obtain accurate cardinality estimates for a

query, the layout of the data may also affect the estimation of

the progress. For the queries that we consider, the processing

speeds of most pipelines usually tend to be constant. If we have

a skewed distribution of the data, the speed may vary during

the execution. For example, if most of the tuples which satisfy

the select conditions are clustered at the beginning of the table,

the speed may increase after finish processing these tuples. A

progress indicator which does not aware of the layout of the

data is likely to produce inaccurate estimates.

Another challenge problem we have found is the Nested

Loops join operator in Q20. The inner subtree consists of only

one Index Seek operator, and the speed of GetNext() calls

for the pipeline in the outer subtree keep increasing quickly.

One possible reason for the increasing speed is that the index

seeks finished earlier brought in pages from disk needed by the

Index Seeks operator executed later on. To provide accurate

remaining time estimates for this Nested Loops join, we must

be able to model or predict its speed for processing tuples. We

do not have a satisfying solution for it so far, and more effort

must be made for solving this problem.

In addition, the speed may be affected by available re-

sources, interaction among different parts of the query, and

queries that arrive at or leave the system, etc. While multi-

query progress indicators are clearly the ultimate goal, it is our

belief that identifying and resolving problems in this simplified

setting is a useful step in moving toward addressing more

complicated problems related to progress estimation.

VII. RELATED WORK

Recently, there has been an increasing interest in the devel-

opment of progress indicators for database queries. Previous

work can be roughly classified into three categories: com-

mercial progress indicators, research progress indicators, and

techniques that can be useful for query progress estimation.

In the following, we survey these three categories of work.

The first category includes progress indicators provided by

commercial database vendors. Tools for monitoring queries

are available in DB2 [1], Teradata [2], Greenplum [15], SQL

Server [3], and Oracle [4]. Some progress indicators collect

and return statistics (e.g., number of rows and pages processed,

current execution operators, etc.) for a given running query.

Some progress indicators [2], [15] decompose an execution

plan into a number of steps, and indicate which steps are

completed/running. Some progress indicators calculate the

percent-complete for long running operators [4] or percent-

complete for certain validation and recovery statements [3].

These progress indicators are simple and coarse-grained.

The second category includes progress indicators for

database queries proposed by research groups. They aim

at providing estimates at sufficiently fine granularity. Two

pioneering progress indicators are introduced in [5] and [6],

respectively. We refer to them as the MSRPI and the WiscPI

in the context of this paper. Both the MSRPI and the WiscPI

adopt the idea of dividing a plan into a set of pipelines. The

MSRPI calculates the percentage of GetNext() calls finished

as an estimation of the current query progress. The follow-up

work [7] proves that in the worst case, it is impossible for

the MSRPI to provide robust guarantees for the problem of

progress estimation. The WiscPI, on the other hand, estimates

the remaining execution time by modeling the work of a

query as the number of bytes processed at the input and

output of pipelines. The two follow-up papers [8], [16] on the

WiscPI aim to increase the coverage of the progress indicator

to a wider set of SQL queries and extend the single-query

progress estimation to enable progress estimation for multiple

queries. In [9] and [10], the authors propose a lightweight

progress indicator, and they focus on improving cardinality

estimation accuracy for various operators in the query plan.

Since refining cardinality estimates is not the focus of the

paper, we do not incorporate them into our progress indicator.

Recently, machine leaning techniques have been adopted for

query performance prediction. Kernel canonical correlation

analysis is used in [17] to find the relationship between query

plan feature matrices (e.g., number of joins and the cardinality

sum for the query) and performance feature matrices (e.g.,

execution time and number of disk I/Os). Regressions are used

in [18] to predict the execution time of concurrently running

queries. For these two approach, a training model must be

built first, and then the model can be used for prediction. For

an ad-hoc query, if its characteristics (e.g., number of joins

and the operators used) are very different from queries in the

training sample, the prediction made by these two approach

will be inaccurate. Unlike these two performance predictor,

other progress indicators work for any ad-hoc queries. Our

work falls in this category. We address the problems faced by

existing fine-granularity query progress indicators and provide

solutions for improving progress estimation accuracy.

The third category consists of techniques that do not aim

at developing progress indicators directly, but can be used

by progress indicators instead. The cardinality estimation

techniques [19], [20] can provide the basic information for

many progress indicators. Both the MSRPI and the WiscPI

take advantage of runtime statistical information to refine

initial cardinality estimation by optimizers [21], [22]. The cost

estimates [23] are exploited by our proposed query progress

indicator. Since a challenging problem for progress estimation

is to estimate the total work/cost of a query, any method

that can be used to increase the cardinality/cost estimation

accuracy, either before the query starts or during its execution,

fall into the third category.

VIII. CONCLUSION

Previous progress indicators have made a uniform speed

assumption for progress estimation. We present a deeper in-

sight into a query’s execution, which directly affects prediction

accuracy. We also provides the first performance evaluation for

the MSRPI and the WiscPI in the same hardware and software

framework, and point out where they do and do not give good

estimates. To address their limitations, we introduce a new

cost-based progress indicator GSLPI, which utilizes wall-clock

pipeline cost to produce higher quality progress estimates.

The effectiveness of our techniques are verified with extensive

experiments.

This work lays down a foundation for further development

of progress indicators. One interesting direction would be to

extend our progress indicator for parallel database systems

where additional challenges exist (e.g., data skew, new oper-

ators, etc.). Another promising direction would be to provide

a cost-based progress indicator for multiple concurrently run-

ning queries and utilize the information provided by progress

indicators for better workload and resource management.

ACKNOWLEDGMENT

This research was supported by a grant from Microsoft Jim

Gray Systems Lab, Madison, WI. We would like to thank

everyone in the lab for valuable suggestions on this project.

REFERENCES

[1] DB2, “IBM DB2 query monitor for z/OS,”
ftp://ftp.software.ibm.com/software/data/db2imstools/
whitepapers/db2querymon-wp05.pdf, 2005.

[2] M. Dempsey, “Monitoring active queries with Teradata manager 5.0,”
http://www.teradataforum.com/ attachments/a030318c.doc, 2001.

[3] Microsoft, “Execution related dynamic management views and func-
tions,” http://msdn.microsoft.com/en-us/library/ ms188068.aspx, 2010.

[4] Oracle, “Oracle database data warehousing guide,”
http://download.oracle.com/docs/cd/B19306 01/server.102/
b14223/bi.htm, 2005.

[5] S. Chaudhuri, V. Narasayya, and R. Ramamurthy, “Estimating progress
of execution for SQL queries,” in SIGMOD, 2004, pp. 803–814.

[6] G. Luo, J. F. Naughton, C. J. Ellmann, and M. W. Watzke, “Toward a
progress indicator for database queries,” in SIGMOD, 2004.

[7] S. Chaudhuri, R. Kaushik, and R. Ramamurthy, “When can we trust
progress estimators for SQL queries?” in SIGMOD, 2005.

[8] G. Luo, J. F. Naughton, C. J. Ellmann, and M. W. Watzke, “Increasing
the accuracy and coverage of SQL progress indicators,” in ICDE, 2005.

[9] C. Mishra and N. Koudas, “The design of a query monitoring system,”
ACM Trans. Database Syst., vol. 34, pp. 1:1–1:51, 2009.

[10] C. Mishra and N. Koudas, “A lightweight online framework for query
progress indicators,” ICDE, 2007.

[11] Microsoft, “SQL server,” http://www.microsoft.com/sqlserver.
[12] T. Homepage, “TPC-H benchmark,” http://www.tpc.org.
[13] Microsoft, “Logical and physical operators reference,”

http://msdn.microsoft.com/en-us/library/ms191158.aspx.
[14] K. Morton, M. Balazinska, and D. Grossman, “Paratimer: a progress

indicator for MapReduce DAGs,” in SIGMOD, 2010.
[15] Greenplum, “Database performance monitor,”

http://www.greenplum.com/pdf/Greenplum-Performance-Monitor.pdf.
[16] G. Luo, J. F. Naughton, and P. S. Yu, “Multi-query SQL progress

indicators,” in EDBT, 2006.
[17] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and

D. Patterson, “Predicting multiple metrics for queries: Better decisions
enabled by machine learning,” in ICDE, 2009, pp. 592–603.

[18] J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal, “Per-
formance prediction for concurrent database workloads,” in SIGMOD,
2011, pp. 337–348.

[19] Y. E. Ioannidis and V. Poosala, “Balancing histogram optimality and
practicality for query result size estimation,” SIGMOD Rec., vol. 24,
May 1995.

[20] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita, “Improved
histograms for selectivity estimation of range predicates,” SIGMOD

Rec., vol. 25, June 1996.
[21] N. Kabra and D. J. DeWitt, “Efficient mid-query re-optimization of sub-

optimal query execution plans,” SIGMOD Rec., vol. 27, June 1998.
[22] K. W. Ng, Z. Wang, R. R. Muntz, and S. Nittel, “Dynamic query re-

optimization,” in SSDBM, 1999.
[23] M. Jarke and J. Koch, “Query optimization in database systems,” ACM

Comput. Surv., vol. 16, June 1984.

