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ABSTRACT

Running parallel database systems in an environment with
heterogeneous resources has become increasingly common,
due to cluster evolution and increasing interest in moving
applications into public clouds. For database systems run-
ning in a heterogeneous cluster, the default uniform data
partitioning strategy may overload some of the slow ma-
chines while at the same time it may under-utilize the more
powerful machines. Since the processing time of a parallel
query is determined by the slowest machine, such an alloca-
tion strategy may result in a significant query performance
degradation.

We take a first step to address this problem by intro-
ducing a technique we call resource bricolage that improves
database performance in heterogeneous environments. Our
approach quantifies the performance differences among ma-
chines with various resources as they process workloads with
diverse resource requirements. We formalize the problem of
minimizing workload execution time and view it as an opti-
mization problem, and then we employ linear programming
to obtain a recommended data partitioning scheme. We
verify the effectiveness of our technique with an extensive
experimental study on a commercial database system.

1. INTRODUCTION

With the growth of the Internet, our ability to generate
extremely large amounts of data has dramatically increased.
This sheer volume of data that needs to be managed and
analyzed has led to the wide adoption of parallel database
systems. To exploit data parallelism, these systems typically
partition data among multiple machines. A query running
on the systems is then broken up into subqueries, which are
executed in parallel on the separate data chunks.

Nowadays, running parallel database systems in an envi-
ronment with heterogeneous resources has become increas-
ingly common, due to cluster evolution and increasing inter-
est in moving applications into public clouds. For example,
when a cluster is first built, it typically begins with a set
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Figure 1: Query execution times with different data
partitioning strategies.

of identical machines. Over time, old machines may be re-
configured, upgraded, or replaced, and new machines may
be added, thus resulting in a heterogeneous cluster. At the
same time, more and more parallel database systems are
moving into public clouds. Previous research has revealed
that the supposedly identical instances provided by public
clouds often exhibit measurably different performance. Per-
formance variations exist extensively in disk, CPU, memory,
and network [12, 20, 29, 30].

1.1 Motivation

Performance differences among machines (either physi-
cal or virtual) in the same cluster pose new challenges for
parallel database systems. By default, parallel systems ig-
nore differences among machines and try to assign the same
amount of data to each. If these machines have different
disk, CPU, memory, and network resources, they will take
varying amounts of time to process the same amount of data.
Unfortunately, the execution time of a query in a parallel
database system is determined by its slowest machine. At
worst, a slow machine can substantially degrade the perfor-
mance of the query.

On the other hand, a fast machine in such a system will
be under-utilized, finishing its work early, sitting idle, and
waiting for the slower machines to finish. This suggests that
we can reduce execution time by allocating more data to
more powerful machines and less data to the overloaded slow
machines, in order to reduce the execution times of the slow
ones. In Figure 1, we compare the execution times of the
first 5 TPC-H queries running on a heterogeneous cluster
with two different data partitioning strategies. One strategy
partitions the data uniformly across all the machines, while
the other partitions the data using our proposed technique,
which we present in Section 4. The detailed cluster setup
is described in Section 5. As can be seen from the graph,
we can significantly reduce total query execution time by



carefully partitioning the data.

Our task is complicated by the fact that whether a ma-
chine should be considered powerful or not depends on the
workload. For example, a machine with powerful CPUs is
considered “fast” if we have a CPU-intensive workload. For
an I/O-intensive workload, it is considered “slow” if it has
limited disks. Furthermore, to partition the data in a better
way, we also need to know how much data we should allocate
per machine. Obviously, enough data should be assigned to
machines to fully exploit their potential for the best perfor-
mance, but at the same time, we do not want to push too
far to turn things around by overloading the powerful ma-
chines. The problem gets more complicated when queries in
a workload have different (mixed) resource requirements, as
usually happens in practice. For a workload with a mix of
I/0, CPU, and network-intensive queries, the partitioning
of data with the goal of reducing overall execution time is a
non-trivial task.

Automated partitioning design for parallel databases is
a fairly well-researched problem [8, 25, 26, 27]. The pro-
posed approaches improve system performance by selecting
the most suitable partitioning keys for base tables or min-
imizing the number of distributed transactions for OLTP
workloads. Somewhat surprisingly, despite the apparent im-
portance of this problem, no existing approach aims directly
at minimizing decision support execution time for hetero-
geneous clusters. We will provide detailed explanations in
Section 6.

1.2 Our Contributions

To improve performance of parallel database systems run-
ning in heterogeneous environments, we propose a technique
we call resource bricolage. The term bricolage refers to
construction or creation of a work from a diverse range of
things that happen to be available, or a work created by such
a process. The keys to the success of bricolage are knowing
the characteristics of the available items, and knowing a way
to utilize and get the most out of them during construction.

In the context of our problem, a set of heterogeneous ma-
chines are the available resources, and we want to use them
to process a database workload as fast as possible. Thus,
to implement resource bricolage, we must know the perfor-
mance characteristics of the machines that execute database
queries, and we must also know which machines to use and
how to partition data across them to minimize workload
execution time. To do this, we quantify differences among
machines by using the query optimizer and a set of profiling
queries that estimate the machines’ performance parame-
ters. We then formalize the problem of minimizing work-
load execution time and view it as an optimization prob-
lem that takes the performance parameters as input. We
solve the problem using a standard linear program solver to
obtain a recommended data partitioning scheme. In Sec-
tion 4.4, we also discuss alternatives for handling nonlinear
situations. We implemented our techniques and tested them
in Microsoft SQL Server Parallel Data Warehouse (PDW)
[1], and our experimental results show the effectiveness of
our proposed solution.

The rest of the paper is organized as follows. Section 2 for-
malizes the resource bricolage problem. Section 3 describes
our way of characterizing the performance of a machine.
Section 4 presents our approach for finding an effective data
partitioning scheme. Section 5 experimentally confirms the

effectiveness of our proposed solution. Section 6 briefly re-
views the related work. Finally, Section 7 concludes the
paper with directions for future work.

2. THE PROBLEM

2.1 Formalization

To enable parallelism in a parallel database system, ta-
bles are typically horizontally partitioned across machines.
The tuples of a table are assigned to a machine either by
applying a partitioning function, such as a hash or a range
partitioning function, or in a round-robin fashion. A par-
titioning function maps the tuples of a table to machines
based on the values of specified column(s), which is (are)
called the partitioning key of the table. As a result, a par-
titioning function determines the number of tuples that will
be mapped to each machine.
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Figure 2: Different data partitioning schemes.

A uniform partitioning function may result in poor per-
formance. Let us consider a simple example where we have
two machines in a cluster as shown in Figure 2. Let the
CPUs of the first machine be twice as fast as that of the
second machine, and let the disks of the first machine be
50% slower than that of the second machine. We want to
find the best data partitioning scheme to allocate the data
to these two machines. Suppose that we have only one query
in our workload, and it is I/O intensive. This query scans
a table and counts the number of tuples in the table. The
query completes when both machines finish their process-
ing. To minimize the total execution time, it is easy for
us to come up with the best partitioning scheme, which as-
signs 33% of the data to the first machine and 67% of the
data to the second machine. In this case, both machines
will have similar response times. Assume now that we add
a CPU-intensive query to the workload. It scans and sorts
the tuples in the table. Determining the best partitioning
scheme in this case becomes a non-trivial task. Intuitively,
if the CPU-intensive query takes longer to execute than the
I/O-intensive query, we should assign more data to the first
machine to take advantage of its more powerful CPUs, and
vice versa.

Workload {

Figure 3: A query workload.

Step 1 (Subquery 1, ..., Subquery n)
Query 1 {

Step s
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In general, we may have a set of heterogeneous machines
with different disk, CPU, and network performance, and
they may have different amounts of memory. At the same
time, we have a workload with a set of SQL queries as shown



in Figure 3. A query can be further decomposed into a num-
ber of steps with different resource requirements. For each
step, there will be a set of identical subqueries executing con-
currently on different machines to exploit data parallelism.
A step will not start until all steps upon which it depends
on, if any, have finished. Thus, the running time of a step
is determined by the longest-running subquery. The query
result of a step will be repartitioned to be utilized by later
steps, if needed.
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Figure 4: Problem setting.

We visually depict our problem setting in Figure 4. Let
My, M, ..., M, be a set of machines in the cluster, and let
W be a workload consisting of multiple queries. Each query
consists of a certain number of steps, and we concatenate all
the steps in all of the queries to get a total of h steps: Si,
Sa, ..., Sp. Assume that t;; would be the execution time for
step S; running on machine M; if all the data were assigned
to M;. Each column in the graph corresponds to a machine,
and each row represents the set of subqueries running on the
machines for a particular step. In addition, we assume that
a machine M; also has a storage limit [;, which represents
the maximum percentage of the entire data set that it can
hold. The goal of resource bricolage is to find the best way
to partition data across machines in order to minimize the
total execution time of the entire workload.

2.2 Potential for Improvement

Whether it is worth allocating data to machines in a non-
uniform fashion is dependent on the characteristics of the
available computing resources. If all the machines in a clus-
ter are identical or have similar performance, there is no need
for us to consider the resource bricolage problem at all. At
the other extreme, if all the machines are fast except for a
few slow ones, we can improve performance and come close
to the optimal solution by just deleting the slow machines.
The time that we can save by dealing with performance
variability depends on many factors, such as the hardware
differences among machines, the percentage of fast/slow ma-
chines, and the workloads.

To gain preliminary insight as to when explicitly modeling
resource heterogeneity can and cannot pay off, we consider
three data partitioning strategies: Uniform, Delete, and Op-
timal. Uniform is the default data allocation strategy of a
parallel database system. It ignores differences among ma-
chines and assigns the same amount of data to each ma-
chine. Since there is no commonly accepted approach for
the problem we address in the paper, we propose Delete as
a simple heuristic that attempts to handle resource hetero-
geneity. It deletes some slow machines before it partitions
the data uniformly to the remaining ones. It tries to delete
the slowest set of machines first, and then the second slowest
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next. This process is repeated until no further improvement
can be made. Optimal is the ideal data partitioning strategy
that we want to pursue. It distributes data to machines in a
way that can minimize the overall workload execution time.
The corresponding query execution times for these strategies
are denoted as tu, tqer, and topt, respectively. According to
the definitions, we have t, > tgei > topt-

We start with a simple case with n machines in total,
where a fraction p of them are fast and (1 —p) are slow. Our
workload contains just one single-step query. For simplicity,
we assume that one fast machine can process all data in 1
unit of time (e.g., 1 hour, 1 day, etc.), and the slow machines
need r units of time (r > 1). We also assume that, for each
machine, the processing time of a step changes linearly with
the amount of data. The value r can also be considered
to be the ratio between execution times of a slow machine
and a fast machine. We omit the underlying reasons that
lead to the performance differences (e.g., due to a slow disk,
CPU, or network connection), since they are not important
for our discussion here. It is easy to see that t, = %r,
tdel = min{%r, n%)} In this limited specialized case that we
are considering, calculating ¢,,: is easy and can be conducted
in the following way. We denote the fractions of data we
allocate to a fast machine as p; and to a slow machine as po,
respectively. The optimal strategy assigns data to machines
in such a way that the processing times are identical. This
can be represented as p1 = rpa. Since the sum of p; and p2
is 1, we can derive top = m.

To see how much improvement we can make by going
from a simple strategy to a more sophisticated one, we cal-
culate the percentage of time we can reduce from ¢; to t2 as
100(1 — ¢2/t1). We discuss the reduction that can be made
by adopting the simple heuristic Delete first, and then we
present the further reduction that can be achieved by trying
to come up with Optimal.

From Uniform to Delete. When r < %, we have tge; =

%r = ty,. The decision is to keep all machines, and no

improvement can be made by deleting slow machines. When
r > %, tagel = nip. The percentage of reduction we can make
is 100(1 — %) When rp is big, the percentage of reduction
can get close to 100%. Delete is well-suited for clusters where
there are only a few slow machines and the more powerful
machines are much faster than the slow ones. Thus, given a
heterogeneous cluster, the first thing we should do is try to
find the slow outliers and delete them.

Percent of improvement (%)

p% of fast machines

Figure 5: Potential for improvement.

From Delete to Optimal. In this case, the improve-
ment we can make is not so obvious. In Figure 5, we plot the
percentage of time that can be reduced from tge; to top:. We
vary p from 0 to 100% and r from 0 to 20. As we can see from
the graph, when r is fixed, the percentage of reduction in-
creases at first and then decreases as p gets bigger. Similarly,



when p is fixed, the percentage of reduction also increases at
first and then decreases as we vary r from 0 to 20. More pre-

cisely, when r < %, tgel = %r. The percentage of reduction
can be calculated as 100(1 — topt/taer) = 100(1 — T,p+117p).

Since rp < 1, we have rp +1 — p < 2. As a result, the re-
duction 100(1 — ﬁ) is less than 50%. When r > %, we

have t4e; = nip, and the reduction is 100(1 — ﬁ) Since

rp > 1, the denominator is no larger than 2. T[‘ﬁerefore7 the
percent of reduction is also less than 50%.

Now, let us consider a more complicated example with n
machines and n/2 + 1 steps. In this example, we will show
that in the worst case, the performance gap between Delete
and Optimal can be arbitrarily large. The detailed t;; values
are indicated in Figure 6, where a is large constant and e
is a very small positive number. If we use each machine in-
dividually to process the data, the workload execution time
for a machine in the first half on the left is a+ (% +1)e. This
is longer than the workload execution time a + (§ — 1)¢ for
a machine in the second half. When we look at these ma-
chines individually, the first n/2 of them are considered to
be relatively slow.

“slow” machines | “fast” machines

M, My My Mz M,
S, ate ate | ¢ € €
S, € e |a-e e e
S; e e | e a-e e
Swrer € e | ¢ e a-e

Figure 6: A worst-case example.

Given these machines, Delete works as follows. First, it
calculates the execution time of the workload when data is
partitioned uniformly across all machines. The runtime for
the first step S1 is + (a+¢). The runtime for a later step S;
(j >2) is 2(a—e¢), which is the processing time of machine
My /245-1. In total, we have n/2 number of such steps. As
a result, the execution time of all steps is L (a+¢)+ 3 (a—¢).
Then Delete tries to reduce the execution time by deleting
slow machines, thus it will try to delete {M1, Mo, ..., M, /2}
first. We can prove that the best choice for Delete is to use
all machines. On the other hand, the optimal strategy is
to use just the “slow” machines and assign % of the data
to each of them, and we have top: = 2(a + ¢). Although
Delete uses more machines than Optimal, it is easy to get
that 4L ~ %.

2.3 Challenges

Although the worst-case situation may not happen very
often in the real world, our main point here is that when
there are many different machines in a cluster and we have
queries with various resource demands, the heuristic (Delete)
that works well for simple cases may generate results far
from optimal. In addition, the heuristic works by deleting
the set of obviously slow machines. However, simple cases
where we can divide machines in the same cluster into a fast
group and a slow group may not happen very often. Accord-
ing to Moore’s law, computers’ capabilities double approx-
imately every two years. If cluster administrators perform
hardware upgrades every one or two years, it is reasonable
to assume that we may see 2x, 4x, or maybe 8x differences in
machine performance in the same cluster. This assumption
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is also consistent with what has been observed in a very large
Google cluster [28]. Normally, we would not add a machine
to a cluster that is significantly different from the others to
perform the same tasks. On the other hand, machines that
are too slow and out of date will be eventually phased out.
For systems running on a public cloud, requesting a set of
VM instances of the same type to run an application is the
most common situation. As we discussed in Section 1, the
supposedly identical instances from public clouds may still
have different performance. Previous studies, which used a
number of benchmarks to test the performance of 40 Ama-
zon EC2 ml.small instances, observed that the speedup of
the best performance instance over the worst performance
instance is usually in the range from 0% to 300% for different
resources [12].

Thus, it is important for us to come up with the optimal
partitioning strategy to better utilize computing resources.
To do this, there are a number of challenges that need to be
tackled. First of all, we need to quantify performance differ-
ences among machines in order to assign the proper amounts
of data to them. Second, we need to know which machines
to use and how much data to assign to each of them for
best performance. Intuitively, we should choose “fast” ma-
chines, and we should add more machines to a cluster to
reduce query execution times. However, this is not true in
the worst-case example we discussed. In our example, the
performance of the set of “slow” machines used by Optimal
are similar, and the bottlenecks of the subqueries are clus-
tered on the same step (S1). Delete uses some additional
“fast” machines, but these machines do not collaborate well
in the system. They introduce additional bottlenecks in
other steps (S2 to Sy, /241), which result in longer execution
times.

3. QUANTIFYING PERFORMANCE
DIFFERENCES

For each machine in the cluster, we use the runtimes of
the queries that will be executed to quantify its performance.
Since we do not know actual query execution times before
they finish, we need to estimate these values.

There has been a lot of work in the area of query execu-
tion time estimation [5, 6, 16, 18, 23]. Unlike previous work,
we do not need to get perfect time estimates to make a good
data partitioning recommendation. As we will see in the ex-
perimental section, the ratios in time between machines are
the key information that we need to deal with heterogeneous
resources. Thus, we adopt a less accurate but much simpler
approach to estimate query execution times. Our approach
can be summarized as follows. For a given database query,
we retrieve its execution plan from the optimizer, and we
divide the plan into a set of pipelines. We then use the opti-
mizer’s cost model to estimate the CPU, I/O, and network
“work” that needs to be done by each pipeline. To estimate
the times to execute the pipelines on different machines, we
run profiling queries to measure the speeds to process the
estimated work for each machine.

3.1 Estimating the Cost of a Pipeline

Like previous work on execution time estimation [6, 18],
we use the execution plan for a query to estimate its runtime.
An execution plan is a tree of physical operators chosen by
a query optimizer. In addition to the most commonly used



operators in a single-node DBMS, such as Table Scan, Filter,
Hash Join, etc., a parallel database system also employs data
movement operators, which are used for transferring data
between DBMS instances running on different machines.

I/Shuffle Move,
| [Tempt] |

1
- ~\
P &
7~ Table Scan "\
\ . . N
N\ Lineitem] 7~

Figure 7: An execution plan with two pipelines.

An execution plan is divided into a set of pipelines delim-
ited by blocking operators (e.g., Hash Join, Group-by, and
data movement operators). The example plan in Figure 7 is
divided into two different pipelines P; and P». Pipelines are
executed one after another. If we can estimate the execution
time for each pipeline, the total runtime of a query is sim-
ply the sum of the execution time(s) of its pipeline(s). To
estimate a pipeline’s execution time, we first predict what
is the work of the pipeline and what is the speed to process
the work. We then estimate the runtime of a pipeline as the
estimated work divided by the processing speed.

For each pipeline, we use the optimizer’s cost model to
estimate the work (called cost) that needs to be done by
CPUs, disks, and network, respectively. These costs are
estimated based on the available memory size. We utilize
the optimizer estimated cost units to define the work for an
operator in a pipeline. We follow the idea presented in [16]
to calculate the cost for a pipeline, and the interested reader
is referred to that paper for details.

However, the default optimizer estimated cost is calcu-
lated using parameters with predefined values (e.g., the time
to fetch a page sequentially), which are set by optimizer de-
signers without taking into account the resources that will
be available on the machine for running a query. Thus, it
is not a good indication of actual query execution time for
a specific machine. To obtain more accurate predictions,
we keep the original estimates and treat them as estimated
work if a query was to run on a “standard” machine with
default parameters. Then, we test on a given machine to
see how fast it can go through this estimated work with its
resources (the speeds).

3.2 Measuring Speeds to Process the Cost

Measuring I/O speed. To test the speed to process the
estimated I/O cost for a machine, we execute the following
query with a cold buffer cache: select count(*) from T. This
query simply scans a table T and returns the number of
tuples in the table. It is an I/O-intensive query with negli-
gible CPU cost. For this query, we use the query optimizer
to get its estimated 1/O cost, and then we run it to obtain
its execution time for the given machine. Then we calculate
the I/O speed for this machine as the estimated I/O cost
divided by the query execution time.

Measuring CPU speed. To measure the CPU speed,
we test a CPU-intensive query: select T.a from T group by
T.a from a warm buffer cache. For this query, we can also
get its estimated CPU cost and runtime, and we calculate
the CPU speed for this machine in a similar way. Since small

29

queries tend to have higher variation in the cost estimates
and execution times, one practical suggestion is to use a
sufficiently big table for the test. Meanwhile, since the time
spent on transferring query results from a database engine to
an external test program is not used to process the estimated
CPU cost, we need to limit the number of tuples that will
be returned. In our experiment, T' contains 18 M unsorted
tuples, and only 4 distinct T.a values are returned.

Measuring network speed. We use a small and sepa-
rate program to test the network speed instead of a query
running on an actual database system. The reason is that
it is hard to find a query to test the network speed when
isolating all other factors that can contribute to query exe-
cution times. For a query with data movement operators in
a fully functional system, the query may need to read data
from a local disk and store data in a destination table. If
network is not the bottleneck resource, we can not observe
the true network speed. Thus we wrote a small program to
resemble the actual system for transmitting data between
machines. We run this program at its full speed to send
(receive) data to (from) another machine that is known to
have a fast network connection. At the end, we calculate
the average bytes of data that can be transferred per second
as the network speed for the tested machine.

Finally, for a pipeline P, we estimate its execution time as
the maximum of Cres(P)/Speedpes, for any Res in {CPU,
I/0, network}. The execution time of a plan is the sum of
the execution times of all pipelines in the plan.

4. RESOURCE BRICOLAGE

After we estimate the performance differences among ma-
chines for running our workload, we now need to find a bet-
ter way to utilize the machines to process a given workload
as fast as possible. We model and solve this problem us-
ing linear programming, and we deploy special strategies to
handle nonlinear scenarios.

4.1 Base and Intermediate Data Partitioning

Data partitioning can happen in two different places. One
is base table partitioning when loading data into a system,
and the other one is intermediate result reshuffling at the end
of an intermediate step. For example, consider a subquery of
a step that uses the execution plan shown in Figure 7. This
plan scans two base tables: Lineitem and Orders, which may
be partitioned across all machines. The result of this sub-
query, which can be viewed as a temporary table, is served
as input to next steps, if there are any. Thus, the output
table may also be redistributed among the machines.

The execution time of a plan running on a given machine
is usually determined by the input table sizes. For example,
the runtime of the plan in Figure 7 depends on the number
of Lineitem and Orders (L and O for short) tuples. The
runtime of a plan that takes a temporary table as input is
again determined by the size of the temporary table.

In some cases, the partitioning of an immediate table can
be independent of the partitioning of any other tables. For
example, if the output of L 1 O is used to perform a lo-
cal aggregate in the next step, we can use a partitioning
function different from the one used to partition L and O
to redistribute the join results. However, if the output of
L 1 O is used to join with other tables in a later step,
we must partition all tables participating in the join in a
distribution-compatible way. In other words, we have to use



the same partitioning function to allocate the data for these
tables.

In our work, we consider data partitioning for both base
and intermediate tables. Note that our technique can also
be applied to systems that do not partition base tables a
priori or do not store data in local disks. For these systems,
our approach can be used to decide the initial assignment
of data to the set of parallel tasks running with heteroge-
neous resources, and similarly, our approach can be used
for intermediate result reshuffling. Instead of reading pre-
partitioned data from local disks, these systems read data
from distributed file systems or remote servers. In order to
apply our technique, we need to replace the time estimates
for reading data locally with the time estimates for access-
ing remote data. We omit the details here since it is not the
focus of our paper.

4.2 The Linear Programming Model

Next, we will first give our solution to the situation where
all tables must be partitioned using the same partitioning
function, and then we extend it to cases where multiple par-
titioning functions are allowed at the same time.

Recall that in our problem setting, we have n machines,
and the maximum percentage of the entire data set that
machine M; can hold is I;. Our workload consists of h steps,
and it would take time ¢;; for machine M; to process step
S if all data were assigned to M;. The actual ¢;; values are
unknown, and we use the technique proposed in Section 3 to
estimate them. We want to find a data partitioning scheme
that can minimize the overall workload execution time.

When all tables are partitioned in the same way, we can
use just one variable to represent the percentage of data that
goes to a particular machine for different tables. Let p; be
the percentage of the data that is allocated to M; for each
table. We assume that the time it takes for M; to process
step S; is proportional to the percentage of data assigned
to it. Based on this assumption, p;t;; represents the time to
process p; of the data for step S; running on machine M;.
The execution time of S;, which is determined by the slow-
est machine, is maxj_; p;t;;. Then the total execution time
of the workload can be calculated as Z?:1 max;— piti;. In
order to use a linear program to model this problem, we in-
troduce an additional variable z; to represent the execution
time of step S;. Thus, the total execution time of the work-
load can also be represented as Z;‘:l xj. The linear program
that minimizes the total execution time of the workload can
be formulated below.

For step S, since the execution time x; is the longest
execution time of all machines, we must have p;t;; < x; for
machine M;. We also know that the percentage of data that
can be allocated to M; must be at least 0 and at most ;. The
sum of all p;s is 1, since all data must be processed. We can
solve this linear programming model using standard linear
optimization techniques to derive the values for p;s (0 <17 <
n) and z;s (0 < j < h), where the set of p; values represents
a data partitioning scheme that minimizes Z?Zl x;. Note
that we may use only a subset of the machines, since we do
not need to run queries on a machine with 0% of the data.
Thus, the data partitioning scheme suggests a way to select
the most suitable set of machines and a way to utilize them
to process the database workload efficiently.

4.3 Allowing Multiple Partitioning Functions
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When different partitioning functions are allowed to be
used by different tables, we are given more flexibility for
making improvements. Thus, we want to apply different
partitioning functions whenever possible. In order to do this,
we need to identify sets of tables that must be partitioned in
the same way to produce join-compatible distributions, and
we apply different partition functions to tables in different
sets.

T,

Ty T; Ty

Figure 8: The input and output tables for a step.

For step S in workload W, let {Ti1, Ti2, ..., Tir} be the
set of its input tables and T, be its output table as we show
in Figure 8. An input table to S could be a base table or
an output table of another step, and all input tables will be
joined together in step S. In order to perform joins, tuples
in these tables must be mapped to machines using the same
partitioning function, otherwise tuples that can be joined
together may go to different machines!.

We define a distribution-compatible group as the set
of input and output tables for W that must be partitioned
using the same function, together with the set of steps in W
that take these tables as input. Placing a step to a group
implies that how to partition the tables in the group has
a significant impact on the execution time of the step. If
we can find all distribution-compatible groups for W, we
can apply different functions to tables in different groups
for data allocation.

Given a database, we assume that the partitioning keys
for base tables and whether two base tables should be parti-
tioned in a distribution-compatible way or not are designed
by a database administrator or an automated algorithm [2,
25, 27]. As a result, we know which base tables should
belong to a distribution-compatible group. For interme-
diate tables, we need to figure this out. We generate the
distribution-compatible groups for a workload W in the fol-
lowing way:

1. Create initial groups with corresponding distribution-
compatible base tables according to the database de-
sign.

2. For each step S in W, perform the following three
instructions.

"We omit replicated tables in our problem. Since a full copy
of a replicated table will be kept on a machine, there is no
need to worry about partitioning.



(a) For the input tables to S, find the groups that
they belong to. If more than one group is found,
we merge them into a single group.

(b) Assign S to the group.
(¢c) Create a new group with the output table of S.

Steps: Groups:
G, G,
— —
s 01, [EO @
o ST | | [ | &
,
. CT T,
8 ToAC— Lo —
.
S5 Agg(To) = return G
s, Co
‘ S, S, I
.
S5 TorPRO= return 5. 5.

Figure 9: Example of distribution-compatible group
generation.

We go through a small example shown in Figure 9 to
demonstrate how it works. The example has only five steps
and three base tables: L, O, and C, where L and O are

distribution-compatible according to the physical design. First,

we create two groups G1 and G2 for the base tables, and L
and O belong to the same group Gi. Then for each step in
the workload, we perform the three instructions (a) to (c) as
described above. Step S1 joins L and O from the group G;.
Since both of them belong to the same group, there is no
need to merge. We assign step S1 to group G to indicate
that the partitioning of the tables in G1 has a significant
impact on the runtime of Si. A new group G3 is then cre-
ated for the output table T51 of S1. No query step has been
assigned to the new group yet, since we do not know which
step(s) will use T,1. S2 will then be processed. Since S
joins Tp1 in G3 with table C' in G2, we merge G3 with Ga.
We do this by inserting every element in G3 into G2. We
then assign S2 to the group that contains tables C' and To1,
and we create a new group G4 for T,2. At step Ss, a local
aggregation on T,2 is performed, and the result is returned
to the user. Thus we assign S3 to group G4. After all steps
are processed, we get three groups for this workload.

For each distribution-compatible group generated, we can
employ the linear model proposed above to obtain a parti-
tioning scheme for the tables to minimize total runtime of
the steps in the group.

4.4 Handling Nonlinear Growth in Time

In our proposed linear programming model, we assume
that query execution time changes linearly with the data
size. Unfortunately, this assumption does not always hold
true for database queries. However, as we will see later
in our experiments, the assumption is valid in many cases,
and even when it does not strictly hold, it is a reasonable
heuristic that yields good performance.

This assumption is valid for the network cost of a query,
where the transmission time increases in proportion to data
size. It is also true for the CPU and I/O costs of many
database operators, such as Table/Index Scan, Filter, and

31

Compute Scalar. These operators take a large proportion of
query execution times for analytical workloads.

The linear assumption may be invalid for multi-phase op-
erators such as Hash Join and Sort. We may introduce er-
rors by choosing fixed linear functions for these operators
in the following way. To estimate the ¢;; value for step S;
running on machine M;, we first assume that M; gets 1/n
of the data. We then use the query optimizer to generate
the execution plan for S;, and we estimate the runtime for
the plan. Finally, the estimated value is magnified n times
and returned as the ¢;; value for S; running on M;. Based
on all ¢;;s we predict, a recommended partitioning is com-
puted using the linear programming model, and the data we
eventually allocate to M; may be less or more than 1/n.

6N

1/n data
A

2N

Num. of I/Os

Disafe

- 1 1 1
B B(B-1) B(B-1)
Num. of pages N to sort

Figure 10: I/O cost for Sort.

If the plan is the same as the estimated plan and the op-
erator costs increase linearly with the data size, everything
will work as is. However, since the input table sizes could
be different from our assumption, the plan may change, and
some multi-phase operators may need more or fewer passes
to perform their tasks. We use the I/O cost for Sort as our
running example, and the I/O cost for Hash Join is similar.
To sort a table with N pages using B buffer pages, the num-
ber of passes for merging is [logg_,[N/B]]. In each pass,
N pages of data will be written to disk and then brought
back to memory. The number of I/Os for Sort? can be cal-
culated as 2N[loggz_;[N/B]], and we plot this nonlinear
function in Figure 10. The axes are in log scale. As we can
see from the graph, for a multi-phase operator like Sort, by
making a linear assumption, we will stick with a particu-
lar linear function (e.g., 4N in the graph) for predicting the
time. Thus, the estimated times we used to quantify the
performance differences among machines may be wrong.

The impact of the changes in plans and operator execu-
tions is twofold. When a plan with lower cost is selected or
fewer passes are needed for an operator, the actual query
runtime should be shorter than our estimate, leaving more
room for improvement. When things change in the oppo-
site direction, query execution times may be longer than ex-
pected, and we may place too much data on a machine. The
latter case is an unfavorable situation that we should watch
out for. We use the following strategies to avoid making a
bad recommendation.

e Detection: before we actually adopt a partitioning
recommendation, we involve the query optimizer again
to generate execution plans. We re-estimate query ex-
ecution times when assuming that each machine gets
the fraction of data as suggested by our model. We

*We assume that the I/Os for generating the sorted runs are
done by a scan operator, and we omit the cost here.



return a warning to the user, if we find that the new
estimated workload runtime is longer than the old es-
timate. This approach works for both plan and phase
changes.

e Safeguard: to avoid overloading a machine M;, we
can add a new constraint p; < pisefe to our model.
By selecting a suitable value for pisqfe as a guarding
point, we can force the problem to stay in the region,
where query execution times grow linearly with data
size. For the example shown in Figure 10, we can use
the value of the second dark point as pisase, to prevent
data processing time from growing too fast.

Even if additional passes are required for some operators,
the data processing time of a powerful machine may still be
shorter than that of a slow machine. One possible direction
would be to use a mixed-integer program to fully exploit the
potential of a powerful machine. Due to lack of space, we
leave this as an interesting direction for future work.

It is worth noting that a linear region spans a large range.
For a sort operator with x passes, the range starts at B(B —
1)®=Y and ends at B(B—1)®. The end point is B — 1 times
as large as the start point. B is typically a very large num-
ber. For example, if the page size is 8KB, an 8MB buffer
pool consists of 1024 pages. Thus, introducing one more
pass is easy if the assumed 1/n of the data happens to be
close to an end point. To introduce two more passes, we
need to assign at least 1000 times more data to a machine.
Meanwhile, we typically will not assign so much more data
to a machine, since the performance differences among ma-
chines in our problem are usually not very big (e.g., no more
than 8x).

S. EXPERIMENTAL EVALUATION

This section experimentally evaluates the effectiveness and
efficiency of our proposed techniques. Our experiments fo-
cus on whether we can accurately predict the performance
differences among machines, and whether we are able to
achieve the estimated improvements provided by our model.
We also evaluate our technique’s ability to handle situations
where data processing times increase faster than linear.

5.1 Experimental Setup

We implemented and tested our techniques in SQL Server
PDW. Our cluster consisted of 9 physical machines, which
were connected by a 1Gbit HP Procurve Ethernet switch.
Each machine had two 2.33GHz Intel E5410 quad-core pro-
cessors, 16GB of main memory, and eight SAS 10K RPM
147GB disks. On top of each physical machine, we created a
virtual machine (VM) to run our database system. One VM
served as a control node for our system, while the remain-
ing eight were compute nodes. We artificially introduced
heterogeneity by allowing VMs to use varying numbers of
processors and disks, limiting the amount of main memory,
and by “throttling” the network connection.

Table Partition Key Table Partition Key
Customer c_custkey Part p-partkey
Lineitem l_orderkey Partsupp ps-partkey

Nation (replicated) Region (replicated)

Orders o_orderkey Supplier s_suppkey

Table 1: Partition keys for the TPC-H tables.
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The parallel database system we ran consists of single-
node DBMSs connected by a distribution layer, and we have
eight instances of this single-node DBMS, each running in
one of the VMs. The single-node DBMS is responsible for
exploiting the resources within the node (e.g., multiple cores
and disks), however, this is transparent to the parallel dis-
tribution layer. We used a TPC-H 200GB database for our
experiments. Each table was either hash partitioned or repli-
cated across all compute nodes. Table 1 summarizes the
partition keys used for the TPC-H tables. Replicated tables
were stored at every compute node on a single disk.

5.2 Overall Performance

To test the performance of different data partitioning ap-
proaches, we used a workload of 22 TPC-H queries. By de-
fault, each VM used 4 disks, 8 CPUs, 1Gb/s network band-
width, and 8 GB memory. In the first set of experiments, we
created 6 different heterogeneous environments as summa-
rized below to run the queries. In these cases, we vary only
the number of disks, CPUs, and the network bandwidth for
the VMs. We will study the impact of heterogeneous mem-
ory in a separate subsection later.

1. CPU-intensive configuration: to make more queries
CPU bound, we use as few CPUs as possible for the
VMs. In this setting, we use just one CPU for half
of the VMs, and two CPUs for the other half. As a
result, CPU capacity of the fast machines is twice that
of the slow machines.

2. Network-intensive configuration: similarly, to make
more queries network bound, we reduce network band-
width for the VMs. We set the bandwidth for half of
them to 10 Mb/s and for the other half to 20 Mb/s.

3. I/0-intensive configuration (2): we reduce the num-
ber of disks that are used by the VMs. We limit the
number of disks used for half of them to one and for
the remainder to two.

4. I/0-intensive configuration (4): in this setting, we
have 4 types of machines. We set the number of disks
used by the VMs to 1, 1, 2, 2, 4, 4, 8, and 8, respec-
tively. Note that the I/O speeds of the machines with
8 disks (the fastest machines) are roughly 4 times as
fast as the I/O speeds of the machines with just 1 disk
(the slowest machines), and the I/O speeds of the ma-
chines with 4 disks are roughly 3.2 times as fast as the
I/0O speeds of the slowest machines.

5. CPU and I/O-intensive configuration: the num-
ber of disks used by the VMs is the same as in the
above configuration, but we reduce their CPU capa-
bility. We set the number of CPUs that they use to
2,4,2 4,2, 4, 2, and 4, respectively. In this setting,
all VMs are different. If we calculate a ratio to repre-
sent the number of CPUs to the number of disks for
a VM, we can conclude that subqueries running on a
VM with a small ratio tend to be CPU bound, while
subqueries running on a VM with a large ratio tend to
be I/O bound. We refer to this configuration as Mix-2.

6. CPU, I/0, and network-intensive configuration:
The CPU and I/O settings are the same as above. We
also reduce network bandwidth to make some of the



Strategy

CPU-intensive

Network-intensive

I/O-intensive (2)

I/O-intensive (4)

Mix-2

Mix-3

Uniform (sec)

5346

5628

5302

5583

6451

8709

Delete (sec)

5346 (0.0%)

5628 (0.0%)

5103 (3.7%)

3522 (36.9%)

1760 (26.2%)

3052 (7.5%)

Bricolage (sec)

1115 (23.0%)

1583 (18.6%)

3317 (37.4%)

2431 (56.5%)

3420 (47.0%)

5202 (40.3%)

(a) Estimated execution time and percentage of time reduction

for different data partitioning strategies

Strategy

CPU-intensive

Network-intensive

I/O-intensive (2)

I/O-intensive (4)

Mix-2

Mix-3

Uniform (sec)

7371

8720

6037

6275

7680

11564

Delete (sec)

7371 (0.0%)

8720 (0.0%)

6581 (-9.0%)

1026 (35.8%)

6107 (20.5%)

9202 (20.4%)

Bricolage (sec)

6024 (18.3%)

7205 (17.4%)

1195 (30.5%)

3236 (48.4%)

5131 (33.2%)

5767 (50.1%)

(b) Actual execution time and percentage of time reduction for different data partitioning strategies

Table 2: Overall performance (22 TPC-H queries).

subqueries network bound. We set the bandwidth for
the VMs in Mb/s to 30, 30, 30, 10, 10, 30, 30, and 30,
respectively. We refer to this configuration as Mix-3.

For each heterogeneous cluster configuration, we evaluate
the performance of the strategy proposed in this paper (we
refer to it as Bricolage). We use Uniform and Delete as
the competitors, since to the best of our knowledge, there
are no previously proposed solutions in the literature. The
improvement in execution time due to our bricolage tech-
niques depends on differences among machines. For each
cluster configuration, we first measure the processing speeds
for each machine using the profiling queries and the network
test program described in Section 3. For a given machine,
the data we use to measure its I/O speed is a 50MB Cus-
tomer table, and the data we use to measure its CPU speed
is a 2GB Lineitem table. We then generate execution plans
for the queries in our workload assuming uniform partition-
ing, and we estimate the processing times for these plans
running on different machines (the estimated t¢;; values).
These values are then used as input parameters for both
Delete and Bricolage. For machine M;, Delete sums up all
its ¢;; values and uses the summation as its score. Delete
then tries to delete machines in descending order of their
scores until no further improvements can be made. We then
estimate the new query execution times for Delete where
only the remaining machines are used. For our approach,
we use the ¢;; values together with the I; values (determined
by storage limits) as input to the model, and then we solve
the linear program using a standard optimization technique
called the simplex method [9]. The model returns a recom-
mended data partitioning scheme together with the targeted
workload execution time. In Table 2(a), we illustrate the
predicted workload execution time for different approaches
running with different cluster configurations. We also cal-
culate the percentage of time that can be reduced compared
to the Uniform approach.

We load the data into our cluster using different data par-
titioning strategies to run the queries, and we measure the
actual workload processing times and the improvements. In
Table 2(b), we list the numbers we observe after running the
workload. As we can see from the table, although in some
cases, our absolute time estimates are not very precise, the
percentage improvement we achieve is close to our predic-
tions. As a result, we can conclude that our model is reliable
for making recommendations.

In Figure 1, we show the execution times of the first 5
TPC-H queries (Q1 to @s) running with the I/O-intensive
(4) configuration. The percentages of data that Bricolage
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Figure 11: Query execution time comparison.

allocates to the 8 machines are 5.6%, 4.2%, 9.9%, 9.8%,
14.1%, 14.4%, 21.2%, and 20.8%, respectively. In Figure
11, we show the results for the next 5 TPC-H queries (Q¢
to Q10) along with the results for Delete. Compared to
Uniform, Delete reduces query execution times by removing
the slowest machines (the bottleneck) with just one disk. For
Qe, Delete and Bricolage have similar performance, since
this query moves a lot of data to the control node, which
is the bottleneck when data is partitioned using these two
strategies. For other queries, Bricolage can further reduce
query execution times by fully utilizing all the computing
resources.

5.3 Execution Time Estimation

In our work, we quantify differences among machines us-
ing data processing times (the t;;s). Thus, we want to see
whether our estimated times truly indicate the performance
differences. For each machine in the cluster, we sum up
its estimated and actual execution times for all steps. In
Figure 12(a), we plot the results for the CPU-intensive con-
figuration. In this case, the estimated workload execution
time is 5346 seconds, which is shorter than the actual execu-
tion time of 7371 seconds. From the graph, we can see that
the estimated times for all machines are consistently shorter
than the corresponding actual execution times. If we pick
the machine with the longest actual processing time (M4 in
the graph) and use the actual (estimated) time for it to nor-
malize the actual (estimated) times for other machines, we
get the normalized performance for all machines as shown
in Figure 12(b). Ideally, we hope that for each machine its
normalized estimated value is the same as the actual value.
Although our estimates are not perfect, the errors we make
when predicting relative performance differences are much
smaller than when predicting absolute performance.

From Figure 12(b), we can also see that we underestimate
performance for some machines (e.g., M2) while overesti-
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Figure 12: Performance predictions for machines.

mate performance for some others (e.g., M3). In this case,
we will assign an inadequate amount of data to the underes-
timated machines and too much data to the overestimated
ones, which leads to performance degradation. As a result,
the actual improvement we obtained is usually smaller than
the predicted improvement.

In our experiments, we found that the estimated CPU and
network speeds tend to be slightly faster than the speeds
we observed when running the workload. Since the queries
in our workload are more complicated than the profiling
queries we used to measure the speeds, we suspect that the
actual processing speeds slow down a bit due to resource con-
tention. But since we use the same approach (e.g., the same
query/program) to measure the speeds for all machines, we
introduce the same errors for them, consistently. As a re-
sult, we can still obtain reasonable estimates for relative
performance.

5.4 Investigating Optimal Improvements

The experiments presented up until now demonstrate that
the actual improvements we obtain are close to our predicted
improvements. However, this does not tell us whether or not
further improvements might be possible if we had better
system performance predictions. In this section we explore
this issue. Our goal is not to provide a better technique;
rather, it is to evaluate the gap between our technique and
the optimal, perhaps to shed light on remaining room for
further improvement.

We try to derive the best possible improvements by using
information obtained from actual runs of the queries to get
more accurate t;; estimates. For the pipelines that do not
transfer any data to other machines, their processing times
are determined only by the performance of the machine on
which they run, and we know their actual execution times,
and we can replace our estimated values with the actual
values. However, for a pipeline which transfers data to other
machines, the execution time we observe in an actual run
may also be determined by the processing speeds of other
machines. For this kind of pipeline, it may be hard to get the
processing time that is independent of the other machines,
and we have to use our estimated value. However, we can
still try to improve the estimates by using actual query plans
and actual cardinalities. In our experiment, we found that
for the 4 configurations without network-intensive pipelines,
the other machines have negligible impact on the execution
time of a pipeline running on a specific machine. Thus, we
have very accurate t;; values for these 4 cases. However,
the impact of other machines on the execution time of a
network-bound pipeline is very obvious.

We use these updated t;; values as input to our model,
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Configuration Est. reduction | Act. reduction
CPU-intensive 20.6% 18.3%
Network-intensive 22.1% 17.4%
I/O-intensive (2) 32.3% 30.5%
I/O-intensive (4) 51.2% 48.4%
Mix-2 41.1% 33.2%
Mix-3 42.7% 50.1%

Table 3: Estimated time reductions using actual
runs.

and we calculate the percentage of time that can be reduced
for the 6 cases (we refer to this method as Optimal-a later).
The new estimated time reductions are shown in Table 3. If
we compare these values with the actual improvements we
made, we find that they are close. Based on this investi-
gation, we suspect that it is not worth trying too hard to
improve the t;; estimates.

5.5 Handling Nonlinearity

The method we use to handle nonlinearity is based on the
hypothesis that available memory changes processing time
by changing the number of passes needed by multi-phase
operators, and there are linear regions for these operators
that are determined by the number of phases required.

To test whether linear regions exist along with the number
of passes needed, we test how data processing time changes
with data size. The cluster is configured with the I/O-
intensive (4) setting. We set the memory size of the last
machine to 0.25GB or 0.5GB, and we vary the amount of
data assigned to it from 10% to 50%. The memory sizes of
the other machines are set to 8GB, respectively, and they
evenly share the remaining data. We sum up the time to
process all steps for the last machine and plot the results in
Figure 13(a). In both cases, the total time increases linearly
with data size. When memory size is 0.5GB, all memory-
consuming operators need no more than one pass, and when
the memory size is 0.25GB, some operators need two passes.
Since these operators do not change the number of passes
required when we vary data size, they stay in regions where
processing time grows linearly. Furthermore, when mem-
ory size is 0.25GB (2 passes are needed), the line should
also have a steeper slope. To see this more clearly, we plot
the results in Figure 13(b) for a only subset of the most
memory-consuming queries.

Total time for steps (sec) Total time for steps (sec)

12000 4000
0.25GB —&— 0.25GB —&—
0000 | 0.5GB —&— 3000 | 0.5GB —&—
6000 2000
3000 1000
0 0
10 20 30 40 50 10 20 30 40 50

Percentage of data (%) Percentage of data (%)

(a) All TPC-H queries (b) Memory-consuming queries

Figure 13: Execution time vs. data size.

Based on our observations, to assign the proper amount of
data to a machine, we need to estimate the execution time
for a query accurately with different memory sizes, and we
also need to use the corresponding estimate when the ex-
ecution goes to a phase with a different number of passes.



For the system that we worked with, our technique is effec-
tive when no more than one pass is needed. Take the I/0O-
intensive configuration as an example. We set the DBMS
memory size to 0.5GB (where no operator needs more than
one pass) for the last machine and 8GB for other machines
to repeat the experiment. The predicted and actual time
reductions for our approach are 53.5% and 46.7%, respec-
tively. The time estimates for the last machine correctly
represent its performance differences compared to other ma-
chines, and thus less data is assigned to it compared to its
original configuration with 8 GB memory.

Strategy Bricolage-d | Bricolage-g | Optimal-a
Est. reduction 53.1% 52.5% 46.7%
Act. reduction 35.2% 44.1% 44.9%

Table 4: Percentage of time reductions when mem-
ory size is 0.25GB for the last machine.

However, when memory is really scarce and more than
one pass is required, the I/O cost estimates provided by our
system are no longer accurate. Our predicted times are usu-
ally smaller than the actual processing times. In the first
column of Table 4, we show the estimated and actual re-
ductions in time for our default approach without guarding
points (we refer to it as Bricolage-d in the table), when the
DBMS memory size is set to 0.25GB for the last machine.
This is a really adversarial situation, since the last machine
has the most powerful disks to accomplish more I/O work
while at the same time, it does not have enough memory
to accommodate the data. The actual performance we ob-
tained is much worse than our prediction, since we assign
too much data to the last machine.

We have proposed two strategies in Section 4.4 for han-
dling this: issuing a warning or using guarding points. In
the above case, after we use Bricolage-d to provide an alloca-
tion recommendation, we estimate the input size |S| for each
memory-consuming operator as if data were partitioned in
the suggested way. We found that some operators need two
passes based on the estimated input table sizes and available
memory. Thus, we can issue a warning saying that we are
not sure about our estimate this time. Another approach
denoted as Bricolage-g is to use guarding points. For ma-
chine M;, we calculated a pisqfe value, to ensure that as long
as the data allocated to M; is no more than pisefe, N0 op-
erator needs more than one pass. As we can see from the
table, by using guarding points, our estimate is now more
accurate. We also investigate the optimal improvement for
this case by using information derived from actual runs as
input parameters to the model. The results are shown in
the last column of Table 4. Although the actual reductions
for Bricolage-g and Optimal-a are similar here, in general,
an approach that uses true performance for machines can
better exploit their capabilities. As a result, we leave ac-
curate time estimation for memory-consuming operators as
our future work.

5.6 Overhead of Our Solution

Our approach needs to estimate the processing speeds for
machines, estimate plans and their execution times, and
solve the linear model. Here, we describe the overheads
involved. In our experiments, we used 2 minutes each to
test the I/O and the CPU speeds for a machine. This can
be done on all machines concurrently. We used 30 seconds
to test the network speed for a machine, but another fast
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machine is required for sending/receiving the data. In the
worst case, where we use just one fast machine to do the test,
we need 0.5n minutes to test all n machines. We think this
overhead is sufficiently small. For example, we need only 50
minutes to test the network speeds for 100 machines. For
the complex analytical TPC-H workload, the average time
to generate plans and estimate processing times for a query
is 2.3 seconds. Thus the expected total time to estimate the
performance parameters for a workload is 2.3|W|, where |W|
is the number of queries in the workload. After we get all
the estimates, the linear program can be solved efficiently.
For example, for a cluster with 100 machines of 10 different
kinds, and a workload with 100 queries, the linear program
solver returns the solution in less than 3 seconds.

6. RELATED WORK

Our work is related to query execution time estimation,
which can be loosely classified into two categories. The first
category includes work on progress estimation for running
queries [5, 15, 16, 18, 19, 22]. The key idea for this work is
to collect runtime statistics from the actual execution of a
query to dynamically predict the remaining work/time for
the query. In general, no prediction can be made before the
query starts. The debug run-based progress estimator for
MapReduce jobs proposed in [24] is an exception. However,
it cannot provide accurate estimates for queries running on
database systems [17]. On the other hand, the second cate-
gory of work focuses on query running time prediction before
a query starts [4, 11, 13, 31, 32]. In [32] the authors proposed
a technique to calibrate the cost units in the optimizer cost
model to match the true performance of the hardware and
software on which the query will be run, in order to estimate
query execution time. This paper gave details about how to
calibrate the five parameters used by PostgreSQL. However,
different database optimizers may use different cost formu-
las and parameters. Additional work is required before we
can apply the technique to other database systems. Usage
of machine-learning based techniques for the estimation of
query runtime has been explored in [4, 11, 13]. One key
limitation of these approaches is that they do not work well
for new “ad-hoc” queries, since they usually use supervised
machine learning techniques.

Another related research direction is automated partition-
ing design for parallel databases. The goal of a partitioning
advisor is to automatically determine the optimal way of
partitioning the data, so that the overall workload cost is
minimized. The work in [14] investigates different multi-
attribute partitioning strategies, and it tries to place tuples
that satisfy the same selection predicates on fewer machines.
The work in [7, 21] studies three data placement issues:
choosing the number of machines over which to partition
base data, selecting the set of machines on which to place
each relation, and deciding whether to place the data on
disk or cache it permanently in memory. In [25, 27], the
most suitable partitioning key for each table is automati-
cally selected in order to minimize estimated costs, such as
data movement costs. While these approaches can substan-
tially improve system performance, they focus on base table
partitioning and treat all machines in the cluster as identi-
cal. In our work, we aim at improving query performance
in heterogeneous environments. Instead of always applying
a uniform partitioning function to these keys, we vary the
amount of data that will be assigned to each machine for the



purpose of better resource utilization and faster query exe-
cution. The work in [8, 26] attempts to improve scalability
of distributed databases by minimizing the number of dis-
tributed transactions for OLTP workloads. Our work tar-
gets resource-intensive analytical workloads where queries
are typically distributed.

Our work is also related to skew handling in parallel database

systems [10, 33, 34]. Skew handling is in a sense the dual
problem of the one that we deal with in the paper. It as-
sumes that the hardware is homogeneous, but data skew can
lead to load imbalances in the cluster. It then tries to level
the imbalances that arise.

Finally, our paper is related to various approaches pro-
posed for improving system performance in heterogeneous
environments [3, 35]. A suite of optimizations are proposed
in [3] to improve MapReduce performance on heterogeneous
clusters. Zaharia et al. [35] develop a scheduling algorithm
to dispatch straggling tasks to reduce execution times of
MapReduce jobs. Since a MapReduce system does not use
knowledge of data distribution and location, our technique
cannot be used to pre-partition the data in HDFS. However,
we can apply our technique to partition intermediate data
in MapReduce systems with streaming pipelines.

7. CONCLUSION

We studied the problem of improving database perfor-
mance in heterogeneous environments. We developed a tech-
nique to quantify performance differences among machines
with heterogeneous resources and to assign proper amounts
of data to them. Extensive experiments confirm that our
technique can provide good and reliable partition recom-
mendations for given workloads with minimal overhead.

This paper lays down a foundation for several directions
towards future studies to improve database performance run-
ning in the cloud. Previous research has revealed that the
supposedly identical instances provided by a public cloud
often exhibit measurable performance differences. One in-
teresting problem is to select the set of most cost-efficient in-
stances to minimize the execution time of a workload. While
the focus of this work has been on static data partitioning
strategies, the natural follow-up will be to study how to dy-
namically repartition the data at runtime, when our initial
prediction was not accurate or system conditions change.
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