
CS 810: Introduction to Complexity Theory 02/13/2003

Lecture 8: Relativizations. Baker-Gill-Solovay Theorem

Instructor: Jin-Yi Cai Scribe: Matthew Lee, Yingchao Liu, Uchechukwu Okpara

In this lecture, we construct two oracles A and B such that P A = NP A, whereas, P B 6= NP B .
This suggests that a relativizable proof technique may not be useful in resolving the NP vs P
question.

1 Relativization

Many known proofs in complexity theory relativize. That means, the statement of theorem is true
with respect to arbitrary oracles. For example, consider the space hierarchy theorem. For any “nice”
functions, S(n) and T (n) such that S(n) = o(T (n)), we have DSPACE(S(n)) 6= DSPACE(T (n)).
This is also true with respect to arbitrary oracles: for any oracle A, DSPACEA(S(n)) 6= DSPACEA(T (n)).
The proof technique used to prove the hierarchy theorem, namely diagonalization, relativizes. The
goal of this lecture is to show that such a proof technique is unlikely to resolve the NP vs P ques-
tion. We shall prove the Baker-Gill-Solovay theorem, which presents oracles A and B such that
PA = NP A and P B 6= NP B .

2 Baker-Gill-Solovay Theorem (BGS)

Theorem 1. (a) There exists a recursive set A such that P A = NP A

(b)There exists a recursive set B such that P B 6= NP B

Proof. (a) Take QBF (Quantified Boolean Formula) as the set A. First note that, P QBF =
PSPACE. As QBF is complete for PSPACE, PSPACE ⊆ P QBF . On the other hand, as
QBF ∈ PSPACE, we can resolve queries to QBF in PSPACE. Thus, P QBF ⊆ PSPACE.

Next, we claim that PSPACE = NP QBF . Clearly, PSPACE ⊆ P QBF ⊆ NP QBF . For the
other direction, upon input x, we do DFS on the NTM’s computation tree. In this simulation,
we only need to store the information of one path of the tree any time. The depth of the tree is
polynomial. Each configuration or node takes only polynomial space to store. Thus, storage space
required is polynomial. Answering QBF queries takes only polynomial space. Thus, the simulation
can be carried out in polynomial space. So, NP QBF ⊆ PSPACE.

At this point, we have P QBF = PSPACE = NP QBF .

(b) For any set B, define a set

LB = {1n‖∃x, |x| = n, x ∈ B}

1

We’ll show that ∀B, LB ∈ NP B, and ∃B, LB 6∈ P B .

It’s easy to see that ∀B, LB ∈ NP B , because for any input 1n we can guess a string x of length
n and check whether x is in B by making a query to oracle B. So ∀B, LB ∈ NP B .

We now construct a set B such that LB 6∈ P B . The basic intuition is that any deterministic
machine that decides B, given 1n as input, has to find out whether there is a string of length n in
B. This search process needs to check 2n such strings in polynomial time, while no deterministic
machine can ask that many queries to oracle B.

Now we give a rigorous proof. Notice that the class of all deterministic polynomial time oracle
TMs are enumerable. We represent them as N1, N2,...

The idea is a diagonalized construction. We construct B in stages. Initially B is empty. At
each stage i, we add some strings to B such that N B

i does not decide LB . It’s clear that if we
accomplish this task, then LB 6∈ L(NB

i), for any Ni. Thus, LB 6∈ P B .

Now we describe stage i. We assume that by the end of stage i − 1, we have already defined
integer ni−1 and a finite set Bi−1 ⊆ {x ∈ {0, 1}∗ : |x| ≤ ni−1}. We add a “clock” of polynomial
size Pi(n), which is the polynomial that bounds the runtime of machine Ni. Then choose the least
integer n such that 2n > Pi(n) and n > ni−1. Set n = ni, and xi = 1ni . Simulate Ni on xi. When
Ni asks whether a string y is in the oracle, we simulate with answer YES if y ∈ Bi−1, NO otherwise.
Here comes the diagonalization: There are two possibilities. When Ni halts, if it accepts xi,
we let Bi = Bi−1 (and so Bi has no element with length ni). If it rejects xi, we pick a string y′

of length ni, which has not been queried in the computation of Ni(xi) and let Bi = Bi−1 ∪ {y′}.
Since there are 2ni possible strings of length ni, and Ni can query at most Pi(n) < 2ni times, so
there always exists such string y′. Finally, if Ni had asked a query of length longer than ni, we set
ni to length of longest such query. This is just to make sure that, we answer all queries from all
the machines in a consistent manner.

In the above algorithm, we always guarantee Bi ⊆ {x ∈ {0, 1}∗ : |x| ≤ ni}. Let B = ∪∞

i=1
Bi.

We can no machine Ni decides LB correctly. The reason is,∀i,NB
i (xi) accepts iff the simulation

of N
Bi−1

i on xi in stage i accepts. This is true because we restrict ni+1 > 2ni > Pi(ni) and so we
never add any string to B of length ≤ Pi(ni) in later stages. In addition, whenever we add a string

y′ to Bi in stage i, we have guaranteed that the computation of N
Bi−1

i (xi) never queries y′. Thus,
the queries made by Ni to B has the same membership in Bi−1 as in B. That is to say, in either
case, we have made sure:

xi ∈ LB ⇐⇒ NB
i (xi) rejects (1)

Therefore we have found out such a recursive set B for which P B 6= NP B.

3 Conclusion

In BGS theorem, part (a) suggests that it would be difficult to prove using relativization that
P 6= NP , while part (b) suggests it would be difficult to prove P = NP using relativization. So it

2

strongly suggests that all currently available techniques will not suffice for proving that P = NP

or that P 6= NP .

3

