
Twelve Publications

Jin-Yi Cai

1. Shuai Shao and Jin-Yi Cai: A Dichotomy for Real Boolean Holant Problems. In Proc. of the 61st
IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2020, pp. 1091-1102,
doi: 10.1109/FOCS46700.2020.00105.
Full version at https://arxiv.org/pdf/2005.07906.pdf (89 pages).

2. Jin-Yi Cai and Zhiguo Fu: Holographic Algorithm with Matchgates Is Universal for Planar #CSP
Over Boolean Domain. In the 49th ACM Symposium on Theory of Computing (STOC) 2017:
842-855. SIAM Journal on Computing https://doi.org/10.1137/17M1131672 (102 pages).

3. Jin-Yi Cai, Zhiguo Fu, Heng Guo and Tyson Williams. A Holant Dichotomy: Is the FKT
Algorithm Universal? In Proc. 56th IEEE Symposium on Foundations of Computer Science
(FOCS) 2015, pp. 1259–1276. To appear in Theory of Computing Systems (TOCS). Full version
at http://arxiv.org/abs/1505.02993 (128 pages).

4. Jin-Yi Cai, Heng Guo and Tyson Williams. The Complexity of Counting Edge Colorings and
a Dichotomy for Some Higher Domain Holant Problems. In Proc. 55th IEEE Symposium on
Foundations of Computer Science (FOCS) 2014. pp. 601–610. Research in the Mathematical
Sciences, (2016) 3:18 DOI 10.1186/s40687-016-0067-8 (77 pages).

5. Jin-Yi Cai and Xi Chen. Complexity of Counting CSP with Complex Weights.
J. ACM 64(3): 19:1-19:39 (2017).

6. Jin-Yi Cai, Xi Chen and Pinyan Lu. Graph Homomorphisms with Complex Values: A Dichotomy
Theorem. SIAM Journal on Computing, (2013) 42(3), 924-1029 (106 pages).

7. Jin-Yi Cai, Xi Chen and Dong Li. Quadratic Lower Bound for Permanent vs. Determinant in any
Characteristic. Computational Complexity 19(1): 37-56 (2010). A preliminary version appeared
as: A quadratic lower bound for the permanent and determinant problem over any characteristic
6= 2. The 40th Annual ACM Symposium on the Theory of Computing (STOC) 2008. 491-498.

8. Jin-Yi Cai and Pinyan Lu. Holographic Algorithms: From Art to Science. The Journal of
Computer and System Sciences 77(1): 41-61 (2011). A preliminary version appeared in The 39th
Annual ACM Symposium on the Theory of Computing (STOC) 2007, 401–410.

9. Jin-Yi Cai. Sp
2 ⊆ ZPPNP. The Journal of Computer and System Sciences 73(1): 25-35 (2007). A

preliminary version appeared in The 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), 2001, 620–628.

10. Jin-Yi Cai and D. Sivakumar. Sparse Hard sets for P: Resolution of a Conjecture of Hartmanis.
The Journal of Computer and System Sciences, (special issue), Vol. 58, 280–296 (1999). A pre-
liminary version appeared in The 36th Annual Symposium on Foundations of Computer Science
(FOCS), 1995, 362–371.
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Abstract

We prove a complexity dichotomy for Holant problems on the boolean domain with arbitrary
sets of real-valued constraint functions. These constraint functions need not be symmetric nor
do we assume any auxiliary functions as in previous results. It is proved that for every set F
of real-valued constraint functions, Holant(F) is either P-time computable or #P-hard. The
classification has an explicit criterion. This is the culmination of much research on this problem,
and it uses previous results and techniques from many researchers. Some particularly intriguing
concrete functions f6, f8 and their associated families with extraordinary closure properties
related to Bell states in quantum information theory play an important role in this proof.
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Prologue

The young knight Siegfried and his tutor Jeyoda set out for their life journey together. Their aim is to pacify
the real land of Holandica, to bring order and unity.

In the past decade, brave knights have battled innumerable demons and creatures, and have conquered
the more familiar portion of Holandica, called Holandica Symmetrica. Along the way they have also been
victorious by channeling the power of various deities known as Unary Oracles. In the past few years this
brotherhood of the intrepid have also gained great power from the beneficent god Orieneuler and enhanced
their skills in a more protected world ruled by Count Seaspie.

“But prepared we must be,” Jeyoda reminds Siegfried, “arduous, our journey will become.” As the real
land of Holandica is teeming with unknowns, who knows what wild beasts and creatures they may encounter.
Siegfried nods, but in his heart he is confident that his valor and power will be equal to the challenge.

They have recently discovered a treasure sword. This is their second gift from the Cathedral Orthogonia,
more splendid and more powerful than the first. In their initial encounters with the minion creatures in their
journey, the second sword from Cathedral Orthogonia proved to be invincible.

These initial victories laid the foundation for their journey, but also a cautious optimism sets in. Perhaps
with their new powerful sword in hand, final victory will not be that far away.

Just as they savor these initial victories, things start to change. As they enter the Kingdom of Degree-Six
everything becomes strange. Subliminally they feel the presence of a cunning enemy hiding in the darkness.
Gradually they are convinced that this enemy possesses a special power that eludes the ongoing campaign,
and in particular their magic sword. After a series of difficult and protracted battles with many twists and
turns, their nemesis, the Lord of Intransigence slowly reveals his face. The Lord of Intransigence has a
suit of magic armor, called the Bell Spell, that hides and protects him so well that the sword of Cathedral
Orthogonia cannot touch him.

Siegfried and Jeyoda know that in order to conquer the Lord of Intransigence, they need all the skills and
wisdom they have. Although the Lord of Intransigence has a strong armor, he has a weakness. The armor
is maintained by four little elfs called the Bell Binaries. The next battle is tough and long. Siegfried and
Jeyoda hit upon the idea of convincing the Bell Binaries to stage a mutiny. With his four little elfs turning
against him, his armor loses its magic, and the Kingdom of Six-degree is conquered. In the aftermath of
this victory, Siegfried and Jeyoda also collect some valuable treasures that will come in handy in their next
campaign.

After defeating the Lord of Intransigence, Siegfried and Jeyoda enter the Land of Degree-Eight. Now they
are very careful. After meticulous reconnaissance, they finally identify the most fearsome enemy, the Queen
of the Night. Taking a page from their battle with the Lord of Intransigence they look for opportunities to
gain help from within the enemy camp. However, the Queen of the Night has the strongest protective coat
called the Strong Bell Spell. This time there is no way to summon help from within the Queen’s own camp.
In fact, her protective armor is so strong that any encounter with Siegfried and Jeyoda’s sword makes her
magically disappear in a puff of white smoke.

But, everyone has a weakness. For the Queen, her vanishing act also brings the downfall. After plotting
the strategy for a long time, Siegfried and Jeyoda use a magical potion to create from nothing the helpers
needed to defeat the Queen.

Buoyed by their victory, they summon their last strength to secure the Land of Degree-Eight and beyond.

Finally they bring complete order to the entire real land of Holandica. At their celebratory banquet, they

want to share the laurels with Knight Ming and Knight Fu who provided invaluable assistance in their

journey; but the two brave and generous knights have retreated to their Philosopher’s Temple and are

nowhere to be found.
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1 Introduction

Counting problems arise in many different fields, e.g., statistical physics, economics and machine
learning. In order to study the complexity of counting problems, several natural frameworks have
been proposed. Two well studied frameworks are counting constraint satisfaction problems (#CSP)
[8, 22, 6, 12, 10] and counting graph homomorphisms (#GH) [21, 7, 24, 11] which is a special case
of #CSP. These frameworks are expressive enough so that they can express many natural counting
problems but also specific enough so that complete complexity classifications can be established.

Holant problems are a more expressive framework which generalizes #CSP and #GH. It is a
broad class of sum-of-products computation. Unlike #CSP and #GH for which full complexity
dichotomies have been established, the understanding of Holant problems, even restricted to the
Boolean domain, is still limited. In this paper, we establish the first Holant dichotomy on the
Boolean domain with arbitrary real-valued constraint functions. These constraint functions need
not be symmetric nor do we assume any auxiliary functions (as in previous results).

A Holant problem on the Boolean domain is parameterized by a set of constraint functions,
also called signatures; such a signature maps {0, 1}n → C for some n > 0. Let F be any fixed
set of signatures. A signature grid Ω = (G, π) over F is a tuple, where G = (V,E) is a graph
without isolated vertices, π labels each v ∈ V with a signature fv ∈ F of arity deg(v), and labels
the incident edges E(v) at v with input variables of fv. We consider all 0-1 edge assignments σ,
and each gives an evaluation

∏
v∈V fv(σ|E(v)), where σ|E(v) denotes the restriction of σ to E(v).

Definition 1.1 (Holant problems). The input to the problem Holant(F) is a signature grid Ω =
(G, π) over F . The output is the partition function

Holant(Ω) =
∑

σ:E(G)→{0,1}

∏

v∈V (G)

fv(σ|E(v)
).

Bipartite Holant problems Holant(F | G) are Holant problems over bipartite graphs H = (U, V,E),
where each vertex in U or V is labeled by a signature in F or G respectively. When {f} is a
singleton set, we write Holant({f}) as Holant(f) and Holant({f} ∪ F) as Holant(f,F).

Weighted #CSP is a special class of Holant problems. So are all weighted #GH. Other problems
expressible as Holant problems include counting matchings and perfect matchings [28], counting
weighted Eulerian orientations (#EO problems) [26, 14], computing the partition functions of six-
vertex models [27, 16] and eight-vertex models [3, 13], and a host of other, if not almost all, vertex
models from statistical physics [4]. It is proved that counting perfect matchings cannot be expressed
by #GH [23, 17]. Thus, Holant problems are provably more expressive.

Progress has been made in the complexity classification of Holant problems. When all signatures
are restricted to be symmetric, a full dichotomy is proved [18]. When asymmetric signatures
are allowed, some dichotomies are proved for special families of Holant problems by assuming
that certain auxiliary signatures are available, e.g., Holant∗, Holant+ and Holantc [19, 1, 20, 2].
Without assuming auxiliary signatures a Holant dichotomy is established for non-negative real-
valued signatures [25], and for all real-valued signatures where a signature of odd arity is present
[15]. In this paper, we prove a full complexity dichotomy for Holant problems with real values.

Theorem 1.2. Let F be a set of real-valued signatures. If F satisfies the tractability condition (T)
in Theorem 2.22, then Holant(F) is polynomial-time computable; otherwise, Holant(F) is #P-hard.
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This theorem is the culmination of a large part of previous research on dichotomy theorems on
Holant problems, and it uses much of the previously established results and techniques. However,
as it turned out, the journey to this theorem has been arduous. The overall plan of the proof is by
induction on arities of signatures in F . Since a dichotomy is proved when F contains a signature
of odd arity, we only need to consider signatures of even arity. For signatures of small arity 2 or
4 (base cases) and large arity at least 10, we given an induction proof based on results of #CSP,
#EO problems and eight-vertex models. However, two signatures f6 and f8 (and their associated
families) of arity 6 and 8, are discovered which have extraordinary closure properties; we call them
Bell properties [15]. These amazing signatures are wholly unexpected, and their existence presented
a formidable obstacle to the induction proof.

All four binary Bell signatures (related to Bell states [5] in quantum information theory) are
realizable from f6 by gadget construction. We introduce Holantb problems where the four binary
Bell signatures are available. This is specifically to handle the signature f6. We prove a #P-
hardness result for Holantb(f6,F). In this proof, we find other miraculous signatures with special
structures such that all signatures realized from them by merging gadgets are affine signatures,
while themselves are not affine signatures. In order to handle the signature f8, we introduce Holant
problems with limited appearance, where some signatures are only allowed to appear a limited
number of times in all instances. We turn the obstacle of the closure property of f8 in our favor
to prove non-constructively a P-time reduction from Holantb(f8,F) to Holant(f8,F). In fact, it is
provable that except =2, the other three binary Bell signatures are not realizable from f8 by gadget
construction. However, we show that we can realize, in the sense of a non-constructive complexity
reduction, the desired binary Bell signatures which appear an unlimited number of times. This
utilizes the framework where these signatures occur only a limited number of times. Then, we give
a #P-hardness result for Holantb(f8,F) similar to Holantb(f6,F).

2 Preliminaries

2.1 Definitions and notations

Let f be a complex-valued signature. If f(α) = f(α) for all α where f(α) denotes the complex
conjugation of f(α) and α denotes the bit-wise complement of α, we say f satisfies Arrow Reversal
Symmetry (ars). We may also use fα to denote f(α). We use wt(α) to denote the Hamming weight
of α. The support S (f) of a signature f is {α ∈ Zn2 | f(α) 6= 0}. We say f has support of size k if
|S (f)| = k. If S (f) = ∅, i.e., f is identically 0, we say f is a zero signature and denote it by f ≡ 0.
Otherwise, f is a nonzero signature. Let En = {α ∈ Zn2 | wt(α) is even}, and On = {α ∈ Zn2 | wt(α)
is odd}. A signature f of arity n has even or odd parity if S (f) ⊆ En or S (f) ⊆ On respectively.
In both cases, we say that f has parity. Let H2n = {α ∈ Z2n

2 | wt(α) = n}. A signature f of arity
2n has half-weighted support if S (f) ⊆ H2n. We call such a signature an Eularian orientaion
(EO) signature. For α ∈ Zn2 and 1 6 i 6 n, we use αi to denote the value of α on bit i.

Counting constraint satisfaction problems (#CSP) can be expressed as Holant problems. We
use =n to denote the Equality signature of arity n, which takes value 1 on the all-0 and all-1
inputs and 0 elsewhere. (We denote the n-bits all-0 and all-1 strings by ~0n and ~1n respectively.
We may omit the superscript n when it is clear from the context.) Let EQ = {=1,=2, . . . ,=n, . . .}
denote the set of all Equality signatures.

Lemma 2.1 ([9]). #CSP(F) ≡T Holant(EQ | F).
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We use 6=2 to denote the binary Disequality signature with truth table (0, 1, 1, 0). We gener-
alize this notion to signatures of higher arities. A signature f of arity 2n is called a Disequality
signature of arity 2n, denoted by 6=2n, if f = 1 when (x1 6= x2)∧. . .∧(x2n−1 6= x2n), and 0 otherwise.
By permuting its variables the Disequality signature of arity 2n also defines (2n−1)(2n−3) · · · 1
functions which we also call Disequality signatures. These signatures are equivalent for the com-
plexity of Holant problems; once we have one we have them all. Let DEQ = {6=2, 6=4, . . . , 6=2n, . . .}
denote the set of all Disequality signatures.

We use =−2 to denote the binary signature (1, 0, 0,−1) and 6=−2 to denote the binary signature
(0, 1,−1, 0). We may also write =2 as =+

2 and 6=2 as 6=+
2 . Let B = {=+

2 ,=
−
2 , 6=+

2 , 6=−2 }. We call
them Bell signatures which correspond to Bell states |Φ+〉 = |00〉 + |11〉, |Φ−〉 = |00〉 − |11〉,
|Ψ+〉 = |01〉+ |10〉 and |Ψ−〉 = |01〉 − |10〉 in quantum information science [5].

A signature f of arity n > 2 can be expressed as a 2k × 2n−k matrix MSk(f) where Sk is a set
of k many variables among all n variables of f . The matrix MSk(f) lists all 2n many entries of f
with the assignments of variables in Sk

1 listed in lexicographic order (from ~0k to ~1k) as row index
and the assignments of the other n− k many variables in lexicographic order as column index. In
particular, f can be expressed as a 2× 2n−1 matrix Mi(f) which lists the 2n entries of f with the
assignments of variable xi as row index (from xi = 0 to xi = 1) and the assignments of the other
n− 1 variables in lexicographic order as column index. Then,

Mi(f) =

[
f0,00...0 f0,00...1 . . . f0,11...1

f1,00...0 f1,00...1 . . . f1,11...1

]
=

[
f0
i

f1
i

]
,

where fai denotes the row vector indexed by xi = a in Mi(f). Similarly, f can also be expressed as
a 4× 2n−2 matrix with the assignments of two variables xi and xj as row index. Then,

Mij(f) =




f00,00...0 f00,00...1 . . . f00,11...1

f01,00...0 f01,00...1 . . . f01,11...1

f10,00...0 f10,00...1 . . . f10,11...1

f11,00...0 f11,00...1 . . . f11,11...1


 =




f00
ij

f01
ij

f10
ij

f11
ij


 ,

where fabij denotes the row vector indexed by (xi, xj) = (a, b) in Mij(f). For =2, it has the 2-by-2
signature matrix M(=2) = I2 = [ 1 0

0 1 ]. For 6=2, M(6=2) = N2 = [ 0 1
1 0 ] .

2.2 Holographic transformation

To introduce the idea of holographic transformation, it is convenient to consider bipartite graphs.
For a general graph, we can always transform it into a bipartite graph while preserving the Holant
value, as follows. For each edge in the graph, we replace it by a path of length two. (This operation
is called the 2-stretch of the graph and yields the edge-vertex incidence graph.) Each new vertex
is assigned the binary Equality signature =2. Thus, we have Holant(=2| F) ≡T Holant(F).

For an invertible 2-by-2 matrix T ∈ GL2(C) and a signature f of arity n, written as a column
vector (covariant tensor) f ∈ C2n , we denote by Tf = T⊗nf the transformed signature. For a
signature set F , define TF = {Tf | f ∈ F} the set of transformed signatures. For signatures
written as row vectors (contravariant tensors) we define fT−1 and FT−1 similarly. Whenever we

1 Given a set of variables, without other specification, we always list them in the cardinal order i.e., from variables
with the smallest index to the largest index.
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write Tf or TF , we view the signatures as column vectors; similarly for fT−1 or FT−1 as row
vectors. We can also represent Tf as the matrix MSk(Tf) with the assignments of variables in Sk
as row index and the assignments of the other n − k variables as column index. Then, we have
MSk(Tf) = T⊗kMSk(f)(T T)⊗n−k. Similarly, MSk(fT−1) = (T−1T)⊗kMSk(f)(T−1)⊗n−k.

Let T ∈ GL2(C). The holographic transformation defined by T is the following operation:
given a signature grid Ω = (H,π) of Holant(F | G), for the same bipartite graph H, we get a new
signature grid Ω′ = (H,π′) of Holant(FT−1 | TG) by replacing each signature in F or G with the
corresponding signature in FT−1 or TG.

Theorem 2.2 ([29]). For every T ∈ GL2(C), Holant(F | G) ≡T Holant(FT−1 | TG).

Therefore, a holographic transformation does not change the complexity of the Holant problem
in the bipartite setting. Let O2(R) ⊆ R2×2 be the set of all 2-by-2 real orthogonal matrices. We
denote O2(R) by O2. For all Q ∈ O2, since (=2)Q−1 = (=2), Holant(=2| F) ≡T Holant(=2| QF).

A particular holographic transformation that will be commonly used in this paper is the trans-
formation defined by Z−1 = 1√

2

[
1 −i
1 i

]
. Note that (=2)Z = (6=2). Thus, Holant(=2| F) ≡T

Holant( 6=2| Z−1F). We denote Z−1F by F̂ and Z−1f by f̂ . It is known that f and f̂ have the
following relation.

Lemma 2.3 ([14]). A (complex-valued) signature f is a real-valued signature iff f̂ satisfies ars.

We say a real-valued binary signature f(x1, x2) is orthogonal if M1(f)MT
1 (f) = λI2 for some

real λ > 0. Since M2(f) = MT
1 (f), M1(f)MT

1 (f) = λI2 iff M2(f)MT
2 (f) = λI2. The following fact

is easy to check.

Lemma 2.4. A binary signature f is orthogonal or a zero signature iff f̂ has parity and ars.

Proof. Consider M1(f) and M1(f̂) = M1(Z−1f) = Z−1M1(f)(Z−1)T. Then, M1(f) =
[
a b
−b a

]
iff

M1(f̂) =
[

0 a+bi
a−bi 0

]
, and M1(f) =

[
a b
b −a

]
iff M1(f̂) =

[
a−bi 0

0 a+bi

]
. Also, f ≡ 0 iff f̂ ≡ 0 which also

has parity.

Let O denote the set of all binary orthogonal signatures and the binary zero signature. Then,
Ô = Z−1O is the set of all binary signatures with ars and parity (including the binary zero
signature). Note that B ⊆ O and B̂ ⊆ Ô. Here the transformed set

B̂ =
{

=̂+
2 , =̂

−
2 ,
̂6=+

2 ,
̂6=−2
}

= {6=2,=2, (−i)· =−2 , i· 6=−2 }.

For every Q ∈ O2, let Q̂ = Z−1QZ. Then, Q̂F̂ = (Z−1QZ)(Z−1F) = Z−1(QF) = Q̂F . Thus,

Holant( 6=2| F̂) ≡T Holant(=2| F) ≡T Holant(=2| QF) ≡T Holant( 6=2| Q̂F̂).

Let Ô2 = {Q̂ = Z−1QZ | Q ∈ O2}. Then, Ô2 = {[ α 0
0 ᾱ ] , [ 0 α

ᾱ 0 ] | α ∈ C, |α| = 1}. Note that the
notation ·̂ on a matrix Q ∈ O2 is not the same as the notation ·̂ on a signature f ∈ O. Suppose
that M1(f) = Q ∈ O2. Since Q = ZQ̂Z−1 and Z−1(Z−1)T = N2,

M1(f̂) = Z−1Q(Z−1)T = Z−1(ZQ̂Z−1)(Z−1)T = Q̂N2 6= Q̂.
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2.3 Signature factorization

Recall that by our definition, every (complex valued) signature has arity at least one. A nonzero
signature g divides f denoted by g | f , if there is a signature h such that f = g ⊗ h (with possibly
a permutation of variables) or there is a constant λ such that f = λ · g. In the latter case, if λ 6= 0,
then we also have f | g since g = 1

λ ·f . For nonzero signatures, if both g | f and f | g, then they are
nonzero constant multiples of each other, and we say g is an associate of f , denoted by g ∼ f . In
terms of this division relation, the notions of irreducible signatures and prime signatures have been
defined. They are proved equivalent and thus, the unique prime factorization (UPF) of signatures
is established [14].

A nonzero signature f is irreducible if there are no signatures g and h such that f = g ⊗ h.
A nonzero signature f is a prime signature if f | g ⊗ h implies that f | g or f | h. These notions
are equivalent. We say a signature f is reducible if f = g ⊗ h, for some signatures g and h. All
zero signatures of arity greater than 1 are reducible. A prime factorization of a signature f is
f = g1 ⊗ . . .⊗ gk up to a permutation of variables, where each gi is irreducible.

Lemma 2.5 (Unique prime factorization [14]). Every nonzero signature f has a prime factoriza-
tion. If f has prime factorizations f = g1⊗ . . .⊗gk and f = h1⊗ . . .⊗h`, both up to a permutation
of variables, then k = ` and after reordering the factors we have gi ∼ hi for all i.

Lemma 2.6 ([14]). let f be a real-valued reducible signature, then there exists a factorization
f = g ⊗ h such that g and h are both real-valued signatures.

Equivalently, let f̂ be a reducible signature satisfying ars, then there exists a factorization
f̂ = ĝ ⊗ ĥ such that ĝ and ĥ both satisfy ars.

In the following, when we say that a real-valued reducible signature f has a factorization g⊗h,
we always assume that g and h are real-valued. Equivalently, when we say a signature f̂ satisfying
ars has a factorization ĝ ⊗ ĥ, we always assume that ĝ and ĥ satisfy ars.

For a signature set F , we use F⊗k (k > 1) to denote the set {λ⊗k
i=1 fi | λ ∈ R\{0}, fi ∈ F}.

Here, λ denotes a normalization scalar. In this paper, we only consider the normalization by
nonzero real constants. Note that F⊗1 contains all signatures obtained from F by normalization.
We use F⊗ to denote

⋃∞
k=1F⊗k.

If a vertex v in a signature grid is labeled by a reducible signature f = g ⊗ h, we can replace
the vertex v by two vertices v1 and v2 and label v1 with g and v2 with h, respectively. The incident
edges of v become incident edges of v1 and v2 respectively according to the partition of variables of
f in the tensor product of g and h. This does not change the Holant value. On the other hand, Lin
and Wang proved that, from a real-valued reducible signature f = g ⊗ h 6≡ 0 we can freely replace
f by g and h while preserving the complexity of a Holant problem.

Lemma 2.7 ([25]). If a nonzero real-valued signature f has a real factorization g ⊗ h, then

Holant(g, h,F) ≡T Holant(f,F) and Holant( 6=2| ĝ, ĥ, F̂ ) ≡T Holant( 6=2| f̂ , F̂ )

for any signature set F (F̂). We say g (ĝ) and h (ĥ) are realizable from f (f̂) by factorization.

2.4 Gadget construction

One basic tool used throughout the paper is gadget construction. An F-gate is similar to a signature
grid (G, π) for Holant(F) except that G = (V,E,D) is a graph with internal edges E and dangling
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edges D. The dangling edges D define input variables for the F-gate. We denote the regular edges
in E by 1, 2, . . . ,m and the dangling edges in D by m + 1, . . . ,m + n. Then the F-gate defines a
function f

f(y1, . . . , yn) =
∑

σ:E→{0,1}

∏

v∈V
fv(σ̂ |E(v))

where (y1, . . . , yn) ∈ {0, 1}n is an assignment on the dangling edges, σ̂ is the extension of σ on E by
the assignment (y1, . . . , ym), and fv is the signature assigned at each vertex v ∈ V . This function
f is called the signature of the F-gate. There may be no internal edges in an F-gate at all. In
this case, f is simply a tensor product of these signatures fv, i.e., f =

⊗
v∈V fv (with possibly a

permutation of variables). We say a signature f is realizable from a signature set F by gadget
construction if f is the signature of an F-gate. If f is realizable from a set F , then we can freely
add f into F while preserving the complexity (Lemma 1.3 in [9]).

Lemma 2.8 ([9]). If f is realizable from a set F , then Holant(f,F) ≡T Holant(F).

Note that, if we view Holant(=2| F) as the edge-vertex incidence graph form of Holant(F), then
it is equivalent to label every edge by =2; similarly in the setting of Holant( 6=2| F̂), every edge is
labeled by 6=2.

Lemma 2.9. If f is realizable from a real-valued signature set F (in the setting of Holant(=2| F)),
then f is also real-valued. Equivalently, if f̂ is realizable from a signature set F̂ satisfying ars (in
the setting of Holant( 6=2| F̂)), then f̂ also satisfies ars.

A basic gadget construction is merging. In the setting of Holant(=2| F), given a signature
f ∈ F of arity n, we can connect two variables xi and xj of f using =2, and this operation gives a
signature of arity n− 2. We use ∂ijf or ∂+

ijf to denote this signature and ∂ijf = f00
ij + f11

ij , where

fabij
1 denotes the signature obtained by setting (xi, xj) = (a, b) ∈ {0, 1}2. While in the setting of

Holant( 6=2| F̂), the above merging gadget is equivalent to connecting two variables xi and xj of f̂

using 6=2. We denote the resulting signature by ∂̂ij f̂ or ∂̂+
ij f̂ , and we have ∂̂ijf = ∂̂ij f̂ = f̂01

ij + f̂10
ij .

If 6=2 is available (i.e., it either belongs to or can be realized from F) in Holant(=2| F), we can

also connect two variables xi and xj of f using 6=2. We denote the resulting signature by ∂+̂
ijf .

The merging gadget ∂̂+
ij is the same as ∂+̂

ij , we use different notations to distinguish whether this

gadget is used in the setting of Holant(=2| F) or Holant(6=| F̂). Also, if =−2 and 6=−2 are available

in Holant(=2| F), then we can construct ∂−ijf and ∂−̂ijf by connecting xi and xj using =−2 and 6=−2
respectively. We also call ∂−ij and ∂−̂ij merging gadgets. Without other specification, by default a
merging gadget refers to ∂ij in the setting of Holant(=2| F). Similarly by default a merging gadget

refers to ∂̂ij in the setting of Holant( 6=2| F̂).

The following lemma gives a relation between a signature f̂ and signatures ∂̂ij f̂ .

Lemma 2.10 ([15]). Let f̂ be a signature of arity n > 3. If f̂(α) 6= 0 for some wt(α) = k 6= 0
and k 6= n, then there is a pair of indices {i, j} such that ∂̂ij f̂(β) 6= 0 for some wt(β) = k − 1. In

particular, if for all pairs of indices {i, j}, ∂̂ij f̂ ≡ 0, then f̂(α) = 0 for all α with wt(α) 6= 0 and n.

1We use fabij to denote a function, and fabij to denote a vector that lists the truth table of fabij in a given order.
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When f̂ is an EO signature satisfying ars, the following relation between f̂ and ∂̂ij f̂ can
be easily obtained following the proofs of Lemmas 4.3 and 4.5 in [14]. Let D = {6=2}. Then
D⊗ = {λ · (6=2)⊗k | λ ∈ R\{0}, k > 1} is the set of tensor products of 6=2 up to nonzero real scalars.

Lemma 2.11. Let f̂ be a 2n-ary EO signature satisfying ars.
• When 2n = 8, if for all pairs of indices {i, j}, ∂̂ij f̂ ∈ D⊗, and there exists some 6=2 (xi, xj) and

two pairs of indices {u, v} and {s, t} where {u, v}∩{s, t} 6= ∅ such that 6=2 (xi, xj) | ∂̂uvf̂ , ∂̂stf̂ ,

then f̂ ∈ D⊗ and 6=2 (xi, xj) | f̂ .

• When 2n > 10, if for all pairs of indices {i, j}, ∂̂ij f̂ ∈ D⊗, then f̂ ∈ D⊗.

Another gadget construction that connects a nonzero binary signature b with a signature f is
called extending. An extending gadget connects one variable of f with one variable of b using =2

in the setting of Holant(=2| F), and connects one variable of f̂ with one variable of b̂ using 6=2 in
the setting of Holant(6=2| F̂). By extending an irreducible signature using =2 or 6=2, we still get an
irreducible signature. A particular extending gadget is to extend f with binary signatures in B⊗1

using =2 in the setting of Holant(F). We use {f}B=2
to denote the set of signatures realizable by

extending some variables of f with binary signatures in B⊗1 using =2 (recall that B⊗1 allows all
nonzero real normalization scalars). Equivalently, this gadget is to extend f̂ with binary signatures

in B̂ using 6=2 in the setting of Holant( 6=2| F̂). We use {f̂}B̂6=2
to denote the set of signatures

realizable by extending some variables of f̂ with binary signatures in B̂⊗1 using 6=2. If ĝ ∈ {f̂}B̂6=2
,

then we can say that the extending gadget by B̂ defines a relation between ĝ and f̂ . Clearly, by

extending variables of f̂ with 6=2∈ B̂ (using 6=2), we still get f̂ . Thus, f̂ ∈ {f̂}B̂6=2
. So this relation

is reflexive. The following lemma shows that this relation is symmetric and transitive, thus it is an
equivalence relation.

Lemma 2.12. 1. ĝ ∈ {f̂}B̂6=2
iff f̂ ∈ {ĝ}B̂6=2

. 2. If ĥ ∈ {ĝ}B̂6=2
and ĝ ∈ {f̂}B̂6=2

, then ĥ ∈ {f̂}B̂6=2
.

Proof. Note that for any b̂ ∈ B̂⊗1, if we connect any variable of b̂ with another arbitrary variable of
a copy of the same b̂ using 6=2, then we get 6=2 after normalization. Also, by extending a variable

of f̂ with 6=2 (using 6=2), we still get f̂ . Suppose that ĝ ∈ {f̂}B̂6=2
, and it is realized by extending

certain variables xi of f̂ with certain bi ∈ B̂. Then, by extending each of these variables xi of ĝ with

exactly the same bi ∈ B̂, we will get f̂ after normalization. Thus, f̂ ∈ {ĝ}B̂6=2
. The other direction

is proved by exchanging f̂ and ĝ. Thus, ĝ ∈ {f̂}B̂6=2
iff f̂ ∈ {ĝ}B̂6=2

.

Also, note that for any b̂1, b̂2 ∈ B̂⊗1, by connecting an arbitrary variable of b̂1 with an arbitrary

variable of b̂2 using 6=2, we still get a signature in B̂⊗1. Suppose that ĥ is realized by extending
some variables xi of ĝ with some b1i ∈ B̂⊗1. We may assume every variable xi of ĝ has been so

connected as 6=2∈ B̂⊗1. Similarly we can assume ĝ is realized by extending every variable xi of f̂
with some b2i ∈ B̂⊗1. Let bi be the signature realized by connecting b1i and b2i (using 6=2). Then, ĥ

can be realized by extending each variable xi of f̂ with bi ∈ B̂⊗1. Thus, ĥ ∈ {f̂}B̂6=2
.

Remark: As a corollary, if ĝ ∈ {f̂}B̂6=2
, then {ĝ}B̂6=2

= {f̂}B̂6=2
.

Lemma 2.13. Let b̂1(x1, x2), b̂2(y1, y2) ∈ Ô. If by connecting the variable x1 of b̂1 and the variable
y1 of b̂2 using 6=2, we get λ· 6=2 (x2, y2) for some λ ∈ R\{0}, then b̂1 ∼ b̂2. Moreover, by connecting
the variable x2 of b̂1 and the variable y2 of b̂2, we will get λ· 6=2 (x1, y1).
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Proof. We prove this lemma in the setting of Holant(F) after the transformation Z back. Now,
b1 = Zb̂1 ∈ O and b2 = Zb̂2 ∈ O.

Consider matrices M1(b1) = MT
2 (b1) and M1(b2) = MT

2 (b2). Since b1, b2 ∈ O, both M1(b1) and
M1(b2) are real multiples of real orthogonal matrices, of which there are two types, either rotations
or reflections. For such matrices X,Y , to get XTY = λI2 for some λ ∈ R\{0}, X and Y must
be either both reflections, or both rotations of the same angle, up to nonzero real multiples. First
suppose M1(b1) =

[
a b
b −a

]
, reflection. Then by connecting x1 of b1 and y1 of b2 using =2 we get

λ· =2 (x2, y2), i.e., MT
1 (b1)M1(b2) = λI2. This implies that b2 is the same reflection up to a nonzero

scalar, i.e., b2 ∼ b1. Similarly, for a rotation M1(b1) =
[
a b
−b a

]
, MT

1 (b1)M1(b2) = λI2 implies that b2
is also a rotation of the same angle as b1 up to a nonzero scalar, thus b2 ∼ b1. In either case, by
connecting the variable x2 of b1 and the variable y2 of b2, we will get

MT
2 (b1)M2(b2) = M1(b1)MT

1 (b2) = λI2.

This means that we get the signature λ· =2 (x1, y1). The statement of the lemma follows from this
after a Z−1 transformation.

A gadget construction often used in this paper is mating. Given a real-valued signature f of
arity n > 2, we connect two copies of f in the following manner: Fix a set S of n −m variables
among all n variables of f . For each xk ∈ S, connect xk of one copy of f with xk of the other
copy using =2. The variables that are not in S are called dangling variables. In this paper, we
only consider the case that m = 1 or 2. For m = 1, there is one dangling variable xi. Then, the
mating construction realizes a signature of arity 2, denoted by mif . It can be represented by matrix
multiplication. We have

M(mif) = Mi(f)I
⊗(n−1)
2 MT

i (f) =

[
f0
i

f1
i

] [
f0
i
T

f1
i
T
]

=

[
|f0
i |2 〈f0

i , f
1
i 〉

〈f0
i , f

1
i 〉 |f1

i |2,

]
(2.1)

where 〈·, ·〉 denotes the inner product and | · | denotes the norm defined by this inner product. (We
will use the same notation 〈·, ·〉 to denote the complex inner product (with conjugation) below.
The notation is consistent.) Note that |〈f0

i , f
1
i 〉|2 6 |f0

i |2|f1
i |2 by the Cauchy-Schwarz inequality.

Similarly, in the setting of Holant( 6=2| F̂), the above mating operation is equivalent to connecting

variables in S using 6=2. We denote the resulting signature by m̂if̂ , which is the same as m̂if , and
we have

M(m̂if̂) = Mi(f̂)N⊗n−1
2 MT

i (f̂) =

[
f̂0
i

f̂1
i

] [
0 1
1 0

]⊗(n−1) [
f̂0
i

T
f̂1
i

T
]
.

Note that (in general complex-valued) f̂ satisfies the ars since f is real, we have

N
⊗(n−1)
2 f̂0

i

T
= (f̂0,11...1, f̂0,11...0, . . . , f̂0,00...0)T = (f̂1,00...0, f̂1,00...1, . . . , f̂1,11...1) = f̂1

i

T

.

Thus, we have

M(m̂if̂) =

[
f̂0
i

f̂1
i

] [
0 1
1 0

]⊗(n−1) [
f̂0
i

T
f̂1
i

T
]

=

[
f̂0
i

f̂1
i

] [
f̂1
i

T

f̂0
i

T
]

=

[
〈f̂0
i , f̂

1
i 〉 |̂f0

i |2
|̂f1
i |2 〈f̂1

i , f̂
0
i 〉

]
. (2.2)

If there are two dangling variables xi and xj , we use mijf and m̂ij f̂ to denote the signatures realized

by mating f using =2 and mating f̂ using 6=2 respectively.
With respect to mating gadgets, the following first order orthogonality was introduced.
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Definition 2.14 (First order orthogonality [15]). Let f be a complex-valued signature of arity
n > 2. It satisfies the first order orthogonality (1st-Orth) if there exists some µ 6= 0 such that
for all indices i ∈ [n], the entries of f satisfy the following equations

|f0
i |2 = |f1

i |2 = µ, and 〈f0
i , f

1
i 〉 = 0.

Remark: When f is a real-valued signature, the inner product is just the ordinary dot product
which can be represented by mating using =2. Thus, f satisfies 1st-Orth iff there is some real
µ 6= 0 such that for all indices i, M(mif) = µI2. On the other hand, when f̂ is a signature with
ars, by (2.2), the complex inner product can be represented by mating using 6=2. Thus, f̂ satisfies
1st-Orth iff there is some real µ 6= 0 such that for all i, M(m̂if̂) = µN2. Moreover, f satisfies
1st-Orth iff f̂ satisfies it.

Lemma 2.15 ([15]). Let f be a real-valued signature of arity n. If for all indices i ∈ [n], M(mif) =
µiI2 for some real µi 6= 0, then f satisfies 1st-Orth (i.e., all µi have the same value).

2.5 Tractable signatures

We give some known signature sets that define polynomial time computable (tractable) counting
problems.

Definition 2.16. Let T denote the set of tensor products of unary and binary signatures.

Definition 2.17. A signature on a set of variables X is of product type if it can be expressed as
a product of unary functions, binary equality functions ([1, 0, 1]), and binary disequality functions
([0, 1, 0]), each on one or two variables of X. We use P to denote the set of product-type functions.

Note that the product in Definition 2.17 are ordinary products of functions (not tensor prod-
ucts); in particular they may be applied on overlapping sets of variables.

Definition 2.18. A signature f(x1, . . . , xn) of arity n is affine if it has the form

λ · χAX=0 · iQ(X),

where λ ∈ C, X = (x1, x2, . . . , xn, 1), A is a matrix over Z2, Q(x1, x2, . . . , xn) ∈ Z4[x1, x2, . . . , xn]
is a multilinear polynomial with total degree d(Q) 6 2 and the additional requirement that the
coefficients of all cross terms are even, i.e., Q has the form

Q(x1, x2, . . . , xn) = a0 +
n∑

k=1

akxk +
∑

1≤i<j≤n
2bijxixj ,

and χ is a 0-1 indicator function such that χAX=0 is 1 iff AX = 0. We use A to denote the set of
all affine signatures.

If the support set S (f) is an affine linear subspace, then we say f has affine support. Clearly,
any affine signature has affine support. Moreover, we have that any signature of product type has
affine support [9]. When S (f) is affine, we can pick a set of free variables such that in S (f),
every variable is an affine linear combination of free variables. Affine functions satisfy the following
congruity or semi-congruity.
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Lemma 2.19 ([9]). Let f(x1, . . . , xn) = (−1)Q(x1,...,xn) ∈ A , and y = xn + L(x1, . . . , Ln−1) be a
linear combination of variables x1, . . . , xn that involves xn. Define

g(x1, . . . , xn−1) =
fy=0(x1, . . . , xn−1, y + L)

fy=1(x1, . . . , xn−1, y + L)
= (−1)Q(x1,...,xn−1,L)+Q(x1,...,xn−1,L+1).

Then, g satisfies the following property.
• (Congruity) g ≡ 1 or g ≡ −1, or
• (Semi-congruity) g(x1, . . . , xn−1) = (−1)L(x1,...,xn−1) where L(x1, . . . , xn−1) ∈ Z2[x1, . . . , xn−1]

is an affine linear polynomial (degree d(L) = 1).
In particular, if d(Q) = 1, then g has congruity.

Let Tαs = [ 1 0
0 αs ] where α = 1+i√

2
and s is an integer.

Definition 2.20. A signature f is local-affine if for each σ = s1s2 . . . sn ∈ {0, 1}n in the support
of f , (Tαs1 ⊗ Tαs2 ⊗ · · · ⊗ Tαsn )f ∈ A . We use L to denote the set of local-affine signatures.

Definition 2.21. We say a signature set F is C -transformable if there exists a T ∈ GL2(C) such
that (=2)(T−1)⊗2 ∈ C and TF ⊆ C .

This definition is important because if Holant(C ) is tractable, then Holant(F) is tractable for
any C -transformable set F . Then, the following tractable result is known [20, 2].

Theorem 2.22. Let F be a set of complex valued signatures. Then Holant(F) is tractable if

F ⊆ T , F is P-transformable, F is A -transformable, or F is L -transformable. (T)

Lemma 2.23 ([15]). Let F be a set of real-valued signatures. If F does not satisfy condition (T),
then for every Q ∈ O2, QF also does not satisfy condition (T). Moreover, F̂ 6⊆P and F̂ 6⊆ A .

2.6 Hardness results and P-time reductions

We give some known hardness results. We state these results for our setting.

Theorem 2.24 ([20, 15]). Let F be a set of real-valued signatures. If F does not satisfy condition
(T). Then for every Q ∈ O2 and every k > 2, #CSP2(QF) and Holant(6=2|=k, Q̂F̂) are #P-hard.

Theorem 2.25 ([15]). Let F be a set of real-valued signatures containing a nonzero signature of
odd arity. If F does not satisfy condition (T), then Holant(F) is #P-hard.

The following reduction is obtained by polynomial interpolation.

Lemma 2.26 ([9]). Let f and g be nonzero binary signatures with M(f) = P−1
[
λ1 0
0 λ2

]
P and

M(g) = P−1 [ 1 0
0 0 ]P for some invertible matrix P . If λ1 6= 0 and |λ2λ1 | 6= 1, then

Holant(g,F) 6T Holant(f,F)

for any signature set F .

By Lemmas 2.7 and 2.26, we can always realize a nonzero unary signature from nonzero signa-
tures not satisfying 1st-Orth. We have the following #P-hardness result.
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Lemma 2.27. Let F be a set of real-valued signatures containing a nonzero signature that does
not satisfy 1st-Orth. If F does not satisfy condition (T), then Holant(F) is #P-hard.

Proof. Consider Mi(f) for all indices i. Clearly, M(mif) = Mi(f)MT
i (f) is a real symmetric positive

semi-definite matrix, which is diagonalizable with two non-negative real eigenvalues λi > µi > 0.
These two eigenvalues are not both zero since f is real valued and f 6≡ 0, and so M(mif) 6= 0.
Thus, λi 6= 0. Then, |µiλi | = 1 iff λi = µi. In other words, M(mif) = µiI2 for some real µi 6= 0.

Since f does not satisfy 1st-Orth, by Lemma 2.15, there is an index i such that M(mif) 6= µiI2

for any real µi 6= 0. Thus, M(mif) has two eigenvalues with different norms. By Lemma 2.26, we
can realize a nonzero binary signature g such that M(g) is degenerate. This implies that g can be
factorized as a tensor product of two nonzero unary signatures. By Lemma 2.7, we can realize a
nonzero unary signature and hence by Theorem 2.25, Holant(F) is #P-hard.

We also need to use the results of eight-vertex models and Eulerian Orientation (EO) problems.

Theorem 2.28 ([13]). Let f̂ be a signature with M(f̂) =

[ c 0 0 a
0 d b 0
0 b d 0
a 0 0 c

]
. Then, Holant( 6=2| f̂) is

#P-hard in the following cases.
• f̂ has support 6,
• f̂ has support 4 and the nonzero entries of M(f̂) do not have the same norm, or
• f̂ has support 8, all nonzero entries of M(f̂) are positive real numbers and are not all equal.

Theorem 2.29 ([14]). Let F̂ be a set of EO signatures (i.e., with half-weighted support) satisfying
ars. Then Holant(DEQ | F̂) is #P-hard unless F̂ ⊆P or F̂ ⊆ A .

The following reduction states that we can realize all EQ2 once we have =4 in Holant(F).

Lemma 2.30 ([9]). #CSP2(F) 6T Holant(=4,F).

The following reductions state that we can realize all DEQ once we have 6=4 in Holant(6=2| F̂).

Lemma 2.31 ([14]). Holant(DEQ | F̂) 6T Holant( 6=2| DEQ, F̂) 6T Holant( 6=2|6=4, F̂).

2.7 A summary of notations

We use the following Table 1 to summarize notations given in this section. In the left column, we
list notations in Holant(=2| F) where F is a set of real-valued signatures, and in the right column,
we list corresponding notations in Holant(6=2| F̂) where F̂ = Z−1F is the set of complex-valued
signatures with ars. Note that although EO also satisfies ars, we will only use it in Holant(=2| F).
Similarly, we will only use DEQ and D in Holant( 6=2| F̂) although it is real-valued.

Recall that F⊗ denotes the set {λ⊗k
i=1 fi | λ ∈ R\{0}, k > 1, fi ∈ F} for any signature set F .

We remark that both O⊗ and Ô⊗ contain all zero signatures of even arity since the binary zero
signature is in O and Ô. However, B⊗, B̂⊗, and D⊗ do not contain any zero signatures.

In the following, without other specifications, we use f to denote a real-valued signature and F
to denote a set of real-valued signatures. We use f̂ to denote a signature satisfying ars and F̂ to
denote a set of such signatures. We use Q to denote a matrix in O2, and Q̂ to denote a matrix in
Ô2. Clearly, if F is real-valued, then QF is also real-valued. Equivalently, if F̂ satisfies ars, then
Q̂F̂ = Q̂F also satisfies ars.
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Holant(=2| F) where F is real-valued Holant( 6=2| F̂) where F̂ satisfies ars

EQ = {=1,=2, . . . ,=n, . . .} N/A

N/A DEQ = {6=2, 6=4, . . . , 6=2n, . . .}, D = {6=2}
O = {binary orthogonal and zero signatures} Ô = {binary signatures with ars and parity}

B = {=2,=
−
2 , 6=2, 6=−2 } B̂ = {6=2,=2, (−i)· =−2 , i· 6=−2 }

a holographic transformation QF by Q ∈ O2 a holographic transformation Q̂F̂ by Q̂ ∈ Ô2

a merging gadget ∂ijf = f00
ij + f11

ij a merging gadget ∂̂ij f̂ = f̂01
ij + f̂10

ij

extending gadgets {f}B=2
with B extending gadgets {f̂}B̂6=2

with B̂
a mating gadget mijf = Mij(f)I⊗n−1

2 MT
ij(f) a mating gadget m̂ij f̂ = Mij(f̂)N⊗n−1

2 MT
ij(f̂)

Table 1: Comparisons of notations in Holant(=2| F) and Holant(6=2| F̂)

3 Proof Organization

By Theorem 2.22, if F satisfies condition (T), then Holant(F) is P-time computable. So, we only
need to prove that Holant(F) is #P-hard when F does not satisfy condition (T). If F contains
a nonzero signature of odd arity, then by Theorem 2.25, we are done. In the following without
other specifications, when refer to a real-valued signature set F or a corresponding signature set
F̂ = Z−1F satisfying ars, we always assume that they consist of signatures of even arity, and F
does not satisfy condition (T).

In Section 4, we generalize the notion of first order orthogonality (1st-Orth) to second order
orthogonality (2nd-Orth). This property plays a key role in our proof. We show that all irreducible
signatures in F satisfy 2nd-Orth, or else, we get #P-hardness based on results of #CSP problems,
#EO problems and eight-vertex models (Lemma 4.4). We derive some consequences from the
condition 2nd-Orth for signatures with ars. These will be used throughout in the proof.

In Section 5, we give the induction framework of the proof. Since F does not satisfy condition
(T), F 6⊆ T . Also since O⊗ ⊆ T , and by Lemma 5.1, we may assume that F contains a signature
f of arity 2n > 4 where f /∈ O⊗. We want to achieve a proof of #P-hardness by induction on
2n. When 2n = 2, as a corollary of 1st-Orth, we show that Holant(F) is #P-hard (Lemma 5.1).
When 2n = 4, by 2nd-Orth, we show that Holant(F) is #P-hard (Lemma 5.2).

In Sections 6 and 7, we handle the case of arity 6. Let f /∈ O⊗ be a 6-ary signature in F . We
show that Holant(F) is #P-hard or the extraordinary signature which we named f6 with the Bell
property can be realized (Theorem 6.5). By gadget construction, all four Bell signatures B can be
realized from f6. Then we prove the #P-hardness of Holantb(f6,F) = Holant(B, f6,F) (Theorem
7.19 and Lemma 7.20). Combining these two results, we have Holant(F) is #P-hard (Lemma 7.21).

In Section 8, we handle the case of arity 8. Let f /∈ O⊗ be an 8-ary signature in F . We show
that Holant(F) is #P-hard or another extraordinary signature which we named f8 with the strong
Bell property can be realized (Theorem 8.5). One can prove that B cannot be realized from f8 by
gadget construction. However, by introducing Holant problems with limited appearance and using
the strong Bell property of f8, we show Holantb(f8,F) ≤T Holant(f8,F) (Lemmas 8.10). Then, we
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prove the #P-hardness of Holantb(f8,F). Combining these results, we have Holant(F) is #P-hard
(Lemma 8.12).

In Section 9, we show that our induction proof works for signatures of arity 2n > 10. Let
f /∈ O⊗ be a 2n-ary (2n > 10) signature in F . Then, Holant(F) is #P-hard or we can realize a
signature of arity less than 2n that is not in O⊗ (Lemma 9.1). Then, by a sequence of reductions
of length independent of the problem instance size, we can eventually realize a signature of arity
at most 8 that is not in O⊗. Finally, combining Lemmas 5.1, 5.2, 7.21, 8.12 and 9.1, we finish the
proof of Theorem 1.2. In the actual proof, for convenience, many results are proved in the setting
of Holant( 6=| F̂) which is equivalent to Holant(F) under the Z−1 transformation.

4 Second Order Orthogonality

In this section, we generalize the notion of first order orthogonality (1st-Orth) to second order
orthogonality (2nd-Orth) (Definition 4.1). We show that for real-valued F that does not satisfy
condition (T), every irreducible f ∈ F of arity at least 4 satisfies 2nd-Orth, or otherwise Holant(F)
is #P-hard (Lemma 4.4). Then, we derive some consequences from the condition 2nd-Orth for
signatures with ars. These will be used throughout in the following proof.

Definition 4.1 (Second order orthogonality). Let f be a complex-valued signature of arity n > 4.
It satisfies the second order orthogonality (2nd-Orth) if there exists some λ 6= 0 such that for all
pairs of indices {i, j} ⊆ [n], the entries of f satisfy

|f00
ij |2 = |f01

ij |2 = |f10
ij |2 = |f11

ij |2 = λ, and 〈fabij , f cdij 〉 = 0 for all (a, b) 6= (c, d).

Remark: Similar to the remark of first order orthogonality (Definition 2.14), f satisfies 2nd-Orth
iff there is some λ 6= 0 such that for all (i, j), M(mijf) = λI4 = λI⊗2

2 , and f̂ satisfies 2nd-Orth

iff there is some λ 6= 0 such that for all (i, j), M(m̂ij f̂) = λN4 = λN⊗2
2 . Moreover, f satisfies

2nd-Orth iff f̂ satisfies it. Clearly, 2nd-Orth implies 1st-Orth.

In the next, we will prove Lemma 4.4 based on dichotomies of #CSP problems, #EO problems
and eight-vertex models. Since #EO problems and eight-vertex models are defined as special cases
of the problem Holant( 6=2| F̂), for convenience, we will consider the problem Holant(6=2| F̂) which
is equivalent to Holant(F). Recall that F̂ = Z−1F satisfies ars, and we assumed that F does not
satisfy condition (T). We first give the following lemma.

Lemma 4.2. Holant(DEQ | F̂) is #P-hard.

Proof. Since F does not satisfy condition (T), by Lemma 2.23, F̂ 6⊆P and F̂ 6⊆ A . If F̂ is a set
of EO signatures, then by Theorems 2.29, Holant(DEQ | F̂) is #P-hard since F̂ 6⊆P and F̂ 6⊆ A .
Thus, we may assume that there is a signature f̂ ∈ F̂ whose support is not half-weighted. Suppose
that f̂ has arity 2n. Since S (f̂) 6⊆ H2n, by ars, there is an α ∈ Z2n

2 with wt(α) = k < n such

that f̂(α) 6= 0. We first show that we can realize a signature ĝ of arity 2n− 2k such that ĝ(~0) 6= 0.
If wt(α) = k = 0, then we are done. Otherwise, we have n > k > 1. Thus, 2n > 4 and α has
length at least 4. By Lemma 2.10, there is a pair of indices {i, j} such that ∂̂ij f̂(β) 6= 0 for some

wt(β) = k − 1. Clearly, ∂̂ij f̂ has arity 2n − 2. Since 0 6 k − 1 < (2n − 2)/2, ∂̂ij f̂ is not an EO
signature. Now we can continue this process, and by a chain of merging gadgets using 6=2, we can
realize a signature ĝ of arity 2m = 2n− 2k such that ĝ(~0) 6= 0. Denote by a = ĝ(~0).
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Then, we connect all 2m variables of ĝ with 2m variables of 6=4m that always take the same
value in S (6=4m) using 6=2. We get a signature ĥ of arity 2m where ĥ(~0) = a, ĥ(~1) = ā by ars,

and ĥ(γ) = 0 elsewhere. Then, consider the holographic transformation by Q̂ =
[

2m√ā 0
0 2m√a

]
∈ Ô2.

It transforms ĥ to 6=2m, but does not change DEQ. Thus,

Holant(DEQ | ĥ, F̂) ≡T Holant(DEQ |=2m, Q̂F̂).

Since F̂ does not satisfy condition (T), by Theorem 2.24, Holant(DEQ |=2m, Q̂F̂) is #P-hard.
Thus, Holant(DEQ | F̂) is #P-hard.

Then, we consider signatures m̂ij f̂ realized by mating.

Lemma 4.3. Let f̂ ∈ F̂ be a signature of arity 2n > 4. Then,
• Holant( 6=2| F̂) is #P-hard, or
• for all pairs of indices {i, j}, there exists a nonzero binary signature b̂ij ∈ Ô such that

b̂ij(xi, xj) | f̂ or M(m̂ij f̂) = λijN4 for some real λij 6= 0.

Proof. If f̂ ≡ 0, then the lemma holds trivially since for all {i, j} and any b̂ij 6= 0, b̂ij(xi, xj) | f̂ .
Thus, we may assume that f 6≡ 0.

If f̂ does not satisfy 1st-Orth, then f does not satisfy it. By Lemma 2.27, Holant(6=2| F̂) ≡T
Holant(=2| F) is #P-hard. Thus, we may assume that f̂ satisfies 1st-Orth. Then, for all indices
i, we have

M(m̂if̂) =

[
〈f̂0
i , f̂

1
i 〉 |̂f0

i |2
|̂f1
i |2 〈f̂1

i , f̂
0
i 〉

]
= µ

[
0 1
1 0

]
.

For any variable xi, we may take another variable xj (j 6= i) and partition the sum in the inner

product 〈f̂0
i , f̂

1
i 〉 = 0 into two sums depending on whether xj = 0 or 1. Also, by ars we have

〈f̂0
i , f̂

1
i 〉 = 〈f̂00

ij , f̂
10
ij 〉+ 〈f̂01

ij , f̂
11
ij 〉 = 〈f̂00

ij , f̂
10
ij 〉+ 〈f̂10

ij , f̂
00
ij 〉 = 2〈f̂00

ij , f̂
10
ij 〉 = 0.

Thus, for all pairs of indices {i, j}, 〈f̂00
ij , f̂

10
ij 〉 = 0 and 〈f̂01

ij , f̂
11
ij 〉 = 0. (Note that by exchanging i

and j we also have 〈f̂00
ij , f̂

01
ij 〉 = 0 and 〈f̂10

ij , f̂
11
ij 〉 = 0.) Also by ars, we have |̂f00

ij |2 = |̂f11
ij |2 = |̂f11

ij |2

and |̂f01
ij |2 = |̂f10

ij |2 = |̂f10
ij |2.

Now, consider m̂ij f̂ for all pairs of indices {i, j}.

M(m̂ij f̂) =




f̂00
ij

f̂01
ij

f̂10
ij

f̂11
ij



[
f̂11
ij

T

f̂10
ij

T

f̂01
ij

T

f̂00
ij

T
]

=




〈f̂00
ij , f̂

11
ij 〉 0 0 |̂f00

ij |2
0 〈f̂01

ij , f̂
10
ij 〉 |̂f01

ij |2 0

0 |̂f10
ij |2 〈f̂10

ij , f̂
01
ij 〉 0

|̂f11
ij |2 0 0 〈f̂11

ij , f̂
00
ij 〉


 .

Note that |〈f̂00
ij , f̂

11
ij 〉| 6 |̂f00

ij | · |̂f11
ij | by Cauchy-Schwarz inequality. Clearly, m̂ij f̂ has even parity, and

thus it represents a signature of the eight-vertex model. If there exists a pair of indices {i, j} such
that Holant(6=2| m̂ij f̂) is #P-hard, then we are done since Holant(6=2| m̂ij f̂) 6T Holant( 6=2| F̂).

Thus, we may assume all m̂ij f̂ belong to the tractable family for eight-vertex models. Clearly,

by observing its antidiagonal entries of the matrix M(m̂ij f̂), we have m̂ij f̂ 6≡ 0 since f̂ 6≡ 0. By
Theorem 2.28, there are three possible cases.
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• There exists a pair {i, j} such that m̂ij f̂ has support of size 2. By Cauchy-Schwarz inequality,

M(m̂ij f̂) is either of the form λij

[
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

]
where λij = |̂f00

ij |2 = |̂f11
ij |2 6= 0 or λij

[
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

]

where λij = |̂f01
ij | = |̂f10

ij | 6= 0. In both cases, 6=4 is realizable since λij 6= 0. The form

that 〈f̂01
ij , f̂

10
ij 〉 6= 0 while |̂f01

ij |2 = |̂f10
ij |2 = 0 cannot occur since |〈f̂01

ij , f̂
10
ij 〉| 6 |̂f01

ij ||̂f10
ij |. Also,

the form that 〈f̂00
ij , f̂

11
ij 〉 6= 0 while |̂f00

ij |2 = |̂f11
ij |2 = 0 cannot occur. Since 6=4 is available,

by Lemma 2.31, Holant(DEQ | F̂) 6T Holant(=2| F̂). By Lemma 4.2, Holant(=2| F̂) is
#P-hard.
• There exists a pair {i, j} such that m̂ij f̂ has support of size 8. We can rename the four

variables of m̂ij f̂ in a cyclic permutation. We use ĝ to denote this signature. Then M(ĝ) =

M12(ĝ) =

[
c 0 0 d
0 a b 0
0 b a 0
d̄ 0 0 c̄

]
where a and b are positive real numbers and c and d are nonzero complex

numbers. Consider the signature m̂12ĝ realized by mating ĝ. We denote it by ĥ. Then,

M(ĥ) = M(ĝ)N4M
T(ĝ) =




2cd 0 0 |c|2 + |d|2
0 2ab a2 + b2 0
0 a2 + b2 2ab 0

|c|2 + |d|2 0 0 2c̄d̄


 =




c′ 0 0 d′

0 a′ b′ 0
0 b′ a′ 0
d′ 0 0 c̄′


 ,

where a′, b′, and d′ are positive real numbers and c′ is a nonzero complex number. Suppose
that the argument of c′ is θ, i.e., c′ = |c′|eiθ.
Consider the holographic transformation by Q̂ =

[
e−iθ/4 0

0 eiθ/4

]
∈ Ô2. Then,

Holant( 6=2| ĥ, F̂) ≡T Holant( 6=2| Q̂ĥ, Q̂F̂).

Note that M(Q̂ĥ) =

[ |c′| 0 0 d′

0 a′ b′ 0
0 b′ a′ 0
d′ 0 0 |c′|

]
where all entries are positive real numbers. Notice that all

weight 2 entries of ĥ are unchanged in Q̂ĥ. By Theorem 2.28, Holant(6=2| Q̂ĥ) is #P-hard

unless a′ = b′ = |c′| = d′. Thus, we may assume that M(Q̂ĥ) =

[
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

]
up to normalization.

Notice that M(Z(Q̂ĥ)) = Z⊗2M(Q̂ĥ)(ZT)⊗2 =

[
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

]
, which is the arity-4 equality (=4).

Consider the holographic transformation by Z which transfers 6=2 back to =2. Remember
that Q̂ = Z−1QZ. Then, Z(Q̂F̂ ) = Z(Z−1QZ)(Z−1F) = QF . Since Q̂ ∈ Ô2, we have
Q ∈ O2. Thus,

Holant( 6=2| Q̂ĥ, Q̂F̂) ≡T Holant(=2|=4, QF).

By Lemma 2.30, #CSP2(QF) 6T Holant(=2|=4, QF). Since F does not satisfy condition (T)
and Q ∈ O2, by Theorem 2.24, #CSP2(QF) is #P-hard. Thus, Holant(6=2| F̂) is #P-hard.
• For all {i, j}, m̂ij f̂ has support of size 4. By Cauchy-Schwarz inequality, M(m̂ij f̂) is of the

form

[
b 0 0 a
0 0 0 0
0 0 0 0
a 0 0 b̄

]
or

[
0 0 0 0
0 b a 0
0 a b̄ 0
0 0 0 0

]
where a2 − |b|2 = 0, or the form λij

[
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

]
where λij = |̂f00

ij |2 =

|̂f01
ij | 6= 0. If M(mij f̂) = λijN4, then we are done. Otherwise, M(m̂ij f̂) has rank one. Hence,

Mij(f̂) also has rank one. Then, by observing the form of M(m̂ij f̂) especially the all zero

rows, f̂ can be factorized as b̂ij(xi, xj) ⊗ ĝ where b̂ij ∈ Ô and ĝ is a signature on the other
n− 2 variables. Thus, we are done.

15



The lemma is proved.

Remark: We give a restatement of Lemma 4.3 in the setting of Holant(F). Let f ∈ F be a
signature of arity 2n > 4. Then, Holant(F) is #P-hard, or for all pairs of indices {i, j}, there
exists a nonzero binary signature bij ∈ O such that bij(xi, xj) | f or M(mijf) = λijI4 for some real
λij 6= 0.

Now for an irreducible signature f̂ of arity 2n > 4, we show that it satisfies 2nd-Orth or we
get #P-hardness.

Lemma 4.4. Let f̂ ∈ F̂ be an irreducible signature of arity 2n > 4. If f̂ does not satisfy 2nd-Orth,
then Holant( 6=| F̂) is #P-hard.

Proof. Since f̂ is irreducible, by Lemma 4.3, M(m̂ij f̂) = λijN4 for all {i, j}. Now, we show all λij
have the same value. If we connect further the two respective pairs of variables of mijf , which totally
connects two copies of f , we get a value 4λij . This value clearly does not depend on the particular

indices {i, j}. We denote the value λij by λ. This value is nonzero because f̂ is irreducible.

We derive some consequences from the condition 2nd-Orth for signatures with ars. Suppose
that f̂ satisfies 2nd-Orth. First, by definition we have |̂fabij |2 = λ for any (xi, xj) = (a, b) ∈ {0, 1}2.
Given a vector f̂abij , we can pick a third variable xk and partition f̂abij into two vectors f̂ab0ijk and f̂ab1ijk

according to xk = 0 or 1. By setting (a, b) = (0, 0), we have

|̂f00
ij |2 = |̂f000

ijk |2 + |̂f001
ijk |2 = λ. (4.1)

Similarly, we consider the vector f̂00
ik and partition it according to xj = 0 or 1. We have

|̂f00
ik |2 = |̂f000

ijk |2 + |̂f010
ijk |2 = λ. (4.2)

Comparing equations (4.1) and (4.2), we have |̂f001
ijk |2 = |̂f010

ijk |2. Moreover, by ars, we have |̂f010
ijk |2 =

|̂f101
ijk |2. Thus, we have |̂f001

ijk |2 = |̂f101
ijk |2. Note that the vector f̂01

jk is partitioned into two vectors f̂001
ijk

and f̂101
ijk according to xi = 0 or 1. That is

|̂f01
jk |2 = |̂f001

ijk |2 + |̂f101
ijk |2 = λ.

Thus, we have |̂f001
ijk |2 = |̂f101

ijk |2 = λ/2. Then, by equation (4.1), we have |̂f000
ijk |2 = λ/2, and again

by ars, we also have |̂f111
ijk |2 = |̂f000

ijk |2 = λ/2. Note that indices i, j, k are picked arbitrarily, by
symmetry, we have

|̂fabcijk |2 = λ/2 (4.3)

for all (xi, xj , xk) = (a, b, c) ∈ {0, 1}3.
Given a vector f̂abcijk , we can continue to pick a fourth variable x` and partition f̂abcijk into two

vectors f̂abc0ijk` and f̂abc1ijk` according to x` = 0 or 1. By setting (a, b, c) = (0, 0, 0), we have from (4.3)

|̂f000
ijk |2 = |̂f0000

ijk` |2 + |̂f0001
ijk` |2 = λ/2. (4.4)
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Similarly, we consider the vector f̂001
ij` and partition it according to xk = 0 or 1. We have

|̂f001
ij` |2 = |̂f0001

ijk` |2 + |̂f0011
ijk` |2 = λ/2. (4.5)

Comparing equations (4.4) and (4.5), and also by ars, we have

|̂f0000
ijk` |2 = |̂f0011

ijk` |2 = |̂f1100
ijk` |2 = |̂f1111

ijk` |2 (4.6)

for all indices {i, j, k, `}. Similarly, we can get

|̂f0001
ijk` |2 = |̂f0010

ijk` |2 = |̂f1101
ijk` |2 = |̂f1110

ijk` |2. (4.7)

By the definition of second order orthogonality, we also have

〈f̂abij , f̂ cdij 〉 = 0 (4.8)

for all variables xi, xj and (a, b) 6= (c, d).
Equations (4.6), (4.7) and (4.8) will be used frequently in the analysis of signatures satisfying

ars and 2nd-Orth. This is also a reason why we consider the problem in the setting under
the Z−1 transformation, Holant( 6=2| F̂), where we can express these consequences of 2nd-Orth
elegantly, instead of Holant(F) which is logically equivalent. By combining 2nd-Orth and ars of
the signature f̂ , we get these simply expressed, thus easily applicable, conditions in terms of norms
and inner products.

5 The Induction Proof: Base Cases 2n 6 4

In this section, we introduce the induction framework and handle the base cases (Lemmas 5.1 and
5.2). Recall that Ô denotes the set of binary signatures with ars and parity (including the binary
zero signature), and Ô⊗ denotes the set of tensor products of signatures in Ô. Since F does not
satisfy condition (T), F̂ 6⊆ T . Also, since Ô⊗ ⊆ T , F̂ 6⊆ Ô⊗. Thus, there is a nonzero signature
f̂ ∈ F̂ of arity 2n such that f̂ /∈ Ô⊗. We want to achieve a proof of #P-hardness by induction
on 2n. We first consider the base that 2n = 2. Notice that a nonzero binary signature f̂ satisfies
1st-Orth iff its matrix form (as a 2-by-2 matrix) is orthogonal. Thus, f̂ /∈ Ô implies that it does
not satisfy 1st-Orth. Then, we have the following result.

Lemma 5.1. Let F contain a binary signature f /∈ O⊗. Then, Holant(F) is #P-hard.
Equivalently, let F̂ contain a binary signature f̂ /∈ Ô⊗. Then, Holant( 6=2| F̂) is #P-hard.

Proof. We prove this lemma in the setting of Holant(F). Since O⊗ contains the binary zero
signature, f /∈ O⊗ implies that f 6≡ 0. If f is reducible, then it is a tensor product of two nonzero
unary signatures. By Lemma 2.7, we can realize a nonzero unary signature by factorization, and
we are done by Theorem 2.25. Otherwise, f is irreducible. Since f /∈ O⊗, f does not satisfy
1st-Orth. By Lemma 2.27, Holant(F) is #P-hard.

Then, the general induction framework is that we start with a signature f̂ of arity 2n > 4 that
is not in Ô⊗, and realize a signature ĝ of arity 2k 6 2n− 2 that is also not in Ô⊗, or otherwise we
can directly show Holant(6=2| F̂) is #P-hard. If we can reduce the arity down to 2 (by a sequence
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of reductions of length independent of the problem instance size), then we have a binary signature
b̂ /∈ Ô. By Lemma 5.1, we are done.

For the inductive step, we first consider the case that f̂ is reducible. Suppose that f̂ = f̂1 ⊗ f̂2.
If f̂1 or f̂2 have odd arity, then we can realize a signature of odd arity by factorization and we are
done. Otherwise, f̂1 and f̂2 have even arity. Since f̂ /∈ Ô⊗, we know f̂1 and f̂2 cannot both be
in Ô⊗. Then, we can realize a signature of lower arity that is not in Ô⊗ by factorization. We are
done. Thus, in the following we may assume that f̂ is irreducible. Then, we may further assume
that f̂ satisfies 2nd-Orth. Otherwise, we get #P-hardness by Lemma 4.4. We use merging with
6=2 to realize signatures of arity 2n− 2 from f̂ . Consider ∂̂ij f̂ for all pairs of indices {i, j}. If there

exists a pair {i, j} such that ∂̂ij f̂ /∈ Ô⊗, then we can realize ĝ = ∂̂ij f̂ which has arity 2n− 2, and

we are done. Thus, we may assume ∂̂ij f̂ ∈ Ô⊗ for all {i, j}. We denote this property by f̂ ∈
∫̂
Ô⊗.

We want to achieve our induction proof based on these two properties: 2nd-Orth and f̂ ∈
∫̂
Ô⊗.

We consider the case that 2n = 4.

Lemma 5.2. Let F̂ contain a 4-ary signature f̂ /∈ Ô⊗. Then, Holant( 6=2| F̂) is #P-hard.

Proof. Since f̂ /∈ Ô⊗, f 6≡ 0. First, we may assume that f̂ is irreducible. Otherwise, we can realize
a nonzero unary signature or a binary signature that is not in Ô. Then, by Theorem 2.25 and
Lemma 5.1, we have #P-hardness. Since f̂ is irreducible, we may further assume that f̂ satisfies
2nd-Orth. Otherwise, by Lemma 4.4, we get #P-hardness.

We consider binary signatures ∂̂ij f̂ realized from f̂ by merging using 6=2. Under the assumption

that f̂ satisfies 2nd-Orth, we will show that there exits a pair {i, j} such that ∂̂ij f̂ /∈ Ô. Then

by Lemma 5.1, we are done. For a contradiction, suppose that f̂ ∈
∫̂
Ô i.e., ∂̂ij f̂ ∈ Ô for all pairs

{i, j}. Since f̂ satisfies 2nd-Orth, by equations (4.6) and (4.7), we have |̂f0000
ijk` | = |̂f0011

ijk` | = |̂f1111
ijk` |

and |̂f0001
ijk` | = |̂f1110

ijk` | respectively for any permutation (i, j, k, `) of (1, 2, 3, 4). Thus all entries of f̂

on inputs of even weight {0, 2, 4} have the same norm, and all entries of f̂ on inputs of odd weight
{1, 3} have the same norm. We denote by ν0 and ν1 the norm squares of entries on inputs of even
weight and odd weight, respectively.

Then, we consider the equation 〈f̂01
12 , f̂

10
12 〉 = 0 from (4.8) by taking (i, j) = (1, 2). We have

〈f̂01
12 , f̂

10
12 〉 = f̂0100f̂1000 + f0101f̂1001 + f̂0110f̂1010 + f̂0111f̂1011 = 0.

(Here for clarity, we omitted the subscript 1234 of f̂abcd1234.) By ars, we have f̂0111f̂1011 = f̂1000f̂0100

and f̂0110f̂1010 = f̂1001f̂0101. Thus, we have

f̂0100f̂1000 + f̂0101f̂1001 = 0. (5.1)

Note that by taking norm, |f̂0100f̂1000| = ν1 and |f̂0101f̂1001| = ν0. Then, it follows that ν0 = ν1.
Thus, all entries of f̂ have the same norm. We normalize the norm to be 1 since f̂ 6≡ 0.

Consider ∂̂12f̂ . We have

∂̂12f̂ = (f̂0100 + f̂1000, f̂0101 + f̂1001, f̂0110 + f̂1010, f̂0111 + f̂1011),

and by assumption ∂̂12f̂ ∈ Ô. Thus, at least one of the two entries f̂0100 + f̂1000 and f̂0101 + f̂1001

is equal to zero. If f̂0100 + f̂1000 = 0, then we have

f̂0100f̂1000 = (−f̂1000)f̂1000 = −|f̂1000|2 = −1.
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Then, by equation (5.1), we have f̂0101f̂1001 = 1. Otherwise, f̂0101 + f̂1001 = 0. Then, we have

f̂0101f̂1001 = −1 while f̂0100f̂1000 = 1. Thus, among these two products f̂0100f̂1000 and f̂0101f̂1001,
exactly one is equal to 1, while the other is −1. Then, we have

f̂0100f̂1000f̂0101f̂1001 = −1.

Similarly, by considering ∂̂23f̂ and ∂̂31f̂ respectively, we have

f̂0010f̂0100f̂0011f̂0101 = −1, and f̂1000f̂0010f̂1001f̂0011 = −1.

Multiply these three products, we have

|f̂0100|2|f̂0010|2|f̂1000|2|f̂0101|2|f̂0011|2|f̂1001|2 = (−1)3 = −1.

A contradiction!

Remark: In this proof, we showed that there is no irreducible 4-ary signature f̂ that satisfies both

2nd-Orth and f̂ ∈
∫̂
Ô⊗.

If Lemma 5.2 were to hold for signatures of arity 2n > 6, i.e., there is no irreducible signature

f̂ of 2n > 6 such that f̂ satisfies both 2nd-Orth and f̂ ∈
∫̂
Ô⊗, then the induction proof holds

and we are done. We show that this is true for signatures of arity 2n > 10 in Section 9. However,
there are extraordinary signatures of arity 6 and 8 with special closure properties (Bell properties)

such that they satisfy both 2nd-Orth and f̂ ∈
∫̂
Ô⊗.

6 First Major Obstacle: 6-ary Signatures with Bell Property

We consider the following 6-ary signature f̂6. We use χS to denote the indicator function on set S.
Let

f̂6 = χS · (−1)x1x2+x2x3+x1x3+x1x4+x2x5+x3x6

where S = S (f̂6) = E6 = {α ∈ Z6
2 | wt(α) ≡ 0 mod 2}. One can check that f̂6 is irreducible, and

f̂6 satisfies both 2nd-Orth and f̂ ∈
∫̂
Ô⊗. f̂6 has the following matrix form

M123,456(f̂6) =




1 0 0 1 0 1 1 0
0 −1 1 0 1 0 0 −1
0 1 −1 0 1 0 0 −1
−1 0 0 −1 0 1 1 0
0 1 1 0 −1 0 0 −1
−1 0 0 1 0 −1 1 0
−1 0 0 1 0 1 −1 0
0 1 1 0 1 0 0 1




. (6.1)

We use Figure 1 to visualize this matrix. A block with orange color denotes an entry +1 and a
block with blue color denotes an entry −1. Other blank blocks are zeros.
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Figure 1: A visualization of f̂6

6.1 The discovery of f̂6

In this subsection, we show how this extraordinary signature f̂6 was discovered. We prove that if
F̂ contains a 6-ary signature f̂ where f̂ /∈ Ô⊗, then Holant(6=2| F̂) is #P-hard or f̂6 is realizable

from f̂ after a holographic transformation by some Q̂ ∈ Ô2 (Theorem 6.5). The general strategy
of this proof is to show that we can realize signatures with special properties from f̂ step by step
(Lemmas 6.1, 6.2, 6.3 and 6.4), and finally we can realize f̂6, or else we can realize signatures that
lead to #P-hardness. So this f̂6 emerges as essentially the unique (and true) obstacle to our proof
of #P-hardness in this setting.

Lemma 6.1. Suppose that F̂ contains a 6-ary signature f̂ /∈ Ô⊗. Then, Holant( 6=2| F̂) is #P-hard,
or an irreducible 6-ary signature f̂ ′ is realizable from f̂ , where f̂ ′(α) = 0 for all α with wt(α) = 2
or 4. Moreover, f̂ ′ is realizable by extending variables of f̂ with nonzero binary signatures in Ô
that are realizable by factorization from ∂̂12f̂ .

Proof. Since f̂ /∈ Ô⊗, f̂ 6≡ 0. Again, we may assume that f̂ is irreducible. Otherwise, by factoriza-
tion, we can realize a nonzero signature of odd arity, or a signature of arity 2 or 4 that is not in Ô⊗.
Then by Theorem 2.25, or Lemmas 5.1 or 5.2, we get #P-hardness. Under the assumption that
f̂ is irreducible, we may further assume that f̂ satisfies 2nd-Orth by Lemma 4.4. Also, we may
assume that f̂ ∈

∫
Ô⊗. Otherwise, there is a pair of indices {i, j} such that the 4-ary signature

∂̂ij f̂ /∈ Ô⊗. Then by Lemma 5.2, Holant( 6=2| F̂) is #P-hard.

If for all pairs of indices {i, j}, ∂̂ij f̂ ≡ 0, then by Lemma 2.10, we have f̂(α) = 0 for all α with
wt(α) 6= 0 and 6. Since f 6≡ 0, clearly such a signature does not satisfy 2nd-Orth. Contradiction.
Otherwise, there is a pair of indices {i, j} such that ∂̂ij f̂ 6≡ 0. By renaming variables, without loss of

generality, we assume that ∂̂12f̂ 6≡ 0. Since ∂̂12f̂ ∈ Ô⊗, in the UPF of ∂̂12f̂ , by renaming variables
we assume that variables x3 and x4 appear in one nonzero binary signature b̂1(x3, x4) ∈ Ô⊗, and
variables x5 and x6 appear in the other nonzero binary signature b̂2(x5, x6) ∈ Ô⊗. Thus, we have

∂̂12f̂ = b̂1(x3, x4)⊗ b̂2(x5, x6) 6≡ 0.

By Lemma 2.7, we know that these two binary signatures b̂1 and b̂2 are realizable by factoriza-
tion. Note that for a nonzero binary signature b̂i(x2i+1, x2i+2) ∈ Ô (i ∈ {1, 2}), if we connect the
variable x2i+1 of two copies of b̂i(x2i+1, x2i+2) using 6=2 (mating two binary signatures), then we
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get 6=2 up to a nonzero scalar. We consider the following gadget construction G1 on f̂ . Recall that
in the setting of Holant( 6=| F̂), variables are connected using 6=2. For i ∈ {1, 2}, by a slight abuse
of variable names, we connect the variable x2i+1 of f̂ with the variable x2i+1 of b̂i(x2i+1, x2i+2).
We get a signature f̂ ′ of arity 6. Such a gadget construction does not change the irreducibility

of f . Thus, f̂ ′ is irreducible. Again, we may assume that f̂ ′ ∈
∫̂
Ô⊗ and f̂ ′ satisfies 2nd-Orth.

Otherwise, we are done.
Consider ∂̂12f̂ ′. Since the above gadget construction G1 does not touch variables x1 and x2

of f , the operation of forming G1 commutes with the merging operation ∂̂12. Thus, ∂̂12f̂ ′ can be
realized by performing the gadget construction G1 on ∂̂12f̂ , which connects each binary signature
b̂i (i ∈ {1, 2}) of ∂̂12f̂ with another copy of itself using 6=2 (in the mating fashion). Then, each b̂i
in ∂̂12f̂ is changed to 6=2 up to a nonzero real scalar. After normalization and renaming variables,
we have

∂̂12f̂ ′ = (6=2)(x3, x4)⊗ ( 6=2)(x5, x6).

Since ∂̂12f̂ ′ ∈ D⊗, for any {i, j} disjoint with {1, 2} we have ∂̂(ij)(12)f̂ ′ ∈ D⊗, and hence ∂̂ij f̂ ′ 6≡ 0.

Now, we show that for all pairs of indices {i, j}, ∂̂ij f̂ ′ has even parity. We first consider the case

that {i, j} is disjoint with {1, 2}. Connect variables xi and xj of ∂̂12f̂ ′ using 6=2. Since ∂̂12f̂ ′ has

even parity, a merging gadget using 6=2 will change the parity from even to odd. Thus, ∂̂(ij)(12)f̂ ′

has odd parity. Consider ∂̂ij f̂ ′. Remember that ∂̂ij f̂ ′ 6≡ 0 since ∂̂(ij)(12)f̂ ′ 6≡ 0. Since f̂ ′ ∈
∫̂
Ô⊗,

We have ∂̂ij f̂ ′ ∈ O⊗. Thus, ∂̂ij f̂ ′ has (either odd or even) parity. For a contradiction, suppose

that it has odd parity. Then, ∂̂(12)(ij)f̂ ′ has even parity since it is realized by merging using 6=2. A

signature that has both even parity and odd parity is identically zero. Thus ∂̂(12)(ij)f̂ ′ is the zero

signature. However, since ∂̂(ij)(12)f̂ ′ ∈ D⊗, it is not the zero signature. Contradiction. Therefore,

∂̂ij f̂ ′ has even parity for all {i, j} disjoint with {1, 2}.
Then, consider ∂̂ij f̂ ′ for {i, j}∩{1, 2} 6= ∅. If {1, 2} = {i, j}, then clearly, ∂̂12f̂ ′ has even parity.

Otherwise, without loss of generality, we may assume that i = 1 and j 6= 2. Consider ∂̂1j f̂ ′ for

3 6 j 6 6. If it is a zero signature, then it has even parity. Otherwise, ∂̂1j f̂ ′ 6≡ 0. Since ∂̂1j f̂ ′ ∈ Ô⊗,
we assume that it has the following UPF

∂̂1j f̂ ′ = b̂′1(x2, xu)⊗ b̂′2(xv, xw).

By connecting variables xu and xv of ∂̂1j f̂ ′ using 6=2, we get ∂̂(uv)(1j)f̂ ′. Since the merging gadget

connects two nonzero binary signatures in Ô, the resulting signature is a nonzero binary signature.
Thus, ∂̂(uv)(1j)f̂ ′ 6≡ 0. Notice that {u, v} is disjoint with {1, 2}. As showed above, ∂̂uvf̂ ′ has even

parity. Then, ∂̂(1j)(uv)f̂ ′ has odd parity. For a contradiction, suppose that ∂̂1j f̂ ′ has odd parity.

Then ∂̂(uv)(1j)f̂ ′ has even parity. But a nonzero signature ∂̂(uv)(1j)f̂ ′ cannot have both even parity

and odd parity. Contradiction. Thus, ∂̂1j f̂ ′ has even parity.

We have proved that ∂̂ij f̂ ′ has even parity for all pairs of indices {i, j}. In other words, for

all pairs of indices {i, j} and all β ∈ Z4
2 with wt(β) = 1 or 3, we have (∂̂ij f̂ ′)(β) = 0. Then, by

Lemma 2.10, f̂ ′(α) = 0 for all α with wt(α) = 2 or 4. Clearly, f̂ ′ is realized by extending f̂ with
nonzero binary signatures in Ô that are realized by factorization from ∂̂12f̂ .

Lemma 6.2. Suppose that F̂ contains an irreducible 6-ary signature f̂ ′ where f̂ ′(α) = 0 for all α
with wt(α) = 2 or 4. Then, Holant( 6=2| F̂) is #P-hard, or S (f̂ ′) = O6 = {α ∈ Z6

2 | wt(α) is odd}
and all nonzero entries of f̂ ′ have the same norm.
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Proof. Since f̂ ′ is irreducible, again we may assume that f̂ ′ satisfies 2nd-Orth and f̂ ′ ∈
∫̂
Ô⊗. Let

{i, j, k, `} be an arbitrarily chosen subset of indices from {1, . . . , 6}, and {m,n} be the other two
indices. Then by equation (4.7), and the condition that f̂ ′ vanishes at weight 2 and 4, we have

|f̂ ′0001

ijk` |2 = |f̂ ′000100

ijk`mn|2 + |f̂ ′000111

ijk`mn|2 = |f̂ ′001000

ijk`mn|2 + |f̂ ′001011

ijk`mn|2 = |f̂ ′0010

ijk` |2. (6.2)

Also, by considering indices {k, `,m, n}, we have

|f̂ ′0100

k`mn|2 = |f̂ ′000100

ijk`mn|2 + |f̂ ′110100

ijk`mn|2 = |f̂ ′001000

ijk`mn|2 + |f̂ ′111000

ijk`mn|2 = |f̂ ′1000

k`mn|2. (6.3)

By ars, we have

|f̂ ′000111

ijk`mn|2 = |f̂ ′111000

ijk`mn|2, (6.4)

and
|f̂ ′001011

ijk`mn|2 = |f̂ ′110100

ijk`mn|2. (6.5)

By calculating (6.2) + (6.3) − (6.4) − (6.5), we have

|f̂ ′000100

ijk`mn|2 = |f̂ ′001000

ijk`mn|2. (6.6)

By (6.2) − (6.6), we have

|f̂ ′000111

ijk`mn|2 = |f̂ ′001011

ijk`mn|2. (6.7)

From (6.6), since the indices (i, j, k, `,m, n) can be an arbitrary permutation of (1, 2, 3, 4, 5, 6), for
all α, β ∈ Z6

2 with wt(α) = wt(β) = 1, we have |f̂ ′(α)| = |f̂ ′(β)|. The same statement holds for
wt(α) = wt(β) = 3, by (6.7).

Let a = |f̂ ′(~06)|; by ars, a = |f̂ ′(~16)| as well. It is the norm of entries of f̂ ′ on input of Hamming
weight 0 and 6. We use b to denote the norm of entries of f̂ ′ on inputs of Hamming weight 1. By
ars, b is also the norm of entries of f̂ ′ on inputs of Hamming weight 5. We use c to denote the
norm of entries of f̂ ′ on inputs of Hamming weight 3. Remember that by assumption, |f̂ ′(α)| = 0
if wt(α) = 2 or 4.

By equation (4.6), we have

|f̂ ′0000

1234|2 = a2 + 2b2 = |f̂ ′0011

1234|2 = 2c2.

Clearly, we have 0 6 a, b 6 c. If c = 0, then a = b = 0 which implies that f̂ ′ is a zero signature.
This is a contradiction since f̂ ′ is irreducible. Therefore c 6= 0. We normalize c to 1. Then

a2 + 2b2 = 2.

We will show that b = 1 and a = 0. This will finish the proof of the lemma. For a contradiction,
suppose that b < 1, then we also have a > 0.

Consider signatures f̂ ′
01

12, f̂ ′
10

12 and ∂̂12f̂ ′ = f̂ ′
01

12 + f̂ ′
10

12. Since f̂ ′(α) = 0 for all α with wt(α) =

2 or 4, f̂ ′
01

12(β) = 0 and f̂ ′
10

12(β) = 0 for all β with wt(β) = 1 or 3. Thus, f̂ ′
01

12 and f̂ ′
10

12 have even

parity. We also consider the complex inner product 〈f̂ ′01

12, f̂
′10

12〉. First we build the following table.
In Table 2, we call these four rows by Row 1, 2, 3 and 4 respectively and these nine columns by

Column 0, 1, . . . and 8 respectively. We use Ti,j to denote the cell in Row i and Column j. Table
2 is built as follows.
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f̂ ′
01

12 f̂ ′
010000

f̂ ′
010011

f̂ ′
010101

f̂ ′
010110

f̂ ′
011001

f̂ ′
011010

f̂ ′
011100

f̂ ′
011111

f̂ ′
10

12 f̂ ′
100000

f̂ ′
100011

f̂ ′
100101

f̂ ′
100110

f̂ ′
101001

f̂ ′
101010

f̂ ′
101100

f̂ ′
101111

∂̂12f̂ ′ s1 s2 s3 s4 s4 s3 s2 s1

〈f̂ ′01

12, f̂
′10

12〉 p1 p2 p3 p4 p4 p3 p2 p1

Table 2: Entries of f̂ ′
01

12, f̂ ′
10

12, ∂̂12f̂ ′ and pairwise product terms in 〈f̂ ′01

12, f̂
′10

12〉 on even-
weighed inputs

• In Row 1 and Row 2, we list the entries of signatures f̂ ′
01

12 and f̂ ′
10

12 that are on even-weighted
inputs (excluding the first two bits that are pinned) respectively. Note that, those that did
not appear are 0 entries on odd-weighted inputs (excluding the first two bits that are pinned)

of the signatures f̂ ′
01

12 and f̂ ′
10

12, since f̂ ′
01

12 and f̂ ′
10

12 have even parity.

• In Row 3, we list the corresponding entries of the signature ∂̂12f̂ ′ = f̂ ′
01

12 + f̂ ′
10

12, i.e., T3,j =
T1,j + T2,j for 1 6 j 6 8.

• In Row 4, we list the corresponding items in the complex inner product 〈f̂ ′01

12, f̂
′10

12〉, i.e.,
T4,j = T1,j · T2,j for 1 6 j 6 8.

For 1 6 j 6 8, we consider the entry in T1,j and the entry in T2,9−j . By ars, we have T1,j = T2,9−j
because their corresponding inputs are complement of each other. Thus,

T3,j = T1,j + T2,j = T2,9−j + T1,9−j = T3,9−j ,

and
T4,j = T1,j · T2,j = T2,9−j · T2,9−j = T4,9−j .

We use s1, . . . , s4 to denote the values in T3,1, . . . , T3,4 and p1, . . . , p4 to denote the values in
T4,1, . . . , T4,4. Correspondingly, the values in T3,5, . . . , T3,8 are s4, . . . , s1 and the values in T4,5, . . . , T4,8

are p4, . . . , p1. We also use xj and yj (1 6 j 6 8) to denote the entries in T1,j and T2,j respectively.

By 2nd-Orth, we have 〈f̂ ′01

12, f̂
′10

12〉 = 2(p1 + p2 + p3 + p4) = 0. Also we have |p1| = b2 and
|p2| = |p3| = |p4| = 1. Notice the fact that if xi + yi = 0, then xi · yi = xi · −xi = −|xi|2 = −|xi · yi|.
Thus, if s1 = 0 then p1 = −|p1| = −b2 and for any i = 2, 3, 4, if si = 0 then pi = −1. Note that

∂̂12f̂ ′(β) = f̂ ′
01

12(β) + f̂ ′
10

12(β) = 0 for all β with wt(β) = 1 or 3. Among all 16 entries of ∂̂12f̂ ′,
s1, . . . , s4, s4, . . . , s1 are those that are possibly nonzero. Since ∂̂12f̂ ′ ∈ Ô⊗, it has support of size
either 4 or 0. Thus, among s1, s2, s3 and s4, either exactly two of them are zero or they are all zero.
There are three possible cases.

• s1 = s2 = s3 = s4 = 0. Then p1 + p2 + p3 + p4 = −b2 − 3 6 −3 6= 0. Contradiction.
• s1 6= 0 and two of s2, s3 and s4 are zero. Without loss of generality, we may assume that
s2 = s3 = 0. Then p2 = p3 = −1. Since p1 +p2 +p3 +p4 = 0, we have p1 +p4 = −p2−p3 = 2.
Then, 2 = |p1 + p4| 6 |p1|+ |p4| = b2 + 1 < 2. Contradiction.
• s1 = 0 and one of s2, s3 and s4 is zero. Without loss of generality, we may assume that s2 = 0.

Then p1 = −b2 and p2 = −1. Thus, p3 + p4 = −p1 − p2 = 1 + b2 < 2. Let θ = arccos 1+b2

2 .
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We know that 0 < θ < π
2 . Recall that |p3| = |p4| = 1. Thus, p3 = e±iθ and p4 = e∓iθ (and

p3 = p4).

Let P = {−1, eiθ, e−iθ}. Thus, p2, p3, p4 ∈ P . Otherwise, we get a contradiction.
Now, we consider signatures ∂̂ij f̂ ′ for all pairs of indices {i, j}. By symmetry, the same conclu-

sion holds. In other words, let {i, j} be an arbitrarily chosen pair of indices from {1, . . . , 6} and
{k, `,m, n} be the other four indices, and let β ∈ Z4

2 be an assignment on variables (xk, x`, xm, xn)

with wt(β) = 2. Then, we have f̂ ′
01β

ijk`mn · f̂ ′
10β

ijk`mn ∈ P. Since the indices (i, j, k, `,m, n) can be an

arbitrary permutation of (1, 2, 3, 4, 5, 6), we have f̂ ′(α) · f̂ ′(α′) ∈ P for any two assignments α and
α′ on the six variables where wt(α) = wt(α′) = 3 and wt(α ⊕ α′) = 2, because for any such two
strings α and α′, there exist two bit positions on which α and α′ take values 01 and 10 respectively.

We consider the following three inputs α1 = 100011, α2 = 010011 and α3 = 001011 of f̂ ′. We

have f̂ ′(α1) · f̂ ′(α2) = q12 ∈ P , f̂ ′(α2) · f̂ ′(α3) = q23 ∈ P and f̂ ′(α1) · f̂ ′(α3) = q13 ∈ P. Recall that
|f̂ ′(α2)| = 1 since wt(α2) = 3. Then,

q12 · q23 = f̂ ′(α1) · f̂ ′(α2) · f̂ ′(α2) · f̂ ′(α3) = |f̂ ′(α2)|2 · f̂ ′(α1) · f̂ ′(α3) = q13 ∈ P.
However, since 0 < θ < π

2 , it is easy to check that for any two (not necessarily distinct) elements in
P , their product is not in P . Thus, we get a contradiction. This proves that b = c = 1 and a = 0.

Therefore we have proved that, S (f̂ ′) = O6, and all its nonzero entries have the same norm
that is normalized to 1.

Lemma 6.3. Suppose that F̂ contains an irreducible 6-ary signature f̂ ′ where S (f̂ ′) = O6 and
|f̂ ′(α)| = 1 for all α ∈ S (f̂ ′). Then, Holant( 6=2| F̂) is #P-hard, or after a holographic transfor-

mation by some Q̂ =
[
ρ 0
0 ρ

]
∈ Ô2 where ρ = eiδ and 0 6 δ < π/2, an irreducible 6-ary signature

f̂ ′′ and =2 are realizable from f̂ ′ where S (f̂ ′′) = O6 and there exists λ = 1 or i such that for

all α ∈ S (f̂ ′′), f̂ ′′(α) = ±λ, i.e., Holant( 6=2|=2, f̂ ′′, Q̂F̂) 6T Holant( 6=2| F̂) where f̂ ′′ = Q̂f̂ ′.
Moreover, the nonzero binary signature (ρ2, 0, 0, ρ2) ∈ Ô is realizable from ∂̂ij f̂ ′ for some {i, j}.
Proof. Again, we may assume that f̂ ′ satisfies 2nd-Orth and f̂ ′ ∈

∫̂
Ô⊗. We first show that there

exists λ = 1 or i such that for all α ∈ S (f̂ ′) with wt(α) = 3, f̂ ′′(α) = ±λ, or else we get
#P-hardness.

Let’s revisit Table 2. Now we have |p1| = |p2| = |p3| = |p4| = 1. Recall that for 1 6 i 6 4,
si = 0 implies that pi = −1. Since ∂̂12f̂ ′ ∈ Ô⊗2, it has support of size 4 or 0. Thus, among s1, s2, s3

and s4, either exactly two of them are zero or they are all zero. If they are all zero, then we have
p1 + p2 + p3 + p4 = −4 6= 0. This is a contradiction to our assumption that f̂ ′ satisfies 2nd-Orth.
Thus, exactly two of s1, s2, s3 and s4 are zeros. Suppose that they are si and sj . Recall that we
use xi and yi (1 6 i 6 8) to denote the entries in Row 1 and Row 2 of Table 2. Thus |xi| = |yi| = 1,
for 1 6 i 6 8. Since si = xi + yi = 0 and sj = xj + yj = 0, we have xi = −yi, and xj = −yj . Also,
since si = sj = 0, we have pi = pj = −1. Let {`, k} = {1, 2, 3, 4}\{i, j}. Then, by 2nd-Orth, we
have p` + pk = −pi − pj = 2. Since |p`| = |pk| = 1, we have p` = pk = 1. Note that p` = x` · y` = 1
and also 1 = |y`| = y` · y`. Thus, we have x` = y`. Similarly, xk = yk. Thus, for all 1 6 i 6 8,
xi = ±yi. Consider ∂̂ij f̂ ′ for all pairs of indices {i, j}. By symmetry, the same conclusion holds.

Thus, f̂(α) = ±f̂(α′) for any two inputs α and α′ on the six variables where wt(α) = wt(α′) = 3
and wt(α⊕ α′) = 2. In particular, we have

f̂ ′
000111

= ε1f̂ ′
001011

= ε2f̂ ′
011001

= ε3f̂ ′
111000

,
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where ε1, ε2, ε3 = ±1 independently. By ars, we have f̂ ′
000111

= f̂ ′
111000

.

• If f̂ ′
000111

= f̂ ′
111000

= f̂ ′
111000

, then f̂ ′
111000

= ±1.

• If f̂ ′
000111

= −f̂ ′111000
= f̂ ′

111000
, then f̂ ′

111000
= ±i.

Thus, there exists λ = 1 or i such that f̂ ′
000111

= ±λ and f̂ ′
111000

= ±λ. Consider any α ∈ Z6
2 with

wt(α) = 3. If α ∈ {000111, 111000}, then clearly, f̂ ′(α) = ±λ. Otherwise, either wt(α⊕000111) = 2
or wt(α ⊕ 111000) = 2. Then, f̂ ′(α) = ±λ. Thus, there exists λ = 1 or i such that for all α ∈ Z6

2

with wt(α) = 3, f̂ ′(α) = ±λ.
Since f̂ ′(α) 6= 0 for all α with wt(α) = 1, by Lemma 2.10, there exists a pair of indices {i, j}

such that (∂̂ij f̂ ′)0000 6= 0. Since ∂̂ij f̂ ′ ∈ O⊗, it is of the form (a, 0, 0, ā)⊗ (b, 0, 0, b̄), where ab 6= 0,
since no other factorization form in O⊗ has a nonzero value at 0000. By Lemma 2.7, we can
realize the signature ĝ = (a, 0, 0, ā). Here, we can normalize a to eiθ where 0 6 θ < π. Then, let

ρ = eiθ/2. Clearly, 0 6 θ/2 < π/2. Consider a holographic transformation by Q̂ =
[
ρ 0
0 ρ

]
. Note that

(6=2)(Q̂−1)⊗2 = (6=2) and Q̂⊗2ĝ = (1, 0, 0, 1). The holographic transformation by Q̂ does not change
6=2, but transfers ĝ = (a, 0, 0, ā) to (=2) = (1, 0, 0, 1). Thus, we have

Holant( 6=2| ĝ, f̂ ′, F̂) ≡T Holant( 6=2|=2, Q̂f̂ ′, Q̂F̂).

We denote Q̂f̂ ′ by f̂ ′′. Note that Q̂ does not change those entries of f̂ ′ that are on half-weighted
inputs. Thus, for all α with wt(α) = 3, we have f̂ ′′(α) = ±λ for some λ = 1 or i. Also, Q̂ does not

change the parity and irreducibility of f̂ ′. Thus f̂ ′′ has odd parity and f̂ ′′ is irreducible. Again, we

may assume that f̂ ′′ satisfies 2nd-Orth and f̂ ′′ ∈
∫̂
Ô⊗. Otherwise, we are done.

In the problem Holant( 6=2|=2, f̂ ′′, Q̂F̂), we can connect two 6=2 on the LHS using =2 on the RHS,

and then we can realize =2 on the LHS. Thus, we can use =2 to merge variables of f̂ ′′. Therefore,
we may further assume f̂ ′′ ∈

∫
Ô⊗, i.e., ∂ij f̂ ′′ ∈ Ô⊗ for all pairs of indices {i, j}; otherwise, there

exist two variables of f̂ ′′ such that by merging these two variables using =2, we can realize a 4-ary
signature that is not in Ô⊗, and then by Lemma 5.2 we are done.

Consider the signature ∂12f̂ ′′ = f̂ ′′
00

12 + f̂ ′′
11

12 and the inner product 〈f̂ ′′00

12, f̂
′′11

12〉. Same as Table 2,
we build the following Table 3.

f̂ ′′
00

12 f̂ ′′
000001

f̂ ′′
000010

f̂ ′′
000100

f̂ ′′
000111

f̂ ′′
001000

f̂ ′′
001011

f̂ ′′
001101

f̂ ′′
001110

f̂ ′′
11

12 f̂ ′′
110001

f̂ ′′
110010

f̂ ′′
110100

f̂ ′′
110111

f̂ ′′
111000

f̂ ′′
111011

f̂ ′′
111101

f̂ ′′
111110

∂12f̂ ′′ t1 t2 t3 t4 t4 t3 t2 t1

〈f̂ ′′00

12, f̂
′′11

12〉 q1 q2 q3 q4 q4 q3 q2 q1

Table 3: Entries of f̂ ′′
00

12, f̂ ′′
11

12, ∂12f̂ ′′ and pair-wise product terms in 〈f̂ ′′00

12, f̂
′′11

12〉 on
odd-weighed inputs

Same as the proof of xi = ±yi for Table 2, we have f̂ ′′
000001

= ±f̂ ′′110001
. Since f̂ ′′

110001
= ±λ,

f̂ ′′
000001

= ±λ, (here ± can be either ± or ∓). Consider ∂ij f̂ ′′ for all pairs of indices {i, j}. By
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symmetry, the same conclusion holds. Thus, for every α ∈ Z6
2 with wt(α) = 1, f̂ ′′(α) = ±λ.

Therefore, using ars, there exists λ = 1 or i such that for all α ∈ S (f̂ ′′), f̂ ′′(α) = ±λ, and we have
the reduction

Holant( 6=2|=2, f̂ ′′, Q̂F̂) 6T Holant( 6=2| F̂)

for some Q̂ ∈ Ô2. Clearly, f̂ ′′ = Q̂f̂ ′ where Q̂ =
[
ρ 0
0 ρ

]
∈ Ô2, and the nonzero binary signature

(ρ2, 0, 0, ρ2) ∈ Ô is realizable from ∂̂ij f̂ ′ for some {i, j}.

Finally, we go for the kill in the next lemma. Recall the signature f̂6 defined in (6.1). This Lord
of Intransigence at arity 6 makes its appearance in Lemma 6.4.

Lemma 6.4. Suppose that F̂ contains an irreducible 6-ary signature f̂ ′′ where S (f̂ ′′) = O6, and

there exists λ = 1 or i such that for all α ∈ S (f̂ ′′), f̂ ′′(α) = ±λ. Then, Holant( 6=2|=2, F̂) is #P-

hard, or f̂6 is realizable from f̂ ′′ and =2, i.e., Holant( 6=2| f̂6, F̂) 6T Holant( 6=2|=2, F̂). Moreover,

f̂6 is realizable by extending variables of f̂ ′′ with binary signatures in B̂, i.e., f̂6 ∈ {f̂ ′′}B̂6=2
.

Proof. Again, we may assume that f̂ ′′ satisfies 2nd-Orth and f̂ ′′ ∈
∫̂
Ô⊗. Since =2 is available on

the RHS, given any signature f̂ ∈ F̂ , we can extend any variable xi of f̂ with =2∈ B̂ using 6=2.
This gives a signature ĝ where ĝ0

i = f̂1
i and ĝ1

i = f̂0
i . We call this extending gadget construction

the flipping operation on variable xi. Clearly, it does not change the reducibility or irreducibility
of f̂ . But it changes the parity of f̂ if f̂ has parity. Once a signature f̂ is realizable, we can modify
it by flipping some of its variables.

We first show that we can realize a signature f̂∗ from f̂ ′′ having support S (f̂∗) = E6 = {α ∈
Z6

2 | wt(α) ≡ 0 mod 2}, and f̂∗(α) = ±1 for all α ∈ S (f̂∗). Remember that =2 is available. If we

connect =2 with an arbitrary variable of f̂ ′′ using 6=2, we will change the parity of f̂ ′′ from odd to
even. If f̂ ′′(α) = ±1 for all α ∈ S (f̂ ′′), then f̂∗ can be realized by flipping an arbitrary variable of

f̂ ′′. Otherwise, f̂ ′′(α) = ±i for all α ∈ S (f̂ ′′). Consider ∂̂12f̂ ′′. Look at Table 3. We use xi and yi
(1 6 i 6 8) to denote entries in Row 1 and 2. As we have showed, xi = ±yi. Thus, ti = ±2i or 0
for 1 6 i 6 4. Remember that if ti = 0 (i.e., xi = −yi), then qi = xi · yi = −xi · xi = −|xi|2 = −1.
If ti = 0 for all 1 6 i 6 4, then

〈f̂ ′′00

12, f̂
′′11

12〉 = 2(q1 + q2 + q3 + q4) = −4 6= 0.

This contradicts with our assumption that f̂ ′′ satisfies 2nd-Orth. Thus, ti (1 6 i 6 4) are not all

zeros. Then (∂̂12f̂ ′′) 6≡ 0. Thus, S (∂̂12f̂ ′′) 6= ∅ and (∂̂12f̂ ′′)(α) = ±2i for all α ∈ S (∂̂12f̂ ′′).
Since ∂̂12f̂ ′′ ∈ Ô⊗ and it has even parity, ∂̂12f̂ ′′ is of the form 2 · (a, 0, 0, ā) ⊗ (b, 0, 0, b̄) or

2 · (0, a, ā, 0)⊗ (0, b, b̄, 0), where the norms of a and b are normalized to 1. In both cases, we have
ab, āb, ab̄, āb̄ ∈ {i,−i}. Thus, ab · āb = (aā)b2 = b2 = ±1. Then, b = ±1 or ±i. If b = ±1, then
a = ab̄ · b = ±i. Similarly, if b = ±i, then a = ab̄ · b = ±1. Thus, among a and b, exactly one is
±i. Thus, by factorization we can realize the binary signature ĝ = (i, 0, 0,−i) or (0, i,−i, 0) up to a
scalar −1. Connecting an arbitrary variable of f̂ with a variable of ĝ, we can get a signature which
has parity and all its nonzero entries have value ±1. If the resulting signature has even parity, then
we get the desired f̂∗. If it has odd parity, then we can flip one of its variables to change the parity.
Thus, we can realize a signature f̂∗ by extending variables of f̂ ′′ with binary signatures in B̂⊗ such
that S (f̂∗) = E6, and f̂∗(α) = ±1 for all α ∈ S (f̂∗).
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Consider the following 16 entries of f̂∗. In Table 4, we list 16 entries of f̂∗ with x1x2x3 =
000, 011, 101, 110 as the row index and x4x5x6 = 000, 011, 101, 110 as the column index. We also
view these 16 entries in Table 4 as a 4-by-4 matrix denoted by Mr(f̂∗), and we call it the representa-

tive matrix of f̂∗. Note that for any α ∈ S (f̂∗) such that the entry f̂∗(α) does not appear inMr(f̂∗),

f̂∗(α) appears in Mr(f̂∗). Since f̂∗(α) = ±1 ∈ R, f̂∗(α) = f̂∗(α). By ars, f̂∗(α) = f̂∗(α) = f̂∗(α).

Thus, the 16 entries of the matrix Mr(f̂∗) listed in Table 4 gives a complete account for all the 32

nonzero entries of f̂∗.

x1x2x3
x4x5x6 000 (Col 1) 011 (Col 2) 101 (Col 3) 110 (Col 4)

000 (Row 1) f̂∗
000000

f̂∗
000011

f̂∗
000101

f̂∗
000110

011 (Row 2) f̂∗
011000

f̂∗
011011

f̂∗
011101

f̂∗
011110

101 (Row 3) f̂∗
101000

f̂∗
101011

f̂∗
101101

f̂∗
101110

110 (Row 4) f̂∗
110000

f̂∗
110011

f̂∗
110101

f̂∗
110110

Table 4: Representative entries of f̂∗

We use (mij)
4
i,j=1 to denote the 16 entries of Mr(f̂∗). We claim that any two rows of Mr(f̂∗) are

orthogonal; this follows from the fact that f̂∗ satisfies 2nd-Orth and ars. For example, consider

the first two rows of Mr(f̂∗). By 2nd-Orth, the inner product 〈f̂∗00

23, f̂
∗11

23〉 for the real-valued f̂∗ is

∑

(x1,x4,x5,x6)∈Z4
2

f̂∗
x100x4x5x6

f̂∗
x111x4x5x6

= 0,

where the sum has 8 nonzero product terms. The first 4 terms given by x1 = 0 are the pairwise
products m1jm2j , for 1 6 j 6 4. The second 4 terms are, by ars, the pairwise products m2jm1j

in the reversal order of 1 6 j 6 4, where we exchange row 1 with row 2 on the account of flipping
the summation index x1 from 0 to 1, and simultaneously flipping both x2 and x3. This shows that∑4

j=1m1jm2j = 0. Similarly any two columns of Mr(f̂∗) are orthogonal.

Also, we consider the inner product 〈f̂∗00

14, f̂
∗11

14〉 = 0. It is computed using the following 16

entries in Mr(f̂∗), listed in Table 5.

f̂∗
000000

f̂∗
000011

f̂∗
010010

f̂∗
010001

f̂∗
001010

f̂∗
001001

f̂∗
011000

f̂∗
011011

= m11 = m12 = m33 = m34 = m43 = m44 = m21 = m22

f̂∗
100100

f̂∗
100111

f̂∗
110110

f̂∗
110101

f̂∗
101110

f̂∗
101101

f̂∗
111100

f̂∗
111111

= m22 = m21 = m44 = m43 = m34 = m33 = m12 = m11

Table 5: Pair-wise product terms in 〈f̂∗00

14, f̂
∗11

14〉 on even-weighed inputs
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Let Mr(f̂∗)[1,2] be the 2-by-2 submatrix of Mr(f̂∗) by picking the first two rows and the first

two columns, and Mr(f̂∗)[3,4] be the 2-by-2 submatrix of Mr(f̂∗) by picking the last two rows and
the last two columns. Indeed,

〈f̂∗00

14, f̂
∗11

14〉 = 2(perm(Mr(f̂∗)[1,2]) + perm(Mr(f̂∗)[3,4]))

= 2(m11m22 +m12m21 +m33m44 +m34m43) = 0.

Then, we show that by renaming or flipping variables of f̂∗, we may modify f̂∗ to realize a
signature whose representative matrix is obtained by performing row permutation, column permu-
tation, or matrix transpose on Mr(f̂∗). First, if we exchange the names of variables (x1, x2, x3)

with variables (x4, x5, x6), then the representative matrix Mr(f̂∗) will be transposed. Next, con-
sider the group G of permutations on the rows {1, 2, 3, 4} effected by any sequence of operations
of renaming and flipping variables in {x1, x2, x3}. By renaming variables in {x1, x2, x3}, we can
switch any two rows among Row 2, 3 and 4. Thus S3 on {2, 3, 4} is contained in G. Also, if

we flip both variables x2 and x3 of f̂∗, then for the realized signature, its representative matrix
can be obtained by switching both the pair Row 1 and Row 2, and the pair Row 3 and Row 4
of Mr(f̂∗). Thus, the permutation (12)(34) ∈ G. It follows that G = S4. Thus, by renaming or

flipping variables of f̂∗, we can permute any two rows or any two columns of Mr(f̂∗), or transpose

Mr(f̂∗). For the resulting signature, we may assume that its representative matrix A also satisfy
perm(A[1,2]) + perm(A[3,4]) = 0, and any two rows of A are orthogonal and any two columns of A
are orthogonal. Otherwise, we get #P-hardness. In the following, without loss of generality, we
may modify Mr(f̂∗) by permuting any two rows or any two columns, or taking transpose. We show

that it will give Mr(f̂6), after a normalization by ±1. In other words, f̂6 is realizable from f̂∗ by
renaming or flipping variables, up to a normalization by ±1.

Consider any two rows, Row i and Row j, of Mr(f̂∗). Recall that every entry of Mr(f̂∗) is ±1.
We say that Row i and Row j differ in Column k if mik 6= mjk, which implies that mik = −mjk;
otherwise, they are equal mik = mjk. In the former case, mik ·mjk = −1, and in the latter case
mik ·mjk = 1. Since Row i and Row j are orthogonal, they differ in exactly two columns and are

equal in the other two columns. Similarly, for any two columns of Mr(f̂∗), they differ in exactly
two rows and are equal in the other two rows. Depending on the number of −1 entries in each row
and column of Mr(f̂∗), we consider the following two cases.

• Every row and column of Mr(f̂∗) has an odd number of −1 entries.
Consider Row 1. It has either exactly three −1 entries or exactly one −1 entry. If it has three
−1 entries, then we modify Mr(f̂∗) by multiplying the matrix with −1. This does not change
the parity of the number of −1 entries in each row and each column. By such a modification,
Row 1 has exactly one −1 entry. By permuting columns, we may assume that Row 1 is
(−1, 1, 1, 1). Consider the number of −1 entries in Rows 2, 3 and 4.

– If they all have exactly one −1 entry, by orthogonality, the unique column locations of
the −1 entry in each row must be pairwise distinct. Then, by possibly permuting rows
2, 3 and 4 we may assume that the matrix Mr(f̂∗) has the following form

Mr(f̂∗) =




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 .
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Then, perm(Mr(f̂∗)[1,2]) + perm(Mr(f̂∗)[3,4]) = 2 + 2 = 4 6= 0. Contradiction.
– Otherwise, among Rows 2, 3 and 4, there is one that has three −1 entries. By per-

muting rows, we may assume that Row 2 has three −1 entries. Since Row 2 and Row
1 differ in two columns, the only +1 entry in Row 2 is not in Column 1. By possibly
permuting Columns 2, 3 and 4, without loss of generality, we may assume that Row 2
is (−1, 1,−1,−1). Then, we consider Column 3 and Column 4. Since every column has
an odd number of −1 entries and m13 = 1 and m23 = −1, we have m33 = m43, both
+1 or −1. Similarly, m34 = m44. Also, since Column 3 and Column 4 differ in exactly
two rows, and m13 = m14 and m23 = m24, we have m33 = −m34 and m43 = −m44.
Thus, Mr(f̂∗)[3,4] = ±

[
1 −1
1 −1

]
. In both cases, we have perm(Mr(f̂∗)[1,2]) = −2. No-

tice that Mr(f̂∗)[1,2] =
[−1 1
−1 1

]
. Thus, perm(Mr(f̂∗)[1,2]) + perm(Mr(f̂∗)[3,4]) = −4 6= 0.

Contradiction.
• There is a row or a column of Mr(f̂∗) such that it has an even number of −1 entries. By

transposing Mr(f̂∗), we may assume that it is a row, say Row i. For any other Row j, it
differs with Row i in exactly two columns. Thus, Row j also has an even number of −1
entries. If all four rows of Mr(f̂∗) have exactly two −1 entries, then one can check that there
are two rows such that one row is a scalar (±1) multiple of the other, thus not orthogonal;
this is a contradiction. Thus, there exists a row in which the number of −1 entries is 0 or 4.
By permuting rows, we may assume that it is Row 1. Also, by possibly multiplying Mr(f̂∗)
with −1, we may assume that all entries of Row 1 are +1. Thus, Row 1 is (1, 1, 1, 1).
By orthogonality, all other rows have exactly two −1 entries. By permuting columns (which
does not change Row 1), we may assume that Row 2 is (−1,−1, 1, 1). Then, consider Row
3. It also has exactly two −1 entries. Moreover, since Row 2 and Row 3 differ in 2 columns,
among m31 and m32, exactly one is −1. By permuting Column 1 and Column 2 (which does
not change Row 1 and Row 2), we may assume that m31 = −1. Also, among m33 and m34,
exactly one is −1. By permuting Column 3 and Column 4 (still this will not change Row 1
and Row 2), we may assume that m33 = −1. Thus, Row 3 is (−1, 1,−1, 1). Finally, consider
Row 4. It also has two −1 entries. One can easily check that Row 4 has two possible forms,
(−1, 1, 1,−1) or (1,−1,−1, 1). If Row 4 is (1,−1,−1, 1), then,

Mr(f̂∗) =




1 1 1 1
−1 −1 1 1
−1 1 −1 1
1 −1 −1 1


 .

Thus, perm(Mr(f̂∗)[12]) + perm(Mr(f̂∗)[34]) = −4 6= 0. Contradiction.
Thus, Row 4 is (−1, 1, 1,−1). Then

Mr(f̂∗) =




1 1 1 1
−1 −1 1 1
−1 1 −1 1
−1 1 1 −1


 .

This gives the desired Mr(f̂6).

Therefore, f̂6 is realizable from f̂∗.
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Since f̂6 is realized from f̂∗ by flipping (and permuting) variables, i.e., extending some variables

of f̂∗ with =2 (using 6=2), we have f̂6 ∈ {f̂∗}B̂6=2
. Since f̂∗ is realized from f̂ ′′ by extending some

variables of f̂ ′′ with signatures in B̂, we have f̂∗ ∈ {f̂ ′′}B̂6=2
. By Lemma 2.12, we have f̂6 ∈ {f̂ ′′}B̂6=2

.

Theorem 6.5. Suppose that F̂ contains a 6-ary signature f̂ /∈ Ô⊗. Then,
• Holant( 6=2| F̂) is #P-hard, or

• there exists some Q̂ ∈ Ô2 such that Holant( 6=2| f̂6, Q̂F̂) 6T Holant( 6=2| F̂).

Proof. By Lemmas 6.1, 6.2 and 6.3, Holant( 6=2| F̂) is #P-hard, or Holant( 6=2|=2, f̂ ′′, Q̂F̂) 6T

Holant( 6=2| F̂) for some Q̂ where Q ∈ Ô2, and some irreducible 6-ary signature f̂ ′′ where S (f̂ ′′) =

E6 and there exists λ = 1 or i such that for all α ∈ S (f̂ ′′), f̂ ′′(α) = ±λ. Remember that

Q̂F̂ = Q̂F where Q = ZQ̂Z−1 ∈ O2. Clearly, QF is a set of real-valued signatures of even arity.
Since F does not satisfy condition (T), by Lemma 2.23, QF also does not satisfy it. Then, by

Lemma 6.4, Holant( 6=2|=2, f̂ ′′, Q̂F̂) is #P-hard, or Holant(6=2| f̂6, Q̂F̂) 6T Holant( 6=2|=2, f̂ ′′, Q̂F̂).
Thus, Holant(6=2| F̂) is #P-hard, or Holant( 6=2| f̂6, Q̂F̂) 6T Holant( 6=2| F̂).

Remark: Theorem 6.5 can be more succinctly stated as simply that a reduction

Holant( 6=2| f̂6, Q̂F̂) 6T Holant( 6=2| F̂)

exists, because when Holant( 6=2| F̂) is #P-hard, the reduction exists trivially. However in keeping
with the cadence of the other lemmas and theorems in this subsection, we list them as two cases.

Now, we want to show that Holant(6=2| f̂6, Q̂F̂) is #P-hard for all Q̂ ∈ Ô2 and all F̂ where
F = ZF̂ is a real-valued signature set that does not satisfy condition (T). If so, then we are done.

Recall that for all Q̂ ∈ Ô2, Q̂F̂ = Q̂F for some Q ∈ O2. Moreover, for all Q ∈ O2, and all
real-valued F that does not satisfy condition (T), QF is also a real-valued signature set that does
not satisfy condition (T). Thus, it suffices for us to show that Holant(6=2| f̂6, F̂) is #P-hard for all
real-valued F that does not satisfy condition (T).

6.2 #P-hardness conditions and two properties of f̂6

In this subsection, we give three conditions (Lemmas 6.6, 6.8 and 6.9) which can quite straightfor-
wardly lead to the #P-hardness of Holant( 6=2| f̂6, F̂). We will extract two properties from f̂6, the
non-B̂ hardness (Definition 6.7) and the realizability of B̂ (Lemma 6.11). Later, we will prove the
#P-hardness of Holant(6=2| f̂6, F̂) based on these two properties.

Lemma 6.6. Holant( 6=2| f̂6, F̂) is #P-hard if F̂ contains a nonzero binary signature b̂ /∈ B̂⊗.

Proof. If b̂ /∈ Ô⊗, then by Lemma 5.1, we are done. Otherwise, b̂ ∈ Ô⊗. Thus, b̂ = (a, 0, 0, ā) or
b̂ = (0, a, ā, 0). Since b̂ 6≡ 0, a 6= 0. We normalize the norm of a to 1. Since b̂ /∈ B̂⊗, a 6= ±1 or ±i.
We first consider the case that b̂(y1, y2) = (0, a, ā, 0). Connecting variables x1 and x2 of f̂6 with
variables y2 and y1 of b̂ using 6=2, we get a 4-ary signature ĝ. We list the truth table of ĝ indexed
by the assignments of variables (x3, x4, x5, x6) from 0000 to 1111.

ĝ = (0, a+ ā,−a+ ā, 0, a− ā, 0, 0,−a− ā,−a− ā, 0, 0,−a+ ā, 0, a− ā, a+ ā, 0).
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Since a has norm 1, and a 6= ±1 or ±i, |a ± ā| 6= 0. Thus, |S (ĝ)| = 8. Clearly, every 4-ary
signature that is in Ô⊗ has support of size 0 or 4. Thus, ĝ /∈ Ô⊗. By Lemma 5.2, Holant(6=2| f̂6, F̂)
is #P-hard. We prove the case b̂(y1, y2) = (a, 0, 0, ā) similarly. By connecting variables x1 and x2

of f̂6 with variables y1 and y2 of b̂ using 6=2, we also get a 4-ary signature that is not in Ô⊗. The
lemma is proved.

Definition 6.7. We say a signature set F̂ is non-B̂ hard, if for any nonzero binary signature
b̂ /∈ B̂⊗, the problem Holant( 6=2| b̂, F̂) is #P-hard. Correspondingly, we say that a signature set F
is non-B hard, if for any nonzero binary signature b /∈ B⊗, the problem Holant(b,F) is #P-hard.

Clearly, Lemma 6.6 says that {f̂6}∪ F̂ is non-B̂ hard for any F̂ (where F = ZF̂ is a real-valued
signature set that does not satisfy condition (T)). Before we give the other two #P-hardness
conditions, we first explain why we introduce the notion of non-B̂ hardness. We will extract two
properties from f̂6 to prove the #P-hardness of Holant( 6=2| f̂6, F̂). These are the non-B̂ hardness
and the realizability of B̂. From Lemma 6.111 we get the redutcion Holant( 6=2| f̂6, B̂ ∪ F̂) 6
Holant( 6=2| f̂6, F̂). We will show that for any non-B̂ hard set F̂ where F does not satisfy condition
(T), Holant(6=2| B̂ ∪ F̂) is #P-hard (Theorem 7.19). This directly implies that Holant( 6=2| f̂6, F̂) is
#P-hard when F does not satisfy condition (T). This slightly more general Theorem 7.19 will also
be used when dealing with signatures of arity 8. Now, let us continue to give two more #P-hardness
conditions without assuming the availability of B (Lemma 6.8 and 6.9).

Lemma 6.8. Suppose that F̂ is non-B̂ hard. Then Holant( 6=2| F̂) is #P-hard if F̂ contains a
nonzero 4-ary signature f̂ /∈ B̂⊗.

Proof. If f̂ /∈ Ô⊗, then by Lemma 5.2, we are done. Otherwise, f̂ = b̂1 ⊗ b̂2, where the binary
signatures b̂1, b̂2 ∈ Ô⊗. Since f̂ /∈ B̂⊗, b̂1 and b̂2 are not both in B̂⊗. Then, we can realize a binary
signature that is not in B̂⊗ by factorization. Since F̂ is non-B̂ hard, we are done.

Let H = 1√
2

[
1 1
−1 1

]
. Then Ĥ = Z−1HZ =

[
(1+i)√

2
0

0
(1−i)√

2

]
=
[
eiπ/4 0

0 e−iπ/4

]
. Let f̂H6 = Ĥf̂6. Let

F̂6 = {f̂6}B̂6=2
be the set of signature realizable by extending variables of f̂6 with binary signatures

in B̂ using 6=2, and F̂H6 = {f̂H6 }B̂6=2
be the set of signature realizable by extending variables of f̂H6

with binary signatures in B̂ using 6=2. One can check that F̂H6 = ĤF̂6 6= F̂6.

Lemma 6.9. Suppose that F̂ is non-B̂ hard. Then, Holant( 6=2| F̂) is #P-hard if F̂ contains a

nonzero 6-ary signature f̂ /∈ B̂⊗ ∪ F̂6 ∪ F̂H6 .

Proof. If f̂ is reducible, since f̂ /∈ B̂⊗, then by factorization, we can realize a nonzero signature of
odd arity or a nonzero signature of arity 2 or 4 that is not in B̂⊗. If we have a nonzero signature
of odd arity, then we are done by Theorem 2.25. If we have a nonzero signature of 2, then we
are done because F̂ is non-B̂ hard. If we have a nonzero signature of 4, then we are done by
Lemma 6.8. Now we assume that f̂ is irreducible. In particular, being irreducible, f̂ 6∈ Ô⊗. For a
contradiction, suppose that Holant(6=2| F̂) is not #P-hard. Then, by Theorem 6.5, f̂6 is realizable

from f̂ . Remember that we realize f̂6 from f̂ by realizing f̂ ′, f̂ ′′ and f̂∗ (Lemmas 6.1, 6.3 and 6.4).

We will trace back this process and show that they are all in F̂6 ∪ F̂H6 , which contradicts with the

condition that f̂ /∈ F̂6 ∪ F̂H6 .
1This lemma and the following Theorem 7.19 are stated and proved in the setting of Holant(F).
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1. First, by Lemma 6.4, f̂6 ∈ {f̂ ′′}B̂6=2
. Then, by Lemma 2.12, f̂ ′′ ∈ {f̂6}B̂6=2

= F̂6.

2. Then, by Lemma 6.3, f̂ ′′ = Q̂f̂ ′ for some Q̂ =
[
e−iδ 0

0 eiδ

]
∈ Ô2 where 0 6 δ < π/2, and the

binary signature b̂ = (ei2δ, 0, 0, e−i2δ) is realizable from f̂ ′ where f̂ ′ is realizable from f̂ . Thus,
b̂ is realizable from F̂ . If ei2δ 6= ±1 or ±i, then b̂ /∈ B̂⊗. Since F̂ is non-B̂ hard, we get
#P-harness. Contradiction. Otherwise, since 0 6 δ < π/2, ei2δ = 1 or i and then, δ = 0 or

π/4. If δ = 0, then eiδ = e−iδ = 1 and f̂ ′′ = Q̂f̂ ′ = f̂ ′. Thus, f̂ ′ ∈ F̂6. If δ = π/4, then

f̂ ′ = Q̂−1f̂ ′′ where Q̂−1 =
[
eiπ/4 0

0 e−iπ/4

]
= Ĥ. Since f̂ ′′ ∈ F̂6, f̂ ′ = Ĥf̂ ′′ ∈ ĤF̂6 = F̂H6 .

3. Finally, by Lemma 6.1, f̂ ′ is realized by extending variables of f̂ with nonzero binary sig-
natures realized from ∂̂12f̂ . If we can realize a nonzero binary signature that is not in B̂⊗1

from ∂̂12f̂ by factorization, then since F̂ is non-B̂ hard, we get #P-hardness. Contradiction.
Thus, we may assume that all nonzero binary signatures realizable from ∂̂12f̂ are in B̂⊗1.
Then, f̂ ′ is realized by extending variables of f̂ with nonzero binary signatures in B̂⊗1. Thus,

f̂ ′ ∈ {f̂}B̂6=2
. By Lemma 2.12, f̂ ∈ {f̂ ′}B̂6=2

. Since f̂ ′ ∈ F̂6 or F̂H6 , f̂ ∈ F̂6 or F̂H6 . Contradiction.

Thus, Holant(6=2| F̂) is #P-hard if F̂ contains a nonzero 6-ary signature f̂ /∈ B̂⊗ ∪ F̂6 ∪ F̂H6 .

We go back to real-valued Holant problems under the Z-transformation. Consider the problem
Holant(f6,F) where

f6 = Zf̂6 = χS · (−1)x1+x2+x3+x1x2+x2x3+x1x3+x1x4+x2x5+x3x6

and S = S (f6) = E6. The signature f6 has a quite similar matrix form to f̂6.

M123,456(f6) =




1 0 0 1 0 1 1 0
0 1 −1 0 −1 0 0 1
0 −1 1 0 −1 0 0 1
−1 0 0 −1 0 1 1 0
0 −1 −1 0 1 0 0 1
−1 0 0 1 0 −1 1 0
−1 0 0 1 0 1 −1 0
0 −1 −1 0 −1 0 0 −1




.

Since f̂H6 = Ĥf̂6 = Ĥf6, fH6 = Zf̂H6 = Hf6. Also, since F̂6 = {f̂6}B̂6=2
, F6 = ZF̂6 = {f6}B=2

is the set of signatures realizable by extending variables of f6 with binary signatures in B using

=2. Similarly, since F̂H6 = {f̂H6 }B̂6=2
, FH6 = ZF̂H6 = {f6}B=2

is the set of signatures realizable by

extending variables of fH6 with binary signatures in B using =2. Notice that f6 ∈ A and B ⊆ A .
Thus, F6 ⊆ A . Also, the binary signature (1, 1,−1, 1) with a signature matrix H is in A . Thus,
fH6 ∈ A and then FH6 ⊆ A . Also, S (f6) = E6 and one can check that S (fH6 ) = O6. Thus, for
every f ∈ F6 ∪ FH6 , S (f) = E6 or O6. Since f6 and fH6 satisfy 2nd-Orth, one can easily check
that every f ∈ F6 ∪ FH6 satisfies 2nd-Orth.

We want to show that Holant(f6,F) ≡T Holant( 6=2| f̂6, F̂) is #P-hard for all real-valued F that
does not satisfy condition (T). By Lemma 6.6, {f6} ∪ F is non-B hard. We restate Lemmas 6.8
and 6.9 in the setting of Holant(F) for non-B hard F .

Corollary 6.10. Suppose that F is non-B hard. Then, Holant(F) is #P-hard if F contains a
nonzero signature f of arity at most 6 where f /∈ B⊗ ∪ F6 ∪ FH6 .
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Remark: Notice that B⊗∪F6∪FH6 ⊆ A . Thus, for any non-B hard set F , Holant(F) is #P-hard
if F contains a nonzero signature f of arity at most 6 where f /∈ A .

Now, we show that all four binary signatures in B are realizable from f6.

Lemma 6.11. Holant(B, f6,F) 6 Holant(f6,F).

Proof. Consider ∂12f6. Notice that

[
f6

00
12

f6
11
12

]
=

[
1 0 0 1 0 1 1 0 0 1 −1 0 −1 0 0 1
−1 0 0 1 0 1 −1 0 0 −1 −1 0 −1 0 0 −1

]
.

Thus, ∂12f6(x3, x4, x5, x6) = f6
00
12 +f6

11
12 has the truth table (0, 0, 0, 1, 0, 1, 0, 0, 0, 0,−1, 0,−1, 0, 0, 0).

In other words, ∂12f6(0011) = 1, ∂12f6(0101) = 1, ∂12f6(1010) = −1, ∂12f6(1100) = −1, and
∂12f6 = 0 elsewhere. Then,

S (∂12f6) = {(x3, x4, x5, x6) ∈ Z4
2 | x3 6= x6 ∧ x4 6= x5},

and
∂12f6(x3, x4, x5, x6) = (6=−2 )(x3, x6)⊗ ( 6=2)(x4, x5).

Thus, by factorization we can realize 6=−2 and 6=2. Then connecting a variable of 6=−2 with a variable
of 6=2 (using =2), we will get =−2 . Thus, B is realizable from f6.

We define the problem Holantb(F) to be Holant(B∪F). For all {i, j} and every b ∈ B, consider

signatures ∂bijf6 (i.e., ∂+
ijf6, ∂+̂

ijf6, ∂−ijf6 and ∂−̂ijf6) realized by merging variables xi and xj of f6

using the binary signature b. If there were one that is not in B⊗2, then by Corollary 6.10, we would
be done. However, it is observed in [15] that f6 satisfies the following Bell property.

Definition 6.12 (Bell property). An irreducible signature f satisfies the Bell property if for all
pairs of indices {i, j} and every b ∈ B, ∂bijf ∈ B⊗.

It can be directly checked that

Lemma 6.13. Every signature in F6 ∪ FH6 satisfies the Bell property.

Now consider all possible gadget constructions. If we could realize a signature of arity at most
6 that is not in B⊗ ∪F6 ∪FH6 from B and f6 by any possible gadget, then by Corollary 6.10 there
would be a somewhat more straightforward proof to our dichotomy theorem for the case of arity 6.
However, after many failed attempts, we believe there is a more intrinsic reason why this approach
cannot work. The following conjecture formulates this difficulty. This truly makes f6 the Lord of
Intransigence at arity 6.

Conjecture 6.14. All nonzero signatures of arity at most 6 realizable from B∪{f6} are in B⊗∪F6.
Also, all signatures of arity at most 6 realizable from B ∪ {fH6 } are in B⊗ ∪ FH6 .

So to prove the #P-hardness of Holantb(f6,F), we have to make additional use of F . In
particular, we need to use a non-affine signature in F .
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7 The #P-hardness of Holantb(F)
In this section, we prove that for all real-valued non-B hard set F that does not satisfy condition
(T), Holantb(F) is #P-hard (Theorem 7.19). For any real-valued set F that does not satisfy
condition (T), the set {f6} ∪ F is non-B hard, and since B is realizable from f6, Holant(f6,F) is
#P-hard by Theorem 7.19. Combining with Theorem 6.5, we show that Holant( 6=6| F̂) is #P-hard
if F̂ contains a 6-ary signature that is not in Ô⊗ (Lemma 7.21).

Since F does not satisfy condition (T), F 6⊆ A . Thus, it contains a signature f of arity 2n that
is not in A . In the following, we will prove the #P-hardness of Holantb(F) where F is non-B hard
by induction on 2n > 2. For the base cases 2n 6 6, by Corollary 6.10 and the Remark after that,
Holantb(F) is #P-hard. Then, starting with a signature of arity 2n > 8 that is not in A , we want
to realize a signature of lower arity 2k 6 2n− 2 that is also not in A , or else we get #P-hardness
directly. If we can reduce the arity down to at most 6, then we are done.

Let f /∈ A be a nonzero signature of arity 2n > 8. We first show that if f does not have parity,
then we get #P-hardness (Lemma 7.1). Then, suppose that f has parity. If f is reducible, since f
has even arity (as we assumed so starting from Section 3), it is a tensor product of two signatures of
odd arity, or a tensor product of two signatures of even arity which are not both in A since f /∈ A .
Thus, by factorization, we can realize a nonzero signature of odd arity and we get #P-hardness by
Theorem 2.25, or we can realize a signature of lower even arity that is not in A . Thus, we may
assume that f is irreducible. Then by Lemma 4.4 and the Remark after Definition 4.1 we may
assume f satisfies 2nd-Orth.

Consider signatures ∂bijf (i.e., ∂+
ijf , ∂−ijf , ∂+̂

ijf and ∂−̂ijf) realized by merging variables xi and xj
of f using b ∈ B for all pairs of indices {i, j} and every b ∈ B. If there is one signature that is not in
A , then we have realized a signature of arity 2n− 2 that is not in A . Otherwise, ∂bijf ∈ A for all
{i, j} and every b ∈ B. We denote this property by f ∈

∫
BA . Now, assuming that f has parity, f

satisfies 2nd-Orth and f ∈
∫
BA , we would like to reach a contradiction by showing that this would

force f itself to belong to A . However, quite amazingly, there do exist non-affine signatures that
satisfy these stringent conditions. We will show how they are discovered and handled (Lemmas 7.9,
7.16 and 7.18).

In this section, all signatures are real-valued. When we say an entry of a signature has norm
a, we mean it takes value ±a. Since B is available in Holantb(F), if a signature f is realizable in
Holantb(F), then we can realize all signatures in {f}B=2

that are realizable by extending f with
B⊗1 (using =2). If we extend the variable xi of f with 6=2, then we will get a signature g where
g0
i = f1

i and g1
i = f0

i . This is a flipping operation on the variable xi. If we extend the variable xi
of f with =−2 , then we will get a signature g where g0

i = f0
i and g1

i = −f1
i . We call this a negating

operation on the variable xi. In the following, once f is realizable in Holantb(F), we may modify
it by flipping or negating. This will not change the complexity of the problem.

7.1 Parity condition

We first show that if F contains a signature that does not have parity, then we can get #P-hardness.

Lemma 7.1. Suppose that F is non-B hard and F contains a signature f of arity 2n. If f does
not have parity, then Holantb(F) is #P-hard.

Proof. We prove this lemma by induction on 2n. We first consider the base case that 2n = 2. Since
f has no parity, f /∈ B. Since F is non-B hard, Holantb(F) is #P-hard.
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Now, suppose that Holantb(F) is #P-hard when 2n = 2k > 2. Consider the case that 2n =
2k + 2 > 4. We will show that we can realize a signature g of arity 2k with no parity from f , i.e.,
Holantb(g,F) 6T Holantb(F). Then by the induction hypothesis, we have Holantb(F) is #P-hard
when 2n = 2k + 2.

Since f has no parity, f 6≡ 0. It has at least a nonzero entry. By flipping variables of f , we may
assume that f(~02n) = x 6= 0. We denote ~02n by α = 000δ where δ = ~02n−3. Since f has no parity
and f(~02n) 6= 0, there exists an input α′ with wt(α′) ≡ 1 (mod 2) such that f(α′) = x′ 6= 0. Since
2n > 4, we can find three bits of α′ such that on these three bits, the values of α′ are the same. By
renaming variables of f which gives a permutation of α′, without loss of generality, we may assume
that these are the first three bits, i.e, α′1 = α′2 = α′3.

We first consider the case that α′1α
′
2α
′
3 = 000. Then, α′ = 000δ′ for some δ′ ∈ Z2n−3

2 where
wt(δ′) = wt(000δ′) = wt(α′) ≡ 1 (mod 2). We consider the following six entries of f .

x = f(000δ), x′ = f(000δ′), y = f(011δ), y′ = f(011δ′), z = f(101δ), z′ = f(101δ′).

Consider signatures ∂+
23f and ∂−23f realized by connecting variables x2 and x3 of f using =+

2

and =−2 respectively. Clearly, ∂+
23f and ∂−23f have arity 2n− 2. If one of them has no parity, then

we are done. Thus, we may assume that ∂+
23f and ∂−23f both have parity. Note that x + y and

x′ + y′ are entries of the signature ∂+
23f on inputs 0δ and 0δ′ respectively. Clearly, wt(0δ) = 0 and

wt(0δ′) ≡ 1 (mod 2). Since ∂+
23f has parity, at least one of x+ y and x′+ y′ is zero. Thus, we have

(x + y)(x′ + y′) = 0. Also, note that x − y and x′ − y′ are entries of the signature ∂−23f on inputs
0δ and 0δ′ respectively. Then, since ∂−23f has parity, similarly we have (x− y)(x′ − y′) = 0. Thus,

(x+ y)(x′ + y′) + (x− y)(x′ − y′) = 2(xx′ + yy′) = 0. (7.1)

Consider signatures ∂+
13f and ∂−13f realized by connecting variables x1 and x3 of f using =2 and

=−2 respectively. Again if one of them has no parity, then we are done. Suppose that ∂+
13f and ∂−13f

both have parity. Then, (x + z)(x′ + z′) = 0 since x + z and x′ + z′ are entries of ∂+
13f on inputs

0δ and 0δ′ respectively. Similarly, (x− z)(x′ − z′) = 0. Thus,

(x+ z)(x′ + z′) + (x− z)(x′ − z′) = 2(xx′ + zz′) = 0. (7.2)

Consider signatures ∂+̂
12f and ∂−̂12f realized by connecting variables x1 and x2 of f using 6=2 and

6=−2 respectively. Again if one of them has no parity, then we are done. Suppose that ∂+̂
12f and ∂−̂12f

both have parity. Then, (y+ z)(y′ + z′) = 0 since y+ z and y′ + z′ are entries of ∂+̂
12f on inputs 1δ

and 1δ′ respectively, and wt(1δ) = 1 and wt(1δ′) ≡ 0(mod2). Similarly, (y− z)(y′− z′) = 0. Thus,

(y + z)(y′ + z′) + (y − z)(y′ − z′) = 2(yy′ + zz′) = 0. (7.3)

Then, consider (7.1) + (7.2) − (7.3). We have xx′ = 0. However, since x = f(~02n) 6= 0 and
x′ = f(α′) 6= 0, xx′ 6= 0. Contradiction.

For the case that α′1α
′
2α
′
3 = 111, we have α′ = 111δ′ for some δ′ ∈ Z2n−3

2 where wt(δ′) =
wt(111δ′)− 3 = wt(α′)− 3 ≡ 0 (mod 2). We consider the following six entries of f .

x = f(000δ), x′ = f(111δ′), y = f(011δ), y′ = f(100δ′), z = f(101δ), z′ = f(010δ′).

We still consider signatures ∂+
23f , ∂−23f , ∂+

13f , ∂−13f , ∂+̂
12f and ∂−̂12f and suppose that they all have

parity. Then, similar to the above proof of the case α′1α
′
2α
′
3 = 000, we can show that xx′ = 0.

Contradiction.
Thus, among ∂+

23f , ∂−23f , ∂+
13f , ∂−13f , ∂+̂

12f and ∂−̂12f , at least one does not have parity. Thus,
we realized a 2k-ary signature with no parity. By our induction hypothesis, we are done.
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7.2 Norm condition

Under the assumptions that f has parity, f satisfies 2nd-Orth and f ∈
∫
BA , we consider whether

all nonzero entries of f have the same norm. In Lemma 7.9, we will show that the answer is yes,
but only for signatures of arity 2n > 10 (this lemma does not require F to be non-B hard). For a
signature f of arity 2n = 8, we show that either all nonzero entries of f have the same norm, or one
of the following signatures g8 or g′8 is realizable. These two signatures are defined by g8 = χS−4 ·f8

and g′8 = q8 − 4 · f8, where

S = S (q8) = E8, q8 = χS(−1)
∑

16i<j68 xixj and

f8 = χT with T = S (f8) = {(x1, x2, . . . , x8) ∈ Z8
2 | x1 + x2 + x3 + x4 = 0, x5 + x6 + x7 + x8 = 0,

x1 + x2 + x5 + x6 = 0, x1 + x3 + x5 + x7 = 0}.
(7.4)

It is here the function f8 makes its first appearance, we dub it the Queen of the Night. Clearly,
g8, g

′
8 /∈ A since their nonzero entries have two different norms 1 and 3. One can check that g8 and

g′8 have parity, g8 and g′8 satisfy 2nd-Orth and g8, g
′
8 ∈

∫
BA . Thus, one cannot get a non-affine

signature by connecting two variables of g8 or g′8 using signatures in B. However, fortunately by
merging two arbitrary variables of g8 using =2 and two arbitrary variables of g′8 using =−2 , we can
get 6-ary irreducible signatures that do not satisfy 2nd-Orth. Thus, we get #P-hardness.

The following Lemma 7.4 regarding the independence number of a family of special graphs is
at the heart of the discovery of the signature g8. It should be of independent interest.

Definition 7.2. Define the graphs G2n and H2n as follows. The vertex set V (G2n) is the set E2n

of all even weighted points in Z2n
2 . The vertex set V (H2n) is the set O2n of all odd weighted points

in Z2n
2 . Two points u, v ∈ E2n (or O2n) are connected by an edge iff wt(u⊕ v) = 2.

Let α(G2n) be the independence number of G2n i.e, the size of a maximum independent set of
G2n, and α(H2n) be the independence number of H2n. Let S ⊆ [2n]. We define ϕS be a mapping
that flips the values on bits in S for all u ∈ E2n. In other words, suppose that u′ = ϕS(u). Then,
u′i = ui if i ∈ S and u′i = ui if i /∈ S where u′i and ui are values of u and u on bit i respectively.
For all S, clearly wt(u ⊕ v) = 2 iff wt(ϕS(u) ⊕ ϕS(v)) = 2. When |S| is odd, ϕS(E2n) = O2n.
One can easily check that ϕS gives an isomorphism between G2n and H2n. When |S| is even,
ϕS(E2n) = E2n. Then, ϕS gives an automorphism of G2n. Also, by permuting these 2n bits, we
can get an automorphism of G2n. In fact, the automorphism group of G2n is generated by these
operations.

Lemma 7.3. Let 2n > 6. Every automorphism ψ of G2n is a product ϕS◦π for some automorphism
π induced by a permutation of 2n bits, and an automorphism ϕS given by flipping the values on
some bits in a set S of even cardinality.

Proof. Let ψ be an arbitrary automorphism of G2n. Suppose ψ(~02n) = u. Let S ⊆ [2n] be the
index set where ui = 1. Then |S| = wt(u) is even, and ψ′ = ϕS ◦ ψ fixes ~02n. Consider ψ′(v) for
all v ∈ E2n of wt(v) = 2. Since ψ′ is an automorphism fixing ~02n, ψ′(v) has weight 2. We denote
by eij the 2n-bit string with wt(eij) = 2 having 1’s on bits i and j, for 1 6 i < j 6 2n. Then,
e12 = 11~02n−2. By a suitable permutation π of the variables, we have π ◦ ψ′(e12) = e12, while still
fixing ~02n. We will show that π ◦ ψ′ = π ◦ ϕS ◦ ψ is the identity mapping, i.e., π ◦ ϕS ◦ ψ = 1G2n .
Then, ψ = ϕ−1

S ◦ π−1. We are done.
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For simplicity of notations, we reuse ψ to denote π ◦ ψ′ in the following and we show that
ψ = 1G2n . Consider e1i, for 3 6 i 6 2n. Note that ψ(e1i) is some est and must have Hamming
distance 2 to e12. It is easy to see that the only possibilities are s ∈ {1, 2} and t > 2, i.e., from e12

we flip exactly one bit in {1, 2} and another bit in {3, . . . , 2n}. Suppose there are i 6= i′ (i, i′ > 3)
such that ψ(e1i) = e1t and ψ(e1i′) = e2t′ . Since wt(e1i ⊕ e1i′) = 2, we must have t = t′. Since
2n > 6, we can pick another i′′ > 3 such that i′′ 6= i and i′. Then, this leads to a contradiction since
e1i′′ must either be mapped to e1t if ψ(e1i′′) = e1t′′ , or be mapped to e2t if ψ(e1i′′) = e2t′′ ; neither
is possible. Thus either ψ(e1i) is some e1t for all 3 6 i > 2n, or is some e2t for all 3 6 i > 2n. By
a permutation of {1, 2} (which maintains the property that ψ fixes ~02n and e12) we may assume it
is the former. Then the mapping i 7→ t given by ψ(e1i) = e1t for 3 6 i > 2n defines a permutation
of the variables for 3 6 i > 2n (which again maintains the property that ψ fixes ~02n and e12)
and, after a permutation of the variables we may now assume that ψ fixes ~02n and all e1i. For
any 1 6 i < j 6 2n, we have wt(ψ(eij)) = 2 and ψ(eij) has distance 2 from both ψ(e1i) = e1i

and ψ(e1j) = e1j . Then ψ(eij) must be obtained from e1i by flipping exactly one bit in {1, i} and
another bit out of {1, i}. However, it cannot flip bit i which would result in some e1t for some
t > 2, because ψ already fixed e1t. Thus, it flips bit 1 but not bit i. Similarly in view of e1j , we
must flip bit 1 but not bit j. Hence ψ(eij) = eij , and therefore ψ fixes all v with Hamming weight
wt(v) 6 2.

Inductively assume ψ fixes all v of wt(v) 6 2k, for some k > 1. If k < n we prove that ψ also
fixes all v of wt(v) = 2k + 2. For notational simplicity we may assume v = ~12k+2~02n−2k−2. As
2k + 2 > 4, we can choose u = ~12k00~02n−2k−2 and w = 00~12k~02n−2k−2, and the two 00 in u and w
among the first 2k+ 2 bits are in disjoint bit positions. Clearly wt(ψ(v)) > 2k+ 2 since all strings
of wt 6 2k are fixed. Also since ψ(v) has Hamming distance 2 from ψ(u) = u and ψ(w) = w, it has
weight exactly 2k+ 2, and is obtained from u by flipping two bits from 00 to 11 in positions > 2k,
as well as obtained from w by flipping two bits from 00 to 11 in positions in {1, 2}∪{t | t > 2k+2}.
In particular, it is 1 in positions 1 to 2k (in view of u), and it is also 1 in positions 3 to 2k+ 2. But
together these positions cover all bits 1 to 2k + 2. Thus ψ(v) = v. This completes the induction,
and proves the lemma for all 2n > 6.

Remark: The condition 2n > 6 in Lemma 7.3 is necessary. Here is a counter example for 2n = 4: ψ
fixes 0000 and 1111, and it maps α to α for all α ∈ {0, 1}4 with wt(α) = 2. If ψ were to be expressible
as ϕS ◦π, then since ψ(0000) = 0000, we have S = ∅. Then by ψ(0011) = 1100 and ψ(0101) = 1010,
the permutation π must map variable x1 to x4. However this violates ψ(1001) = 0110.

Lemma 7.4. Let {G2n} be the sequence of graphs defined above.
• If 2n = 8, then α(G8) = 1

8 |E8| = 24, and the maximum independent set I8 of G8 is unique up
to an automorphism, where

I8 ={00000000, 00001111, 00110011, 00111100, 01010101, 01011010, 01100110, 01101001,

10010110, 10011001, 10100101, 10101010, 11000011, 11001100, 11110000, 11111111}.

• If 2n > 10, then α(G2n) < 1
8 |E2n| = 22n−4.

Proof. We first consider the case 2n = 6. One can check that the following set

I6 = {000000, 001111, 110011, 111100}
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is an independent set of G6. Thus, α(G6) > 4. Next, we show that α(G6) = 4 and I6 is the unique
maximum independent set of α(G6) up to an automorphism.

Let J6 be an maximum independent set of G6. Clearly, |J6| > 4. After an automorphism of
G6 by flipping some bits, we may assume that ~06 ∈ J6. Then for any u ∈ E6 with wt(u) = 2,
u /∈ J6. If ~16 ∈ J6, then for any u ∈ E6 with wt(u) = 4, u /∈ J6. Thus, J6 is maximal with
|J6| = 2 < 4, a contradiction. Thus, we have ~16 /∈ J6. Then all vertices in J6, except ~06 have
hamming weight 4. After an automorphism by permuting bits (this will not change ~06), we may
assume that u = 001111 ∈ J6. Consider some other v ∈ J6 with wt(v) = 4. If v1v2 = 01 or 10,
then wt(v3v4v5v6) = 3. Thus, wt(u ⊕ v) = wt(00 ⊕ v1v2) + wt(1111 ⊕ v3v4v5v6) = 1 + 1 = 2.
Contradiction. The only v ∈ J6 with wt(v) = 4, and v1v2 = 00 is v = 001111 = u. Thus, v1v2 = 11,
i.e., both bits of v are 1 where u is 00. After an automorphism by permuting bits in {3, 4, 5, 6}
(this will not change ~06 and u), we may assume that v = 110011 ∈ J6. For any other w ∈ J6 with
wt(w) = 4, we must have w1w2 = 11 (by the same proof for the pair (u, v) applied to (u,w)), and
also w3w4 = 11 (by the same proof for the pair (u, v) applied to (v, w)). Thus, w = 111100. Then,
J6 = {~06, u, v, w} = I6 is maximal. Thus, α(G6) = 4 and I6 is the unique maximum independent
set of α(G6) up to an automorphism.

Consider 2n = 8. One can check that I8 is an independent set of G8. Thus, α(G8) > 16. We
use Gab8 to denote the subgraph of G8 induced by vertices {u ∈ E8 | u1u2 = ab} for (a, b) ∈ Z2

2.
Clearly, G00

8 and G11
8 are isomorphic to G6, and G01

8 and G10
8 are isomorphic to H6. Since H6 is

isomorphic to G6, G01
8 and G10

8 are also isomorphic to G6. Let J8 be a maximum independent set
of G8. Clearly, |J8| > |I8| = 16. Also, we use Jab8 to denote the subset {u ∈ J8 | u1u2 = ab}
for (a, b) ∈ Z2

2. Similarly, we can define Iab8 . Since J8 is an independent set of G8, clearly, for
every (a, b) ∈ Z2

2, Jab8 is an independent set of Gab8 . Since Gab8 is isomorphic to G6 and α(G6) = 4,
thus |Jab8 | 6 4. Then |J8| 6 16. Thus, |J8| = 16, and |Jab8 | = 4 for every (a, b) ∈ Z2

2. Since the
maximum independent set of G6 is unique up to an automorphism of G6, which can be extended
to an automorphism of G8 by fixing the first two bits, we may assume that

J00
8 = I00

8 = {00000000, 00001111, 00110011, 00111100}

after an automorphism of G8.
Then, consider J01

8 . We show that for any u ∈ J01
8 , u3 6= u4, u5 6= u6 and u7 6= u8. Otherwise,

by switching the pair of bits {3, 4} with {5, 6} or {7, 8} (this will not change J00
8 ), we may assume

that u3 = u4. Then wt(u1u2u3u4) is odd. Since wt(u) is even, wt(u5u6u7u8) is odd. Thus, either
u5 = u6 or u7 = u8. Still by switching the pair {5, 6} with {7, 8} (again this will not change
J00

8 ), we may assume that u5 = u6. Then since wt(u5u6u7u8) is odd, we have u7 6= u8. Then,
one can check that there exists some v ∈ J00

8 such that v3v4v5v6 = u3u4u5u6. Since v1 = v2 and
u1 6= u2, wt(u1u2 ⊕ v1v2) = 1. Also since v7 = v8 and u7 6= u8, wt(u7u8 ⊕ v7v8) = 1. Thus,
wt(u ⊕ v) = wt(u1u2 ⊕ v1v2) + wt(u7u8 ⊕ v7v8) = 2. This means that the vertices u and v are
connected in the graph G8, a contradiction. Thus, for any u ∈ J01

8 , u3 6= u4, u5 6= u6 and u7 6= u8.
By permuting bit 3 with bit 4, bit 5 with bit 6, and bit 7 with bit 8 (this will not change J00

8 ),
we may assume that 01010101 ∈ J01

8 . Consider some other w ∈ J01
8 . Since w2i+1 6= w2i+2 for any

i = 1, 2 or 3, the pair w2i+1w2i+2 = 01 or 10. Among these three pairs, let k denote the number of
pairs that are 01. If k = 3, then w = 01010101. Contraction. If k = 2, then wt(01010101⊕w) = 2.
Contradiction. If k = 0, then w = 01101010. One can check that {01010101, 01101010} is already
a maximal independent set of G01

8 and it has size 2 < 4. Contradiction. Thus, k = 1. Then, w can
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take
(

3
1

)
possible values. Thus,

J01
8 ⊆ I01

8 = {01010101, 01011010, 01100110, 01101001}.

Since, |J01
8 | = 4, J01

8 = I01
8 .

Consider some u ∈ J10
8 . Similar to the proof of J01

8 , we can show that u3 6= u4, u5 6= u6 and
u7 6= u8. Thus, u can take 23 possible values. Moreover, for any 01u′ ∈ J01

8 , 10u′ /∈ J10
8 . Thus,

there are only four remaining values that u can take. Then,

J10
8 ⊆ I10

8 = {10010110, 10011001, 10100101, 10101010}.

Since |J10
8 | = 4, J10

8 = I10
8 .

Finally, consider J11
8 . We show that for any u ∈ J11

8 , u3 = u4, u5 = u6 and u7 = u8. Otherwise,
by permuting the pair of bits {3, 4} with {5, 6} or {7, 8} (one can check that this will not change
J01

8 and J10
8 ), we may assume that u3 6= u4. Since wt(u) is even, between wt(u5u6) and wt(u7u8),

exactly one is even and the other is odd. By permuting the pair of bits {5, 6} with {7, 8}, we may
further assume that u5 6= u6 and u7 = u8. Then, one can check that there exists some v ∈ J01

8 such
that u3u4u5u6 = v3v4v5v6. Since u1 = u2 and v1 6= v2, wt(u1u2 ⊕ v1v2) = 1. Also since u7 = u8

and v7 6= v8, wt(u7u8 ⊕ v7v8) = 1. Thus, wt(u ⊕ v) = wt(u1u2 ⊕ v1v2) + wt(u7u8 ⊕ v7v8) = 2.
Contradiction. Thus, for any u ∈ J11

8 , it can take 23 possible values. Moreover, for any 00u′ ∈ J00
8 ,

we have 11u′ /∈ J11
8 . Thus, there are only four remaining values that u can take. Then,

J11
8 ⊆ I11

8 = {11000011, 11001100, 11110000, 11111111}.

Thus, after an automorphism, J8 = I8. In other words, I8 is the unique maximum independent set
of G8 up to an automorphism.

Now, we consider the case 2n > 10. For every (a, b) ∈ Z2
2, we define Gab2n to be the subgraph of

G2n induced by {u ∈ G2n | u1u2 = ab}, and it is isomorphic to G2n−2. Thus,

α(G2n) 6 α(G00
2n) + α(G01

2n) + α(G10
2n) + α(G11

2n) = 4α(G2n−2).

Then, α(G2n−2) < 2(2n−2)−4 will imply that α(G2n) < 22n−4. Thus, in order to prove α(G2n) <
22n−4 for all 2n > 10, it suffices to prove that α(G10) < 210−4. For a contradiction, suppose
that α(G10) > 210−4. Let I be a maximum independent set of G10. Then, |I| > 26. We define
Iab = {u ∈ I | u1u2 = ab} for every (a, b) ∈ Z2. Since Gab10 is isomorphic to G8 and α(G8) = 24,
|Iab| 6 24 for every (a, b) ∈ Z2

2. Then, |I| 6 4 · 24. Thus, |I| = 26 and |Iab| = 24 for every
(a, b) ∈ Z2

2. Since the maximum independent set of G8 is unique up to an automorphism of G8

which can be extended to an automorphism of G10 by fixing the first two bits, we may assume that
I00 = {00u | u ∈ I8}.

Consider I01. Since |I01| 6= 0, there exists some 01v ∈ I01. Since wt(v) is odd, among wt(v3v4),
wt(v5v6), wt(v7v8) and wt(v9v10), there is an odd number (either one or three) of pairs such that
wt(v2i+1v2i+2) (1 6 i 6 4) is odd, i.e., v2i+1 6= v2i+2. In other words, there are exactly three pairs
among v3v4, v5v6, v7v8 and v9v10 such that the values inside each pair are all equal with each other
or all distinct with each other. By permuting these pairs of bits {3, 4}, {5, 6}, {7, 8} and {9, 10}
(this will not change I00), we may assume that either v3 = v4, v5 = v6, v7 = v8 and v9 6= v10,
or v3 6= v4, v5 6= v6, v7 6= v8 and v9 = v10. In both cases, one can check that there exists some
00u ∈ I00 such that ui = vi for i ∈ {3, . . . , 8}. Moreover, u9 = u10 if v9 6= v10, and u9 6= u10 if
v9 = v10. Then, wt(00u ⊕ 01v) = wt(00 ⊕ 01) + wt(u9u10 ⊕ v9v10) = 2. This contradiction proves
that α(G10) < 210−4, and the lemma is proved.
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Remark: We remark that I8 = S (f8). Later, we will see that the signature f8, this Queen of the
Night, and its support S (f8) have even more extraordinary properties.

We consider a particular gadget construction that will be used in our proof. Let h4 be a 4-ary

signature with signature matrix M12,34(h4) = H4 =

[
1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

]
. Notice that H4H

T
4 = H4H4 = 2I4,

and h4 is an affine signature. The following is called an H4 gadget construction on f , denoted by
H4
ij f . This is the signature obtained by connecting variables x3 and x4 of h4 with variables xi and

xj of f using =2, respectively. Note that H4
ij f is not necessarily realizable from f since h4 may

not be available. However, we will analyze the structure of f by analyzing H4
ij f . For convenience,

we consider (i, j) = (1, 2) and we use f̃ to denote H4
12 f . The following results (Lemmas 7.5 and

7.6) about f̃ = H4
12 f hold for all H4

ij f by replacing {1, 2} with {i, j}. Note that f̃ has the following
signature matrix

M12(f̃) =




f̃00
12

f̃01
12

f̃10
12

f̃11
12


 = H4M12(f) =




f00
12 + f11

12

f01
12 + f10

12

f01
12 − f10

12

f00
12 − f11

12


 =




∂+
12f

∂+̂
12f

∂−̂12f
∂−12f


 .

We give the following relations between f and f̃ .

Lemma 7.5. 1. If f has even parity then f̃ also has even parity.
2. If f ∈ A , then f̃ ∈ A .
3. If M(m12f) = λI4 for some real λ 6= 0, then M(m12f̃) = 2λI4.

4. If ∂+
12f, ∂

−
12f, ∂

+̂
12f, ∂

−̂
12f ∈ A , then f̃00

12 , f̃01
12 , f̃10

12 , f̃11
12 ∈ A .

5. For {u, v} disjoint with {1, 2} and b ∈ B, if ∂buvf ∈ A , then ∂buvf̃ ∈ A .

Proof. Since h4 has even parity and h4 ∈ A , the first and second propositions hold.
If M(m12f) = λI4, then M(m12f̃) = M12(f̃)MT

12(f̃) = H4M12(f)MT
12(f)HT

4 = λH4I4H
T
4 =

2λI4. The third proposition holds.
By the matrix form M12(f̃), the fourth proposition holds.
Since the H4 gadget construction only touches variables x1 and x2 of f , it commutes with

merging gadgets on variables other than x1 and x2. Thus ∂bij f̃ = ∂̃bijf . For all b ∈ B and all {i, j}
disjoint with {1, 2}, if ∂bijf ∈ A where ∂bijf are signatures realized by connecting variables xi and

xj of f using b, then ∂bij f̃ = ∂̃bijf ∈ A . The last proposition holds.

Clearly, if f ∈
∫
BA , then f̃00

12 , f̃01
12 , f̃10

12 , f̃11
12 ∈ A . Thus, for every (a, b) ∈ Z2

2, if f̃ab12 6≡ 0,

then its nonzero entries have the same norm, denoted by nab. Let nab = 0 if f̃ab12 ≡ 0. We have the
following results regarding these norms nab.

Lemma 7.6. Let f be an irreducible signature of arity 2n > 6. Suppose that f has even parity, f
satisfies 2nd-Orth and f ∈

∫
BA .

1. For any (a, b), (c, d) ∈ Z2
2, there exists some k ∈ Z such that nab =

√
2
k
ncd 6= 0, and nab = ncd

iff |S (f̃ab12 )| = |S (f̃ cd12)|.
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2. Furthermore, if f̃00
12 (~02n−2) 6= 0 and n00 > n11, then S (f̃11

12 ) = E2n−2
1 and nab = n11 or

2n11 for every (a, b) ∈ Z2
2; in particular, n00 = 2n11. Symmetrically, if f̃11

12 (~02n−2) 6= 0 and

n00 < n11, then S (f̃00
12 ) = E2n−2 and nab = n00 or 2n00 for every (a, b) ∈ Z2

2, and n11 = 2n00.

Proof. Since f satisfies 2nd-Orth, M(m12f) = λI4 for some real λ 6= 0. Then, by Lemma 7.5,
M(m12f̃) = 2λI4 6= 0. Thus, |f̃ab12 |2 = 2λ 6= 0 for every (a, b) ∈ Z2

2. Also, since f ∈
∫
BA , by

Lemma 7.5, for every (a, b) ∈ Z2
2, f̃ab12 ∈ A . Thus, S (f̃ab12 ) is affine and |S (f̃ab12 )| = 2kab for some

integer kab > 0. Note that

|f̃ab12 |2 = n2
ab · |S (f̃ab12 )| = n2

ab · 2kab 6= 0.

Thus, for any (a, b), (c, d) ∈ Z2
2, n2

ab · 2kab = n2
cd · 2kcd 6= 0. Then, nab =

√
2
k
ncd 6= 0 where

k = kcd − kab ∈ Z. Clearly, k = 0 iff |S (f̃ab12 )| = 2kab = 2kcd = |S (f̃ cd12)|.
Now we prove the second part of this lemma. We give the proof for the case that f̃00

12 (~02n−2) 6= 0

and n00 > n11. The proof of the case that f̃11
12 (~02n−2) 6= 0 and n00 < n11 is symmetric. We first

show that S (f̃11
12 ) = E2n−2. For a contradiction, suppose that S (f̃11

12 ) 6= E2n−2. Since f has even

parity, by Lemma 7.5, f̃ has even parity. Then, f̃11
12 also has even parity. Thus, S (f̃11

12 ) ( E2n−2.

There exists θ ∈ E2n−2 such that θ /∈ S (f̃11
12 ). Also, since n11 6= 0, f̃11

12 6≡ 0. Then, S (f̃11
12 ) 6= ∅

and there exists δ ∈ E2n−2 such that δ ∈ S (f̃11
12 ). Then, we can find a pair α, β ∈ E2n−2 where

wt(α⊕ β) = 2 such that one is in S (f̃11
12 ) and the other one is not in S (f̃11

12 ).
• If wt(α) 6= wt(β), then clearly the difference between their Hamming weights is 2 since

wt(α⊕β) = 2. Thus, α and β differ in two bits i, j on which one takes value 00 and the other
takes value 11.
• If wt(α) = wt(β), then they differ in two bits i, j on which one takes value 01 and the other

takes value 10. Without loss of generality, we assume that αiαj = 01 and βiβj = 10. They
take the same value on other bits. Since α, β ∈ E2n−2 and 2n > 6, they have even Hamming
weight and length at least 4. Thus, there is another bit k such that on this bit, αk = βk = 1.
Consider γ ∈ E2n−2 where γiγjγk = 000 and γ takes the same value as α and β on other bits.

Clearly, wt(γ) + 2 = wt(α) = wt(β). If γ ∈ S (f̃11
12 ), then between α and β, we pick the one

that is not in S (f̃11
12 ). Otherwise, we pick the one that is in S (f̃11

12 ). In both cases, we can

get a pair of inputs in E2n−2 such that one is in S (f̃11
12 ) and the other is not in S (f̃11

12 ), and
they have Hamming distance 2 as well as different Hamming weights.

Thus, we can always find a pair α, β ∈ E2n−2 where wt(α ⊕ β) = 2 and α, β differ in two bits
i, j on which one takes value 00 and the other takes value 11, such that one is in S (f̃11

12 ) and the

other is not in S (f̃11
12 ). Clearly, {i, j} is disjoint with {1, 2}.

Consider signatures ∂+
ij f̃ and ∂−ij f̃ . Then, f̃(11α) + f̃(11β) is an entry of ∂+

ij f̃ , and f̃(11α) −
f̃(11β) is an entry of ∂−ij f̃ . Since between f̃(11α) and f̃(11β), exactly one is nonzero and it has
norm n11, we have

|f̃(11α) + f̃(11β)| = |f̃(11α)− f̃(11β)| = n11.

Thus, both ∂+
ij f̃ and ∂−ij f̃ have an entry with norm n11. Let δ ∈ E2n where δiδj = 11 and δ takes

value 0 on other bits. Then, clearly, f̃(~02n) + f̃(δ) is an entry of ∂+
ij f̃ , and f̃(~02n)− f̃(δ) is an entry

of ∂−ij f̃ .

1Here, E2n−2 = {(x3, . . . , x8) ∈ Z6
2 | x3 + · · ·+ x8 = 0}. When context is clear, we do not specify the variables of

E2n−2 and also O2n−2.

41



• If f̃(δ) 6= 0, then |f̃(δ)| = n00 since δ1δ2 = 00. Since f̃(~02n) 6= 0, |f̃(~02n)| = n00. Thus,
between f̃(~02n) + f̃(δ) and f̃(~02n)− f̃(δ), one has norm 2n00 and the other is zero. Therefore,
between ∂+

ij f̃ and ∂−ij f̃ , one signature has an entry with norm 2n00. Remember that both

∂+
ij f̃ and ∂−ij f̃ have an entry with norm n11. Clearly, 2n00 > n11. Thus, between ∂+

ij f̃ and

∂−ij f̃ , there is a signature that has two entries with different norms. Clearly, such a signature

is not in A . However, since f ∈
∫
BA , by Lemma 7.5, ∂+

ij f̃ , ∂
−
ij f̃ ∈ A . Contradiction.

• If f̃(δ) = 0, then |f̃(~02n) + f̃(δ)| = |f̃(~02n)| = n00 > n11. Thus, ∂+
ij f̃ has two nonzero entries

with different norms n00 and n11. Then, ∂+
ij f̃ /∈ A . Contradiction.

Thus, S (f̃11
12 ) = E2n−2.

Then, we show that nab = n11 or 2n11 for any (a, b) ∈ Z2
2. Clearly, we may assume that (a, b) 6=

(1, 1). For a contradiction, suppose that nab 6= n11 and 2n11. First, we show that |S (f̃ab12 )| < 22n−3

and nab > n11. Since f has parity, f̃ab12 also has parity (either even or odd depending on whether

wt(ab) = 0 or 1). Thus |S (f̃ab12 )| 6 |E2n−2| = |O2n−2| = 22n−3. If the equality holds, then nab = n11

since n2
ab|S (f̃ab12 )| = n2

11|S (f̃11
12 )| and |S (f̃11

12 )| = 22n−3. Contradiction. Thus, |S (f̃ab12 )| < 22n−3

and also nab > n11.
Depending on whether fab12 has even parity or odd parity, we can pick a pair of inputs α, β with

wt(α ⊕ β) = 2 from E2n−2 or O2n−2 such that exactly one is in S (fab12 ) and the other is not in
S (fab12 ). Suppose that α and β differ in bits i, j. Depending on whether αi = αj or αi 6= αj , we

can connect variables xi and xj of f̃ using =+
2 and =−2 , or 6=+

2 and 6=−2 . We will get two signatures

∂+
ij f̃ and ∂−ij f̃ , or ∂+̂

ij f̃ and ∂−̂ij f̃ . We consider the case that αi = αj . For the case that αi 6= αj , the

analysis is the same by replacing ∂+
ij f̃ and ∂−ij f̃ with ∂+̂

ij f̃ and ∂−̂ij f̃ respectively.

Consider signatures ∂+
ij f̃ and ∂−ij f̃ . Then, f̃(abα) + f̃(abβ) is an entry of ∂+

ij f̃ , and f̃(abα) −
f̃(abβ) is an entry of ∂−ij f̃ . Since between α and β, exactly one is in S (fab12 ), between f̃(abα) and

f̃(abβ), exactly one is nonzero and it has norm nab. Thus,

|f̃(abα) + f̃(abβ)| = |f̃(abα)− f̃(abβ)| = nab.

Both ∂+
ij f̃ and ∂−ij f̃ have an entry with norm nab.

Let α′, β′ ∈ E2n−2 where α′iα
′
j = αiαj , α

′
k = α′i ⊕ α′j for some k 6= i, j1 and α′ takes value

0 on other bits, and β′iβ
′
j = βiβj , β

′
k = β′i ⊕ β′j for the same k 6= i, j and β′ takes value 0 on

other bits. Clearly, α′ and β′ differ in bits i and j and they differ in the same way as α and
β. Then, f̃(11α′) + f̃(11β′) is an entry of ∂+

ij f̃ , and f̃(11α′) − f̃(11β′) is an entry of ∂−ij f̃ . Since

S (f̃11
12 ) = E2n−2, both f̃(11α′) and f̃(11β′) are nonzero and they have norm n11. Thus, between

f̃(11α′) + f̃(11β′) and f̃(11α′) − f̃(11β′), exactly one is zero and the other has norm 2n11. Thus,
between signatures ∂ij f̃ and ∂−ij f̃ , there is a signature that has two entries with different norms 2n11

and nab. Such a signature is not in A . However, since f ∈
∫
BA , by Lemma 7.5, ∂ij f̃ , ∂

−
ij f̃ ∈ A .

Contradiction. Thus, nab = n11 or 2n11 for any (a, b) ∈ Z2
2.

We also give the following results about multilinear polynomials F (x1, . . . , xn) ∈ Z2[x1, . . . , xn].
We use d(F ) to denote the total degree of F . For {i, j} ⊆ {1, . . . , n} = [n], we use F abij ∈
Z2[{x1, . . . , xn}\{xi, xj}] to denote the polynomial obtained by setting (xi, xj) = (a, b) in F .

1Since 2n − 2 > 4, such a k exists. Here, α′k = 0 since αi = αj in this case under discussion. For the case that
αi 6= αj , we have α′k = 1.
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Definition 7.7. Let F (x1, . . . , xn) ∈ Z2[x1, . . . , xn] be a multilinear polynomial. We say F is a
complete quadratic polynomial if d(F ) = 2 and for all {i, j} ⊆ [n], the quadratic term xixj appears
in F . We say F is a complete cubic polynomial if d(F ) = 3 and for all {i, j, k} ⊆ [n], the cubic
term xixjxk appears in F .

Lemma 7.8. Let F (x1, . . . , xn) ∈ Z2[x1, . . . , xn] be a multilinear polynomial.
1. If for all {i, j} ⊆ [n], F 00

ij +F 11
ij ≡ 0 or 1, and F 01

ij +F 10
ij ≡ 0 or 1, then d(F ) 6 2. Moreover,

if d(F ) = 2, then F is a complete quadratic polynomial.
2. If for all {i, j} ⊆ [n], d(F 00

ij + F 11
ij ) 6 1, and d(F 01

ij + F 10
ij ) 6 1, then d(F ) 6 3. Moreover, if

d(F ) = 3, then F is a complete cubic polynomial.

Proof. We prove the first part. The proof for the second part is similar which we omit here.
For all {i, j} ⊆ [n], we write F ∈ Z2[x1, . . . , xn] as a polynomial of variables xi and xj .

F = Xijxixj + Yijxi + Zijxj +Wij

where Xij , Yij , Zij ,Wij ∈ Z2[{x3, . . . , xn}\{xi, xj}]. Then,

F 00
ij = Wij and F 11

ij = Xij + Yij + Zij +Wij .

Thus, Xij + Yij + Zij = F 00
ij + F 11

ij ≡ 0 or 1. Also,

F 01
ij = Zij +Wij and F 10

ij = Yij +Wij .

Thus, Yij + Zij = F 01
ij + F 10

ij ≡ 0 or 1. Then, Xij ≡ 0 or 1 for all {i, j}. Thus, d(F ) 6 2.
Suppose that d(F ) = 2. then F has at least a quadratic term xuxv (u 6= v). Without loss of

generality, we assume that the term x1x2 appears in F . We first show that for all 2 6 j 6 n, the
quadratic term x1xj appears in F . Since x1x2 is already in F , we may assume that 3 6 j. We
write F as a polynomial of variables x2 and xj .

F = X2jx2xj + Y2jx2 + Z2jxj +W2j ,

where X2j , Y2j , Z2j ,W2j do not involve x2 and xj . Since x1x2 appears in F , x1 appears in Y2j . As
we have proved above, Y2j + Z2j ≡ 0 or 1. Thus, x1 also appears in Z2j , which means that x1xj
appears in F . Then, for all 2 6 j 6 n, x1xj appears in F .

Then, for all 2 6 i < j 6 n, we write F as a polynomial of variables x1 and xi.

F = X1ix1xi + Y1ix1 + Z1ixi +W1i,

where X1i, Y1i, Z1i,W1i do not involve x1 and xi. Since x1xj appears in F , xj appears in Y1i. Since
Y1i + Z1i ≡ 0 or 1, xj also appears in Z1i. Thus, xixj appears in F . Then, for all 2 6 i < j 6 n,
the quadratic term xixj appears in F . Thus, for all {i, j} ⊆ [n], xixj appears in F .

Now, we are ready to take a major step towards Theorem 7.19.

Lemma 7.9. Let 2n > 8 and let f ∈ F be a 2n-ary irreducible signature with parity. Then,
• Holantb(F) is #P-hard, or
• there is a signature g /∈ A of arity 2k < 2n that is realizable from f and B, or
• after normalization, f(α) = ±1 for all α ∈ S (f).
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Proof. Since f is irreducible, we may assume that it satisfies 2nd-Orth. Otherwise, we get #P-
hardness by Lemma 4.4. Also, we may assume that f ∈

∫
BA . Otherwise, we can realize a signature

of arity 2n− 2 that is not in A by merging f using some b ∈ B.
For any four entries x, y, z, w of f on inputs α, β, γ, δ ∈ Z2n

2 written in the form of a 2-by-2

matrix [ x y
z w ] =

[
f(α) f(β)
f(γ) f(δ)

]
, we say that such a matrix is a distance-2 square if there exist four bits

i, j, k, ` such that αiαj = βiβj = γiγj = δiδj , αkα` = γkγ` = βkβ` = δkδ` and α, β, γ and δ take the
same values on other bits. An equivalent description is that

δ = α⊕ β ⊕ γ, wt(α⊕ β) = 2, wt(α⊕ γ) = 2 and wt(α⊕ δ) = 4. (7.5)

Indeed (7.5) is clearly satisfied by any distance-2 square. Conversely, suppose (7.5) holds. If we
flip any bit i in all α, β, γ and δ, both (7.5) and the bitwise description are invariant, and thus we
may assume α = ~02n. By wt(α⊕ γ) = 2, there exist two bits i, j such that γiγj = 11, and γ takes
0 on other bits. By wt(α⊕ β) = 2, there exits two bits k, ` such that βkβ` = 11, and β takes 0 on
other bits. Since δ = α⊕ β⊕ γ, wt(β⊕ γ) = wt(α⊕ δ) = 4. Thus, the bits i, j, k, ` are distinct four
bits. Then, δiδjδkδ` = 1111 and δ takes 0 on other bits. Thus, α, β, γ and δ satisfy the bitwise
description of distance-2 squares.

We give an example of such a distance-2 square. Let
[
x y
z w

]
=

[
f(α) f(β)
f(γ) f(δ)

]
=

[
f(0001θ) f(0010θ)
f(1101θ) f(1110θ)

]

where θ ∈ Z2n−4
2 is an arbitrary binary string of length 2n− 4. In this example, (i, j) = (1, 2) and

(k, `) = (3, 4). We show next that such a distance-2 square [ x y
z w ] has the property described in

(7.6) ∼ (7.9).
By connecting variables x1 and x2 of f using =+

2 and =−2 respectively, we get signatures ∂+
12f

and ∂−12f . By our assumption, ∂+
12f and ∂−12f are affine signatures. Note that, x+ z and y +w are

entries of ∂+
12f on inputs 01θ and 10θ ∈ Z2n−2

2 . Since ∂+
12f ∈ A , if x+z and y+w are both nonzero,

then they have the same norm. Thus, we have (x+ z)(y+w) = 0 or (x+ z)2 = (y+w)2. Similarly,
x− z and y−w are entries of ∂−12f ∈ A . Thus, we have (x− z)(y−w) = 0 or (x− z)2 = (y−w)2.

Also, by connecting variables x3 and x4 of f using 6=2 and 6=−2 respectively, we get signatures

∂+̂
34f and ∂−̂34f that are affine signatures. Note that, x+ y and z + w are entries of ∂+̂

34f on inputs

00θ and 11θ. Since ∂+̂
34f ∈ A , we have (x+ y)(z + w) = 0 or (x+ y)2 = (z + w)2. Similarly, x− y

and z − w are entries of ∂̂−34f . Then, we have (x− y)(z − w) = 0 or (x− y)2 = (z − w)2.

Now, consider an arbitrary distance-2 square [ x y
z w ] =

[
f(α) f(β)
f(γ) f(δ)

]
. Depending on whether αi =

αj or αi 6= αj , we can use =+
2 and =−2 , or 6=+

2 and 6=−2 respectively, to connect variables xi and

xj of f to produce two signatures ∂+
ijf and ∂−ijf , or ∂+̂

ijf and ∂−̂ijf in either case, such that x ± z
and y ± w are both entries of the resulting two signatures. Since the two resulting signatures are
in affine, we have

(x+ z)(y + w) = 0 or (x+ z)2 = (y + w)2, (7.6)

and
(x− z)(y − w) = 0 or (x− z)2 = (y − w)2. (7.7)

Similarly, by connecting variables xk and x` of f using either =±2 or 6=±2 , we have

(x+ y)(z + w) = 0 or (x+ y)2 = (z + w)2 (7.8)
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and
(x− y)(z − w) = 0 or (x− y)2 = (z − w)2. (7.9)

Now, we show that by solving equations (7.6) ∼ (7.9), every distance-2 square has one of the
following forms (after normalization, row or column permutation, multiplying a −1 scalar of one
row or one column, and taking transpose)

[
0 0
0 0

]
,

[
1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 0
0 1

]
,

[
1 1
1 1

]
,

[
1 1
1 −1

]
,

︸ ︷︷ ︸
type I

[
1 a
a 1

]
(a > 1),

︸ ︷︷ ︸
type II

or

[
1 1
3 −1

]

︸ ︷︷ ︸
type III

.

We say that the first six forms are type I, and the other two are type II and type III respectively.
These forms listed above are canonical forms of each type.

Let [ x y
z w ] be a distance-2 square. Consider

p = (x+ y)(z + w)(x+ z)(y + w)(x− y)(z − w)(x− z)(y − w).

• If p = 0, then among its eight factors (four sums and four differences), at least one factor is
zero. By taking transpose and row permutation, we may assume that x+ y = 0 or x− y = 0.
If x + y = 0, then by multiplying the column [ yw ] with −1, we can modify this distance-2
square to get x − y = 0. Thus, we may assume that x − y = 0. If x = y = 0, then by (7.6),
we have z = 0 or w = 0, or z = ±w. Thus, after normalizing operations of row and column
permutation and multiplication by −1, we reach the following canonical forms [ 0 0

0 0 ], [ 1 0
0 0 ] or

[ 1 1
0 0 ] . Otherwise, x = y 6= 0. Consider q = (x+ z)(y + w)(x− z)(y − w).

– If q = 0, then among its four factors (two sums and two differences), at least one is zero.
By column permutation on the matrix [ x y

z w ] and multiplying the row (z, w) with −1
(which does not change the values of x and y), we may assume that x − z = 0. Thus,
x = y = z 6= 0. We normalize their values to 1. Then by (7.6), 1 +w = 0 or 1 +w = ±2.
Thus, w = −1, 1 or −3. If w = ±1, then [ x y

z w ] has the canonical form [ 1 1
1 1 ] or

[
1 1
1 −1

]
. If

w = −3, then [ x y
z w ] =

[
1 1
1 −3

]
which has the canonical form

[
1 1
3 −1

]
(Type III).

– If q 6= 0, then (x+ z)(y + w) 6= 0 and (x− z)(y − w) 6= 0. By equations (7.6) and (7.7),
(x + z)2 = (y + w)2 and (x − z)2 = (y − w)2. Thus, xz = yw. Since x = y 6= 0, z = w.
If z = w = 0, then this gives the canonical form [ 1 1

0 0 ]. Otherwise, z = w 6= 0. Then
z+w 6= 0 and hence by (7.8), z+w = ±(x+ y). Since z = w and x = y, we get z = ±x.
Thus, x+ z = 0 or x− z = 0. Contradiction.

• If p 6= 0, then all its eight factors are nonzero. Thus by (7.6) ∼ (7.9), (x + z)2 = (y + w)2,
(x− z)2 = (y−w)2, (x+ y)2 = (z+w)2 and (x− y)2 = (z−w)2. By solving these equations,
we have x2 = w2, y2 = z2, and xy = zw. If x = y = z = w = 0, then it gives the canonical
form [ 0 0

0 0 ]. Otherwise, by permuting rows and columns, we may assume that x 6= 0 and |x|
is the smallest among the norms of nonzero entries in [ x y

z w ]. We normalize x to 1. Since
x2 = w2, we get w = ±1. By multiplying the row (z, w) with −1 (which does not change
xy = zw), we may assume that w = 1. Then, xy = zw implies that y = z. If y = z = 0,
then [ x y

z w ] has the canonical form [ 1 0
0 1 ]. Otherwise, since |x| = 1 is the smallest norm among

nonzero entries, y = z = ±a where a > 1. If a = 1 (i.e., y = z = ±1), then [ x y
z w ] has the

canonical form [ 1 1
1 1 ]. If a > 1, then [ x y

z w ] has the canonical form of Type II.
Thus, every distance-2 square has a canonical form of Type I, II or III.

Note that given a particular distance-2 square of f , by normalization, and renaming or flipping
or negating variables of f , we can always modify this distance-2 square to get its canonical form.
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Clearly, for signatures of arity at least 4, distance-2 squares exist. We consider the following two
cases according to which types of distance-2 squares appear in f .

Case 1. All distance-2 squares in f are of type I.

We show that (after normalization) f(α) = ±1 for all α ∈ S (f). Since f 6≡ 0, it has at least
one nonzero entry. By normalization, we may assume that 1 is the smallest norm of all nonzero
entries of f . Then by flipping variables of f , we may assume that f(~02n) = 1. For a contradiction,
suppose that there is some β ∈ S (f) such that f(β) 6= ±1. Then by our assumption that 1 is
the smallest norm and |f(β)| 6= 1, we have |f(β)| > 1. Also, since f has parity and ~02n ∈ S (f),
f has even parity. Thus, wt(β) ≡ 0 (mod 2). By renaming variables of f , we may assume that
β = ~12m~02n−2m, for some m > 1. (This does not affect the normalization f(~02n) = 1). Then, we
show that for all α = δ~02n−2m where δ ∈ Z2m

2 , f(α) = ±1. We prove this by induction on wt(δ).
This will lead to a contradiction when wt(δ) = 2m, since |f(β)| = |f(~12m~02n−2m)| 6= 1.

Since f(~02n) = 1, we may assume wt(δ) > 2. We first consider the base case that wt(δ) = 2. By
renaming the first 2m variables, without loss of generality, we may assume that δ = 11~02m−2 and
then α = 11~02n−2 = 1100~02n−4. This renaming will not change β. Consider the following distance-2
square [

x y
z w

]
=

[
f(0000~02n−4) f(1100~02n−4)

f(0011~02n−4) f(1111~02n−4)

]
.

Recall our assumption that every distance-2 square is of type I. Here x = f(~02n), and y = f(α).
Since x = 1, [ x y

z w ] being of type I implies that y = 0 or ±1 (the normalization steps include possibly
multiplying a row or a column by −1). We want to show that |y| = 1; for a contradiction, suppose
that y = 0. We consider the following two extra entries of f , where δ = 00~12m−2.

x′ = f(δ~02n−2m) = f(00~12m−2~02n−2m) and y′ = f(β) = f(11~12m−2~02n−2m).

By connecting variables x1 and x2 of f using =2 and =−2 , we get signatures ∂12f and ∂−12f re-
spectively. Note that both x + y and x′ + y′ are entries of ∂12f . Since ∂12f ∈ A , we have
(x+ y)(x′+ y′) = 0 or (x+ y)2 = (x′+ y′)2. We can also consider ∂−12f and get (x− y)(x′− y′) = 0
or (x− y)2 = (x′ − y′)2. Since x = 1 and y = 0, we have

[
x′ + y′ = 0 or (x′ + y′)2 = 1

]
and

[
x′ − y′ = 0 or (x′ − y′)2 = 1

]
.

Recall that |y′| = |f(β)| > 1. Clearly x′ + y′ = 0 and x′ − y′ = 0 cannot be both true, otherwise
y′ = 0. Suppose one of them is true, then x′ = ±y′. And at least one of (x′+y′)2 = 1 or (x′−y′)2 = 1
holds. So either |x′ + y′| = 1 or |x′ − y′| = 1. Substituting x′ = ±y′ we reach a contradiction to
|y′| > 1. So neither x′ + y′ = 0 nor x′ − y′ = 0 holds. Then (x′ + y′)2 = 1 and (x′ − y′)2 = 1.
Subtracting them, we get x′y′ = 0, and since y′ 6= 0, we get x′ = 0. But then this contradicts
|y′| > 1 and (x′ + y′)2 = 1. Therefore, y 6= 0. Then, y = ±1. Thus, y = f(δ~02n−2m) = ±1 for all δ
with wt(δ) = 2.

If 2m = 2, then the induction is finished. Otherwise, 2m > 2. Inductively for some 2k > 2,
we assume that f(θ~02n−2m) = ±1 for all θ ∈ Z2m

2 with wt(θ) 6 2k < 2m. Let δ be such that
wt(δ) = 2k + 2 6 2m and we show that f(δ~02n−2m) = ±1. Since wt(δ) = 2k + 2 > 4, we can
find four bits of δ such that the values of δ are 1 on these four bits. Without loss of generality, we
assume that they are the first four bits, i.e. δ = 1111δ′ where δ′ ∈ Z2m−4

2 . Consider the following
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distance-2 square [
x y
z w

]
=

[
f(0000δ′~02n−2m) f(0011δ′~02n−2m)

f(1100δ′~02n−2m) f(1111δ′~02n−2m)

]
.

Clearly, three entries in this distance-2 square have input strings of weight at most 2k, namely
wt(0000δ′~02n−2m) = 2k − 2, and wt(0011δ′~02n−2m) = wt(1100δ′~02n−2m) = 2k. By our induction
hypothesis, x, y, z ∈ {1,−1}. Then, since the distance-2 square [ x y

z w ] is of type I, we have w =
f(δ~02n−2m) = ±1. The induction is complete. This finishes the proof of Case 1.

Case 2. There is a type II or type III distance-2 square in f .

This is the case where signatures g8 and g′8 appear. We handle this case in two steps.

Step 1. We show that after flipping variables of f , S (f) = E2n, and after normalization
f(α) = ±1 or ±3 for all α ∈ S (f). Let S3(f) = {α ∈ S (f) | f(α) = ±3}. We also show that
|S3(f)| = 22n−4 = 1

8 |S (f)|, and for any distinct α, β ∈ S3(f), wt(α⊕ β) > 4.

We first consider the case that there is a Type II distance-2 square in f . We show that the only
possible Type II distance-2 square in f has the canonical form [ 1 3

3 1 ]. Suppose that a distance-2
square of Type II appears in f . By flipping and negating variables, we modify f such that this
distance-2 square is in its canonical form [ 1 a

a 1 ] (a > 1). Also, by flipping variables and renaming
variables, we may assume that this distance-2 square appears on inputs α, β, γ and δ where

[
f(α) f(β)
f(γ) f(δ)

]
=

[
f(0000~02n−4) f(0011~02n−4)

f(1100~02n−4) f(1111~02n−4)

]
=

[
1 a
a 1

]
.

Then, we consider the entries of f̃ on inputs α, β, γ and δ. We have

[
f̃(α) f̃(β)

f̃(γ) f̃(δ)

]
=

[
f(α) + f(γ) f(β) + f(δ)
f(α)− f(γ) f(β)− f(δ)

]
=

[
1 + a 1 + a
1− a a− 1

]
.

Since a > 1, clearly 1 + a 6= 0, 1− a 6= 0 and |1 + a| > |1− a|. Since f has parity and f(~02n) = 1,
f has even parity. By Lemma 7.6(2), S (f̃11

12 ) = E2n−2 and |1 + a| = 2|1− a|. Since a > 1, we have
1 + a = 2(a − 1). Then, a = 3. Thus, the only possible Type II distance-2 square in f has the
canonical form [ 1 3

3 1 ].

Under the assumption that a Type II distance-2 square appears in f and
[
f(α) f(β)
f(γ) f(δ)

]
= [ 1 3

3 1 ], we

have
[
f̃(α) f̃(β)

f̃(γ) f̃(δ)

]
=
[

4 4
−2 2

]
. As showed above, by Lemma 7.6(2), S (f̃11

12 ) = E2n−2 and n01, n10 = 2

or 4. We first prove

Claim 1. S (f00
12 ) = S (f11

12 ) = E2n−2, f00
12 (θ), f11

12 (θ) = ±3 or ±1 for all θ ∈ E2n−2, and
|S3(f00

12 )|+ |S3(f11
12 )| = 22n−5.

Remember that f̃00
12 , f̃

11
12 ∈ A . For any of them, its nonzero entries have the same norm. Since

f̃(α) = f̃(00~02n−2) = 1 + 3 = 4 and S (f̃00
12 ) ⊆ E2n−2, for every θ ∈ E2n−2, f̃(00θ) = ±4 or 0. Also,

since f̃(γ) = f̃(11~02n−2) = 1 − 3 = −2, and S (f̃11
12 ) = E2n−2, for every θ ∈ E2n−2, f̃(11θ) = ±2.

Then,

f(00θ) =
f̃(00θ) + f̃(11θ)

2
=

(±4) + (±2)

2
or

0 + (±2)

2
.
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Thus, f(00θ) = ±3 or ±1 for every θ ∈ E2n−2. Also,

f(11θ) =
f̃(00θ)− f̃(11θ)

2
=

(±4)− (±2)

2
or

0− (±2)

2
.

Thus, f(11θ) = ±3 or ±1 for every θ ∈ E2n−2. Additionally note that, for any θ ∈ E2n−2 if
f̃(00θ) = ±4, then of the two values f(00θ) and f(11θ), exactly one is ±3 and the other one is ±1;
if f̃(00θ) = 0, then f(00θ) = ±1 and f(11θ) = ±1. Since

|f̃00
12 |2 = 42 · |S (f̃00

12 )| = |f̃11
12 |2 = 22 · |S (f̃11

12 )| = 22 · |E2n−2|,

we have |S (f̃00
12 )| = |E2n−2|/4 = 22n−5. Thus, there are exactly 22n−5 entries of f̃00

12 having value
±4, which give arise to exactly 22n−5 many entries of value ±3 among all entries of f00

12 and f11
12 .

Claim 1 has been proved.
Next, we prove

Claim 2. S (f01
12 ) = S (f10

12 ) = O2n−2, f01
12 (θ), f10

12 (θ) = ±3 or ±1 for all θ ∈ O2n−2,
and |S3(f01

12 )|+ |S3(f10
12 )| = 22n−5.

We have f̃(~02n) = 4. We have n00 = 4 and n11 = 2. Also recall that we have showed that
n01, n10 = 2 or 4, by Lemma 7.6(2). There are three cases.
• n01 = n10 = 2. Since n11 = n01 = 2 and

|f̃11
12 |2 = n2

11 · |S (f̃11
12 )| = n2

01 · |S (f̃01
12 )| = |f̃01

12 |2,

we have
|S (f̃01

12 )| = |S (f̃11
12 )| = |E2n−2| = 22n−3.

Since f̃ has even parity, S (f̃01
12 ) ⊆ O2n−2. As |O2n−2| = 22n−3, we get S (f̃01

12 ) = O2n−2.

Similarly, we can show that S (f̃10
12 ) = O2n−2. Let ζ = 0110~02n−4 and η = 1010~02n−4. Then,

f̃(ζ) = ±2 and f̃(η) = ±2. Note that

f(ζ) =
f̃(ζ) + f̃(η)

2
and f(η) =

f̃(ζ)− f̃(η)

2
.

If f̃(ζ) = f̃(η), then f(ζ) = ±2 and f(η) = 0. If f̃(ζ) = −f̃(η), then f(ζ) = 0 and f(η) = ±2.
We first consider the case that f(ζ) = ±2. Let ξ = 1001~02n−4. Consider the following
distance-2 square.

[
f(α) f(ζ)
f(ξ) f(δ)

]
=

[
f(0000~02n−4) f(0110~02n−4)

f(1001~02n−4) f(1111~02n−4)

]
=

[
1 ±2
∗ 1

]
.

Clearly, it is not of type I nor type III. Also, it is not of type II with the canonical form [ 1 3
3 1 ].

Contradiction. If f(η) = ±2, then similarly by considering the distance-2 square
[
f(α) f(η)
f(τ) f(δ)

]

where τ = 0101~02n−4, we get a contradiction.
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• n01 = n10 = 4. We still consider

f(ζ) =
f̃(ζ) + f̃(η)

2
and f(η) =

f̃(ζ)− f̃(η)

2
, where ζ = 0110~02n−4 and η = 1010~02n−4.

Then, as ζ has leading bits 01 and η has leading bits 10,

f(ζ) =
(±4) + (±4)

2
,
(±4) + 0

2
or

0 + 0

2
and f(η) =

(±4)− (±4)

2
,±(±4)− 0

2
or

0− 0

2
.

Thus, f(ζ), f(η) = ±4,±2 or 0. If f(ζ) or f(η) = ±4,±2 , then by considering the distance-2

square
[
f(α) f(ζ)
f(ξ) f(δ)

]
or
[
f(α) f(η)
f(τ) f(δ)

]
, we still get a contradiction. Thus we have f(ζ) = f(η) = 0.

Then, consider the signature H4
23 f , denoted by f̃ ′. Since f has even parity, f satisfies 2nd-

Orth and f ∈
∫
BA , f̃ ′ has even parity, f̃ ′

00

23, f̃
′01

23, f̃
′10

23, f̃
′11

23 ∈ A . Let n′00, n
′
01, n

′
10 and n′11

denote the norms of nonzero entries in f̃ ′
00

23, f̃
′01

23, f̃
′10

23, and f̃ ′
11

23 respectively. Notice that

f̃ ′(α) = f̃ ′(~02n) = f(0000~02n−4) + f(0110~02n−4) = f(α) + f(ζ) = 1 + 0 = 1.

Thus, n′00 = 1. Also, notice that

f̃ ′(γ) = f̃ ′(1100~02n−4) = f(1010~02n−4)− f(1100~02n−4) = f(η)− f(γ) = 0− 3 = −3.

Thus, n′10 = 3. But by Lemma 7.6(1), n′00 =
√

2
k
n′10 for some k ∈ Z. However, clearly,

3 6=
√

2
k

for any k ∈ Z. Contradiction.
• Therefore exactly one of n01 and n10 is 2 and the other is 4. Let (a, b) = (0, 1) or (1, 0) be

such that nab = 2. Since n11 = 2 and |S (f̃11
12 )| = |E2n−2|=22n−3, we have |S (f̃ab12 )| = 22n−3.

Since f̃ has even parity, f̃ab12 has odd parity, thus S (f̃ab12 ) = O2n−2. Then, similar to the proof
of f00

12 and f11
12 , we can show that for every θ ∈ O2n−2, f01

12 (θ), f10
12 (θ) = ±3 or ±1. Also,

among f01
12 and f10

12 , exactly 22n−5 many entries are ±3.
This completes the proof of Claim 2.

Thus, combining Claim 1 and Claim 2, S (f) = E2n, f(α) = ±1 or ±3 for all α ∈ S (f), and
|S3(f)| = 22n−4 = 1

8 |S (f)|. Also remember that by our assumption, f(~02n) = 1.
Now, we show that for any distinct α, β ∈ S3(f), wt(α⊕ β) > 4. For a contradiction, suppose

that α, β ∈ S3(f) and wt(α ⊕ β) = 2, and they differ at bits i and j. By renaming variables,
without loss of generality, we may assume that {i, j} = {1, 2}. This renaming does not change
the value of f(~02n) = 1. Since f(11~02n−2) = ±1 or ±3, of the values f(00~02n−2) + f(11~02n−2)
and f(00~02n−2) − f(11~02n−2), which are respectively an entry of f̃00

12 and an entry of f̃11
12 , at least

one has norm 2. Thus, among n00 and n11, at least one is 2. Since f(α) = ±3 and f(β) = ±3,
among f(α) + f(β) and f(α) − f(β), exactly one has norm 6 and the other has norm 0. Clearly,
f(α) + f(β) and f(α)− f(β) are entries of f̃ since α and β differ at bits 1 and 2. Thus, among n00,

n01, n10 and n11, one has norm 6. By Lemma 7.6(1), 2 =
√

2
k · 6 for some k ∈ N. Contradiction.

This proves that for any distinct α, β ∈ S3(f), wt(α⊕ β) > 4.
We have established the goal laid out in Step 1 of Case 2 under the assumption that there is a

Type II distance-2 square in f .
Finally, within Step 1 of Case 2, we consider the case that a type III distance-2 square appears

in f . By flipping and negating variables, we modify f such that this distance-2 square is in its

49



canonical form
[

1 3
1 −1

]
. Also, by flipping variables and renaming variables, still we may assume that

this distance-2 square appears on inputs α, β, γ and δ where

[
f(α) f(β)
f(γ) f(δ)

]
=

[
f(0000~02n−4) f(0011~02n−4)

f(1100~02n−4) f(1111~02n−4)

]
=

[
1 1
3 −1

]
.

Then, we consider the entries of f̃ on inputs α, β, γ and δ. We have

[
f̃(α) f̃(β)

f̃(γ) f̃(δ)

]
=

[
f(α) + f(γ) f(β) + f(δ)
f(α)− f(γ) f(β)− f(δ)

]
=

[
4 0
−2 2

]
.

Then exactly in the same way as the above proof when
[
f̃(α) f̃(β)

f̃(γ) f̃(δ)

]
=
[

4 4
−2 2

]
, we can show that

the same result holds. Thus, S (f) = E2n, f(α) = ±1 or ±3 for all α ∈ S (f), |S3(f)| = 22n−4 =
1
8 |S (f)|, and for any distinct α, β ∈ S (f) with wt(α⊕ β) = 2, α and β cannot be both in S3(f).

This finishes the proof of Step 1 of Case 2.

Step 2. Now we show that either g8 or g′8 is realizable from f . We will show that they are
both irreducible and do not satisfy 2nd-Orth, which gives #P-hardness.

We define a graph G2n with vertex set E2n, and there is an edge between α and β if wt(α⊕β) = 2.
I.e., we view every α ∈ E2n as a vertex, and the edges are distance 2 neighbors in Hamming distance.
Then, S3(f) is an independent set of G2n. Remember that 2n > 8 by the hypothesis of the lemma.
If 2n > 10, then by Lemma 7.4, |S3(f)| < 1

8 |S (f)|. Contradiction. Thus, 2n = 8. After renaming
and flipping variables, we may assume that S3(f) = I8 = S (f8). For brevity of notation, let
S = E8 and T = S (f8). We can pick (x1, . . . , x7) as a set of free variables of S = E8. Then,
there exists a multilinear polynomial F (x1, . . . , x7) ∈ Z2[x1, . . . , x7], and a multilinear polynomial
G(x1, . . . , x8) ∈ Z2[x1, . . . , x8] that is viewed as a representative for its image in the quotient algebra
Z2[x1, . . . , x8]/(P1, P2, P3, P4) where P1, P2, P3, P4 are the four linear polynomials in (7.4) such that
T is decided by P1 = P2 = P3 = P4 = 0, such that

f = χS(−1)F (x1,...,x7) + 4χT (−1)G(x1,...,x8).

We note that such multilinear polynomials F (x1, . . . , x7) and G(x1, . . . , x8) exist: For any point
in S \ T we can choose a unique value s ∈ Z2 which represents the ±1 value of f as (−1)s, and
for any point in T ⊆ S we can choose unique values t ∈ Z2 and s′ ∈ Z2 such that (−1)s

′
+ 4(−1)t

represents the ±3 value of f .
For {i, j} ⊆ [7] = {1, . . . , 7}, remember that F abij ∈ Z2[{x1, . . . , x7}\{xi, xj}] is the function

obtained by setting (xi, xj) = (a, b) in F . Similarly, we can define Gabij with respect to P1 = P2 =
P3 = P4 = 0 (any assignment of (xi, xj) = (a, b) is consistent with P1 = P2 = P3 = P4 = 0 which
defines T ). We make the following claim about F abij .

Claim 3. For all {i, j} ⊆ [7], F 00
ij + F 11

ij ≡ 0 or 1, and also F 01
ij + F 10

ij ≡ 0 or 1.

We first show how this claim will let us realize g8 or g′8, and lead to #P-hardness. Then, we
give a proof of Claim 3. By Claim 3 and Lemma 7.8, the degree d(F ) 6 2.
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• If d(F ) 6 1, then F is an affine linear combination of variables x1, . . . , x7, i.e., F = λ0 +∑7
i=1 λixi where λi ∈ Z2 for 0 6 i 6 7. Notice that if we negate the variable xi of f , we

will get a signature f ′(x1, . . . , x8) = (−1)xif(x1, . . . , x8). For every xi appearing in F (i.e.,
λi = 1), we negate the variable xi of f . Also, if λ0 = 1, then we normalize f by a scalar −1.
Then, we get a signature

f ′ = χS · 1 + 4χT (−1)G
′(x1,...,x8).

This will not change the support of f and also norms of entries of f . Thus, f ′(α) = ±3 or ±1
for all α ∈ S (f ′) = E8. Then, for every α ∈ T , f ′(α) = 1 + 4(−1)G

′(α) = ±3, which implies
that (−1)G

′(α) = −1 and f ′(α) = −3, because 1 + 4 = 5 cannot be an entry of f ′. Therefore,
f ′ = χS − 4χT = g8. Thus, g8 is realizable from f .
By merging variables x1 and x5 of g8 using =2, we can get a 6-ary signature h. We rename
variables x2, x3, x4 to x1, x2, x3 and variables x6, x7, x8 to x4, x5, x6 (The choice of merging
x1 and x5 is just for a simple renaming of variables). Then after normalization by a scalar
1/2, h has the following signature matrix

M123,456(h) = A =




−1 0 0 1 0 1 1 0
0 −1 1 0 1 0 0 1
0 1 −1 0 1 0 0 1
1 0 0 −1 0 1 1 0
0 1 1 0 −1 0 0 1
1 0 0 1 0 −1 1 0
1 0 0 1 0 1 −1 0
0 1 1 0 1 0 0 −1




.

Consider the inner product 〈h00
14,h

11
14〉. One can check that

〈h00
14,h

11
14〉 =

∑

16i,j64

Ai,j ·Ai+4,j+4 = 8 6= 0.

(This is the sum of pairwise products of every entry in the upper left 4 × 4 submatrix of A
with the corresponding entry of the lower right 4 × 4 submatrix of A.) In fact, notice that
h(α) = h(α) = h(α). By considering the representative matrix Mr(h) of h (see Table 4), we
have

Mr(h) =




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 .

Then,
〈h00

14,h
11
14〉 = 2(perm(Mr(h)[1,2]) + perm(Mr(h)[3,4])) = 2(2 + 2) = 8 6= 0.

Also, since S (h) = E6, it is easy to see that h is irreducible. Since h does not satisfy
2nd-Orth, we get #P-hardness.
• If d(F ) = 2, then by Lemma 7.8, for all {i, j} ⊆ [7], xixj appears in F . Then, F =∑

16i<j67 xixj + L where L is an affine linear combination of variables x1, . . . , x7. Since

on the support S (f) = E8, x1 + · · ·+ x8 = 0, and on Boolean inputs x2
8 = x8, we can substi-

tute F by F ′ = F + x8(x1 + · · · + x8) − (x2
8 − x8) =

∑
16i<j68 xixj + L + x8 (all arithmetic
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mod 2). This will not change the signature f . Then, by negating variables of f that appear
as linear terms in F ′ and normalization with a scalar ±1, we get a signature

f ′ = χS(−1)
∑

16i<j68 xixj + 4χT (−1)G
′(x1,...,x8) = q8 + 4χT (−1)G

′(x1,...,x8).

where q8 = χS(−1)
∑

16i<j68 xixj (see form (7.4)). For every α ∈ T , since wt(α) = 0, 4 or 8,

it is easy to see that q8(α) = (−1)(
wt(α)

2 ) = 1. Thus, (−1)G
′(α) must be −1 in order to get

1 − 4 = −3, of norm 3 for f ′. The other choice would give 1 + 4 = 5 to be an entry of f ′, a
contradiction. Therefore, f ′(α) = q8 − 4χT = g′8. Thus, g′8 is realizable from f .
By merging variables x1 and x5 of g′8 using =−2 , we can get a 6-ary signature h′. After
renaming variables (same as we did for h) and normalization by a scalar −1/2, we have

M123,456(h′) = B =




1 0 0 1 0 1 1 0
0 −1 1 0 1 0 0 −1
0 1 −1 0 1 0 0 −1
1 0 0 1 0 −1 −1 0
0 1 1 0 −1 0 0 −1
1 0 0 −1 0 1 −1 0
1 0 0 −1 0 −1 1 0
0 −1 −1 0 −1 0 0 −1




.

Consider the inner product 〈h′00
14,h

′11
14〉. One can check that

〈h′00
14,h

′11
14〉 =

∑

16i,j64

Bi,j ·Bi+4,j+4 = −8 6= 0.

Also, since S (h′) = E6, it is easy to see that h′ is irreducible. Since h′ does not satisfy
2nd-Orth, we get #P-hardness.

This completes the proof of Step 2, and the proof of the lemma, modulo Claim 3.

Now, we prove Claim 3 that for all {i, j} ⊆ [7], F 00
ij +F 11

ij ≡ 0 or 1 and F 01
ij +F 10

ij ≡ 0 or 1. For
simplicity of notation, we prove this for {i, j} = {1, 2}. The proof for arbitrary {i, j} is the same
by replacing {1, 2} by {i, j}. Since f ∈

∫
BA , f̃00

12 , f̃
01
12 , f̃

10
12 , f̃

11
12 ∈ A . Remember all nonzero entries

in f̃ab12 have the same norm, denoted by nab. We first show that between f̃00
12 and f̃11

12 , exactly one
has support E2n−2 and its nonzero entries have norm 2 and the other has nonzero entries of norm
4, and between f̃01

12 and f̃10
12 , exactly one has support O2n−2 and its nonzero entries have norm 2

and the other has nonzero entries of norm 4. (This is not what we have proved in Step 1 where
{1, 2} is a pair of particularly chosen indices. Here {1, 2} means an arbitrary pair {i, j}.)

Consider f00
12 (~06) and f11

12 (~06). By Step 1 of Case 2 and Lemma 7.4, we may assume that
S3(f) = S (f8) (after flipping and renaming variables). We have 00~06 ∈ S3(f) and 11~06 /∈ S3(f).
Thus, f00

12 (~06) = ±3 and f11
12 (~06) = ±1. (This is true when replacing {1, 2} by an arbitrary pair of

indices {i, j}.) Thus, between

f̃00
12 (~06) = f00

12 (~06) + f11
12 (~06) and f̃11

12 (~06) = f00
12 (~06)− f11

12 (~06),

one has norm 2 and the other has norm 4. They are both nonzero. Then, between n00 and n11,
one is 2 and the other is 4. By Lemma 7.6(2), between f̃00

12 and f̃11
12 , the one whose nonzero entries
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have norm 2 has support E6, and moreover n01 and n10 = 2 or 4. Since there exists (a, b) = (0, 0)
or (1, 1) such that

|f̃ab12 |2 = n2
ab · |S (f̃ab12 )| = 22 · |E6|,

for f̃ cd12 where (c, d) = (0, 1) or (1, 0), if ncd = 2, then |S (f̃ cd12)| = |E6| = |O6|. Since f̃ cd12 has odd

parity, S (f̃ cd12) ⊆ O6. Thus, |S (f̃ cd12)| = 22n−3 implies that S (f̃ cd12) = O6.

• If n01 = n10 = 2, then S (f̃01
12 ) = S (f̃10

12 ) = O6. For an arbitrary θ ∈ O6,

f(01θ) =
f̃(01θ) + f̃(10θ)

2
=

(±2) + (±2)

2
and f(10θ) =

f̃(01θ)− f̃(10θ)

2
=

(±2)− (±2)

2
.

Thus, between f(01θ) and f(10θ), exactly one has norm 2 and the other has norm 0. This
gives a contradiction since every nonzero entry of f has norm 1 or 3.
• If n01 = n10 = 4, then still consider f(01θ) and f(10θ) for an arbitrary θ ∈ O6. We know

that f(01θ), f(10θ) = ±4,±2 or 0. The case that f(01θ) = 0 or f(10θ) = 0 cannot occur
since S (f) = E2n and clearly, 01θ, 10θ ∈ E2n. Thus, f(01θ), f(10θ) = ±4,±2. Still, we get a
contradiction since every nonzero entry of f has norm 1 or 3.
• Thus, between n01 and n10, one is 2 and the other is 4.

Then, between f̃01
12 and f̃10

12 , exactly one has support O6 and its nonzero entries have norm 2, and
the other has nonzero entries of norm 4.

Now, we show that F 00
12 + F 11

12 ≡ 0 or 1. We first consider the case that between f̃00
12 and

f̃11
12 , f̃11

12 = f00
12 − f11

12 is the signature whose support is E6 and nonzero entries have norm 2; the

case where it is f̃00
12 will be addressed shortly. Let S0 be the subspace in Z6

2 obtained by setting
x1 = x2 = 0 in S = S (f) = E8, and S1 be the subspace in Z6

2 obtained by setting x1 = x2 = 1.
Similarly, we can define T0 and T1, replacing S in the definition by T = S3(f) = I8. Clearly,
S0 = S1 = {(x3, . . . , x8) ∈ Z6

2 | x3 + · · ·x8 = 0} = E6. Also, one can check that T0 is disjoint with
T1. Then

f00
12 = χS0(−1)F

00
12 (x3,...,x7) + 4χT0(−1)G

00
12(x3,...,x8),

and
f11

12 = χS1(−1)F
11
12 (x3,...,x7) + 4χT1(−1)G

11
12(x3,...,x8).

Thus,

f̃11
12 = χE6((−1)F

00
12 (x3,...,x7) − (−1)F

11
12 (x3,...,x7)) + 4χT0(−1)G

00
12(x3,...,x8) − 4χT1(−1)G

11
12(x3,...,x8).

Since S (f̃11
12 ) = E6 and n11 = 2, f̃11

12 (θ) = ±2 for every θ ∈ E6. If θ /∈ T0 ∪ T1, then

f̃11
12 (θ) = (−1)F

00
12 (θ) − (−1)F

11
12 (θ) = ±2.

If θ ∈ T0 ∪ T1, then it belongs to exactly one of T0 or T1,

f̃11
12 (θ) = (−1)F

00
12 (θ) − (−1)F

11
12 (θ) + 4a = ±2,

where a = ±1. In this case, the sum of the first two terms is still (−1)F
00
12 (θ) − (−1)F

11
12 (θ) = ±2,

because the only other possible value for (±1) − (±1) is 0 and then we would have 4a = ±2, a
contradiction. Thus, for every (x3, . . . , x7) ∈ Z5

2 which decides every (x3, . . . , x8) ∈ E6 by x8 =
x3 + · · ·+ x7,

(−1)F
00
12 (x3,...,x7) − (−1)F

11
12 (x3,...,x7) = ±2.
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This implies that
(−1)F

00
12 (x3,...,x7) = −(−1)F

11
12 (x3,...,x7).

Thus,
(−1)F

00
12 (x3,...,x7)+F 11

12 (x3,...,x7) = −1.

Then, F 00
12 + F 11

12 ≡ 1.

Now we address the case that (between f̃00
12 and f̃11

12 ) it is f̃00
12 = f00

12 + f11
12 the signature whose

support is E6 and nonzero entries have norm 2. Then similarly for every (x3, . . . , x7) ∈ Z5
2, which

determines every (x3, . . . , x8) ∈ E6,

(−1)F
00
12 (x3,...,x7) + (−1)F

11
12 (x3,...,x7) = ±2.

This implies that
(−1)F

00
12 (x3,...,x7) = (−1)F

11
12 (x3,...,x7).

Thus,
(−1)F

00
12 (x3,...,x7)+F 11

12 (x3,...,x7) = 1

Then, F 00
12 + F 11

12 ≡ 0.
We have proved that, F 00

12 + F 11
12 ≡ 0 or 1.

Also, consider f̃01
12 and f̃10

12 . One of them is a signature whose support is O2n−2 and nonzero
entries have norm 2. Then similarly, for every (x3, . . . , x7) ∈ Z5 which decides every (x3, . . . , x8) ∈
O6 by x8 = 1 + x3 + · · ·+ x7,

(−1)F
01
12 (x3,...,x7) + (−1)F

10
12 (x3,...,x7) = ±2,

or
(−1)F

01
12 (x3,...,x7) − (−1)F

10
12 (x3,...,x7) = ±2.

Then, F 01
12 + F 10

12 ≡ 0 or F 01
12 + F 10

12 ≡ 1. The above proof holds for all {i, j} ⊆ [7]. Thus, for all
{i, j} ⊆ [7], F 00

ij + F 11
ij ≡ 0 or 1, and F 01

ij + F 10
ij ≡ 0 or 1.

Remark: The above proof does not require F to be non-B hard.

7.3 Support condition

Then, by further assuming that nonzero entries of f have the same norm, we show that f has affine
support or we can get the #P-hardness for non-B hard set F (Lemma 7.16). Here, we do require
F to be non-B hard.

We first give one more result about f̃ . Remember that if f ∈
∫
BA , then f̃00

12 , f̃01
12 , f̃10

12 ,

f̃11
12 ∈ A , and nab denotes the norm of nonzero entries of f̃ab12 . Let B̃ =

{
=̃+

2 , =̃
−
2 ,
˜6=+

2 ,
˜6=−2
}

where

=̃+
2 = (2, 0, 0, 0), =̃−2 = (0, 0, 0, 2), ˜6=+

2 = (0, 2, 0, 0) and ˜6=−2 = (0, 0, 2, 0). Signatures in B̃ are
obtained by performing the H4 gadget construction on binary signatures in B.

Lemma 7.10. Let f be an irreducible signature of arity 2n > 6 with the following properties.
1. f has even parity, f satisfies 2nd-Orth, and f ∈

∫
BA ;
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2. for all {i, j} disjoint with {1, 2} and every b ∈ B, either M(m12(∂bijf)) = λbijI4 for some real

λbij 6= 0, or there exists a nonzero binary signature gbij ∈ B such that gbij(x1, x2) | ∂bijf .

If S (f̃01
12 ) = S (f̃10

12 ), n00 > n01 > 0, then S (f̃01
12 ) = O2n−2.

Proof. We first analyze the second property of f , i.e., the property about ∂bijf .

• If M(m12(∂bijf)) = λbijI4, by Lemma 7.5, then M(m12(∂̃bijf)) = 2λbijI4. Since {i, j} is disjoint
with {1, 2}, the H4 gadget on variables x1 and x2 commutes with the merging gadget on

variables xi and xj . Thus, ∂̃bijf = ∂bij f̃ . Let (∂bij f̃)ab12 be the signature obtained by setting

variables x1 and x2 of ∂bij f̃ to a and b, and ∂bij(f̃
ab
12 ) be the signature obtained by merging

variables xi and xj of f̃ab12 . Again, since {1, 2} and {i, j} are disjoint, (∂bij f̃)ab12 = ∂bij(f̃
ab
12 ). We

denote them by ∂bij f̃
ab
12 . Then, since M(m12(∂̃bijf)) = M(m12(∂bij f̃)) = 2λbijI4,

|∂bij f̃00
12 |2 = |∂bij f̃01

12 |2 = |∂bij f̃10
12 |2 = |∂bij f̃11

12 |2 = 2λbij 6= 0.

• If gbij(x1, x2) | ∂bijf , i.e, ∂bijf = gbij(x1, x2) ⊗ h, then ∂̃bijf = ∂bij f̃ = g̃bij(x1, x2) ⊗ h. Since

gbij ∈ B, g̃bij ∈ B̃. By the form of signatures in B̃, among ∂bij f̃
00
12 , ∂bij f̃

01
12 , ∂bij f̃

10
12 and ∂bij f̃

11
12 , at

most one is a nonzero signature.
Combining the above two cases we have that, among ∂bij f̃

00
12 , ∂bij f̃

01
12 , ∂bij f̃

10
12 and ∂bij f̃

11
12 , if at least

two of them are nonzero signatures then they are all nonzero signatures.
Now, we show that S (f̃01

12 ) = O2n−2. Since f has even parity, f̃ also has even parity. Then, f̃01
12

has odd parity, i.e., S (f̃01
12 ) ⊆ O2n−2. For a contradiction, suppose that S (f̃01

12 ) ( O2n−2. Since

n01 > 0, S (f̃01
12 ) 6= ∅. Then, we can pick a pair of inputs α, β ∈ O2n−2 with wt(α ⊕ β) = 2 such

that α ∈ S (f̃01
12 ) and β /∈ S (f̃01

12 ). Also, since S (f̃01
12 ) = S (f̃10

12 ), α ∈ S (f̃10
12 ) and β /∈ S (f̃10

12 ).

Thus, |f̃01
12 (α)| = n01 and |f̃01

12 (β)| = 0, and |f̃10
12 (α)| = n10 and |f̃10

12 (β)| = 0. Suppose that α and β
differ in bits i and j. Clearly, {i, j} is disjoint with {1, 2}. Depending whether αi = αj or αi 6= αj ,

we connect variables xi and xj of f̃ using =+
2 or 6=+

2 . We get signatures ∂+
ij f̃ or ∂+̂

ij f̃ respectively.
We consider the case that αi = αj ; in this case {αiαj , βiβj} = {00, 11}. For the case that αi 6= αj ,

the analysis is the same by replacing ∂+
ij f̃ with ∂+̂

ij f̃ .

Consider ∂+
ij f̃ . Then, because {αiαj , βiβj} = {00, 11}, f̃01

12 (α) + f̃01
12 (β) and f̃10

12 (α) + f̃10
12 (β) are

entries of ∂+
ij f̃ ; more precisely, they are entries of ∂+

ij f̃
01
12 and ∂+

ij f̃
10
12 respectively. Since f̃01

12 (β) =

f̃10
12 (β) = 0, we have

|f̃01
12 (α) + f̃01

12 (β)| = |f̃01
12 (α)| = n01 6= 0, and |f̃10

12 (α) + f̃10
12 (β)| = |f̃10

12 (α)| = n10 6= 0.

Thus, ∂+
ij f̃

01
12 has a nonzero entry with norm n01, and then ∂+

ij f̃
01
12 6≡ 0. Also, we have ∂+

ij f̃
10
12 6≡ 0.

Thus at least two among ∂+
ij f̃

00
12 , ∂+

ij f̃
01
12 , ∂+

ij f̃
10
12 and ∂+

ij f̃
10
12 are nonzero, it follows that all of them

are nonzero signatures.
Then ∂+

ij f̃
00
12 6≡ 0. Let ∂+

ij f̃
00
12 (γ) be a nonzero entry of ∂+

ij f̃
00
12 . Then, ∂+

ij f̃
00
12 (γ) = f̃0000

12ij (γ) +

f̃0011
12ij (γ) 6= 0.1 Clearly, f̃0000

12ij (γ) and f̃0011
12ij (γ) are entries of f̃00

12 , and they have norm n00 or 0.

Thus, ∂+
ij f̃

00
12 (γ) has norm 2n00 or n00. Also, ∂+

ij f̃
00
12 (γ) is an entry of ∂+

ij f̃ on the input 00γ. Thus,

1For the case that αi 6= αj , ∂
+
ij f̃

00
12 (γ) = f̃0000

12ij (γ) + f̃0011
12ij (γ) will be replced by ∂+̂

ij f̃
00
12 (γ) = f̃0001

12ij (γ) + f̃0010
12ij (γ).
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∂+
ij f̃ has a nonzero entry with norm 2n00 or n00. Since n00 > n01, both 2n00 and n00 are not equal

to n01. Thus, ∂+
ij f̃ has two nonzero entries with different norms. Such a signature is not in A .

However, since f ∈
∫
BA , by Lemma 7.5, ∂+

ij f̃ ∈ A . Contradiction. Thus, S (f̃01
12 ) = O2n−2.

We also give a result about the edge partition of complete graphs into two complete tripartite
subgraphs. This result should also be of independent interest. We say a graph G = (V,E) is
tripartite if V = V1tV2tV3 and every e ∈ E is between distinct Vi and Vj . Here t denotes disjoint
union. The parts Vi are allowed to be empty. It is a complete tripartite graph if every pair between
distinct Vi and Vj is an edge.

Definition 7.11. Let Kn be the complete graph on n vertices. We say Kn has a tripartite 2-
partition if there exist complete tripartite subgraphs T1 and T2 such that {E(T1), E(T2)} is a par-
tition of E(Kn), i.e., E(Kn) = E(T1) t E(T2). We say T1 and T2 are witnesses of a tripartite
2-partition of Kn.

Lemma 7.12. Kn has a tripartite 2-partition iff n 6 5. For n = 5, up to an automorphism of K5,
there is a unique tripartite 2-partition where T1 is a triangle on {v1, v2, v3} and T2 is the complete
tripartite graph with parts {v1, v2, v3}, {v4} and {v5}.
Proof. Let T be a complete tripartite graph. Let G2,1 be the union of K2 and an isolated vertex.
We first prove the following two claims.

Claim 1. G2,1 is not an induced subgraph of T .

For a contradiction, suppose G2,1 = (V,E) is an induced subgraph of T , where V = {v1, v2, v3},
and E = {(v1, v2)}. Then, v1 and v2 belong to distinct parts of T . Since (v1, v3), (v2, v3) /∈ E(T ),
v1 and v3 belong to the same part of T , and so are v2 and v3. Thus, v1 and v2 belong to the same
part of T . This contradiction proves Claim 1.

Claim 2. K4 is not an induced subgraph of T .

For a contradiction, suppose K4 on V = {v1, v2, v3, v4} is an induced subgraph of T . Then, for
any two distinct vertices vi, vj ∈ V , the edge (vi, vj) ∈ K4 shows that vi and vj belong to distinct
parts in T . But T has at most three distinct nonempty parts. This contradiction proves Claim 2.

Now, we prove this lemma. The cases n = 1, 2, 3 are trivial. When n = 4, we have the following
two tripartite 2-partitions of K4, with V (T1) = {v1}t{v2}t{v3} and V (T2) = {v1, v2, v3}t{v4}t∅,
or alternatively with V (T ′1) = {v1} t {v2} t ∅ and V (T ′2) = {v1, v2} t {v3} t {x4}.

We consider n > 5. Suppose Kn has a tripartite 2-partition with complete tripartite subgraphs
T1 = (V1, E1) and T2 = (V2, E2). We write (Ai, Bi, Ci) for the three parts of Ti, i = 1, 2.

Clearly V = V1 ∪ V2, as all vertices of V must appear in either T1 or T2, for otherwise any edge
incident to v ∈ V \ (V1 ∪ V2) is not in E1 ∪ E2. If all parts of both T1 and T2 have size at most 1,
then |E1 t E2| 6 6 < |K5| 6 |Kn|, a contradiction. So at least one part, say A1, has size |A1| > 2,
and we let a, a′ ∈ A1. Then, (a, a′) /∈ E1. Thus, (a, a′) ∈ E2 and a, a′ ∈ V2.

We show that (V1 \A1)∩ (V2 \A1) = ∅. Otherwise, there exists v ∈ (V1 \A1)∩ (V2 \A1). Then,
edges (v, a), (v, a′) ∈ E1. Thus, among edges (v, a), (v, a′) and (a, a′) of Kn, (a, a′) is the only one
in T2. Since v, a, a′ ∈ V2, G2,1 is an induced subgraph of T2. A violation of Claim 1.

If both V1\A1 and V2\A1 are nonempty, then an edge in Kn between u ∈ V1\A1 and v ∈ V2\A1

is in neither E1 nor E2, since u 6∈ V2 and v 6∈ V1. This is a contradiction. If V1 \ A1 = ∅, then
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E1 = ∅, and then all edges of Kn belong to T2, which violates Claim 2. So V2 \ A1 = ∅. Since
V = V1 ∪ V2, V2 \A1 = ∅ implies that V = V1.

Clearly V1 \ A1 = B1 t C1. If |B1| > 2, then there exists some {u, v} ⊆ B1 ⊆ V1 \ A1, which
is disjoint from V2. Thus {u, v} 6∈ E1 t E2, a contradiction. Hence |B1| 6 1. Similarly |C1| 6 1.
Finally, if |A1| > 4, then there is a K4 inside A1 which must be an induced subgraph of T2, a
violation of Claim 2. Thus |A1| 6 3. It follows that n 6 5 since V = V1 = A1 tB1 t C1. If n = 5,
then |A1| = 3 and |B1| = |C1| = 1. After relabeling vertices, we may assume that A1 = {v1, v2, v3},
B1 = {v4} and C1 = {v5}. Then, we have A2 = {v1}, B2 = {v2} and C2 = {v3}. This gives the
unique tripartite 2-partition of K5.

We will apply Lemma 7.12 to multilinear Z2-polynomials. Remember that we take the reduction
of polynomials in Z2[x1, . . . , xn] modulo the ideal generated by {x2

i − xi | i ∈ [n]} replacing any F
by its unique multilinear representative.

Definition 7.13. Let F (x1, . . . , xn) ∈ Z2[x1, . . . , xn] be a complete quadratic polynomial. We say
F has a twice-linear 2-partition if there exist L1, L2, L3, L4 ∈ Z2[x1, . . . , xn] where d(L1) = d(L2) =
d(L3) = d(L4) 6 1 such that F = L1 · L2 + L3 · L4.

Lemma 7.12 gives the following result about multilinear Z2-polynomials.

Lemma 7.14. Let F (x1, . . . , xn) ∈ Z2[x1, . . . , xn] be a complete quadratic polynomial. For n > 6,
F does not have a twice-linear 2-partition. For n = 5, F has a twice-linear 2-partition F =
L1 · L2 + L3 · L4 iff (after renaming variables) the cross terms of L1 · L2 and L3 · L4 correspond
to the unique tripartite 2-partition of K5, and we have L1 · L2 = (x1 + x2 + a)(x2 + x3 + b) and
L3 · L4 = (x1 + x2 + x3 + x4 + c)(x1 + x2 + x3 + x5 + d) for some a, b, c, d ∈ Z2.

Proof. We first analyze the quadratic terms that appear in a product of two linear polynomials.
We use xi ∈ L to denote that a linear term xi appears in a linear polynomial L. Let L1 and L2 be
two linear polynomials.

Let U1 = {xi | xi ∈ L1, xi /∈ L2}, U2 = {xi | xi ∈ L1, xi ∈ L2}, and U3 = {xi | xi /∈ L1, xi ∈ L2}.
Then,

L1 =
∑

xi∈U1

xi +
∑

xj∈U2

xj + a, and L2 =
∑

xj∈U2

xj +
∑

xk∈U3

xk + b

for some a, b ∈ Z2
2. The quadratic terms in L1 · L2 are from

(
∑

xi∈U1

xi +
∑

xj∈U2

xj) · (
∑

xj∈U2

xj +
∑

xk∈U3

xk)

which are enumerated in

∑

xi∈U1,xj∈U2

xixj +
∑

xi∈U1,xk∈U3

xixk +
∑

xj∈U2,xk∈U3

xjxk.

Note that each term x2
i for i ∈ U2 is replaced by xi (thus no longer counted as a quadratic term)

as we calculate modulo the ideal generated by {x2
i − xi | i ∈ [n]}, and every pairwise cross product

term xixj for i, j ∈ U2 and i 6= j disappears since it appears exactly twice.
If we view variables x1, . . . , xn as n vertices and each quadratic term xixj as an edge between

vertices xi and xj , then the quadratic terms in L1 ·L2 are the edges of a complete tripartite subgraph
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T of Kn (the parts of a tripartite graph could be empty) and V (T ) = U1 t U2 t U3. Therefore,
L1 · L2 is one of the two terms of a twice-linear 2-partition of a complete quadratic polynomial
over n variables iff T is one tripartite complete graph in a tripartite 2-partition of the complete
graph Kn. By Lemma 7.12, a tripartite 2-partition does not exist for Kn when n > 6. Thus, F
does not have twice-linear partition when n > 6. When n = 5, the tripartite 2-partition of K5 is
unique up to relabeling. One tripartite complete graph of this tripartite 2-partition is a triangle,
and we may assume it is on {x1, x2, x3}. Then, we take L1 · L2 = (x1 + x2 + a)(x2 + x3 + b) for
some a, b ∈ Z2

2, and L3 · L4 = (x1 + x2 + x3 + x4 + c)(x1 + x2 + x3 + x5 + d) for some c, d ∈ Z2
2.

Thus, a complete quadratic polynomial F (x1, . . . , x5) over 5 variables has a twice-linear 2-partition
iff (after renaming variables) F = L1 · L2 + L3 · L4.

Now, we are ready to make a further major step towards Theorem 7.19. We first give a
preliminary result.

Lemma 7.15. Let f be a 2n-ary signature, where 2n > 4. If f ∈
∫
BA and |f(α)| = 1 for all

α ∈ S (f), then for all {i, j} ⊆ [2n], S (f00
ij ) = S (f11

ij ) or S (f00
ij ) ∩S (f11

ij ) = ∅, and S (f01
ij ) =

S (f10
ij ) or S (f01

ij ) ∩S (f10
ij ) = ∅.

Proof. We first prove that for all {i, j} ⊆ [2n], S (f00
ij ) = S (f11

ij ) or S (f00
ij ) ∩ S (f11

ij ) = ∅.
For a contradiction, suppose that there exist α, β ∈ Z2n−2

2 such that α ∈ S (f00
ij ) ∩ S (f11

ij ) and

β ∈ S (f00
ij )∆S (f11

ij ), where ∆ denotes the symmetric difference between two sets. Consider

signatures ∂+
ijf and ∂−ijf . Then, f00

ij (α) + f11
ij (α) and f00

ij (β) + f11
ij (β) are entries of ∂+

ijf , and

f00
ij (α)− f11

ij (α) and f00
ij (β)− f11

ij (β) are entries of ∂−ijf . Since α ∈ S (f00
ij ) ∩S (f11

ij ), f00
ij (α) = ±1

and f11
ij (α) = ±1. Then between f00

ij (α) + f11
ij (α) and f00

ij (α)− f11
ij (α), exactly one has norm 2 and

the other is 0. However, since β ∈ S (f00
ij )∆S (f11

ij ), between f00
ij (β) and f11

ij (β), exactly one is 0

and the other has norm 1. Thus, |f00
ij (β) + f11

ij (β)| = |f00
ij (β) − f11

ij (β)| = 1. Then, between ∂+
ijf

and ∂−ijf , there is a signature that has an entry of norm 1 and an entry of norm 2. Clearly, such a

signature is not in A . However, since f ∈
∫
BA , we have ∂+

ijf , ∂−ijf ∈ A . Contradiction.

By considering signatures ∂+̂
ijf and ∂−̂ijf , similarly we can show that S (f01

ij ) = S (f10
ij ) or

S (f01
ij ) ∩S (f10

ij ) = ∅.

The next lemma is a major step.

Lemma 7.16. Suppose that F is non-B hard. Let f ∈ F be an irreducible 2n-ary (2n > 8)
signature with parity. Then,
• Holantb(F) is #P-hard, or
• there is a signature g /∈ A of arity 2k < 2n that is realizable from f and B, or
• f has affine support.

Proof. Again, we may assume that f satisfies 2nd-Orth and f ∈
∫
BA . Also, by Lemma 7.9, we

may assume that f(α) = ±1 for all α ∈ S (f) after normalization.
For any four distinct binary strings α, β, γ, δ ∈ Z2n

2 with α ⊕ β ⊕ γ = δ, we define a score
T (α, β, γ, δ) = (t1, t2, t3) which are the values of wt(α⊕ β) = wt(γ ⊕ δ),wt(α⊕ γ) = wt(β ⊕ δ) and
wt(α⊕δ) = wt(β⊕γ) ordered from the smallest to the largest. We order the scores lexicographically,
i.e., we say T = (t1, t2, t3) < T ′ = (t′1, t

′
2, t
′
3) if t1 < t′1, or t2 < t′2 when t1 = t′1, or t3 < t′3 when

t1 = t′1 and t2 = t′2. Note that since α, β, γ, δ are distinct, the smallest value of the score T is
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(2, 2, 2). We say that (α, β, γ, δ) where α⊕β⊕γ = δ forms a non-affine quadrilateral of f if exactly
three of them are in S (f) and the fourth is not.

For a contradiction, suppose that S (f) is not affine. Then, f has at least a non-affine quadrilat-
eral. Among all non-affine quadrilaterals of f , we pick the one (α, β, γ, δ) with the minimum score
Tmin = T (α, β, γ, δ) = (t1, t2, t3). Without loss of generality, we may assume that among α, β, γ and
δ, δ is the one that is not in S (f).

We first consider the case that (2, 2, 2) < Tmin. We prove that we can realize a non-affine
signature from f by merging. Depending on the values of Tmin, there are three cases.

• t1 > 4. Without loss of generality, we may assume that t1 = wt(α ⊕ β). (Note that even
though we have named δ as the one not belonging to S (f), since α⊕ β ⊕ γ ⊕ δ = 0, we can
name them so that t1 = wt(α ⊕ β).) Then, there are at least four bits on which α and β
differ. Among these four bits, there are at least two bits on which γ is identical to α or β.
Without loss of generality, we assume that these are the first two bits and γ1γ2 = α1α2. We
have β1β2 = α1α2, and as δ = α ⊕ β ⊕ γ, we have δ1δ2 = α1α2. Also by flipping variables,
we may assume that α = ~02n = 00~02n−2. Then, β = 11β∗, γ = 00γ∗ and δ = 11δ∗ where
β∗, γ∗, δ∗ ∈ Z2n−2

2 and δ∗ = β∗ ⊕ γ∗. We consider the following eight inputs of f .

α = 00α∗ α′ = 11α∗ β′ = 00β∗ β = 11β∗

γ = 00γ∗ γ′ = 11γ∗ δ′ = 00δ∗ δ = 11δ∗

Note that γ′ = α⊕ α′ ⊕ γ, and wt(α⊕ α′) = 2 < t1. Then,

T (α, α′, γ, γ′) < T (α, β, γ, δ).

By our assumption that T (α, β, γ, δ) is the minimum score among all non-affine quadrilaterals
of f , (α, α′, γ, γ′) is not a non-affine quadrilateral of f . Since α, γ ∈ S (f), α′ and γ′ are
either both in S (f) or both not in S (f). Also, note that γ′ = α′ ⊕ β ⊕ δ, and wt(α′ ⊕ β) =
wt(α⊕ β)− 2 = t1 − 2 < t1. Then,

T (α′, β, γ′, δ) < T (α, β, γ, δ).

Again since T (α, β, γ, δ) is the minimum score among all non-affine quadrilaterals of f ,
(α′, β, γ′, δ) is not a non-affine quadrilateral. Since β ∈ S (f) and δ /∈ S (f), α′ and γ′

are not both in S (f). Thus, α′, γ′ /∈ S (f). Similarly, (β′, β, δ′, δ) and (α, β′, γ, δ′) are not
non-affine quadrilaterals of f , since their scores are less than T (α, β, γ, δ). Since β ∈ S (f)
and δ /∈ S (f), we cannot have both β′, δ′ ∈ S (f) from considering (β′, β, δ′, δ), and then
from (α, β′, γ, δ′), we cannot have exactly one of β′, δ′ is in S (f). Thus, both β′, δ′ /∈ S (f).
In other words, we have f(α′) = f(β′) = f(γ′) = f(δ′) = 0.
Consider the signature ∂12f . Then, f(α) + f(α′), f(β) + f(β′), f(γ) + f(γ′) and f(δ) + f(δ′)
are entries of ∂12f on inputs α∗, β∗, γ∗ and δ∗ respectively. Since f(α) + f(α′) = f(α) 6= 0,
f(β) + f(β′) = f(β) 6= 0 and f(γ) + f(γ′) = f(γ) 6= 0, α∗, β∗, γ∗ ∈ S (∂12f). Meanwhile
we have f(δ) + f(δ′) = 0 + 0 = 0, thus δ∗ /∈ S (∂12f). Thus, (α∗, β∗, γ∗, δ∗) is a non-affine
quadrilateral of ∂12f . Then, ∂12f is a non-affine signature of arity 2n− 2. Contradiction.
• t1 = 2 and t2 > 4. Without loss of generality, we assume that wt(α⊕γ) = 2 and wt(α⊕β) =
t2 > 4. (Again, using α⊕β⊕γ⊕δ = 0, a moment reflection shows that this is indeed without
loss of generality, even though we have named δ 6∈ S (f).) Again by flipping variables, we
may assume that α = ~02n. Then, wt(γ) = 2 and wt(β) > 4. Take four bits where βi = 1, for
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at most two of these we can have γi = 1, thus there exist two other bits of these four bits
(we may assume that they are the first two bits) such that γ1γ2 = 00 and β1β2 = 11. Then,
α = 00α∗, β = 11β∗, γ = 00γ∗, and δ = 11δ∗ by δ = α ⊕ β ⊕ γ, where β∗, γ∗, δ∗ ∈ Z2n−2

2 ,
wt(β∗) > 2, wt(γ∗) = 2 and δ∗ = β∗ ⊕ γ∗. Still, we consider the following eight inputs of f .

α = 00α∗ α′ = 11α∗ β′ = 00β∗ β = 11β∗

γ = 00γ∗ γ′ = 11γ∗ δ′ = 00δ∗ δ = 11δ∗

Note that wt(α⊕ γ) = 2 and wt(α⊕ α′) = 2 < t2. Then,

T (α, α′, γ, γ′) < T (α, β, γ, δ).

Then similarly since T (α, β, γ, δ) is the minimum, (α, α′, γ, γ′) is not a non-affine quadrilateral.
Since α, γ ∈ S (f), α′ and γ′ are either both in S (f) or both not in it. Also, note that
wt(α′ ⊕ γ′) = 2 and wt(α′ ⊕ β) = wt(α⊕ β)− 2 = t2 − 2 < t2. Then,

T (α′, β, γ′, δ) < T (α, β, γ, δ).

Thus, (α′, β, γ′, δ) is not a non-affine quadrilateral. Since β ∈ S (f) and δ /∈ S (f), α′ and
γ′ are not both in S (f). Thus, α′, γ′ /∈ S (f). Similarly, by considering (β′, β, δ′, δ) and
(α, β′, γ, δ′), we know that they are not non-affine quadrilaterals. Thus, β′, δ′ /∈ S (f). In
other words, we have f(α′) = f(β′) = f(γ′) = f(δ′) = 0. Still consider the signature ∂12f .
We have ∂12f /∈ A . Contradiction.
• t1 = 2, t2 = 2 and t3 = 4. In this case, by the definition of distance-2 squares (equation (7.5)),[

f(α) f(β)
f(γ) f(δ)

]
forms a distance-2 square. Clearly, it is not of type I, II or III since exactly one

entry of this square is zero. As proved in Lemma 7.9, since f has a distance-2 square that is
not type I, II or III, then we can realize a non-affine signature by merging. Contradiction.

Now, we consider the case that Tmin = (2, 2, 2).
Then, we show that |S (f)| = 22n−2. We consider the non-affine quadrilateral (α, β, γ, δ) with

score T = (2, 2, 2). By renaming and flipping variables, without loss of generality, we may assume
that [

α β
γ δ

]
=

[
000~02n−3 011~02n−3

110~02n−3 101~02n−3

]
,

and δ is the only one among four that is not in S (f). By normalization, we may assume that
f(α) = 1. If f(γ) = −1, then we negate the variable x1 of f . This keeps f0

1 unchanged but
changes f1

1 to −f1
1 , so this does not change the value of f(α), but changes the value of f(γ) to

1. Thus, without loss of generality, we may assume that f(α) = f(γ) = 1. Clearly, f has even
parity. Consider the signature f̃ by the H4 gadget applied on variables x1 and x2 of f . We have
f̃00

12 (~02n−2) = f(α) + f(γ) = 2 and f̃01
12 (1~02n−3) = f(β) + f(δ) = f(β) since f(δ) = 0. Remember

that since f ∈
∫
BA , by Lemma 7.5, for all (a, b) ∈ Z2

2, f̃ab12 ∈ A and we use nab to denote the
norm of its nonzero entries. Thus, n00 = 2 and n01 = 1. Also, we have f(β) 6= 0 which is the
same as 1~02n−3 ∈ S (f01

12 ), and f(δ) = 0 which is the same as 1~02n−3 /∈ S (f10
12 ). By Lemma 7.15,

S (f01
12 ) ∩S (f10

12 ) = ∅. Remember that f̃01
12 = f01

12 + f10
12 and f̃10

12 = f01
12 − f10

12 . Then,

S (f̃01
12 ) = S (f01

12 ) ∪S (f10
12 ) = S (f̃10

12 ).
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Consider signatures ∂bijf for all {i, j} disjoint with {1, 2} and every b ∈ B. By Lemma 4.3 and

its remark, we may assume that either M(m12(∂bijf)) = λbijI4 for some real λbij 6= 0, or there exists

a nonzero binary signature gbij ∈ O such that gbij(x1, x2) | ∂bijf . Otherwise, we get #P-hardness.

Consider the case that gbij(x1, x2) | ∂bijf . If ∂bijf ≡ 0, then we can let gbij ∈ B since a zero

signature can be divided by any nonzero binary signature. If ∂bijf 6≡ 0, we can realize gbij by

factorization. If gbij /∈ B⊗1, then we get #P-hardness since F is non-B hard. Thus, we may assume

that gbij ∈ B after normalization. Therefore, for all {i, j} disjoint with {1, 2} and every b ∈ B,

we may assume that either M(m12(∂bijf)) = λbijI4 for some real λbij 6= 0, or there exists a nonzero

binary signature gbij ∈ B such that gbij(x1, x2) | ∂bijf . Then, by Lemma 7.10, S (f̃01
12 ) = O2n−2.

Thus, |S (f̃01
12 )| = 22n−3.

Now consider again the signature f . Since f satisfies 2nd-Orth, and all its nonzero entries
have norm 1, for any (a, b) ∈ Z2

2, |fab12 |2 = |S (fab12 )|. Then,

|S (f00
12 )| = |S (f01

12 )| = |S (f10
12 )| = |S (f11

12 )|.

Remember that S (f01
12 )∩S (f10

12 ) = ∅, and S (f̃01
12 ) = S (f01

12 )∪S (f10
12 ). Then, S (f00

12 ) and S (f01
12 )

form an equal size partition of S (f̃01
12 ). Thus, |S (f01

12 )| = |S (f10
12 )| = 1

2 |S (f̃01
12 )| = 22n−4. Also,

|S (f00
12 )| = |S (f11

12 )| = 22n−4. Therefore,

|S (f)| = |S (f00
12 )|+ |S (f01

12 )|+ |S (f10
12 )|+ |S (f11

12 )| = 4 · 22n−4 = 22n−2.

Since all nonzero entries of f have norm 1, |f |2 = |S (f)| = 22n−2. Also, since f satisfies 2nd-Orth,
for all {i, j} ∈ [2n] and all (a, b) ∈ Z2

2, |fabij | = 1
4 |f |2 = 22n−4.

We denote S (f) by S. Since f has even parity, for every (x1, . . . , x2n) ∈ S, x1 + · · ·+ x2n = 0,
i.e., S ⊆ E2n. Let F (x1, . . . , x2n−1) ∈ Z2[x1, . . . , x2n−1] be the multilinear polynomial such that

F (x1, . . . , x2n−1) =

{
1, (x1, . . . , x2n−1, x2n) ∈ S
0, (x1, . . . , x2n−1, x2n) /∈ S where x2n =

2n−1∑

i=1

xi.

Then, S = {(x1, . . . , x2n) ∈ E2n | F (x1, . . . , x2n−1) = 1}.
Now, we show that for all {i, j} ⊆ [2n − 1], F 00

ij + F 11
ij ≡ 0 or 1, and also F 01

ij + F 10
ij ≡ 0 or 1.

For simplicity of notations, we prove this for {i, j} = {1, 2}. The proof for arbitrary {i, j} is the
same by replacing {1, 2} by {i, j}. Consider

S0 = S (f00
12 ) = {(x3, . . . , x2n) ∈ E2n−2 | F 00

12 (x3, . . . , x2n−1) = 1},

and
S1 = S (f11

12 ) = {(x3, . . . , x2n) ∈ E2n−2 | F 11
12 (x3, . . . , x2n−1) = 1}.

Then,
S0 ∩ S1 = {(x3, . . . , x2n) ∈ E2n−2 | F 00

12 · F 11
12 = 1},

and
S0 ∪ S1 = {(x3, . . . , x2n) ∈ E2n−2 | F 00

12 + F 11
12 + F 00

12 · F 11
12 = 1}.

By Lemma 7.15, S0 = S1 or S0 ∩ S1 = 0.
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• If S0 = S1, then for every (x3, . . . , x2n−1) ∈ Z2n−3
2 which decides every (x3, . . . , x2n) ∈ E2n−2

by x2n = x3 + · · ·+ x2n−1,

F 00
12 (x3, . . . , x2n−1) = F 11

12 (x3, . . . , x2n−1).

Thus, F 00
12 + F 11

12 ≡ 0.
• If S0 ∩ S1 = ∅, then since |S0| = |S1| = 22n−4 (which is still true when replacing {1, 2} by an

arbitrary {i, j}), |S0 ∪ S1| = |S0|+ |S1| = 22n−3. Since S0 ∪ S1 ⊆ E2n−2 and |E2n−2| = 22n−3,
S0 ∪S1 = E2n−2. Thus, for every (x3, . . . , x2n−1) ∈ Z2n−3

2 which decides every (x3, . . . , x2n) ∈
E2n−2 by x2n = x3 + · · ·+ x2n−1,

F 00
12 (x3, . . . , x2n−1) · F 11

12 (x3, . . . , x2n−1) = 0,

and
F 00

12 (x3, . . . , x2n−1) + F 11
12 (x3, . . . , x2n−1) + F 00

12 · F 11
12 (x3, . . . , x2n−1) = 1.

Thus, F 00
12 + F 11

12 ≡ 1.
Similarly, we can show that F 01

12 + F 10
12 ≡ 0 or 1. Therefore, for all {i, j} ⊆ [2n− 1], F 00

ij + F 11
ij ≡ 0

or 1 and F 01
ij + F 10

ij ≡ 0 or 1. By Lemma 7.8, d(F ) 6 2.
If d(F ) 6 1, then clearly, S = {(x1, . . . , x2n) ∈ E2n | F (x1, . . . , x2n−1) = 1} is an affine linear

space. Thus, f has affine support. Otherwise, d(F ) = 2. By Lemma 7.8, F is a complete quadratic
polynomial. Consider signatures f00

12 and f11
12 . Remember that f(000~02n−3) = f(110~02n−3) = 1.

Thus, ~02n−2 ∈ S0 ∩ S1 6= ∅. Then, S0 = S1. Let

S+ = {α ∈ S0 | f00
12 (α) = f11

12 (α)} and S− = {α ∈ S0 | f00
12 (α) = −f11

12 (α)}.

Then, as f takes ±1 values on its support, S+ = S (∂+
12f) and S− = S (∂−12f). Since ∂+

12f, ∂
−
12f ∈ A ,

S+ and S− are affine linear subspaces of E2n−2. Also, by 2nd-Orth, 〈f00
12 , f

11
12 〉 = |S+| − |S−| = 0.

Thus, |S+| = |S−| = 1
2 |S0| = 22n−5. Since |E2n−2| = 22n−3, S+ is a an affine linear subspaces of

E2n−2 decided by two affine linear constraints L+
1 = 1 and L+

2 = 1. (Here both L+
1 and L+

2 are
affine linear forms which may have nonzero constant terms, but we write the constraints as L+

1 = 1
and L+

2 = 1.) In other words,

S+ = {(x3, . . . , x2n) ∈ E2n−2 | L+
1 = 1 and L+

2 = 1} = {(x3, . . . , x2n) ∈ E2n−2 | L+
1 · L+

2 = 1}.

Since for every (x3, . . . , x2n) ∈ E2n−2, x3 + · · · + x2n = 0, we may substitute the appearance of
x2n in L+

1 and L+
2 by x3 + · + x2n−1. Thus, we may assume that L+

1 , L
+
2 ∈ Z2[x3, . . . , x2n−1], and

d(L+
1 ) = d(L+

2 ) = 1. Similarly, there exist L−1 , L
−
2 ∈ Z2[x3, . . . , x2n−1] with d(L−1 ) = d(L−2 ) = 1

such that

S− = {(x3, . . . , x2n) ∈ E2n−2 | L−1 = 1 and L−2 = 1} = {(x3, . . . , x2n) ∈ E2n−2 | L−1 · L−2 = 1}.

Clearly, S+ ∩ S− = ∅. Then

S+ ∪ S− = {(x3, . . . , x2n) ∈ E2n−2 | L+
1 · L+

2 + L−1 · L−2 = 1}.

Remember that
S0 = S+ ∪ S− = {(x3, . . . , x2n) ∈ E2n−2 | F 00

12 = 1}.
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Thus, L+
1 ·L+

2 +L−1 ·L−2 = F 00
12 . Since for all 1 6 i < j 6 2n−1, the quadratic term xixj appears in

F , for all 3 6 i < j 6 2n−1, the quadratic term xixj appears in F 00
12 . Thus, F 00

12 ∈ Z2[x3, . . . , x2n−1]
is a complete quadratic polynomial over 2n−3 variables and it has a twice-linear 2-partition. Since
2n > 8, 2n− 3 > 5. By Lemma 7.14, we have 2n− 3 = 5, and after renaming variables,

F = (x3 + x4 + a)(x4 + x5 + b) + (x3 + x4 + x5 + x6 + c)(x3 + x4 + x5 + x7 + d)

where a, b, c, d ∈ Z2. Without loss of generality, we may assume that L+
1 ·L+

2 = (x3 + x4 + a)(x4 +
x5 + b). Then,

S+ = S (∂+
12f) = {(x3, . . . , x8) ∈ E2n−2 | x3 = x4 + a and x4 = x5 + b},

for some a, b ∈ Z2.
Clearly ∂+

12f is a 6-ary signature and |S (∂+
12f)| = 25−2 = 23. We show that ∂+

12f /∈ B⊗3 ∪F6 ∪
FH6 . Then, by Corollary 6.10, we get #P-hardness. Since the support of a signature in F6 ∪ FH6
is either E6 or O6 whose sizes are both 25. Thus, ∂+

12f /∈ F6 ∪ FH6 . For any 6-ary signature g in
B⊗3, its 6 variables can be divided into three independent pairs such that on the support S (g), the
values of variables inside each pair do not rely on the values of variables of other pairs. Thus, if we
pick any three variables in S (g), the degree of freedom of them is at least 2; more precisely, there
are at least 4 assignments on these three variables which can be extended to an input in S (g).
However, in S (∂+

12f), the degree of freedom of variables x3, x4, x5 is only 1, namely there are only
two assignments on x3, x4, x5 that can be extended to an input in S (∂+

12f). Thus, ∂+
12f /∈ B⊗3.

This completes the proof of Lemma 7.16.

7.4 Affine signature condition

Finally, by further assuming that f has affine support, we consider whether f itself is an affine
signature. We prove that this is true only for signature of arity 2n > 10. For signature f of arity
2n = 8, we show that either f ∈ A or the following signature is realizable.

h8 = χT · (−1)x1x2x3+x1x2x5+x1x3x5+x2x3x5 , where T = S (h8) = S (f8).

Note that in the support S (f8) (see its definition (7.4) for this Queen of the Night f8), by tak-
ing x1, x2, x3, x5 as free variables, the remaining 4 variables are mod 2 sums of

(
4
3

)
subsets of

{x1, x2, x3, x5}. Clearly, h8 is not affine, but it has affine support and all its nonzero entries have
the same norm. One can check that h8 satisfies 2nd-Orth and h8 ∈

∫
BA . But fortunately, we

show that by merging h8, we can realize a 6-ary signature that is not in B⊗∪F6∪FH6 . By Corollary
6.10, we are done.

After we give one more result about multilinear boolean polynomials, we make our final step
towards Theorem 7.19.

Lemma 7.17. Let F (x1, . . . , xn) ∈ Z2[x1, . . . , xn] be a complete cubic polynomial, L(x2, . . . , xn) ∈
Z2[x2, . . . , xn] and d(L) 6 1. If we substitute x1 by xn+1 +L(x2, . . . , xn) in F to get F ′, and suppose
F ′(x2, . . . , xn+1) = F (xn+1 + L, x2, . . . , xn) ∈ Z2[x2, . . . , xn+1] is also a complete cubic polynomial,
then
• If n > 5, then L must be a constant ε = 0 or 1.
• If n = 4, then L must be either ε, or of the form xi + xj + ε, for some ε = 0 or 1, for some
{i, j} ∈ {2, 3, 4}.
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Proof. Since F (x1, . . . , xn) is a complete cubic polynomial, we can write it as

F (x1, . . . , xn) = x1 ·
∑

26i<j6n
xixj +

∑

26i<j<k6n
xixjxk +G(x1, . . . , xn)

where d(G) 6 2. Then,

F ′(x2, . . . , xn, xn+1) = (xn+1 + L) ·
∑

26i<j6n
xixj +

∑

26i<j<k6n
xixjxk +G(xn+1 + L, . . . , xn).

Let G′(x2, . . . , xn, xn+1) = G(xn+1 + L, . . . , xn). Since d(L) 6 1 and d(G) 6 2, d(G′) 6 2. Then,
there is no cubic term in G′(x2, . . . , xn, xn+1). Since F ′(x2, . . . , xn, xn+1) is a complete cubic poly-
nomial over variables (x2, . . . , xn, xn+1) and xn+1 ·

∑
26i<j6n xixj+

∑
26i<j<k6n xixjxk already gives

every cubic term over (x2, . . . , xn, xn+1) exactly once, there is no cubic term in L ·∑26i<j6n xixj
(after taking module 2). If L ≡ 0 or 1, then we are done. Otherwise, there is a variable that
appears in L. Without loss of generality, we may assume that x2 ∈ L (i.e., x2 appears in L).

Let Q(x3, . . . , xn) =
∑

36i<j6n xixj ∈ Z2[x3, . . . , xn]. Since n > 4, we have Q 6≡ 0. For every
xixj ∈ Q, since x2 ∈ L, the cubic term x2xixj will appear in L ·∑26i<j6n xixj . To cancel it,
exactly one between xi · x2xj and xj · x2xi must also appear in L ·∑26i<j6n xixj . Thus, exactly
one between xi and xj appears in L.

If n > 5, then x3x4, x4x5, x3x5 ∈ Q. Thus, exactly one between x3 and x4 is in L, exactly
one between x4 and x5 is in L, and exactly one between x3 and x5 is in L. Clearly, this is a
contradiction.

If n = 4, then Q = x3x4. Either x3 or x4 appears in L. Thus, L is a sum of two variables
among {x2, x3, x4} plus a constant 0 or 1.

Lemma 7.18. Let F be non-B hard. Let f ∈ F be an irreducible 2n-ary (2n > 8) signature with
parity. Then,
• Holantb(F) is #P-hard, or
• there is a signature g /∈ A of arity 2k < 2n that is realizable from f and B, or
• f ∈ A .

Proof. Again, we may assume that f satisfies 2nd-Orth and f ∈
∫
BA . Also by Lemmas 7.9 and

7.16, we may assume that f(α) = ±1 for all α ∈ S (f) and S (f) is an affine linear space. Let
{x1, . . . , xm} be a set of free variables of S (f). Then, on the support S (f), every variable xi
(1 6 i 6 2n) is expressible as a unique affine linear combination over Z2 of these free variables,
i.e., xi = Li(x1, . . . , xm) = λ0

i + λ1
ix1 + . . .+ λmi xm, where λ0

i , . . . , λ
m
i ∈ Z2. Clearly, for 1 6 i 6 m,

L(xi) = xi. Then,

S (f) = {(x1, . . . , x2n) ∈ Z2n
2 | x1 = L1, . . . , x2n = L2n}

= {(x1, . . . , x2n) ∈ Z2n
2 | xm+1 = Lm+1, . . . , x2n = L2n}.

Also, let I(xi) = {1 6 k 6 m | λki = 1}. Clearly, for 1 6 i 6 m, I(xi) = {i}. For m+1 6 i 6 2n,
we show that |Ixi | > 2. For a contradiction, suppose that there exists m + 1 6 i 6 2n such that
|Ixi | = 0 or 1. If |Ixi | = 0, then xi takes a constant value in S . Then, among f0

i and f1
i , one is a

zero signature. Thus, f is reducible. Contradiction. If |Ixi | = 1, then xi = xk or xk + 1 for some
free variable xk. Then, among f00

ik , f01
ik , f10

ik and f11
ik , two are zero signatures. Thus, f does not

satisfy 2nd-Orth. Contradiction.
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Since f(α) = ±1 for all α ∈ S (f) and each α ∈ S (f) can be uniquely decided by its value
on the first m free variables, there exists a unique multilinear boolean polynomial F (x1, . . . , xm) ∈
Z2[x1, . . . , xm] such that

f(x1, . . . , xm, . . . , x2n) = χS(−1)F (x1,...,xm)

where S = S (f). If d(F ) 6 2, then clearly f ∈ A . We are done. Thus, we may assume that
d(F ) > 2 and hence m > 2. Remember that F abij denotes the polynomial obtained by setting

variables (xi, xj) of F to (a, b) ∈ Z2
2. Then, fabij = (−1)F

ab
ij on S (f). We will show that for all

i, j ∈ [m], d(F 00
ij + F 11

ij ) 6 1 and d(F 01
ij + F 10

ij ) 6 1. For brevity of notation, we prove this for
{i, j} = {1, 2}. The proof for arbitrary {i, j} is the same by replacing {1, 2} with {i, j}. We first
show that d(F 00

ij +F 11
ij ) 6 1. We use S0 to denote S (f00

ij ) and S1 to denote S (f11
ij ). By Lemma 7.15,

there are two cases, S0 = S1 or S0 ∩ S1 = ∅.
• Suppose that S0 = S1. For convenience, we use L0

i to denote (Li)
00
12 and L1

i to denote (Li)
11
12.

Then,
S0 ={(x3, . . . , x2n) ∈ Z2n−2

2 | xm+1 = L0
m+1, . . . , x2n = L0

2n}
S1 ={(x3, . . . , x2n) ∈ Z2n−2

2 | xm+1 = L1
m+1, . . . , x2n = L1

2n}.
So L0

i ≡ L1
i for all i > m+ 1. Thus, either {1, 2} ⊆ I(xi) or {1, 2} ∩ I(xi) = ∅ for i > m+ 1.

Let S+ = {α ∈ S0 | f00
ij (α) = f11

ij (α)} and S− = {α ∈ S0 | f00
ij (α) = −f11

ij (α)}. Then,

〈f00
ij , f

11
ij 〉 = 1 · |S+| − 1 · |S−| = 0. Since S0 = S+ ∪ S−, |S+| = |S−| = 1

2 |S0|. Note that

S (∂12f) = S+ and S (∂−12f) = S−. By our assumption that f ∈
∫
BA , ∂12f, ∂

−
12f ∈ A .

Thus, both S+ and S− are affine linear subspaces of S0 = S1. Since |S+| = |S−| = |S0|/2,
there exists an (affine) linear polynomial L(x3, . . . , x2n) such that

S+ = {(x3, . . . , x2n) ∈ S0 | L(x3, . . . , x2n) = 0},

and
S− = {(x3, . . . , x2n) ∈ S0 | L(x3, . . . , x2n) = 1}.

For (x3, . . . , x2n) ∈ S0, and i > m + 1, we can substitute the variable xi that appears in
L(x3, . . . , x2n) with L0

i ≡ L1
i . Then, we get an (affine) linear polynomial L′(x3, . . . , xm) ∈

Z2[x1, . . . , xm] such that L′(x3, . . . , xm) = L(x3, . . . , xm, xm+1, . . . , x2n) for (x3, . . . , x2n) ∈ S0.
Thus,

S+ = {(x3, . . . , x2n) ∈ S0 | L′(x3, . . . , xm) = 0},
and

S− = {(x3, . . . , x2n) ∈ S0 | L′(x3, . . . , xm) = 1}.
Note that as |S+| = |S−| > 0, the affine linear polynomial L′ is non-constant, i.e., d(L′) = 1.
Then, for every (x3, . . . , xm) ∈ Zm−2

2 ,

(−1)F
00
12 (x3,...,xm) = (−1)F

11
12 (x3,...,xm) if L′(x3, . . . , xm) = 0

and
(−1)F

00
12 (x3,...,xm) = −(−1)F

11
12 (x3,...,xm) if L′(x3, . . . , xm) = 1.

Thus,
(−1)F

00
12 (x3,...,xm)+F 11

12 (x3,...,xm) = (−1)L
′(x3,...,xm).

Therefore, F 00
12 (x3, . . . , xm) + F 11

12 (x3, . . . , xm) ≡ L′(x3, . . . , xm). Then, d(F 00
12 + F 11

12 ) = 1.
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• Suppose that S0∩S1 = ∅. Then, there exists a variable xi where i > m+1 such that between
{1, 2}, exactly one index is in I(xi). Without loss of generality, we may assume that i = m+1,
1 ∈ I(xm+1) and 2 /∈ I(xm+1). Then, xm+1 = x1 +K(x3, . . . , xm) where K ∈ Z2[x3, . . . , xm]
is an (affine) linear polynomial. Consider S0.

S0 = {(x3, . . . , x2n) ∈ Z2n−2
2 | x1 = x2 = 0, xm+1 = x1 +K,xm+2 = Lm+2 . . . , x2n = L2n}.

Since x1 = x2 on S0, for every i > m+ 2, if x1 or x2 appear in Li, we substitute each one of
them with xm+1 +K. We get a linear polynomial Ki ∈ Z2[x3, . . . , xm, xm+1]. Then, for every
(x3, . . . , x2n) ∈ S0, Li = Ki. Thus,

S0 = {(x3, . . . , x2n) ∈ Z2n−2
2 | xm+1 +K = 0, xm+2 = Km+2 . . . , x2n = K2n}.

Similarly, we have

S1 = {(x3, . . . , x2n) ∈ Z2n−2
2 | xm+1 +K = 1, xm+2 = Km+2 . . . , x2n = K2n}.

Let S∪ = S0 ∪ S1. Then,

S∪ = {(x3, . . . , x2n) ∈ Z2n−2
2 | xm+2 = Km+2 . . . , x2n = K2n}.

Thus, we can pick x3, . . . , xm, xm+1 as a set of free variables of S∪.
Consider g = ∂12f . Clearly, S (g) = S∪ since S0 ∩ S1 = ∅. Then, there exists a unique
multilinear boolean polynomial G(x3, . . . , xm+1) ∈ Z2[x3, . . . , xm+1] such that

g(x3, . . . , x2n) = χS∪ · (−1)G(x3,...,xm+1).

For every (x3, . . . , x2n) ∈ S0 that is uniquely decided by (0, 0, x3, . . . , xm) ∈ {(0, 0)} × Zm−2
2 ,

xm+1 = K(x3, . . . , xm) and f00
12 (x3, . . . , x2n) = g(x3, . . . , x2n). Thus, for every (x3, . . . , xm) ∈

Zm−2
2 ,

(−1)F
00
12 (x3,...,xm) = (−1)G(x3,...,xm,K).

Also, for every (x3, . . . , x2n) ∈ S1 that is uniquely decided by (1, 1, x3, . . . , xm) ∈ {(1, 1)} ×
Zm−2

2 , xm+1 = K(x3, . . . , xm) + 1, and f11
12 (x3, . . . , x2n) = g(x3, . . . , x2n). Thus, for every

(x3, . . . , xm) ∈ Zm−2
2 ,

(−1)F
11
12 (x3,...,xm) = (−1)G(x3,...,xm,K+1).

Thus, F 00
12 (x3, . . . , xm) ≡ G(x3, . . . , xm,K) and F 11

12 (x3, . . . , xm) ≡ G(x3, . . . , xm,K + 1).
Since f ∈

∫
BA , g = ∂12f ∈ A . Thus,

g′(x3, . . . , xm, xm+1) = (−1)G(x3,...,xm,xm+1)

is also in ∈ A . Let y = xm+1 +K(x3, . . . , xm) ∈ Z[x3, . . . , xm+1] be an affine linear combina-
tion of variables x3, . . . , xm+1. Since g ∈ A , by Lemma 2.19,

d[G(x3, . . . , xm,K) +G(x3, . . . , xm,K + 1)] 6 1.

Thus, d(F 00
12 + F 11

12 ) 6 1. Also if d(G) = 1, then by Lemma 2.19

d(F 00
12 + F 11

12 ) = 0, i.e., F 00
12 + F 11

12 ≡ 0 or 1. (7.10)
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Similarly, we can show that d(F 01
12 + F 10

12 ) 6 1. Thus, for all i, j ∈ [m], d(F 00
ij + F 11

ij ) 6 1 and

d(F 01
ij + F 10

ij ) 6 1. By Lemma 7.8, d(F ) 6 3.
If d(F ) 6 2, then clearly f ∈ A . We are done. Otherwise, d(F ) = 3 and by Lemma 7.8, F is a

complete cubic multilinear polynomial over m variables. If we pick another set X of m free variables
and substitute variables of F by variables in X, then we will get a cubic multilinear polynomial
F ′ over variables in X. Same as the analysis of F , F ′ is also a complete cubic polynomial. In
particular, consider the variable xm+1. Recall that |I(xm+1)| > 2. Without loss of generality, we
assume that 1 ∈ I(xm+1). Then, xm+1 = x1 +L(x2, . . . , xm) where L(x2, . . . , xm) is an affine linear
combination of variables x2, . . . , xm. We substitute x1 in F by xm+1 + L, and we get a complete
cubic multilinear polynomial F ′(x2, . . . , xm+1) ∈ Z2[x2, . . . , xm+1]. By Lemma 7.17, if m > 5, then
xm+1 = x1 or xm+1 = x1. Thus, I(xm+1) = {1}. This contradicts with |I(xm=1)| > 2. Thus,
m 6 4.

If m = 4, then by Lemma 7.17, x5 = x1 + ε, or x5 = x1 + xi + xj + ε, where ε = 0 or 1,
for some 2 6 i < j 6 4. Since |I(x5)| > 2, the case that x5 = x1 + ε is impossible. Similarly,
for i > m + 2, the variable xi is a sum of three variables in {x1, x2, x3, x4} plus a constant 0 or
1. If there exist xi and xj for 5 6 i < j 6 2n such that I(xi) = I(xj). Then, xi = xj or xj .
Thus, among f00

ij , f01
ij , f10

ij and f11
ij , two are zero signatures. Thus, f does not satisfy 2nd-Orth.

Contradiction. Thus, I(xi) 6= I(xj) for any 5 6 i < j 6 2n. There are only
(

4
3

)
= 4 ways to

pick three variables from {x1, x2, x3, x4}. Thus, 2n 6 4 + 4 = 8. By the hypothesis 2n > 8 of
the lemma, we have 2n = 8. Clearly, |S (f)| = 24 = 16. Due to 2nd-Orth, for all {i, j} ∈ [8],
|S (f00

ij )| = |S (f01
ij )| = |S (f10

ij )| = |S (f11
ij )| = 4.

• If there exists {i, j} such that S (f00
ij ) = S (f11

ij ), then for any point α in S (f00
ij ) = S (f11

ij ),

regardless whether f00
ij (α) = f11

ij (α) or f00
ij (α) = −f11

ij (α), either α ∈ S (∂+
ijf) or α ∈ S (∂−ijf).

Thus,
S (∂+

ijf) ∪S (∂−ijf) = S (f00
ij ) = S (f11

ij ).

Also, by 2nd-Orth,
〈f00
ij , f

11
ij 〉 = |S (∂−ijf)| − |S (∂+

ijf)| = 0.

Thus, |S (∂+
ijf)| = |S (∂−ijf)| = 2. Note that every 6-ary signature in B⊗ has support of size

8, and every signature in F6 and FH6 has support of size 32. Thus, ∂+
ijf /∈ B ∪ F6 ∪ FH6 .

Then, by Corollary 6.10, we get #P-hardness. Similarly, if there exists {i, j} such that

S (f01
ij ) = S (f10

ij ), then we have |S (∂+̂
ijf)| = |S (∂−̂ijf)| = 2. Thus, ∂+̂

ijf /∈ B⊗ ∪ F6 ∪ FH6 .
Again, we get #P-hardness.
• Otherwise, for all {i, j} ∈ [8], S (f00

ij ) ∩ S (f11
ij ) = ∅ and S (f01

ij ) ∩ S (f10
ij ) = ∅. Then,

S (∂+
ijf) = S (f00

ij ) ∪S (f11
ij ). Thus, |S (∂+

ijf)| = 8. Clearly, ∂+
ijf /∈ F6 ∪ FH6 . If ∂+

ijf /∈ B⊗3,

then we get #P-hardness. For a contradiction, suppose that ∂+
ijf ∈ B⊗3. Then,

∂+
ijf = χS (∂+ijf)(−1)G

+
ij where d(G+

ij) = 1.

As we proved above in equation (7.10), F 00
ij + F 11

ij ≡ 0 or 1. Similarly, suppose ∂+̂
ijf ∈ B⊗3,

and we can show that F 01
ij + F 10

ij ≡ 0 or 1. Thus, for all {i, j} ⊆ [8], F 00
ij + F 11

ij ≡ 0 or 1 and

F 01
ij + F 10

ij ≡ 0 or 1. Then, by Lemma 7.8, d(F ) 6 2. Contradiction.
Suppose that m = 3. Remember that for 4 6 i 6 2n, |I(xi)| > 2. Thus, xi is a sum of at least

two variables in {x1, x2, x3} plus a constant 0 or 1. Again, if there exist xi and xj for 4 6 i < j 6 2n
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such that I(xi) = I(xj), then among f00
ij , f01

ij , f10
ij and f11

ij , two are zero signatures. Contradiction.

Thus, I(xi) 6= I(xj) for any 4 6 i < j 6 2n. There are
(

3
2

)
+
(

3
3

)
= 4 different ways to pick at least

two variables from {x1, x2, x3}. Thus, 2n 6 3 + 4 = 7. Contradiction.

Theorem 7.19. Suppose that F is non-B hard. Then, Holantb(F) is #P-hard.

Proof. Since F does not satisfy condition (T), F contains a signature f /∈ A . Suppose that f has
arity 2n. We prove this theorem by induction on 2n.

If 2n = 2, 4 or 6, then by Corollary 6.10 and its remark, Holantb(F) is #P-hard.
Inductively assume for some 2k > 6, Holantb(F) is #P-hard when 2n 6 2k. We consider the

case that 2n = 2k + 2 > 8. First, suppose that f is reducible. If it is a tensor product of two
signatures of odd arity, then we can realize a signature of odd arity by factorization. We get #P-
hardness by Theorem 2.25. Otherwise, it is a tensor product of two signatures of even arity that
are not both in A since f /∈ A . Then, we can realize a non-affine signature of arity 2m 6 2k by
factorization. By our induction hypothesis, we get #P-hardness. Thus, we may assume that f is
irreducible. If f has no parity, then we get #P-hardness by Lemma 7.1. Thus, we may also assume
that f has parity. Then by Lemma 7.18, Holantb(F) is #P-hard, or we can realize a non-affine
signature of arity 2m 6 2k. By our induction hypothesis, we get #P-hardness.

Since B is realizable from f6 and {f6} ∪ F is non-B hard for any real-valued F that does not
satisfy condition (T), we have the following result.

Lemma 7.20. Holantb(f6,F) is #P-hard.

Combining Theorem 6.5 and Lemma 7.20, we have the following result. This concludes Sections
6 and 7, and we are done with the arity 6 case.

Lemma 7.21. If F̂ contains a signature f̂ of arity 6 and f̂ /∈ Ô⊗, then Holant( 6=2| F̂) is #P-hard.

8 Final Obstacle: an 8-ary Signature with Strong Bell Property

We have seen some extraordinary properties of the signature f8. Now, we formally analyze it.
Remember that f8 = χT where

T =S (f8) = {(x1, x2, . . . , x8) ∈ Z8
2 | x1 + x2 + x3 + x4 = 0, x5 + x6 + x7 + x8 = 0,

x1 + x2 + x5 + x6 = 0, x1 + x3 + x5 + x7 = 0}.
={00000000, 00001111, 00110011, 00111100, 01010101, 01011010, 01100110, 01101001,

10010110, 10011001, 10100101, 10101010, 11000011, 11001100, 11110000, 11111111}.

(8.1)

One can see that S (f8) has the following structure: the sums of the first four variables, and the
last four variables are both even; the assignment of the first four variables are either identical
to, or complement of the assignment of the last four variables. Another interesting description of
S (f8) is as follows: One can take 4 variables, called them y1, y2, y3, y4. Then on the support the
remaining 4 variables are mod 2 sums of

(
4
3

)
subsets of {y1, y2, y3, y4}, and y1, y2, y3, y4 are free

variables. (However, the 4 variables (y1, y2, y3, y4) cannot be taken as (x1, x2, x3, x4) in the above
description (8.1). But one can take (y1, y2, y3, y4) = (x1, x2, x3, x5). More specifically, one can take
any 3 variables xi, xj , xk from {x1, . . . , x8} first as free variables, which excludes one unique other
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x` from the remainder set X ′ = {x1, . . . , x8} \ {xi, xj , xk}, and then one can take any one variable
xr ∈ X ′ as the 4th free variable. Then the remaining 4 variables are the mod 2 sums of

(
4
3

)
subsets

of the 4 free variables {xi, xj , xk, xr}, and in particular x` = xi + xj + xk, on S (f8).) We give the
following Figure 2 to visualize the signature matrix M1234(f8). A block with orange color denotes
an entry +1. Other blank blocks are zeros.

0000

0011

0101
0110

1001
1010

1100

1111

0000

0011

0101
0110

1001
1010

1100

1111

Figure 2: A visualization of f8, which happens to be the same as f̂8 = Z−1f8

One can check that f8 satisfies both 2nd-Orth and f8 ∈
∫
O⊗. Also, f8 is unchanged under

the holographic transformation by Z−1, i.e., f̂8 = Z−1f8 = f8.

8.1 The discovery of f̂8

In this subsection, we show how this extraordinary signature f̂8 was discovered. We use the notation
f̂8 since we consider the problem Holant( 6=2| F̂) for complex-valued F̂ satisfying ars. We prove
that if F̂ contains an 8-ary signature f̂ where f̂ /∈ Ô⊗, then Holant( 6=2| F̂) is #P-hard or f̂8 is
realizable from f̂ (Theorem 8.5).

Remember that D = {6=2}. Then D⊗ = {λ · ( 6=2)⊗n | λ ∈ R\{0}, n > 1} is the set of tensor
products of binary disequalities 6=2 up to a nonzero real scalar. If for all pairs of indices {i, j},
∂̂ij f̂ ∈ D⊗, then we say f̂ ∈

∫̂
D⊗. Clearly, if f̂ ∈ D⊗ and f̂ has arity greater than 2, then f̂ ∈

∫̂
D⊗.

We first show the following result for signatures of arity at least 8.

Lemma 8.1. Let f̂ /∈ Ô⊗ be a signature of arity 2n > 8 in F̂ . Then,
• Holant( 6=2| F̂) is #P-hard, or
• there is a signature ĝ /∈ Ô⊗ of arity 2k 6 2n− 2 that is realizable from f̂ , or

• there is an irreducible signature f̂∗ ∈
∫̂
D⊗ of arity 2n that is realizable from f̂ .

Proof. Since f̂ /∈ Ô⊗, f̂ 6≡ 0. Again, we may assume that f̂ is irreducible. Otherwise, by factoriza-
tion, we can realize a nonzero signature of odd arity and we get #P-hardness by Theorem 2.25, or we
can realize a signature of lower even arity that is not in Ô⊗ and we are done. Under the assumption
that f̂ is irreducible, we may further assume that f̂ satisfies 2nd-Orth by Lemma 4.4. Consider
signatures ∂̂ij f̂ for all pairs of indices {i, j}. If there exists a pair {i, j} such that ∂̂ij f̂ /∈ Ô⊗, then

let ĝ = ∂̂ij f̂ , and we are done. Thus, we may also assume that f̂ ∈
∫̂
Ô⊗.
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If for all pairs of indices {i, j}, we have ∂̂ij f̂ ≡ 0. Then, by Lemma 2.10, f̂(α) = 0 for all α with

wt(α) 6= 0 or 2n. Since f 6≡ 0 and by ars, |f̂(~02n)| = |f̂(~12n)| 6= 0. Clearly, such a signature does
not satisfy 2nd-Orth. Contradiction. Thus, without loss of generality, we assume that ∂̂12f̂ 6≡ 0.
Since ∂̂12f̂ ∈ Ô⊗, without loss of generality, we may assume that in the UPF of ∂̂12f̂ , variables
x3 and x4 appear in one binary signature b1(x3, x4), x5 and x6 appear in one binary signature
b2(x5, x6) and so on. Thus, we have

∂̂12f̂ = b̂1(x3, x4)⊗ b̂2(x5, x6)⊗ b̂3(x7, x8)⊗ . . .⊗ b̂n−1(x2n−1, x2n).

By Lemma 2.7, all these binary signatures b̂1, b̂2, . . . , b̂n−1 are realizable from f by factorization.
Note that for nonzero binary signatures b̂i(x2i+1, x2i+2) (1 6 i 6 n− 1), if we connect the variable
x2i+1 of two copies of b̂i(x2i+1, x2i+2) using 6=2 (mating two binary signatures), then we get 6=2

up to a scalar. We consider the following gadget construction on f̂ . Recall that in the setting of
Holant( 6=| F̂), variables are connected using 6=2. For 1 6 i 6 n − 1, by a slight abuse of names
of variables, we connect the variable x2i+1 of f̂ with the variable x2i+1 of b̂i(x2i+1, x2i+2) using
6=2. We get a signature f̂ ′ of arity 2n. (Note that, as a complexity reduction using factorization
(Lemma 2.7), we can only apply it a constant number of times. However, the arity 2n of f̂ is
considered a constant, as f̂ ∈ F̂ , which is independent of the input size of a signature grid to the
problem Holant(6=2| F̂).) We denote this gadget construction by G1 and we write f̂ ′ as G1 ◦ f̂ .
G1 is constructed by extending variables of f̂ using binary signatures realized from ∂̂12f̂ . It does
not change the irreducibility of f̂ . Thus, f̂ ′ is irreducible since f̂ is irreducible. Similarly, we may

assume that f̂ ′ ∈
∫̂
Ô⊗. Otherwise, we are done.

Consider the signature ∂̂12f̂ ′. Since the above gadget construction G1 does not touch variables
x1 and x2 of f , G1 commutes with the merging gadget ∂̂12. (Succinctly, the commutativity can be
expressed as ∂̂12f̂ ′ = ∂̂12(G1 ◦ f̂) = G1 ◦ ∂̂12f̂ .) Thus, ∂̂12f̂ ′ can be realized by performing the gadget
construction G1 on ∂̂12f̂ , which connects each binary signature b̂i(x2i+1, x2i+2) in the UPF of ∂̂12f̂
with another copy of b̂i(x2i+1, x2i+2) (in the mating fashion). Thus, each binary signature b̂i in
∂̂12f̂ is changed to 6=2 up to a nonzero scalar after this gadget construction G1. After normalization
and renaming variables, we have

∂̂12f̂ ′ = (6=2)(x3, x4)⊗ ( 6=2)(x5, x6)⊗ ( 6=2)(x7, x8)⊗ . . .⊗ (6=2)(x2n−1, x2n). (8.2)

Thus, ∂̂12f̂ ′ ∈ D⊗. Moreover, for all pairs of indices {i, j} disjoint with {1, 2}, we have

∂̂(ij)(12)f̂ ′ ∈ D⊗, and hence ∂̂(ij)(12)f̂ ′ 6≡ 0. (8.3)

A fortiori, for all pairs of indices {i, j} disjoint with {1, 2}, ∂̂ij f̂ ′ 6≡ 0.

Now, we show that we can realize an irreducible signature f̂∗ of arity 2n from f̂ ′ such that

f̂∗ ∈
∫̂
D⊗. We first prove the following claim.

Claim. Let ĥ ∈
∫̂
Ô⊗ be a signature of arity 2n > 8. If ∂̂ij ĥ ∈ D⊗ for all {i, j} disjoint

with {1, 2}, then ĥ ∈
∫̂
D⊗.

Clearly, we only need to show that ∂̂1kĥ ∈ D⊗ for all 2 6 k 6 2n. Then, by symmetry we also

have ∂̂2kĥ ∈ D⊗ for k = 1 and all 3 6 k 6 2n. This will prove ĥ ∈
∫̂
D⊗. Consider ∂̂1kĥ for an
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arbitrary 2 6 k 6 2n. Since for all {i, j} disjoint with {1, 2}, we have ∂̂ij ĥ ∈ D⊗, a fortiori for all
{i, j} disjoint with {1, 2} ∪ {k},

∂̂(1k)(ij)ĥ ∈ D⊗. (8.4)

Since ĥ has arity 2n > 8, we can pick a pair of indices {i, j} disjoint with {1, 2} ∪ {k}. Since
∂̂(1k)(ij)ĥ ∈ D⊗, which is nonzero, a fortiori we have ∂̂1kĥ 6≡ 0. So we may consider the UPF of

∂̂1kĥ, which is known to be in Ô⊗. For a contradiction, suppose that there is a binary signature b̂1
(as a factor of ∂̂1kĥ) such that b̂1 is not an associate of 6=2. Among the two variables in the scope
of b̂1, at least one is not x2. We pick such a variable xs where xs 6= x2. Then, we consider another
binary signature b̂2 in the UPF of ∂̂1kĥ.
• If b̂2 = λ· 6=2, for some nonzero scalar λ, then we pick a variable xt in the scope of b̂2 that

is not x2. Consider ∂̂(st)(1k)ĥ. When merging variables xs and xt of ∂̂1kĥ, we connect the

variable xs of b̂1 with the variable xt of λ· 6=2, and the resulting binary signature is just λ · b̂1,
which is not an associate of 6=2. Thus, we have ∂̂(st)(1k)ĥ /∈ D⊗.

• Otherwise, b̂2 is not an associate of 6=2. Since ∂̂1kĥ has arity 2n− 2 > 6, we can find another
binary signature b̂3 in the UPF of ∂̂1kĥ. We pick a variable xt in the scope of b̂3 that is not
x2. Consider ∂̂(st)(1k)ĥ. Now, when merging variables xs and xt of ∂̂1kĥ, the binary signature

b̂2 is untouched. Thus, we have b̂2 | ∂̂(st)(1k)ĥ, which implies that ∂̂(st)(1k)ĥ /∈ D⊗.
Note that in both cases, {s, t}∩({1, 2}∪{k}) = ∅. Therefore the two cases above both contradict

(8.4) by picking {i, j} = {s, t}. Thus, ∂̂1kĥ ∈ D⊗ for all 2 6 k 6 2n. Then similarly, we can show
that ∂̂2kĥ ∈ D⊗ for all 3 6 k 6 2n. This finishes the proof of our Claim.

Remember that ∂̂ij f̂ ′ 6≡ 0 for all {i, j} disjoint with {1, 2}. We consider the UPF of ∂̂ij f̂ ′. Since

f̂ ′ ∈
∫̂
Ô⊗, there are two cases depending on whether variables x1 and x2 appear in one binary

signature or two distinct binary signatures.

Case 1. For every {i, j} disjoint with {1, 2}, in the UPF of ∂̂ij f̂ ′, x1 and x2 appear in one nonzero

binary signature b̂ij(x1, x2) ∈ Ô. In other words, for every {i, j} disjoint with {1, 2},

∂̂ij f̂ ′ = b̂ij(x1, x2)⊗ ĝij , for some ĝij 6≡ 0.

(These factors b̂ij and ĝij are nonzero since ∂̂ij f̂ ′ 6≡ 0.) Then, ĝij ∼ ∂̂(12)(ij)f̂ ′, and by (8.3), we have

ĝij ∈ D⊗. Also for {k, `} disjoint with both {i, j} and {1, 2}, ∂̂(k`)(ij)f̂ ′ 6≡ 0 since ∂̂(12)(k`)(ij)f̂ ′ =

∂̂(ij)(k`)(12)f̂ ′ 6≡ 0.

We first show that for any two pairs {i, j} 6= {k, `} that are both disjoint with {1, 2}, b̂ij(x1, x2) ∼
b̂k`(x1, x2). If {i, j} is disjoint with {k, `}, then b̂ij(x1, x2) | ∂̂(k`)(ij)f̂ ′ and b̂k`(x1, x2) | ∂̂(ij)(k`)f̂ ′.

Since ∂̂(k`)(ij)f̂ ′ = ∂̂(ij)(k`)f̂ ′ 6≡ 0, by Lemma 2.5, we have b̂ij(x1, x2) ∼ b̂k`(x1, x2). Otherwise,

{i, j} and {k, `} are not disjoint. Since f̂ ′ has arity > 8, we can find another pair of indices
{s, t} such that it is disjoint with {1, 2} ∪ {i, j} ∪ {k, `}. Then, by the above argument, we have

b̂ij(x1, x2) ∼ b̂st(x1, x2), and b̂st(x1, x2) ∼ b̂k`(x1, x2). Thus, b̂ij(x1, x2) ∼ b̂k`(x1, x2). We can use

a binary signature b̂(x1, x2) to denote these binary signature b̂ij(x1, x2) for all {i, j} disjoint with

{1, 2}. Then, b̂(x1, x2) | ∂̂ij f̂ ′ for all {i, j} disjoint with {1, 2}. Also, b̂(x1, x2) is realizable from f̂ ′

by merging and factorization.
Then, we consider the following gadget construction G2 on f̂ ′. By a slight abuse of variable

names, we connect the variable x1 of f̂ ′ with the variable x1 of b̂(x1, x2) and we get a signature
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f̂∗. Clearly, G2 is constructed by extending variables of f̂ ′. It does not change the irreducibility

of f̂ ′. Thus, f̂∗ is irreducible. Again, we may assume that f̂∗ ∈
∫̂
Ô⊗. Consider ∂̂ij f̂∗ for all {i, j}

disjoint with {1, 2}. Since the above gadget construction G2 only touches the variable x1 of f ′, it

commutes with the merging operation ∂̂ij . Thus, ∂̂ij f̂∗ can be realized by performing the gadget

construction G2 on ∂̂ij f̂ ′, i.e., connecting the binary signature b̂(x1, x2) in the UPF of ∂̂ij f̂ ′ with

itself (in the mating fashion), which changes b̂(x1, x2) to 6=2 up to some nonzero scalar λij . Thus,
for all {i, j} disjoint with {1, 2}, after renaming variables, we have

∂̂ij f̂∗ = λij · (6=2)(x1, x2)⊗ ĝij ∈ D⊗.

Thus, ∂̂ij f̂∗ ∈ D⊗ for all {i, j} disjoint with {1, 2}. By our Claim, f̂∗ ∈
∫̂
D⊗. We are done with

Case 1.

Case 2. There is a pair of indices {i, j} disjoint with {1, 2} such that x1 and x2 appear in two

distinct nonzero binary signatures b̂′1(x1, xu) and b̂′2(x2, xv) in the UPF of ∂̂ij f̂ ′. In other words,
there exits {i, j} such that

∂̂ij f̂ ′ = b̂′1(x1, xu)⊗ b̂′2(x2, xv)⊗ ĥij , for some ĥij 6≡ 0. (8.5)

Since ĥij | ∂̂(12)(ij)f̂ ′ and ∂̂(12)(ij)f̂ ′ ∈ D⊗, we have ĥij ∈ D⊗. Also, after merging variables x1 and x2

(using 6=2) in ∂̂ij f̂ ′, variables xu and xv form a binary disequality up to a nonzero scalar (this binary

signature on xu and xv must be a binary disequality because we already know ∂̂(12)(ij)f̂ ′ ∈ D⊗).

In other words, by connecting the variable x1 of b̂′1(x1, xu) and the variable x2 of b̂′2(x2, xv) (using

6=2), we get λ· 6=2 (xu, xv) for some λ 6= 0. By Lemma 2.13, we have b̂′1 ∼ b̂′2. Also, connecting the

variable xu of b̂′1 and the variable xv of b̂′2 (using 6=2) will give the binary signature λ· 6=2 (x1, x2)
as well.

We consider the following gadget construction G3 on f̂ ′. By a slight abuse of variable names,
we connect variables x1 and x2 of f̂ ′ with the variable x1 of b̂′1 and x2 of b̂′2 using 6=2 respectively.

We get a signature f̂∗. Again, f̂∗ is irreducible since the gadget construction G3 does not change

the irreducibility of f̂ ′. Also, we may assume that f̂∗ ∈
∫̂
Ô⊗. Otherwise, we are done. Consider

∂̂ij f̂∗. Similarly, by the commutitivity of the gadget construction G3 and the merging gadget ∂̂ij ,

∂̂ij f̂∗ can be realized by connecting variables x1 and x2 of ∂̂ij f̂ ′ with the variable x1 of b̂′1 and the

variable x2 of b̂′2 respectively. After renaming variables, we have

∂̂ij f̂∗ = λij · (6=2)(x1, xu)⊗ (6=2) (x2, xv)⊗ ĥij ∈ D⊗. (8.6)

We now show that ∂̂12f̂∗ ∈ D⊗. Note that it is realized in the following way; we first connect
variables x1 and x2 of f̂ ′ with the variable x1 of b̂′1(x1, xu) and the variable x2 of b̂′2(x2, xv) respec-

tively (using 6=2) to get f̂∗, and then after renaming variables xu and xv to x1 and x2 respectively,
we merge them using 6=2 (see Figure 3(a)). By associativity of gadget constructions, we can change

the order; we first connect the variable xu of b̂′1(x1, xu) with the variable xv of b̂′2(x2, xv) (using

6=2), and then we use the resulting binary signature to connect variables x1 and x2 of f̂ ′ (edges

are connected using 6=2). Note that connecting xu of b̂′1(x1, xu) with xv of b̂′2(x2, xv) gives λ· 6=2

up to a nonzero scalar λ, and λ· 6=2 is unchanged by extending both of its two variables with 6=2
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Figure 3: Gadget constructions of ∂̂12f̂∗ and ∂̂12f̂ ′

(see Figure 3(b)). Thus, ∂̂12f̂∗ is actually realized by merging x1 and x2 of f̂ ′ (using 6=2) up to a

nonzero scalar. Thus, we have ∂̂12f̂∗ ∼ ∂̂12f̂ ′, and hence ∂̂12f̂∗ ∈ D⊗, by the form (8.2) of ∂̂12f̂ ′.
Then, we show that ∂̂stf̂∗ ∈ D⊗ for all pairs of indices {s, t} disjoint with {1, 2, i, j} and

{s, t} 6= {u, v} where u and v are named in (8.6). Clearly, ∂̂stf̂∗ 6≡ 0 since ∂̂(st)(12)f̂∗ ∈ D⊗. We

first show that in the UPF of ∂̂stf̂∗, x1 and x2 appear in two distinct nonzero binary signatures.
Otherwise, for a contradiction, suppose that there is a nonzero binary signature b̂∗(x1, x2) such

that b̂∗(x1, x2) | ∂̂stf̂∗. Then, b̂∗(x1, x2) | ∂̂(ij)(st)f̂∗ = ∂̂(st)(ij)f̂∗ 6≡ 0. By the form (8.6) of ∂̂ij f̂∗,

the only way that x1 and x2 can form a nonzero binary signature in ∂̂(st)(ij)f̂∗ is that the merging
gadget is actually merging xu and xv. Thus, {s, t} = {u, v}. Contradiction. Therefore, for some i′

and j′, we have
∂̂stf̂∗ = b̂∗st1(x1, xi′)⊗ b̂∗st2(x2, xj′)⊗ ĥst, (8.7)

for some b̂∗st1(x1, xi′), b̂
∗
st2(x2, xj′), ĥst 6≡ 0 since ∂̂stf̂∗ 6≡ 0. Since ĥst | ∂̂(12)(st)f̂∗ and ∂̂(12)(st)f̂∗ ∈

D⊗, we have ĥst ∈ D⊗. Also, by Lemma 2.13, b̂∗st1 ∼ b̂∗st2. For a contradiction, suppose that

∂̂stf̂∗ /∈ D⊗, then b̂∗st1(x1, xi′) 6∼ ( 6=2), and b̂∗st2(x2, xj′) 6∼ (6=2). Consider the signature ∂̂(st)(ij)f̂∗.

Since {s, t} 6= {u, v}, by the form (8.6) of ∂̂ij f̂∗, x1 and x2 appear in two binary signatures in

the UPF of ∂̂(st)(ij)f̂∗. Remember that ∂̂(st)(ij)f̂∗ = ∂̂(ij)(st)f̂∗. By the form (8.7) of ∂̂stf̂∗, if

{i′, j′} = {i, j}, then, after merging xi and xj of ∂̂stf̂∗, x1 and x2 will form a new binary signature

in ∂̂(ij)(st)f̂∗. Contradiction. Thus, {i′, j′} 6= {i, j}. Then, when merging xi and xj of ∂̂stf̂∗, among

b̂∗st1(x1, xi′) and b̂∗st2(x2, xj′), at least one binary signature is untouched. Thus, ∂̂(ij)(st)f̂∗ has a

factor that is not an associate of 6=2. A contradiction with ∂̂(ij)(st)f̂∗ ∈ D⊗, which is a consequence

of (8.6). Thus, ∂̂stf̂∗ ∈ D⊗.

Then, we show that ∂̂uvf̂∗ ∈ D⊗. Recall the form (8.6) of ∂̂ij f̂∗. Clearly, {u, v} is disjoint with

{1, 2, i, j}. Also, ∂̂uvf̂∗ 6≡ 0 since ∂̂(ij)(uv)f̂∗ ∈ D⊗. Consider the UPF of ∂̂uvf̂∗.

• If x1 and x2 appear in one nonzero binary signature b̂∗uv(x1, x2), then

∂̂uvf̂∗ = b̂∗uv(x1, x2)⊗ ĝuv for some ĝuv 6≡ 0.

Then, we have ĝuv ∼ ∂̂(12)(uv)f̂∗ ∈ D⊗ since ∂̂12f̂∗ ∈ D⊗. Also, since b̂∗uv(x1, x2) | ∂̂(ij)(uv)f̂∗ ∈
D⊗, we have b̂∗uv(x1, x2) ∈ D⊗. Hence, ∂̂uvf̂∗ ∈ D⊗.
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• If x1 and x2 appear in two distinct nonzero binary signatures b̂∗uv1(x1, xi′) and b̂∗uv2(x2, xj′),
then

∂̂uvf̂∗ = b̂∗uv1(x1, xi′)⊗ b̂∗uv2(x2, xj′)⊗ ĥuv for some ĥuv 6≡ 0.

Then, we have ĥuv ∈ D⊗ since ∂̂(12)(uv)f̂∗ ∈ D⊗. By the form (8.6) of ∂̂ij f̂∗, after merging

variables xu and xv of ∂̂ij f̂∗, variables x1 and x2 form a binary 6=2 in ∂̂(uv)(ij)f̂∗ = ∂̂(ij)(uv)f̂∗.

On the other hand, by the form of ∂̂uvf̂∗, the only way that x1 and x2 form a binary after
merging two variables in ∂̂uvf̂∗ is to merge xi′ and xj′ . Thus, we have {i′, j′} = {i, j}. Since

f̂∗ has arity 2n > 8, we can find another pair of indices {s, t} disjoint with {1, 2, i, j, u, v}.
When merging variables xs and xt in ∂̂uvf̂∗, binary signatures b̂∗uv1(x1, xi′) and b̂∗uv2(x2, xj′)

are untouched. Thus, we have b̂∗uv1(x1, xi′) ⊗ b̂∗uv2(x2, xj′) | ∂̂(st)(uv)f̂∗. As showed above, we

have ∂̂stf̂∗ ∈ D⊗ and then ∂̂(st)(uv)f̂∗ ∈ D⊗. Thus, b̂∗uv1(x1, xi′)⊗ b̂∗uv2(x2, xj′) ∈ D⊗ and then

∂̂uvf̂∗ ∈ D⊗.
So far, we have shown that ∂̂12f̂∗ ∈ D⊗, ∂̂ij f̂∗ ∈ D⊗ and ∂̂stf̂∗ ∈ D⊗ for all {s, t} disjoint with

{1, 2, i, j}. If we can further show that ∂̂ikf̂∗ ∈ D⊗ for all k 6= 1, 2, i, j, and then symmetrically

∂̂jkf̂∗ ∈ D⊗ for all k 6= 1, 2, i, j, then ∂̂stf̂∗ ∈ D⊗ for all {s, t} disjoint with {1, 2}. Thus, by our

Claim, f̂∗ ∈
∫̂
D⊗. This will finish the proof of Case 2.

Now we prove ∂̂ikf̂∗ ∈ D⊗ for all k 6= 1, 2, i, j. Since ∂̂(ik)(12)f̂∗ ∈ D⊗, we have ∂̂ikf̂∗ 6≡ 0. So

we can consider the UPF of ∂̂ikf̂∗.
• If x1 and x2 appear in one nonzero binary signature, then

∂̂ikf̂∗ = b̂∗ik(x1, x2)⊗ ĝik for some ĝik ∈ D⊗.

Here, ĝik ∈ D⊗ since ∂̂(ik)(12)f̂∗ ∈ D⊗. Since f̂∗ has arity 2n > 8, we can pick a pair of indices

{s, t} disjoint with {1, 2, i, j, k}, and merge variables xs and xt of ∂̂ikf̂∗. Then, b̂∗ik(x1, x2) |
∂̂(st)(ik)f̂∗. Since ∂̂stf̂∗ ∈ D⊗, ∂̂(st)(ik)f̂∗ = ∂̂(ik)(st)f̂∗ ∈ D⊗. Thus, b̂∗ik(x1, x2) ∈ D⊗ and then

∂̂ikf̂∗ ∈ D⊗.
• If x1 and x2 appear in two nonzero distinct binary signatures, then

∂̂ikf̂∗ = b̂∗ik1(x1, xp)⊗ b̂∗ik2(x2, xq)⊗ ĥik for some ĥik ∈ D⊗.

Again, here ĥik ∈ D⊗ since ∂̂(ik)(12)f̂∗ ∈ D⊗. By connecting variables x1 and x2 of ∂̂ikf̂∗,
xp and xq will form a binary disequality up to a nonzero scalar (this binary signature is

disequality because we know that ∂̂(ik)(12)f̂∗ ∈ D⊗). By Lemma 2.13, as the type of binary

signatures, b̂∗ik1 ∼ b̂∗ik2. Between xp and xq, at least one of them is not xj ; suppose that it is

xp. We pick a variable xr in the scope of ĥik that is also not xj (such a variable xr exists as

2n > 8). Then, by merging xp and xr of ∂̂ikf̂∗, the binary signature b̂∗ik2(x2, xq) is untouched.

Since {p, r} is disjoint with {1, 2, i, j}, we have b̂∗ik2(x2, xq) | ∂̂(ik)(pr)f̂∗ ∈ D⊗. Thus, we have

b̂∗ik2(x2, xq) ∈ D⊗ and so does b̂∗ik1(x1, xp), since we have shown that they are associates as

the type of binary signatures. Thus, ∂̂ikf̂∗ ∈ D⊗.
As remarked earlier, by symmetry, we also have ∂̂jkf̂∗ ∈ D⊗ for all k 6= 1, 2, i, j. Thus, we are

done with Case 2.
Thus, an irreducible signature f̂∗ ∈

∫̂
D⊗ of arity 2n is realized from f̂ .
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Remark: Since f̂∗ is realized from f̂ by gadget construction, f̂∗ satisfies ars as f̂ does.

We first give a condition (Lemma 8.3) in which we can quite straightforwardly get the #P-

hardness of Holant(6=| f̂ , F̂) by 2nd-Orth given f̂ ∈
∫̂
D⊗ is an irreducible 8-ary signature.

Lemma 8.2. Let f̂ = a(1, 0)⊗2n + ā(0, 1)⊗2n + (6=2)(xi, xj)⊗ ĝh be an irreducible 2n-ary signature,
where 2n > 4 and ĝh is a nonzero EO signature (i.e., with half-weighted support) of arity 2n − 2.
Then, f̂ does not satisfy 2nd-Orth.

Proof. By renaming variables, without loss of generality, we may assume that {i, j} = {1, 2}.
For any input 00β 6= ~02n of f̂ , we have f̂(00β) = (6=2)(0, 0) · ĝh(β) = 0. Thus,

|f̂00
12 |2 =

∑

β∈Z2n−2
2

|f̂(00β)|2 = |f̂(~02n)|2.

On the other hand, since both ( 6=2)(x1, x2) and ĝh are nonzero EO signatures, (6=2)(x1, x2) ⊗ ĝh

is a nonzero EO signature. Then, we can pick an input 01γ ∈ Z2n
2 with wt(01γ) = n such that

f̂(01γ) = ( 6=2)(0, 1) · ĝh(γ) 6= 0. Since γ ∈ Z2n−2
2 , and wt(γ) = n− 1 > 1, there exists a bit γi in γ

such that γi = 0. Without loss of generality, we may assume that 01γ = 010γ′. Then,

|f̂00
13 |2 > |f̂(~02n)|2 + |f̂(010γ′)|2 > |f̂(~02n)|2 = |f̂00

12 |2.

Note that the constant λ for the norm squares must be the same for all index pairs {i, j} ⊆ [2n] in
order to satisfy 2nd-Orth in Definition 4.1. Thus, f̂ does not satisfy 2nd-Orth.

Lemma 8.3. Let f̂ ∈
∫̂
D⊗ be an irreducible 8-ary signature in F̂ . If there exists a binary disequality

(6=2)(xi, xj) and two pairs of indices {u, v} and {s, t} where {u, v}∩{s, t} 6= ∅ such that (6=2)(xi, xj) |
∂̂uvf̂ and ( 6=2)(xi, xj) | ∂̂stf̂ , then Holant( 6=2| F̂) is #P-hard.

Proof. For all pairs of indices {i, j}, since ∂̂ij f̂ ∈ D⊗, S (∂̂ij f̂) is on half-weight. By Lemma 2.10,

we have f̂(α) = 0 for all wt(α) 6= 0, 4, 8. Suppose that f̂(~08) = a and by ars f̂(~18) = ā. We can
write f̂ in the following form

f̂ = a(1, 0)⊗8 + ā(0, 1)⊗8 + f̂h,

where f̂h is an EO signature of arity 8.

Clearly, ∂̂ij f̂ = ∂̂ij f̂h for all {i, j}. Then, f̂h ∈
∫̂
D⊗ since f̂ ∈

∫̂
D⊗. In addition, since there exists

a binary disequality ( 6=2)(xi, xj) and two pairs of indices {u, v} and {s, t} where {u, v} ∩ {s, t} 6= ∅
such that (6=2)(xi, xj) | ∂̂uvf̂h, ∂̂stf̂h, by Lemma 2.11, f̂h ∈ D⊗ and ( 6=2)(xi, xj) | f̂h. Thus,

f̂ = a(1, 0)⊗8 + ā(0, 1)⊗8 + ( 6=2)(xi, xj)⊗ ĝh,

where ĝh ∈ D⊗ is a nonzero EO signature or arity 6 since f̂h ∈ D⊗. By Lemma 8.2, f̂ does not
satisfy 2nd-Orth. Thus, Holant( 6=2| F̂) is #P-hard by Lemma 4.4.

For signatures in D⊗, we give the following property. Now we adopt the following notation for
brevity. We use (i, j) to denote the binary disequality (6=2)(xi, xj) on variables xi and xj .

Lemma 8.4. Let f̂ ∈ D⊗ be a signature of arity at least 6. If there exist {u, v} 6= {s, t} such that
(i, j) | ∂̂uvf̂ and (i, j) | ∂̂stf̂ , then (i, j) | f̂ .
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Proof. For a contradiction, suppose that (i, j) - f̂ . Thus xi and xj appear in two separate disequal-

ities in the UPF of f̂ . Since f̂ ∈ D⊗, there exists {`, k} such that (i, `)⊗ (j, k) | f̂ . By merging two
variables of f̂ , the only way to make xi and xj to form a binary disequality is by merging x` and
xk. By the hypothesis of the lemma, {`, k} = {u, v} = {s, t}. Contradiction.

Theorem 8.5. Let f̂ /∈ Ô⊗ be a signature of arity 8 in F̂ . Then
• Holant( 6=2| F̂) is #P-hard, or

• there exists some Q̂ ∈ Ô2 such that Holant( 6=2| f̂8, Q̂F̂) 6T Holant( 6=2| F̂).

Proof. By Lemma 8.1, we may assume that an irreducible signature f̂∗ of arity 8 where f̂∗ ∈
∫̂
D⊗

is realizable from f̂ , and f̂∗ also satisfies ars. Otherwise, Holant(6=2| F̂) is #P-hard or we can
realize a signature ĝ /∈ Ô⊗ of arity 2, 4 or 6. Then, by Lemmas 5.1, 5.2 and 7.21, we get #P-
hardness. We will show that f̂8 is realizable from f̂∗, or otherwise we get #P-hardness. For brevity
of notation, we rename f̂∗ by f̂ . We first show that after renaming variables by applying a suitable
permutation to {1, 2, . . . , 8}, for all {i, j} ⊆ {1, 2, 3, 4}, (`, k) | ∂̂ij f̂ where {`, k} = {1, 2, 3, 4}\{i, j}.
Furthermore, we show that either Holant(6=2| F̂) is #P-hard, or

(5, 6) | ∂̂12f̂ , (5, 7) | ∂̂13f̂ , (6, 7) | ∂̂23f̂ , and (1, 2) | ∂̂56f̂ or (1, 3) | ∂̂56f̂ . (8.8)

Consider ∂̂12f̂ . Since f̂ ∈
∫̂
D⊗, ∂̂12f̂ ∈ D⊗. By renaming variables, without loss of generality,

we may assume that
∂̂12f̂ = λ12 · (3, 4)⊗ (5, 6)⊗ (7, 8), (8.9)

for some λ12 ∈ R \ {0}. Then, consider ∂̂34f̂ . ∂̂56f̂ , and ∂̂78f̂ . There are two cases.
• Case 1. (1, 2) | ∂̂34f̂ , ∂̂56f̂ and ∂̂78f̂ . Then we can write ∂̂56f̂ = (1, 2) ⊗ ĥ for some ĥ ∈ D⊗.

Clearly, ĥ ∼ ∂̂(12)(56)f̂ . By the form (8.9) and commutativity, ∂̂(12)(56)f̂ ∼ (3, 4)⊗(7, 8). Thus,

ĥ ∼ (3, 4)⊗ (7, 8). Then, for some λ56 ∈ R \ {0},

∂̂56f̂ = λ56 · (1, 2)⊗ (3, 4)⊗ (7, 8). (8.10)

Similarly, we have
∂̂78f̂ = λ78 · (1, 2)⊗ (3, 4)⊗ (5, 6),

and
∂̂34f̂ = λ34 · (1, 2)⊗ (5, 6)⊗ (7, 8),

for some λ78, λ34 ∈ R \ {0}.
Let ĝ = (1, 2) ⊗ (3, 4). Let {i, j} ⊆ {1, 2, 3, 4} and {`, k} = {1, 2, 3, 4}\{i, j}. If we merge
variables xi and xj of ĝ, i.e., if we form ∂̂ij ĝ, then clearly variables x` and xk will form a

disequality. Thus, for all {i, j} ⊆ {1, 2, 3, 4}, (`, k) | ∂̂ij ĝ. Then, (`, k) | ∂̂ij ĝ⊗(7, 8) ∼ ∂̂(ij)(56)f̂

by (8.10), and similarly (`, k) | ∂̂ij ĝ ⊗ (5, 6) ∼ ∂̂(ij)(78)f̂ . By Lemma 8.4, (`, k) | ∂̂ij f̂ .

• Case 2. Among ∂̂34f̂ , ∂̂56f̂ , and ∂̂78f̂ , there is at least one signature that is not divisible by
(1, 2). Without loss of generality, suppose that (1, 2) - ∂̂56f̂ . Since ∂̂56f̂ ∈ D⊗, there exists
{u, v} disjoint from {1, 2, 5, 6} such that (1, u)⊗ (2, v) | ∂̂56f̂ . Then, by merging variables x1

and x2 of ∂̂56f̂ , we have (u, v) | ∂̂(12)(56)f̂ ; comparing it to ∂̂(56)(12)f̂ using the form of (8.9)
and by unique factorization we get {u, v} = {3, 4} or {7, 8}. Without loss of generality (i.e.,
this is still within the freedom of our naming variables subject to the choices made so far),
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we may assume that {u, v} = {3, 4} and furthermore, u = 3 and v = 4. Then, for some
λ′56 ∈ R \ {0},

∂̂56f̂ = λ′56 · (1, 3)⊗ (2, 4)⊗ (7, 8). (8.11)

Then, consider ∂̂78f̂ . We show that (5, 6) | ∂̂78f̂ . Otherwise, there exists {s, t} disjoint from
{5, 6, 7, 8} such that (5, s) ⊗ (6, t) | ∂̂78f̂ . By merging two variables of ∂̂78f̂ , the only way
to make x5 and x6 form a binary disequality is to merge xs and xt. By the form (8.9),
(5, 6) | ∂̂(12)(78)f̂ . Thus, {s, t} = {1, 2}. From (5, s)⊗ (6, t) | ∂̂78f̂ , and {s, t} = {1, 2} we know

that x1 and x2 will form a binary disequality in ∂̂(56)(78)f̂ . Thus, (1, 2) | ∂̂(56)(78)f̂ . However,

by (8.11) ∂̂(56)(78)f̂ ∼ (1, 3)⊗ (2, 4). This is a contradiction to UPF. Thus, ∂̂78f̂ = (5, 6)⊗ ĝ′
and ĝ′ ∼ ∂̂(56)(78)f̂ ∼ (1, 3)⊗ (2, 4). Then, for some λ′78 ∈ R \ {0},

∂̂78f̂ = λ′78 · (1, 3)⊗ (2, 4)⊗ (5, 6). (8.12)

Let {i, j} ⊆ {1, 2, 3, 4} and {`, k} = {1, 2, 3, 4}\{i, j}. If we merge variables xi and xj of ĝ′,
which is an associate of (1, 3)⊗ (2, 4), then clearly variables x` and xk will form a disequality.
Thus, for all {i, j} ⊆ {1, 2, 3, 4}, (`, k) ∼ ∂̂ij ĝ′. Then, (`, k) | ∂̂ij ĝ′ ⊗ (7, 8) ∼ ∂̂(ij)(56)f̂ (by

(8.11)) and (`, k) | ∂̂ij ĝ′ ⊗ (5, 6) ∼ ∂̂(ij)(78)f̂ (by (8.12)). By Lemma 8.4, (`, k) | ∂̂ij f̂ .

Thus, in both cases, we have (`, k) | ∂̂ij f̂ where {i, j} t {`, k} = {1, 2, 3, 4} is an arbitrary
disjoint union of two pairs. Now, we show that in both cases, (with possibly switching the names
x7 and x8, which we are still free to do), we can have

(5, 6) | ∂̂12f̂ , (5, 7) | ∂13f̂ , (6, 7) | ∂̂23f̂ . (8.13)

Clearly, by the form (8.9), we have (5, 6) | ∂̂12f̂ . Consider ∂13f̂ . We already know that (2, 4) |
∂13f̂ (in both cases). If (5, 6) | ∂̂13f̂ , then since (5, 6) | ∂̂12f̂ and {1, 2} ∩ {1, 3} 6= ∅, by Lemma 8.3,
Holant( 6=2| F̂) is #P-hard. Thus, (5, 7) | ∂̂13f̂ or (5, 8) | ∂̂13f̂ . By renaming variables x7 and x8,
we may assume that in both cases

∂̂13f̂ = (2, 4)⊗ (5, 7)⊗ (6, 8). (8.14)

This renaming will not change any of the above forms of ∂̂ij f̂ . Consider ∂̂23f̂ . We already have

(1, 4) | ∂̂23f̂ . We know ∂̂23f̂ ∈ D⊗, and so in its UPF, (6, r) | ∂̂23f̂ , for some r ∈ [8] \ {1, 2, 3, 4, 6}.
If (5, 6) | ∂̂23f̂ , then since (5, 6) | ∂̂12f̂ and {1, 2} ∩ {2, 3} 6= ∅, by Lemma 8.3, we get #P-hardness.
If (6, 8) | ∂̂23f̂ , then since (6, 8) | ∂̂13f̂ by (8.14) and {1, 3}∩{2, 3} 6= ∅, again by Lemma 8.3, we get
#P-hardness. Thus, we may assume that r = 7 and (6, 7) | ∂̂23f̂ . Therefore, we have established
(8.13) in both cases. Furthermore, in Case 1, we have (1, 2) | ∂̂56f̂ by form (8.10), and in Case 2,
we have (1, 3) | ∂̂56f̂ by form (8.11).

Now, we show that for any α ∈ Z4
2 with wt(α) = 1, f̂α1234 ≡ 0. Since (3, 4) | ∂̂12f̂ , (∂̂12f̂)00

34 ≡ 0.
Since {1, 2} is disjoint with {3, 4},

(∂̂12f̂)00
34 = ∂̂12(f̂00

34 ) = f̂0100
1234 + f̂1000

1234 ≡ 0. (8.15)

Since (1, 4) | ∂̂23f̂ ,
(∂̂23f̂)00

14 = ∂̂23(f̂00
14 ) = f̂0010

1234 + f̂0100
1234 ≡ 0. (8.16)

Since (1, 3) | ∂̂24f̂ ,
(∂̂13f̂)00

24 = ∂̂13(f̂00
24 ) = f̂0010

1234 + f̂1000
1234 ≡ 0. (8.17)
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Comparing (8.15), (8.16) and (8.17), we have

f̂1000
1234 = f̂0100

1234 = f̂0010
1234 ≡ 0.

Since (2, 3) | ∂̂14f̂ ,
(∂̂14f̂)00

23 = ∂̂14(f̂00
23 ) = f̂0001

1234 + f̂1000
1234 ≡ 0.

Plug in f̂1000
1234 ≡ 0, we have f̂0001

1234 ≡ 0. Thus for any α ∈ Z4
2 with wt(α) = 1, we have f̂α1234 ≡ 0.

Also, for α ∈ Z4
2 with wt(α) = 3 and any β ∈ Z4

2, by ars we have,

f̂α1234(β) = f̂α1234(β) = 0

since wt(α) = 1. Thus, for any α ∈ Z4
2 with wt(α) = 3, we also have f̂α1234 ≡ 0.

Let α ∈ Z4
2 be an assignment of the first four variables of f , and β ∈ Z4

2 be an assignment of the

last four variables of f . Thus, for any α, β ∈ Z4
2, f̂(αβ) = 0 if wt(α) = 1 or 3. Also, since f̂ ∈

∫̂
D⊗,

by Lemma 2.10, f̂(αβ) = 0 if wt(α) + wt(β) 6= 0, 4 and 8. Then, we show that for any αβ ∈ S (f̂),

|f̂(αβ)| = |f̂(αβ)| = |f̂(αβ)| = |f̂(αβ)|.

By ars, |f̂(αβ)| = |f̂(αβ)| and |f̂(αβ)| = |f̂(αβ)|. So, we only need to show that

|f̂(αβ)| = |f̂(αβ)|. (8.18)

Pick an arbitrary {i, j} ⊆ {1, 2, 3, 4} and an arbitrary {u, v} ⊆ {5, 6, 7, 8}. Let {`, k} =
{1, 2, 3, 4}\{i, j} and {s, t} = {5, 6, 7, 8}\{u, v}. Since f̂ satisfies 2nd-Orth, by equation (4.6),
we have |̂f0000

ijuv |2 = |̂f0011
ijuv |2. Since f̂(αβ) = 0 if wt(α) = 1 or 3, or wt(α) + wt(β) 6= 0, 4 and 8, we

get the equation,
|f̂00000000
ij`kuvst |2 + |f̂00110011

ij`kuvst |2 = |f̂00111100
ij`kuvst |2 + |f̂00001111

ij`kuvst |2. (8.19)

Note that for |̂f0000
ijuv |2, since we set xixj = 00, the only possible nonzero terms are for x`xk = 00 or

11; furthermore, as we also set xuxv = 00, then xsxt = 00 if x`xk = 00, and xsxt = 11 if x`xk = 11.
The situation is similar for |̂f0011

ijuv |2.

Also, by considering |̂f0000
ijst |2 = |̂f0011

ijst |2, we have

|f̂00000000
ij`kuvst |2 + |f̂00111100

ij`kuvst |2 = |f̂00110011
ij`kuvst |2 + |f̂00001111

ij`kuvst |2. (8.20)

Comparing equations (8.19) and (8.20), we have

|f̂00000000
ij`kuvst |2 = |f̂00001111

ij`kuvst |2, and |f̂00110011
ij`kuvst |2 = |f̂00111100

ij`kuvst |2.

Also, by ars,
|f̂11111111
ij`kuvst |2 = |f̂11110000

ij`kuvst |2.
As (i, j, k, `) is an arbitrary permutation of (1, 2, 3, 4) and (u, v, s, t) is an arbitrary permutation of
(5, 6, 7, 8), and f̂(αβ) vanishes if wt(α) + wt(β) 6= 0, 4 and 8, the above have established (8.18) for
any α, β ∈ Z4

2. Hence, for all α, β ∈ Z4
2,

|f̂(αβ)| = |f̂(αβ)| = |f̂(αβ)| = |f̂(αβ)|.
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x1x2x3x4
x5x6x7x8 α1 = 0110 (Col 1) α2 = 1010 (Col 2) α3 = 1100 (Col 3)

α1 = 0110 (Row 1) m11 = f̂01100110 m12 = f̂01101010 m13 = f̂01101100

α2 = 1010 (Row 2) m21 = f̂10100110 m22 = f̂10101010 m23 = f̂10101100

α3 = 1100 (Row 3) m31 = f̂11000110 m32 = f̂11001010 m33 = f̂11001100

Table 6: Representative entries of f̂ in terms of norms

Note that f̂ has at most 4 +
(

4
2

)
·
(

4
2

)
= 40 many possibly non-zero entries. In terms of norms,

these 40 entries can be represented by f̂
~08 and the following 9 entries in Table 6. In other words,

for every αβ ∈ Z8
2 where wt(α) ≡ wt(β) ≡ 0 (mod 2) and wt(α) + wt(β) ≡ 0 (mod 4), exactly one

entry among f̂(αβ), f̂(αβ), f̂(αβ) and f̂(αβ) appears in Table 6. We also view these 9 entries in
Table 6 as a 3-by-3 matrix denoted by M = (mij)

3
i,j=1.

Let f̂
~08 = a. First we show that

|mi,1|2 + |mi,2|2 + |mi,3|2 = |a|2, for i = 1, 2, 3. (8.21)

and
|m1,j |2 + |m2,j |2 + |m3,j |2 = |a|2, for j = 1, 2, 3. (8.22)

Let (i, j, k) be an arbitrary permutation of (1, 2, 3). Again, by equation (4.6), |̂f0110
ijk8 |2 = |̂f0000

ijk8 |2.
Then, we have

|f̂01100110
ijk45678 |2 + |f̂01101010

ijk45678 |2 + |f̂01101100
ijk45678 |2 = |f̂00000000

ijk45678 |2 = |a|2.
By taking (i, j, k) = (1, 2, 3), (2, 1, 3) and (3, 1, 2), we get equations (8.21) for i = 1, 2, 3 respectively.
Similarly, by considering |̂f0110

4ijk |2 = |̂f0000
4ijk |2 where (i, j, k) is an arbitrary permutation of (5, 6, 7),

we get equations (8.22).
Also, since (5, 6) | ∂̂12f̂ , we have ∂̂12f̂(x3, . . . , x8) = 0 if x5 = x6. Notice that

m13 +m23 = f̂01101100 + f̂10101100

is an entry of ∂̂12f̂ on the input 101100. Thus, m13 +m23 = 0. Also, since (5, 7) | ∂̂13f̂ , we have

m12 +m32 = 0.

Since (6, 7) | ∂̂23f̂ , we have
m21 +m31 = 0.

Let x = |m13| = |m23|, y = |m12| = |m32|, and z = |m21| = |m31|. Plug x, y, z into equations (8.21)
and (8.22). We have

|m11|2 + y2 + x2 = |m11|2 + z2 + z2

=z2 + |m22|2 + x2 = y2 + |m22|2 + y2

=z2 + y2 + |m33|2 = x2 + x2 + |m33|2.
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Thus, x = y = z and |m11| = |m22| = |m33|. Consider

m11 +m21 = f̂01100110 + f̂10100110 and m12 +m22 = f̂01101010 + f̂10101010.

They are entries of ∂̂12f̂ on inputs 100110 and 101010. By form (8.9) of ∂̂12f̂ , we have

m11 +m21 = m12 +m22 ∈ R\{0}.

Remember that we also have (1, 2) | ∂̂56f̂ or (1, 3) | ∂̂56f̂ .
We first consider the case that (1, 3) | ∂̂56f̂ . Then

m21 +m22 = f̂10100110 + f̂10101010 = 0.

Thus,
m11 +m21 = m12 −m21 ∈ R\{0}.

Since |m12| = |m21|, |m22| = |m11| and m21 +m22 = 0,

|m12| = |m21| = |m22| = |m11|.

Thus, m11 = m21 and m12 = −m21. Let Re(x) the real part of a number x. Then,

Re(m11) + Re(m21) = 2Re(m21) = Re(m12)−Re(m21) = −2Re(m21).

Thus, Re(m21) = 0. Then, Re(m11) = Re(m21) = 0. Thus, m11 + m21 /∈ R\{0} since Re(m11 +
m21) = 0. Contradiction.

Now, we consider the case that (1, 2) | ∂̂56f̂ . Then

m31 +m32 = f̂11000110 + f̂11001010 = 0.

Since m12 +m32 = 0 and m21 +m31 = 0, we have m12 = −m21. Thus, we have

m11 +m21 = m12 +m22 = m22 −m21 ∈ R\{0}.

Taking the imaginary part, Im(m11) + Im(m21) = Im(m22) − Im(m21) = 0. Adding the two, we
get Im(m11) + Im(m22) = 0, and thus, m11 + m22 ∈ R. Since |m11| = |m22|, m11 = m22. Then,
Re(m11) = Re(m22). Also, since m11 +m21 = m22 −m21 ∈ R\{0},

Re(m11) + Re(m21) = Re(m22)−Re(m21) = Re(m11)−Re(m21) 6= 0.

Thus, Re(m21) = 0, and Re(m11) 6= 0. Suppose that m21 = di for some d ∈ R. Then there exists
c ∈ R\{0} such that m11 = c − di and then m22 = c + di. Remember that m21 + m31 = 0. Thus,
m31 = −di. Consider

m11 +m31 = f̂01100110 + f̂11000110 = c− 2di.

It is an entry of the signature ∂̂13f̂ . Since ∂̂13f̂ ∈ D⊗, c − 2di ∈ R. Thus, d = 0. Then, m21 = 0
and m11 ∈ R. Thus,

x = |m13| = |m23| = y = |m12| = |m32| = z = |m21| = |m31| = 0,

and
|m11| = |m22| = |m33| = |a| = |f̂(~0)|.
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Since f̂ 6≡ 0, a 6= 0. Thus,

S (f̂) = {δδ, δδ, δδ, δδ ∈ Z8
2 | δ = 0000, α1, α2, α3},

where α1, α2, α3 are named in Table 6. It is easy to see that S (f̂) = S (f̂8). Since m11 ∈ R, and
|m11| = |a| 6= 0, we can normalize it to 1. Since, ∂̂12f̂ ∈ D⊗, we have

1 = f̂(α1α1) + f̂(α2α1) = f̂(α1α2) + f̂(α2α2) = f̂(α1α1) + f̂(α2α1) = f̂(α1α2) + f̂(α2α2).

Since, f̂(α2α1) = f̂(α1α2) = f̂(α2α1) = f̂(α1α2) = 0,

f̂(α1α1) = f̂(α2α2) = f̂(α1α1) = f̂(α2α2) = 1.

Similarly, since ∂̂13f̂ ∈ D⊗,

f̂(α1α1) = f̂(α3α3) = f̂(α1α1) = f̂(α3α3) = 1.

By ars, we have

1 = f̂(α1α1) = f̂(α1α1) = f̂(α1α1) = f̂(α2α2) = f̂(α2α2) = f̂(α3α3) = f̂(α3α3).

Also, since ∂̂15f̂ ∈ D⊗,

1 = f̂(α1α1) = f̂01101001 + f̂11100001 = f̂00001111 + f̂10000111 = f̂00001111.

Then, by ars, f̂11110000 = f̂00001111 = 1. Thus, f̂(γ) = 1 for any γ ∈ S (f̂) with wt(γ) = 4.
Remember that f̂(~08) = a where |a| = 1. Then, f̂(~18) = a by ars. Suppose that a = eiθ. Let

Q̂ =
[
ρ 0
0 ρ

]
∈ Ô2 where ρ = e−iθ/8. Consider the holographic transformation by Q̂. Q̂ does not

change the entries of f̂ on half-weighed inputs, but change the values of f̂(~08) and f̂(~18) to 1. Thus,
Q̂f̂ = f̂8. Then, Holant(6=2| f̂8, Q̂F̂) 6T Holant( 6=2| F̂).

Now, we want to show that Holant(6=2| f̂8, Q̂F̂) is #P-hard for all Q̂ ∈ Ô2 and all F̂ where
F = ZF̂ is a real-valued signature set that does not satisfy condition (T). If so, then we are done.

Recall that for all Q̂ ∈ Ô2, Q̂F̂ = Q̂F for some Q ∈ O2. Moreover, for all Q ∈ O2, and all
real-valued F that does not satisfy condition (T), QF is also a real-valued signature set that does
not satisfy condition (T). Thus, it suffices for us to show that Holant(6=2| f̂8, F̂) is #P-hard for all
real-valued F that does not satisfy condition (T).

The following Lemma shows that f̂8 gives non-B̂ hardness (Definition 6.7).

Lemma 8.6. Holant( 6=2| f̂8, F̂) is #P-hard if F̂ contains a nonzero binary signature b̂ /∈ B̂⊗.
Equivalently, Holant(f8,F) is #P-hard if F contains a nonzero binary signature b /∈ B⊗.

Proof. We prove this lemma in the setting of Holant( 6=2| f̂8, F̂). If b̂ /∈ Ô⊗, then by Lemma 5.1,
we get #P-hardness. Thus, we may assume that b̂ ∈ Ô⊗. Then, b̂ has parity. We first consider the
case that b̂ has even parity, i.e., b̂ = (a, 0, 0, ā). Since b̂ 6≡ 0, a 6= 0. We can normalize a to eiθ where
0 6 θ < π. Then ā = e−iθ. Since b̂ /∈ B̂, a 6= ±1 and a 6= ±i. Thus, θ 6= 0 and θ 6= π

2 .
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We connect variables x1 and x5 of f̂8 with the two variables of b̂ (using 6=2), and we get a 6-ary
signature denoted by ĝ. We rename variables x2, x3, x4 of ĝ to x1, x2, x3 and variables x6, x7, x8 to
x4, x5, x6. Then, ĝ has the following signature matrix

M123,456(ĝ) =




e−iθ 0 0 0 0 0 0 0
0 eiθ 0 0 0 0 0 0
0 0 eiθ 0 0 0 0 0
0 0 0 e−iθ 0 0 0 0
0 0 0 0 eiθ 0 0 0
0 0 0 0 0 e−iθ 0 0
0 0 0 0 0 0 e−iθ 0
0 0 0 0 0 0 0 eiθ




.

Now, we show that ĝ /∈ Ô⊗. For a contradiction, suppose that ĝ ∈ Ô⊗. Notice that S (ĝ) =
{(x1, . . . , x6) ∈ Z6

2 | x1 = x4, x2 = x5 and x3 = x6}. Then, we can write ĝ as

ĝ = b̂1(x1, x4)⊗ b̂2(x2, x5)⊗ b̂3(x3, x6),

where b̂1 = (eiθ1 , 0, 0, e−iθ1), b̂2 = (eiθ2 , 0, 0, e−iθ2) and b̂3 = (eiθ3 , 0, 0, e−iθ3). Then notice that

ĝ000000 = e−iθ = b̂1(0, 0) · b̂2(0, 0) · b̂3(0, 0) = ei(θ1+θ2+θ3),

and
ĝ011011 = e−iθ = b̂1(0, 0) · b̂2(1, 1) · b̂3(1, 1) = ei(θ1−θ2−θ3).

By multiplying the above two equations, we have

e−i2θ = ei(θ1+θ2+θ3) · ei(θ1−θ2−θ3) = ei2θ1 .

Also, notice that
ĝ001001 = eiθ = b̂1(0, 0) · b̂2(0, 0) · b̂3(1, 1) = ei(θ1+θ2−θ3),

and
ĝ010010 = eiθ = b̂1(0, 0) · b̂2(1, 1) · b̂3(0, 0) = ei(θ1−θ2+θ3).

By multiplying them, we have

ei2θ = ei(θ1+θ2−θ3) · ei(θ1−θ2+θ3) = ei2θ1 .

Thus, ei2θ = e−i2θ. Then, ei4θ = 1. Since, θ ∈ [0, π), θ = 0 or π
2 . Contradiction. Thus, ĝ /∈ Ô⊗. By

Lemma 7.21, we get #P-hardness.
Now, suppose that b̂ has odd parity, i.e., b̂(y1, y2) = (0, eiθ, e−iθ, 0) where θ ∈ [0, π) after

normalization. We still consider the 6-ary signature ĝ′ that is realized by connecting variables x1

and x5 of f̂8 with the two variables y1 and y2 of b̂ (using 6=2). Then, after renaming variables, ĝ′

has the following signature matrix

M123,456(ĝ′) =




0 0 0 0 0 0 0 e−iθ

0 0 0 0 0 0 eiθ 0
0 0 0 0 0 eiθ 0 0
0 0 0 0 e−iθ 0 0 0
0 0 0 eiθ 0 0 0 0
0 0 e−iθ 0 0 0 0 0
0 e−iθ 0 0 0 0 0 0
eiθ 0 0 0 0 0 0 0




.
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Similarly, we can show that ĝ′ /∈ Ô⊗. Thus, by Lemma 7.21, we get #P-hardness.

We go back to real-valued Holant problems under the Z-transformation. Consider the problem
Holant(f8,F). Remember that f8 = f̂8. We observe that, by Lemma 8.6 the set {f8} ∪F is non-B
hard, according to Definition 6.7. Then if we apply Theorem 7.19 to the set {f8} ∪ F we see that
Holantb(f8,F) is #P-hard. Now if we were able to show that B is realizable from f8 then we would
be done, since by Theorem 8.5, we either already have the #P-hardness for Holant(F), or we can
realize f8 from F , and thus the following reduction chain holds

Holantb(f8,F) 6T Holant(f8,F) 6T Holant(F).

Thus we get the #P-hardness of Holant(F) in either way.
However, since f8 has even parity and all its entries are non-negative, all gadgets realizable from

f8 have even parity and have non-negative entries. Thus, =−2 , 6=2 and 6=−2 cannot be realized from
f8 by gadget construction. In fact, it is observed in [15] that f8 satisfies the following strong Bell
property.

Definition 8.7. A signature f satisfies the strong Bell property if for all pairs of indices {i, j},
and every b ∈ B, the signature ∂bijf realized by merging xi and xj of f using b is in {b}⊗.

8.2 Holant problems with limited appearance and a novel reduction

In this subsection, not using gadget construction but critically based on the strong Bell property of
f8, we prove that Holantb(f8,F) 6T Holant(f8,F) in a novel way. We define the following Holant
problems with limited appearance.

Definition 8.8. Let F be a signature set containing a signature f . The problem Holant(f6k,F)
contains all instances of Holant(F) where the signature f appears at most k times.

Lemma 8.9. For any b ∈ B, Holant(b, f8,F) 6T Holant(b62, f8,F).

Proof. Consider an instance Ω of Holant(b, f8,F). Suppose that b appears n times in Ω. If n 6 2,
then Ω is already an instance of Holant(b62, f8,F). Otherwise, n > 3. Consider the gadget ∂bijf8

realized by connecting two variables xi and xj of f8 using b. (This gadget uses b only once.) Since
f8 satisfies the strong Bell property, ∂bijf8 = b⊗3. Thus, by replacing three occurrences of b in Ω by

∂bijf8, we can reduce the number of occurrences of b by 2. We carry out this replacement a linear

number of times to obtain an equivalent instance of Holant(b62, f8,F), of size linear in Ω.

Now, we are ready to prove the reduction Holantb(f8,F) 6T Holant(f8,F). Note that if
Holant(f8,F) is #P-hard, then the reduction holds trivially. For any b ∈ B, if we connect a
variable of b with a variable of another copy of b using =2, we get ±(=2). Also, for any b1, b2 ∈ B
where b1 6= b2 if we connect the two variables of b1 with the two variables of b2, we get a value 0.

Lemma 8.10. Holantb(f8,F) 6T Holant(f8,F).

Proof. We prove this reduction in two steps.

Step 1. There exists a signature b1 ∈ B\{=2} such that Holant(b1, f8,F) 6T Holant(f8,F).

We consider all binary and 4-ary signatures realizable by gadget constructions from {f8}∪F . If
a binary signature g /∈ B is realizable from {f8}∪F , then by Lemma 8.6, Holant(f8,F) is #P-hard,
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and we are done. If a binary signature g ∈ B\{=2} is realizable from {f8}∪F , then we are done by
choosing b1 = g. So we may assume that all binary signatures g realizable from {f8}∪F are =2 (up
to a scalar) or the zero binary signature, i.e., g = µ · (=2) for some µ ∈ R. Similarly, if a nonzero
4-ary signature h /∈ B⊗2 is realizable, then we have Holant(f8,F) is #P-hard, by Lemma 6.8, as
Lemma 8.6 says the set {f8} ∪ F is non-B hard. If a nonzero 4-ary signature h ∈ B⊗2\{=2}⊗2 is
realizable, then we can realize a binary signature b1 ∈ B\{=2} by factorization, and we are done.
Thus, we may assume that all 4-ary signatures h realizable from {f8} ∪ F are (=2)⊗2 or the 4-ary
zero signature, i.e., h = λ · (=2)⊗2 for some λ ∈ R.

Now, let b1 be a signature in B\{=2}. We show that Holant(b62
1 , f8,F) 6T Holant(f8,F).

Consider an instance Ω of Holant(b62
1 , f8,F).

• If b1 does not appear in Ω, then Ω is already an instance of Holant(f8,F).
• If b1 appears exactly once in Ω (we may assume it does connect to itself), then we may

consider the rest of Ω that connects to b1 as a gadget realized from {f8} ∪ F , which must
have signature λ · (=2), for some λ ∈ R. Connecting the two variables of b1 by (=2) for every
b1 ∈ B\{=2} will always gives 0. Thus, Holant(Ω) = 0.
• Suppose b1 appears exactly twice in Ω. It is easy to handle when the two copies of b1 form a

gadget of arity 0 or 2 to the rest of Ω. We may assume they are connected to the rest of Ω in
such a way that the rest of Ω forms a 4-ary gadget h realized from {f8} ∪ F . We can name
the four dangling edges of h in any specific ordering as (x1, x2, x3, x4). Then

h(x1, x2, x3, x4) = λ · (=2)(x1, xj)⊗ (=2)(xk, x`)

for some partition {1, 2, 3, 4} = {1, j} t {k, `}, and some λ ∈ R. (Note that while we
have named four specific dangling edges as (x1, x2, x3, x4), the specific partition {1, 2, 3, 4} =
{1, j} t {k, `} and the value λ are unknown at this point.) We consider the following three
instances Ω12, Ω13, and Ω14, where Ω1s (s ∈ {2, 3, 4}) is the instance formed by merging
variables x1 and xs of h using =2, and merging the other two variables of h using =2 (see
Figure 4 where h1 = h2 = (=2) and h = λ · h1 ⊗ h2). Since h is a gadget realized from
{f8}∪F , Ω12, Ω13, and Ω14 are instances of Holant(f8,F). Note that Holant(Ω1s) = 4λ when
s = j and Holant(Ω1s) = 2λ otherwise. Thus, by computing Holant(Ω1s) for s ∈ {2, 3, 4}, we
can get λ, and if λ 6= 0 the partition {1, j} t {k, `} of the four variables. Thus we can get the
exact structure of the 4-ary gadget h. In either case (whether λ = 0 or not), we can compute
the value of Holant(Ω).

Thus, Holant(b62
1 , f8,F) 6T Holant(f8,F). By Lemma 8.9, Holant(b1, f8,F) 6T Holant(f8,F).

Figure 4: Instances Ω1j , Ω1k and Ω1`
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Step 2. For any b1 ∈ B\{=2}, we have Holantb(f8,F) 6T Holant(b1, f8,F).
We show that we can get another b2 ∈ B\{=2, b1}, i.e., for some binary signature b2 ∈ B\{=2, b1}

we have the reduction Holant(b2, b1, f8,F) 6T Holant(b1, f8,F). Then, by connecting one variable
of b1 and one variable of b2 using =2, we get the third signature in B\{b1, b2}. Then, the lemma
is proved. The proof is similar to the proof in Step 1. We consider all binary and 4-ary gadgets
realizable from {b1, f8} ∪ F . Still, we may assume that all realizable binary signatures are of the
form µ · (=2) or µ · b1 for some µ ∈ R, and all realizable 4-ary signatures are of form λ · (=2)⊗2,
λ · b⊗2

1 or λ · (=2)⊗b1 for some λ ∈ R. Otherwise, we can show that Holant(b1, f8,F) is #P-hard or
we realize a signature b2 ∈ B\{=2, b1} directly by gadget construction.

Then, let b2 be an arbitrary signature in B\{=2, b1}. We show that

Holant(b62
2 , b1, f8,F) 6T Holant(b1, f8,F).

Consider an instance Ω of Holant(b62
2 , b1, f8,F). If b2 does not appear in Ω, then Ω is already

an instance of Holant(b1, f8,F). If b2 appears exactly once in Ω, then it is connected with a
binary gadget g where g = µ · (=2) or g = µ · b1. In both cases, the evaluation is 0. Thus,
Holant(Ω) = 0. Suppose b2 appears exactly twice in Ω. Again it is easy to handle the case if
the rest of Ω forms a gadget of arity 0 or 2 to the two occurrences of b2. So we may assume
the two occurrences of b2 are connected to a 4-ary gadget h = λ · (=2)⊗2, λ · b⊗2

1 or λ · (=2)⊗b1.
We denote the four variables of h by (x1, x2, x3, x4), by an arbitrary ordering of the four dangling
edges. Then h(x1, x2, x3, x4) = λ · h1(x1, xj) ⊗ h2(xk, x`) where h1, h2 ∈ {=2, b1}, for some λ and
{j, k, `} = {2, 3, 4}. (Note that at the moment the values λ and j, k, ` are unknown.) We consider
the following three instances Ω12, Ω13 and Ω14, where Ω1s (s ∈ {2, 3, 4}) is the instance formed by
connecting variables x1 and xs of h using =2, and connecting the other two variables of h using
=2 (again see Figure 4). Clearly, Ω12, Ω13 and Ω14 are instances of Holant(b1, f8,F). Consider the
evaluations of these instances. We have three cases.
• If h1 = h2 = (=2), then Holant(Ω1s) = 4λ when s = j and Holant(Ω1s) = 2λ when s 6= j.
• If h1 = h2 = b1, then Holant(Ω1s) = 0 when s = j. If M(b1) is the 2 by 2 matrix form for the

binary signature b1 where we list its first variable as row index and second variable as column
index, then we have Holant(Ω1k) = λ · tr(M(b1)M(b1)T), and Holant(Ω1`) = λ · tr(M(b1)2),
where tr denotes trace. For b1 = (=−2 ) or ( 6=+

2 ), the matrix M(b1) is symmetric, and the value
Holant(Ω1s) = 2λ in both cases s = k or s = `. For b1 = (6=−2 ), M(b1)T = −M(b1), and we
have Holant(Ω1k) = 2λ, and Holant(Ω1`) = −2λ.
• If one of h1 and h2 is =2 and the other is b1, then Holant(Ω1s) = 0 for all s ∈ {j, k, `}.

Thus, if the values of Holant(Ω1s) for s ∈ {2, 3, 4} are not all zero, then λ 6= 0 and the third case is
impossible, and we can tell whether h is in the form λ · (=2)⊗2 or λ · (b1)⊗2. Moreover we can get
the exact structure of h, i.e., the value λ and the decomposition form of h1 and h2. Otherwise, the
values of Holant(Ω1s) for s ∈ {2, 3, 4} are all zero. Then we can write h = λ·(=2)(x1, xj)⊗b1(xk, x`)
or h = λ · b1(x1, xj) ⊗ (=2)(xk, x`), including possibly λ = 0, which means h ≡ 0. (Note that if
λ 6= 0, this uniquely identifies that we are in the third case; if λ = 0 then this form is still formally
valid, even though we cannot say this uniquely identifies the third case. But when λ = 0 all three
cases are the same, i.e., h ≡ 0.) At this point we still do not know the exact value of λ and the
decomposition form of h.

We further consider the following three instances Ω′12, Ω′13 and Ω′14, where Ω′1s (s ∈ {2, 3, 4}) is
the instance formed by connecting variables x1 and xs of h using b1, and connecting the other two
variables of h using =2. (In other words, we replace the labeling =2 of the edge that is connected
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to the variable x1 in each instance illustrated in Figure 4 by b1.) It is easy to see that Ω′12, Ω′13 and
Ω′14 are instances of Holant(b1, f8,F). Consider the evaluations of these instances.
• If h1 = (=2)(x1, xj), then Holant(Ω′1s) = 0 when s = j. Also we have Holant(Ω1k) =
λ · tr(M(b1)2), and Holant(Ω1`) = λ · tr(M(b1)M(b1)T). For b1 = (=−2 ) or 6=+

2 , the matrix
M(b1) is symmetric, and the value Holant(Ω1s) = 2λ in both cases s = k or s = `. For
b1 = (6=−2 ), M(b1)T = −M(b1), and we have Holant(Ω1k) = −2λ, and Holant(Ω1`) = 2λ.
• If h1 = b1(x1, xj), then Holant(Ω′1s) = 4λ when s = j and Holant(Ω′1s) = 2λ when s 6= j.

Thus, by further computing Holant(Ω′1s) for s ∈ {2, 3, 4}, we can get the exact structure of h.
Therefore, by querying Holant(b1, f8,F) at most 6 times, we can compute h exactly. Then, we

can compute Holant(Ω) easily. Thus, Holant(b62
2 , b1, f8,F) 6T Holant(b1, f8,F). By Lemma 8.9,

Holant(b2, b1, f8,F) 6T Holant(b1, f8,F). The other signature in B\{=2, b1, b2} can be realized by
connecting b1 and b2. Thus, Holantb(f8,F) 6T Holant(b1, f8,F).

Therefore, Holantb(f8,F) 6T Holant(f8,F).

Since Holantb(f8,F) 6T Holant(f8,F) and {f8} ∪ F is non-B hard for any real-valued F that
does not satisfy condition (T), by Theorem 7.19, we have the following result.

Lemma 8.11. Holant(f8,F) is #P-hard.

Combining Theorem 8.5 and Lemma 8.11, we have the following result.

Lemma 8.12. If F̂ contains a signature f̂ of arity 8 and f̂ /∈ Ô⊗, then Holant( 6=2| F̂) is #P-hard.

9 The Induction Proof: 2n > 10

Now, we show that our induction framework works for signatures of arity 2n > 10.

Lemma 9.1. If F̂ contains a signature f̂ of arity 2n > 10 and f̂ /∈ Ô⊗, then,
• Holant( 6=2| F̂) is #P-hard, or
• a signature ĝ /∈ Ô⊗ of arity 2k 6 2n− 2 is realizable from f̂ .

Proof. By Lemma 8.1, we may assume that an irreducible signature f̂∗ of arity 2n > 10 where

f̂∗ ∈
∫̂
D⊗ is realizable, and f̂∗ satisfies ars. We show that f̂∗ does not satisfy 2nd-Orth, and

hence we get #P-hardness.
For all pairs of indices {i, j}, since ∂̂ij f̂∗ ∈ D⊗, S (∂̂ij f̂∗) is on half-weight. By Lemma 2.10,

we have f̂∗(α) = 0 for all wt(α) 6= 0, n, 2n. Suppose that f̂∗(~02n) = a and f̂∗(~12n) = ā by ars. We

can write f̂∗ in the following form

f̂∗ = a(1, 0)⊗2n + ā(0, 1)⊗2n + f̂∗h .

where f̂∗h is an EO signature of arity 2n > 10.

Clearly, ∂ij f̂∗ = ∂ij f̂∗h for all {i, j}. Then, f̂∗h ∈
∫̂
D⊗ since f̂∗ ∈

∫̂
D⊗. Since f̂∗h is an EO

signature of arity at least 10 and f̂∗h ∈
∫̂
D⊗, by Lemma 2.11, we have f̂∗h ∈ D⊗. Recall that all

signatures in D⊗ are nonzero by definition. Pick some {i, j} such that (6=2)(xi, xj) | f̂∗h . Then,

f̂∗ = a(1, 0)⊗2n + ā(0, 1)⊗2n + b̂∗(xi, xj)⊗ ĝ∗h,

where ĝ∗h ∈ D⊗ is a nonzero EO signature since f̂∗h ∈ D⊗. By Lemma 8.2, f̂∗ does not satisfy

2nd-Orth. Thus, Holant( 6=2| F̂) is #P-hard by Lemma 4.4.
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Remark: Indeed, following from our proof, we can also show that there is no irreducible signature

f̂ of arity 2n > 10 that satisfies both 2nd-Orth and f̂ ∈
∫̂
Ô⊗.

Finally, we give the proof of Theorem 1.2. We restate it here.

Theorem 9.2. Let F be a set of real-valued signatures. If F satisfies the tractability condition (T)
in Theorem 2.22, then Holant(F) is polynomial-time computable; otherwise, Holant(F) is #P-hard.

Proof. By Theorem 2.22, if F satisfies condition (T), then Holant(F) is P-time computable. Sup-
pose that F does not satisfy condition (T). If F contains a nonzero signature of odd arity, then by
Theorem 2.25, Holant(F) is #P-hard. We show Holant(6=2| F̂) ≡T Holant(F) is #P-hard when F
is a set of signatures of even arity. Since F does not satisfy condition (T), F̂ 6⊆ T . Since Ô⊗ ⊆ T ,
there is a signature f̂ ∈ F̂ of arity 2n such that f̂ /∈ Ô⊗. We prove this theorem by induction on
2n.

When 2n 6 8, by Lemmas 5.1, 5.2, 7.21, 8.12, Holant(6=2| F̂) is #P-hard.
Inductively, suppose for some 2k > 8, if 2n 6 2k, then Holant( 6=2| F̂) is #P-hard. We consider

2n = 2k+ 2 > 10. By Lemma 9.1, Holant(6=2| F̂) is #P-hard, or Holant(6=| ĝ, F̂) 6T Holant( 6=| F̂)
for some ĝ /∈ Ô⊗ of arity 6 2k. By the induction hypothesis, Holant( 6=| ĝ, F̂) is #P-hard. Thus,
Holant( 6=2| F̂) is #P-hard.
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HOLOGRAPHIC ALGORITHM WITH MATCHGATES IS
UNIVERSAL FOR PLANAR #CSP OVER BOOLEAN DOMAIN∗

JIN-YI CAI† AND ZHIGUO FU‡

Abstract. We prove a complexity classification theorem that classifies all counting constraint
satisfaction problems (#CSP) over Boolean variables into exactly three classes: (1) polynomial-time
solvable; (2) #P-hard for general instances but solvable in polynomial time over planar structures;
and (3) #P-hard over planar structures. The classification applies to all finite sets of local, not
necessarily symmetric, constraint functions on Boolean variables that take algebraic complex values.
It is shown that Valiant’s holographic algorithm with matchgates is a universal strategy for all
problems in class (2).
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1. Introduction. Half a century ago, the Fisher–Kasteleyn–Temperley (FKT)
algorithm was discovered [41, 33, 35]. The FKT algorithm can count the number
of perfect matchings (dimers) over planar graphs in polynomial time. This was a
milestone in a long and beautiful sequence of work in statistical physics involving
Lenz, Ising, Onsager, Yang, Lee, Fisher, Temperley, Kasteleyn, Baxter, Lieb, and
Wilson [31, 39, 48, 49, 37, 41, 33, 35, 1, 38], with contributions from many others. The
central question is what constitutes an “exactly solved model.” The basic conclusion
from physicists is that for some “systems” their partition functions are exactly solvable
for planar structures but appear intractable for higher dimensions. However, exactly
what does it mean to be intractable? Physicists did not have a formal notion of
intractability.

This notion is supplied by complexity theory. Following the P versus NP theory, in
1979 Leslie Valiant [42] defined the class #P for counting problems. Most interesting
combinatorial counting problems are included in this broad class. Sum-of-product
computations, such as partition functions studied in physics, and counting constraint
satisfaction problems are included in #P (or by a polynomial-time reduction when
the output is not an integer), and #P-hardness is at least as hard as NP-hardness.
In particular, counting perfect matchings in general graphs is #P-complete [43].

But are there other surprises like the FKT algorithm? If so, can they solve any
#P-hard problems? In two seminal papers [44, 46], Valiant introduced matchgates
and holographic algorithms. These holographic algorithms use a quantum-like super-
position to achieve fantastic cancellations, which produce polynomial-time algorithms
to solve a number of concrete problems that would seem to require exponential time
to compute. The first ingredient of holographic algorithms is the FKT algorithm. The
second ingredient is a tensor-theoretic transformation that establishes a quantitative
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equivalence of two seemingly different counting problems. This holographic reduction
in general does not preserve solutions between the two problems in a 1-1 fashion.
These transformations establish a duality similar in spirit to the Fourier transform
and its inverse.

As these novel algorithms solve problems that appear so close to being #P-hard,
they naturally raise the question of whether they can solve #P-hard problems in
polynomial time. In the past 10 to 15 years significant progress has been made
in the understanding of these remarkable algorithms [6, 8, 10, 11, 14, 15, 18, 27,
36, 45, 46, 47]. In an interesting twist, it turns out that the idea of a holographic
reduction is not only a powerful technique to design new and unexpected algorithms
but also an indispensable tool to classify the inherent complexity of counting problems,
in particular to understand the limit and scope of holographic algorithms based on
matchgates [12, 13, 26, 30, 28, 19, 8, 27, 9, 6]. This study has produced a number
of complexity dichotomy theorems. These classify every problem expressible in a
framework as either solvable in P or #P-hard, with nothing in between.

One such framework is called #CSP problems. A #CSP problem on Boolean
variables is specified by a set of local constraint functions F . Each function f ∈ F
has an arity k and maps {0, 1}k → C. (For consideration of models of computation,
we restrict function values to be algebraic numbers. Unweighted #CSP problems are
defined by 0-1 valued constraint functions.) An instance of #CSP(F) on Boolean
variables is specified by a finite set of variables X = {x1, x2, . . . , xn}, each taking
value 0 or 1, and a finite sequence of constraints S from F , each applied to an ordered
sequence of variables from X. Every instance can be described by a bipartite graph
where the left-hand side (LHS) nodes are variables X, the right-hand side (RHS) nodes
are constraints S, and the connections between them specify occurrences of variables
in constraints in the input instance. The output of this instance is

∑
σ

∏
f∈S f |σ, a

sum over all σ : X → {0, 1} of products of all constraints in S evaluated according
to σ. In the unweighted 0-1 case, each such product contributes a 1 if σ satisfies
all constraints in S, and 0 otherwise. In the general case, the output is a weighted
sum of 2n terms. #CSP is a very expressive framework for locally specified counting
problems. A spin system is a special case where there is one single binary constraint
in F , and possibly one or more unary constraints when there are “external fields.”

We prove in this paper that holographic algorithms with matchgates form a uni-
versal strategy for problems expressible in this framework that are #P-hard in general
but solvable in polynomial time on planar graphs. More specifically, we prove the fol-
lowing classification theorem.

Theorem 1.1. For any set of constraint functions F over Boolean variables, each
taking complex values and not necessarily symmetric, #CSP(F) belongs to exactly
one of three categories according to F : (1) It is polynomial-time solvable. (2) It is
polynomial-time solvable over planar graphs but #P-hard over general graphs. (3)
It is #P-hard over planar graphs. Moreover, category (2) consists precisely of those
problems that are holographically reducible to the FKT algorithm.

This theorem finally settles the full reach of the power of Valiant’s holographic
algorithms in the #CSP framework over Boolean variables. Several results preceded
this. The three most direct predecessors are as follows:
(I) In [15] it is shown that Theorem 1.1 holds if every function in F is real-valued

and symmetric.
The value of a symmetric function is invariant when the input values are per-
muted. For practical problems, symmetric constraint functions cover a lot of
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ground. However from the viewpoint of the classification program for count-
ing complexity, to be symmetric is quite a stringent restriction. A constraint
function on n Boolean variables requires 2n output values to specify, while a
symmetric one needs only n+ 1 values.

(II) Guo and Williams [27] generalize [15] to the case where functions in F are
complex-valued, but they must still be symmetric.
Complex numbers form the natural setting to discuss the power of these
problems. Many problems, even though they are real-valued, are shown to
be equivalent under a holographic reduction which goes through C, and their
inherent complexity is only understood by an analysis in C on quantities such
as eigenvalues.

(III) If one ignores planarity, [20] proves a complexity dichotomy.
This result itself generalizes previous results by Creignou and Hermann [21]
for the case when all constraint functions are 0-1 valued, by Dyer, Goldberg,
and Jerrum [22] for nonnegative valued constraint functions, and by Bulatov
et al. [3] for real-valued constraint functions of mixed signs.

The classification in Theorem 1.1, especially the claim that holographic reductions
followed by the FKT are universal for category (2), is by no means self-evident. In
fact, such a sweeping claim should invite skepticism. Nowhere in complexity theory of
decision problems at the P versus NP level are we aware of such a provable universal
algorithmic strategy for a broad class of problems, in the sense that for every problem
in this class it is solvable in polynomial time iff it is solvable by this particular strategy.
Moreover, in the study of holographic algorithms, an even broader class than #CSP of
locally specified sum-of-product computations has been introduced [13], called Holant
problems. It turns out that counting perfect matchings is naturally expressible as a
Holant problem but not as a #CSP problem. Very recently we discovered that for
planar Holant problems a corresponding universality statement as in Theorem 1.1 is
false [6]. For planar Holant problems, a holographic reduction to the FKT is not
universal; there are other #P-hard problems that become tractable, i.e., polynomial
time computable, on planar structures, and they are not holographically reducible to
the FKT.

The class of Holant problems turns out to be more than just a separate framework
providing a cautionary reference to Theorem 1.1. In fact they form the main arena
in which we carry out the proof of Theorem 1.1. A basic idea in this proof is a
holographic transformation between the #CSP setting and the Holant setting via the
Hadamard transformation H2 = 1√

2

[ 1 1
1 −1

]
. This transformation is similar to the

Fourier transform. Certain properties are easier to handle in one setting, while others
are easier after a transform. We will go back and forth.

In subsection 2.10 we give a more detailed account of the strategies used and a
proof outline. Among the techniques used are a derivative operator ∂, a Tableau Cal-
culus, and arity reductions. An overall philosophy is that various tractable constraint
functions of different families cannot mix. Then the truth of Theorem 1.1 itself, pre-
cisely because it is such a complete statement without any exceptions, guides the
choices made in various constructions. As a proof strategy, this is pretty dicey or
at least self-serving. Essentially we want the validity of the very statement we want
to prove to provide its own guarantee of success in every step in its proof. If there
were other tractable problems, e.g., as in the case of planar Holant [6], where different
classes of tractable constraints can indeed mix, then we would be stuck. Luckily,
the vision is correct for planar #CSP. And therefore, the self-serving plan becomes a
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reliable guide to the proof—a bit self-fulfilling.
2. Preliminaries.
2.1. Problems and definitions. In this paper, i = eiπ2 denotes a square root

of −1; thus i2 = −1. The symbol ei denotes the string where the ith bit is 1, and all
other bits are 0. In a string a1 · · · âi · · · an ∈ {0, 1}n−1, âi means that the ith bit ai is
deleted. For α, β ∈ {0, 1}n, α⊕ β denotes the bitwise XOR of α and β.

Even though our focus in this paper is on planar counting #CSP problems, most
of the proof needs to be carried out in the framework of Holant problems [13, 17]. A
Holant problem is specified by a set of local constraint functions, also called signatures.
In this paper, we investigate complex-valued planar #CSP problems over Boolean
variables, and thus all signatures in the corresponding Holant problems are of the
form {0, 1}n → C. For consideration of models of computation, functions output
complex algebraic values. If a function takes n input variables, it is said to be of arity
n; we also use fx1x2···xn to denote f(x1, x2, . . . , xn).

Graphs may have self-loops and parallel edges. A graph without self-loops or
parallel edges is a simple graph. Fix a set of local constraint functions F . A signature
grid Ω = (G, π) consists of a graph G = (V,E), and a mapping π which maps each
vertex v ∈ V to some fv ∈ F of arity deg(v), and maps its incident edges E(v)
bijectively to the input variables of fv. We say that Ω is a planar signature grid if G
is a plane graph, and in addition to the vertex map, π specifies one edge of E(v) to
be the first input variable to fv. All other edges of E(v) are ordered counterclockwise
from the planar embedding starting from that edge and map to the ordered list of
input variables of fv. The Holant problem on instance Ω is to evaluate

Holant(Ω;F) =
∑

σ:E→{0,1}

∏

v∈V
fv(σ |E(v)),

where σ |E(v) denotes the restriction of σ to E(v). We write G in place of Ω when π
is clear from the context.

A signature f of arity n can be specified by listing its values in lexicographical or-
der as in a truth table, which is a vector in C2n , or as a tensor in (C2)⊗n. A symmetric
signature f of arity n takes values depending only on the Hamming weight of the input
and can be expressed as [f0, f1, . . . , fn], where fw is the value of f on inputs of Ham-
ming weight w. An example is the Equality signature (=n) = [1, 0, . . . , 0, 1] of arity
n. Another example is the Exact-One signature [0, 1, . . . , 0, 0] corresponding to the
Perfect Matching constraint. Freedman, Lovász, and Schrijver [25] proved that
counting the number of perfect matchings cannot be expressed as a partition function
of graph homomorphism with positive real vertex weights and real edge weights. This
is a special case of #CSP (the definitions are in subsection 2.3). However, in this
paper, we will solve problems in #CSP on planar instances by holographic reductions
to the problem of counting perfect matchings.

A Holant problem is parametrized by a set of signatures.
Definition 2.1. Given a set of signatures F , we define the counting problem

Holant(F) as follows:
Input: A signature grid Ω = (G, π);
Output: Holant(Ω;F).
The problem Pl-Holant(F) is defined similarly using a planar signature grid.
A signature f of arity n is degenerate if there exist unary signatures uj ∈ C2

(1 ≤ j ≤ n) such that f = u1⊗· · ·⊗un. Using a degenerate signature is equivalent to
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replacing it by its n unary signatures, each on its corresponding edge. A symmetric
degenerate signature has the form u⊗n. Replacing a signature f ∈ F by a constant
multiple cf , where c 6= 0, does not change the complexity of Holant(F). It introduces
a factor cm to Holant(Ω;F), where f occurs m times in Ω.

We allow F to be an infinite set. For Holant(F) or Pl-Holant(F) to be tractable,
the problem must be computable in polynomial time even when the description of the
signatures in the input Ω is included in the input size. On the other hand, we say
Holant(F) or Pl-Holant(F) is #P-hard if there exists a finite subset of F for which
the problem is #P-hard. In this paper we focus on planar problems, and so we say a
signature set F is tractable (resp., #P-hard) if the corresponding counting problem
Pl-Holant(F) is tractable (resp., #P-hard). For a signature f , we say f is tractable
(resp., #P-hard) if {f} is. We follow the usual conventions about polynomial-time
Turing reduction ≤T and polynomial-time Turing equivalence ≡T .

2.2. Holographic reduction. To introduce the idea of holographic reductions,
it is convenient to consider bipartite graphs. For a general graph, we can always
transform it into a bipartite graph while preserving the Holant value, as follows. For
each edge in the graph, we replace it by a path of length two. (This operation is
called the 2-stretch of the graph and yields the edge-vertex incidence graph.) Each
new vertex is assigned the binary Equality signature (=2) = [1, 0, 1].

We use Holant (F | G) to denote the Holant problem over signature grids with a
bipartite graph H = (U, V,E), where each vertex in U or V is assigned a signature
in F or G, respectively. Signatures in F are considered as row vectors (or covariant
tensors); signatures in G are considered as column vectors (or contravariant tensors).
We denote by Holant(Ω;F | G) the value of the Holant problem Holant (F | G) on
the signature grid Ω. Similarly, Pl-Holant (F | G) denotes the Holant problem over
signature grids with a planar bipartite graph, and Pl-Holant(Ω;F | G) its value on
the signature grid Ω.

For an invertible 2× 2 matrix T ∈ GL2(C) and a signature f of arity n, written
as a column vector (contravariant tensor) f ∈ C2n , we denote by T−1f = (T−1)⊗nf
the transformed signature. For a signature set F , define T−1F = {T−1f | f ∈ F}
as the set of transformed signatures. For signatures written as row vectors (covariant
tensors) we define FT similarly. Whenever we write T−1f or T−1F , we view the
signatures as column vectors; similarly, whenever we write fT or FT , we view them
as row vectors. In the special case of the Hadamard matrix H2 = 1√

2

[ 1 1
1 −1

]
, we also

define F̂ = H2F . Note that H2 = H−1
2 = HT

2 is orthogonal. Since constant factors
are immaterial, for convenience we sometimes drop the factor 1√

2 when using H2.
Let T ∈ GL2(C). The holographic transformation defined by T is the following

operation: given a signature grid Ω = (H,π) of Holant (F | G), for the same bipartite
graph H, we get a new grid Ω′ = (H,π′) of Holant

(
FT | T−1G

)
by replacing each

signature in F or G with the corresponding signature in FT or T−1G.
Theorem 2.2 (Valiant’s Holant theorem [46]). For any T ∈ GL2(C),

Holant(Ω;F | G) = Holant(Ω′;FT | T−1G).

Therefore, a holographic transformation does not change the complexity of the
Holant problem in the bipartite setting.

2.3. Counting constraint satisfaction problems and Holant(ÊQ, F̂). Count-
ing constraint satisfaction problems (#CSP) can be defined as a special case of Holant
problems. An instance of #CSP(F) is presented as a bipartite graph. There is
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one node for each variable and for each occurrence of constraint functions, respec-
tively. Connect a constraint node to a variable node if the variable appears in that
occurrence of constraint, with a labeling on the edges for the order of these vari-
ables. This bipartite graph is also known as the constraint graph. If we label each
variable node with an Equality function and consider every edge as a variable,
then the #CSP problem is just the Holant problem on this bipartite graph. Thus
#CSP(F) ≡T Holant (EQ | F), where EQ = {=1,=2,=3, . . . } is the set of Equality
signatures of all arities. By restricting to planar constraint graphs, we have the planar
#CSP framework, which we denote by Pl-#CSP. The construction above also shows
that Pl-#CSP(F) ≡T Pl-Holant (EQ | F).

For any positive integer d, the problem #CSPd(F) is the same as #CSP(F)
except that every variable appears a multiple of d times. Thus,

(2.1) Pl-#CSPd(F) ≡T Pl-Holant (EQd | F) ,

where EQd = {=d,=2d,=3d, . . . } is the set of Equality signatures of arities that are
multiples of d. For d = 1, we just have #CSP problems. For d = 2, these are #CSP
problems where every variable appears an even number of times. If d ∈ {1, 2}, then
we further have

(2.2) Pl-#CSPd(F) ≡T Pl-Holant (EQd | F) ≡T Pl-Holant(EQd,F).

The first equivalence is by (2.1). The reduction from left to right in the second equiv-
alence is trivial. For the other direction of the second equivalence, we take a signature
grid for Pl-Holant(EQd,F) and create a bipartite signature grid for Pl-Holant (EQd | F)
such that both signature grids have the same Holant value up to an easily computable
factor. If two signatures in F are assigned to adjacent vertices, then we subdivide
all edges between them and assign the binary Equality signature (=2) ∈ EQd to
all new vertices. Suppose Equality signatures (=n), (=m) ∈ EQd are assigned to
adjacent vertices connected by k edges. If n = m = k, then we simply remove these
two vertices. The Holant of the resulting signature grid differs from the original by
a factor of 2. Otherwise, we contract all k edges, merge the two vertices, and assign
(=n+m−2k) ∈ EQd to the new vertex.

By the holographic transformation defined by the matrix H2 = 1√
2

[ 1 1
1 −1

]
(or

equivalently without the nonzero factor 1√
2 since this does not affect the complexity),

we have

(2.3) Pl-#CSP(F) ≡T Pl-Holant(ÊQ, F̂),

where ÊQ = {[1, 0], [1, 0, 1], [1, 0, 1, 0], . . .} (where we ignore nonzero factors) and F̂ =
H2F . Note that (2.3) holds for both the bipartite expression Pl-Holant(ÊQ | F̂) as
well as the nonbipartite expression Pl-Holant(ÊQ, F̂) on the RHS. To see that, the
bipartite expression follows from Theorem 2.2 and the fact that H−1

2 = H2. For the
nonbipartite expression, by (2.2) we have

Pl-#CSP(F) ≡T Pl-Holant(EQ,F) ≡T Pl-Holant (=2| EQ,F) ≡T Pl-Holant
(

=2| ÊQ, F̂
)
,

where we used the fact that H2 is orthogonal, and hence (=2)H⊗2
2 = (=2). This

equivalence (2.3) plays a central role in our proof.
The next lemma shows that if we have (=4) in Pl-Holant(ÊQ, F̂), then we can

construct (=2k) for any k ∈ Z+.

D
ow

nl
oa

de
d 

06
/0

3/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOC17-56 JIN-YI CAI AND ZHIGUO FU

Lemma 2.3.

Pl-Holant(ÊQ, EQ2, F̂) ≡T Pl-Holant(ÊQ, (=4), F̂).

Proof. One direction is trivial since (=4) ∈ EQ2. For the other direction we use
induction. For k = 1, we have (=2) ∈ ÊQ. For k = 2, we have (=4) given. Assume
that we have (=2(k−1)). Then, connecting (=2(k−1)) and (=4) by one edge, we get
(=2k).

By (2.2), we have

Pl-#CSP2(ÊQ, F̂) ≡T Pl-Holant(ÊQ, EQ2, F̂).

Thus Lemma 2.3 implies that

Pl-#CSP2(ÊQ, F̂) ≤T Pl-Holant(ÊQ, (=4), F̂).

Definition 2.4. The crossover function X is a signature of arity 4 which satisfies
f0000 = f1111 = f0101 = f1010 = 1 and fα = 0 for all other α ∈ {0, 1}4.

The crossover function X on (x1, x2, x3, x4) is the tensor product of two bi-
nary Equality functions (=2) on (x1, x3) and on (x2, x4). If we can obtain X (by
some construction or reduction) in Pl-#CSP(F), then we can reduce #CSP(F) to
Pl-#CSP(F). The same is true for Holant(ÊQ, F̂) and Pl-Holant(ÊQ, F̂). Moreover,
note that H⊗4

2 (X) = X, because an orthogonal transformation does not change a bi-
nary Equality function (=2). So we can obtain X in Pl-#CSP(F) iff we can obtain
X in Pl-Holant(ÊQ, F̂).

2.4. Realization. One basic notion used throughout the paper is realization.
We say a signature f is realizable or constructible from a signature set F if (informally
speaking) there is a gadget with some dangling edges such that each vertex is assigned
a signature from F , and the resulting graph, when viewed as a black-box signature
with inputs on the dangling edges, is exactly f . If f is realizable from a set F , then
we can freely add f into F while preserving the complexity.

Formally, this notion is defined by an F-gate. An F-gate is similar to a signature
grid (G, π) for Holant(F) except that G = (V,E,D) is a graph with some dangling
edges D. The dangling edges define external variables for the F-gate. (See Figure 1
for an example.) We denote the ordinary edges in E by 1, 2, . . . ,m and the dangling
edges in D by m+ 1, . . . ,m+ n. Then we can define a function f for this F-gate as

f(y1, . . . , yn) =
∑

x1,...,xm∈{0,1}
H(x1, . . . , xm, y1, . . . , yn),

where (y1, . . . , yn) ∈ {0, 1}n is an assignment on the dangling edges and H(x1, . . . , xm,
y1, . . . , yn) is the value of the signature grid on an assignment of all edges in G, which
is the product of evaluations at all vertices in V . We also call this function f the
signature of the F-gate.

An F-gate is called planar if the underlying graph G is a planar graph, and
the dangling edges, ordered counterclockwise corresponding to the order of the input
variables, are in the outer face in a planar embedding. A planar F-gate can be used
in a planar signature grid as if it is just a single vertex with the particular signature.

Proposition 2.5. If F is a signature set and g is the signature of some planar
F-gate, then

Pl-Holant(F , g) ≤T Pl-Holant(F).
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Fig. 1. An F-gate with five dangling edges.

Proof. The reduction is simple. Given any signature grid Ω as an instance of
Pl-Holant(F , g), by replacing every occurrence of g by the F-gate, we get an instance
Ω′ of Pl-Holant(F). Since the F-gate for g has constant size, the size of Ω′ is at most
linear in the size of Ω. Since the signature of the F-gate is g, the Holant values for
these two signature grids are the same.

When a gadget has an asymmetric signature, we place a diamond on the edge
corresponding to the first input. The remaining inputs are ordered counterclockwise
around the vertex.

Definition 2.6 (derivative). Let f and g be two signatures of arities n and
m, respectively, and n > m. We connect all m input edges (1 ≤ j ≤ m) of g to
m consecutive edges of f in a clockwise order, indexed i − 1, . . . , i − m (mod n).
The derivative signature ∂

{i−1,...,i−m}
g (f) is the signature of this planar {f, g}-gate

of arity n − m, whose variables are the unmatched variables of f in the original
counterclockwise order starting with the first unmatched variable. (The clockwise order
of edges of f to be matched with the counterclockwise order of edges of g ensures
planarity.)

If f is symmetric, we will simply write ∂g(f) since the derivative signature is
independent of the choice of i in this case. Moreover, if kn < m and we connect k
copies of g to f , which is the same as forming ∂g(f) sequentially k times, the resulting
repeated derivative signature is denoted by ∂kg (f).

For a unary signature u, we can connect a copy of u to each edge of f indexed by
a subset S ⊂ [n], and we also denote the resulting signature by ∂Su (f).

For convenience, we use fxi=0 to denote ∂{i}[1,0]f and fxi=1 to denote ∂{i}[0,1]f .

For a signature f of arity n, we can partition its variables {x1, x2, . . . , xn} into
{xi1 , xi2 , . . . , xis} and {xis+1 , xis+2 , . . . , xin} and then list the values of f as a 2s×2n−s
matrix M(f) with the entry f(x1, x2, . . . , xn) indexed by row index xi1xi2 · · ·xis and
column index xis+1xis+2 · · ·xin . The rows and columns are ordered lexicographically.
We also denote the matrix by Mxi1 ···xis ,xis+1 ···xin (f) when we need to specify the
names of the variables. We call this matrix a signature matrix of f . For example, we
use the signature matrix

Mx1,x2x3(f) =
[
f000 f001 f010 f011
f100 f101 f110 f111

]
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to denote a ternary signature, and we use the signature matrix

Mx1x2,x4x3(f) =




f0000 f0010 f0001 f0011
f0100 f0110 f0101 f0111
f1000 f1010 f1001 f1011
f1100 f1110 f1101 f1111




to denote a signature of arity 4. Note that in Mx1x2,x4x3(f), the rows are indexed by
x1x2, and the columns are indexed by x4x3 (not x3x4), both in lexicographic order.
This reversal of column index ensures that the signature matrix of linking two arity
4 signatures in a planar setting is simply the matrix product of the two signature
matrices.

For example, the signature matrix of the crossover function X is

Mx1x2,x4x3(X) =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ,

where the nonzero values are f0000 = f0101 = f1010 = f1111 = 1, with the four variables
ordered in counterclockwise cyclic order.

When we rotate a signature, the transformation of its signature matrix is depicted
in Figure 2.

(a) A counterclockwise rotation (b) Movement of signature matrix entries

Fig. 2. The movement of the entries in the signature matrix of a signature of arity 4 under a
counterclockwise rotation of the input edges. Entries of Hamming weight 1 are in the dotted cycle,
entries of Hamming weight 2 are in the two solid cycles (one has length 4 and the other one is a
swap), and entries of Hamming weight 3 are in the dashed cycle.

2.5. Tractable signature sets. We define some signatures that are known to be
tractable [8, 27]. These form three families: affine signatures, product-type signatures,
and matchgate signatures.

Affine signatures.
Definition 2.7. For a signature f of arity n, the support of f is

supp(f) = {(x1, x2, . . . , xn) ∈ Zn2 | f(x1, x2, . . . , xn) 6= 0}.

Definition 2.8. Let f be a signature of arity n. We say f has affine sup-
port of dimension k if supp(f) is an affine subspace of dimension k over Z2, i.e.,
there is a matrix A over Z2 such that f(x1, x2, . . . , xn) 6= 0 iff AX = 0, where
X = (x1, x2, . . . , xn, 1) and the affine space {(x1, x2, . . . , xn) ∈ Zn2 | AX = 0} has
dimension k.
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For a signature of arity n with affine support of dimension k, let X = {xi1 , xi2 , . . . ,
xik} be a set of free variables where i1 < i2 < · · · < ik. Then on supp(f),
f(x1, x2, . . . , xn) is uniquely determined by the input on X.

Definition 2.9. If f has affine support of dimension k, and X = {xi1 , xi2 , . . . , xik}
is a set of k free variables, then we define the compressed signature fX of f for X
to be a signature of arity k, such that fX(xi1 , . . . , xik) = f(x1, x2, . . . , xn), where
(x1, x2, . . . , xn) ∈ supp(f). When it is clear from the context, we omit X and use f
to denote fX .

Definition 2.10. A signature f(x1, . . . , xn) of arity n is affine if the following
hold:

• it has affine support;
• if (x1, x2, . . . , xn) ∈ supp(f), then f(x1, x2, . . . , xn) = λiQ(X), where X =

(x1, x2, . . . , xn, 1), λ ∈ C, and Q(x1, x2, . . . , xn) ∈ Z4[x1, x2, . . . , xn] is a qua-
dratic (total degree at most 2) multilinear polynomial with the additional re-
quirement that the coefficients of all cross terms are even, i.e., Q has the
form

Q(x1, x2, . . . , xn) = a0 +
n∑

k=1
akxk +

∑

1≤i<j≤n
2bijxixj .

We use A to denote the set of all affine signatures.
Note that to say a signature is affine requires more than it having an affine

support. Historically, Dyer, Goldberg, and Jerrum [22] called a signature pure affine
when it is a constant multiple of the characteristic function of an affine linear subspace.
When the functions take nonnegative values, this notion coincides with the definition
of affine signatures given here. In the general setting, the requirement that there be
a quadratic polynomial with even coefficients for all cross terms is more subtle; but
it is necessary to make Theorems 2.33 and 2.34 work.

In [20], there is an alternative definition for affine signatures.
Definition 2.11. A signature f(x1, x2, . . . , xn) of arity n is affine if it has the

form

λ · χAX=0 · i
∑k

j=1
〈vj ,X〉,

where λ ∈ C, X = (x1, x2, . . . , xn, 1), A is a matrix over Z2, vj is a vector over Z2,
and χ is a 0-1 indicator signature such that χAX=0 is 1 iff AX = 0. Note that the
dot product 〈vj , X〉 is calculated over Z2 with a 0-1 output in Z, while the summation∑k
j=1 on the exponent of i =

√
−1 is evaluated as a sum mod 4 of 0-1 terms.

Definitions 2.10 and 2.11 are equivalent. To see this we observe that each 〈vj , X〉
as an integer sum (mod 2) can be replaced by (〈vj , X〉)2 as an integer sum (mod 4)
since N ≡ 0, 1 (mod 2) iff N2 ≡ 0, 1 (mod 4), respectively, for any integer N . After
this, all cross terms have even coefficients and all square terms x2

s can be replaced
by xs since xs = 0, 1. Conversely, we can express Q (mod 4) as a sum of squares of
affine forms of X, using the condition that all cross terms have even coefficients.

The following lemma shows that for a {±1,±i}-valued signature of arity k, there
exists a unique multilinear polynomial P (x1, . . . , xk) mod 4 such that f(x1, . . . xk) =
iP (x1,...,xk). Thus if there exists a multilinear polynomial P (x1, . . . , xk) such that
f(x1, . . . xk) = iP (x1,...,xk), and P has total degree greater than 2 or has a cross term
with an odd coefficient, then f 6∈ A .
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Lemma 2.12. Let f be a signature of arity k taking values in {±1,±i}. Then
there exists a unique multilinear polynomial P (x1, . . . , xk) ∈ Z4[x1, . . . , xk] such that
f(x1, . . . xk) = iP (x1,...,xk).

Similarly, if f is a signature of arity k taking values in {±1}, then there exists a
unique multilinear polynomial P (x1, . . . , xk) ∈ Z2[x1, . . . , xk] such that f(x1, . . . xk) =
(−1)P (x1,...,xk).

Proof. We prove the first statement. The proof for the second is similar, and so
we omit it here.

For any input α = a1 . . . ak ∈ {0, 1}k, there exists rα ∈ {0, 1, 2, 3} such that
fα = irα since f takes values in {±1,±i}. Let P (x1, . . . , xk) =

∑
α∈{0,1}k rα

∏k
i=1 x̃i ∈

Z4[x1, . . . , xk], where α = a1 . . . ak and x̃i = xi if ai = 1 and 1 − xi if ai = 0. Then
f(x1, . . . xk) = iP (x1,...,xk).

Now we prove that P (x1, . . . , xk) is unique. It is equivalent to prove that if f is
the constant 1 function, then P (x1, . . . , xk) = 0 in Z4[x1, . . . , xk]. For a contradiction,
suppose r

∏
i∈S xi is a nonzero term in P (x1, . . . , xk) with minimum |S|. Set xi = 1

for all i ∈ S and all other xi = 0. Then P evaluates to r 6= 0 in Z4, and f evaluates
to ir 6= 1. This is a contradiction.

By Lemma 2.12, we directly have the following corollary.
Corollary 2.13. Let f ∈ A be a signature of arity n with affine support of

dimension k. Let X = {xi1 , . . . , xik} be a set of free variables. Then there exists a
unique Q(X) ∈ Z4[X] such that

f(x1, x2, . . . , xn) = iQ(X)

for (x1, x2, . . . , xn) ∈ supp(f), where Q(X) is a quadratic multilinear polynomial and
the coefficients of cross terms are even.

Corollary 2.14. Let f be a signature of arity n having affine support of dimen-
sion k. Suppose f takes values in {0,±1,±i}, and X = {xi1 , . . . , xik} is a set of free
variables. Then f ∈ A iff f ∈ A , where f is the compressed signature of f for X.

Proof. Note that if f(xi1 , . . . , xik) = iQ(xi1 ,...,xik ), then f(x1, . . . , xn) = iQ(xi1 ,...,xik )

for (x1, . . . , xn) ∈ supp(f). So f ∈ A iff f ∈ A .
The next two lemmas allow us to easily determine if a binary or ternary signature

is affine.
Lemma 2.15. Let f be a binary signature and Mx1,x2(f) =

[
f00 f01
f10 f11

]
=
[ 1 b
c d

]
=

[ 1 ir

is d

]
, where r, s ∈ {0, 1, 2, 3}. Then f ∈ A iff d = ±ir+s. In particular, if b, c, d ∈

{1,−1}, then f ∈ A .
Proof. Let Q(x1, x2) = sx1 + rx2 if d = ir+s, and sx1 + rx2 + 2x1x2 if d =

−ir+s. Then f(x1, x2) = iQ(x1,x2). Thus f ∈ A by Definition 2.10. Conversely, if
f(x1, x2) = iQ(x1,x2), for some Q(x1, x2) = a0 + a1x1 + a2x2 + 2b12x1x2 ∈ Z4[x1, x2],
then we have a0 = 0 by f00 = 1, a1 = s by f10 = is, and a2 = r by f01 = ir. Thus
f11 = ir+s+2b12 = ±ir+s.

Lemma 2.16. Let f be a ternary signature and

Mx1,x2x3(f) =
[
f000 f001 f010 f011
f100 f101 f110 f111

]
=
[

1 ir is ε1i
r+s

it ε2i
r+t ε3i

s+t ε4i
r+s+t

]
,

where r, s, t ∈ {0, 1, 2, 3} and εi ∈ {1,−1} for 1 ≤ i ≤ 4. Then f ∈ A iff ε1ε2ε3ε4 = 1.

D
ow

nl
oa

de
d 

06
/0

3/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HOLOGRAPHIC ALGORITHM WITH MATCHGATES STOC17-61

Proof. We can write εi = (−1)ai for ai ∈ {0, 1} and let

Q = tx1+sx2+rx3+2a1x2x3+2a2x3x1+2a3x1x2+2(a1+a2+a3+a4)x1x2x3 ∈ Z4[x1, x2, x3].

Then f(x1, x2, x3) = iQ(x1,x2,x3).
By Lemma 2.12, f ∈ A iff Q is a multilinear quadratic polynomial and the

coefficients of the cross terms are even. Thus f ∈ A iff 2(a1 + a2 + a3 + a4) ≡ 0
(mod 4). This is equivalent to a1 + a2 + a3 + a4 ≡ 0 (mod 2), i.e., ε1ε2ε3ε4 = 1.

In addition, we often use the following facts, which can be derived from Defini-
tion 2.10 directly.

Proposition 2.17. The following hold:
• For any signature f ∈ A , up to a nonzero factor, all nonzero entries are

powers of i. In particular, they have the same norm.
• If a signature has only one nonzero entry, then it is affine. In particular,

[1, 0], [0, 1] ∈ A .
• If a signature f has only two nonzero entries fα and fβ, then the support of
f is affine. Moreover, in this case f ∈ A iff f4

α = f4
β .

• [1, a], [1, 0, a] are affine iff a4 = 0 or 1.

The following lemma is useful in proving arity reductions for nonaffine signatures.

Lemma 2.18. Let f be a signature of arity n with affine support of dimension
k ≥ 4. If fxi=0 ∈ A and fxi=1 ∈ A for all 1 ≤ i ≤ n, then f ∈ A .

Proof. Let X = {xi1 , xi2 , . . . , xik} be a set of free variables of f , and let f be the
compressed signature of f for X. Since both fxi1 =0 and fxi1 =1 are affine, fxi1 =0 and
fxi1 =1 are affine by Corollary 2.14. By Corollary 2.13 there exist Q0(xi2 , . . . , xik) and
Q1(xi2 , . . . , xik) such that f(0, xi2 , . . . , xik) = iQ0(xi2 ,...,xik ) and f(1, xi2 , . . . , xik) =
iQ1(xi2 ,...,xik ), whereQ0 andQ1 are quadratic multilinear polynomials in Z4[xi2 , . . . , xik ],
and the coefficients of all cross terms are even.

Let Q(xi1 , xi2 , . . . , xik) = (1 − x1)Q0 + x1Q1; then f(xi1 , xi2 , . . . , xik) =
iQ(xi1 ,xi2 ,...,xik ). Note that the total degree of Q is at most 3. If Q has total de-
gree at most 2 and the coefficients of all cross terms are even, then f is affine. Thus
f is affine by Corollary 2.14, and we are done.

Otherwise, either there is a cross term xisxit (1 ≤ s < t ≤ k) with odd coefficient
ast or there is a term x1xisxit (2 ≤ s < t ≤ k) with coefficient a1st 6= 0 in Q. Since k ≥
4, there exists some r ∈ [k]\{1, s, t}. ThenQxir=0 = Q(xi1 , . . . , xir−1 , 0, xir+1 , . . . , xik)
has a cross term xisxit with odd coefficient ast or a term x1xisxit with coefficient
a1st 6= 0. Note that fxir=0 = iQ(xi1 ,...,xir−1 ,0,xir+1 ,...,xik ). Thus fxir=0 is not affine by
Lemma 2.12. So fxir=0 is not affine. This is a contradiction.

Let

F1 =
{
λ
(
[1, 0]⊗k + ir[0, 1]⊗k

)
|λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
,

F2 =
{
λ
(
[1, 1]⊗k + ir[1,−1]⊗k

)
|λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
,

F3 =
{
λ
(
[1, i]⊗k + ir[1,−i]⊗k

)
|λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
.

It is known that the set of nondegenerate symmetric signatures in A consists of
precisely the nonzero signatures in F1

⋃
F2
⋃

F3 with arity at least 2 (λ 6= 0) [20, 4].
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Product-type signatures.
Definition 2.19. A signature on a set of variables X is of product type if it can

be expressed as a product of unary functions, binary equality functions ([1, 0, 1]), and
binary disequality functions ([0, 1, 0]), each on one or two variables of X. We use P
to denote the set of product-type functions.

A symmetric signature of the form [a, 0, . . . , 0, b] is called a Generalized Equal-
ity.

Proposition 2.20 (cf. Lemma A.1 in the full version of [30]). If f is a symmetric
signature in P, then f is either degenerate, binary Disequality (6=2) = [0, 1, 0] up
to a constant scalar, or [a, 0, . . . , 0, b] for some a, b ∈ C.

Corollary 2.21. [1, 0, 1, 0] /∈P.
We will use Corollary 2.21 in the proof of Theorem 4.9.
Definition 2.19 is succinct and is from [20]. But to deal with asymmetric signa-

tures, an alternative definition of P given in [16] is useful. This is given below in
Definition 2.22. To state it we need some notation.

Suppose f is a signature of arity n and I = {I1, I2, . . . , Ik} is a partition of [n]. If
f(X) =

∏k
j=1 fj(X|Ij ) for some signatures f1, f2, . . . , fk, where X = {x1, x2, . . . , xn}

and X|Ij = {xs|s ∈ Ij} (we also denote it by Xj), then we say f can be decom-
posed as a tensor product of f1, f2, . . . , fk. We denote such a function by f =⊗
I(f1, f2, . . . , fk). If each fj is the signature of some F-gate, then

⊗
I(f1, f2, . . . , fk)

is the signature of the F-gate which is the disjoint union of the F-gates for fj , with
variables renamed and ordered according to I. (This is not necessarily a planar F-gate
even when the F-gates for all fj are planar, unless the sets I1, I2, . . . , Ik partition [n]
in order.) When the indexing is clear, we also use the notation f1⊗f2⊗· · ·⊗fk. Note
that this tensor product notation ⊗ is consistent with notation for tensor product of
matrices. We say a signature set F is closed under tensor product if for any partition
I = {I1, I2} and any f, g ∈ F on X1 and X2, respectively, we have

⊗
I(f, g) ∈ F .

The tensor closure 〈F〉 of F is the minimum set containing F , closed under tensor
product.

Definition 2.22. Let E be the set of all signatures f such that supp(f) is con-
tained in two antipodal points; i.e., if f has arity n, then f is zero except on (pos-
sibly) two complementary inputs α = (a1, a2, . . . , an) and α = (a1, a2, . . . , an) =
(1− a1, 1− a2, . . . , 1− an). Then P = 〈E〉.

We claim that Definition 2.19 is equivalent to Definition 2.22. If f ∈ E , then its
support supp(f) ⊆ {α, ᾱ} for some α = a1a2 · · · an ∈ {0, 1}n. We may assume that
a1 = 0. Then

f = [fα, fᾱ](x1)
n−1∏

i=1
fi(xi, xi+1),

where [fα, fᾱ](x1) is a unary function on x1, and for all 1 ≤ i ≤ n− 1, fi = [1, 0, 1] if
ai = ai+1 and fi = [0, 1, 0] if ai 6= ai+1. This implies that f is a product of the unary
function [fα, fᾱ], and binary functions [1, 0, 1] and [0, 1, 0]. Thus all functions in 〈E〉
are products of unary functions, and binary functions [1, 0, 1] and [0, 1, 0]. Conversely,
if f has arity n and is a product of unary functions, and binary functions [1, 0, 1] and
[0, 1, 0], then there exist S ⊆ {(i, j) | i, j ∈ [n], and i < j} and S′ ⊆ [n] such that
f =

∏
(i,j)∈S hij(xi, xj)

∏
`∈S′ u`(x`), where hij = [1, 0, 1] or [0, 1, 0], and u` are unary

functions. Let I = {I1, I2, . . . , Ik} be the partition of [n] such that for any i, j ∈ [n],
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i, j are in the same Ic iff i and j belong to the same connected component of the
graph ([n], S). Let

Hc =
∏

i,j∈Ic,(i,j)∈S
hij(xi, xj)

∏

`∈Ic∩S′
u`(x`)

for 1 ≤ c ≤ k. Then Hc ∈ E and

f =
⊗

I
(H1, H2, . . . ,Hk).

This implies that f ∈ 〈E〉. This concludes the justification that Definition 2.19 is
equivalent to Definition 2.22.

Given a function f(X), if it is the product of two functions g and h on disjoint
proper subsets of variables of X, then f = g ⊗ h. Clearly every function f(X) has
a decomposition as a tensor product f1 ⊗ f2 ⊗ · · · ⊗ fk where each fi is not further
expressible as a tensor product of functions on disjoint proper subsets. If f is not
identically 0, then such a primitive decomposition is unique up to a nonzero constant
factor. To see this, suppose f = f1 ⊗ f2 ⊗ · · · ⊗ fk = g1 ⊗ g2 ⊗ · · · ⊗ g` are two such
decompositions. Since f is not identically 0, all fi are not identically 0. For any i,
there is a partial assignment for f to all variables in X except those in fi, such that
the resulting function is a nonzero constant multiple of fi. This gives an expression
cifi(Xi) = g′1 ⊗ g′2 ⊗ · · · ⊗ g′` where ci 6= 0 and each g′j is on a disjoint subset Xij

of Xi. By the assumption that fi is not further expressible as a tensor product of
functions on disjoint proper subsets, the only possibility is that all but one Xij = ∅.
It follows that there is one (unique) j such that Xi is a subset of the variables of
gj . By symmetry, for every j, the set of variable of gj is a subset of the variables of
some fi′ . As the Xi are disjoint, i′ = i. Hence there is a 1-1 correspondence of these
subsets, and so k = `, and the corresponding subsets are equal. After renaming these
functions and subsets, there are nonzero constants c′i such that fi = c′igi (1 ≤ i ≤ k).

We will consider the primitive decomposition of signatures in P. We claim that
for any function f ∈ E of arity at least 2, f is nondegenerate iff | supp(f)| = 2.

To justify this claim, one direction is trivial: if | supp(f)| = 0 or 1, then f is
identically 0 or is a product of unary functions and thus degenerate. Conversely,
suppose f is degenerate, and f = u1(x1) ⊗ · · · ⊗ un(xn). If any ui is identically 0,
then | supp(f)| = 0. Otherwise, if every ui is a nonzero multiple of [1, 0] or [0, 1], then
| supp(f)| = 1. Otherwise, some ui has the form [a, b] with ab 6= 0. As n ≥ 2 there
is another uj = [c, d], where c or d 6= 0. Without loss of generality, c 6= 0. Then
there are two points a1a2 . . . an and a′1a

′
2 . . . a

′
n ∈ supp(f), where ai = 0, aj = 0 and

a′i = 1, a′j = 0. This contradicts f ∈ E . This concludes the justification.
By Definitions 2.19 and 2.22, for any f ∈ P not identically 0, its primitive

decomposition exists and is unique up to a constant factor and is a product of unary
functions and nondegenerate functions in E with | supp(f)| = 2.

Definition 2.23. Let f ∈ P, where f is not identically zero. There exist a
partition I = {I1, I2, . . . , Ik} of [n] and signatures f1, f2, . . . , fk ∈ E, where each fi is
a unary signature or fi is nondegenerate, such that

(2.4) f(X) =
k∏

j=1
fj(X|Ij ).

We call (2.4) a primitive decomposition of f .
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To define a compatibility relation on functions in P, we need to first define a
notion of compatible partitions of [n].

Definition 2.24. Two partitions I = {I1, I2, . . . , Ik} and J = {J1, J2, . . . , J`}
of [n] are compatible if for any i ∈ [k], j ∈ [`], Ii and Jj satisfy one of the following
conditions:

• Ii = Jj;
• Ii

⋂
Jj = ∅;

• |Ii| = 1 and Ii ⊆ Jj;
• |Jj | = 1 and Jj ⊆ Ii.

An equivalent condition is that if Ii
⋂
Jj 6= ∅, and |Ii| ≥ 2 and |Jj | ≥ 2, then

Ii = Jj . Yet another equivalent condition is that for any i ∈ [k], j ∈ [`],

Ii
⋂

Jj 6= ∅ =⇒ Ii = Jj or
[
|Ii| = 1 (and thus Ii ⊆ Jj)

]
or
[
|Jj | = 1 (and thus Jj ⊆ Ii)

]
.

Thus, two partitions I and J are not compatible iff there exist Ii and Jj such
that

(2.5) Ii ∩ Jj 6= ∅ and Ii 6= Jj and |Ii| ≥ 2 and |Jj | ≥ 2.

Definition 2.25. For f, g ∈P not identically zero, we say f, g have compatible
type if in the primitive decompositions of f and g,

f(X) =
k∏

i=1
fi(X|Ii), g(X) =

∏̀

j=1
gj(X|Jj ),

• the partitions I = {I1, I2, . . . , Ik} and J = {J1, J2, . . . , J`} are compatible;
• for Ii with |Ii| ≥ 2 and so supp(fi) = {α, ᾱ}, either there exists Jj such that
Ii = Jj and fi, gj have the same support, or there exist {Jj1 , Jj2 , . . . , Jj|Ii|}
such that Ii =

⋃|Ii|
t=1 Jjt , |Jjt | = 1 for 1 ≤ t ≤ |Ii|, and the support of

∏|Ii|
t=1 gjt

is the singleton set {α} or {ᾱ};
• for Jj with |Jj | ≥ 2 and so supp(gj) = {β, β̄}, either there exists Ii such that
Jj = Ii and fi, gj have the same support, or there exist {Ii1 , Ii2 , . . . , Ii|Jj |}
such that Jj =

⋃|Jj |
s=1 Iis , |Iis | = 1 for 1 ≤ s ≤ |Jj |, and the support of∏|Jj |

s=1 fis is the singleton set {β} or {β̄}.
As primitive decompositions are unique up to constant factors, Definition 2.25 is

well defined; it does not depend on these constant factors.
Lemma 2.26. Suppose f, g, h ∈ P have arity n and any two of them have com-

patible type. Then there exist a partition L = {L1, L2, . . . , L`} of [n] and signatures
f1, f2, . . . , f`, g1, g2, . . . , g`, and h1, h2, . . . , h`, where fi, gi, hi ∈ E for 1 ≤ i ≤ ` and
supp(fi), supp(gi), supp(hi) ⊆ {αi, ᾱi} for some αi ∈ {0, 1}|Li|, such that f(X) =∏`
i=1 fi(X|Li), g(X) =

∏`
i=1 gi(X|Li), and h(X) =

∏`
i=1 hi(X|Li).

Remark. The binary relation that two signatures of arity n in P have compatible
type is not transitive. For example, if f = f1(x1)f2(x2, x3), g = g1(x1)g2(x2)g3(x3),
h = h1(x1, x2)h2(x3), where f1 = [1, 0], f2 = [1, 0, 1], g1 = g2 = g3 = [1, 0], h1 =
[1, 0, 1], h2 = [1, 0], then the two pairs (f, g) and (g, h) are both compatible. But the
pair (f, h) is not compatible.
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Proof. We prove by induction on n. For n = 1, f, g, h are all unary signatures.
The lemma is true trivially. Inductively assume the lemma is true for n′ < n, and we
prove the lemma for n ≥ 2.

Let f(X) =
∏p
j=1 Fj(X|Ij ), g(X) =

∏q
j=1Gj(X|Jj ), and h(X) =

∏r
j=1Hj(X|Kj )

be the primitive decompositions of f, g, h, respectively, where I = {I1, I2, . . . , Ip},
J = {J1, J2, . . . , Jq}, and K = {K1,K2, . . . ,Kr} are three partitions of [n]. If all
|Ii| = |Jj | = |Kk| = 1 (1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ r), then p = q = r = n. We can
rename the sets so that Ii = Ji = Ki = {i} and let L = I and fi = Fi, gi = Gi, hi = Hi

for 1 ≤ i ≤ n.
Otherwise, without loss of generality, we assume that |I1| ≥ 2. With respect to

I1, we will take out some suitable factors of g to form a function G′1; similarly, we
will take out some suitable factors of h to form a function H ′1. More precisely, since f
and g have compatible type, by the definition of primitive decomposition, either there
exists j ∈ [q] such that Jj = I1 and the support of Gj is the same as F1, or there exist
Jjs such that |Jjs | = 1 (1 ≤ s ≤ |I1|) and I1 =

⋃|I1|
s=1 Jjs , and the support of

∏|I1|
s=1Gjs

is a singleton subset of the support of F1. Then we let G′1 = Gj or G′1 =
∏|I1|
s=1Gjs

according to the two cases. For h, we set H ′1 similarly.
Let f ′, g′, and h′ be defined by the product of those factors other than those

of F1, G′1, and H ′1 in the respective primitive decompositions of f , g, and h. Then
each pair of f ′, g′, h′ have compatible type, and all have arity n− |I1|. By induction,
there exist a partition L = {L2, . . . , L`} of [n]\I1 and signatures f2, . . . , f`, g2, . . . , g`,
and h2, . . . , h`, where fi, gi, hi ∈ E for 2 ≤ i ≤ ` and supp(fi), supp(gi), supp(hi) ⊆
{αi, ᾱi} for some αi ∈ {0, 1}|Li|, such that f ′(X) =

∏`
i=2 fi(X|Li), g′(X) =∏`

i=2 gi(X|Li), and h′(X) =
∏`
i=2 hi(X|Li). Then we finish the proof by letting

f1 = F1, g1 = G′1, h1 = H ′1, and L1 = I1.

Matchgate signatures. Matchgates were introduced by Valiant [44, 45] to give
polynomial-time algorithms for a collection of counting problems over planar graphs.
As the name suggests, problems expressible by matchgates can be reduced to comput-
ing a weighted sum of perfect matchings. The latter problem is tractable over planar
graphs by Kasteleyn’s algorithm [35], a.k.a. the FKT algorithm [41, 33]. These count-
ing problems are naturally expressed in the Holant framework using matchgate sig-
natures. We give the definition of matchgate signatures and describe some properties
that will be needed in this paper. More details can be found in [7, 4].

Let G = (V,E,W ) be a weighted undirected plane graph. A matchgate Γ is a
tuple (G,X) where X ⊆ V is a set of external nodes, ordered counterclockwise on the
external face. Γ is called an odd (resp., even) matchgate if it has an odd (resp., even)
number of nodes.

Each matchgate Γ with n external nodes is assigned a matchgate signature
(Γα)α∈{0,1}n with 2n entries,

Γi1i2···in = PerfMatch(G− Z) =
∑

M

∏

(i,j)∈M
wij ,

where Z ⊆ X is a subset of external nodes having the characteristic sequence χZ =
i1i2 · · · in, the graph G−Z is obtained from G by removing Z and its incident edges,
and the sum is over all perfect matchings M of G− Z.

An entry Γα is called an even (resp., odd) entry if the Hamming weight wt(α) is
even (resp., odd). It is known (see [7] and [4]) that matchgate signatures are charac-
terized by the following two sets of conditions. (1) The parity requirements: Either
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all even entries are 0 or all odd entries are 0. This is due to the fact that every perfect
matching takes an even number of nodes. (2) A set of matchgate identities (MGIs)
defined as follows: For any α ∈ {0, 1}n and any position vector P = {p1, p2, . . . , p`},
where p1 < p2 < · · · < p` (we also use P to denote the bit string with 1 in the pith
bits for 1 ≤ i ≤ ` and 0 elsewhere),

(2.6)
∑̀

i=1
(−1)iΓα+epiΓα+P+epi = 0

(alternating sum by flipping in sequence the bits pi and the bits in P \ {pi}), where
α+ β denotes the XOR of α and β.

Actually in [7] it is shown that MGIs imply the Parity Condition. But in practice,
it is easier to apply the Parity Condition first.

We use M to denote the set of all matchgate signatures; thus Pl-Holant(M ) is
tractable.

Definition 2.27. A signature satisfies the even (resp., odd) Parity Condition if
all nonzero entries have even (resp., odd) Hamming weight.

Proposition 2.28. A unary signature [a, b] ∈ M iff it is [1, 0] or [0, 1] up to a
scalar.

We will use Proposition 2.28 in the proof of Theorem 3.12.
Lemma 2.29 (cf. Lemmas 2.3 and 2.4 in [5]). If f has arity ≤ 3, then f ∈M iff

f satisfies the Parity Condition.
If f has arity 4 and f satisfies the even Parity Condition, i.e.,

Mx1x2,x4x3(f) =




f0000 0 0 f0011
0 f0110 f0101 0
0 f1010 f1001 0

f1100 0 0 f1111


 ,

then f ∈M iff

f0000f1111 − f1100f0011 + f1010f0101 − f1001f0110 = 0.

(This is the MGI with α = 1000 and P = {1, 2, 3, 4}.) Equivalently, f ∈M iff

det
[
f0000 f0011
f1100 f1111

]
= det

[
f0110 f0101
f1010 f1001

]
.

2.6. Transformable signature sets. An important definition involving a holo-
graphic transformation is the notion of a signature set being transformable.

Definition 2.30. We say a pair of signature sets (G,F) is C -transformable for
Holant (G | F) if there exists T ∈ GL2(C) such that GT ⊆ C and T−1F ⊆ C .

For G = {(=2)}, Holant ((=2) | F) ≡T Holant(F), we say simply that F is C -
transformable. For G = EQ, Holant (EQ | F) ≡T #CSP(F), we say that F is C -
transformable for #CSP. We define similarly for #CSPd when G = EQd. The defi-
nitions also work in the planar case.

Notice that if Pl-Holant(C ) is tractable, and (G,F) is C -transformable, then
Pl-Holant (G | F) is tractable by a holographic transformation. For example, consider
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H2 = 1√
2

[ 1 1
1 −1

]
, with H−1

2 = H2. Recall the notation F̂ = H2F . It is an impor-
tant fact that ÊQ ⊂ M (see [7, 4]); this can be verified both by MGIs as well as
by direct constructions. Also H2M̂ = M . Thus Pl-#CSP(M̂ ) is tractable, since
Pl-Holant(M ) is tractable. We list some important families of signatures specific to
the Pl-#CSP and Pl-#CSP2 frameworks. First we have

P̂ = H2P and M̂ = H2M .

Note that A is unchanged under the transformation by H2; thus there is no need
to define Â . We have ÊQ ⊂ A ∩M . Thus A is A -transformable and M̂ is M -
transformable, respectively, for Pl-#CSP.

Definition 2.31. Let Rk =
{

[ 1 0
0 ω ] | ωk = 1

}
be a set of diagonal matrices of

order dividing k and Tk = R2k \ Rk =
{

[ 1 0
0 ω ] | ωk = −1

}
. Let A † = T4A and

M̂ † = T2M̂ be the sets of signatures transformed by T4 from the affine family A

and transformed by T2 from M̂ , respectively.
Note that P is unchanged under any diagonal matrix. Thus there is no need to

define P†.
We claim that A †, as well as M̂ and M̂ †, are, respectively, both A -transformable

and M -transformable for Pl-#CSP2. To see this, let T = [ 1 0
0 ω ] ∈ T4 with ω4 =

−1; then T−1A † = A and (=2n)T⊗2n ∈ A . Hence A † is A -transformable for
Pl-#CSP2. Similarly, for T =

[ 1 0
0 ±1

]
= T−1, TH2 = 1√

2

[ 1 1
±1 ∓1

]
is either H2

or H2 [ 0 1
1 0 ], and [ 0 1

1 0 ] M = M . Thus T−1M̂ = TH2M = H2M = M̂ , and
(TH2)−1M̂ = H−1

2 T−1M̂ = H−1
2 M̂ = M , so M̂ is M transformed under TH2.

Also note that for all such T , we have (=2n)(TH2)⊗2n ∈ M . Hence M̂ is M -
transformable for Pl-#CSP2. Finally, let T ′ = [ 1 0

0 ω ] ∈ T2 with ω2 = −1. We have
T ′−1M̂ † =

[ 1 0
0 ±1

]
M̂ = M̂ . Thus (T ′H2)−1M̂ † = H2T

′−1M̂ † = H2M̂ = M .
Also (=2n)(T ′H2)⊗2n ∈M . Hence M̂ † is M -transformable for Pl-#CSP2.

Note that the set of nondegenerate symmetric signatures in A † is precisely the
nonzero signatures (λ 6= 0) in F †1

⋃
F †2 with arity at least 2, where F †1 and F †2 are

two families of signatures defined as

F †1 =
{
λ
(
[1, 0]⊗k + ir[0, 1]⊗k

)
|λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
, and

F †2 =
{
λ
(
[1, ξ]⊗k + ir[1,−ξ]⊗k

)
|λ ∈ C, ξ4 = −1, k = 1, 2, . . . , r = 0, 1, 2, 3

}
.

Proposition 2.32 can be directly checked.
Proposition 2.32. The following hold:
• A unary signature is in M̂ iff it is λ[1,±1], λ ∈ C.
• A unary signature is in M̂ † iff it is λ[1,±i], λ ∈ C.
• [1, 0, 1, 0] /∈ A †.

2.7. Some known dichotomies. Here we list several known dichotomies. The
first is for #CSP without planarity. The other two are about planar #CSP (and
#CSP2) but restricted to symmetric signatures.

Theorem 2.33 (Theorem 3.1 in [20]). Let F be any set of complex-valued sig-
natures in Boolean variables. Then # CSP(F) is #P-hard unless F ⊆ A or F ⊆P,
in which case the problem is computable in polynomial time.

By (2.3), this result can be rephrased for Holant problems.
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Theorem 2.33′. Let F̂ be any set of complex-valued signatures in Boolean vari-
ables. Then Holant(ÊQ, F̂) is #P-hard unless F̂ ⊆ A or F̂ ⊆ P̂, in which case the
problem is computable in polynomial time.

The next theorem is a dichotomy for Pl-#CSP problems over symmetric signa-
tures.

Theorem 2.34 (Theorem 19 in [27]). Let F be any set of symmetric, complex-
valued signatures in Boolean variables. Then Pl-#CSP(F) is #P-hard unless F ⊆ A ,
F ⊆P, or F ⊆ M̂ , in which case the problem is computable in polynomial time.

By (2.3), it can be restated for Pl-Holant problems.

Theorem 2.34′. Let F̂ be any set of symmetric, complex-valued signatures in
Boolean variables. Then Pl-Holant(ÊQ, F̂) is #P-hard unless F̂ ⊆ A , F̂ ⊆ P̂, or
F̂ ⊆M , in which case the problem is computable in polynomial time.

The following theorem is a dichotomy theorem for Pl-#CSP2 problems over sym-
metric signatures. By (2.2) for d = 2, we have Pl-#CSP2(F) ≡T Pl-Holant(EQ2,F).
Thus the theorem can be equivalently stated for Pl-Holant(EQ2,F). Note that this
equivalence is not by a holographic transformation. However, when we apply it later
in this paper, we actually use it on the RHS of the equivalence by a holographic
transformation Pl-#CSP(F) ≡T Pl-Holant(ÊQ, F̂), when we can construct EQ2 in
the RHS.

Theorem 2.35 (Theorem A.2 in [6]). Let F be any set of symmetric,
complex-valued signatures in Boolean variables. Then Pl-#CSP2(F), equivalently
Pl-Holant(EQ2, F), is #P-hard unless F ⊆ P, F ⊆ A , F ⊆ A †, F ⊆ M̂ , or
F ⊆ M̂ †, in which case the problem is computable in polynomial time.

Note that Theorem 2.34 (and Theorem 2.35) are applicable only for symmetric
signatures. The main theorem of the present paper is to generalize Theorem 2.34 to
be valid for all, not necessarily symmetric, signatures over Boolean variables.

2.8. Some lemmas. In this subsection, we prove some simple lemmas. The
next lemma shows that flipping any input variable of a signature f does not change
its membership in P, or A , or M .

Lemma 2.36. Let g(x1, . . . , xi−1, xi, xi+1, . . . , xn) = f(x1, . . . , xi−1, xi, xi+1, . . . , xn);
then for C ∈ {P,A ,M }, f ∈ C iff g ∈ C .

Proof. Note that [0, 1, 0] ∈P ∩A ∩M , and f is obtained from g by flipping xi.
It follows easily by definition of C ∈ {P,A ,M } that f ∈ C iff g ∈ C .

The following lemma shows how to use [1, 0, 1, 0] ∈ ÊQ and [0, 1]⊗2 to get [0, 1, 0]⊗2,
then how to flip any two variables that are not necessarily adjacent, while preserving
planarity.

Lemma 2.37. In Pl-Holant(ÊQ, [0, 1]⊗2, f), if f has arity n, then for any s 6= t ∈
[n], we can construct g such that g(x′1, x′2, . . . , x′n) = f(x1, x2, . . . , xn), where x′k = xk
for k ∈ {s, t} and x′k = xk otherwise. Moreover, for C ∈ {P,A ,M }, f ∈ C iff
g ∈ C .

Proof. That f ∈ C iff g ∈ C follows from Lemma 2.36.
Note that we have [1, 0, 1, 0] ∈ ÊQ, and [0, 1]⊗2. Since ∂[0,1]([1, 0, 1, 0]) = [0, 1, 0],

by connecting [0, 1]⊗2 to two disjoint copies of [1, 0, 1, 0], we get [0, 1, 0]⊗2. Note that
this is a planar gadget where two adjacent pairs of variables are flipped. This function
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is (x1 6= x2) ∧ (x3 6= x4). After a rotation of 90◦ we also get (x4 6= x1) ∧ (x2 6= x3),
which we will denote as D2.

Without loss of generality, we assume that t > s. If t− s = 1, then xs and xs+1
are adjacent variables and we can directly apply D2 to flip both xs and xs+1. In
general (see Figure 3 for an illustration), we let h(0) = f and, for 1 ≤ j ≤ t− s, define
h(j)(x(j)

1 , x
(j)
2 , . . . , x

(j)
n ) = h(j−1)(x(j−1)

1 , x
(j−1)
2 , . . . , x

(j−1)
n ), where x

(j)
i = x

(j−1)
i for

i ∈ {s + j − 1, s + j} and x
(j)
i = x

(j−1)
i for all others. Then we are done by letting

g = h(t−s). In effect, all variables xi with s < i < t are flipped twice.

Fig. 3. Flipping two variables of f that are not adjacent by [0, 1, 0]⊗2 while preserving planarity.
The circle vertex is labeled f and squares are [0, 1, 0]. A pair of squares connected by a dashed line
forms [0, 1, 0]⊗2.

The following lemma implies that in Pl-Holant(ÊQ, f), where f /∈ A or f /∈M ,
we can assume that f00···0 = 1. Moreover, if f satisfies the Parity Condition, we can
assume it satisfies the even Parity Condition.

Lemma 2.38. For C = A or M , if F̂ contains a signature f /∈ C of arity n,
then we can construct a function f ′ /∈ C of arity n with f ′00···0 = 1 such that

Pl-Holant(ÊQ, f ′, F̂) ≤T Pl-Holant(ÊQ, F̂).

Moreover, if f satisfies the Parity Condition, then f ′ satisfies the even Parity Con-
dition, and if f takes values in {0, 1} ({0, 1,−1}), then f ′ also takes values in {0, 1}
({0, 1,−1}).

Proof. If f00···0 6= 0, then we simply normalize f by setting f ′ = f/f00···0. So
we suppose f00···0 = 0. By f 6∈ C , clearly f is not identically 0. Let α be an ele-
ment of supp(f) of minimum weight and S = {i | 1 ≤ i ≤ n, the ith bit of α is 0}.
Since we have [1, 0] ∈ ÊQ, we can get ∂S[1,0](f) = [0, 1]⊗wt(α). Depending on whether
wt(α) is odd or even, we can take ∂=2 on [0, 1]⊗wt(α) repeatedly and obtain either
[0, 1] or [0, 1]⊗2, respectively. Since we have [1, 0, 1, 0] ∈ ÊQ, we can get either
∂[0,1]([1, 0, 1, 0]) = [0, 1, 0] or [0, 1, 0]⊗2.

If wt(α) is odd, and this includes the case when f satisfies the odd Parity Con-
dition, we have [0, 1, 0] and can flip any variable of f individually. By flipping all
variables in [n] \ S, and normalizing, we obtain f ′ with the required property. In
particular, if f satisfies the odd Parity Condition, then f ′ satisfies the even Parity
Condition.

If wt(α) is even, and this includes the case when f satisfies the even Parity
Condition, we have [0, 1]⊗2 and [0, 1, 0]⊗2. By Lemma 2.37 we can flip any two
variables of f . By applying the construction in Lemma 2.37 simultaneously on wt(α)/2
pairs of variables of f , we can transform f to f ′ by a planar construction so that
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f ′00···0 = fα 6= 0. By normalizing, we obtain the required f ′ with f ′00···0 = 1. In
particular, if f satisfies the even Parity Condition, then f ′ also satisfies the even
Parity Condition. We get f ′ from f by flipping some variables in all cases. Thus if f
takes values in {0, 1} ({0, 1,−1}), then f ′ also takes values in {0, 1} ({0, 1,−1}).

2.9. Interpolation. Polynomial interpolation is a powerful tool in the study of
counting problems. In this subsection, we give the following two lemmas by polyno-
mial interpolation.

Lemma 2.39. If x ∈ C with norm |x| 6= 0, 1, then for any a, b ∈ C, we have

Pl-Holant(EQ, [a, b],F) ≤T Pl-Holant(EQ, [1, x],F).

Proof. Note that for any k ∈ Z+, we have ∂k[1,x](=k+1) = [1, xk]. Consider an
instance Ω of Pl-Holant(EQ, [a, b],F). Let S be the subset of vertices assigned [a, b],
and suppose that |S| = n. By replacing each occurrence of [a, b] with [1, xk], we
construct a sequence of instances Ωk of Pl-Holant(EQ, [1, x],F).

We stratify the assignments in Ω based on the assignment to [a, b]. Let c` be the
sum over all assignments of products of evaluations at all vertices other than those
from S such that exactly ` occurrences of [a, b] have their respective incident edges
assigned 1 (and the other n− ` are assigned 0). Then

Pl-Holant(Ω) =
∑

0≤`≤n
an−`b`c`,

and the value of the planar Holant on Ωk, for 1 ≤ k ≤ n+ 1, is

Pl-Holant(Ωk) =
∑

0≤`≤n
xk`c`.

This is a linear system with unknowns c` and a Vandermonde coefficient matrix. Since
|x| /∈ {0, 1}, xk are all distinct (1 ≤ k ≤ n+ 1), which implies that the Vandermonde
matrix has full rank. Therefore, we can solve the linear system in polynomial time
for the unknown c`’s and obtain the value of Pl-Holant(Ω).

Lemma 2.40. Suppose F contains a signature f of arity 4 with

Mx1x2,x4x3(f) =




a 0 0 b
0 0 0 0
0 0 0 0
c 0 0 d


 or Mx1x2,x4x3(f) =




a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d


 ,

where [ a bc d ] has full rank. Then

Pl-Holant(=4,F) ≤T Pl-Holant(F).

Proof. If

Mx1x2,x4x3(f) =




a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d


 ,

then after a rotation we have the signature

Mx4x1,x3x2(f) =




a 0 0 b
0 0 0 0
0 0 0 0
c 0 0 d


 .
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From one signature we can obtain the other signature by a rotation (see Figure 2).
So it suffices to prove the lemma for the first form of f .

N1 N2

Ns−1

Ns

Fig. 4. Linear recursive construction used for interpolation.

Consider an instance Ω of Pl-Holant(=4,F). Suppose =4 appears n times in Ω.
We construct from Ω a sequence of instances Ωs of Pl-Holant(F) indexed by s ≥ 1. We
obtain Ωs from Ω by replacing each occurrence of =4 with the gadget Ns in Figure 4
with f assigned to all vertices. In Ωs, the edge corresponding to the ith variable of
Ns connects to the same location as the edge corresponding to the ith variable of =4
in Ω. In Figure 4, we place a diamond on the edge corresponding to the first variable.
The remaining variables are ordered counterclockwise around the vertex.

By the Jordan normal form of [ a bc d ], there exists P = [ p00 p01
p10 p11 ] such that

[
a b
c d

]
= P

[
λ1 0
0 λ2

]
P−1,

or, when there is a double root, we can normalize it to 1, and then
[
a b
c d

]
= P

[
1 λ
0 1

]
P−1,

where all of λ1, λ2, λ are nonzero. This implies that

(2.7) Mx1x2,x4x3(f) =




p00 0 0 p01
0 1 0 0
0 0 1 0
p10 0 0 p11







λ1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 λ2







p00 0 0 p01
0 1 0 0
0 0 1 0
p10 0 0 p11




−1

or

(2.8) Mx1x2,x4x3(f) =




p00 0 0 p01
0 1 0 0
0 0 1 0
p10 0 0 p11







1 0 0 λ
0 0 0 0
0 0 0 0
0 0 0 1







p00 0 0 p01
0 1 0 0
0 0 1 0
p10 0 0 p11




−1

.

Let

T =




p00 0 0 p01
0 1 0 0
0 0 1 0
p10 0 0 p11
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and let fs be the signature of the gadget Ns.
For (2.7), Mx1x2,x4x3(fs) = TΛsT−1, where

Λ =




λ1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 λ2


 and Λs =




λs1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 λs2


 .

If there exists d ∈ Z+ such that (λ2
λ1

)d = 1, then fd is =4 up to a nonzero scalar,
and we are done. Otherwise, for any i, j ∈ Z, (λ2

λ1
)i 6= (λ2

λ1
)j if i 6= j. We can view

our construction of Ωs as replacing =4 by 3 signatures, with matrices T,Λs, T−1,
respectively. This does not change the Holant value. The Holant value on Ω is also
unchanged by replacing =4 with T, (=4), T−1 in sequence. We stratify assignments in
Ω based on assignment values to the n occurrences of the new (=4), each sandwiched
between T and T−1. Note that we only need to consider the assignments to (=4) that
assign

• (0, 0, 0, 0) i many times,
• (1, 1, 1, 1) j many times

such that i+ j = n, since any other assignment contributes 0 to the Holant sum. Let
cij be the sum over all such assignments of the products of evaluations (including the
contributions from T, T−1) in Ω. Then we have

Pl-Holant(Ω) =
∑

i+j=n
cij ,

and
Pl-Holant(Ωs) =

∑

i+j=n
cijλ

is
1 λ

js
2 = λns1

∑

i+j=n
cij

(
λ2
λ1

)js
.

Note that the same set of values cij occurs in Pl-Holant(Ωs) independent of s. Then
we get a Vandermonde system with unknowns cn−j,j . Since (λ2

λ1
)j 6= (λ2

λ1
)j′ if j 6= j′,

this coefficient matrix has full rank. Therefore, we can solve the linear system in
polynomial time and obtain the value of Holant(Ω). This implies that

Pl-Holant(=4,F) ≤T Pl-Holant(F).

For (2.8),

(2.9) Mx1x2,x4x3(fs) = TΛsT−1,

where

Λ =




1 0 0 λ
0 0 0 0
0 0 0 0
0 0 0 1




and

Λs =




1 0 0 sλ
0 0 0 0
0 0 0 0
0 0 0 1


 .
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Similarly, we can view our construction of Ωs as replacing =4 by 3 signatures, with
matrices T,Λs, T−1, respectively. This does not change the Holant value. We also
consider replacing each =4 by T (=4)T−1 in Ω. We group together all assignments in
the Ω according to the way the new (=4)’s are assigned.

• (0, 0, 0, 0) or (1, 1, 1, 1) i many times,
• (0, 0, 1, 1) j many times

such that i+ j = n. Let c′ij be the sum over all such assignments of the products of
evaluations (including the contributions from T, T−1) in Ω. Then we have

Pl-Holant(Ω) = c′n0,

and
Pl-Holant(Ωs) =

∑

i+j=n
c′ij(sλ)j .

Again note that the same set of values c′ij occurs in Pl-Holant(Ωs), independent of
s. Then we get a Vandermonde system with unknown c′′j , where c′′j = c′n−j,jλ

j (for
0 ≤ j ≤ n). The coefficient matrix (sj) has full rank. Therefore, we can solve the
linear system in polynomial time and obtain the value of Holant(Ω). This shows that

Pl-Holant(=4,F) ≤T Pl-Holant(F),

and we finish the proof.

2.10. Outline of the proof. We now give an outline of the proof of the main
dichotomy, Theorem 6.1, and also explain some overall vision that guided our proof.
An important technique is to view our counting problems in the dual perspectives of
planar #CSP and planar Holant problems; i.e., we make essential use of the equiva-
lence Pl-#CSP(F) ≡T Pl-Holant(ÊQ, F̂). Some questions are easier to handle in one
framework, while others are easier in the other.

We aim to prove Theorem 6.1. Our overall vision is that the classification in
Theorem 2.34 should be valid for general, not necessarily symmetric, signatures. Thus
we want to show that either F ⊆ A , or F ⊆ P, or F ⊆ M̂ , or else Pl-#CSP(F) is
#P-hard. In the Pl-Holant(ÊQ, F̂) setting, the tractability condition is expressed as
F̂ ⊆ A , or F̂ ⊆ P̂, or F̂ ⊆M .

Note that A is invariant under the transformation; i.e., Â = A . However, P̂

is more difficult to reason about than P, while M is easier than M̂ to handle. The
former suggests that we carry out our proof in the Pl-#CSP framework, while the
latter suggests the opposite—that we do so in the Pl-Holant framework instead.

One necessary condition for M is the Parity Condition. If some signature in F̂
violates the Parity Condition, then we have established that F̂ 6⊆ M , eliminating
one of the three possible tractable cases. If we prove the theorem in the Pl-#CSP
framework, we can avoid discussing the more difficult class M̂ , leaving only two
tractable cases F ⊆ A and F ⊆ P. On the other hand, if every signature in F̂
satisfies the Parity Condition, then we have the lucky situation (Proposition 7.12)
that all signatures in F ∩P are already in A . This is equivalent to F̂ ∩ P̂ ⊆ A ,
and therefore F̂ ⊆ P̂ already implies F̂ ⊆ A , with the consequence that we do not
need to specifically discuss the tractability condition F̂ ⊆ P̂. Thus in this case we
can avoid discussing the irksome class P̂, leaving only the other two tractable cases
F̂ ⊆ A and F̂ ⊆M .
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Therefore, we break the proof into two main cases according to whether F̂ satisfies
the Parity Condition or not. If not, we want to show that Pl-#CSP(F) is #P-hard
unless F ⊆ A or F ⊆P (Theorem 3.12). If yes, we want to prove, in the Pl-Holant
setting for A and M , namely Pl-Holant(ÊQ, F̂) is #P-hard unless F̂ ⊆ A or F̂ ⊆M
(Theorem 5.7).

In the first main case where F̂ fails the Parity Condition, from any signature
in F̂ violating the Parity Condition, we can construct a gadget with a signature of
the simplest form that violates the Parity Condition, namely a unary signature [1, w]
with w 6= 0, in the Pl-Holant setting Pl-Holant(ÊQ, F̂). Any signature that violates
the Parity Condition is a witness that F̂ * M , or equivalently F * M̂ . If F ⊆ A
or F ⊆ P, then the problem Pl-#CSP(F) is tractable. Otherwise, there exist some
signatures f, g ∈ F such that f 6∈ A and g 6∈ P. We would like to construct
some symmetric signatures from these that are also nonaffine and nonproduct type,
respectively, and then apply Theorem 2.34. For the nonproduct type we will do so in
the Pl-#CSP(F) setting to avoid having to deal with P̂. For the nonaffine signatures,
we can do so in either the Pl-#CSP framework or the Pl-Holant framework as A is
invariant, Â = A .

However, the main difficulty in this plan is that it is generally difficult to construct
symmetric signatures from asymmetric signatures in a planar fashion, especially for
arity greater than 3. Therefore, a main engine of the proof is arity reduction. Starting
from a nonproduct type signature of arity n > 3, we construct in the Pl-#CSP setting
a nonproduct type signature of arity n − 1. Then, in an arduous proof (given in
section 7), we show how to construct, from any nonproduct type signature of arity
3, either a binary nonproduct type signature or a symmetric and nonproduct type
signature of arity 3. Lemma 3.3 turns a binary nonproduct type signature into a
symmetric and nonproduct type signature. These constructions will need suitable
unary signatures which will be constructed starting with that [1, w] constructed in
Pl-Holant(ÊQ, F̂). The derivative operator (Definition 2.6) will be used throughout.

For the construction of nonaffine signatures, we will employ a Tableau Calculus.
This is adapted from Dyer and Richerby [23], to whom it should be credited. Again
we will carry out an arity reduction proof, this time all the way down to arity 1.
We prove that with the help of unary signatures [1, 0], [0, 1], [1, x] with any complex
number x 6= 0, we can get a unary nonaffine signature from any nonaffine signature
of higher arity in the Pl-Holant setting (Lemma 3.9). This proof heavily depends on
the Tableau Calculus. Then we construct [1, 0], [0, 1], [1, x] by shuttling between Pl-
#CSP(F) and Pl-Holant(ÊQ, F̂). There is an exceptional case where all signatures in
F are {0, 1}-valued in Pl-#CSP(F). In this case, we cannot construct [1, 0], [0, 1], [1, x]
simultaneously. We resolve this case separately. For {0, 1}-valued F , we actually also
cannot construct all the unary signatures in the arity reduction proof for nonproduct
type if we only assume the existence of some g ∈ F \P. However, if we have both
g ∈ F \P and some f ∈ F \A , we can use f to produce the needed unary signatures
to help the arity reduction on g. All of these use the Tableau Calculus.

The second main case is when all signatures in F̂ satisfy the Parity Condition.
In this case, if F̂ ⊆ A , or F̂ ⊆ P̂, or F̂ ⊆ M , then the problem is tractable.
These are the exact tractability criteria according to the dichotomy theorem to be
proved, Theorem 6.1. However, due to the Parity Condition, there are really only
two consequential conditions here, F̂ ⊆ A and F̂ ⊆ M ; the containment F̂ ⊆ P̂ is
subsumed by F̂ ⊆ A . Therefore, we want to prove that if F̂ 6⊆ A and F̂ 6⊆M , then
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Pl-Holant(ÊQ, F̂) is #P-hard.
Again a natural idea is to construct nonaffine and nonmatchgate symmetric sig-

natures from any such asymmetric signatures, and then we can apply the known
dichotomy Theorem 2.34. The main difficulty of this approach lies in dealing with
nonmatchgate signatures. Note that both F̂ and ÊQ (being a subset of M ) satisfy the
Parity Condition, and therefore the signature of any construction from an (ÊQ ∪ F̂)-
gate must also satisfy the Parity Condition. By Lemma 2.29, any signature of arity
at most 3 is a matchgate signature iff it satisfies the Parity Condition. Hence all
constructible nonmatchgate signatures have arity ≥ 4. But it is difficult to construct
a symmetric signature from any asymmetric signature of arity ≥ 4 while preserving
planarity.

So we take an alternative approach. For a given nonmatchgate signature, we first
prove that we can get a nonmatchgate signature f of arity 4. Then we can construct
either the crossover function X or (=4) from f . If we have the crossover function X,
we can finish the proof by the nonplanar #CSP dichotomy Theorem 2.33. If we have
(=4), then we can construct (=2k) for any k ∈ Z+ in Pl-Holant(ÊQ, F̂). Thus we get
all EQ2. This implies that (by (2.2))

(2.10) Pl-Holant(ÊQ, F̂) ≡T Pl-Holant(EQ2, ÊQ, F̂) ≡T Pl-#CSP2(ÊQ, F̂).

Now comes a “cognitive dissonance.” Everything in (2.10) is usually considered
to be on the RHS in the equivalence

Pl-#CSP(F) ≡T Pl-Holant(ÊQ, F̂).

But now by the last form in (2.10) it will be treated as a Pl-#CSP2 problem with the
function set ÊQ ∪ F̂ :

Pl-#CSP(F) ≡T Pl-Holant(ÊQ, F̂)
|||T

Pl-# CSP2(ÊQ, F̂).

A Pl-#CSP2 problem is more in line with a Pl-#CSP problem. For Pl-#CSP2 prob-
lems over symmetric signatures, Theorem 2.35 says that there are five tractability
classes P,A ,A †, M̂ , and M̂ †. But now we will apply these on the “dual side”
ÊQ∪ F̂ , instead of the “primal side” F . The “cognitive dissonance” is that the trans-
formation from (EQ,F) 7→ (ÊQ, F̂) is precisely for the purpose of transforming EQ to
be a subset ÊQ of M , but now we will subject ÊQ to tractability tests including M̂

and M̂ †. But clearly ÊQ contains both [1, 0] 6∈ M̂ ∪ M̂ † and [1, 0, 1, 0] 6∈P ∪A †;
therefore, the only remaining possibility for tractability is A .

Of course, if F̂ ⊆ A , then Pl-Holant(ÊQ, F̂) is tractable. Suppose F̂ 6⊆ A , and
we want to construct a symmetric nonaffine signature. We produce such a signature of
arity 2 by arity reduction. From any f ∈ F̂ \A , which satisfies the Parity Condition,
we can first get a nonaffine signature satisfying the even Parity Condition. Then
every signature constructible from that has even parity, as ÊQ also has even parity.
Any nonaffine binary signature satisfying the even Parity Condition is automatically
symmetric. This part of the proof is the content of section 4 (Theorem 4.9).

A technical difficulty is that when F̂ satisfies the even Parity Condition, it is
impossible to construct [0, 1]. Instead we find that we can try to construct [0, 1]⊗2

and prove that [0, 1]⊗2 is almost as good as [0, 1] with the help of [1, 0, 1, 0] ∈ ÊQ.

D
ow

nl
oa

de
d 

06
/0

3/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOC17-76 JIN-YI CAI AND ZHIGUO FU

Then there are three cases. (1) If some function in F̂ does not take values in {0, 1,−1}
up to a constant, then we can construct [0, 1]⊗2 and [1, 0,−1] and complete the proof.
(2) If every function in F̂ takes values in {0, 1,−1} up to a constant but not every
function in F̂ takes values in {0, 1} up to a constant, then we can construct [1, 0,−1]
and complete the proof. (3) If every function in F̂ takes values in {0, 1} up to a
constant, then we prove it separately. In all cases, we use the Tableau Calculus.

This completes an outline of the proof guided by an overall vision that (A) there
is a dichotomy, and (B) the right form of this dichotomy is as stated in Theorem 6.1.

Of course, as a proof strategy, logically this is a bit self-serving. Essentially we
want the validity of the very statement we want to prove to provide its own guarantee
of success in every step in its proof. Given the fact that there are other tractable
classes for Pl-Holant problems [6] not encompassed in the list given in Theorem 6.1,
the validity of this vision for Pl-#CSP problems is at least not obvious. Luckily, this
vision is correct. And therefore, the self-serving plan becomes a reliable guide to the
proof—a bit self-fulfilling. Sometimes the statement of a theorem helps its own proof.

We include a dependency graph of the proof of Theorem 6.1 as a very high level
summary of its logical flow chart (see Figure 5).

When      Does not Satisfy Parity When      Satisfies Parity

Theorem 3.6

Theorem 3.12

Lemma 3.9-3.11

Lemma 4.6-4.8

Theorem 4.9 Theorem 5.5

Theorem 5.2

Theorem 5.7

Theorem 6.1

bF bF

Fig. 5. Dependency graph of the proof of Theorem 6.1: Theorem 3.6 and Lemmas 3.9–3.11
deal with the nonproduct arity reduction and nonaffine arity reduction, respectively, when F̂ does not
satisfy the Parity Condition. Theorem 3.12 is the dichotomy theorem for Pl-#CSP(F) when F̂ does
not satisfy the Parity Condition. Lemmas 4.6–4.8 and Theorem 5.2 deal with the nonaffine arity
reduction and nonmatchgate arity reduction, respectively, when F̂ satisfies the Parity Condition.
Theorems 4.9 and 5.5 are dichotomy theorems for Pl-Holant(ÊQ, F̂) when we have =4 and [1, 0, x]
with x4 6= 0, 1, respectively. Theorem 5.7 is the dichotomy theorem for Pl-#CSP(F) when F̂ satisfies
the Parity Condition.

D
ow

nl
oa

de
d 

06
/0

3/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HOLOGRAPHIC ALGORITHM WITH MATCHGATES STOC17-77

2.11. A sample of problems. We illustrate the scope of Theorem 1.1 by several
problems.

Problem : Pl-λ-Ising
Input : An undirected planar graph G.
Output :

∑
σ λ

e 6=(σ), where σ is an assignment of {0, 1} to each vertex of G, and
e 6=(σ) is the number of edges whose two endpoints have different values.

This problem can be expressed as Pl-#CSP([1, λ, 1]). The binary signature [1, λ, 1]
has the signature matrix

[ 1 λ
λ 1
]
. Since [1, λ, 1] ∈ M̂ , Pl-λ-Ising is tractable by

Theorem 1.1. Similarly, an asymmetric problem Pl-λ-AsymIsing Pl-#CSP((1, λ,
−λ,−1)) is also tractable, since (1, λ,−λ,−1) ∈ M̂ . The asymmetric binary signa-
ture (1, λ,−λ,−1) has signature matrix

[ 1 λ
−λ −1

]
.

Kasteleyn [34] and Fisher [24] gave a polynomial-time algorithm for Pl-λ-Ising
in the 1960s. This was a breakthrough for statistical physics. The result for Pl-λ-
AsymIsing is new to the best of our knowledge. A more general model is the so-called
2-spin systems. They can be expressed as #CSP(f), where f is a binary signature
with the matrix form

[
a b
c d

]
. Now we can fully generalize the result of Kasteleyn and

Fisher by Theorem 1.1, which gives a complete characterization in terms of (a, b, c, d);
e.g., the spin system Pl-#CSP(f) is tractable but #CSP(f) is #P-hard iff a = εd and
b = εc for ε = ±1, and ab 6= 0 and a4 6= b4. (If a = εd, b = εc, but ab = 0 or a4 = b4,
#CSP(f) is tractable even for nonplanar graphs.) To quote from the classical paper
by Jerrum and Sinclair [32], “The search for efficient computational solutions to these
problems has proved extremely hard and has generated a vast body of literature. A
major breakthrough was achieved in the early 1960s by Kasteleyn [34] and Fisher [24],
. . . . This must rank as one of the highlights in the field of combinatorial algorithms.
It remains the state of the art as far as exact solutions are concerned; in particular,
it does not appear to generalise to nonplanar systems.” Theorem 1.1 (when applied
to the special case of a single binary constraint function) gives a complete answer to
this question.

Problem : Pl-(λ, µ)-VC
Input : A directed planar graph G.
Output :

∑
C∈C(G) λ

e→(C)µe←(C), where C(G) denotes the set of all vertex covers of
G, and e←(C) is the number of directed edges (u, v) with source u 6∈ C and sink
v ∈ C, and e→(C) is the opposite, u ∈ C and v 6∈ C.

This problem can be expressed as Pl-#CSP((0, λ, µ, 1)), with signature matrix[ 0 λ
µ 1
]
. When λ = µ = 1, it is the classical counting problem of vertex covers over

planar graphs. By Theorem 1.1, we can easily show that this problem is #P-hard for
λµ 6= 0, and tractable otherwise.

Relatedly, we can prove the #P-hardness for the hardcore gas model, which can
be defined as Pl-#CSP([ 0 1

1 1 ] , [1, λ]), with one binary function and one unary function.

Problem : Pl-AntiChains
Input : A finite partially ordered set (P ;≤) represented by a planar directed acyclic
graph G.
Output : The number of antichains of the poset (P ;≤).

A directed acyclic graph G represents a partial order by transitive closure of the
directed edge relation; thus u ≤ v iff there is a directed path from u to v. Provan
and Ball [40] proved that this problem is #P-hard for general graphs. Bulatov and
Dalmau [2] proved that AntiChains is equivalent to #CSP(f) for general graphs,
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where f is a binary signature with f00 = f01 = f11 = 1 and f10 = 0. This is the Bool-
ean Implication function. The signature matrix of f is [ 1 1

0 1 ]. This #CSP problem
counts the number of upward closed subsets in the partial order. The equivalence is
also valid for planar graphs. So Pl-AntiChains is equivalent to Pl-#CSP(f). The
problem Pl-#CSP(f) is #P-hard even for planar graphs by Theorem 1.1. Hence the
corresponding problem Pl-AntiChains is also #P-hard. To the best of our knowl-
edge, this is the first proof that this problem is #P-hard for planar graphs.

Theorem 1.1 gives a precise demarcation of what #P-hard #CSP problems on
general graphs become tractable on planar graphs. This is precisely captured by
holographic algorithms with matchgates (i.e., the class M̂ ). This class gives us some
highly nontrivial problems which can be computed in polynomial time. Furthermore
the boundary is delicate.

x1 x2

x3x4

(a) x1 6= x3 and x2 6= x4

x1 x2

x3x4

(b) x1 6= x4 and x2 6= x3

Fig. 6. The assignments to the variables on the dashed lines (solid lines) have to be different.

Consider the following pair of similar-looking problems.

Problem : Pl-WeightedCrossComplementary
Input : A planar signature grid Ω = (G, π), where G = (V,E) is an undirected
bipartite graph with V = V1

·∪ V2, and all vertices in V2 have degree 4. Each vertex
v ∈ V1 of deg(v) = d is assigned =d by π, and each vertex in V2 is assigned f =

fx1 6=x3,x2 6=x4 , where Mx1x2,x4x3(f) =
[
f0000 f0010 f0001 f0011
f0100 f0110 f0101 f0111
f1000 f1010 f1001 f1011
f1100 f1110 f1101 f1111

]
=
[ 0 0 0 a

0 b 0 0
0 0 c 0
d 0 0 0

]
with abcd 6=

0 (Figure 6a).

Output : Holant(Ω; EQ | f) =
∑
σ:E→{0,1}

∏
v∈V fv(σ|E(v)), where fv ∈ {f} ∪ EQ is

the function assigned to the vertex v by the mapping π.

Problem : Pl-WeightedNearbyComplementary
Input : A planar signature grid Ω = (G, π), the same as in Pl-WeightedCrossComple-
mentary, but each vertex in V2 is assigned to g = gx1 6=x4,x2 6=x3 , whereMx1x2,x4x3(g) =[

0 0 0 a′

0 0 b′ 0
0 c′ 0 0
d′ 0 0 0

]
with a′b′c′d′ 6= 0. (See Figure 6b.)

Output : Holant(Ω; EQ | g) =
∑
σ:E→{0,1}

∏
v∈V fv(σ|E(v)), where fv ∈ {g} ∪ EQ is

the function assigned to the vertex v by the mapping π.
The necessary and sufficient conditions on (a, b, c, d) and (a′, b′, c′, d′) for fx1 6=x3,x2 6=x4

and gx1 6=x4,x2 6=x3 to belong to P are that there are at least two zero elements in
{a, b, c, d} and in {a′, b′, c′, d′}, respectively. Since abcd 6= 0 and a′b′c′d′ 6= 0 in our
problems, neither fx1 6=x3,x2 6=x4 nor gx1 6=x4,x2 6=x3 is in P. Similarly, the necessary and
sufficient conditions for membership in A are that abcd = ±1 and a′b′c′d′ = ±1, re-
spectively. Therefore, the conditions for fx1 6=x3,x2 6=x4 and for gx1 6=x4,x2 6=x3 to belong
to P∪A , which are the tractability conditions for nonplanar #CSP, have exactly the
same expression. But for M̂ , the situation is very different. For example, consider
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the following two very similar cases:
• Pl-WeightedCrossComplementary with

Mx1x2,x4x3(f) =
[ 0 0 0 1

0 c 0 0
0 0 c 0
1 0 0 0

]
,

c4 6= 0, 1, and
• Pl-WeightedNearbyComplementary with

Mx1x2,x4x3(g) =
[ 0 0 0 1

0 0 c′ 0
0 c′ 0 0
1 0 0 0

]
,

(c′)4 6= 0, 1.
We have f /∈ P ∪ A ∪ M̂ , and so the former problem is #P-hard by Theorem 1.1.
But the latter problem is tractable. Let ĝ = H⊗4

2 g. Then the signature matrix of ĝ is

Mx1x2,x4x3(ĝ) =
[ 1+c′ 0 0 1−c′

0 −(1+c′) −(1−c′) 0
0 −(1−c′) −(1+c′) 0

1−c′ 0 0 1+c′

]
.

One can verify that ĝ ∈M by MGIs [7], or by a direct construction of a matchgate
in Figure 7a, which realizes the signature. Thus the problem is tractable by FKT.
Note that this problem is #P-hard without the planar restriction by Theorem 3.1 in
[20] since g /∈P ∪A .

1 + c′2λ 2λ

-1

-1

1

√
λi

√
λi

√
λi

√
λi

(a) The matchgate realizing ĝ with λ = 1−c′
1+c′ (b) The matchgate realizing ĥ

Fig. 7. In both matchgates, the triangles are external nodes and all other nodes are internal
nodes. In Figure 7b, all the edges have weight 1.

In fact, a simple matchgate can give us a highly nontrivial problem that is
tractable for planar graphs but is #P-hard for general graphs. For example, con-
sider the signature h with the signature matrix

Mx1x2,x4x3(h) =
[ 5 1 1 −1

1 3 1 1
1 1 3 1
−1 1 1 4

]
.

Let ĥ = H⊗4
2 h; then

Mx1x2,x4x3(ĥ) =
[ 3 0 0 0

0 2 1 0
0 1 2 0
0 0 0 1

]
.

The signature ĥ can be realized by the matchgate in Figure 7b. Thus ĥ ∈ M and
Pl-#CSP(h) is tractable.
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Some tractable problems can appear rather unintuitive. Let us consider the fol-
lowing problem Pl-CrazyPell.

Problem: Pl-CrazyPell
Input : A planar signature grid Ω = (G, π), where G = (V,E) is an undirected
bipartite graph with V = V1

·∪ V2, and all vertices in V2 have degree 4. Each vertex
v ∈ V1 of deg(v) = d is assigned =d by π, and each vertex in V2 is assigned f whose
signature matrix is M(f), where

M(f) =[ 669669112435114949 −598015350142588611 598015350142588607 −669669112435114945
533639108484318913 −476540387460305851 476540387460305855 −533639108484318909
−533639108484318909 476540387460305855 −476540387460305851 533639108484318913
−669669112435114945 598015350142588607 −598015350142588611 669669112435114949

]
.

Output : Holant(Ω; EQ | f) =
∑
σ:E→{0,1}

∏
v∈V fv(σ|E(v)), where fv ∈ {f} ∪ EQ is

the function assigned to the vertex v by the mapping π.
Let f̂ = H⊗4

2 f , then f̂ has the signature matrix

4




1 0 0 1
0 64376241658269698 3638760317128320 0
0 569465989630582080 32188120829134849 0
−1 0 0 1


 .

One can verify that f̂ ∈M by MGIs [7]. Thus f ∈ M̂ and #CSP(f) is tractable.
Of course a natural reaction one may have when faced with such an incompre-

hensible looking counting problem is “This looks rather dull, and why would anyone
be interested in it?” We take a rather different view. As reminded by the Hardy–
Ramanujan “taxicab number” 1729, who is to say which number is dull and which
number is interesting? We posit that complexity classes such as #P or #CSP are
interesting mathematical objects, and as such the internal structures of these classes
and the inner connections among all problems within a class are a Platonic reality.
This is no longer subject to our personal taste (and, to our taste, they are also beau-
tiful). The strength of a complexity classification theorem such as Theorem 1.1 is
precisely that it applies to every problem in the class, regardless of whether it looks
interesting or dull to anyone. (The underlying reason for the problem Pl-CrazyPell
to be tractable over planar graphs is that (32188120829134849, 1819380158564160) is
the smallest integer solution to the Pell’s equation x2 − 313y2 = 1. This enables a
suitable matchgate to be constructed. And there are infinitely many such problems.)

3. When F̂ does not satisfy parity. The following lemma shows that if there
is a signature in F̂ that does not satisfy the Parity Condition, then in Pl-Holant(ÊQ, F̂),
we can construct a unary signature which does not satisfy the Parity Condition.

Lemma 3.1. If F̂ contains a signature f that does not satisfy the Parity Condi-
tion, then we can construct a unary signature [1, w] with w 6= 0 in Pl-Holant(ÊQ, F̂),
such that

Pl-Holant(ÊQ, [1, w], F̂) ≤T Pl-Holant(ÊQ, F̂).
Proof. Let f have arity n ≥ 1. Since f does not satisfy the Parity Condition,

there is a nonzero entry fα with minimum odd Hamming weight wt(α) among all
nonzero entries fη of odd Hamming weight wt(η). Since [1, 0] ∈ ÊQ, we can construct
the signature ∂S[1,0](f) = (f00···0, . . . , fα), where S = {k | the kth bit of α is 0}. Note
that the signature ∂S[1,0](f) has an odd arity wt(α) = n−|S|, where every entry having
an odd weight index is 0 except for fα, by the minimality of wt(α) among all nonzero
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entries of f of odd weight. Then by connecting all variables x2, . . . , xwt(α) of ∂S[1,0](f)
in adjacent pairs using =2 in a planar way, we get the unary signature [a, fα], where
a is the sum of entries of ∂S[1,0](f) with even index. Note that the entry fα remains
unchanged, since when connecting adjacent wt(α)−1

2 pairs of variables of ∂S[1,0](f) using
=2, only entries of f with lower odd indices, which are all zero, are combined with
fα. If a 6= 0, then we already have the desired [1, w] by normalization, where w = fα

a .
If a = 0, then we have [0, 1] up to the nonzero scalar fα. Since f does not

satisfy the parity condition, there exist β and γ ∈ {0, 1}n, satisfying the following:
fβ 6= 0, fγ 6= 0, wt(β) and wt(γ) have opposite parity and
d = wt(β⊕γ) = min

ζ,η∈{0,1}n
{wt(ζ⊕η) | wt(ζ) and wt(η) have opposite parity, fζ 6= 0, fη 6= 0}.

Then we have g = ∂S0
[1,0][∂

S1
[0,1](f)], where, for b ∈ {0, 1},

Sb = {k | the kth bits of both β and γ are b}.
Note that the arity of g is d.

By deleting all bits in S0 ∪ S1 from β and γ, we get two bit strings β′, γ′ ∈
{0, 1}d, respectively. We have gβ′ = fβ and gγ′ = fγ and all other entries of g are
0. Note that β′ and γ′ have opposite parity since β and γ have opposite parity.
Without loss of generality, assume that wt(β′) is odd and wt(γ′) is even. Then
∂g([1, 0, 1, . . . , 0, 1]) = [gβ′ , gγ′ ] = [fβ , fγ ] and we are done, where [1, 0, 1, . . . , 0, 1] =
1
2{[1, 1]⊗d+1 + [1,−1]⊗d+1} ∈ ÊQ.

The next lemma is a simple fact from linear algebra [29]. It will be used in the
proof of Lemma 3.3.

Lemma 3.2. Let a,b, c,d ∈ C2, and suppose c,d are linearly independent. Sup-
pose for some n ≥ 3 we have a⊗n + b⊗n = c⊗n + d⊗n. Then a = ξc, b = ηd or
a = ξd, b = ηc for some ξn = ηn = 1.

3.1. Arity reduction for nonproduct-type signatures. Our plan is to use
the dichotomy theorems for symmetric signatures. For that we have to construct sym-
metric signatures from asymmetric signatures. For example, starting from a signa-
ture not in P, we want to construct a symmetric signature not in P. It is generally
difficult to construct symmetric signatures from asymmetric signatures in a planar
construction, especially when the arity is high. So one of our main techniques is arity
reduction. We want to reduce the arity of a signature while keeping it outside P.
Every unary signature is in P. So the lowest arity outside P is two. If we obtain a
binary signature f = (f00, f01, f10, f11) = (a, b, c, d) 6∈ P, we can take 3 copies
of f and connect the first input of each f to an edge of (=3) and leave the second
input of the 3 copies of f as 3 dangling edges. This planar gadget has the symmetric
signature [a, b]⊗3 + [c, d]⊗3. The following lemma says that this ternary symmetric
signature does not belong to P. Our main construction for a symmetric signature
not in P will be an induction on arity n with a base case at n = 3. The reason
we start at n = 3 is that certain steps for n ≥ 3 will not work for n = 2. However,
Lemma 3.3 implies that if we have a binary signature that is not in P, then we can
construct in Pl-#CSP(f) a symmetric signature that is not in P.

Lemma 3.3. For any binary signature f = (a, b, c, d), f ∈P iff g = [a, b]⊗3 +
[c, d]⊗3 ∈P.

Proof. If f ∈ P, then either f is degenerate or a = d = 0 or b = c = 0 by
definition. If f is degenerate, then [a, b], [c, d] are linearly dependent. Then g is
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degenerate and g ∈ P. If a = d = 0 or b = c = 0, then g is a Generalized
Equality and g ∈P.

Conversely, if g ∈P, then either g is degenerate or g is a Generalized Equal-
ity since g is symmetric.

If g is degenerate, then there exists a vector [e, f ] such that

g = [a, b]⊗3 + [c, d]⊗3 = [e, f ]⊗3.

To use Lemma 3.2, we rewrite it as

g = [a, b]⊗3 + [c, d]⊗3 = [e, f ]⊗3 + [0, 0]⊗3.

If [a, b], [c, d] are linearly independent, then [a, b] = [0, 0] or [c, d] = [0, 0]. This contra-
dicts that [a, b], [c, d] are linearly independent. Thus [a, b], [c, d] are linearly dependent.
This implies that f is degenerate. Thus f ∈P.

If g is a Generalized Equality, then there exist x, y such that

g = [a, b]⊗3 + [c, d]⊗3 = [x, 0]⊗3 + [0, y]⊗3.

If [a, b], [c, d] are linearly dependent, then f is degenerate. Thus f ∈P. If [a, b], [c, d]
are linearly independent, by Lemma 3.2, there exist ω1, ω2, where ω3

1 = ω3
2 = 1, such

that [a, b] = ω1[x, 0], [c, d] = ω2[0, y] or [a, b] = ω1[0, y], [c, d] = ω2[x, 0]. This implies
that b = c = 0 or a = d = 0. Thus f ∈P.

We will use the next two lemmas in the proof of Theorem 3.6. Recall that in
Definition 2.25 we defined the situation in which two signatures are said to have
compatible type.

Lemma 3.4. Suppose f is a signature of arity n ≥ 3, and [1, a] and [1, b] are two
unary signatures. Let P = ∂

{1}
[1,a](f) and Q = ∂

{1}
[1,b](f). Suppose both P ∈ P and

Q ∈P and neither is identically zero. If P and Q do not have compatible type, then
f /∈P.

Proof. For a contradiction suppose f ∈P. Then there exists a primitive decom-
position of f =

∏k
i=1 Fi(X|Ii) with partition I = {I1, I2, . . . , Ik} of [n] and signatures

F1, F2, . . . , Fk. Without loss of generality, suppose 1 ∈ I1. If |I1| = 1, then ∂
{1}
[1,a](F1)

is a nonzero constant; it is nonzero because P = ∂
{1}
[1,a](F1) · ∏k

i=2 Fi(X|Ii) is not
identically zero. Similarly Q = ∂

{1}
[1,b](F1) ·∏k

i=2 Fi(X|Ii) is also a nonzero constant
multiplied by the same decomposition. Hence P and Q have the same primitive
decomposition. Thus they have compatible type. This is a contradiction.

So we may assume |I1| ≥ 2. Let F ′1 = ∂
{1}
[1,a]F1 and F ′′1 = ∂

{1}
[1,b]F1. Being a factor

in a primitive decomposition of arity at least 2, F1 is nondegenerate, and supp(F1)
consists of two antipodal points {0α, 1ᾱ} for some α ∈ {0, 1}|I1|−1. If ab 6= 0, then
both F ′1 and F ′′1 still have support consisting of two antipodal points {α, ᾱ}, e.g.,
F ′1(ᾱ) = 1F1(0ᾱ) + aF1(1ᾱ) = aF1(1ᾱ) 6= 0. In particular, both F ′1 ∈ E and F ′′1 ∈ E .
Thus F ′1

∏k
i=2 Fi(X|Ii) and F ′′1

∏k
i=2 Fi(X|Ii) are the primitive decompositions of P

and Q, respectively. Thus P and Q have compatible type. This is a contradiction.
Now suppose ab = 0. Since P and Q do not have compatible type, certainly

a 6= b. Without loss of generality, we may assume that a = 0 and b 6= 0. In this case,
F ′1 is further decomposed as a product of unary signatures, F ′1 =

∏|I1|−1
j=1 Gj , where

each Gj is a nonzero scalar multiple of [1, 0] or [0, 1]. The primitive decomposition
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of P is
∏|I1|−1
j=1 Gj

∏k
i=2 Fi(X|Ii). The support of

∏|I1|−1
j=1 Gj is a singleton point {α},

a proper subset of the support of F ′′1 , which is {α, ᾱ}. Thus P and Q still have
compatible type. This is a contradiction.

Lemma 3.5. Suppose f 6∈ P is a signature of arity n ≥ 4, and [1, a], [1, b], [1, c]
are three unary signatures that are pairwise linearly independent. Suppose further that
both P = ∂

{1}
[1,a](f) and Q = ∂

{1}
[1,b](f) belong to P and are not identically 0, and

P (X) =
k∏

i=1
Pi(X|Ii) and Q(X) =

∏̀

j=1
Qj(X|Jj )

are their primitive decompositions, where the signatures P1, P2, . . . , Pk and Q1, Q2, . . . , Q`
are on two respective partitions I = {I1, I2, . . . , Ik} and J = {J1, J2, . . . , J`} of
[n] \ {1}.

If the partitions I and J are not compatible, then there exists f ′ 6∈ P of arity
n− 1 such that

(3.1) Pl-#CSP(f ′, [1, a], [1, b], [1, c]) ≤T Pl-#CSP(f, [1, a], [1, b], [1, c]).

Proof. Since the partitions I and J are not compatible, by (2.5) there exist Ii
and Jj such that

|Ii| ≥ 2, |Jj | ≥ 2, Ii ∩ Jj 6= ∅, and Ii 6= Jj .

Without loss of generality, we assume that there exist s, t ∈ [n] \ {1} such that
{s, t} ⊆ Ii and s ∈ Jj but t /∈ Jj . (Note that after this choice the roles of Ii and Jj
are no longer symmetric.) Since n ≥ 4, we have at least one other variable xr, where
r 6= 1, s, t.

Suppose r ∈ Ip and r ∈ Jq for some p ∈ [k] and q ∈ [`]. We will connect xr to
some unary signature from {[1, a], [1, b], [1, c]} in the following way. There are at least
two unary signatures u1, u2 ∈ {[1, a], [1, b], [1, c]} that are not [1, 0], i.e., with both
entries nonzero.

• If |Ip| ≥ 2 and |Jq| ≥ 2, then we connect u1 to xr. Note that Pi (or ∂{r}u1 (Pi)
if i = p) still has at least two variables xs and xt and two antipodal points in
its support, regardless of whether p = i. The function ∂

{r}
u1 (Qq) still has two

antipodal points in its support set. Thus, regardless of whether q = j, the
functions ∂{r}u1 (P ) and ∂

{r}
u1 (Q) do not have compatible type.

• Suppose |Ip| = 1 and |Jq| ≥ 2. Then Pp is a nonzero unary signature
[Pp(0), Pp(1)]. For 1 ≤ k ≤ 2, ∂{r}uk (Pp) are constants, and at most one of
them can be zero. We choose one uk such that ∂{r}uk (Pp) 6= 0 and connect
that uk to xr. In the new partition I ′ obtained from I by removing Ip, Ii is
unchanged, still containing both s and t. Pi still has at least two variables
xs and xt and two antipodal points in its support. The function ∂

{r}
uk (Qq)

still has two antipodal points in its support set because both entries of uk
are nonzero. Thus, regardless of whether q = j, the functions ∂{r}uk (P ) and
∂
{r}
uk (Q) do not have compatible type.

• Suppose |Ip| ≥ 2 and |Jq| = 1. Then Qq is a nonzero unary signature
[Qq(0), Qq(1)]. For 1 ≤ k ≤ 2, ∂{r}uk (Qq) are constants, and at most one
of them can be zero. We choose one uk such that ∂{r}uk (Qq) 6= 0 and connect
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that uk to xr. In the new partition I ′, obtained by removing r from Ip, Ii
still contains both s and t. Pi still has at least two variables xs and xt, and
two antipodal points in its support, regardless of whether i = p. The function
Qj is unchanged and still has two antipodal points in its support set. Thus
the functions ∂{r}uk (P ) and ∂

{r}
uk (Q) do not have compatible type.

• For |Ip| = 1 and |Jq| = 1, we have Ip = Jq = {r}. Note that there exists at
least one unary signature u ∈ {[1, a], [1, b], [1, c]} such that ∂{r}u (Pp) 6= 0 and
∂
{r}
u (Qq) 6= 0. Then we connect this u to xr. Again, the functions ∂{r}u (P )

and ∂{r}u (Q) do not have compatible type, as both Pi and Qj are unchanged.
Thus after connecting xr to a suitable unary signature u in this way, we get P ′ =
∂
{r}
u (P ) ∈ P and Q′ = ∂

{r}
u (Q) ∈ P, both not identically zero, and not having

compatible type. If we connect xr in f to the unary signature u, we get f ′ = ∂
{r}
u (f).

Note that ∂{1}[1,a](f ′) = P ′ and ∂
{1}
[1,b](f ′) = Q′.

f f ′

P P ′

∂
{1}
[1,a]

∂
{r}
u

∂
{1}
[1,a]

∂
{r}
u

f f ′

Q Q′

∂
{1}
[1,b]

∂
{r}
u

∂
{1}
[1,b]

∂
{r}
u

We use such diagrams to indicate commutativity of operations; e.g., the first
diagram indicates that from f one arrives at the same P ′ in both alternative ways,
via f ′ or via P .

By Lemma 3.4, f ′ /∈P and this f ′ satisfies (3.1).
Theorem 3.6. Suppose F contains a signature f 6∈ P of arity n ≥ 3. Let

[1, a], [1, b], [1, c] be three unary signatures that are pairwise linearly independent. Then
there exists a symmetric signature g 6∈P such that

(3.2) Pl-#CSP(g, [1, a], [1, b], [1, c],F) ≤T Pl-#CSP([1, a], [1, b], [1, c],F).

Proof. We prove the theorem by induction on n. The base case is n = 3 and it
is done in section 7. By Theorem 7.11 we can produce g 6∈ P satisfying (3.2) such
that either g has arity 2 or g is symmetric and has arity 3. If g has arity 2, we use
Lemma 3.3 to produce a symmetric g′ 6∈P of arity 3.

Now assume n ≥ 4, and the theorem is true for n− 1. We show how to construct
some g 6∈P of arity n− 1 satisfying (3.2). Define

P = ∂
{1}
[1,a](f), Q = ∂

{1}
[1,b](f), R = ∂

{1}
[1,c](f).

If any of P , Q, or R /∈P, then we are done by induction. So we may assume P , Q,
and R all belong to P.

Claim. P , Q, and R are pairwise linearly independent.
For a contradiction, without loss of generality, suppose P and Q are linearly

dependent. Note that each of P , Q, and R is a linear combination of fx1=0 and
fx1=1. From

(3.3)
[
P
Q

]
=
[
1 a
1 b

] [
fx1=0

fx1=1

]
,
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since a 6= b, we have

(3.4)
[
fx1=0

fx1=1

]
= 1
b− a

[
b −a
−1 1

] [
P
Q

]
.

If both P and Q are identically zero, then both fx1=0 and fx1=1 are identically zero,
and so f is identically zero. This contradicts that f /∈ P. So we may assume that
P 6= 0. Then there exists a constant λ such that Q = λP . This implies that

fx1=0 = b− aλ
b− a P, fx1=1 = λ− 1

b− a P.

So f = 1
b−a [b− aλ, λ− 1]⊗ P . This implies that f ∈P. This is a contradiction and

finishes the proof of the claim.
In the following, P , Q, and R all belong to P, and they are pairwise linearly

independent. In particular, none of them is identically zero.
• If all three pairs from {P,Q,R} (pairwise) have compatible types, then by

Lemma 2.26, there exist a common partition I = {I1, I2, . . . , Ik} of [n] \ {1}
and signatures P1, P2, . . . , Pk, Q1, Q2, . . . , Qk, and R1, R2, . . . , Rk such that

P (X) =
k∏

i=1
Pi(X|Ii), Q(X) =

k∏

i=1
Qi(X|Ii), R(X) =

k∏

i=1
Ri(X|Ii),

where Pi, Qi, Ri ∈ E and there exists αi ∈ {0, 1}|Ii| such that supp(Pi),
supp(Qi), supp(Ri) ⊆ {αi, αi} for 1 ≤ i ≤ k.
Since P and Q are linearly independent, there is at least one 1 ≤ i ≤ k such
that Pi and Qi are linearly independent.
Claim. There exists exactly one i such that Pi and Qi are linearly indepen-
dent.
Otherwise, without loss of generality, we can assume that both pairs P1, Q1
and P2, Q2 are linearly independent, respectively. Because P and Q are lin-
early independent, Pi and Qi are not the zero signature for any i ∈ [k].
Choose any unary signature u ∈ {[1, a], [1, b], [1, c]} that is not [1, 0]. This is
clearly possible because at most one of them can be [1, 0].
For any i ∈ [k] \ {1, 2}, we shrink both Pi and Qi to a nonzero constant in
two steps as follows:
Step 1. If the arity |Ii| of both Pi and Qi is greater than 1 (skip Step 1
if |Ii| = 1), we combine |Ii| − 1 copies of u to both Pi and Qi. Since Pi
(resp., Qi) is not identically zero and has either a single point in supp(Pi)
(resp., supp(Qi)) or a pair of antipodal points, and both entries of the unary
signature u are nonzero, this operation shrinks Pi (resp., Qi) to a nonzero
unary signature [c1, d1] (resp., [c2, d2]), where either c1 or d1 6= 0 (resp., c2 or
d2 6= 0).
Step 2. Since we have three unary signatures that are pairwise linearly inde-
pendent, there exists at least one u′ ∈ {[1, a], [1, b], [1, c]} such that ∂u′([c1, d1])
and ∂u′([c2, d2]) are both nonzero constants. So we combine u′ to [c1, d1] and
[c2, d2] and we have shrunken both Pi and Qi to nonzero constants.
By (3.4) we have

R = fx1=0 + cfx1=1 = 1
b− a [(b− c)P + (c− a)Q].
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After shrinking Pi and Qi for every i ∈ [k] \ {1, 2}, there exist constants cP ,
cQ, and cR such that

cRR1 ⊗R2 = cPP1 ⊗ P2 + cQQ1 ⊗Q2,

where cP 6= 0 and cQ 6= 0. If we write R1⊗R2 in its matrix form as a matrix
in C2|I1|×2|I2| where the rows and columns are indexed by assignments to
the variables in I1 and I2, respectively, it has rank at most 1, because it is
expressible as the product of a column vector times a row vector RT

1R2, where
Ri is a row vector in C2|Ii| . But the signature matrix of cPP1⊗P2+cQQ1⊗Q2
is [

P T
1 QT

1
] [cP 0

0 cQ

] [
P2
Q2

]
,

which has rank 2 because Pi, Qi are linearly independent for i = 1, 2, and[
P T

1 QT
1
]
∈ C2|I1|×2 and

[
P2
Q2

]
∈ C2×2|I2| both have rank 2. This is a con-

tradiction. This proves the claim.
Now, without loss of generality, we may assume that P1, Q1 are linearly in-
dependent and Pi, Qi are linearly dependent for i = 2, . . . , k. Thus each Qi
is a nonzero multiple of Pi for i = 2, . . . , k. By replacing Q1 with a non-
zero multiple of Q1, we may assume Qi = Pi for i = 2, . . . , k. We have
three unary signatures that are pairwise linearly independent, so by a similar
argument, we can connect the variables of f in I2, . . . , Ik to some unary sig-
natures such that each of P2, . . . , Pk contributes a nonzero constant factor.
Let the resulting signature be h on variables from {xs | s ∈ {1} ∪ I1}. Note
that ∂{1}[1,a](h) = λP1, ∂{1}[1,b](h) = λQ1, where λ is a nonzero constant, as the
following diagrams commute.

f h

P λP1

∂
{1}
[1,a]

∂I2 · · · ∂Ik

∂
{1}
[1,a]

∂I2 · · · ∂Ik

f h

Q λQ1

∂
{1}
[1,b]

∂I2 · · · ∂Ik

∂
{1}
[1,b]

∂I2 · · · ∂Ik

Then we have

(3.5)
[
hx1=0

hx1=1

]
= λ

b− a

[
b −a
−1 1

] [
P1
Q1

]
.

Note that

(3.6)
[
P1
Q1

]
=
[
0 . . . 0 Pα1

1 0 . . . 0 Pα1
1 0 . . . 0

0 . . . 0 Qα1
1 0 . . . 0 Qα1

1 0 . . . 0

]
.

Let

(3.7)
[
P̌α1

1 P̌α1
1

Q̌α1
1 Q̌α1

1

]
= λ

b− a

[
b −a
−1 1

] [
Pα1

1 Pα1
1

Qα1
1 Qα1

1

]
.

Then

(3.8)
[
hx1=0

hx1=1

]
=
[
0 . . . 0 P̌α1

1 0 . . . 0 P̌α1
1 0 . . . 0

0 . . . 0 Q̌α1
1 0 . . . 0 Q̌α1

1 0 . . . 0

]
.
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Let ȟ be the binary signature (ȟ00, ȟ01, ȟ10, ȟ11) = (P̌α1
1 , P̌α1

1 , Q̌α1
1 , Q̌α1

1 ).
If |I1| = 1, then ȟ is h. If |I1| > 1, by combining all but one variable in I1
using [1, 1], which is just (=1) present in Pl-#CSP, we can get ȟ. If ȟ /∈P,
then we are done by Lemma 3.3.
If ȟ ∈P, then h ∈P. Since P1 and Q1 are linearly independent,

det
[
P̌α1

1 P̌α1
1

Q̌α1
1 Q̌α1

1

]
6= 0.

Hence either P̌α1
1 = Q̌α1

1 = 0 or P̌α1
1 = Q̌α1

1 = 0. In either case, compare
(3.5) to (3.8) with
[
fx1=0

fx1=1

]

= 1
b− a

[
b −a
−1 1

][
(0 . . . 0 Pα1

1 0 . . . 0 Pα1
1 0 . . . 0)⊗ P2 ⊗ . . .⊗ Pk

(0 . . . 0 Qα1
1 0 . . . 0 Qα1

1 0 . . . 0)⊗ P2 ⊗ . . .⊗ Pk

]
;

we have
[
fx1=0

fx1=1

]
= 1
λ

[
(0 . . . 0 P̌α1

1 0 . . . 0 P̌α1
1 0 . . . 0)⊗ P2 ⊗ . . .⊗ Pk

(0 . . . 0 Q̌α1
1 0 . . . 0 Q̌α1

1 0 . . . 0)⊗ P2 ⊗ . . .⊗ Pk

]
.

We conclude that f ∈P. But this is a contradiction.
• If there are two functions among {P,Q,R} that do not have compatible type,

without loss of generality, we assume that P and Q do not have compatible
type. There exist two partitions I = {I1, I2, . . . , Ik} and J = {J1, J2, . . . , J`}
of [n] \ {1} and signatures P1, P2, . . . , Pk and Q1, Q2, . . . , Q` such that

P (X) =
k∏

i=1
Pi(X|Ii) and Q(X) =

∏̀

j=1
Qj(X|Jj )

are the primitive decompositions of P and Q, respectively.
If the partitions I and J are not compatible, then we are done by Lemma 3.5.
So we may assume I and J are compatible, and yet P and Q still do not
have compatible type. Then, without loss of generality, one of the following
holds:

1. There exist Ii ∈ I, Jj ∈ J , such that Ii = Jj and |Ii| ≥ 2 but supp(Pi) 6=
supp(Qj).

2. There exist Ii ∈ I with |Ii| ≥ 2 and Jj1 , Jj2 , . . . , Jj|Ii| ∈ J with |Jjk | = 1
for 1 ≤ k ≤ |Ii|, such that Ii =

⋃|Ii|
k=1 Jjk but supp (

∏|Ii|
k=1Qjk) is not a

singleton subset of supp(Pi).
In case 1, supp(Pi) = {α, α} and supp(Qj) = {β, β} for some α, β ∈ {0, 1}|Ii|,
because both are factors in a primitive decomposition and |Ii| = |Jj | ≥ 2.
Being that both are antipodal pairs, and α 6= β and α 6= β, it follows
that supp(Pi) ∩ supp(Qj) = ∅. In case 2, supp(Pi) = {α, α}, and we have
supp (

∏|Ii|
k=1Qjk) 6⊆ supp(Pi). To see that, if any Qjk 6= λ[1, 0] or λ[0, 1]

(λ ∈ C), then supp (
∏|Ii|
k=1Qjk) is clearly not a subset of any set of the form

{α, α}. If all Qjk are of this form, then supp (
∏|Ii|
k=1Qjk) is a singleton set,

but not a subset of supp(Pi). Hence, there exists some β ∈ {0, 1}|Ii| such
that β ∈ supp (

∏|Ii|
k=1Qjk) \ supp(Pi). Thus we have α 6= β and α 6= β as
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well. This is equivalent to the existence of some s, t ∈ Ii, s 6= t, such that
αs = βs and αt = βt.
Aside from x1, xs, and xt, there exists another variable xr, since n ≥ 4.
Suppose r ∈ Ii. In case 1, we take any u ∈ {[1, a], [1, b], [1, c]} with two
nonzero entries and connect it to xr. We get ∂{r}u (Pi) and ∂

{r}
u (Qj) with

support {α′, α′} and {β′, β′}, where α′ and α′ are obtained from α and α by
removing the rth bit, and similarly for β′ and β′. Since r 6= s, t, we still have
α′s = β′s and α′t = β′t, and thus α′ 6= β′ and α′ 6= β′. Also |Ii \ {r}| ≥ 2.
Hence ∂{r}u (P ) and ∂{r}u (Q) do not have compatible type. The proof for case
2 is similar; we pick u ∈ {[1, a], [1, b], [1, c]} with two nonzero entries as well
as satisfying ∂

{r}
u (Qjk) 6= 0 for that (nonzero) unary signature Qjk , where

Jjk = {r}.
If r 6∈ Ii, then there are some i′ and j′ such that r ∈ Ii′ and r ∈ Jj′ . If |Ii′ | = 1,
then Pi′ is a nonzero unary function, and at most one u ∈ {[1, a], [1, b], [1, c]}
satisfies ∂{r}u (Pi′) = 0; if so, we exclude this u. If |Ii′ | ≥ 2, then there are two
antipodal support points in supp(∂{r}u (Pi′)) for any u ∈ {[1, a], [1, b], [1, c]}
with two nonzero entries, which again excludes at most one unary, namely
[1, 0]. Thus in either case we exclude at most one u ∈ {[1, a], [1, b], [1, c]}
on account of Ii′ . Similarly we exclude at most one u on account of Jj′ .
Pick one u ∈ {[1, a], [1, b], [1, c]} not excluded, and form P ′ = ∂

{r}
u (P ) and

Q′ = ∂
{r}
u (Q). These do not have compatible type.

By connecting u to xr in f , we get f ′ = ∂
{r}
u (f) with arity n− 1, and

∂
{1}
[1,a](f

′) = ∂
{1}
[1,a](∂

{r}
u (f)) = ∂{r}u (∂{1}[1,a](f)) = ∂{r}u (P ) = P ′,

and similarly

∂
{1}
[1,b](f

′) = ∂
{1}
[1,b](∂

{r}
u (f)) = ∂{r}u (∂{1}[1,b](f)) = ∂{r}u (Q) = Q′.

f f ′

P P ′

∂
{1}
[1,a]

∂
{r}
u

∂
{1}
[1,a]

∂
{r}
u

f f ′

Q Q′

∂
{1}
[1,b]

∂
{r}
u

∂
{1}
[1,b]

∂
{r}
u

Here again the diagrams indicate commutativity of operations.
This implies that f ′ /∈P by Lemma 3.4. Thus we are done by induction.

3.2. Arity reduction for nonaffine signatures.
Lemma 3.7. Let f be a signature of arity n with affine support of dimension

k < n, and let S = {i1, i2, . . . , ik} be the indices of a set of k free variables. Let
f ′ = ∂

[n]\S
[1,a] (f), where a4 = 1; then f ∈ A iff f ′ ∈ A .

Proof. Define

f̃(x1, x2, . . . , xn) = a

∑
i∈[n]\S xif(x1, x2, . . . , xn).

Then f ∈ A iff f̃ ∈ A , as the modifier a
∑

i∈[n]\S xi is a power of i raised to a linear
sum, and the inverse transformation is of the same kind.
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Note that f ′ = ∂
[n]\S
[1,1] (f̃). It follows that f̃ ∈ A iff f ′ ∈ A by Corollary 2.14 since

f ′ is just the compressed signature of f̃ for X.
Lemma 3.8. Suppose S ⊆ Zn2 is not a linear subspace but for some i ∈ [n], Sxi=0

is a linear subspace of Zn−1
2 , where Sxi=0 is the subset of S with the ith bit xi = 0.

Then there exist a = a1a2 · · · an ∈ S,b = b1b2 · · · bn ∈ S, a ⊕ b /∈ S, and for some
j ∈ [n], aj 6= bj.

Proof. Since Sxi=0 is a linear subspace of Zn−1
2 , 0n−1 ∈ Sxi=0; thus 0n ∈ S.

Since S is not a linear space, there exist a = a1a2 · · · an ∈ S, b = b1b2 · · · bn ∈ S, and
c = a ⊕ b /∈ S. In particular, a 6= b or else c = 0n. So there exists j ∈ [n] such that
aj 6= bj .

For the proof of the following lemma, we use the Tableau Calculus. It is basically
a schematic tabulation from known assertions about a constraint function to derive
additional assertions about the function based on some closure properties. Often it
starts off with some assumptions, and after successive “tables” we ultimately find a
contradiction, thereby proving the opposite of the initial assumption must hold. The
closure properties generally come in two varieties. One variety deals with support sets.
Here it is essentially an adaptation of the Mal’tsev polymorphisms used by Dyer and
Richerby in [23], with one additional twist. We often manage to shift the underlying
affine subspace so that the operations take place on a linear subspace, rather than on
an affine subspace. This way we can use just two known vectors in the support set to
arrive at a third such vector. This tactical maneuver seems to be very beneficial in a
practical sense, without which the proof would have been quite unwieldy. The second
variety of closure properties deals with combining function values. Often we end up
getting values of a constraint function that are linear combinations of known values
of the constraint function. In particular, they can be sums of ±1 and ±i, arriving at a
value of norm

√
2. However, this is “incompatible” with values of norm 1 or 2 at other

points, because to stay within the tractable class A the nonzero values must have the
same norm. As a practical observation in carrying out this proof, this tabulated search
has helped us find some tortuous routes to achieve a proof on multiple occasions. And
so we call it a Tableau Calculus; the reader will find its appearance many times in
this paper.

Lemma 3.9. Fix any complex number x 6= 0. If F̂ contains a signature f /∈ A ,
then there exists a unary signature u /∈ A , such that

Pl-Holant(u, ÊQ, [0, 1], [1, x], F̂) ≤T Pl-Holant(ÊQ, [0, 1], [1, x], F̂).

Proof. Let f have arity n ≥ 1. If n = 1, we can choose u = f . If x4 6= 1, we can
choose u = [1, x] /∈ A , as x 6= 0 by assumption. So we may assume n ≥ 2 and x4 = 1.
We prove the lemma by constructing some signature g /∈ A of arity less than n, such
that

Pl-Holant(ÊQ, [0, 1], [1, x], F̂ , g) ≤T Pl-Holant(ÊQ, [0, 1], [1, x], F̂).
By Lemma 2.38, we can assume that f00...0 = 1. We have [0, 1] explicitly given, as
well as [1, 0] ∈ ÊQ. If there exists i ∈ [n] such that fxi=0 /∈ A or fxi=1 /∈ A , then we
can choose g to be one of these which has arity n− 1. So we may assume that both
fxi=0 ∈ A and fxi=1 ∈ A for all i ∈ [n].

We first prove that if supp(f) is not an affine subspace, then we can construct
some signature g /∈ A of arity less than n in Pl-Holant(ÊQ, [0, 1], [1, x], F̂). Suppose
supp(f) is not affine. Note that a subset of Zn2 containing (0, 0, . . . , 0) is affine iff
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it is a linear subspace. Since (0, 0, . . . , 0) ∈ supp(f), by Lemma 3.8, there exist
a = a1a2 . . . an,b = b1b2 . . . bn ∈ supp(f), such that c = a⊕b = c1c2 . . . cn /∈ supp(f),
and there exists i ∈ [n] such that ai 6= bi. Without loss of generality, we assume that
i = 1, a1 = 0, b1 = 1, and c1 = 1. We denote a′ = a2 . . . an,b′ = b2 . . . bn, and
c′ = c2 . . . cn.

a = a1a′ = 0 a2 . . . an ∈ supp(f)
⊕ b = b1b′ = 1 b2 . . . bn ∈ supp(f)

c = c1c′ = 1 c2 . . . cn 6∈ supp(f)

By connecting the unary signature [1, x] to the first variable of f we get h =
∂
{1}
[1,x](f), which has arity n − 1. If h /∈ A , then we are done. Therefore, we may

assume h ∈ A . Note that hα = f0α + xf1α for all α ∈ {0, 1}n−1. The next claim will
be used several times in the following proof.

Claim. If there exists α ∈ {0, 1}n−1 such that hα = 0 and f0α 6= 0, then we can
construct [1,−x].

To prove this claim, we can first obtain the unary signature [f0α, f1α] from f

by pinning on all variables x2, . . . , xn according to α, using [1, 0] ∈ ÊQ and the
explicitly given [0, 1]. We have x ∈ {±1,±i}. If x = ±1, then f1α = −xf0α from
hα = 0, and so [f0α, f1α] = f0α[1,−x]. Thus we have [1,−x] up to the nonzero scalar
f0α. If x = ±i, then from [1, 0, 1, 0] ∈ ÊQ we have ∂[0,1]([1, 0, 1, 0]) = [0, 1, 0] and
∂[1,x]([0, 1, 0]) = [x, 1] = x[1,−x].

Once we have [1,−x], we can construct another signature h̃ = ∂[1,−x](f) in addi-
tion to h. The analysis below will use both h and h̃:

hα = f0α + xf1α,

h̃α = f0α − xf1α.

In the following we consider various cases according to the membership of ā1a′ and
b̄1b′ in supp(f).

• Suppose ā1a′ ∈ supp(f) and b̄1b′ ∈ supp(f).
Note that supp(fx1=0) is a linear subspace since fx1=0 is affine and f00...0 6= 0.
By a = a1a′ = 0a′ ∈ supp(f), we have a′ ∈ supp(fx1=0). By b̄1b′ = 0b′ ∈
supp(f), we have b′ ∈ supp(fx1=0). By definition, a′ ⊕ b′ = c′, and thus
c′ ∈ supp(fx1=0). This implies that fc̄1c′ 6= 0.
Since all of f00...0, fa1a′ , fb̄1b′ , fc̄1c′ are nonzero entries of fx1=0 ∈ A , they
are all powers of i as f00...0 = 1. We have hc′ = xfc1c′ + fc̄1c′ = fc̄1c′ since
c1 = 1 and fc1c′ = 0. Hence |hc′ | = 1 since it is a power of i. Moreover, since
both fa1a′ and fā1a′ are nonzero entries of fx2=a2 ∈ A and fa1a′ is a power
of i, so is fā1a′ . Any nonzero sum of two quantities that are both powers of
i must have norm either 2 or

√
2. This implies that if ha′ = fa1a′ + xfā1a′ is

nonzero, then |ha′ | = 2 or
√

2. This implies that |ha′ | 6= |hc′ | and both are
nonzero. This contradicts that h ∈ A , by Proposition 2.17.
Therefore, ha′ = fa1a′ + xfā1a′ = 0. Then we have [1,−x] by the claim,
and we obtain h̃. If h̃ 6∈ A , then we are done since the arity of h̃ is n − 1.
Therefore, we may assume h̃ ∈ A . We have |h̃c′ | = |fc̄1c′ − xfc1c′ | = 1 since
c1 = 1, fc1c′ = 0, and fc̄1c′ is a power of i.
We already have ha′ = 0. If additionally h̃a′ = fa1a′ − xfā1a′ = 0, then we
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have

fa1a′ + xfā1a′ = 0,
fa1a′ − xfā1a′ = 0.

This implies that fa1a′ = 0, and it is a contradiction to a = a1a′ ∈ supp(f).
Therefore, h̃a′ = fa1a′ − xfā1a′ 6= 0. Since both fa1a′ and xfā1a′ are powers
of i, the norm |h̃a′ | is either 2 or

√
2. This implies that |h̃a′ | 6= |h̃c′ |, and both

are nonzero. This contradicts that h̃ ∈ A , by Proposition 2.17.
• Suppose ā1a′ /∈ supp(f) and b̄1b′ /∈ supp(f).

We have ha′ = fa1a′ + xfā1a′ 6= 0 and hb′ = fb̄1b′ + xfb1b′ 6= 0 by fā1a′ =
fb̄1b′ = 0 and fa1a′ 6= 0, fb1b′ 6= 0, and also x 6= 0. We show next that
h0...0 = 0. Suppose for a contradiction that h0...0 6= 0. Since h ∈ A , and
0 . . . 0 ∈ supp(h), supp(h) is a linear subspace. As a′,b′ ∈ supp(h) we have
c′ ∈ supp(h).

a′ ∈ supp(h)
⊕ b′ ∈ supp(h)

c′ ∈ supp(h)
By hc′ = xfc1c′ + fc̄1c′ 6= 0, we have fc̄1c′ 6= 0 since fc1c′ = 0. Thus
c′ ∈ supp(fx1=0) as c̄1 = 0. Since a′ ∈ supp(fx1=0), and the support of
fx1=0 is a linear subspace, we have b′ ∈ supp(fx1=0).

a′ ∈ supp(fx1=0)
⊕ c′ ∈ supp(fx1=0)

b′ ∈ supp(fx1=0)

This contradicts that fb̄1b′ = 0.
Therefore, h0...0 = f00...0 + xf10···0 = 0. Then we can obtain [1,−x] and h̃ by
the claim. If h̃ 6∈ A , then we are done. Therefore, we may assume h̃ ∈ A .
Moreover, h̃0...0 = f00...0− xf10···0 6= 0 by f00...0 + xf10...0 = 0 and f00...0 6= 0.
Thus supp(h̃) is a linear subspace.
Note that h̃a′ = fa1a′ − xfā1a′ 6= 0 and h̃b′ = fb̄1b′ − xfb1b′ 6= 0 by fā1a′ =
fb̄1b′ = 0 and fa1a′ 6= 0, fb1b′ 6= 0, and x 6= 0. Thus a′ ∈ supp(h̃) and
b′ ∈ supp(h̃). It follows that c′ = a′ ⊕ b′ ∈ supp(h̃). This implies that h̃c′ =
fc̄1c′ − xfc1c′ 6= 0. So fc̄1c′ 6= 0 since fc1c′ = 0. We have a′ ∈ supp(fx1=0)
and c′ ∈ supp(fx1=0). Because the support of fx1=0 is a linear subspace, it
follows that b′ ∈ supp(fx1=0).

a′ ∈ supp(fx1=0)
⊕ c′ ∈ supp(fx1=0)

b′ ∈ supp(fx1=0)

This contradicts that fb̄1b′ = 0.
• Suppose ā1a′ ∈ supp(f) and b̄1b′ /∈ supp(f).

Note that hb′ = fb̄1b′ + xfb1b′ = xfb1b′ , since fb̄1b′ = 0. We have hb′ 6= 0
since b1b′ ∈ supp(f), and x 6= 0. As f00...0 = 1, and fa1a′ 6= 0, by fx1=0 ∈ A ,
and both 0 . . . 0 and a′ ∈ supp(fx1=0), we have that fa1a′ is a power of i. By
hypothesis fā1a′ 6= 0. By pinning x2 to the same value a2 ∈ {0, 1} in both
fa1a′ 6= 0 and fā1a′ 6= 0, and by fx2=a2 ∈ A , we conclude that the value
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fā1a′ is a power of i. As ā1 = b1 = 1, by pinning x1 to 1, and fx1=1 ∈ A , we
conclude that the nonzero value fb1b′ is a power of i. By x4 = 1, hb′ = xfb1b′
is also a power of i.
To recap, we have that fa1a′ , fā1a′ , fb1b′ , and hb′ are all powers of i. In
particular, |hb′ | = 1. Moreover, ha′ = fa1a′+xfā1a′ is a sum of two quantities
that are both powers of i. If ha′ 6= 0, then its norm is 2 or

√
2. This is a

contradiction to h ∈ A by Proposition 2.17.
Thus ha′ = 0. Then we can construct [1,−x] and h̃ by the claim. If h̃ 6∈ A ,
then we are done. Otherwise, we have

ha′ = fa1a′ + xfā1a′ = 0,
h̃a′ = fa1a′ − xfā1a′ .

If h̃a′ = 0, then we would have fa1a′ = 0, a contradiction. Hence h̃a′ 6= 0 and
is the sum of two quantities that are both powers of i. Hence |h̃a′ | is 2 or

√
2.

Yet, h̃b′ = fb̄1b′−xfb1b′ = −xfb1b′ is a power of i, as fb̄1b′ = 0 by hypothesis.
Thus |h̃b′ | = 1. This is a contradiction to h̃ ∈ A by Proposition 2.17.

• Suppose ā1a′ /∈ supp(f) and b̄1b′ ∈ supp(f).
Consider ha′ = fa1a′ + xfā1a′ . Since fā1a′ = 0 and a = a1a′ ∈ supp(f),
ha′ = fa1a′ 6= 0. As f00...0 = 1, a1 = 0, and fa1a′ 6= 0, by fx1=0 ∈ A , fa1a′ is
a power of i, and so is ha′ . In particular, |ha′ | = 1.
Also by hypothesis, fb̄1b′ 6= 0. As b̄1 = 0 and f00...0 = 1, by pinning x1 to 0,
and fx1=0 ∈ A , we have that fb̄1b′ is a power of i. Then pinning x2 to b2 in
fb̄1b′ and the nonzero value fb1b′ , we have that fb1b′ is also a power of i.
We have hb′ = fb̄1b′ + xfb1b′ , which is a sum of two quantities both a power
of i. If hb′ 6= 0, it would have norm 2 or

√
2. As |ha′ | = 1, and h ∈ A , this

is a contradiction. Hence hb′ = 0.
Then we can construct [1,−x] and h̃ by the claim. If h̃ 6∈ A , then we are
done. Otherwise, we have

hb′ = fb̄1b′ + xfb1b′ = 0,
h̃b′ = fb̄1b′ − xfb1b′ .

If h̃b′ = 0, then we would have fb̄1b′ = 0, a contradiction. Hence |h̃b′ | = 2 or√
2. Yet, h̃a′ = fa1a′ − xfā1a′ = fa1a′ is a power of i and is hence of norm 1.

This is a contradiction to h̃ ∈ A , by Proposition 2.17.
The above argument is what we call the Tableau Calculus.

Now we can assume that supp(f) is an affine subspace, indeed a linear subspace
since f00...0 = 1. Suppose it has dimension k. If k = 0, then f ∈ A . This is a
contradiction. For k ≥ 1, let S = {xi1 , xi2 , . . . , xik} be a set of free variables defining
the linear subspace supp(f). Let f̌ be obtained from f by connecting [1, x] to every
variable outside S (if there is any), f̌ = ∂

[n]\S
[1,x] (f). Note that for every assignment to

S, the sum in the expression defining f̌ has exactly one nonzero entry of f , multiplied
by a suitable power of x 6= 0. Hence all entries of f̌ are nonzero. By Lemma 3.7,
f̌ 6∈ A . If there exists j ∈ [k] such that f̌xij=0 or f̌xij=1 is not affine, then we get
a signature not in A with arity k − 1 < n. This completes the proof. Therefore, we
may assume both f̌xij=0 and f̌xij=1 are affine for all j ∈ [k]. In the following we will
rename the variables of f̌ as x1, . . . , xk.
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We claim that if we have [1, ir], where r ∈ {0, 1, 2, 3}, then we can construct
[1, i−r]. If r = 0 or 2, then ir = i−r and we are done. If r = 1 or 3, we have
∂[0,1]([1, 0, 1, 0]) = [0, 1, 0], where [1, 0, 1, 0] ∈ ÊQ and [0, 1] is given in the hypothesis
of the lemma. Then we can obtain ∂[1,ir]([0, 1, 0]) = [ir, 1] = ir[1, i−r], a nonzero
multiple of [1, i−r].

Now we finish the proof by constructing a signature not in A with arity less than
n.

1. If k = 1, then f̌ is the desired signature not in A .
2. If k = 2, then all four values f̌00, f̌01, f̌10, and f̌11 are powers of i. This

can be seen by noting that f̌00 = 1, and the signatures f̌x1=0 = [f̌00, f̌01],
f̌x2=0 = [f̌00, f̌10], and f̌x1=1 = [f̌10, f̌11] all belong to A . So there exist
r, s, t ∈ {0, 1, 2, 3} such that

f̌ = (f̌00, f̌01, f̌10, f̌11) = (1, ir, is, it).

If r + s ≡ t mod 2, then f̌ ∈ A by Lemma 2.15. This is a contradiction.
Therefore, we have it = ±ir+s+1. Note that we have f̌x1=0 = [1, ir]. Thus we
can construct [1, i−r] by the claim, and we can obtain ∂{2}[1,i−r](f̌) = [2, is(1±i)].
However, |is(1± i)| =

√
2. Thus [2, is(1± i)] /∈ A by Proposition 2.17.

3. If k = 3, then there exist r, s, t ∈ {0, 1, 2, 3} and εj ∈ {1,−1} for 1 ≤ j ≤ 4
such that

Mx1,x2x3(f̌) =
[
f000 f001 f010 f011

f100 f101 f110 f111

]
=
[

1 ir is ε1i
r+s

it ε2i
r+t ε3i

s+t ε4i
r+s+t

]
.

This can be seen by observing that all signatures f̌xk=0 for k = 1, 2, 3 and
f̌x1=1 are affine.
If ε1ε2ε3ε4 = 1, then f̌ ∈ A by Lemma 2.16. This is a contradiction. There-
fore, ε4 = −ε1ε2ε3.
Since we have ∂

{2,3}
[1,0] = [f000, f100] = [1, it] and ∂

{1,2}
[1,0] (f̌) = [f000, f001] =

[1, ir], by the claim we also have [1, i−t] and [1, i−r].
We have

∂
{1}
[1,i−t](f̌) = (2, (1 + ε2)ir, (1 + ε3)is, ε1(1− ε2ε3)ir+s).

• If ε2 = −ε3 or ε2 = ε3 = 1, then ∂{1}[1,i−t](f̌) is not affine since its support
is not affine. Thus we are done. So we may assume in the following that
ε2 = ε3 = −1 and

Mx1,x2x3 (f̌) =
[
f000 f001 f010 f011

f100 f101 f110 f111

]
=
[

1 ir is ε1ir+s

it −ir+t −is+t −ε1ir+s+t

]
.

• If ε1 = 1 and ε2 = ε3 = −1, then

∂
{3}
[1,i−r](f̌) = (2, 2is, 0, − 2ir+s)

is not affine since its support is not affine. Thus we are done. So we
may assume in the following that ε1 = ε2 = ε3 = −1:

Mx1,x2x3(f̌) =
[
f000 f001 f010 f011

f100 f101 f110 f111

]
=
[

1 ir is −ir+s

it −ir+t −is+t ir+s+t

]
.
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• For ε1 = ε2 = ε3 = −1, we take two copies of f̌ and connect the variables
x2 and x3 of one copy with the variables x3 and x2 of the other copy,
creating a planar binary gadget with a symmetric signature g(y, z) =∑
x2,x3∈{0,1} f̌(y, x2, x3)f̌(z, x3, x2). Notice the reversal of the order of

x2 and x3 in the second copy of f̌ ; this amounts to a cyclic permutation
of its inputs and is necessary in order to make a planar connection in the
gadget construction. The signature of g can be computed as a matrix
product:

[
f000 f001 f010 f011

f100 f101 f110 f111

]


f000 f100

f010 f110

f001 f101

f011 f111


 .

In symmetric signature notation

g = [1+2ir+s+(−1)r+s, it(1−2ir+s−(−1)r+s), (−1)t(1+2ir+s+(−1)r+s)].

Further, we have the unary signature ∂[1,0](g) = [1+2ir+s+(−1)r+s, it(1−
2ir+s − (−1)r+s)].
If r + s is odd, then the norm |1 + 2ir+s + (−1)r+s| = 2 and the norm
|it(1 − 2ir+s − (−1)r+s)| = |2 ± 2i| = 2

√
2, and hence ∂[1,0](g) 6∈ A , by

Proposition 2.17, and we are done. For even r + s = 2k, the norms of
the entries of ∂[1,0](g) are 2 + 2(−1)k and 2, respectively. Hence if k is
even, then ∂[1,0](g) 6∈ A , by Proposition 2.17, and we are done. Hence
we may assume k is odd, and

(3.9) r + s ≡ 2 mod 4.

By symmetry of argument, we have

(3.10) s+ t ≡ 2 mod 4

and

(3.11) t+ r ≡ 2 mod 4.

From (3.9) and (3.10) we get r ≡ t mod 4, and by symmetry,

(3.12) r ≡ s ≡ t mod 4.

Also by (3.12) and (3.9) we have

(3.13) r ≡ s ≡ t ≡ 1 mod 4 or r ≡ s ≡ t ≡ 3 mod 4.

If r ≡ s ≡ t ≡ 1 mod 4, then

Mx1,x2x3(f̌) =
[
f000 f001 f010 f011

f100 f101 f110 f111

]
=
[
1 i i 1
i 1 1 −i

]
.

This is the symmetric ternary signature [1, i, 1,−i] 6∈ A . Having [1, 0] ∈
ÊQ, we can get [1, i] from [1, i, 1,−i]. Then ∂[1,i]([1, i, 1,−i]) = [0, 2i, 2].
Once again ∂[1,i]([0, 2i, 2]) = [−2, 4i] 6∈ A .
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Similarly, if r ≡ s ≡ t ≡ 3 mod 4, then

Mx1,x2x3(f̌) =
[
f000 f001 f010 f011

f100 f101 f110 f111

]
=
[

1 −i −i 1
−i 1 1 i

]
.

This is the symmetric ternary signature [1,−i, 1, i] 6∈ A , and we can get
[−2,−4i] 6∈ A in a similar way.

4. If k ≥ 4, then f̌ is affine by Lemma 2.18. This is a contradiction.
This completes the proof of Lemma 3.9.

The next lemma says that generally we can construct a unary signature [1, a],
with a 6= 0, 1, in Pl-#CSP([1, 0],F). The condition on F is satisfied as long as not
every signature in F is {0, 1}-valued up to a constant.

Lemma 3.10. Suppose F contains a signature f of arity n ≥ 1 that has two
distinct nonzero values: fα 6= 0, fβ 6= 0, and fα 6= fβ for some α, β ∈ {0, 1}n. Then
there is a unary signature [1, a], where a 6= 0, 1, such that

Pl-#CSP([1, 0], [1, a],F) ≤T Pl-#CSP([1, 0],F).

The statement is also valid if we replace [1, 0] by [0, 1].
Proof. We prove the lemma for Pl-#CSP([1, 0],F). The proof for Pl-#CSP([0, 1],F)

is symmetric.
Since fα 6= fβ , at least one value of fα or fβ is not equal to f00···0. Without loss of

generality, we assume that fα 6= f00···0. Then we have f ′ = ∂S[1,0](f) = (f00···0, . . . , fα),
which is a signature of arity wt(α), where S = {k | the kth bit of α is 0}. We only
care about the value of f ′ at 0wt(α) and 1wt(α), as specified. By connecting f ′ to
an Equality (=wt(α)+1) of arity wt(α) + 1 in a planar fashion, we get the unary
signature ∂f ′(=wt(α)+1) = [f00···0, fα]. If f00···0 6= 0, then we have f00···0[1, a], where
a = fα

f00···0
. Then we get [1, a] up to the nonzero scalar f00···0. This finishes the proof.

Otherwise, f00···0 = 0. This implies that [f00···0, fα] = fα[0, 1]. Then we have
[0, 1] up to the nonzero scalar fα, and can now use both pinning signatures [1, 0] and
[0, 1].

Since the set T = {(ξ, η) | fξ 6= 0, fη 6= 0, fξ 6= fη} is nonempty by (α, β) ∈ T ,
there exists some (ξ, η) ∈ T with minimum Hamming distance, i.e., fξ 6= 0, fη 6= 0,
fξ 6= fη, and

wt(ξ ⊕ η) = min
ξ′,η′∈{0,1}n

{wt(ξ′ ⊕ η′) | fξ′ 6= 0, fη′ 6= 0, fξ′ 6= fη′}.

For b ∈ {0, 1}, let Sb = {k | the kth bits of both ξ and η are b}. Then we can con-
struct f ′′ = ∂S0

[1,0][∂
S1
[0,1](f)].

Denote wt(ξ⊕ η) by d. Note that f ′′ has arity d. Let ξ̌ ∈ {0, 1}d denote the d-bit
string obtained from ξ by deleting all bits in S0 ∪ S1. Similarly define η̌ ∈ {0, 1}d.
Clearly f ′′

ξ̌
= fξ and f ′′η̌ = fη. If d = 1, i.e., f ′′ = [fξ, fη] or f ′′ = [fη, fξ], then we are

done by normalizing. Therefore, we may assume that d ≥ 2.
All entries of f ′′ are zero except for f ′′

ξ̌
, f ′′η̌ . To see this, if there is another nonzero

entry of f ′′, it has the form f ′′γ̌ = fγ for some γ ∈ {0, 1}n and γ̌ ∈ {0, 1}d, where
γ has the same bits as ξ on S0 ∪ S1, and γ̌ is obtained from γ by deleting all bits
in S0 ∪ S1. Then f ′′γ̌ 6= 0 implies that fγ 6= 0. Both wt(ξ ⊕ γ) < wt(ξ ⊕ η) and
wt(γ⊕η) < wt(ξ⊕η), and either fγ 6= fξ or fγ 6= fη. This contradicts the minimality
of d.
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By using [1, 1], we have ∂{2,...,d}[1,1] (f ′′) that is [fξ, fη] or [fη, fξ], since all entries
of f ′′ are zero except for f ′′

ξ̌
= fξ and f ′′η̌ = fη. Thus we are done by normalizing

∂
{2,...,d}
[1,1] (f ′′).

The next lemma handles {0, 1}-valued function sets. More generally, it applies
to any F where every f ∈ F has at most one nonzero output value, since factoring
out a nonzero constant factor does not change the problem complexity. Notice that
in this {0, 1}-valued case, any function f ∈ F ∩P is also in A . (And since F̂ does
not satisfy the Parity Condition, F ⊆ M̂ is not feasible. Therefore, the statement
of Lemma 3.11 is in accordance with Theorem 6.1.) When Lemma 3.11 is used in
Theorem 3.12, the auxiliary unary signature [1, 0] or [0, 1] will be provided by [1, ω]
(for some ω 6= 0) from the Pl-Holant side, as constructed in Lemma 3.1. Note that
[1,±1] is transformed to [1, 0] or [0, 1] by the holographic transformation H2. The
proof of the following lemma will again use the Tableau Calculus.

Lemma 3.11. If each f ∈ F takes values in {0, 1}, then either Pl-#CSP(F , [1, 0])
is #P-hard or F ⊆ A . The statement is also true if we replace [1, 0] by [0, 1].

Proof. Suppose F * A . We show that Pl-#CSP(F , [1, 0]) is #P-hard. The
statement for [0, 1] is symmetric.

As F * A , there exists f ∈ F such that f /∈ A . First, we claim that f /∈ P.
By definition, P = 〈E〉. Note that all signatures in E have affine support. Thus all
signatures in P have affine support. On the other hand, a {0, 1}-valued signature is
in A iff its support is affine. So supp(f) is not affine since f takes values in {0, 1}
and f /∈ A . This implies that f /∈P.

We prove the lemma by induction on the arity n of f . Note that n ≥ 2 since
supp(f) is not affine.

For n = 2, there is exactly one entry of f that is 0 since supp(f) is not affine.
So f = (1, 1, 1, 0), or f = (1, 1, 0, 1), or f = (1, 0, 1, 1), or f = (0, 1, 1, 1). In each
case, we take three copies of f and connect the first input of each f to an edge of
=3 and leave the second input as dangling edges. The resulting signature g is either
[1, 1]⊗3 +[1, 0]⊗3 or [1, 1]⊗3 +[0, 1]⊗3. Both of these signatures are symmetric but not
in P ∪A ∪ M̂ . By Theorem 2.34, Pl-#CSP(g) is #P-hard.

To see that g = [1, 1]⊗3 + [1, 0]⊗3 6∈P ∪A ∪ M̂ , note the following:
• The fact g /∈P follows from Proposition 2.20 for symmetric signatures in P.
• Also g /∈ A follows from the fact that the norms of the nonzero entries of

[1, 1]⊗3 + [1, 0]⊗3 are different, violating Definition 2.10.
• Since ĝ = gH⊗3

2 = 1
2
√

2 ([2, 0]⊗3 + [1, 1]⊗3) does not satisfy the Parity Condi-
tion, it follows that ĝ /∈M , and so g /∈ M̂ .

Similarly, we have [1, 1]⊗3 + [0, 1]⊗3 6∈P ∪A ∪ M̂ . By the reduction

Pl-#CSP(g) ≤T Pl-#CSP([1, 0],F),

we conclude that Pl-#CSP([1, 0],F) is #P-hard.
In the following, by induction we assume that the lemma is true for n− 1, where

n ≥ 3.
We will prove that we can construct a signature f ′ 6∈ A with arity < n by a

gadget construction in Pl-#CSP([1, 0],F). If f ′ takes values in {0, 1} up to a scalar,
then the induction is finished. Otherwise, there exist two distinct nonzero entries f ′α
and f ′β of f ′. By Lemma 3.10, we can construct some [1, a] with a 6= 0, 1 from f ′

by gadget construction. Because signatures in F take values in {0, 1}, all nonzero
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entries of the signature of any gadget construction in Pl-#CSP([1, 0],F) take positive
rational values, in Q+, after normalization. Since a 6= 1 and is positive, we have
|a| 6= 1. So we can get the unary signatures [1, 2], [1, 3], [1, 4] (in fact, we can get any
constant number of unary signatures) using interpolation, by Lemma 2.39. Then by
Theorem 3.6 and f /∈P, we can get a symmetric signature f ′′ that is not in P. Note
that the symmetric signature set {[1, 2], f ′′} satisfies

{[1, 2], f ′′} * P, {[1, 2], f ′′} * A , {[1, 2], f ′′} * M̂ .

By Theorem 2.34, Pl-#CSP([1, 2], f ′′) is #P-hard. By

Pl-#CSP([1, 2], f ′′) ≤T Pl-#CSP([1, 0],F),

Pl-#CSP([1, 0],F) is #P-hard.
Thus we only need to construct a signature f ′ 6∈ A with arity < n by gadget

construction to finish the proof. If there exists i ∈ [n] such that fxi=0 6∈ A , then we
are done since we have [1, 0]. Therefore, we may assume fxi=0 ∈ A for all i ∈ [n].
By connecting the unary signature [1, 1] to the ith variable of f , we get a signature
h = ∂

{i}
[1,1](f), which has arity n− 1. Note that

h(α) = fxi=0(α) + fxi=1(α)

for all α ∈ {0, 1}n−1. If h /∈ A , then we are done. Therefore, we may assume h ∈ A
for every i ∈ [n].

• Suppose f00···0 = 1.
Since supp(f) is not affine, it is also not a linear subspace. Thus, there
exist a = a1a2 · · · an ∈ supp(f) and b = b1b2 · · · bn ∈ supp(f) such that
c = a ⊕ b /∈ supp(f). Here a 6= b, since a ⊕ a = 0n ∈ supp(f). Thus
for some i ∈ [n], ai 6= bi. So, by rotating the variables in a cyclic fashion
(thus maintaining planarity), and switching a and b, we may without loss of
generality assume that a1 = 0, b1 = 1. Then we choose our h = ∂

{1}
[1,1](f), and

hα = f0α + f1α

for all α ∈ {0, 1}n−1.

a = a1a′ = 0 a2 . . . an ∈ supp(f)
⊕ b = b1b′ = 1 b2 . . . bn ∈ supp(f)

c = c1c′ = 1 c2 . . . cn 6∈ supp(f)

We have
ha′ = f0a′ + f1a′ 6= 0,

hb′ = f0b′ + f1b′ 6= 0

since f0a′ = f1b′ = 1 and f1a′ ≥ 0, f0b′ ≥ 0. Note that h00···0 = f00···0 +
f10···0 6= 0 since f00···0 = 1, f10···0 ≥ 0. So supp(h) is a linear space since h is
affine. As a′,b′ ∈ supp(h) we have c′ ∈ supp(h).

a′ ∈ supp(h)
⊕ b′ ∈ supp(h)

c′ ∈ supp(h)
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This implies that hc′ = fc1c′+fc̄1c′ 6= 0. So we have fc̄1c′ 6= 0 since fc1c′ = 0.
Thus c′ ∈ supp(fx1=0), as c̄1 = 0. As f takes values in {0, 1}, fc̄1c′ = 1.
Since a′ ∈ supp(fx1=0), and the support of fx1=0 is a linear subspace, we
have b′ ∈ supp(fx1=0), since b′ = a′ ⊕ c′.

a′ ∈ supp(fx1=0)
⊕ c′ ∈ supp(fx1=0)

b′ ∈ supp(fx1=0)

This implies that b̄1b′ ∈supp(f). Thus we have fb̄1b′ = 1, as f takes values
in {0, 1}. But we also have fb1b′ = 1; thus hb′ = fb1b′ + fb̄1b′ = 2. However,
hc′ = fc1c′ + fc̄1c′ = 1 since fc1c′ = 0 and fc̄1c′ = 1. Thus h 6∈ A . This is a
contradiction.

• Suppose f00···0 = 0.
Since f is not identically 0, there exists β ∈ supp(f) with wt(β) mini-
mum among all nonzero entries. Then we have ∂S[1,0](f), where S = {k |
the kth bit of β is 0}. ∂S[1,0](f) is the symmetric signature [0, . . . , 0, 1] of ar-
ity wt(β). This gives [0, 1] = ∂

{2,...,wt(β)}
[1,1] ([0, · · · , 0, 1]). If there exists i such

that fxi=1 6∈ A , then we are done since we have [0, 1] now. Therefore, we
may assume fxi=1 ∈ A as well as fxi=0 ∈ A for all i ∈ [n], since we have
[1, 0] explicitly.
Since supp(f) is not affine, there exist a,b, c ∈ supp(f) such that a⊕b⊕c /∈
supp(f). Let a = a1a2 · · · an, b = b1b2 · · · bn, c = c1c2 · · · cn, and d =
a ⊕ b⊕ c = d1d2 · · · dn, and we denote a′ = a2 · · · an, b′ = b2 · · · bn, c′ =
c2 · · · cn, and d′ = d2 · · · dn.

a = a1a′ = a1a2 . . . an ∈ supp(f)
b = b1b′ = b1b2 . . . bn ∈ supp(f)

⊕ c = c1c′ = c1c2 . . . cn ∈ supp(f)
d = d1d′ = d1d2 . . . dn 6∈ supp(f)

If a1 = b1 = c1, then it follows that a1 = b1 = c1 = d1. This implies
that supp(fx1=a1) is not an affine subspace of Zn−1

2 . This contradicts that
fx1=a1 ∈ A . Hence, without loss of generality, we can assume that a1 = b1 =
c̄1, and it follows that a1 = b1 = c̄1 = d̄1.
Now we choose our h = ∂

{1}
[1,1](f), and

hα = f0α + f0α

for all α ∈ {0, 1}n−1.
We have

ha′ = fa1a′ + fā1a′ 6= 0,
hb′ = fb1b′ + fb̄1b′ 6= 0,
hc′ = fc1c′ + fc̄1c′ 6= 0,

since fa1a′ = fb1b′ = fc1c′ = 1 and fā1a′ ≥ 0, fb̄1b′ ≥ 0, fc̄1c′ ≥ 0. Since
supp(h) is affine and a′,b′, c′ ∈ supp(h), we have d′ ∈ supp(h), as d′ =
a′ ⊕ b′ ⊕ c′.

a′ ∈ supp(h)
b′ ∈ supp(h)

⊕ c′ ∈ supp(h)
d′ ∈ supp(h)
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By hd′ = fd1d′ + fd̄1d′ 6= 0, we have fd̄1d′ 6= 0 since fd1d′ = 0. Thus
d′ ∈ supp(fx1=d̄1). As f takes values in {0, 1}, fd̄1d′ = 1. Recall that
a1 = b1 = c̄1 = d̄1; we have d′ ∈ supp(fx1=c̄1), and also a′,b′ ∈ supp(fx1=c̄1).
The support of fx1=c̄1 is an affine subspace, and so we have c′ ∈ supp(fx1=c̄1),
as c′ = a′ ⊕ b′ ⊕ d′.

a′ ∈ supp(fx1=c̄1)
b′ ∈ supp(fx1=c̄1)

⊕ d′ ∈ supp(fx1=c̄1)
c′ ∈ supp(fx1=c̄1)

Thus c̄1c′ ∈ supp(f). So hc′ = fc1c′ + fc̄1c′ = 2. But hd′ = fd1d′ + fd̄1d′ = 1
since fd1d′ = 0 and fd̄1d′ = 1. Thus h 6∈ A . This is a contradiction.

3.3. Dichotomy when F̂ does not satisfy parity.
Theorem 3.12. If the signature set F̂ contains a signature that does not satisfy

the parity condition, then either Pl-Holant(ÊQ, F̂) is #P-hard, or F̂ ⊆ P̂, or F̂ ⊆ A ,
in which case the problem is tractable.

Proof. Let F = H2F̂ , where H2 =
[ 1 1

1 −1
]
. For any f̂ ∈ F̂ of arity n, let H⊗n2 f̂ =

f . One can translate the theorem statement to an equivalent statement in the Pl-
#CSP setting, i.e., either Pl-#CSP(F) is #P-hard, or F ⊆ P, or F ⊆ A . Recall
that Â = H2A = A .

If F̂ ⊆ P̂ or F̂ ⊆ A , equivalently if F ⊆ P or F ⊆ A , then the problem
Pl-#CSP(F) is tractable by Theorem 2.33. Otherwise, there exist f̂ , ĝ ∈ F̂ such that
f̂ /∈ P̂ and ĝ /∈ A . Translating to the Pl-#CSP setting, there exist f, g ∈ F such
that f /∈P and g /∈ A .

Moreover, by Lemma 3.1, we can construct [1, w] in Pl-Holant(ÊQ, F̂), where
w 6= 0, such that

Pl-Holant(ÊQ, [1, w], F̂) ≤T Pl-Holant(ÊQ, F̂).

This implies that
Pl-#CSP(H2[1, w],F) ≤T Pl-#CSP(F).

Depending on the value of w, we will be able to finish the proof by one of the following
two alternatives:
(A) Suppose we are able to construct a unary signature [1, b] with b4 6= 0, 1 in

Pl-#CSP(F), i.e.,

Pl-#CSP([1, b],F) ≤T Pl-#CSP(F).

In this case we have unary signatures ∂{1,2}[1,b] (=3) = [1, b2] and ∂
{1,2,3}
[1,b] (=4) =

[1, b3]. So

Pl-#CSP([1, b], [1, b2], [1, b3],F) ≤T Pl-#CSP(F).

Note that [1, b], [1, b2], [1, b3] are pairwise linearly independent since b4 6= 0, 1.
We have [1, b] 6∈ A ∪M̂ by Propositions 2.17 and 2.32. Then by Theorem 3.6
and f ∈ F \P, there exists a symmetric signature f ′ /∈P such that

Pl-#CSP(f ′, [1, b], [1, b2], [1, b3],F) ≤T Pl-#CSP([1, b], [1, b2], [1, b3],F).
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Note that the symmetric signature set {[1, b], f ′} satisfies

{[1, b], f ′} * P, {[1, b], f ′} * A , {[1, b], f ′} * M̂ .

So Pl-#CSP(f ′, [1, b]) is #P-hard by Theorem 2.34. Thus Pl-#CSP(F) is
#P-hard.

(B) Next, suppose we can construct [0, 1] and [1, x] with x4 = 1 in Pl-Holant(ÊQ, F̂),
i.e.,

Pl-Holant(ÊQ, [0, 1], [1, x], F̂) ≤T Pl-Holant(ÊQ, F̂).

Then by ĝ ∈ F̂ \ A and Lemma 3.9, we have a unary signature [y, z] in
Pl-Holant(ÊQ, F̂) that is not in A . Translating into Pl-#CSP(F), this means
that we have a unary signature H2[y, z] 6∈ A , because A is invariant under
H2. Then we are done by the previous case.

Now we prove the theorem according to the value of w.
1. Suppose w4 6= 1. As w 6= 0 is given, by Proposition 2.17 we have [1, w] 6∈ A ,

and thus we have H2[1, w] 6∈ A in Pl-#CSP(F). Thus we are done by
alternative (A).

2. Suppose w = ±1.
In this case, in Pl-#CSP(F) we have H2[1, w] = [1 + w, 1 − w] = 2[1, 0] if
w = 1, or 2[0, 1] if w = −1. If, up to a scalar, each signature in F takes value
in {0, 1}, then we are done by Lemma 3.11. Otherwise, we can get a unary
signature [1, c] with c 6= 0, 1 by Lemma 3.10 in Pl-#CSP(F).
• If c4 6= 1, then we are done by alternative (A), as c 6= 0 is given by

Lemma 3.10.
• If c = ±i, we translate into Pl-Holant(ÊQ, F̂) by H−1

2 = 1
2H2. So

we have H−1
2 [1, c] = 1+c

2 [1,−c], and therefore also ∂
{1,2}
[1,−c]([1, 0, 1, 0]) =

−2c[0, 1] in Pl-Holant(ÊQ, F̂), where the signature [1, 0, 1, 0] ∈ ÊQ.
Thus we are done by alternative (B).

• If c = −1, again we translate into Pl-Holant(ÊQ, F̂) by H−1
2 . In addition

to [1, w] where w = ±1, and so w4 = 1, we also have H−1
2 [1,−1] = [0, 1]

in Pl-Holant(ÊQ, F̂). Thus we are done by alternative (B).
3. For w = ±i, in addition to [1, w] with w4 = 1, we also have ∂{1,2}[1,w] ([1, 0, 1, 0]) =

2w[0, 1] in Pl-Holant(ÊQ, F̂). Thus we are done by alternative (B).

Theorem 3.12 is a dichotomy for Pl-#CSP(F) in the case when F̂ does not satisfy
the Parity Condition. It conforms to the final form of Theorem 6.1. Note that since
some signature in F̂ violates the Parity Condition, the potential tractability condition
F̂ ⊆M is impossible so it does not appear in the statement of Theorem 3.12.

4. A dichotomy theorem for Pl-CSP2(ÊQ, F̂). In this section we prove
a dichotomy theorem for Pl-CSP2(ÊQ, F̂), Theorem 4.9, where all signatures in F̂
satisfy the Parity Condition. By (2.2), we have

Pl-CSP2(ÊQ, F̂) ≡T Pl-Holant(EQ2, ÊQ, F̂).
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Theorem 4.9 will be used later in section 5 in the situation when we can construct
(=4) in Pl-Holant(ÊQ, F̂). Then we have the following chain of equivalent problems:

Pl-CSP(F) ≡T Pl-Holant(ÊQ, F̂)
≡T Pl-Holant(ÊQ, (=4), F̂) (when we can construct (=4))
≡T Pl-Holant(ÊQ, EQ2, F̂) (by Lemma 2.3)
≡T Pl-CSP2(ÊQ, F̂).

By Proposition 2.17, a binary signature [1, 0, x] is not in A iff x4 6= 0, 1. Suppose
we have some [1, 0, x]. The following lemma says that if [1, 0, x] /∈ A , then we can
get [1, 0, z] for any z ∈ C, as well as [0, 1]⊗2, in Pl-Holant(ÊQ, F̂). Moreover, even if
x = ±i, we still can get [0, 1]⊗2 and [1, 0,−1] from [1, 0, x] in Pl-Holant(ÊQ, F̂). The
proof of the lemma is the same as the proof of Lemma 8.3 in [27].

Lemma 4.1. If x ∈ C and [1, 0, x] /∈ A , then for any z ∈ C,

Pl-Holant([1, 0, z], [0, 1]⊗2, ÊQ, F̂) ≤T Pl-Holant([1, 0, x], ÊQ, F̂).

Moreover, if x = ±i, we have

Pl-Holant([1, 0,−1], [0, 1]⊗2, ÊQ, F̂) ≤T Pl-Holant([1, 0, x], ÊQ, F̂).

Proof. We will use the following gadget (Figure 8) from [27], where circle vertices
are assigned [1, 0, 1, 0] ∈ ÊQ and square vertices are assigned [1, 0, x]. It has signature
[1 + x2, 0, 2x].

Fig. 8. A gadget with signature [1 + x2, 0, 2x].

• For [1, 0, x] 6∈ A we have x4 6= 0, 1 by Proposition 2.17. If |x| 6= 1, by
combining k copies of [1, 0, x], we have [1, 0, xk]. Then we can use polynomial
interpolation to get a reduction

Pl-Holant([y, 0, z], ÊQ, F̂) ≤T Pl-Holant([1, 0, x], ÊQ, F̂)

for any y, z ∈ C. In particular, we can get [1, 0, z] for any z ∈ C and [0, 0, 1] =
[0, 1]⊗2.
Otherwise, |x| = 1. In [1 + x2, 0, 2x], 0 < |1 + x2| < 2 by x 6= ±i and x 6= ±1.
However, |2x| = 2. Therefore, after normalizing, the signature [1, 0, 2x

1+x2 ] can
interpolate [1, 0, z] for any z ∈ C and [0, 0, 1] = [0, 1]⊗2.

• For x = ±i, [1 + x2, 0, 2x] = ±2i[0, 0, 1] = ±2i[0, 1]⊗2, and by combining two
copies of [1, 0, x], we have [1, 0,−1].

A very desirable tool is to pin a variable to 0 or 1. This means we would like to
have [1, 0] and [0, 1]. We do have [1, 0] ∈ ÊQ. However, if all signatures in F̂ satisfy
the even Parity Condition, namely fα = 0 for all α of odd weight, then every signature
constructed in Pl-Holant(ÊQ, F̂) satisfies the even Parity Condition. Therefore, it is
impossible to construct [0, 1]. But it is possible to construct [0, 1]⊗2. The next lemma
shows that with ÊQ, getting [0, 1]⊗2 is almost as good as getting [0, 1].
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Lemma 4.2. For C = A or M , if there exists f ∈ F̂ of arity n ≥ 2 such that
fxi=1 /∈ C for some i ∈ [n], then there exists a signature g /∈ C with arity(g) = n− 1
such that

Pl-Holant(ÊQ, [0, 1]⊗2, g, F̂) ≤T Pl-Holant(ÊQ, [0, 1]⊗2, F̂).

Furthermore, if f satisfies the even Parity Condition, then so does g.
Proof. We have that [1, 0, 1, 0] ∈ ÊQ. By having [0, 1]⊗2, and the fact that

∂[0,1]([1, 0, 1, 0]) = [0, 1, 0], we get [0, 1, 0]⊗2 by applying ∂[0,1]⊗2 on [1, 0, 1, 0]⊗2. Then
by having [1, 0] ∈ ÊQ, we get h(x1, x2, x3) = [0, 1, 0] ⊗ [0, 1], where the binary dise-
quality is on x1, x2 and the unary [0, 1] is on x3. By connecting the variable x2 of h
to the variable xi+1 (if i = n, then let xi+1 = x1) of f and connecting the variable x3
of h to the variable xi of f (see Figure 9), the gadget gives an (n − 1)-ary signature
g, such that

g(x1, . . . , xi−1, xi+1, . . . , xn) =
∑

x′
i
,x′
i+1∈{0,1}

f(x1, . . . , x
′
i, x
′
i+1, . . . , xn)h(xi+1, x

′
i+1, x

′
i).

Notice that the variables of f and h are ordered counterclockwise, and connections
respect this order in a planar fashion.

...

Fig. 9. The circle vertex is assigned f , the square vertex denotes [0, 1], and the triangle vertex
denotes [0, 1, 0]. The two nodes connected by the dashed line are a single signature [0, 1, 0]⊗ [0, 1].

We have

g(x1, . . . , xi−1, xi+1, . . . , xn) = fxi=1(x1, . . . , xi−1, xi+1, . . . , xn).

Thus g ∈ A iff fxi=1 ∈ A , and g ∈M iff fxi=1 ∈M , by Lemma 2.36.
The next lemma shows that for an n-ary signature with affine support and a set

of free variables X = {xi1 , xi2 , . . . , xik}, if two consecutive variables xs, xs+1 /∈ X,
then we can combine the two variables to one new variable using [1, 0, 1, 0], without
changing the compressed signature.

Lemma 4.3. Let f be an n-ary signature with affine support of dimension k, and
let X = {xi1 , xi2 , . . . , xik} be a set of free variables. If there exists s ∈ [n] such that
X does not include xs, xs+1 (if s = n, then xs+1 = x1), letting

g(x1 . . . , xs−1, x
′, xs+2, . . . , xn)

=
∑

xs,xs+1∈{0,1}
f(x1 . . . , xs−1, xs, xs+1, . . . , xn)[1, 0, 1, 0](xs+1, xs, x

′),

then g has affine support, X is a set of free variables of g, and fX = gX . On its
support, x′ = xs ⊕ xs+1. Furthermore, if f satisfies the even Parity Condition, then
so does g.
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Proof. We first note that g as defined is the signature of a planar gadget using f
and [1, 0, 1, 0]; the order of variable connections respects planarity. Since X is a set of
free variables for f , if we fix an assignment on X, then there exist unique xs = xs(X),
xs+1 = xs+1(X) as affine linear functions such that f is nonzero. Moreover, in

∑

xs,xs+1∈{0,1}
f(x1 . . . , xs−1, xs, xs+1, . . . , xn)[1, 0, 1, 0](xs+1, xs, x

′),

if [1, 0, 1, 0] takes value 1, then x′ must be xs+1 ⊕ xs. This implies that g has affine
support, and X is a set of free variables. It follows that fX = gX .

The following two lemmas describe how to find a set of free variables that includes
an adjacent pair of variables.

Lemma 4.4. Let f be a signature with affine support of dimension k ≥ 2, and
suppose there are no variables that take a constant value in the support. Then there
exists a set of free variables X = {xi1 , xi2 , . . . , xik} where some two variables are
adjacent.

Proof. Let X = {xi1 , xi2 , . . . , xik} be the set of free variables which is minimum
in the lexicographic order. If i2 = i1 + 1, then we are done. Otherwise, xi2−1 is
not in X. If its dependency xi2−1 =

∑k
j=1 ajxij + b involves any variable other than

xi1 , namely if aj 6= 0 for some 1 < j ≤ k, then by switching xi2−1 with the variable
xij , we get another set of free variables which is lexicographically smaller than X, a
contradiction. Thus we have xi2−1 = axi1 + b. Since there are no variables that take
a constant value in the support, we have a 6= 0. So X ′ = {xi2−1, xi2 , . . . , xik} is a set
of free variables that includes xi2−1, xi2 .

Lemma 4.5. Let f be a 5-ary signature with affine support of dimension 3. Sup-
pose there are no variables that take a constant value in the support. Then there exists
a set of free variables X such that the variables in X are consecutive in a cyclic sense.

Proof. By Lemma 4.4, without loss of generality, we can assume that there exists
a set of free variables including x1, x2. If the other free variable is x3 or x5, then we are
done. Otherwise, {x1, x2, x4} is a set of free variables and x3 = a1x1 +a2x2 +a4x4 +c
and x5 = b1x1 + b2x2 + b4x4 + d, where ai, bi, c, d ∈ Z2 for i ∈ {1, 2, 4}.

• If a1 6= 0, then {x2, x3, x4} is a set of free variables.
• If a4 6= 0, then {x1, x2, x3} is a set of free variables.
• If b2 6= 0, then {x1, x4, x5} is a set of free variables.
• If b4 6= 0, then {x1, x2, x5} is a set of free variables.
• If a1 = a4 = 0 and b2 = b4 = 0, then a2 6= 0 and b1 6= 0 since there are no

variables that take a constant value in the support. So {x3, x4, x5} is a set of
free variables.

This finishes the proof.
If F̂ ⊆ A , then Pl-Holant(ÊQ, F̂) is tractable. Otherwise, there exists f ∈

F̂ \ A . The following three lemmas are about reducing the arity of f . Since all
signatures in ÊQ ∪ F̂ satisfy the Parity Condition, any constructible unary signature
in Pl-Holant(ÊQ, F̂) also satisfies the Parity Condition and therefore is in A . So
the lowest arity a constructible nonaffine signature can have is 2. Furthermore, a
binary signature satisfying the even Parity Condition is symmetric and takes the
form [a, 0, b]. By Proposition 2.17, [1, 0, x] /∈ A iff x4 6= 0, 1. The next lemma implies
that in Pl-Holant(ÊQ, [0, 1]⊗2, [1, 0,−1], F̂), from any f ∈ F̂ \ A we can construct
some [1, 0, x] 6∈ A .
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...

Fig. 10. The circle vertex is assigned f and the square vertex is assigned [1, 0, 1, 0].

Lemma 4.6. If all signatures in F̂ satisfy the Parity Condition and F̂ * A , then
there exists [1, 0, x] 6∈ A such that

Pl-Holant([1, 0, x], ÊQ, [0, 1]⊗2, [1, 0,−1], F̂) ≤T Pl-Holant(ÊQ, [0, 1]⊗2, [1, 0,−1], F̂).

Proof. Since F̂ * A , there exists f ∈ F̂ \ A . By Lemma 2.38, we can assume
that f00···0 = 1 and f satisfies the even Parity Condition. If f has arity 1, then
f = [1, 0] ∈ A . This is a contradiction. If f has arity 2, then f = [1, 0, x] with
x4 6= 0, 1 and we are done. In the following, we assume that f has arity ≥ 3. If we
can construct a nonaffine signature with arity ≤ n−1, then we are done by induction.

If there exists i ∈ [n] such that fxi=0 /∈ A , then we are done by induction since
we have [1, 0] ∈ ÊQ. If there exists i ∈ [n] such that fxi=1 /∈ A , then we are done by
induction and Lemma 4.2. So in the following we assume that both fxi=0 and fxi=1

are affine signatures for any i ∈ [n].
Claim. If supp(f) is not affine, then we can construct a signature that is not in

A with arity ≤ n− 1.
Certainly supp(f) is not a linear subspace. Note that (0, 0, . . . , 0) ∈ supp(f). A

subset of Zn2 containing (0, 0, . . . , 0) is affine iff it is a linear subspace. So supp(fxi=0)
is a linear subspace of Zn−1

2 since fxi=0 is affine and fxi=0
0···0 = 1. By Lemma 3.8,

there exist a = a1a2 · · · an,b = b1b2 · · · bn, such that a,b ∈ supp(f), c = a ⊕ b =
c1c2 · · · cn /∈ supp(f), and there exists i ∈ [n] such that ai 6= bi. Without loss
of generality, we assume that a1 = 0, b1 = 1. It follows that c1 = 1. Let a′ =
a3 · · · an,b′ = b3 · · · bn, c′ = c3 · · · cn.

By connecting one variable of [1, 0,−1] to the first variable of f , we get a gadget
that gives

f̄(x1, x2, . . . , xn) =
∑

x′1∈{0,1}
[1, 0,−1](x1, x

′
1)f(x′1, x2, . . . , xn)

= (−1)x1f(x1, x2, . . . , xn).

Moreover, by connecting the variables x2, x1 of [1, 0, 1, 0] to the variables x1, x2 of
f , respectively, the planar gadget in Figure 10 gives the signature h(x′, x3, x4, . . . , xn)
satisfying

h(x′, x3, x4, . . . , xn) =
∑

x1,x2∈{0,1}
[1, 0, 1, 0](x2, x1, x

′)f(x1, x2, . . . , xn).

This way of connecting the variables satisfies planarity. Note that

h(x1 ⊕ x2, x3, . . . , xn) = f(x1, x2, x3, . . . , xn) + f(x1, x2, x3, . . . , xn).

Similarly, by connecting the variables x2, x1 of [1, 0, 1, 0] to the variables x1, x2 of f̄ ,
respectively, the planar gadget gives the signature h̄(x′, x3, x4, . . . , xn) satisfying

h̄(x′, x3, x4, . . . , xn) =
∑

x1,x2∈{0,1}
[1, 0, 1, 0](x2, x1, x

′)f̄(x1, x2, . . . , xn),
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and we have

h̄(x1 ⊕ x2, x3, . . . , xn) = (−1)x1f(x1, x2, x3, . . . , xn) + (−1)x1f(x1, x2, x3, . . . , xn).

If h /∈ A or h̄ /∈ A , then we are done since both h and h̄ have arity n − 1. In the
following, we assume that both of h and h̄ are affine.

Now we use the Tableau Calculus.
• If both ā1ā2a′ and b̄1b̄2b′ are not in supp(f), then

h(a1⊕a2)a′ = fa1a2a′ + fā1ā2a′ 6= 0,
h(b1⊕b2)b′ = fb1b2b′ + fb̄1b̄2b′ 6= 0

(4.1)

since fa1a2a′ 6= 0, fb1b2b′ 6= 0, and fā1ā2a′ = fb̄1b̄2b′ = 0.
Similarly, we have

h̄(a1⊕a2)a′ = fa1a2a′ − fā1ā2a′ 6= 0,
h̄(b1⊕b2)b′ = −fb1b2b′ + fb̄1b̄2b′ 6= 0.

(4.2)

We have

h00···0 = f000···0 + f110···0,

h̄00···0 = f000···0 − f110···0.

Then by f000···0 6= 0, either h00···0 or h̄00···0 is nonzero.
1. Suppose h00···0 6= 0. Note that h is affine, so supp(h) is a linear subspace.

Then, by (4.1),
(a1 ⊕ a2)a′ ∈ supp(h)

⊕ (b1 ⊕ b2)b′ ∈ supp(h)
(c1 ⊕ c2)c′

and we have (c1⊕ c2)c′ ∈ supp(h). In other words, h(c1⊕c2)c′ 6= 0, which
is just fc1c2c′ + fc̄1c̄2c′ 6= 0. Since fc1c2c′ = 0, we have fc̄1c̄2c′ 6= 0.

2. Suppose h̄00···0 6= 0. Now we use h̄ in place of h and use (4.2). With the
same proof as above we can derive the same conclusion that fc̄1c̄2c′ 6= 0.

Hence, in either case, we have c̄1c̄2c′ ∈ supp(f). Then c̄2c′ ∈ supp(fx1=0)
since c̄1 = 0. Note that supp(fx1=0) is a linear subspace and

a2a′ ∈ supp(fx1=0)
⊕ c̄2c′ ∈ supp(fx1=0)

b̄2b′

and we have b̄2b′ ∈ supp(fx1=0). This implies that b̄1b̄2b′ ∈ supp(f). This
contradicts the hypothesis b̄1b̄2b′ /∈ supp(f).

• If both ā1ā2a′ and b̄1b̄2b′ are in supp(f), then by

a2a′ ∈ supp(fx1=0)
⊕ b̄2b′ ∈ supp(fx1=0)

c̄2c′

we have c̄2c′ ∈ supp(fx1=0). Thus c̄1c̄2c′ ∈ supp(f) since c̄1 = 0.
We claim that all of fa1a2a′ , fā1ā2a′ , fb1b2b′ , fb̄1b̄2b′ , fc̄1c̄2c′ are powers of i.
First, since fx1=0 is affine and all of fa1a2a′ , fb̄1b̄2b′ , fc̄1c̄2c′ are nonzero entries
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of fx1=0, we derive that all of fa1a2a′ , fb̄1b̄2b′ , fc̄1c̄2c′ are powers of i by
f00···0 = 1. Second, since fx3=a3 is affine, both fa1a2a′ and fā1ā2a′ are nonzero
entries of fx3=a3 , and fa1a2a′ is a power of i, we derive that fā1ā2a′ is a power
of i. Finally, since fx3=b3 is affine, both fb1b2b′ and fb̄1b̄2b′ are nonzero entries
of fx3=b3 , and fb̄1b̄2b′ is a power of i, we derive that fb1b2b′ is a power of i.
By

h(c1⊕c2)c′ = fc1c2c′ + fc̄1c̄2c′ ,

h̄(c1⊕c2)c′ = −fc1c2c′ + fc̄1c̄2c′ ,

we have |h(c1⊕c2)c′ | = |h̄(c1⊕c2)c′ | = 1 since fc̄1c̄2c′ is a power of i and fc1c2c′ =
0. On the other hand,

(4.3)
h(a1⊕a2)a′ = fa1a2a′ + fā1ā2a′ ,

h̄(a1⊕a2)a′ = fa1a2a′ − fā1ā2a′ ,

and both h(a1⊕a2)a′ and h̄(a1⊕a2)a′ are sums of two quantities, each a power
of i. If at least one of them is not zero, then it has norm 2 or

√
2. This implies

that h or h̄ is not affine. This is a contradiction.
On the other hand, if both h(a1⊕a2)a′ and h̄(a1⊕a2)a′ are zero, then fa1a2a′ = 0,
by treating (4.3) as a linear system. This contradicts that a1a2a′ ∈ supp(f).

• If ā1ā2a′ ∈ supp(f) and b̄1b̄2b′ /∈ supp(f), we claim that all of fa1a2a′ , fā1ā2a′ ,
fb1b2b′ are powers of i. First, since fx1=0 is affine and both fa1a2a′ and f00···0
are nonzero entries of fx1=0, fa1a2a′ is a power of i by f00···0 = 1. Second,
since fx3=a3 is affine and both fa1a2a′ and fā1ā2a′ are nonzero entries of
fx3=a3 , fā1ā2a′ is a power of i. Finally, since fx1=1 is affine and both fb1b2b′
and fā1ā2a′ are nonzero entries of fx1=1, fb1b2b′ is a power of i.
By

h(b1⊕b2)b′ = fb1b2b′ + fb̄1b̄2b′ ,

h̄(b1⊕b2)b′ = −fb1b2b′ + fb̄1b̄2b′ ,

we have |h(b1⊕b2)b′ | = |h̄(b1⊕b2)b′ | = 1 since fb1b2b′ is a power of i and fb̄1b̄2b′ =
0. Moreover, by

h(a1⊕a2)a′ = fa1a2a′ + fā1ā2a′ ,

h̄(a1⊕a2)a′ = fa1a2a′ − fā1ā2a′ ,

and an argument similar to that of the previous case, at least one of h(a1⊕a2)a′

and h̄(ā1⊕ā2)a′ has norm 2 or
√

2. This implies that h or h̄ is not affine. This
is a contradiction.

• If ā1ā2a′ /∈ supp(f) and b̄1b̄2b′ ∈ supp(f), the proof is symmetric by reversing
the order of a and b in the previous item.

This completes the proof of the claim.
Now we can assume that supp(f) is affine and has dimension k.
If k = 0, then f ∈ A . This is a contradiction.
If k = 1, then there exists exactly one α ∈ {0, 1}n such that fα 6= 0 other than

f00···0 = 1. Note that wt(α) is even since f satisfies the even Parity Condition. The
signature ∂S[1,0](f), where S = {k| the kth bit of α is 0}, has arity wt(α) and has
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HOLOGRAPHIC ALGORITHM WITH MATCHGATES STOC17-107

exactly two nonzero values at 0wt(α) and 1wt(α). By connecting wt (α)
2 −1 many copies

of =2 to ∂S[1,0](f) we get the binary signature [1, 0, fα]. If f4
α 6= 1, then we are done

as [1, 0, fα] /∈ A by Proposition 2.17. Otherwise, f is affine. This is a contradiction.
If k ≥ 4, then since both fxi=0 and fxi=1 are affine for all i ∈ [n], we get f ∈ A

by Lemma 2.18. This is a contradiction.
Thus we only need to consider k = 2 or k = 3. If on its support some variable xi

is a constant c, then f = fxi=c ⊗ [1, 0](xi) or fxi=c ⊗ [0, 1](xi) depending on whether
c = 0 or 1, respectively. Then f would be affine, a contradiction. So no variable of f
takes a constant value on its support.

• For k = 2, by Lemma 4.4, without loss of generality, we can assume that
{x1, x2} is a set of free variables. Then applying Lemma 4.3 repeatedly, we
can get a ternary signature f̂ such that

Pl-Holant(ÊQ, [0, 1]⊗2, [1, 0,−1], f̂ , F̂) ≤T Pl-Holant(ÊQ, [0, 1]⊗2, [1, 0,−1], F̂),

where the compressed signatures of f̂ and f for {x1, x2} are the same. By
Lemma 4.3, f̂ satisfies the even Parity Condition and f̂000 = f00...0 = 1.
By Corollary 2.14, the compressed signature of f is not affine. Thus the
compressed signature of f̂ is not affine. So f̂ is not affine.
If there exists i ∈ [3] such that f̂xi=0 /∈ A , then we are done by [1, 0] ∈ ÊQ.
If there exists i ∈ [3] such that f̂xi=1 /∈ A , then we are done by Lemma 4.2
and [0, 1]⊗2. Therefore, we may assume that f̂xi=0, f̂xi=1 are affine for all
i ∈ [3]. Then there exist r, s, t ∈ {0, 1, 2, 3} such that f̂x1=0 = [1, 0, ir],
f̂x2=0 = [1, 0, is], f̂x3=0 = [1, 0, it]. So

Mx1,x2x3(f̂) =
[
f̂000 f̂001 f̂010 f̂011
f̂100 f̂101 f̂110 f̂111

]
=
[
1 0 0 ir

0 is it 0

]
.

Note that the compressed signature of f̂ for the free variable set {x1, x2} is
[1, ir, is, it]. It is affine iff it = ±ir+s by Lemma 2.15. Since f̂ 6∈ A , we have
it = ±ir+s+1, i.e.,

Mx1,x2x3(f̂) =
[
1 0 0 ir

0 is ±ir+s+1 0

]
.

By connecting three copies of f̂x2=0 = [1, 0, is] consecutively, the gadget gives
[1, 0, i3s] = [1, 0, i−s]. Then we have (see (7.15))

ĝ(x1, x2, x3) =
∑

x′1∈{0,1}
[1, 0, i−s](x1, x

′
1)f̂(x′1, x2, x3),

with signature matrix

Mx1,x2x3(ĝ) =
[
1 0 0 ir

0 1 ±ir+1 0

]
, with Mx2,x1x3(ĝ) =

[
1 0 0 1
0 ir ±ir+1 0

]
.

Connecting variables x1, x3 of ĝ to variables x′3, x′1 of [1, 0, 1, 0], respectively,
creates a planar gadget with signature

∑

x1,x3∈{0,1}
ĝ(x1, x2, x3)[1, 0, 1, 0](x3, x

′
2, x1) = [2, 0, (1± i)ir](x1, x

′
2).

This is not affine since the norms of 2 and (1± i)ir are different. Thus we are
done.

D
ow

nl
oa

de
d 

06
/0

3/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOC17-108 JIN-YI CAI AND ZHIGUO FU

• If the dimension k of the support is 3, then n ≥ 4 since f satisfies the even
Parity Condition.
Claim. We can get a signature f̃ of arity 4 that has the same compressed
signature as f . Furthermore, f̃ also satisfies the even Parity Condition.
To prove this, if n = 4, then we set f̃ = f . Otherwise, n ≥ 5. By Lemma 4.4,
without loss of generality, we can assume that there exists a set of free vari-
ables including {x1, x2}. If {x1, x2, x3} or {xn, x1, x2} is a set of free variables,
then by applying Lemma 4.3 repeatedly, we can shrink the variables that are
not in the free variable set to one variable while keeping planarity. Then we
get a signature f̃ that has arity 4, and it has the same compressed signature
as f .
Otherwise, there exists k such that {x1, x2, xk} is a set of free variables,
where 4 ≤ k ≤ n − 1. By Lemma 4.3, we can shrink the variables indexed
by 3 ≤ i ≤ k − 1 to one variable x′ and shrink the variables indexed by
k + 1 ≤ i ≤ n to one variable x′′ while keeping planarity. Then we get
a signature g(x1, x2, x

′, xk, x′′) with arity 5 that has the same compressed
signature as f . Then, by Lemma 4.5, there exists a set of free variables which
are consecutive. Then, by Lemma 4.3, we can get a signature f̃ with arity 4
that has the same compressed signature as f .
In either case, we used Lemma 4.3 to derive the arity 4 signature f̃ from f ;
therefore, f̃ also satisfies the even Parity Condition.
This completes the proof of the claim.
Since f is not affine, f̃ is not affine. By Lemma 2.38 we can assume that

Mx1x2,x4x3(f̃) =




f̃0000 f̃0010 f̃0001 f̃0011
f̃0100 f̃0110 f̃0101 f̃0111
f̃1000 f̃1010 f̃1001 f̃1011
f̃1100 f̃1110 f̃1101 f̃1111


 =




1 0 0 b
0 α β 0
0 γ δ 0
c 0 0 d


 .

Let f̃ be the compressed signature of f̃ for {x1, x2, x3}; then

(4.4) Mx1,x2x3(f̃) =
[
f̃0000 f̃0011 f̃0101 f̃0110
f̃1001 f̃1010 f̃1100 f̃1111

]
=
[
1 b β α
δ γ c d

]
.

If there exists i ∈ [4] such that f̃xi=0 is not affine, then we are done by
[1, 0] ∈ ÊQ. If there exists i ∈ [4] such that f̃xi=1 is not affine, then we are
done by Lemma 4.2 and [0, 1]⊗2. Thus we may assume that both f̃xi=0 and
f̃xi=1 are affine for i ∈ [4]. Since f̃xi=0 is affine for i = 1, 2, 3, by Lemma 2.15
there exist r, s, t ∈ {0, 1, 2, 3} and ε1, ε2, ε3 ∈ {1,−1} such that

Mx2,x4x3(f̃x1=0) =
[
1 0 0 b
0 α β 0

]
=
[
1 0 0 ir

0 ε1i
r+s is 0

]
,

Mx1,x4x3(f̃x2=0) =
[
1 0 0 b
0 γ δ 0

]
=
[
1 0 0 ir

0 ε2i
r+t it 0

]
,

Mx1x2,x4(f̃x3=0) =




1 0
0 β
0 δ
c 0


 =




1 0
0 is

0 it

ε3i
s+t 0


 .
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Moreover, since f̃x4=1 is affine, there exists ε4 ∈ {1,−1} such that

Mx1x2,x3(f̃x4=1) =




0 b
β 0
δ 0
0 d


 =




0 ir

is 0
it 0
0 ε4i

r+s+t


 .

So we have

(4.5) Mx1x2,x4x3(f̃) =




1 0 0 b
0 α β 0
0 γ δ 0
c 0 0 d


 =




1 0 0 ir

0 ε1i
r+s is 0

0 ε2i
r+t it 0

ε3i
s+t 0 0 ε4i

r+s+t


 .

Note that we have ∂
{3,4}
[1,0] (f̃) = [1, 0, ε3is+t], ∂{1,2}[1,0] (f̃) = [1, 0, ir]. By con-

necting consecutively three copies of [1, 0, ε3is+t] (resp., of [1, 0, ir]), we have
[1, 0, ε33i3s+3t] = [1, 0, ε3(is+t)−1] (resp., [1, 0, i3r] = [1, 0, i−r]). Let

h(x1, x2, x3, x4) =
∑

x′2,x
′
4∈{0,1}

f̃(x1, x
′
2, x3, x

′
4)[1, 0, ε3(is+t)−1](x′2, x2)[1, 0, i−r](x′4, x4).

Then (see (7.19) and (7.21))

Mx1x2,x4x3 (h) =




1 0 0 1
0 ε1ε3ir−t ε3i−r−t 0
0 ε2ir+t it−r 0
1 0 0 ε3ε4


 =




1 0 0 1
0 ε1ε3(−1)ta ε3(−1)r+ta 0
0 ε2a (−1)ra 0
1 0 0 ε3ε4


 ,

where a = ir+t.
Take two copies of h, and connect the third and fourth variables of one copy
to the fourth and third variables of another copy to give the planar gadget
(see Figure 11) with the signature

h′(x1, x2, x3, x4) =
∑

x′3,x
′
4∈{0,1}

h(x1, x2, x
′
3, x
′
4)h(x3, x4, x

′
4, x
′
3).

Fig. 11. The two vertices are assigned h. The edges with a diamond indicate the first variable.
Other variables are ordered counterclockwise.

Note that (see Figure 2; for the second copy of h we rotate 180◦)

Mx1x2,x4x3 (h′) =




1 0 0 1
0 ε1ε3(−1)ta ε3(−1)r+ta 0
0 ε2a (−1)ra 0
1 0 0 ε3ε4






1 0 0 1
0 (−1)ra ε3(−1)r+ta 0
0 ε2a ε1ε3(−1)ta 0
1 0 0 ε3ε4




=




2 0 0 1 + ε3ε4
0 ε3(ε1 + ε2) 2ε1(−1)t 0
0 2ε2(−1)t ε3(ε1 + ε2) 0

1 + ε3ε4 0 0 2


 .
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Let h′′ = ∂
{1}
[1,0](h′); then

Mx2,x4x3(h′′) =
[
2 0 0 1 + ε3ε4
0 ε3(ε1 + ε2) 2ε1(−1)t 0

]
.

Thus we have the following:
– If ε1ε2ε3ε4 = −1, then exactly one of ε1 = −ε2 or ε3 = −ε4 holds. This

implies that h′′ does not have affine support. Thus h′′ is not affine. Then
we are done by induction.

– If ε1ε2ε3ε4 = 1, by (4.4) and (4.5),

Mx1,x2x3(f̃) =
[

1 ir is ε1i
r+s

it ε2i
r+t ε3i

s+t ε4i
r+s+t

]
,

where f̃ is the compressed signature of f for {x1, x2, x3}. Note that f̃
is affine by Lemma 2.16. Thus f is affine. This is a contradiction.

The next lemma shows how to reduce the arity of a nonaffine signature in
Pl-Holant(ÊQ, F̂) when all signatures in F̂ take values in {0, 1}.

Lemma 4.7. Suppose all signatures in F̂ take values in {0, 1} and satisfy the
Parity Condition. If F̂ contains a signature f 6∈ A of arity n ≥ 3, then there exists
a signature g /∈ A of arity < n such that

Pl-Holant(ÊQ, g, F̂) ≤T Pl-Holant(ÊQ, F̂).

Furthermore, if f satisfies the even Parity Condition, then so does g.
Proof. The proof is by induction on n and uses the Tableau Calculus.
If there exists i ∈ [n] such that fxi=0 6∈ A , then we are done since we have

[1, 0] ∈ ÊQ. In the following, we assume that fxi=0 ∈ A for 1 ≤ i ≤ n. By
Lemma 2.38, we can assume that f00···0 = 1 and f satisfies the even Parity Condition.

For a {0, 1}-valued signature f , f ∈ A iff supp(f) is an affine subspace. Thus
supp(f) is not an affine subspace and in particular not a linear subspace. A subset of
Zn2 containing (0, 0, . . . , 0) is affine iff it is a linear subspace. By (0, 0, . . . , 0) ∈ supp(f)
and fxi=0 ∈ A , supp(fxi=0) is a linear subspace of Zn−1

2 . By Lemma 3.8, there exist
a = a1a2 · · · an,b = b1b2 · · · bn such that a,b ∈ supp(f), c = a ⊕ b = c1c2 · · · cn /∈
supp(f), and there exists i ∈ [n] such that ai 6= bi. Without loss of generality,
we assume that a1 = 0, b1 = 1. It follows that c1 = 1. Let a′ = a3 · · · an,b′ =
b3 · · · bn, c′ = c3 · · · cn.

By connecting the variables x2, x1 of [1, 0, 1, 0] to the variables x1, x2 of f , respec-
tively, the planar gadget gives the signature

h(x′, x3, x4, . . . , xn) =
∑

x1,x2∈{0,1}
[1, 0, 1, 0](x2, x1, x

′)f(x1, x2, . . . , xn).

Note that

h(x1 ⊕ x2, x3, . . . , xn) = f(x1, x2, x3, . . . , xn) + f(x̄1, x̄2, x3, . . . , xn).

If h /∈ A , then we are done since h has arity n − 1. So, in the following, we assume
that h ∈ A . Now comes the Tableau Calculus.
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• For ā1ā2a′ ∈ supp(f), b̄1b̄2b′ ∈ supp(f), since supp(fx1=0) is a linear sub-
space and

a2a′ ∈ supp(fxi=0)
⊕ b̄2b′ ∈ supp(fxi=0)

c̄2c′

we have c̄2c′ ∈ supp(fxi=0). This means that fc̄1c̄2c′ 6= 0 since c̄1 = 0. Note
that

h(c1⊕c2)c′ = fc1c2c′ + fc̄1c̄2c′ .

Thus |h(c1⊕c2)c′ | = 1 since fc1c2c′ = 0 and fc̄1c̄2c′ = 1 (as f is {0, 1}-valued).
Moreover, by

h(a1⊕a2)a′ = fa1a2a′ + fā1ā2a′ ,

we have |h(a1⊕a2)a′ | = 2, since fa1a2a′ = fā1ā2a′ = 1. This implies that h
is not affine, as nonzero values of h have different norms (Proposition 2.17).
This is a contradiction.

• For ā1ā2a′ /∈ supp(f), b̄1b̄2b′ /∈ supp(f), by

h00···0 = f000···0 + f110···0,

we have h00···0 6= 0 since f000···0 = 1 and f110···0 ∈ {0, 1}. This implies that
supp(h) is a linear subspace. By

h(a1⊕a2)a′ = fa1a2a′ + fā1ā2a′ ,

h(b1⊕b2)b′ = fb1b2b′ + fb̄1b̄2b′ ,

we have h(a1⊕a2)a′ = 1, h(b1⊕b2)b′ = 1 since fa1a2a′ = fb1b2b′ = 1 and
fā1ā2a′ = fb̄1b̄2b′ = 0. This implies that (a1 ⊕ a2)a′, (b1 ⊕ b2)b′ ∈ supp(h).
Then by

(a1 ⊕ a2)a′ ∈ supp(h)
⊕ (b1 ⊕ b2)b′ ∈ supp(h)

(c1 ⊕ c2)c′

we have (c1 ⊕ c2)c′ ∈ supp(h). This implies that

h(c1⊕c2)c′ = fc1c2c′ + fc̄1c̄2c′ 6= 0.

Thus fc̄1c̄2c′ 6= 0 since fc1c2c′ = 0. So c̄1c̄2c′ ∈ supp(f). Hence, c̄2c′ ∈
supp(fx1=0) since c̄1 = 0. By

a2a′ ∈ supp(fx1=0)
⊕ c̄2c′ ∈ supp(fx1=0)

b̄2b′

we have b̄2b′ ∈ supp(fx1=0). Thus b̄1b̄2b′ ∈ supp(f) as b̄1 = 0. This is a
contradiction.

• If ā1ā2a′ ∈ supp(f) and b̄1b̄2b′ /∈ supp(f), then we consider

(4.6)
h(a1⊕a2)a′ = fa1a2a′ + fā1ā2a′ ,

h(b1⊕b2)b′ = fb1b2b′ + fb̄1b̄2b′ .

This implies that h(a1⊕a2)a′ = 2 and h(b1⊕b2)b′ = 1. Thus h /∈ A . This is a
contradiction.
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• If ā1ā2a′ /∈ supp(f) and b̄1b̄2b′ ∈ supp(f), then (4.6) implies that h(a1⊕a2)a′ =
1 and h(b1⊕b2)b′ = 2. Thus h /∈ A . This is a contradiction.

The next lemma shows how to reduce the arity of a nonaffine signature with the
help of an additional binary signature [1, 0,−1] in Pl-Holant(ÊQ, [1, 0,−1], F̂), when
all signatures in F̂ take {0, 1,−1} values.

Lemma 4.8. Suppose all signatures in F̂ take values in {0, 1,−1} and satisfy the
Parity Condition. If F̂ contains a signature f 6∈ A of arity n ≥ 3, then there exists
a signature h /∈ A of arity < n such that

Pl-Holant(ÊQ, h, [1, 0,−1], F̂) ≤T Pl-Holant(ÊQ, [1, 0,−1], F̂).

Furthermore, if f satisfies the even Parity Condition, then so does h.
Proof. This proof is a bit more involved; it is also by induction on n and uses the

Tableau Calculus.
If there exists i ∈ [n] such that fxi=0 /∈ A , then we are done since we have

[1, 0] ∈ ÊQ. In the following, we assume that fxi=0 ∈ A for 1 ≤ i ≤ n. By
Lemma 2.38, we may assume that f00···0 = 1 and f satisfies the even Parity Condition.

Claim. If supp(f) is not an affine subspace, then we can construct a signature
that is not in A and has arity ≤ n− 1.

Suppose supp(f) is not an affine subspace; then it is not a linear subspace. But
supp(fxi=0) is a linear subspace of Zn−1

2 since fxi=0 ∈ A and fxi=0
0···0 = 1. By

Lemma 3.8, there exist a = a1a2 · · · an,b = b1b2 · · · bn, such that a,b ∈ supp(f),
c = a ⊕ b = c1c2 · · · cn /∈ supp(f), and there exists i ∈ [n] such that ai 6= bi. With-
out loss of generality, we assume that a1 = 0, b1 = 1. It follows that c1 = 1. Let
a′ = a3 · · · an,b′ = b3 · · · bn, c′ = c3 · · · cn.

Connecting the first variable of [1, 0,−1] to the first variable of f , the gadget gives
the signature

f̄(x1, x2, . . . , xn) =
∑

x′1∈{0,1}
[1, 0,−1](x′1, x1)f(x′1, x2, . . . , xn)

= (−1)x1f(x1, x2, . . . , xn).

Moreover, by connecting the variables x2, x1 of [1, 0, 1, 0] to the variables x1, x2 of f ,
respectively, the planar gadget gives the signature h(x′, x3, x4, . . . , xn) satisfying

h(x1 ⊕ x2, x3, . . . , xn) = f(x1, x2, x3, . . . , xn) + f(x1, x2, x3, . . . , xn).

Similarly, by connecting the variables x2, x1 of [1, 0, 1, 0] to the variables x1, x2 of f̄ ,
respectively, the planar gadget gives the signature h̄(x′, x3, x4, . . . , xn) satisfying

h̄(x1 ⊕ x2, x3, . . . , xn) = (−1)x1f(x1, x2, x3, . . . , xn) + (−1)x1f(x1, x2, x3, . . . , xn).

If at least one of {h, h̄} is not affine, then we are done since both h and h̄ have arity
n− 1. In the following, we assume that both h and h̄ are affine.

Next comes the Tableau Calculus.
• For ā1ā2a′ ∈ supp(f), b̄1b̄2b′ ∈ supp(f), note that (0, 0, . . . , 0) ∈ supp(f) and
fx1=0 ∈ A . Thus supp(fx1=0) is a linear subspace of Zn−1

2 . By

a2a′ ∈ supp(fxi=0)
⊕ b̄2b′ ∈ supp(fxi=0)

c̄2c′
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we have c̄2c′ ∈ supp(fxi=0). This means that fc̄1c̄2c′ 6= 0 since c̄1 = 0. Note
that

h(c1⊕c2)c′ = fc1c2c′ + fc̄1c̄2c′ ,

h̄(c1⊕c2)c′ = −fc1c2c′ + fc̄1c̄2c′ .

Thus |h(c1⊕c2)c′ | = |h̄(c1⊕c2)c′ | = 1 since fc1c2c′ = 0 and fc̄1c̄2c′ = ±1. More-
over, by

(4.7)
h(a1⊕a2)a′ = fa1a2a′ + fā1ā2a′ ,

h̄(a1⊕a2)a′ = fa1a2a′ − fā1ā2a′ ,

if both of h(a1⊕a2)a′ and h̄(a1⊕a2)a′ are zero, then fa1a2a′ = 0, by treating
(4.7) as a system of linear equations. This contradicts that a ∈ supp(f).
Thus we have |h(a1⊕a2)a′ | 6= 0 or |h̄(a1⊕a2)a′ | 6= 0. This implies that one of
|h(a1⊕a2)a′ | or |h̄(a1⊕a2)a′ | is 2 since fa1a2a′ , fā1ā2a′ ∈ {1,−1}. So h or h̄ is
not affine, because at least one of them has nonzero values of unequal norms.
This is a contradiction.

• For ā1ā2a′ /∈ supp(f), b̄1b̄2b′ /∈ supp(f), by treating the following as a linear
system:

(4.8)
h00···0 = f000···0 + f110···0,

h̄00···0 = f000···0 − f110···0,

we have h00···0 6= 0 or h̄00···0 6= 0 since f000···0 6= 0. Without loss of generality,
we assume that h00···0 6= 0. The same argument can be applied to h̄ if
h̄00···0 6= 0. Then supp(h) is a linear subspace. By

h(a1⊕a2)a′ = fa1a2a′ + fā1ā2a′ ,

h(b1⊕b2)b′ = fb1b2b′ + fb̄1b̄2b′ ,

we have |h(a1⊕a2)a′ | = 1, |h(b1⊕b2)b′ | = 1 since fā1ā2a′ = fb̄1b̄2b′ = 0 and
fa1a2a′ , fb1b2b′ ∈ {1,−1}. This implies that (a1⊕a2)a′, (b1⊕b2)b′ ∈ supp(h).
Then by

(a1 ⊕ a2)a′ ∈ supp(h)
⊕ (b1 ⊕ b2)b′ ∈ supp(h)

(c1 ⊕ c2)c′

we have (c1 ⊕ c2)c′ ∈ supp(h). This implies that

h(c1⊕c2)c′ = fc1c2c′ + fc̄1c̄2c′ 6= 0.

Thus fc̄1c̄2c′ 6= 0 since f(c1c2)c′ = 0. So c̄1c̄2c′ ∈ supp(f). Therefore, c̄2c′ ∈
supp(fx1=0) since c̄1 = 0. By

a2a′ ∈ supp(fx1=0)
⊕ c̄2c′ ∈ supp(fx1=0)

b̄2b′

we have b̄2b′ ∈ supp(fx1=0). Thus b̄1b̄2b′ ∈ supp(f) as b̄1 = 0. This is a
contradiction.
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• If ā1ā2a′ ∈ supp(f), b̄1b̄2b′ /∈ supp(f), by

h(b1⊕b2)b′ = fb1b2b′ + fb̄1b̄2b′ ,

h̄(b1⊕b2)b′ = −fb1b2b′ + fb̄1b̄2b′ ,

we have |h(b1⊕b2)b′ | = |h̄(b1⊕b2)b′ | = 1 since fb1b2b′ = ±1 and fb̄1b̄2b′ = 0.
Then by

h(a1⊕a2)a′ = fa1a2a′ + fā1ā2a′ ,

h̄(a1⊕a2)a′ = fa1a2a′ − fā1ā2a′ ,

and fa1a2a′ , fā1ā2a′ ∈ {1,−1}, we have |h(a1⊕a2)a′ | = 2 or |h̄(a1⊕a2)a′ | = 2.
This implies that h or h̄ is not affine. This is a contradiction.

• If ā1ā2a′ 6∈ supp(f), b̄1b̄2b′ ∈ supp(f), the proof is symmetric by reversing
the order of a and b in the previous item.

This completes the proof of the claim.
Now we can assume that supp(f) is affine with dimension k. Let Y = {y1, y2, . . . , yk}

be a set of free variables, where Y ⊆ {x1, x2, . . . , xn}, and let f be the compressed
signature of f for Y . Since the variable names {x1, x2, . . . , xn} of f can be cyclically
permuted (without violating planarity), we may assume that y1 = x1. If k ≤ 2, then
f is affine by Lemma 2.15. So f is affine by Corollary 2.14. This is a contradiction.

In the following, we assume that k ≥ 3. By Lemma 2.12, and since f takes values
in {1,−1}, there exists a unique multilinear polynomial Q(y1, y2, . . . , yk) ∈ Z2[Y ] such
that f(y1, y2, . . . , yk) = (−1)Q(y1,y2,...,yk).

Note that if Q(y1, y2, . . . , yk) is a quadratic multilinear polynomial, then f is
affine, and so is f . This is a contradiction. Thus we can assume that there exists at
least one term of degree greater than 2 in Q in the following. (Recall that for {1,−1}-
valued functions, there is no requirement on cross-term coefficients being even for the
quadratic multilinear polynomial.)

If k ≥ 4 and there exists a term yi1yi2 · · · yis with nonzero coefficient, where
3 ≤ s < k, then there exists some yj 6∈ {yi1 , yi2 , . . . , yis}, such that

fyj=0(y1, . . . , yj−1, yj+1, . . . , yk) = (−1)Q
′(y1,...,yj−1,yj+1,...,yk),

where Q′ is a polynomial on k − 1 variables, where the term yi1yi2 · · · yis of degree
s > 2 still appears. This implies that fyj=0 is not affine. This is a contradiction.
Thus we may assume that Q(y1, y2, . . . , yk) = P (y1, y2, . . . , yk) + ay1y2 · · · yk, where
P (y1, y2, . . . , yk) ∈ Z2[Y ] is a multilinear polynomial of total degree at most 2, and a ∈
Z2. Note that this statement is also vacuously true if k = 3. If a = 0, then f is affine.
This is a contradiction. Otherwise, Q(y1, y2, . . . , yk) = P (y1, y2, . . . , yk) + y1y2 · · · yk.
Moreover, by connecting the first variable of [1, 0,−1] to yi of f , the gadget gives the
signature f ′ such that

f ′(x1, x2, . . . , xn) = (−1)yif(x1, x2, . . . , xn).

This implies that f ′ has the same support of f and

f ′(y1, y2, . . . , yk) = (−1)yi+P (y1,y2,...,yk)+y1y2···yk ,

where f ′ is the compressed signature of f ′ for Y . Thus f ′ 6∈ A . This implies that we
can add a linear term to P (y1, y2, . . . , yk) freely.
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In the following, we connect all variables of f except for y1 to n − 1 variables
of the signature 1

2{[1, 1]⊗n + [1,−1]⊗n} = [1, 0, 1, . . . , 0 (or 1)] ∈ ÊQ to get a binary
signature f∗. If the input to f∗ is 00, we get a sum of all values of f(0, x2, . . . , xn)
where wt(x2, . . . , xn) is even. By the even Parity Condition of f , this is the sum of
all values of fx1=0, which is the sum of all values of fy1=0. If the input to f∗ is 11, we
get a sum of all values of f(1, x2, . . . , xn) where wt(x2, . . . , xn) is odd. Again by the
even Parity Condition of f , this is the sum of all values of fx1=1, which is the sum of
all values of fy1=1. Finally, if the input to f∗ is 01 or 10, we get a sum of all values
of f(0, x2, . . . , xn) where wt(x2, . . . , xn) is odd, or all values of f(1, x2, . . . , xn) where
wt(x2, . . . , xn) is even, which is 0 in either case. Thus, the binary f∗ is symmetric
and has the signature [f∗00, 0, f∗11], where

(4.9)

f∗00 =
∑

y2,y3,...,yk∈{0,1}
fy1=0(y2, y3, . . . , yk),

f∗11 =
∑

y2,y3,...,yk∈{0,1}
fy1=1(y2, y3, . . . , yk).

First, we consider the special case that the coefficient of yiyj in P (y1, y2, . . . , yk)
is nonzero for all 1 ≤ i < j ≤ k.

• If k = 3, we may assume that P (y1, y2, y3) = y1 +y2 +y3 +y1y2 +y1y3 +y2y3
since we can add linear terms to P (y1, y2, . . . , yk) at will. Then we have
f(y1, y2, y3) = (−1)P (y1,y2,y3)+y1y2y3 . The polynomial P (y1, y2, y3)+y1y2y3 =
1 + (1 + y1)(1 + y2)(1 + y3) ∈ Z2[y1, y2, y3] corresponds to the Or function on
3 bits, y1∨y2∨y3. Thus My1,y2y3(f) =

[ 1 −1 −1 −1
−1 −1 −1 −1

]
. Thus f∗ = [−2, 0,−4],

which has nonzero terms of unequal norms, thus not in A , and we are done.
• For k ≥ 4, we may assume that P (y1, y2, . . . , yk) has no linear terms since

we can add linear terms to P (y1, y2, . . . , yk) freely. Since P has all terms
yiyj , both fy1=0 and fy1=1 are symmetric signatures. For fy1=0, the entry of
Hamming weight ` is (fy1=0)` = (−1)

`(`−1)
2 for 0 ≤ ` ≤ k − 1. For fy1=1, we

have (fy1=1)` = (−1)
`(`+1)

2 for 0 ≤ ` ≤ k − 2 and (fy1=1)k−1 = (−1)
k(k−1)

2 +1.
This implies that

fy1=0 = [1, 1,−1,−1, . . . , (−1)
(k−1)(k−2)

2 ]

= 1
1 + i

{
[1, i]⊗k−1 + i[1,−i]⊗k−1} ,

fy1=1 = [1,−1,−1, 1, . . . , (−1)
k(k−1)

2 ]− 2(−1)
k(k−1)

2 [0, 1]⊗k−1

= 1
1− i

{
[1, i]⊗k−1 − i[1,−i]⊗k−1}− 2(−1)

k(k−1)
2 [0, 1]⊗k−1.
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Thus

f∗00 =
∑

β∈{0,1}k−1

(fy1=0)β

= 1
1 + i

k−1∑

w=0

(
k − 1
w

)
[iw + i(−i)w]

= 1
1 + i

[(1 + i)k−1 + i(1− i)k−1]

= (1 + i)k−2 + (1− i)k−2

= 2 k2 cos((k − 2)π/4),
f∗11 =

∑

β∈{0,1}k−1

(fy1=1)β

= 1
1− i

k−1∑

w=0

(
k − 1
w

)
[iw − i(−i)w]− 2(−1)

k(k−1)
2

= 1
1− i

[(1 + i)k−1 − i(1− i)k−1]− 2(−1)
k(k−1)

2

= −2 k2 sin((k − 2)π/4)− 2(−1)
k(k−1)

2 .

For k ≡ 1 mod 2, |f∗00| = 2 k−1
2 , and |f∗11| = 2 k−1

2 ± 2 (since k ≥ 4), we have
f∗11f

∗
00 6= 0 and |f∗11| 6= |f∗00|. Thus f∗ /∈ A and we are done.

For k ≡ 0 mod 4, f∗00 = 0, |f∗11| = 2 k2 ± 2 6= 0. This implies that we have
f∗ = f∗11[0, 1]⊗2. By [1, 0,−1], [0, 1]⊗2 and f /∈ A , we can get a binary
signature that is not in A by Lemma 4.6. Thus we are done.
For k ≡ 2 mod 4, |f∗00| = 2 k2 ≥ 4 since k ≥ 4, and |f∗11| = 2, and so f∗ /∈ A
and we are done.

Now we assume that there exist i 6= j ∈ [k] such that the coefficient of yiyj is 0
in P (y1, y2, . . . , yk). For notational simplicity, without loss of generality we assume
that i = k − 1, j = k. Then we can assume that (with the linear term yk−1 and yk
removed if needed)

P (y1, y2, . . . , yk) = y1(L1 + ε1) + y2(L2 + ε2) + · · ·+ yk−2(Lk−2 + εk−2),

where

L1 =
k∑

i=2
a1iyi, L2 =

k∑

i=3
a2iyi, . . . , Lk−2 =

k∑

i=k−1
a(k−2)iyi,

and aji ∈ Z2 are fixed, but we can choose εi ∈ Z2 freely since we can add linear terms
freely. Let F(0) = f , F(i) = fy1=0,y2=0,...,yi=0 for i ∈ [k − 2].

Claim. There exist ε1, ε2, . . . , εk−2 ∈ Z2 such that
∑

yi+1,yi+2,...,yk∈{0,1}
F(i)(yi+1, yi+2, . . . , yk) ≥ 4

for all 1 ≤ i ≤ k − 2.
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We prove this claim by induction. The base case is for F(k−2). Note that
P (0, . . . , 0, yk−1, yk) is identically 0. Thus

∑

yk−1,yk∈{0,1}
F(k−2)(yk−1, yk) = 4.

By induction, we may assume that
∑

yi+1,yi+2,...,yk∈{0,1}
F(i)(yi+1, yi+2, . . . , yk) ≥ 4

and prove that ∑

yi,yi+1,...,yk∈{0,1}
F(i−1)(yi, yi+1, . . . , yk) ≥ 4

for i ≤ k − 2. Note that

F(i−1)(1, yi+1, yi+2, . . . , yk) = (−1)(Li+εi)+yi+1(Li+1+εi+1)+···+yk−2(Lk−2+εk−2),

F(i−1)(0, yi+1, yi+2, . . . , yk) = (−1)yi+1(Li+1+εi+1)+···+yk−2(Lk−2+εk−2).
(4.10)

By the inductive hypothesis,
∑

yi+1,...,yk∈{0,1}
F(i−1)(0, yi+1, . . . , yk) =

∑

yi+1,...,yk∈{0,1}
F(i)(yi+1, . . . , yk) ≥ 4.

If Li is identically 0, then we set εi = 0. It follows that
∑

yi+1,...,yk∈{0,1}
F(i−1)(1, yi+1, . . . , yk) =

∑

yi+1,...,yk∈{0,1}
F(i−1)(0, yi+1, . . . , yk).

Thus we have
∑

yi,yi+1,...,yk∈{0,1}
F(i−1)(yi, yi+1, . . . , yk) = 2

∑

yi+1,...,yk∈{0,1}
F(i−1)(0, yi+1, . . . , yk) ≥ 8,

and we are done. Otherwise, Li = 0 defines a subspace V of Zk−i2 that has dimension
k − i− 1. Let V ′ = Zk−i2 \ V ; then V ′ is an affine space defined by Li = 1 which has
dimension k − i− 1. Let

a =
∑

yi+1yi+2···yk∈V
F(i−1)(0, yi+1, yi+2, . . . , yk),

a′ =
∑

yi+1yi+2···yk∈V ′
F(i−1)(0, yi+1, yi+2, . . . , yk),

b =
∑

yi+1yi+2···yk∈V
F(i−1)(1, yi+1, yi+2, . . . , yk),

and
b′ =

∑

yi+1yi+2···yk∈V ′
F(i−1)(1, yi+1, yi+2, . . . , yk).

Then ∑

yi,yi+1,...,yk∈{0,1}
F(i−1)(yi, yi+1, . . . , yk) = a+ a′ + b+ b′.
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By induction, we have a + a′ ≥ 4. Thus a ≥ 2 or a′ ≥ 2. If a ≥ 2, we choose εi = 0;
then a = b, a′ = −b′ by (4.10). Thus a + b + a′ + b′ = 2a ≥ 4. If a′ ≥ 2, we choose
εi = 1; then a = −b, a′ = b′ by (4.10). Thus a+ b+ a′ + b′ = 2a′ ≥ 4.

This completes the proof of the claim.
The claim shows that

f∗00 =
∑

y2,y3,...,yk∈{0,1}
fy1=0(y2, y3, . . . , yk) =

∑

y2,y3,...,yk∈{0,1}
F(1)(y2, y3, . . . , yk) ≥ 4.

Let g be the n-ary signature with the same support as f (thus it satisfies the even
Parity Condition), and on its support

g(x1, x2, . . . , xn) = (−1)P (y1,y2,...,yk);

then f
β

= g
β

for any β ∈ {0, 1}k other than β = 11 · · · 1. For β = 11 · · · 1,

f
β

= (−1)P (1,1,...,1)+1·1···1 = −(−1)P (1,1,...,1) = −g
β
.

This implies that

(4.11) f = g ± 2[0, 1]⊗k.

(Note that we do not really construct g. We just use g to argue that f∗ /∈ A .) Since
both 1

2{[1, 1]⊗n + [1,−1]⊗n} and g are affine signatures, the following construction
would produce an affine signature: Connect all variables of g other than y1 to n − 1
variables of 1

2{[1, 1]⊗n + [1,−1]⊗n} = [1, 0, 1, . . . , 0 (or 1)]. This construction gives a
binary signature g∗ = [g∗00, 0, g∗11]. (By the even Parity Condition, the weight 1 entry
must be 0.) Note that

g∗00 =
∑

y2,y3,...,yk∈{0,1}
gy1=0(y2, y3, . . . , yk),

g∗11 =
∑

y2,y3,...,yk∈{0,1}
gy1=1(y2, y3, . . . , yk).

Thus by (4.9) and (4.11), we have

f∗00 = g∗00, f∗11 = g∗11 ± 2.

Since g∗ is an affine signature, we must have either g∗00 = 0 or g∗11 = 0 or (g∗00)4 =
(g∗11)4. Since we have g∗00 = f∗00 6= 0 and both g∗00 and g∗11 are real numbers, we must
have g∗11 = 0 or g∗11 = ±g∗00. Recall that f∗00 ≥ 4. If g∗11 = 0, then f∗11 = ±2 has a
different nonzero norm than f∗00. If g∗11 = ±g∗00, then g∗11 = ±f∗00 has norm at least 4,
and thus f∗11 = g∗11± 2 has norm |g∗11| ± 2 = |f∗00| ± 2. And so in this case f∗11 also has
a different nonzero norm than f∗00. In each case, |f∗00| 6= |f∗11| and f∗00f

∗
11 6= 0. This

implies that f∗ /∈ A , and we are done.
Now we give the main dichotomy theorem of this section. By (2.2), we have

Pl-#CSP2(ÊQ, F̂) ≡T Pl-Holant(EQ2, ÊQ, F̂).

We will prove a dichotomy theorem for Pl-#CSP2(ÊQ, F̂) when every signature in F̂
satisfies the Parity Condition.
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Theorem 4.9. If all signatures in F̂ satisfy the Parity Condition, then
Pl-Holant(EQ2, ÊQ, F̂) (equivalently Pl-#CSP2(ÊQ, F̂)) is #P-hard, or F̂ ⊆ A , in
which case the problem is in P.

Proof. If F̂ ⊆ A , then Pl-Holant(EQ2, ÊQ, F̂) is tractable by Theorem 2.33′,
since ÊQ ⊂ A as well.

If F̂ * A , then there exists an n-ary signature f ∈ F̂ \A . By Lemma 2.38, we
can assume that f00···0 = 1 and f satisfies the even Parity Condition. If f is a unary
signature, then f = [1, 0] ∈ A , a contradiction. If f has arity 2, then f must be
symmetric and has the form f = [1, 0, x], where x4 6= 0, 1, by Proposition 2.17. Note
that ÊQ contains the symmetric signatures [1, 0] and [1, 0, 1, 0], and [1, 0] /∈ M̂ ∪ M̂ †,
[1, 0, 1, 0] /∈ P ∪ A † by Proposition 2.32 and Corollary 2.21. By Theorem 2.35,
Pl-Holant(EQ2, [1, 0], [1, 0, 1, 0], [1, 0, x]) is #P-hard. Thus Pl-Holant(EQ2, ÊQ, F̂) is
#P-hard since

Pl-Holant(EQ2, [1, 0], [1, 0, x], [1, 0, 1, 0]) ≤T Pl-Holant(EQ2, ÊQ, F̂).

So in the following, we assume that the arity of f is n ≥ 3.
(A) If there exists α ∈ {0, 1}n such that f4

α 6= 0, 1, then we can get [1, 0, fα] in
the following way: first, using [1, 0] ∈ ÊQ, we can get ∂S[1,0](f) = (1, . . . , fα),
where S = {k |the kth bit of α is 0}. Note that the arity of (1, . . . , fα) is wt(α),
which is even by the even Parity Condition, and we have (=wt(α)+2) ∈ EQ2.
So we have

∂(1,...,fα)(=wt(α)+2) = [1, 0, fα] 6∈ A .

Then by Theorem 2.35, Pl-Holant(EQ2, [1, 0], [1, 0, 1, 0], [1, 0, fα]) is #P-hard.
It follows that Pl-Holant(EQ2, ÊQ, F̂) is #P-hard.
Now we may assume that all nonzero entries of f are powers of i.

(B) If there exists α ∈ {0, 1}n such that fα = ±i, then by the same argument as item
(A), we have [1, 0, i] or [1, 0,−i]. In each case, we have [1, 0,−1] and [0, 1]⊗2

by Lemma 4.1. Then by f and Lemma 4.6, we can get [1, 0, x] 6∈ A . Then
we are done by Theorem 2.35.
Now we may assume that all nonzero entries of f are 1 or −1.

(C) If f takes values in {0, 1,−1} and there exists at least one α ∈ {0, 1}n such that
fα = −1, then we can get [1, 0,−1] in the same way as (A). Now we prove
the lemma by induction on the arity n ≥ 3 of f .
For n = 3, by Lemma 4.8, we can get a signature g 6∈ A with arity < 3.
Note that g also satisfies the even Parity Condition. If g has arity 1, then
g ∈ A . This is a contradiction. If g has arity 2, then it must be of the form
[x, 0, y], and xy 6= 0, (x/y)4 6= 1 lest g ∈ A . In particular, g is symmetric.
Then, by Theorem 2.35, Pl-Holant(EQ2, [1, 0], [1, 0, 1, 0], g) is #P-hard. Thus
Pl-Holant(EQ2, ÊQ, F̂) is #P-hard.
For n ≥ 4, by Lemma 4.8, we can get a signature g 6∈ A with arity < n.
If g takes values in {0, 1,−1}, up to a nonzero factor, then we are done by
induction. Otherwise, we are done by items (A) and (B).
Now we may assume that f takes values in {0, 1}.

(D) For a {0, 1}-valued signature satisfying the even Parity Condition, if it has arity
≤ 2, then it is affine. Hence f has arity≥ 3 since f /∈ A . We induct on the
arity n ≥ 3 of f in this case.
For n = 3, by Lemma 4.7, we can get a nonaffine signature h with ar-
ity < 3. Note that h satisfies the even Parity Condition. If h has arity
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1, then h ∈ A . This is a contradiction. If h has arity 2, then h has
the form [1, 0, x] 6∈ A up to a nonzero factor. Then by Theorem 2.35,
Pl-Holant(EQ2, [1, 0], [1, 0, 1, 0], [1, 0, x]) is #P-hard. Thus Pl-Holant(EQ2, ÊQ,
F̂) is #P-hard.
For n ≥ 4, by Lemma 4.7, we can get a nonaffine signature h with arity < n.
If h takes values in {0, 1}, then we are done by induction. Otherwise, we are
done by items (A), (B), and (C).

5. When F̂ satisfies parity. In this section, we give a dichotomy for
Pl-Holant(ÊQ, F̂), where all signatures in F̂ satisfy the Parity Condition. In this
case, F̂ will involve matchgate signatures. If F̂ ⊆ M, then the problem is tractable.
Assume F̂ 6⊆ M. General matchgate signatures are governed by the matchgate identi-
ties (MGIs). For asymmetric signatures of high arities, these are intricate and difficult
to handle. So we first try to reduce the arity of a nonmatchgate signature.

5.1. Arity reduction of nonmatchgate signatures. The following lemma
follows from the general theory of matchgates [7] (see also [4]). Recall that for length
n, we use ei to denote the string whose ith bit is 1, and all other bits are 0.

Lemma 5.1. For any signature f of arity n ≥ 2 with f00···0 = 1, there exists a
matchgate signature g of arity n such that g00···0 = f00···0 = 1 and g00···0⊕ei⊕ej =
f00···0⊕ei⊕ej for all i, j ∈ [n] and i < j.

Proof. Let mij = f00···0⊕ei⊕ej for all i, j ∈ [n] and i < j. Flipping all bits from 0
to 1, we construct a planar matchgate Γ with n external nodes such that its signature
g satisfies g11···1 = 1 and g11···1⊕ei⊕ej = mij for all i, j ∈ [n] and i < j. To obtain the
desired matchgate stated in the lemma, for every external node vi of Γ, we append a
weight 1 edge (ui, vi) and make ui the new external node (for 1 ≤ i ≤ n).

If n = 2, we can just take a single edge (v1, v2) with weight m12. This matchgate
has signature g11 = 1 and g00 = m12. (If one prefers not to consider PerfMatch(G)
for an empty graph G, which this single edge matchgate with both v1 and v2 removed
would be, we can add an extra isolated edge with weight 1 to the matchgate.) Below
we assume n ≥ 4.

Let Kn be the complete graph on n nodes. We place the nodes of Kn, labeled
1 < 2 < · · · < n, clockwise on a lower semicircle, as illustrated in Figure 12. The n
nodes are placed in a general position, so that any pair of crossing edges intersect at
a unique point. There are exactly

(
n
4
)

such intersection points. We assign weight mij

to the edge {i, j} for all 1 ≤ i < j ≤ n. Note that if we remove all nodes except i and
j, there is a single edge left with weight mij . Thus this weighted Kn would satisfy
the lemma, except that it is not planar.

Now we construct a planar matchgate Γ by the use of a crossover gadget in Figure
13. The crossover gadget is itself a matchgate X with the following signature:

X0000 = 1, X0101 = 1, X1010 = 1, X1111 = −1,

and for all other β ∈ {0, 1}4, Xβ = 0. We note that even though geometrically this
gadget is only symmetric under a rotation of π (but not π/2), its signature is invariant
under a cyclic permutation, and thus functionally it is symmetric under a rotation of
π/2. The support of this matchgate X requires that the alternate pairs of four inputs
are equal (i.e., x1 = x3 and x2 = x4), and each pair can be independently both 0
or both 1 (when all four inputs are 1, the value X1111 = −1; but this last property
will not be used in the proof here). Our matchgate Γ is obtained by replacing every
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Fig. 12. The embedding for K5.

1 2

4 3

−1

Fig. 13. The crossover gadget. The external nodes are those labeled, and all edge weights are
1 except the edge labeled −1.

5

4

3

2

1
w(1, 5)

w(2, 3)w(3, 4)

w(1, 2)w(4, 5)

w(1, 4)

w(1, 3)

w(2, 5)
w(2, 4)

w(3, 5)

Fig. 14. The “planarized” K5 with edge weights. The unlabeled edges have weight 1. For
notational simplicity, in the figure we use the notation w(i, j) for w({i, j}).

crossing of a pair of edges of Kn by a copy of X. If {i, j} in Kn crosses t ≥ 0 other
edges, then there are t copies of X which break {i, j} into t+ 1 segment edges outside
of these crossover gadgets. All these segment edges have weight 1 except one which
has weight mij . This defines the planar matchgate Γ. For n = 5, this is illustrated in
Figure 14.
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Suppose an external node i is removed in Γ (i.e., the ith bit is set to 1 in the
signature of Γ). Consider any other external node j and the replacement part in Γ
for the edge {i, j} in Kn. Suppose t copies of X are used along that. By properties
of the signature of X (x1 = x3 and x2 = x4), we may assume that all t + 1 segment
edges are not contained in perfect matchings, the sum over which defines the signature
entry for Γ. In particular, all t copies of X contribute a factor 1, regardless of the bit
assignment for any bit other than i. (So, in effect, when the ith bit is set to 1 in Γ,
we can imagine that all edges in Kn incident to node i are removed.)

Suppose we remove all external nodes of Γ except {i, j}. Then we only need to
consider perfect matchings involving the replacement part in Γ for the edge {i, j} in
Kn. Again suppose t copies of X are used in Γ for the edge {i, j} in Kn. Then it
is easy to see that, by the property of X, we may assume all t + 1 segment edges
outside of these X are included in the perfect matchings. These edges contribute a
value mij (one edge has weight mij , and the other t edges have weight 1), and each
X also contributes a factor 1. This completes the proof.

Theorem 5.2. If all signatures in F̂ satisfy the Parity Condition, and F̂ * M ,
then there exists h /∈M of arity 4 such that

Pl-Holant(h, ÊQ, F̂) ≤T Pl-Holant(ÊQ, F̂).

Proof. Since F̂ * M , there exists f ∈ F̂ \M . By Lemma 2.29, f has arity n ≥ 4
since f satisfies the Parity Condition. Moreover, by Lemma 2.38, we can assume that
f00···0 = 1 and f satisfies the even Parity Condition. By Lemma 5.1, there exists
g ∈ M such that g00···0 = 1 and g00···0⊕ei⊕ej = f00···0⊕ei⊕ej for any i, j ∈ [n] and
i < j.

We will prove the theorem by induction on n. If n = 4, then we are done. Now
we assume that the theorem is true for arity ≤ n−1 and prove the theorem for n ≥ 5.
If there exists i ∈ [n] such that fxi=0 /∈M , then we are done by induction since we
have [1, 0] ∈ ÊQ. Therefore, we may assume that fxi=0 ∈M for 1 ≤ i ≤ n.

Claim. We have fα = gα for all α ∈ {0, 1}n with wt(α) < n.
If wt(α) is odd, then fα = gα = 0 since both f and g satisfy the even Parity

Condition. If wt(α) is even, we prove the claim by induction on k = wt(α). For
k = 0, 2, fα = gα by the definition of g. By induction, we may assume that fβ = gβ
for any wt(β) < k. For wt(α) = k ≥ 4, let P = {p1, p2, . . . , pwt(α)} ⊆ [n] be such that
αpi = 1 and all other bits of α are 0. Then there exists ` ∈ [n] such that ` /∈ P since
k < n. Since fx`=0 is a matchgate signature, by the MGIs we have

(5.1)
k∑

j=1
(−1)jfep1⊕epj fα⊕ep1⊕epj = 0,

where the position vector is P and the pattern is ep1 . Note that all entries of f that
appear in (5.1) are indeed entries of fx`=0.

The first term of (5.1) is −fα since f00···0 = 1. Thus

(5.2) fα =
k∑

j=2
(−1)jfep1⊕epj fα⊕ep1⊕epj .

Similarly, since g is a matchgate signature and g00···0 = f00···0 = 1, we have

(5.3) gα =
k∑

j=2
(−1)jgep1⊕epj gα⊕ep1⊕epj .
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Since wt(ep1 ⊕ epj ) = 2, wt(α⊕ ep1 ⊕ epj ) = k− 2 for 2 ≤ j ≤ k, the RHS expressions
of (5.2) and (5.3) are equal by induction, and thus fα = gα.

This completes the proof of the claim.
If n is odd, then since f satisfies the even Parity Condition and so does g ∈ M

with g00···0 = 1, both f11···1 = g11···1 = 0. Then by the claim, f is identically equal to
g; thus f ∈M . This is a contradiction.

If n is even, then n ≥ 6. Since fα = gα for wt(α) < n, there exists x ∈ C such
that

(5.4) f = g + x[0, 1]⊗n.

If x = 0, then f ∈ M , a contradiction. Thus x 6= 0. Since we have (=2) ∈ ÊQ, we
can construct f ′ = ∂

{1,2}
(=2) (f). Let g′ = ∂

{1,2}
(=2) (g). Note that g′ ∈M . A matchgate for

g′ is obtained from a matchgate for g by joining the two adjacent external dangling
edges corresponding to x1 and x2. On the other hand, since the operator ∂ is linear,
by (5.4) we have

f ′ = g′ + x[0, 1]⊗(n−2).

This implies that

(5.5) f ′β = g′β

for any β ∈ {0, 1}n−2 with wt(β) < n− 2. If f ′ /∈M , then we are done by induction.
Otherwise, f ′ ∈M .

If f ′00···0 6= 0, consider the MGIs for f ′ and g′ determined by the position vector
P ′ = {1, 2, . . . , n− 2} and the pattern e1 = 10 · · · 0 ∈ {0, 1}n−2. Then

f ′00···0f
′
11···1 =

n−2∑

j=2
(−1)jf ′e1⊕ejf

′
11···1⊕e1⊕ej ,

g′00···0g
′
11···1 =

n−2∑

j=2
(−1)jg′e1⊕ejg

′
11···1⊕e1⊕ej .

Note that wt(e1 ⊕ ej) = 2 and wt(11 · · · 1⊕ e1 ⊕ ej) = n− 4 for 2 ≤ j ≤ n− 2 in the
above expressions. Thus by (5.5) we have

f ′00···0f
′
11···1 = g′00···0g

′
11···1.

By f ′00···0 = g′00···0 6= 0, we have

f ′11···1 = g′11···1.

This contradicts that x 6= 0.
If f ′00···0 = 0, i.e., f000···0 + f110···0 = 0, then f110···0 = −1, and we can construct

∂
{3,4,...,n}
[1,0] (f) = [1, 0,−1], since [1, 0] ∈ ÊQ. Then we can construct f ′′ = ∂

{1,2}
[1,0,−1](f)

and define g′′ = ∂
{1,2}
[1,0,−1](g). It follows from (5.4) that

(5.6) f ′′ = g′′ − x[0, 1]⊗(n−2).

Also f ′′0···0 = f000···0 − f110···0 = 2. Note that g′′ is a matchgate signature because
[1, 0,−1] ∈M . If f ′′ /∈M , then we are done by induction. Otherwise, f ′′ ∈M . Then
we can get a contradiction the same way using MGIs as in the case for f ′00···0 6= 0.
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5.2. A dichotomy theorem for Pl-Holant(ÊQ, [1, 0, x], F̂) with [1, 0, x] 6∈
A . A signature f of arity 4 satisfying the even Parity Condition has signature matrix
of the form

Mx1x2,x4x3(f) =
[
a 0 0 b
0 α β 0
0 γ δ 0
c 0 0 d

]
.

For such signatures we call
[
a b
c d

]
the outer matrix and [ α β

γ δ ] the inner matrix. The
following lemma implies that we can switch the outer matrix and the inner matrix,
and also reverse the order of the columns, when we have ÊQ and [0, 1]⊗2.

Lemma 5.3. If F̂ contains an f with signature matrix

(5.7) Mx1x2,x4x3(f) =




f0000 f0010 f0001 f0011
f0100 f0110 f0101 f0111
f1000 f1010 f1001 f1011
f1100 f1110 f1101 f1111


 =




a 0 0 b
0 α β 0
0 γ δ 0
c 0 0 d


 ,

then we can construct g and h, where

Mx1x2,x4x3(g) =




α 0 0 β
0 a b 0
0 c d 0
γ 0 0 δ


 and Mx1x2,x4x3(h) =




β 0 0 α
0 b a 0
0 d c 0
δ 0 0 γ




such that
Pl-Holant(ÊQ, g, h, [0, 1]⊗2, F̂) ≤T Pl-Holant(ÊQ, [0, 1]⊗2, F̂).

Proof. We have [0, 1], [1, 0, 1, 0] ∈ ÊQ, and [0, 1]⊗2. Lemma 2.37 shows that we
can flip any two variables in f . If we flip variables x2, x3 of f , we get g. If we flip
variables x2, x4 of f , we get h.

If f0000 = a 6= 0, we can normalize it to 1. The next lemma deals with signatures
of arity 4 that “just miss” being matchgate signatures. Note that a signature of the
form (5.7) is a matchgate signature iff the determinants of the inner matrix and the
outer matrix are equal (Lemma 2.29). Lemma 5.4 shows how to clear some entries of
(5.7).

Lemma 5.4. Suppose [1, 0, x] 6∈ A , and F̂ contains a signature f of arity 4 such
that

Mx1x2,x4x3(f) =




1 0 0 b
0 α β 0
0 γ δ 0
c 0 0 d


 ,

satisfying det
[ 1 b
c d

]
= −det

[
α β
γ δ

]
6= 0. Then we can construct f ′ such that

Pl-Holant(f ′, ÊQ, [1, 0, x], F̂) ≤T Pl-Holant(ÊQ, [1, 0, x], F̂),
where f ′ has the form

Mx1x2,x4x3(f ′) =




1 0 0 0
0 α′ β′ 0
0 γ′ δ′ 0
0 0 0 d′


 ,

and f ′ satisfies the following conditions:
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• det[ 1 0
0 d′ ] = d′ = −det[ α

′ β′

γ′ δ′
] 6= 0.

• If [ α β
γ δ ] is a diagonal (resp., antidiagonal) matrix, then [ α

′ β′

γ′ δ′
] is also a diag-

onal (resp., antidiagonal) matrix.
Proof. If b = c = 0, then we are done by letting f ′ = f . In the following, we

assume that there is at most one zero in {b, c}.
By Lemma 4.1, we can get [1, 0, z] for all z ∈ C from the given [1, 0, x] 6∈ A . We

use two binary signatures [1, 0, u], [1, 0, v], where u, v ∈ C and uv 6= 0. By connecting
the first variables of [1, 0, u] and [1, 0, v] to the variables x2, x4 of f , respectively (see
(7.19) and (7.21)), we get a gadget with signature

h(x1, x2, x3, x4) =
∑

x′2,x
′
4∈{0,1}

f(x1, x
′
2, x3, x

′
4)[1, 0, u](x′2, x2)[1, 0, v][x′4, x4],

and

Mx1x2,x4x3(h) =




1 0 0 bv
0 αu βuv 0
0 γ δv 0
cu 0 0 duv


 .

Fig. 15. The two circle vertices are assigned f , and the square vertex is assigned h.

In Figure 15, by assigning f to the circle vertices and assigning h to the square
vertex, we get a gadget with the signature

f ′(x1, x2, x3, x4) =
∑

y′1,y
′
2,x
′
3,x
′
4∈{0,1}

f(x1, x2, x
′
3, x
′
4)h(x′4, x′3, y′2, y′1)f(y′1, y′2, x3, x4).

We have

Mx1x2,x4x3(f ′) =




1 0 0 b
0 α β 0
0 γ δ 0
c 0 0 d







1 0 0 bv
0 αu βuv 0
0 γ δv 0
cu 0 0 duv







1 0 0 b
0 α β 0
0 γ δ 0
c 0 0 d


 .

Thus
[
f ′0000 f ′0011
f ′1100 f ′1111

]
=
[
1 b
c d

] [
1 bv
cu duv

] [
1 b
c d

]

=
[

1 + bc(u+ v + duv) b[1 + bcu+ dv(1 + du)]
c[1 + bcv + du(1 + dv)] d3uv + bc(1 + du+ dv)

]
,

(5.8)

and

(5.9)
[
f ′0110 f ′0101
f ′1010 f ′1001

]
=
[
α β
γ δ

] [
αu βuv
γ δv

] [
α β
γ δ

]
.
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STOC17-126 JIN-YI CAI AND ZHIGUO FU

By (5.8), (5.9), we have

det
[
f ′0000 f ′0011
f ′1100 f ′1111

]
= (d− bc)3uv and det

[
f ′0110 f ′0101
f ′1010 f ′1001

]
= (αδ − βγ)3uv.

Then, by αδ − βγ = −(d− bc) 6= 0, we have

det
[
f ′0000 f ′0011
f ′1100 f ′1111

]
= −det

[
f ′0110 f ′0101
f ′1010 f ′1001

]
6= 0.

Moreover, if [ α β
γ δ ] is diagonal (resp., antidiagonal), then [ f

′
0110 f

′
0101

f ′1010 f
′
1001

] is also diagonal
(resp., antidiagonal).

In the following proof, first, in item (A), we will prove the lemma for a special
case that b = 0 or c = 0. Then we finish the proof in item (B) by reducing the general
case to the special case in item (A).
(A) Suppose bc = 0. If c = 0, we can rotate the signature by 180◦ to get b = 0

(Figure 2). So we assume that b = 0 and c 6= 0. Note that d 6= 0 since
det [ 1 0

c d ] 6= 0. Thus we may assume that cd 6= 0. Note that f ′0011 = 0 by b = 0
and f ′1100 = c[1 + du(1 + dv)]. Let u = 1

d , v = − 2
d ; then 1 + du(1 + dv) = 0

and therefore f ′1100 = c[1 + du(1 + dv)] = 0. This implies that

Mx1x2,x4x3(f ′) =




1 0 0 0
0 α′ β′ 0
0 γ′ δ′ 0
0 0 0 d′


 ,

which satisfies the requirements of the lemma.
(B) For bc 6= 0, we reduce the proof to item (A) by choosing suitable u, v such that

f ′0000 6= 0, f ′0011 = 0 and replacing f by f ′. Note that f ′0000 6= 0 follows from
f ′0011 = 0 since

[
f ′0000 f

′
0011

f ′1100 f
′
1111

]
has full rank.

Let ∆ = u+ v + duv; then

f ′0011 = b[1 + (bc− d)u+ d∆].

• For bc 6= 2d, let u = 1
d−bc and v = 1

bc−2d ; then ∆ = 0 and 1+(bc−d)u =
0. Thus f ′0011 = 0.

• For bc = 2d, let u = 1√
2d and v = −

√
2
d ; then ∆ = − 1+

√
2√

2d , f
′
0011 =

b[1 + du+ d∆] = 0.

Now we prove that if all signatures in F̂ satisfy the Parity Condition and
F̂ contains a binary nonaffine signature [1, 0, x], then either F̂ ⊆ M or
Pl-Holant(ÊQ, [1, 0, x], F̂) is #P-hard. Note that this is consistent with the final
dichotomy Theorem 6.1. If F̂ satisfies the Parity Condition, then F ⊆ P (equiva-
lently F̂ ⊆ P̂) would imply F ⊆ A (equivalently F̂ ⊆ A ) (see Proposition 7.12).
But it contains [1, 0, x] 6∈ A , and also [1, 0, x] ∈M and ÊQ ⊂M ; therefore, the only
tractable case in Theorem 5.5 is F̂ ⊆M .

Theorem 5.5. Suppose all signatures in F̂ satisfy the Parity Condition, and
suppose [1, 0, x] 6∈ A , where x is a complex number. Then either F̂ ⊆ M or
Pl-Holant(ÊQ, [1, 0, x], F̂) is #P-hard.
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Proof. By Lemma 4.1, we can construct [0, 1]⊗2 and [1, 0, z] from [1, 0, x] for all
z ∈ C.

Suppose F̂ * M . By Theorem 5.2, we can construct f /∈M and f has arity 4,
such that

Pl-Holant(f, ÊQ, [1, 0, x], F̂) ≤T Pl-Holant(ÊQ, [1, 0, x], F̂).

Moreover, by Lemma 2.38, we can assume that f satisfies the even Parity Condition
and f0000 = 1, i.e.,

Mx1x2,x4x3(f) =




1 0 0 b
0 α β 0
0 γ δ 0
c 0 0 d


 .

Let A =
[ 1 b
c d

]
, B =

[
α β
γ δ

]
; then f /∈M iff detA 6= detB by Lemma 2.29. We may

assume that detA 6= 0. If detA = 0, then detB 6= 0, which implies that α 6= 0 or
β 6= 0. By Lemma 5.3, we may switch the inner and outer matrices and reverse the
order of the columns if necessary. Hence we may assume that detA 6= 0.

Claim. We can construct some f ′ 6∈M that has the form

Mx1x2,x4x1(f ′) =




1 0 0 0
0 α′ β′ 0
0 γ′ δ′ 0
0 0 0 d′


 ,

such that d′ 6= 0 and

Pl-Holant(f ′, ÊQ, [1, 0, x], F̂) ≤T Pl-Holant(ÊQ, [1, 0, x], F̂).

To prove this claim, if detA = −detB, then since detA 6= 0, we may apply
Lemma 5.4, and the claim is proved. So we may assume detA 6= − detB. Together
with the nonmatchgate condition, we have detA 6= ±detB. If d = 0, then we have
bc 6= 0 by detA 6= 0. Use a binary [1, 0,−2/(bc)] to modify the second variable of
f (as in the proof of Lemma 5.4, see (7.19)) and then connect a copy of f with the
modified f . We get

h(x1, x2, x3, x4) =
∑

x′3,x
′′
3 ,x
′
4∈{0,1}

f(x1, x2, x
′
3, x
′
4)f(x′4, x′′3 , x3, x4)

[
1, 0,− 2

bc

]
(x′3, x′′3).

Then

Mx1x2,x4x3(h) =




1 0 0 b
0 α β 0
0 γ δ 0
c 0 0 0







1 0 0 b

0 − 2α
bc − 2β

bc 0
0 γ δ 0
− 2
b 0 0 0


 =




−1 0 0 b
0 α′′ β′′ 0
0 γ′′ δ′′ 0
c 0 0 bc


 ,

where [
α′′ β′′

γ′′ δ′′

]
=
[
α β
γ δ

] [
− 2α
bc − 2β

bc
γ δ

]
.

Thus det
[
α′′ β′′

γ′′ δ′′

]
= − 2(αδ−βγ)2

bc . So

det
[
α′′ β′′

γ′′ δ′′

]
6= det

[
−1 b
c bc

]
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STOC17-128 JIN-YI CAI AND ZHIGUO FU

by b2c2 6= (αδ−βγ)2, which is the same as detA 6= ±detB. This implies that h /∈M .
If

(5.10) det
[
α′′ β′′

γ′′ δ′′

]
= −det

[
−1 b
c bc

]
,

then this quantity in (5.10) is also nonzero because bc 6= 0. Then we can finish the
proof of the claim by Lemma 5.4. Therefore, we may assume

det
[
α′′ β′′

γ′′ δ′′

]
6= ±det

[
−1 b
c bc

]
.

To summarize on h when d = 0 in f , we have h /∈ M satisfying the even Parity
Condition, its outer determinant is nonzero, h0000 6= 0, h1111 6= 0, and the squares
of the determinants of the outer matrix and inner matrix are not equal. We may
substitute h in place of f . To simplify the notation, we may assume that in the
expression for f , we have detA 6= 0, detA 6= ±detB, and d 6= 0.

Using the same construction as above but with the binary [1, 0,−1/d] instead, we
get

f ′(x1, x2, x3, x4) =
∑

x′3,x
′′
3 ,x
′
4∈{0,1}

f(x1, x2, x
′
3, x
′
4)f(x′4, x′′3 , x3, x4)

[
1, 0,−1

d

]
(x′3, x′′3).

Then

Mx1x2,x4x3(f ′) =




1 0 0 b
0 α β 0
0 γ δ 0
c 0 0 d







1 0 0 b

0 −αd −βd 0
0 γ δ 0
− c
d 0 0 −1


 =




1− bc
d 0 0 0

0 α′ β′ 0
0 γ′ δ′ 0
0 0 0 bc− d


 ,

where [
α′ β′

γ′ δ′

]
=
[
α β
γ δ

] [
−αd −βd
γ δ

]
.

Thus det
[
α′ β′

γ′ δ′

]
= − (αδ−βγ)2

d . So

det
[
α′ β′

γ′ δ′

]
6= det

[
1− bc

d 0
0 bc− d

]

by detA 6= ±detB. This implies that f ′ /∈M . Note that f ′0000 = 1− bc
d = detA

d 6= 0,
so we can renormalize f ′0000 to 1. Also f ′1111 = bc− d = −detA 6= 0. Thus f ′ satisfies
the requirement of the claim.

This completes the proof of the claim.
The claim shows that we may assume that b = c = 0 and d 6= 0 in Mx1x2,x4x3(f)

and have the form

Mx1x2,x4x3(f) =




1 0 0 0
0 α β 0
0 γ δ 0
0 0 0 d


 .

In the following, we can finish the proof of the theorem by two alternatives:
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(A) If we can construct the crossover function X such that

Pl-Holant(X, ÊQ, [1, 0, x], F̂) ≤T Pl-Holant(ÊQ, [1, 0, x], F̂),

then the presence of X reduces a general (nonplanar) Holant problem to a
Pl-Holant problem

Holant(ÊQ, [1, 0, x]) ≤T Pl-Holant(X, ÊQ, [1, 0, x], F̂).

So we have

Holant(ÊQ, [1, 0, x]) ≤T Pl-Holant(ÊQ, [1, 0, x], F̂),

and we can apply Theorem 2.33′. We have [1, 0, x] /∈ P̂ (this can be di-
rectly verified, or use Proposition 7.12) and [1, 0, x] /∈ A . Thus by Theo-
rem 2.33′, Holant(ÊQ, [1, 0, x]) is #P-hard. Hence Pl-Holant(ÊQ, [1, 0, x], F̂)
is #P-hard.

(B) If we can construct (=4) such that

Pl-Holant((=4), ÊQ, [1, 0, x], F̂) ≤T Pl-Holant(ÊQ, [1, 0, x], F̂),

then, by Lemma 2.3,

Pl-Holant(ÊQ, EQ2, [1, 0, x], F̂) ≤T Pl-Holant(ÊQ, [1, 0, x], F̂).

It follows that

Pl-Holant(EQ2, [1, 0], [1, 0, 1, 0], [1, 0, x]) ≤T Pl-Holant(ÊQ, [1, 0, x], F̂)

since [1, 0], [1, 0, 1, 0] ∈ ÊQ. Note that [1, 0] 6∈ M̂ ∪ M̂ † (Proposition 2.32),
[1, 0, 1, 0] 6∈P ∪A † (Corollary 2.21 and Proposition 2.32), and we are given
[1, 0, x] 6∈ A ; thus, for the symmetric signature set G = {[1, 0], [1, 0, 1, 0], [1, 0, x]}

G * P, G * A , G * A †, G * M̂ , G * M̂ †.

By Theorem 2.35 on Pl-CSP2 problems for symmetric signatures, the problem
Pl-Holant(EQ2,G) is #P-hard. It follows that Pl-Holant(ÊQ, [1, 0, x], F̂) is
#P-hard.

In the following, in case 1, we prove the theorem when detA = −detB. Then
in case 2, we prove the theorem when detA 6= −detB. Since f 6∈ M , we are given
detA 6= detB. So case 2 is equivalent to detA 6= ±detB.

1. Suppose detA = −detB. Since we have detA 6= 0, both detA and detB 6= 0.
At least one of α or β is nonzero by detB 6= 0.
• Suppose α 6= 0. By Lemma 5.3, we also have the 4-ary signature g such

that

Mx1x2,x4x3(g) =




α 0 0 β
0 1 0 0
0 0 d 0
γ 0 0 δ


 .

Since α 6= 0, we can assume that α = 1 by normalizing. Then we may
write

Mx1x2,x4x3(g) =




1 0 0 β
0 a 0 0
0 0 d 0
γ 0 0 δ


 ,
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where det [ a 0
0 d ] = −det

[
1 β
γ δ

]
6= 0. Then, by Lemma 5.4, we have g′

such that

Mx1x2,x4x3(g′) =




1 0 0 0
0 a′ 0 0
0 0 d′ 0
0 0 0 δ′


 ,

where det
[
a′ 0
0 d′

]
= −det

[ 1 0
0 δ′
]
6= 0. Thus

[ 1 d′

a′ δ′
]

has full rank. Then,
by Lemma 2.40, we have (=4) by interpolation, and we are done by
alternative (B).

• Suppose β 6= 0; by Lemma 5.3, we have h such that

Mx1x2,x4x3(h) =




β 0 0 α
0 0 1 0
0 d 0 0
δ 0 0 γ


 .

Since β 6= 0, we can assume that β = 1 by normalizing. Then we may
write

Mx1x2,x4x3(h) =




1 0 0 α
0 0 a 0
0 d 0 0
δ 0 0 γ


 ,

where det [ 0 a
d 0 ] = −det

[ 1 α
δ γ

]
6= 0. Then, by Lemma 5.4, we have h′

such that

Mx1x2,x4x3(h′) =




1 0 0 0
0 0 a′ 0
0 d′ 0 0
0 0 0 γ′


 ,

where det
[ 0 a′

d′ 0
]

= −det
[ 1 0

0 γ′
]
6= 0. By Lemma 4.1 and using [1, 0, x],

we have [1, 0, (d′)−1] and [1, 0, (a′)−1]. Modifying h′ on the first and sec-
ond variables by [1, 0, (d′)−1] and [1, 0, (a′)−1], respectively, (see (7.18)
and (7.19)) gives the crossover function since γ′ = a′d′:

X =
∑

x′1,x
′
2∈{0,1}

h′(x′1, x′2, x3, x4)[1, 0, (d′)−1](x′1, x1)[1, 0, (a′)−1](x′2, x2).

Then we are done by alternative (A).
2. Suppose detA 6= −detB. Since f 6∈ A , we have detA 6= ±detB. So
d2 6= (αδ − βγ)2.
• If α = δ = 0, then d2 6= β2γ2. We can construct

f̃(x1, x2, x3, x4) =
∑

u,v∈{0,1}
f(x1, x2, u, v)f(v, u, x3, x4).

Then

Mx1x2,x4x3(f̃) =




1 0 0 0
0 0 β 0
0 γ 0 0
0 0 0 d







1 0 0 0
0 0 β 0
0 γ 0 0
0 0 0 d


 =




1 0 0 0
0 βγ 0 0
0 0 βγ 0
0 0 0 d2


 .
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Note that [ 1 βγ

βγ d2 ] has full rank. Then by Lemma 2.40, we have (=4) by
interpolation. So we are done by alternative (B).

• If α 6= 0 and δ 6= 0, for any u ∈ C we can construct

ĥ(x1, x2, x3, x4) =
∑

x′2∈{0,1}
f(x1, x

′
2, x3, x4)[1, 0, u](x′2, x2).

Then, by (7.19),

Mx1x2,x4x3(ĥ) =




1 0 0 0
0 αu βu 0
0 γ δ 0
0 0 0 du


 .

Then we can construct

f̂(x1, x2, x3, x4) =
∑

u,v∈{0,1}
f(x1, x2, u, v)ĥ(v, u, x3, x4).

Then

Mx1x2,x4x3(f̂) =




1 0 0 0
0 α β 0
0 γ δ 0
0 0 0 d







1 0 0 0
0 αu βu 0
0 γ δ 0
0 0 0 du




=




1 0 0 0
0 α2u+ βγ β(δ + αu) 0
0 γ(δ + αu) βγu+ δ2 0
0 0 0 d2u


 .

Choose u = − δ
α 6= 0; then β(δ + αu) = γ(δ + αu) = 0 and

Mx1x2,x4x3(f̂) =




1 0 0 0
0 −(αδ − βγ) 0 0
0 0 δ

α (αδ − βγ) 0
0 0 0 −d2δ

α


 .

Note that
[ 1 δ

α (αδ−βγ)
−(αδ−βγ) − d2δ

α

]
has full rank since d2 6= (αδ − βγ)2 by

(detA)2 6= (detB)2. Then by Lemma 2.40 we have (=4) by interpolation
and we are done by alternative (B).

• If α 6= 0 and δ = 0, then after a rotation (Figure 2) clockwise by 90◦ we
have

Mx2x3,x1x4(f) =




1 0 0 0
0 0 γ 0
0 β 0 0
α 0 0 d


 .

We can construct

h̄(x1, x2, x3, x4) =
∑

x′3∈{0,1}
f(x1, x2, x

′
3, x4)

[
1, 0,−1

d

]
(x′3, x3).
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Then (see (7.19))

Mx2x3,x1x4(h̄) =




1 0 0 0
0 0 −γd 0
0 β 0 0
−αd 0 0 −1


 .

With this we can further construct

f̄(x1, x2, x3, x4) =
∑

x′1,x
′
4∈{0,1}

f(x′1, x2, x3, x
′
4)h̄(x1, x

′
1, x
′
4, x4),

with

Mx2x3,x1x4 (f̄) =




1 0 0 0
0 0 γ 0
0 β 0 0
α 0 0 d






1 0 0 0
0 0 − γ

d
0

0 β 0 0
−α
d

0 0 −1


 =




1 0 0 0
0 βγ 0 0
0 0 −βγ

d
0

0 0 0 −d


 .

Note that
[

1 βγ

− βγd −d

]
has full rank since d2 6= β2γ2 by (detA)2 6= (detB)2.

By Lemma 2.40, we have (=4) by interpolation, and we are done by al-
ternative (B).

• If α = 0 and δ 6= 0, then the proof is symmetric by first rotating f
counterclockwise by 90◦ (Figure 2) and then switching the roles of α
and δ in the previous item.

5.3. A dichotomy when F̂ satisfies parity.
Lemma 5.6. Suppose F contains a 4-ary signature f 6∈M of the form

Mx1x2,x4x3(f) =




1 0 0 b
0 α β 0
0 γ δ 0
c 0 0 d


 ,

where at least one of {b, c, α, δ} is nonzero; then we can construct [0, 1]⊗2 such that

Pl-Holant([0, 1]⊗2, ÊQ, [1, 0,−1], F̂) ≤T Pl-Holant(ÊQ, [1, 0,−1], F̂).

Proof. By a rotation (Figure 2), without loss of generality we can assume that
b 6= 0. We have ∂{1,2}[1,0] (f) = [1, 0, b]. If b2 6= 1, then we have [0, 1]⊗2 by Lemma 4.1.
Therefore, we may assume that b = ±1.

By a planar gadget we can construct the signature

h(x1, x2, x3, x4) =
∑

x′3,x
′′
3 ,x
′
4∈{0,1}

f(x1, x2, x
′
3, x
′
4)f(x3, x4, x

′
4, x
′′
3)[1, 0,−1](x′′3 , x′3).

Then (see Figure 2 and (7.19))

Mx1x2,x4x3(h) =




1 0 0 b
0 α β 0
0 γ δ 0
c 0 0 d







1 0 0 c
0 −δ −β 0
0 γ α 0
−b 0 0 −d


 =




0 0 0 c− bd
0 α′ β′ 0
0 γ′ δ′ 0

c− bd 0 0 c2 − d2


 .
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If c− bd 6= 0, then we have ∂{1,2}[1,0] (h) = (c− bd)[0, 1]⊗2, a nonzero multiple of [0, 1]⊗2.
Otherwise, we have

d− bc = d− b2d = 0,

by substituting c = bd and b2 = 1. We also have c2 = d2 in this case. This implies
that det

[ 1 b
c d

]
= 0. Since f /∈ M , we have det

[
α β
γ δ

]
6= 0 by Lemma 2.29. Thus

det
[−δ −β
γ α

]
6= 0. So

[
α′ β′

γ′ δ′

]
=
[
α β
γ δ

] [−δ −β
γ α

]
has full rank. This implies that at least

one of α′, β′, γ′, δ′ is nonzero.
Now h takes the form

Mx1x2,x4x3(h) =




0 0 0 0
0 α′ β′ 0
0 γ′ δ′ 0
0 0 0 0


 .

Then we can obtain [0, 1]⊗2 from [1, 0] ∈ ÊQ and h. For example, if α′ 6= 0, then
∂
{1,4}
[1,0] (h) = [0, 0, α′] = α′[0, 1]⊗2.

Theorem 5.7. If all signatures in F̂ satisfy the Parity Condition, then the fol-
lowing dichotomy holds: If F̂ ⊆ A , or F̂ ⊆ P̂, or F̂ ⊆ M , then Pl-Holant(ÊQ, F̂)
is tractable; otherwise it is #P-hard.

Proof. Clearly if F̂ ⊆ A , or F̂ ⊆ P̂, or F̂ ⊆ M , then Pl-Holant(ÊQ, F̂) is
tractable. (Since all signatures in F̂ satisfy the Parity Condition, Proposition 7.12
implies that if F̂ ⊆ P̂, then in fact F̂ ⊆ A . But the proof below will not use this
fact.)

Now suppose F̂ 6⊆ A , and F̂ 6⊆ P̂, and F̂ 6⊆M . Since F̂ * M , by Theorem 5.2,
we can construct a 4-ary signature f 6∈M from F̂ . By Lemma 2.38, we can assume
that

Mx1x2,x4x3(f) =




1 0 0 b
0 α β 0
0 γ δ 0
c 0 0 d


 .

We can finish the proof by the following four alternatives:
(A) If we can get [1, 0, x] 6∈ A such that

Pl-Holant(ÊQ, [1, 0, x], F̂) ≤T Pl-Holant(ÊQ, F̂),

then Pl-Holant(ÊQ, F̂) is #P-hard since Pl-Holant(ÊQ, [1, 0, x], F̂) is #P-
hard by Theorem 5.5.

(B) If we can get [1, 0,−1] and [0, 1]⊗2 such that

Pl-Holant(ÊQ, [1, 0,−1], [0, 1]⊗2, F̂) ≤T Pl-Holant(ÊQ, F̂),

then since F̂ * A , we can get [1, 0, x] 6∈ A by Lemma 4.6, such that

Pl-Holant(ÊQ, [1, 0, x], [1, 0,−1], [0, 1]⊗2, F̂) ≤T Pl-Holant(ÊQ, [1, 0,−1], [0, 1]⊗2, F̂).

Pl-Holant(ÊQ, [1, 0, x], [1, 0,−1], [0, 1]⊗2, F̂) is #P-hard by Theorem 5.5. Thus
Pl-Holant(ÊQ, F̂) is #P-hard.
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(C) If we can construct the crossover function X (Definition 2.4) such that

Pl-Holant(ÊQ,X, F̂) ≤T Pl-Holant(ÊQ, F̂),

then note that the Holant problem (on general, not necessarily planar, in-
stances) can be reduced to the planar one

Holant(ÊQ, F̂) ≡T Pl-Holant(ÊQ,X, F̂).

Since F̂ * P̂ and F̂ * A , we have that Pl-Holant(ÊQ, F̂) is #P-hard by
Theorem 2.33′.

(D) If we have (=4), by Lemma 2.3, we have

Pl-Holant(ÊQ, EQ2, F̂) ≤T Pl-Holant(ÊQ, F̂).

Then by Theorem 4.9, Pl-Holant(ÊQ, EQ2, F̂) is #P-hard, since F̂ * A .
Thus Pl-Holant(ÊQ, F̂) is #P-hard.

Note that for any x ∈ {b, c, α, β, γ, δ}, we have [1, 0, x] by taking ∂
{i,j}
[1,0] (f) on

some two variables xi and xj . If there exists x ∈ {b, c, α, β, γ, δ} such that x4 6= 0, 1,
then [1, 0, x] 6∈ A by Proposition 2.17, and we are done by alternative (A). If there
exists x ∈ {b, c, α, β, γ, δ} such that x2 = −1, then we have [1, 0,−1] and [0, 1]⊗2 by
Lemma 4.1 such that

Pl-Holant(ÊQ, [1, 0,−1], [0, 1]⊗2, F̂) ≤T Pl-Holant(ÊQ, F̂).

Thus we are done by alternative (B). So in the following, we may assume that

{b, c, α, β, γ, δ} ⊆ {0, 1,−1}.

Now we finish the proof by a case analysis of {b, c, α, β, γ, δ}.
If b = c = α = δ = 0, then

Mx1x2,x4x3(f) =




1 0 0 0
0 0 β 0
0 γ 0 0
0 0 0 d


 .

In this case,
• if βγ 6= 0, then we have (see (7.18) and (7.19), and note that β = β−1 and
γ = γ−1)

h(x1, x2, x3, x4) =
∑

x′1,x
′
2∈{0,1}

f(x′1, x′2, x3, x4)[1, 0, γ](x′1, x1)[1, 0, β](x′2, x2)

and

Mx1x2,x4x3(h) =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 dβγ


 .

Note that we have ∂{1,2}(=2) (f) = [1, 0, dβγ].
If (dβγ)4 6= 0, 1, then we are done by alternative (A).
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If (dβγ)2 = −1, then we have [1, 0,−1] and [0, 1]⊗2 by Lemma 4.1. Then
we are done by alternative (B).

If dβγ = −1, then f ∈M by Lemma 2.29. This is a contradiction.
If dβγ = 1, then h is the crossover function X (Definition 2.4). Thus we

are done by alternative (C).
If dβγ = 0, then

Mx1x2,x4x3(h) =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 .

Take two copies of h, and connect x2, x3, x4 of the first copy with x4, x3, x2
of the second copy; the planar gadget has the signature

h̃(x1, x2) =
∑

x′2,x
′
3,x
′
4∈{0,1}

h(x1, x
′
2, x
′
3, x
′
4)h(x2, x

′
4, x
′
3, x
′
2).

Then h̃ = [2, 0, 1] = 2[1, 0, 1
2 ]. Thus we are done by alternative (A).

• If βγ = 0, then d 6= 0 by Lemma 2.29, since f 6∈ A . By connecting two copies
of f , we get

h′(x1, x2, x3, x4) =
∑

x′3,x
′
4∈{0,1}

f(x1, x2, x
′
3, x
′
4)f(x′4, x′3, x3, x4),

where

Mx1x2,x4x3(h′) =




1 0 0 0
0 0 β 0
0 γ 0 0
0 0 0 d







1 0 0 0
0 0 β 0
0 γ 0 0
0 0 0 d


 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 d2


 .

Then by Lemma 2.40 we can get (=4) by interpolation. Thus we are done by
alternative (D).

Now we may assume that at least one of {b, c, α, δ} is nonzero. By a rotation, with-
out loss of generality, we assume that b 6= 0. In this case, if any one of {b, c, α, β, γ, δ}
is −1, then we have [1, 0,−1] and then also have [0, 1]⊗2 by Lemma 5.6. Then we are
done by alternative (B).

Now we may assume that

{b, c, α, β, γ, δ} ⊆ {0, 1} and b = 1.

In this case, we have the following:
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• For c = 1, note that we have

Mx2,x4x3(fx1=0) =
[
f0000 f0010 f0001 f0011
f0100 f0110 f0101 f0111

]
=
[
1 0 0 1
0 α β 0

]
,

Mx1,x4x3(fx2=0) =
[
f0000 f0010 f0001 f0011
f1000 f1010 f1001 f1011

]
=
[
1 0 0 1
0 γ δ 0

]
,

Mx1x2,x4(fx3=0) =




f0000 f0001
f0100 f0101
f1000 f1001
f1100 f1101


 =




1 0
0 β
0 δ
1 0


 ,

Mx1x2,x3(fx4=0) =




f0000 f0010
f0100 f0110
f1000 f1010
f1100 f1110


 =




1 0
0 α
0 γ
1 0


 .

If {α, β, γ, δ} has at least one 0 and one 1, then there exists i ∈ [4] such that
the support of fxi=0 is not affine. Then by Lemma 4.7, we can construct
g /∈ A and arity(g) < arity(fxi=0) = 3, and g satisfies the even Parity
Condition. Thus g has arity 2. This implies that, up to a nonzero factor, g
has the form [1, 0, x] 6∈ A . Thus we are done by alternative (A).
So we may assume that α = β = γ = δ = 0 or α = β = γ = δ = 1. For
α = β = γ = δ = 0,

Mx1x2,x4x3(f) =




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 d


 .

Since f /∈M , by Lemma 2.29 det [ 1 1
1 d ] 6= 0. By Lemma 2.40, we have (=4),

and we are done by alternative (D).
For α = β = γ = δ = 1, f is symmetric, namely f = [1, 0, 1, 0, d]. If d = 1,
then f ∈ M . This is a contradiction. Otherwise, d 6= 1; then f /∈ A ∪M .
Moreover, f /∈ P̂ by Proposition 7.12. Thus Pl-Holant(ÊQ, f) is #P-hard by
Theorem 2.34′.

• If c = 0, d = 0, then the outer matrix of f is degenerate. Thus the inner
matrix has full rank by f /∈M (Lemma 2.29). This implies that either α 6= β
or γ 6= δ. Because these signature entries α, β, γ, and δ are all 0-1 valued,
this implies that either supp(fx1=0) is not affine or supp(fx2=0) is not affine.
By Lemma 4.7, we can construct [1, 0, x] 6∈ A , and we are done by alternative
(A).

• If c = 0, d 6= 0, then we have ∂{1,2}(=2) = [1, 0, 1 + d] and ∂{3,4}=2 = 2[1, 0, d2 ].
If (d2 )4 6= 0, 1, then we are done by alternative (A) and [1, 0, d2 ].
Otherwise, d = ±2 or d = ±2i. If d 6= −2, then (1 + d)4 6= 0, 1, and we are
done by alternative (A) and [1, 0, 1+d]. If d = −2, then [1, 0, 1+d] = [1, 0,−1].
By Lemma 5.6, we have [1, 0,−1] and [0, 1]⊗2, and we are done by alternative
(B).

6. Main theorem. By Theorems 3.12 and 5.7, we have the following dichotomy
theorem for Pl-Holant(ÊQ, F̂).
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Theorem 6.1. Let F̂ be any set of complex-valued signatures in Boolean vari-
ables. Then Pl-Holant(ÊQ, F̂) is #P-hard unless F̂ ⊆ A , F̂ ⊆ P̂, or F̂ ⊆ M , in
which case the problem is computable in polynomial time.

After the holographic transformation by
[ 1 1

1 −1
]
, we have the following dichotomy

theorem for planar #CSP over the Boolean domain.
Theorem 6.1′. Let F be any set of complex-valued signatures in Boolean vari-

ables. Then Pl-#CSP(F) is #P-hard unless F ⊆ A , F ⊆ P, or F ⊆ M̂ , in which
case the problem is computable in polynomial time.

Now we prove Theorem 1.1.
Proof. By Theorem 2.33, if F ⊆ A or F ⊆ P, then #CSP(F) is tractable over

general graphs. This is category (1).
If F ⊆ A or F ⊆ P or F ⊆ M̂ , then by Theorem 6.1′, over planar graphs the

#CSP problem #CSP(F), i.e., Pl-#CSP(F), is tractable.
Suppose F 6⊆ A and F 6⊆ P; then #CSP(F) is #P-hard by Theorem 2.33. If

further F 6⊆ M̂ , then by Theorem 6.1′, Pl-#CSP(F) is #P-hard. This is category (3).
It also implies that F ⊆ M̂ precisely captures all problems of the form #CSP(F) in
category (2), and that holographic algorithms with matchgates constitute a universal
method to obtain polynomial-time algorithms for problems in the class #CSP(F) that
are #P-hard on general graphs but solvable in polynomial time on planar graphs.

7. Appendix.

7.1. Ternary nonproduct type under unary actions. In this subsection, we
will show how to construct a binary nonproduct signature or a symmetric nonproduct
signature from a nonproduct signature of arity 3 with some unary signatures. This is
the base case of the induction in the proof of Theorem 3.6.

Throughout this subsection, we are given a ternary signature f and a finite set
of pairwise linearly independent unary signatures [aj , bj ] (1 ≤ j ≤ m). Let ∂{i}[aj ,bj ](f)
denote the binary signature obtained by connecting [aj , bj ] to the ith variable of
f . For example, in matrix form, the binary signature ∂

{1}
[aj ,bj ](f) takes the form[

ajf000+bjf100 ajf001+bjf101
ajf010+bjf110 ajf011+bjf111

]
, where x2 is the row index and x3 is the column index. It

is clear that a necessary and sufficient condition for ∂{1}[aj ,bj ](f) ∈P is

ajf000 + bjf100 = 0, ajf011 + bjf111 = 0, (∂{1}Dj)
or ajf001 + bjf101 = 0, ajf010 + bjf110 = 0, (∂{1}Ej)

or
∣∣∣∣
ajf000 + bjf100 ajf001 + bjf101
ajf010 + bjf110 ajf011 + bjf111

∣∣∣∣ = 0. (∂{1} detj)

Note the new notation (∂{i}Dj), (∂{i}Ej), (∂{i} detj) we are introducing above; these
are not to be confused with derivatives of signatures.

We can similarly define the conditions (∂{i}Dj), (∂{i}Ej), (∂{i} detj) for 1 ≤ i ≤ 3,
1 ≤ j ≤ m.

Lemma 7.1. Let unary signatures [aj , bj ] (1 ≤ j ≤ 2) be linearly independent.
Suppose ∂

{i}
[aj ,bj ](f) ∈ P for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2. If f(x1, x2, x3) =

g(xr, xs)h(xt) where {r, s, t} = {1, 2, 3}, then f ∈P.
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Proof. If h is identically zero, then so is f , and the claim is trivial. Otherwise, by
linear independence there exists 1 ≤ j ≤ 2 such that ∂{t}[aj ,bj ](h) is a nonzero constant
c. Then g(xr, xs) = c−1∂

{t}
[aj ,bj ](f) ∈P. Hence f(x1, x2, x3) = g(xr, xs)h(xt) ∈P.

Lemma 7.2. Let m ≥ 3, and let unary signatures [aj , bj ] (1 ≤ j ≤ m) be pairwise
linearly independent. Suppose ∂{i}[aj ,bj ](f) ∈P for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ m. If for
some 1 ≤ i ≤ 3,

• there are two distinct j such that (∂{i}Dj) hold, or
• there are two distinct j such that (∂{i}Ej) hold,

then f ∈P.
Proof. By symmetry of the 3 variables we may assume i = 1. By pairwise linear

independence of [aj , bj ] (1 ≤ j ≤ m) we have either
1. f000 = f100 = f011 = f111 = 0 (by (∂{1}Dj) for two distinct j) or
2. f001 = f101 = f010 = f110 = 0 (by (∂{1}Ej) for two distinct j).

Suppose it is the first case.
By pairwise linear independence, there exists some 1 ≤ k ≤ 3 such that ak 6= 0

and bk 6= 0. Consider (∂{2}Dk), (∂{2}Ek), and (∂{2} detk), namely

���akf000 + bkf010 = 0, akf101 +���bkf111 = 0, (∂{2}Dk)
or akf001 +���bkf011 = 0, ���akf100 + bkf110 = 0, (∂{2}Ek)

or
∣∣∣∣
���akf000 + bkf010 akf001 +���bkf011
���akf100 + bkf110 akf101 +���bkf111

∣∣∣∣ = 0. (∂{2} detk)

We have f010 = f101 = 0 from (∂{2}Dk) or f001 = f110 = 0 from (∂{2}Ek) or∣∣∣ f010 f001
f110 f101

∣∣∣ = 0 from (∂{2} detk). When f010 = f101 = 0, together with the four
vanishing entries f000 = f100 = f011 = f111 = 0 from (∂{1}Dj) for two distinct j, the
support of f is contained in the two diagonal points {001, 110}, and hence f ∈ P.
Similarly, when f001 = f110 = 0, the support of f is contained in the two diagonal
points {010, 101}, and again f ∈ P. Suppose

∣∣∣ f010 f001
f110 f101

∣∣∣ = 0. Then f is the product
of the functions (x2 6= x3) and the degenerate function g(x1, x3) with the signature
in matrix form

[
f010 f001
f110 f101

]
, where x1 is the row index and x3 is the column index.

The second case f001 = f101 = f010 = f110 = 0 is similar. We exchange all
the crossed-out terms in (∂{2}Dk), (∂{2}Ek), and (∂{2} detk) with the uncrossed-out
terms. The conclusions from (∂{2}Dk) or from (∂{2}Ek) are still that the support of
f is contained in two diagonal points. From (∂{2} detk) we get

∣∣∣ f000 f011
f100 f111

∣∣∣ = 0, and we
conclude that f is the product of the functions (x2 = x3) and the degenerate function
g(x1, x2) with the signature in matrix form

[
f000 f011
f100 f111

]
, where x1 is the row index and

x2 is the column index.
Lemma 7.3. Let m ≥ 3, and let unary signatures [aj , bj ] (1 ≤ j ≤ m) be pairwise

linearly independent. Suppose ∂{i}[aj ,bj ](f) ∈ P for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ m. If,
for some 1 ≤ i ≤ 3, there are three distinct j such that (∂{i} detj) hold, then f ∈P.

Proof. By symmetry of the 3 variables we may assume i = 1. Each (∂{1} detj) is
a quadratic form in aj and bj :

(7.1)
∣∣∣∣
f000 f001
f010 f011

∣∣∣∣ a2
j +

(∣∣∣∣
f000 f101
f010 f111

∣∣∣∣+
∣∣∣∣
f100 f001
f110 f011

∣∣∣∣
)
ajbj +

∣∣∣∣
f100 f101
f110 f111

∣∣∣∣ b2j = 0.
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Assume (∂{1} detj) holds for 3 distinct values j, k, `. By pairwise linear independence,
the 3× 3 determinant

∣∣∣∣∣∣

a2
j ajbj b2j
a2
k akbk b2k
a2
` a`b` b2`

∣∣∣∣∣∣
6= 0.

Indeed, if all aj , ak, a` 6= 0, then the determinant is

a2
ja

2
ka

2
`

∣∣∣∣∣∣

1 bj/aj (bj/aj)2

1 bk/ak (bk/ak)2

1 b`/a` (b`/a`)2

∣∣∣∣∣∣
,

where the Vandermonde determinant is nonzero because bj/aj , bk/ak, and b`/a` are
pairwise distinct. If any aj , ak, a` = 0, say a` = 0, then by pairwise linear indepen-
dence aj , ak 6= 0, and b` 6= 0, and

∣∣∣∣∣∣

a2
j ajbj b2j
a2
k akbk b2k
a2
` a`b` b2`

∣∣∣∣∣∣
= b2`a

2
ja

2
k

∣∣∣∣
1 bj/aj
1 bk/ak

∣∣∣∣ 6= 0.

It follows from (7.1) that

(7.2)
∣∣∣∣
f000 f001
f010 f011

∣∣∣∣ = 0,
∣∣∣∣
f000 f101
f010 f111

∣∣∣∣+
∣∣∣∣
f100 f001
f110 f011

∣∣∣∣ = 0,
∣∣∣∣
f100 f101
f110 f111

∣∣∣∣ = 0.

There is a transitive group action on the four vectors

f0•0 =
[
f000
f010

]
, f0•1 =

[
f001
f011

]
, f1•0 =

[
f100
f110

]
, f1•1 =

[
f101
f111

]
,

generated by the permutations σ exchanging f0•0 ↔ f1•0 and f0•1 ↔ f1•1, and τ
exchanging f0•0 ↔ f0•1 and f1•0 ↔ f1•1. This group Z2×Z2 preserves the equations
(7.2). Thus either all four vectors are zero, in which case f ∈P trivially, or we may
assume f0•0 6= 0.

By the first equation in (7.2), there exists λ ∈ C such that f0•1 = λf0•0. Substi-
tuting f0•1 into the second equation in (7.2), we get

∣∣∣ f000 f101−λf100
f010 f111−λf110

∣∣∣ = 0, and thus
there exists µ ∈ C such that f1•1 − λf1•0 = µf0•0. If µ = 0, then f1•1 = λf1•0. Then
f is the product of the unary function [1, λ] on x3 and the binary function g(x1, x2)
with the signature matrix

[
f000 f010
f100 f110

]
, where x1 = 0, 1 is the row index, and x2 = 0, 1

is the column index. By Lemma 7.1 we are done.
Suppose µ 6= 0. Substituting f1•1 = λf1•0 +µf0•0 into the third equation in (7.2),

there exists ν ∈ C such that f1•0 = νf0•0 and f1•1 = (λν + µ)f0•0. Hence, f is the
product of the unary function [f000, f010] on x2 and the binary function g(x1, x3) with
the signature matrix

[ 1 λ
ν λν+µ

]
, where x1 = 0, 1 is the row index, and x3 = 0, 1 is the

column index. By Lemma 7.1 we are done.
Lemma 7.4. Let m ≥ 5, and let unary signatures [aj , bj ] (1 ≤ j ≤ m) be pairwise

linearly independent. Suppose ∂{i}[aj ,bj ](f) ∈P for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ m. Then
f ∈P.
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Proof. For all 1 ≤ j ≤ m, either (∂{1}Dj) or (∂{1}Ej) or (∂{1} detj) holds, since
∂
{1}
[aj ,bj ](f) ∈ P. Since m ≥ 5, either (∂{1}Dj) is satisfied for at least two distinct j,

or (∂{1}Ej) is satisfied for at least two distinct j, or (∂{1} detj) is satisfied for at least
three distinct j. Hence by Lemmas 7.2 and 7.3, f ∈P.

Consider the Boolean cube {0, 1}3 with its four diagonal pairs. We will name
them a, b, c, d, where

a = (000, 111), b = (001, 110), c = (010, 101), d = (011, 100),

respectively. A consequence of each statement (∂{i}Dj) and (∂{i}Ej) is that for some
two diagonal pairs, the values of f at the diagonal pairs have the same product; e.g.,
for any j, (∂{1}Dj) implies that the product f000f111 = f011f100; i.e., the product of
the values of f at the diagonal a is the same as that at the diagonal d. Similarly, the
statement (∂{1}Ej) implies that the product f001f110 = f010f101; i.e., the product of
the values of f at the diagonal b is the same as that at the diagonal c. For (∂{2}Dj)
(resp., (∂{2}Ej)), the implications are for the diagonals a and c (resp., b and d). For
(∂{3}Dj) (resp., (∂{3}Ej)), the implications are for the diagonals a and b (resp., c and
d).

Define a graph on the vertex set {a, b, c, d} where we add an edge whenever the
corresponding diagonals have the same product value of f , and we get a spanning
subgraph (a subgraph containing all four vertices) of K4 on {a, b, c, d}. We remark
that since its edge relation is defined by equality of values, any connected component
of this spanning subgraph is a clique. If there are at least four edges in this spanning
subgraph, then it is connected (which is equivalent to this spanning subgraph being
just K4), with the implication that all diagonals have the same product value of f . If
this spanning subgraph is connected, then each statement (∂{i} detj) takes the form

(7.3) D0a
2
j +D2b

2
j = 0

for some coefficients D0 and D2 with a zero coefficient of the cross term ajbj . Note
that D0 and D2 are the coefficients of a2

j and b2j , respectively, in (∂{i} detj) and do
not depend on j. They depend on i, but D0 (resp., D2) is the same for all j. For
example, for (∂{1} detj) we have

D0 =
∣∣∣∣
f000 f001
f010 f011

∣∣∣∣ and D2 =
∣∣∣∣
f100 f101
f110 f111

∣∣∣∣ .

Moreover, the only disconnected spanning subgraph with three edges in K4 is
a triangle (plus an isolated vertex), meaning that the three statements among all
(∂{i}Dj) and (∂{i}Ej) that hold must be those with implications among only three
letters out of four {a, b, c, d}. For example, if the triangle is on {a, b, c}, then the three
statements must be among (∂{1}Ej), (∂{2}Dj), and (∂{3}Dj) (but not (∂{1}Dj), not
(∂{2}Ej), and not (∂{3}Ej)). Similarly if the triangle is on {b, c, d}, then the three
statements must be among (∂{1}Ej), (∂{2}Ej), and (∂{3}Ej) (but not (∂{1}Dj), not
(∂{2}Dj), and not (∂{3}Dj)).

Lemma 7.5. Suppose the ternary function f 6∈ P. Let [1, bj ] (1 ≤ j ≤ 4) be
the unary signatures [1, 1], [1,−1], [1, i], [1,−i], respectively. Suppose ∂

{i}
[1,bj ](f) ∈ P

for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4. Then, up to a nonzero constant factor, f is a
product of some subset of unary functions [1, bj ] and the symmetric ternary function
[1, 1,−1,−1].
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Proof. By Lemmas 7.2 and 7.3, we may assume that for each 1 ≤ i ≤ 3 there can
be at most one j such that (∂{i}Dj) holds, at most one j′ such that (∂{i}Ej′) holds,
and at most two distinct values k and k′ such that (∂{i} detk) and (∂{i} detk′) hold.
Moreover, since there are four such requirements that must be satisfied altogether for
the same i, there exist exactly one such j, j′, k, and k′, respectively, and {j, j′, k, k′} =
{1, 2, 3, 4}.

The spanning subgraph of K4 in this case is the full graph K4, and all diagonals
have the same product value. To see this, note that the edge {a, d} exists because
(∂{1}Dj) for some j; {a, c} exists because (∂{2}Dj) also for some j; and {a, b} exists
because (∂{3}Dj) yet again for some j.

For any 1 ≤ i ≤ 3 if the two valid determinantal statements (∂{i} detk) and
(∂{i} detk′) are not for the pair {[1, 1], [1,−1]} or {[1, i], [1,−i]}, then we have b2k 6=
b2k′ . Note that in this case ak = ak′ = 1, and since (7.3) holds for two distinct
indices k and k′ (and D0, D2 are the same for these two k and k′), we conclude
that D0 = D2 = 0 for this i. Then (∂{i} det`), which has the form (7.3) with the
vanished cross term and index `, must hold for all 1 ≤ ` ≤ 4. By Lemma 7.3 we
are done. Hence we may assume that the pair for which (∂{i} detk) and (∂{i} detk′)
hold is {[1, bk], [1, bk′ ]} = {[1, 1], [1,−1]} or {[1, i], [1,−i]}. Then we have bk = ±bk′ .
Furthermore, bk 6= bk′ because {j, j′, k, k′} = {1, 2, 3, 4}; hence bk = −bk′ ∈ {1,−1}
or bk = −bk′ ∈ {i,−i}. This also implies that bj = −bj′ .

For the valid (∂{1}Dj) let x = −bj ∈ {1,−1, i,−i}. This is the multiplier for
which f000 = xf100 and f011 = xf111. The corresponding multiplier for (∂{1}Ej′) is
−x such that f001 = −xf101 and f010 = −xf110. Similarly, for the valid (∂{2}Dj) we
define y ∈ {1,−1, i,−i} such that f000 = yf010 and f101 = yf111. Also f001 = −yf011
and f100 = −yf110. Finally, for the valid (∂{3}Dj) we define z ∈ {1,−1, i,−i} such
that f000 = zf001 and f110 = zf111. Also f010 = −zf011 and f100 = −zf101. Note
that x, y, z ∈ {1,−1, i,−i} are nonzero complex numbers.

Let g(x1, x2, x3) be the product of three unary functions g1(x1)g2(x2)g3(x3),
where g1(x1) = [x, 1] on x1, g2(x2) = [y, 1] on x2, and g3(x3) = [z, 1] on x3. If we
denote g1(x1) by [x, 1]x1 to indicate that the unary function [x, 1] is on the variable
x1, and similarly for g2(x2) and g3(x3), we can write g = [x, 1]x1 ⊗ [y, 1]x2 ⊗ [z, 1]x3 .
Note that each of g1, g2, g3 is a nonzero constant multiple of some [1, bj ] (1 ≤ j ≤ 4).

Finally, it is easy to verify that f = gh, where h is the ternary symmetric function
f000[1, 1,−1,−1].

Corollary 7.6. Let F be a set of signatures containing a ternary signature f 6∈
P. Suppose F contains the unary signatures {[1, bj ] | 1 ≤ j ≤ 4} = {[1, 1], [1,−1], [1, i],
[1,−i]}, and ∂{i}[1,bj ](f) ∈P for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ 4. Then

Pl-#CSP(F ∪ {[1, 1,−1,−1]}) ≤T Pl-#CSP(F).

Proof. By Lemma 7.5, up to a nonzero constant factor, f is a product of [1, 1,−1,−1]
and some unary functions from {[1, 1], [1,−1], [1, i], [1,−i]}. For any instance I of
Pl-#CSP(F ∪{[1, 1,−1,−1]}), every occurrence of [1, 1,−1,−1] can be replaced by f
together with some unary functions from {[1, 1], [1,−1], [1, i], [1,−i]}. This is because
the two product functions, [1,±1](xi) · [1,±1](xi) and [1,±i](xi) · [1,∓i](xi), each a
product of two unary functions on the same variable, are both the constant 1 function
on xi.

We denote by ω = ei 2π
3 a primitive third root of unity.

Lemma 7.7. Suppose f 6∈ P. Let [1, bj ] (1 ≤ j ≤ 3) be the unary signatures
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[1, 1], [1, ω], [1, ω2], respectively. Suppose ∂{i}[1,bj ](f) ∈P for all 1 ≤ i ≤ 3 and 1 ≤ j ≤
3. Then f is a product of some unary functions [1, bj ] with

1. the symmetric function [1,−1, x,−x] where x ∈ {ω, ω2}, or
2. the symmetric function [−2, 1, 1,−2], or
3. after a cyclic permutation of its three variables a ternary function g(1 −
x1, x2, x3) where g(x1, x2, x3) is the symmetric function [−2, 1, 1,−2].

Proof. By Lemmas 7.2 and 7.3, we may assume that for each 1 ≤ i ≤ 3 there can
be at most one j such that (∂{i}Dj) holds, at most one j′ such that (∂{i}Ej′) holds,
and at most two distinct values k and k′ such that (∂{i} detk) and (∂{i} detk′) hold.

Let N be the total number of valid statements among (∂{i}Dj) and (∂{i}Ej). If
N ≤ 2, then for some 1 ≤ i ≤ 3, all three statements (∂{i} detj) for 1 ≤ j ≤ 3 must
hold. Hence N ≥ 3.

We first assume that the spanning subgraph of K4 defined by the valid statements
(∂{i}Dj) and (∂{i}Ej) is connected. In particular, if N ≥ 4, then this is the case. In
this case, all statements (∂{i} detj) are of the form (7.3) with a vanishing cross term.
For any two distinct bj , bk ∈ {1, ω, ω2}, b2j 6= b2k, therefore for any 1 ≤ i ≤ 3, if there are
two distinct valid statements (∂{i} detj) and (∂{i} detj′) (j 6= j′), then (∂{i} detk) is
valid for all 1 ≤ k ≤ 3. By Lemma 7.3 we reach a contradiction to f 6∈P. Therefore,
there cannot be more than one valid (∂{i} detj) for each 1 ≤ i ≤ 3. It follows that for
every 1 ≤ i ≤ 3, there is exactly one valid (∂{i}Dj), one valid (∂{i}Ek), and one valid
(∂{i} det`), such that {j, k, `} = {1, 2, 3}.

For the valid (∂{1}Dj), let x = bj ∈ {1, ω, ω2}; then f000 = −xf100 and f011 =
−xf111. The corresponding multiplier for the valid (∂{1}Ek) is x′ where x′ = xω or
xω2, such that f001 = −x′f101 and f010 = −x′f110. Similarly, for the valid (∂{2}Dj) we
define y ∈ {1, ω, ω2} such that f000 = −yf010 and f101 = −yf111. Also f001 = −y′f011
and f100 = −y′f110, where y′ = yω or yω2. Finally, for the valid (∂{3}Dj) we define
z ∈ {1, ω, ω2} such that f000 = −zf001 and f110 = −zf111. Also f010 = −z′f011
and f100 = −z′f101, where z′ = zω or zω2. Clearly, if any value fabc = 0, then f is
identically 0, a contradiction to f 6∈P. So we may assume that f has no zero values.
By consistency of values, f001 = −x′f101 = x′yf111 and f001 = −y′f011 = xy′f111;
hence x′/x = y′/y. Similarly, f000 = −zf001 = y′zf011 and f000 = −yf010 = yz′f011;
hence y′/y = z′/z.

Let ρ = x′/x = y′/y = z′/z ∈ {ω, ω2}. Let g(x1, x2, x3) be the product function
g1(x1)g2(x2)g3(x3) where g1(x1) = [−x, 1]x1 , g2(x2) = [−y, 1]x2 , g3(x3) = [−z, 1]x3 ,
i.e., g = [−x, 1]x1⊗[−y, 1]x2⊗[−z, 1]x3 . Then f = gh where h is the ternary symmetric
function f111[−ρ, ρ,−1, 1]. Alternatively we have h = f000[1,−1, ξ,−ξ], where ξ =
1/ρ ∈ {ω, ω2}.

Now suppose N = 3 and the spanning subgraph with three edges in K4 is a
triangle (together with an isolated vertex). Then for each 1 ≤ i ≤ 3 there are exactly
two distinct values k and k′ such that (∂{i} detk) and (∂{i} detk′) hold. The triangle
of the spanning subgraph is either the triangle on {b, c, d} or a triangle involving the
vertex a, in which case by a cyclic permutation of the three variables, we may assume
the triangle is on {a, b, c}. For the triangle on {b, c, d} the three valid statements
among all (∂{i}Dj) and (∂{i}Ej) must be among (∂{1}Ej), (∂{2}Ej), and (∂{3}Ej).
For the triangle on {a, b, c} the three valid statements among all (∂{i}Dj) and (∂{i}Ej)
must be among (∂{1}Ej), (∂{2}Dj), and (∂{3}Dj).

We first consider the triangle {b, c, d} case. According to the valid (∂{1}Ej), we
let x = bj ∈ {1, ω, ω2}; then f001 = −xf101 and f010 = −xf110. Then the two valid
(∂{1} detk) and (∂{1} det`) hold for bk = bjω and b` = bjω

2. Hence the following
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equation has two roots X = xω and X = xω2:

(7.4)
∣∣∣∣
f000 f001
f010 f011

∣∣∣∣+
∣∣∣∣
f000 f101
f010 f111

∣∣∣∣X +
∣∣∣∣
f100 f101
f110 f111

∣∣∣∣X2 = 0.

Notice that we have used the fact that one cross term is zero:
∣∣∣ f100 f001
f110 f011

∣∣∣ = 0, because
the diagonal b and d have the same product value f001f110 = f011f100. Subtracting
one equation from another in (7.4) with X = xω and X = xω2, we get

(7.5)
∣∣∣∣
f000 f101
f010 f111

∣∣∣∣ = x

∣∣∣∣
f100 f101
f110 f111

∣∣∣∣ .

Similarly, we have a valid (∂{2}Ej) for some j according to which we let y = bj ∈
{1, ω, ω2}, and then f001 = −yf011 and f100 = −yf110. Also, the two statements
(∂{2} detk) and (∂{2} det`) hold for bk = bjω and b` = bjω

2. We have a valid (∂{3}Ej)
for some j according to which we let z = bj ∈ {1, ω, ω2}, and then f100 = −zf101 and
f010 = −zf011. The two statements (∂{3} detk) and (∂{2} det`) hold for bk = bjω and
b` = bjω

2.
It follows that

f001 = −xf101, f100 = −zf101, f110 = z

y
f101, f011 = x

y
f101, f010 = −xz

y
f101.

Let g(x1, x2, x3) = f(x1, x2, x3)/ ([−x, 1]x1 ⊗ [−y, 1]x2 ⊗ [−z, 1]x3); then g000 =
f000/(−xyz), g111 = f111, and g001 = f001/(xy) = (−1/y)f101 = g101. Similarly,
we can show

g001 = g100 = g110 = g011 = g010 = g101.

If g101 = 0, then g ∈ P, and so is f , a contradiction to f 6∈ P. Hence we may
normalize by a constant and assume that g101 = 1.

After some computation, (7.5) simplifies to

(7.6) Y Z + Z − 2 = 0,

where Y = g000 and Z = g111. Equation (7.4) for the root X = xω simplifies to

(7.7) Y − 1 + (1− Y Z)ω + (Z − 1)ω2 = 0,

where Y and Z are as above. If we substitute 1−Y Z = Z−1 from (7.6) into (7.7), we
get Y = Z. Substituting this back into (7.6), we get (Y − 1)(Y + 2) = 0, and Y = 1
or Y = −2. The solution Y = 1 gives a degenerate g and hence f , a contradiction to
f 6∈P. The solution Y = Z = −2 gives g = [−2, 1, 1,−2]. This gives

f(x1, x2, x3) = ([−x, 1]x1 ⊗ [−y, 1]x2 ⊗ [−z, 1]x3) [−2, 1, 1,−2],

where x, y, z ∈ {1, ω, ω2}.
The last case is that N = 3 and the spanning subgraph with three edges in K4

is the triangle on {a, b, c} (with an isolated vertex d) after a cyclic permutation of
the three variables. By flipping x1 with its negation x1 we can invoke what has
been proved for the triangle {b, c, d} case and conclude that f(x1, x2, x3) is a product
of some unary functions with the function g(x1, x2, x3), where g(x1, x2, x3) is the
symmetric function [−2, 1, 1,−2].
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We remark that since we are interested in planar #CSP problems, we may not
use arbitrary permutation of variables. In the proof above, whenever the conclusion
is symmetric in all three variables, the argument can apply an arbitrary permutation
in the proof without loss of generality. However, if the conclusion is not symmetric
in all three variables, we may only apply a cyclic permutation in the proof, as in
the last case in Lemma 7.7 with the triangle on {a, b, c}. Notice that the function
g(x1, x2, x3) has the signature matrix

[ 1 1 1 −2
−2 1 1 1

]
, where x1 = 0, 1 is the row index,

and x2x3 = 00, 01, 10, 11 is the column index. If we connect two copies of g(x1, x2, x3)
with both x1 as external edges, and the variable x2 of one copy connected to the x3 of
the other copy, for both pairs of (x2, x3), we obtain a planar gadget with a symmetric
signature not in P with its signature matrix

[
1 1 1 −2
−2 1 1 1

]



1 −2
1 1
1 1
−2 1


 =

[
7 −2
−2 7

]
6∈P.

Corollary 7.8. Let F be a set of signatures containing a ternary signature f 6∈
P. Suppose F contains the unary signatures {[1, bj ] | 1 ≤ j ≤ 3} = {[1, 1], [1, ω], [1, ω2]},
and ∂

{i}
[1,bj ](f) ∈ P for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3. Then there exists g ∈

{[1,−1, ω,−ω], [1,−1, ω2,−ω2], [−2, 1, 1,−2], [7,−2, 7]} such that

Pl-#CSP(F ∪ {g}) ≤T Pl-#CSP(F).

Lemma 7.9. Suppose f 6∈ P. Let [1, bj ] (1 ≤ j ≤ 3) be the unary signatures
[1, 0], [1, 1], [1,−1], respectively. Suppose ∂

{i}
[1,bj ](f) ∈ P for all 1 ≤ i ≤ 3 and 1 ≤

j ≤ 3. Then, after a cyclic permutation of its three variables, f is a product of some
unary functions [1, bj ] with the symmetric function [1, 0, 1, 0] or [0, 1, 0, 1].

Proof. The requirements for ∂{i}[1,bj ](f) ∈ P for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3
are listed below, where each line is for one (i, j). More specifically, the condition
∂
{i}
[1,bj ](f) ∈P is expressed by the disjunction (∂{i}Dj) ∨ (∂{i}Ej) ∨ (∂{i} detj):

f000 = f011 = 0 (∂{1}D1) or f001 = f010 = 0 (∂{1}E1) or
∣∣∣∣
f000 f001
f010 f011

∣∣∣∣ = 0 (∂{1} det1)

f000 + f100 = f011 + f111 = 0 (∂{1}D2) or f001 + f101 = f010 + f110 = 0 (∂{1}E2) or
∣∣∣∣
f000 + f100 f001 + f101
f010 + f110 f011 + f111

∣∣∣∣ = 0 (∂{1} det2)

f000 − f100 = f011 − f111 = 0 (∂{1}D3) or f001 − f101 = f010 − f110 = 0 (∂{1}E3) or
∣∣∣∣
f000 − f100 f001 − f101
f010 − f110 f011 − f111

∣∣∣∣ = 0 (∂{1} det3)

f000 = f101 = 0 (∂{2}D1) or f001 = f100 = 0 (∂{2}E1) or
∣∣∣∣
f000 f001
f100 f101

∣∣∣∣ = 0 (∂{2} det1)

f000 + f010 = f101 + f111 = 0 (∂{2}D2) or f001 + f011 = f100 + f110 = 0 (∂{2}E2) or
∣∣∣∣
f000 + f010 f001 + f011
f100 + f110 f101 + f111

∣∣∣∣ = 0 (∂{2} det2)

f000 − f010 = f101 − f111 = 0 (∂{2}D3) or f001 − f011 = f100 − f110 = 0 (∂{2}E3) or
∣∣∣∣
f000 − f010 f001 − f011
f100 − f110 f101 − f111

∣∣∣∣ = 0 (∂{2} det3)

f000 = f110 = 0 (∂{3}D1) or f010 = f100 = 0 (∂{3}E1) or
∣∣∣∣
f000 f010
f100 f110

∣∣∣∣ = 0 (∂{3} det1)

f000 + f001 = f110 + f111 = 0 (∂{3}D2) or f010 + f011 = f100 + f101 = 0 (∂{3}E2) or
∣∣∣∣
f000 + f001 f010 + f011
f100 + f101 f110 + f111

∣∣∣∣ = 0 (∂{3} det2)

f000 − f001 = f110 − f111 = 0 (∂{3}D3) or f010 − f011 = f100 − f101 = 0 (∂{3}E3) or
∣∣∣∣
f000 − f001 f010 − f011
f100 − f101 f110 − f111

∣∣∣∣ = 0 (∂{3} det3)

By Lemma 7.2, we may assume that for each 1 ≤ i ≤ 3 there can be at most one
j such that (∂{i}Dj) holds, and at most one j′ such that (∂{i}Ej′) holds. This implies
that for every i there is at least one j such that (∂{i} detj) holds. By Lemma 7.3, we
may assume that for each 1 ≤ i ≤ 3 there are at most two distinct values k and k′

such that (∂{i} detk) and (∂{i} detk′) hold.
We first suppose the spanning subgraph of K4 is connected. This implies that all

diagonal pairs have the same product value. In that case, the statements (∂{i} det2)
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and (∂{i} det3) are identical. Thus if (∂{i} det1) holds then we may assume (∂{i} det2)
and (∂{i} det3) do not hold. On the other hand, if (∂{i} det1) does not hold, then
(∂{i} det2) and (∂{i} det3) must hold by Lemma 7.2.

1. Suppose there exists some 1 ≤ i ≤ 3 such that either (∂{i}D1) or (∂{i}E1)
holds. By cyclically permuting the variables we may assume i = 1.
• Case where (∂{1}D1) holds.

If (∂{1} det2), which is equivalent to (∂{1} det3), does not hold, then two
more valid statements must hold among {(∂{1}D2), (∂{1}E2), (∂{1}D3),
(∂{1}E3)}, and together with (∂{1}D1), we are done by Lemma 7.2. Thus
(∂{1} det2) holds.
We have f000 = f011 = 0 by (∂{1}D1). If we have additionally f001 = 0
and f010 = 0, then fx1=0 is identically 0, and f(x1x2, x3) = g(x2, x3)[0, 1]x1

for some binary function g. By Lemma 7.1 we reach a contradiction to
f 6∈P. So we assume f001 and f010 are not both zero.
If (∂{2} det1) holds, then we must have either (∂{2}D2) and (∂{2}E3) or
(∂{2}D3) and (∂{2}E2). In either case, by (∂{2}D2) or (∂{2}D3) it easily
follows that f010 = 0 and by (∂{2}E3) or (∂{2}E2) that f001 = 0. But
this is a contradiction to the statement that f001 and f010 are not both
zero, from the previous paragraph. This contradiction proves that in
fact (∂{2} det1) does not hold. Similarly, if (∂{3} det1) holds, we reach
the same contradiction. Thus (∂{3} det1) does not hold.
Therefore, we must have (∂{2} det2) which is identical to (∂{2} det3),
and also (∂{3} det2) which is identical to (∂{3} det3), in addition to
(∂{1} det2).
These statements take the form

∣∣∣∣
f000 + f100 f001 + f101
f010 + f110 f011 + f111

∣∣∣∣ =
∣∣∣∣
f000 f001
f010 f011

∣∣∣∣+
∣∣∣∣
f100 f101
f110 f111

∣∣∣∣(7.8)

= −f001f010 + f100f111 − f101f110 = 0,∣∣∣∣
f000 + f010 f001 + f011
f100 + f110 f101 + f111

∣∣∣∣ =
∣∣∣∣
f000 f001
f100 f101

∣∣∣∣+
∣∣∣∣
f010 f011
f110 f111

∣∣∣∣(7.9)

= −f001f100 + f010f111 = 0,

∣∣∣∣
f000 + f001 f010 + f011
f100 + f101 f110 + f111

∣∣∣∣ =
∣∣∣∣
f000 f010
f100 f110

∣∣∣∣+
∣∣∣∣
f001 f011
f101 f111

∣∣∣∣

(7.10)

= −f010f100 + f001f111 = 0.

If f001 = 0, then f010f111 = 0 from (7.9) and f010f100 = 0 from (7.10).
Since f001 and f010 are not both zero, we have f010 6= 0 in this case, and
we conclude that f111 = f100 = 0. Then f is the product of (x2 6= x3)
with the degenerate binary function g(x1, x3) =

[
f010 f001
f110 f101

]
with row

index x1 = 0, 1 and column index x3 = 0, 1, and
∣∣∣ f010 f001
f110 f101

∣∣∣ = 0 from
(7.9). This is a contradiction to f 6∈P.
If f010 = 0, then we also get the same conclusion. So we assume that
both f001 6= 0 and f010 6= 0. Then from (7.9) and (7.10) we get f100 =
f010
f001

f111 = f001
f010

f111. If f111 = 0, then f100 = 0, and we have f = (x2 6=
x3)g(x1, x3) for a degenerate binary function g as before. Therefore, we
may assume that f111 6= 0; then f100 6= 0 as well. Then (f010)2 = (f001)2;
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thus f010 = εf001, where ε = ±1. Also f100 = εf111.
Since all diagonal pairs have the same product value, f001f110 = f010f101
= f000f111 = 0. As f001 6= 0 and f010 6= 0, we have f110 = f101 = 0.
Then from (7.8) we have

∣∣∣ f100 f001
f010 f111

∣∣∣ =
∣∣∣ εf111 f001
εf001 f111

∣∣∣ = 0. It follows that
f001 = ε∗f111, where ε∗ = ±1. Thus f010 = εε∗f111.
Hence f is the product of [ε, 1]x1⊗[εε∗, 1]x2⊗[ε∗, 1]x3 with the symmetric
ternary function f111[0, 1, 0, 1].

• Case where (∂{1}E1) holds.
This case is similar to the case when (∂{1}D1) holds. The conclusion is
that if f 6∈P, then f is the product of [1, ε]x1 ⊗ [1, ε∗]x2 ⊗ [1, εε∗]x3 and
the ternary symmetric function f000[1, 0, 1, 0], where ε, ε∗ = ±1.

2. Otherwise (i.e., suppose instead the condition in item 1 does not hold), we
have, for all 1 ≤ i ≤ 3, that neither (∂{i}D1) nor (∂{i}E1) holds. Hence for
all 1 ≤ i ≤ 3, (∂{i} det1) holds. Then for all 1 ≤ i ≤ 3, (∂{i} det2), which is
equivalent to (∂{i} det3), does not hold, by Lemma 7.3. Thus for all 1 ≤ i ≤ 3,
either (∂{i}D2) and (∂{i}E3) or (∂{i}D3) and (∂{i}E2) must hold.
We consider the case when (∂{1}D2) and (∂{1}E3) hold. The alternative case
when (∂{1}D3) and (∂{1}E2) hold is similar.
By (∂{1} det1) we have

∣∣∣ f000 f001
f010 f011

∣∣∣ = 0. By (∂{1}D2) and (∂{1}E3) we have

f000 = −f100, f011 = −f111, f001 = f101, f010 = f110.

(In the case of (∂{1}D3) and (∂{1}E2), all four RHSs are multiplied by an
extra −1.)
If f000 = 0, then by (∂{1} det1) we have f001f010 = 0. If f001 = 0, then fx2=0

is identically 0, and f = [0, 1]x2g(x1, x3) for some binary function g, and so f
is a product of the unary function [0, 1] on x2 with the binary function g on
(x1, x3). If f010 = 0, then fx3=0 is identically 0, and f = [0, 1]x3g(x1, x2) for
some binary function g, and so f is a product of the unary function [0, 1] on x3
with the binary function g on (x1, x2). In either case, this is a contradiction
to f 6∈P by Lemma 7.1.
Thus f000 6= 0. By (∂{2} det1) we have

∣∣∣ f000 f001
f100 f101

∣∣∣ =
∣∣∣ f000 f001
−f000 f001

∣∣∣ = 0, which

implies that f001 = 0. Similarly, by (∂{3} det1), we have
∣∣∣ f000 f010
f100 f110

∣∣∣ =
∣∣∣ f000 f010
−f000 f010

∣∣∣
= 0, which implies that f010 = 0. This implies that

(7.11) f001 = 0, f101 = 0, f010 = 0, f110 = 0.

Hence f is the product of (x2 = x3) and the degenerate binary function
g(x1, x3) =

[
f000 f011
f100 f111

]
. Note that the determinant

∣∣∣ f000 f011
f100 f111

∣∣∣ = 0 by (7.11)
and (∂{2} det2).

Now we deal with the case when the spanning subgraph of K4 is disconnected.
This implies that the spanning subgraph is a triangle (plus an isolated vertex) and
the number N of valid statements among all (∂{i}Dj) and (∂{i}Ej) is exactly 3.
Furthermore, we may assume that either the triangle is on {b, c, d}, and then the three
valid statements among all (∂{i}Dj) and (∂{i}Ej) are among (∂{1}Ej), (∂{2}Ej), and
(∂{3}Ej), or, up to a cyclic permutation of the three variables of f , the triangle is
on {a, b, c}, and then the three statements must be among (∂{1}Ej), (∂{2}Dj), and
(∂{3}Dj).
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1. Suppose the triangle is on {b, c, d}.
Since N = 3, there are at least six valid statements among (∂{i} detj), where
1 ≤ i, j ≤ 3. By Lemma 7.3, for every 1 ≤ i ≤ 3, there must be exactly two
valid statements among (∂{i} detj) for 1 ≤ j ≤ 3. Since the diagonals b, c,
and d have the same product value, the statements (∂{1} detj) take the form
∣∣∣∣
f000 f001
f010 f011

∣∣∣∣ = 0,
∣∣∣∣
f000 + f100 f001 + f101
f010 + f110 f011 + f111

∣∣∣∣ =
∣∣∣∣
f000 f001
f010 f011

∣∣∣∣+
∣∣∣∣
f000 f101
f010 f111

∣∣∣∣+
∣∣∣∣
f100 f101
f110 f111

∣∣∣∣ = 0,
∣∣∣∣
f000 − f100 f001 − f101
f010 − f110 f011 − f111

∣∣∣∣ =
∣∣∣∣
f000 f001
f010 f011

∣∣∣∣−
∣∣∣∣
f000 f101
f010 f111

∣∣∣∣+
∣∣∣∣
f100 f101
f110 f111

∣∣∣∣ = 0.

Notice that we used the fact that
∣∣∣ f100 f001
f110 f011

∣∣∣ = 0, because the diagonals b and
c have the same product value.
If the two valid statements among (∂{1} detj) are for j = 2 and j = 3,
then

∣∣∣ f000 f101
f010 f111

∣∣∣ = 0, and we would have all four diagonals with an equal
product value. As the spanning subgraph of K4 is disconnected, the two
valid statements among (∂{1} detj) must include j = 1. Thus we have

∣∣∣∣
f000 f001
f010 f011

∣∣∣∣= 0,(7.12)
∣∣∣∣
f000 f101
f010 f111

∣∣∣∣= −ε1
∣∣∣∣
f100 f101
f110 f111

∣∣∣∣ ,(7.13)

where ε1 = +1 if (∂{1} det2) holds, and ε1 = −1 if (∂{1} det3) holds.
Notice that if (∂{1} det2) holds, we must have (∂{1}E3), and then f001 = f101
and f010 = f110. On the other hand, if (∂{1} det3) holds, then we must have
(∂{1}E2), and then f001 = −f101 and f010 = −f110. Hence f001 = ε1f101 and
f010 = ε1f110 hold in either case.
Similarly by (∂{2}E2) or (∂{2}E3), one of which must hold, we have f001 =
ε2f011 and f100 = ε2f110, where ε2 = ±1. By (∂{3}E2) or (∂{3}E3), one of
which must hold, we have f010 = ε3f011 and f100 = ε3f101.
If any of f100, f101, f110, f001, f010, f011 is 0, then all six quantities are 0. Then
the support of f is contained in {000, 111}, and we have a contradiction to
f 6∈P. Thus we may normalize f101 = 1. Then

f100 = ε3, f110 = ε2ε3, f001 = ε1, f010 = ε1ε2ε3, f011 = ε1ε2.

By (∂{1} det1),
∣∣∣ f000 f001
f010 f011

∣∣∣ =
∣∣ f000 ε1
ε1ε2ε3 ε1ε2

∣∣ = 0, which implies that f000 = ε1ε3.
By (7.13) we get

∣∣ ε1ε3 1
ε1ε2ε3 f111

∣∣ = −ε1
∣∣ ε3 1
ε2ε3 f111

∣∣, which implies that f111 = ε2.
It follows that f is simply the function f000[1, ε1]x1 ⊗ [1, ε2]x2 ⊗ [1, ε3]x3 ∈P.
This is a contradiction.

2. Suppose the triangle is on {a, b, c}. We can similarly prove that under this
hypothesis f ∈P, a contradiction.

Corollary 7.10. Let F be a set of signatures containing a ternary signature f 6∈
P. Suppose F contains the unary signatures {[1, bj ] | 1 ≤ j ≤ 3} = {[1, 0], [1, 1], [1,−1]},
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and ∂{i}[1,bj ](f) ∈P for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3. Then

Pl-#CSP(F ∪ {g}) ≤T Pl-#CSP(F),

where g is either [1, 0, 1, 0] or [0, 1, 0, 1], both symmetric ternary functions.
Theorem 7.11. Suppose F contains a signature f 6∈P of arity 3. Let [1, a], [1, b],

[1, c] be three unary signatures that are pairwise linearly independent. Then there exists
g 6∈P such that

(7.14) Pl-#CSP(g, [1, a], [1, b], [1, c],F) ≤T Pl-#CSP([1, a], [1, b], [1, c],F),

where g has arity 2 or g is a symmetric signature of arity 3.
Proof. In Pl-#CSP([1, a], [1, b], [1, c],F), for any [1, x] ∈ {[1, a], [1, b], [1, c]}, we

have [1, xk] = ∂k[1,x](=k+1) for any k ∈ Z+. Since [1, a], [1, b], [1, c] are pairwise linearly
independent, there is at most one of a, b, c that can be zero. Without loss of generality,
we can assume that bc 6= 0.

For b, c, if one of them is not a root of unity or is a root of unity of primitive order
greater than 4, then we can construct five unary signatures that are pairwise linearly
independent, and we are done by Lemma 7.4.

If one of b, c is a root of unity of primitive order 4, then we can construct
[1, 1], [1,−1], [1, i], [1,−i], and we are done by Corollary 7.6.

If one of b, c is a root of unity of primitive order 3, then we can construct
[1, 1], [1, ω], [1, ω2] with ω3 = 1, ω 6= 1, and we are done by Corollary 7.8.

If both b, c are roots of unity of order at most 2, then {[1, b], [1, c]} = {[1, 1], [1,−1]}
since [1, b], [1, c] are linearly independent. If a = 0, then we are done by Corollary 7.10.
If a 6= 0, then a 6= ±1 since [1, a], [1, b], [1, c] are pairwise linearly independent. Thus
a is not a root of unity or a is a root of unity of primitive order greater than 2. In
each case, we are done by Lemma 7.4, Corollary 7.6, or Corollary 7.8.

7.2. P, A , and the parity condition. In this subsection, we give the following
proposition, which implies that if a signature is of product type and satisfies the Parity
Condition after the holographic transformation by H =

[ 1 1
1 −1

]
, then it is of affine

type.
Proposition 7.12. Let f ∈ P be a signature of arity n and f̂ = H⊗nf , where

H =
[ 1 1

1 −1
]
. If f̂ satisfies the Parity Condition, then f ∈ A .

Proof. Since f ∈ P, there exist f i of arity ni for 1 ≤ i ≤ s such that f =
f1 ⊗ f2 ⊗ · · · ⊗ fs, where f i ∈ E . Thus f̂ = f̂1 ⊗ f̂2 ⊗ · · · ⊗ f̂s, where f̂ i = H⊗nifi.
Since f̂ satisfies the Parity Condition, all of f̂ i satisfy the Parity Condition. Note
that there exists αi ∈ {0, 1}ni such that supp(fi) ⊆ {αi, ᾱi} for 1 ≤ i ≤ s.

We claim that f i ∈ A for 1 ≤ i ≤ s. Let f iαi = ai, f
i
ᾱi = bi. If ai = 0 or bi = 0,

then f i ∈ A . Otherwise, aibi 6= 0. For any β ∈ {0, 1}ni , if wt(β) is even, then
f̂ iβ = ±(ai + bi). If wt(β) is odd, then f̂ iβ = ±(ai − bi). Since f̂ i satisfies the Parity
Condition, we have ai = ±bi. Thus f i ∈ A . This finishes the proof of the claim.
Since f i ∈ A for 1 ≤ i ≤ s, we have f ∈ A .

7.3. Normalizing signatures by a binary signature. For a ternary signature
f , where Mx1,x2x3(f) =

[
f000 f001 f010 f011
f100 f101 f110 f111

]
, and a binary signature [1, 0,a] (note that

a is a scalar, not a vector, and is written in bold to highlight the modification in the
following matrices), we often construct new signatures fi by connecting one variable
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of [1, 0,a] to the variable xi of f for 1 ≤ i ≤ 3. Then

(7.15) Mx1,x2x3(f1) =
[
f000 f001 f010 f011

af100 af101 af110 af111

]
,

(7.16) Mx1,x2x3(f2) =
[
f000 f001 af010 af011
f100 f101 af110 af111

]
,

(7.17) Mx1,x2x3(f3) =
[
f000 af001 f010 af011
f100 af101 f110 af111

]
.

For signatures of arity 4 we have similar operations. In the following we list the
entries for a general signature of arity 4 as well as one satisfying the even Parity
Condition. This is to highlight graphically the locations where a appears. (This
operation will actually be performed on signatures of arity 4 satisfying the even Parity
Condition.) For

Mx1x2,x4x3(f) =




f0000 f0010 f0001 f0011
f0100 f0110 f0101 f0111
f1000 f1010 f1001 f1011
f1100 f1110 f1101 f1111


 or




f0000 0 0 f0011
0 f0110 f0101 0
0 f1010 f1001 0

f1100 0 0 f1111


 ,

and a binary signature [1, 0,a], we can construct new signatures fi or gi by connecting
one variable of [1, 0,a] to the variable xi of f or g for 1 ≤ i ≤ 4. Then
(7.18)

Mx1x2,x4x3 (f1) =



f0000 f0010 f0001 f0011
f0100 f0110 f0101 f0111

af1000 af1010 af1001 af1011
af1100 af1110 af1101 af1111


 or



f0000 0 0 f0011

0 f0110 f0101 0
0 af1010 af1001 0

af1100 0 0 af1111


 ,

(7.19)

Mx1x2,x4x3 (f2) =



f0000 f0010 f0001 f0011

af0100 af0110 af0101 af0111
f1000 f1010 f1001 f1011

af1100 af1110 af1101 af1111


 or



f0000 0 0 f0011

0 af0110 af0101 0
0 f1010 f1001 0

af1100 0 0 af1111


 ,

(7.20)

Mx1x2,x4x3 (f3) =




f0000 af0010 f0001 af0011
f0100 af0110 f0101 af0111
f1000 af1010 f1001 af1011
f1100 af1110 f1101 af1111


 or




f0000 0 0 af0011
0 af0110 f0101 0
0 af1010 f1001 0

f1100 0 0 af1111


 ,

(7.21)

Mx1x2,x4x3 (f4) =




f0000 f0010 af0001 af0011
f0100 f0110 af0101 af0111
f1000 f1010 af1001 af1011
f1100 f1110 af1101 af1111


 or




f0000 0 0 af0011
0 f0110 af0101 0
0 f1010 af1001 0

f1100 0 0 af1111


 .
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Abstract

We prove a complexity dichotomy for complex-weighted Holant problems with an arbitrary set of
symmetric constraint functions on Boolean variables.

In the study of counting complexity, such as #CSP, there are problems which are #P-hard over
general graphs but P-time solvable over planar graphs. A recurring theme has been that a holographic
reduction [36] to FKT precisely captures these problems. This dichotomy answers the question: Is this
a universal strategy? Surprisingly, we discover new planar tractable problems in the Holant framework
(which generalizes #CSP) that are not expressible by a holographic reduction to FKT. In particular, the
putative form of a dichotomy for planar Holant problems is false. Nevertheless, we prove a dichotomy
for #CSP2, a variant of #CSP where every variable appears even times, that the presumed universality
holds for #CSP2. This becomes an important tool in the proof of the full dichotomy, which refutes
this universality in general. The full dichotomy says that the new P-time algorithms and the strategy of
holographic reductions to FKT together are universal for these locally defined counting problems.

As a special case of our new planar tractable problems, counting perfect matchings (#PM) over
k-uniform hypergraphs is P-time computable when the incidence graph is planar and k ≥ 5. The same
problem is #P-hard when k = 3 or k = 4, also a consequence of the dichotomy. More generally, over
hypergraphs with specified hyperedge sizes and the same planarity assumption, #PM is P-time computable
if the greatest common divisor (gcd) of all hyperedge sizes is at least 5.

Keywords

Computational Complexity; Counting Problems; Dichotomy Theorem; Holographic Algorithms; Holant
Problems;

I. INTRODUCTION

The Fisher-Kasteleyn-Temperley (FKT) algorithm [32], [21], [22] is a classical gem that counts perfect
matchings over planar graphs in polynomial time. This was an important milestone in a decades-long
research program by physicists in statistical mechanics to determine what is known as Exactly Solved
Models [1], [20], [30], [41], [42], [25], [32], [21], [22], [26], [27], [40].

For four decades, the FKT algorithm stood as the polynomial-time algorithm for any counting problem
over planar graphs that is #P-hard over general graphs. Then Valiant introduced matchgates [34], [33] and
holographic reductions to the FKT algorithm [36], [35]. These reductions differ from classical ones by
introducing quantum-like superpositions. This novel technique extended the reach of the FKT algorithm
and produced polynomial-time algorithms for a number of problems for which only exponential-time
algorithms were previously known.

Since the new polynomial-time algorithms appear so exotic and unexpected, and the problems appear
so close to being #P-hard, they challenge our faith in the well-accepted conjecture that P �= NP. Quoting
Valiant [35]: “The objects enumerated are sets of polynomial systems such that the solvability of any
one member would give a polynomial time algorithm for a specific problem. . . . the situation with the P
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= NP question is not dissimilar to that of other unresolved enumerative conjectures in mathematics. The
possibility that accidental or freak objects in the enumeration exist cannot be discounted if the objects
in the enumeration have not been studied systematically.” Indeed, if any “freak” object exists in this
framework, it would collapse #P to P.

Therefore, over the past 10 to 15 years, this technique has been intensely studied in order to gain
a systematic understanding to the limit of the trio of holographic reductions, matchgates, and the FKT
algorithm [33], [3], [4], [10], [37], [11], [24], [28], [29]. Without settling the P versus #P question,
the best hope is to achieve a complexity classification. This program finds its sharpest expression in
a complexity dichotomy theorem, which classifies every problem expressible in a framework as either
solvable in P or #P-hard, with nothing in between.

Out of this work, a strong theme has emerged. For a wide variety of problems, such as those expressible
as a #CSP, holographic reductions to the FKT algorithm is a universal technique for turning problems
that are #P-hard in general to P-time solvable over planar graphs. In fact, a preponderance of evidence
suggests the following putative classification of all counting problems defined by local constraints into
exactly three categories: (1) those that are P-time solvable over general graphs; (2) those that are P-time
solvable over planar graphs but #P-hard over general graphs; and (3) those that remain #P-hard over planar
graphs. Moreover, category (2) consists precisely of those problems that are holographically reducible to
the FKT algorithm. This theme is so strong that it has become an intuitive and trusty guide for us when
we investigate unknown problems and plan proof strategies. In fact, many of the results in the present
paper were proved in this way. However, one is still left wondering whether a holographic reduction to
the FKT algorithm is a universal strategy for all such counting problems that are planar tractable but not
in general.

We list some of the supporting evidence for this putative classification. These date back to the
classification of the complexity of the Tutte polynomial [39], [38]. It has also been an unfailing theme
in the classification of spin systems and #CSP [23], [12], [9], [18]. However, these frameworks do
not capture all locally specified counting problems. Some natural problems, such as counting perfect
matchings (#PM), are not expressible as a point on the Tutte polynomial, and #PM is provably not
expressible as a partition function of spin systems (vertex assignment models) [16], [15], [31]. However,
this is the problem for which FKT was designed, and is the basis of Valiant’s matchgates and holographic
reductions.

A refined framework, called Holant problems [13], was proposed to address this issue. It is an edge
assignment model. It naturally encodes and expresses #PM as well as Valiant’s matchgates and holographic
reductions. Thus, Holant is the proper framework in which to study the power of holographic algorithms.
It is also more general than #CSP in the sense that a complete complexity classification for Holant
problems implies one for #CSP.

In this paper, we classify for the first time the complexity of Holant problems over planar graphs.
Our result generalizes both the dichotomy for Holant [19], [6] and the dichotomy for planar #CSP [12],
[18]. Although the #CSP dichotomy does not resolve the complexity of #PM, planar tractable classes of
#CSP are tractable due to holographic algorithms with matchgates, which essentially relies on counting
(weighted) perfect matchings by FKT. On the other hand, #PM, even for d-regular graphs, is shown to
be #P-hard under the Holant framework [19], yet its planar tractability is not addressed in either [19] or
[6] until the current work.

Surprisingly, we discover new planar tractable problems that are not expressible by a holographic
reduction to matchgates and FKT. To the best of our knowledge, this is the first primitive extension since
FKT to a counting problem solvable in P over planar instances but #P-hard in general. We consider
this a primitive extension because it is provably not based on a (holographic) transformation to the
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FKT algorithm. Furthermore, our dichotomy theorem says that this completes the picture: there are no
more undiscovered extensions for problems expressible in this framework, unless #P collapses to P. In
particular, the putative form of the planar Holant dichotomy is false.

Before stating our main theorem, we give a brief description of the Holant framework [13]. Fix a set
of local constraint functions F . A signature grid Ω = (G, π) is a tuple, where G = (V,E) is a graph,
π labels each v ∈ V with a function fv ∈ F with input variables from the incident edges E(v) at v.
Each fv maps {0, 1}deg(v) to C. We consider all 0-1 edge assignments. An assignment σ for every e ∈ E
gives an evaluation

∏
v∈V fv(σ |E(v)), where σ |E(v) denotes the restriction of σ to E(v). The counting

problem on the instance Ω is to compute

HolantΩ =
∑

σ:E→{0,1}

∏

v∈V

fv

(
σ |E(v)

)
. (I.1)

For example, #PM, the problem of counting perfect matchings in G, corresponds to assigning the
EXACTONE function at every vertex of G. The Holant problem parameterized by the set F is denoted
by Holant(F).

At a high level, we can state our main theorem as follows.

Theorem I.1. Let F be a set of complex-valued, symmetric functions on Boolean variables. Then there
is an effective classification for all possible F , according to which, Holant(F) is either (1) P-time
computable over general graphs, or (2) P-time computable over planar graphs but #P-hard over general
graphs, or (3) #P-hard over planar graphs.

Note that here we restrict our focus on symmetric functions, which are invariant under permutation of
arguments. Most natural combinatorial problems like counting vertex covers or perfect matchings can be
encoded by symmetric functions.

The complete statement is given in Theorem III.1. The classification is explicit. The tractability criterion
is decidable in polynomial time due to [11], [7]. Tractable problems over general graphs have been
previously studied in [6]. The planar tractable class includes both those solvable by holographic reductions
to FKT and those newly discovered. Explicit criteria for these are also proved in this paper.

Let us meet some new tractable problems. They can be described as orientation problems, which are
Holant problems after a complex-valued holographic transformation. Given a planar (multi)graph, we
allow two kinds of vertices. The first kind can be either a sink or a source while the second kind only
allow one incoming edge. The goal is to compute the number orientations satisfying these constraints.
This problem can be expressed in the Holant framework under a Z-transformation.1 It can be shown
that this is equivalent to the Holant problem on the edge-vertex incidence graph where we assign the
DISEQUALITY function to every edge, and to each vertex, we assign either the EQUALITY function or
the EXACTONE function. Suppose vertices assigned EQUALITY functions all have degree k. If k = 2,
then this problem can be solved by FKT. We show that this problem is #P-hard if k = 3 or k = 4, but is
tractable again if k ≥ 5. The algorithm involves a recursive procedure that simplifies the instance until
it can be solved by known algorithms, including FKT. This simplilfication process pins edges to fixed
values, yet the final answer is still possible to be non-trivial as the pinning will end when the instance
is solvable by known algorithms. The algorithm crucially uses global topological properties of a planar
graph, in particular Euler’s characteristic formula. If the graph is not planar, then this algorithm does not
work, and indeed the problem is #P-hard over general graphs.

1This transformation is Z =
[

1 1
i −i

]
. It is common that one problem can be transformed to another over C while one or

both problems are specified by real-valued constraint functions, and provably no transformation exists over R. Thus to study the
classification question over complex-valued constraint functions is natural and proper. For example, the integer-valued orientation
problem studied here, if expressed as Holant directly, is complex weighted.

1261



More generally, we allow vertices of arbitrary degrees to be assigned EQUALITY. If all the degrees
are at most 2, then the problem is tractable by the FKT algorithm. Otherwise, the complexity depends
on the greatest common divisor (gcd) of the degrees. The problem is tractable if gcd ≥ 5 and #P-hard
if gcd ≤ 4. It is worth noting that the criterion for tractability is not a degree lower bound. Moreover,
the planarity assumption and the degree rigidity pose a formidable challenge in the hardness proofs for
gcd ≤ 4. We note that these degree restrictions and planarity will not make new tractable instances
vacuous, since there are two types of vertices and we do not lower bound degrees of those assigned
EXACTONE. In addition, as common in the study of #CSP, we allow multigraphs as valid instances.

If the graph is bipartite with EQUALITY functions assigned on one side and EXACTONE functions on
the other, then this is the problem of #PM over hypergraphs with planar incidence graphs. Our results
imply that the complexity of this problem depends on the gcd of the hyperedge sizes. The problem
is computable in polynomial time when gcd ≥ 5 and is #P-hard when gcd ≤ 4 (assuming there are
hyperedges of size at least 3).

Most reductions in previous Holant dichotomy theorems [19], [6] do not hold for planar graphs, so
we are forced to develop new techniques. In particular, an important ingredient in previous proofs is the
#CSPd dichotomy by Huang and Lu [19]. Here #CSPd denotes #CSP where every variable appears a
multiple of d times. The very first step in the #CSPd dichotomy proof uses the pinning technique. Multiple
copies of an instance are created and vertices are connected across different copies. This construction
violates planarity. Moreover, this violation is unavoidable, a consequence of the new dichotomy. Due to
our newly discovered tractable problems, the putative form of a planar #CSPd dichotomy is false when
d ≥ 5. Nevertheless, we prove a dichotomy for planar #CSP2 for which the putative form is, luckily for
us, true (but not obvious in hindsight). A dichotomy for planar #CSP2 is essential because it captures a
significant fraction of planar Holant problems either directly or through reductions. We manage to prove
the planar Holant dichotomy without appealing to planar #CSPd for d ≥ 3.

The proof of the planar #CSP2 dichotomy comprises the entire Part II of the full version [8] starting
on page 63. A brief outline of the proof is given in Section IV. Among the concepts and techniques
introduced are some special tractable families of constraint functions specific to the #CSP2 framework.
We also introduce a derivative ∂ and its inverse operator integral

∫
to streamline the proof argument.

There is also an application of the theory of cyclotomic fields.
We began this project expecting to prove the putative form of the planar Holant dichotomy. It was

determined that a planar #CSPd dichotomy would be both a more modest and attainable intermediate step
as well as a good launch station for the final goal. However after some attempts, even the planar #CSPd

dichotomy appeared too difficult to achieve, and so we scaled back the ambition to solve just d = 2.
Luckily, a successful #CSP2 dichotomy can carry most of the weight of a full #CSPd dichotomy, and,
as it turned out, the putative form of the planar #CSP2 dichotomy is true while that for planar #CSPd is
not. Ironically, many steps of our proof in this paper were guided by the putative form of the complexity
classification. The discovery of the new tractable problems changed the original plan, but also helped
complete the picture.

Coming back to the challenge of the P vs. NP question posed by Valiant’s holographic algorithms,
we venture the opinion that the dichotomy theorem provides a satisfactory answer. Indeed, it would
be difficult to conceive a world where #P is in fact equal to P, and yet all this algebraic theory can
somehow maintain a consistent, sharp but faux division where there is none. (Consider the following
Gedankenexperiment: #P is really equal to P, but the Supreme Fascist keeps scores on how much of #P
we have learned to be in P. For every problem in this broad class that is yet unknown to be in P the SF
lets we prove it #P-hard—a superfluous notion really. Nevertheless for every problem in the class known
to be in P, the SF makes sure our proof method for #P-hardness on that problem fails, thus preventing
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one from making the ultimate discovery.)

II. PRELIMINARIES

Fix a set of local constraint functions F . A signature grid Ω = (G, π) is a tuple, where G = (V, E)
is a graph, π labels each v ∈ V with a function fv ∈ F with input variables from the incident edges
E(v) at v. Each fv maps {0, 1}deg(v) to C. We consider all 0-1 edge assignments. An assignment σ
for every e ∈ E gives an evaluation

∏
v∈V fv(σ |E(v)), where σ |E(v) denotes the restriction of σ to

E(v). The counting problem on the instance Ω is to compute HolantΩ =
∑

σ:E→{0,1}
∏

v∈V fv

(
σ |E(v)

)
.

The Holant problem parameterized by the set F is denoted by Holant(F) and Pl-Holant(F) is defined
similarly using a signature grid with a planar graph.

A function fv can be represented by listing its values in lexicographical order as in a truth table, which
is a vector in C2deg(v)

, or as a tensor in (C2)⊗ deg(v). A symmetric function f on k Boolean variables can
be expressed as [f0, f1, . . . , fk], where fw is the value of f on inputs of Hamming weight w. This is
called the signature of f , and we may use the terms “signature” and “function” interchangeably below.
For example, we use =k to denote the EQUALITY signature [1, 0, . . . , 0, 1] of arity k.

A symmetric signature f of arity n is degenerate if there exist a unary signature u ∈ C2 such that
f = u⊗n. Replacing such signatures by n copies of the corresponding unary signature does not change
the Holant value. Replacing a signature f ∈ F by a constant multiple cf , where c �= 0, does not change
the complexity of Holant(F). It introduces a global nonzero factor to Holant(Ω;F).

To introduce the idea of holographic reductions, it is convenient to consider bipartite graphs. For a
general graph, we can always transform it into a bipartite graph while preserving the Holant value. For
each edge in the graph, we replace it by a path of length two. Each new vertex is assigned the binary
EQUALITY signature (=2) = [1, 0, 1].

For a 2-by-2 matrix T and a signature set F , define TF = {g | ∃f ∈ F of arity n, g = T⊗nf},
similarly for FT . Whenever we write T⊗nf or TF , we view the signatures as column vectors; similarly
for fT⊗n or FT as row vectors. We use Holant (R | G) to denote the Holant problem on bipartite graphs
H = (U, V, E), where each vertex in U or V is assigned a signature in R or G, respectively. Let T be an
invertible 2-by-2 matrix. The holographic transformation defined by T is the following operation: given
a signature grid Ω with underlying graph H , we create a new grid Ω′ such that the graph is still H , and
any functions f on the left (or g on the right) is replaced by fT⊗n (or

(
T−1

)⊗m
g) where n and m are

arities of f and g. We frequently apply a holographic transformation defined by the matrix Z =
[

1 1
i −i

]
.

Theorem II.1 (Valiant’s Holant Theorem [36]). If there is a holographic transformation mapping signa-
ture grid Ω to Ω′, then HolantΩ = HolantΩ′ .

In order to do holographic transformations on a general graph, we can always modify it into an
equivalent bipartite graph preserving the Holant value as follows. For each edge in the graph, we replace
it by a path of length two. (This operation is called the 2-stretch of the graph and yields the edge-vertex
incidence graph.) Each new vertex is then assigned the binary EQUALITY signature (=2) = [1, 0, 1].

We say a signature set F is C -transformable if there exists a transformation T ∈ GL2(C) such that
[1, 0, 1]T⊗2 ∈ C (viewed as row vectors) and F ⊆ TC (viewed as column vectors). The importance
of this definition is that if Pl-Holant(C ) is tractable, then Pl-Holant(F) is also tractable for any C -
transformable set F .

III. MAIN THEOREM AND PROOF OUTLINE

In this section, we state the main theorem and give an outline of its proof.
We use A , P , V , and M to denote four base classes of tractable signatures. The classes A and P are

identified as tractable for #CSP [14]. Problems defined by A are tractable essentially by Gauss sums [2].
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The signatures in P are tensor products of signatures whose supports are among two complementery
bit vectors. Problems defined by them are tractable by a propagation algorithm. The class V contains
vanishing signatures [17], [6], which means the Holant value is always 0. We split V into V + and V −.
Any subset of V + or V − vanishes, but mixing these two classes does not necessarily vanish. Valiant [34],
[33] introduced matchgates, which we denote by M . They can be locally expressed by weighted perfect
matchings, so problems defined by them are tractable by the FKT algorithm over planar graphs. The full
version [8] contains complete definitions and characterizations of these four classes. As mentioned at
the end of last section, a problem defined by a signature that is transformable to any of these tractable
classes is also tractable. In fact, V is closed under this transformable notion.

We need some more notations. Let R±
2 denote the set of all unary signatures plus symmetric signatures

f = [f0, f1, . . . , fn] satisfying fi±2ifi+1 + fi+2 = 0 for all 0 ≤ i ≤ n−2. For a signature set F , let F∗
denote F with all degenerate signatures [a, b]⊗m replaced by unary [a, b]. We denote by EXACTONEd

the signature [0, 1, 0, . . . , 0] of arity d. Let EO = {EXACTONEd | d ≥ 3}.
Theorem III.1. Let F be any set of symmetric, complex-valued signatures in Boolean variables. Then
Pl-Holant(F) is #P-hard unless F satisfies one of the following conditions:

1) All non-degenerate signatures in F are of arity at most 2;
2) F is A - or P-transformable;
3) F ⊆ V σ ∪ {f ∈ Rσ

2 | arity(f) = 2} for some σ ∈ {+,−};
4) All non-degenerate signatures in F are in Rσ

2 for some σ ∈ {+,−}.
5) F is M -transformable;
6) F ⊆ Z (P ∪ EO) or Z (P ∪ [ 0 1

1 0 ] EO), and the greatest common divisor of the arities of all
signatures in F∗ ∩P2 is at least 5.

In each exceptional case, Pl-Holant(F) is computable in polynomial time. Holant(F) is computable in
polynomial time without planarity if F satisfies conditions 1, 2, 3, or 4, and is #P-hard otherwise.

Proof sketch: We first prove a dichotomy theorem when F contains a single non-degenerate signature
f of arity ≥ 3 (cf. Theorem 6.1 in the full version [8]). The proof is by induction on the arity of f .
Base cases are when the signature has arity 3 or 4, which have been proved in previous work [12], [18].
The inductive step reduces the arity of f by two each time, and then we apply the induction hypothesis.
This essentially yields seven different cases that are A - or P- or M -transformable or in V (not in
1-to-1 correspondence), plus the possibility of degenerate cases. However, we can roughly split them into
two categories: (1) those tractable by orthogonal and related transformations; and (2) those tractable by
a Z =

[
1 1
i −i

]
transformation. We show that any case in category (1) can be solved by the Pl-#CSP2

dichotomy via reductions. We handle each case in category (2) separately and show hardness using gadget
constructions and polynomial interpolations.

Given the single signature dichotomy, we assume that every nontrivial signature in F falls into one
of the two categories above. Again, if any signature is in category (1), then we can apply the Pl-#CSP2

dichotomy through reductions. Otherwise, all nontrivial signatures are from category (2). Then we rule
out any possible mixing of signatures in V with other signatures in category (2). This leaves two kinds
of signatures in category (2), from ZP or from ZEO∪Z [ 0 1

1 0 ] EO. A putative form of the planar Holant
dichotomy would dictate that any mixture from these two sets is intractable. However, we found that
there are tractable cases violating the putative dichotomy, which are summarized above as Case 6. Then
we finish the proof by showing that there are no other tractable cases.
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IV. DICHOTOMY FOR PL-#CSP2

In this section, we state the dichotomy for Pl-#CSP2, and provide a sketch of the proof here. Let
Tk =

{
[ 1 0
0 ω ] ∈ C2×2 | ωk = 1

}
. Let M̂ =

[
1 1
1 −1

]
M .

Theorem IV.1. Let F be a set of symmetric signatures. Then Pl-#CSP2(F) is #P-hard unless F satisfies
one of the following conditions:

1) there exists T ∈ T8 such that F ⊆ TA ;
2) F ⊆ P;
3) there exists T ∈ T4 such that F ⊆ TM̂ .

In each exceptional case, Pl-#CSP2(F) is computable in polynomial time.

Proof Sketch: We first define some tractable families of signatures specific to the Pl-#CSP2 frame-
work. Let Ã = A ∪

[
1 0
0 eπi/4

]
A and M̃ = M̂ ∪ [ 1 0

0 i ] M̂ . One can show that Ã covers Case 1 above,
and M̃ covers Case 3. The proof will revolve around these tractable classes.

The overall plan is to break the proof into two main steps.
The first step is to prove the dichotomy theorem for Pl-#CSP2(F) when there is at least one nonzero

signature of odd arity in F . In this case we can make use of a lemma that shows that we can simulate
Pl-#CSP(F) by Pl-#CSP2(F) if F includes a unary signature [a, b] with ab �= 0. Then we can apply the
known planar #CSP dichotomy [18] for Pl-#CSP. However this strategy (provably) cannot work in the
case when every signature in F satisfies the parity constraint. In that case we employ other means. This
first step of the proof is relatively uncomplicated.

The second step is to deal with the case when all signatures in F have even arity. This is where the
real difficulty lies. In this case it is impossible to directly construct any unary signature. So we cannot
use that lemma pertaining to a unary signature. But we prove another lemma which provides a way to
simulate Pl-#CSP(F) by Pl-#CSP2(F) in a global fashion, if F includes some tensor power of the form
[a, b]⊗2 where ab �= 0. Moreover, we have a lucky break (for the complexity of the proof) if F includes
a signature that is in M̂ \ (P ∪ Ã ). In this case, we can construct a special binary signature, and obtain
[1, 1]⊗2 by interpolation. This proof uses the theory of cyclotomic fields. This simplifies the proof greatly.
For all other cases (when F has only even arity signatures), the proof gets going in earnest—we will
attempt an induction on the arity of signatures.

The lowest arity of this induction will be two. We will try to reduce the arity to two whenever possible;
however for many cases an arity reduction to two destroys the #P-hardness at hand. Therefore the true
basis of this induction proof of Pl-#CSP2 starts with arity 4. Consequently we will first prove a dichotomy
theorem for Pl-#CSP2(f), where f is a signature of arity 4. Several tools will be used. These include
the rank criterion for redundant signatures, complex weighted k-regular graph homomorphisms [5] for
arity two signatures, and a trick we call the Three Stooges by domain pairing.

However in the next step we do not attempt a general Pl-#CSP2 dichotomy for a single signature of
even arity. This would have been natural at this point, but it would have been too difficult. We will need
some additional leverage by proving a conditional No-Mixing Lemma for pairs of signatures of even
arity. So, taking a detour, we prove that for two signatures f and g both of even arity, that individually
belong to some tractable class, but do not belong to a single tractable class in the conjectured dichotomy
(that is yet to be proved), the problem Pl-#CSP2(f, g) is #P-hard. We prove this No-Mixing Lemma for
any pair of signatures f and g both of even arity, not restricted to arity 4. Even though at this point we
only have a dichotomy for a single signature of arity 4, we prove this No-Mixing Lemma for higher even
arity pairs f and g by simulating two signatures f ′ and g′ of arity 4 that belong to different tractable
sets, from that of Pl-#CSP2(f, g). After this arity reduction (within the No-Mixing Lemma), we prove
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that Pl-#CSP2(f ′, g′) is #P-hard by the dichotomy for a single signature of arity 4. After this, we prove
a No-Mixing Lemma for a set of signatures F of even arities, which states that if F is contained in the
union of all tractable classes, then it is still #P-hard unless it is entirely contained in a single tractable
class. Note that at this point we still only have a conditional No-Mixing Lemma in the sense that we
have to assume every signature in F belongs to some tractable set.

We then attempt the proof of a Pl-#CSP2 dichotomy for a single signature of arbitrary even arity. This
uses all the previous lemmas, in particular the (conditional) No-Mixing Lemma for a set of signatures.
However, after completing the proof of this Pl-#CSP2 dichotomy for a single signature of even arity, the
No-Mixing Lemma becomes absolute.

Finally we extend the dichotomy for a single signature of even arity to a dichotomy theorem for
Pl-#CSP2(F) where all signatures in F have even arity. Together with the first main step when F
contains some nonzero signature of odd arity, this completes the proof of Theorem IV.1.

V. NEW TRACTABLE PROBLEMS AND RELATED HARDNESS RESULTS

We are not able to include the whole proof of Theorem III.1. In this last section, we highlight a
tractable case and include some related hardness results, summarized as follows.

Theorem V.1. Pl-Holant ( �=2 | =k, EO) is #P-hard when k ∈ {3, 4}, and is computable in polynomial
time when k ∈ {1, 2} or k ≥ 5.

Under Z, Pl-Holant ( �=2 | =k, EO) is Holant(Z(=k), Z(EO)). When k ∈ {1, 2}, the problem is
tractable by either Case 4 or Case 5 of Theorem III.1. The interesting tractable case is when k ≥ 5,
belonging to Case 6. The claim about hypergraph #PM in the introduction follows from Theorem V.1,
where tractability follows directly and hardness requires a gadget, which we omit here.

A. Tractability when k ≥ 5

We first prove that Pl-Holant ( �=2 | =k, EO) is tractable when k ≥ 6. After that, we consider k = 5.
A key observation is that a planar (bipartite) graph cannot be simple if its degrees are large enough. The
proof is a straightforward application of Euler’s characteristic equation for planar graphs.

Lemma V.2. Let G = (L ∪R, E) be a planar bipartite graph with parts L and R. If every vertex in L
has degree at least 6 and every vertex in R has degree at least 3, then G cannot be simple.

+

+

+

+

+

+

+

+

−

−

Figure 1: An E6-block. Circles are =6 and squares are �=2.

For Pl-Holant ( �=2 | =k, EO), we may contract edges between =k and between EXACTONE functions.
Note that we want to count the number of satisfying assignments as there is no weight. We call an edge
pinned if it has the same value in all satisfying assignments, if there is any. Any connection among
EXACTONE’s either creates pinned edges, or results in a larger EXACTONE. We create components
called Ek-blocks composed by =k’s and �=2’s. An Ek-block is trivial if it has no satisfying assignment.
A nontrivial Ek-block has exactly two complementary assignments, and we mark edges with signs “+”
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and “−” such that edges with the same sign (or distinct signs) take the same value (or distinct values).
Figure 1 pictures an example. Parallel edges between an Ek-block and an EXACTONE always result in
pinned edges. Lemma V.2 does not give us tractability for the case of k ≥ 6 directly. The reason is that
Ek-blocks may have arity less than 6, in which case Lemma V.2 does not apply. However, for k ≥ 6
and a nontrivial Ek-block of arity n where n < 6, we can show that it is either a binary �=2, or has arity
4, identified in Figure 2a up to a rotation.

+ +

− −

+ −

− +

(a) Two different arity 4 Ek-blocks.

+ +

− −

+ −

− +

(b) Replace them by parallel �=2’s.

Figure 2: Arity 4 Ek-blocks.

In the following lemma, we show how to replace an Ek-block of arity 4 by some other signatures
while keeping track of, but not preserving, the Holant value.

Lemma V.3. For any integer k ≥ 6, Pl-Holant ( �=2 | =k, EO) is computable in polynomial time.

Proof: Let Ω be a connected instance of Pl-Holant ( �=2 | =k, EO). When an edge is pinned to a
known value, we get a smaller instance of Pl-Holant ( �=2 | =k, EO) without changing the number of
satisfying assignments. In our algorithm, we may also find a contradiction and simply return 0.

We claim that there always exists an edge in Ω that is pinned, unless Ω does not contain =k, or does
not contain EXACTONEd functions (for some d ≥ 3), or there is a contradiction. Furthermore if there are
=k or EXACTONEd functions (for some d ≥ 3), in polynomial time we can find a pinned edge with a
known value, or return that there is a contradiction. (If there is a contradiction in Ω, we may still return
a purported pinned edge with a known value, which we can apply and simplify Ω. The contradiction will
eventually be found.) If Ω does not contain =k, or does not contain EXACTONEd functions (for some
d ≥ 3), then the problem is tractable, since Ω is an instance of M , or an instance of P . The lemma
follows from the claim, since we either recurse on a smaller instance or have a tractable instance.

Suppose Ω is an instance where at least one =k and at least one EXACTONEd ∈ EO appear. If
a signature EXACTONEd ∈ EO is connected to itself by a self-loop through a �=2, then the remaining
d−2 ≥ 1 edges are pinned to 0 with a factor of 2 to the Holant. Suppose two signatures EXACTONEd and
EXACTONE� from EO are connected by some number of �=2’s. Depending on the number of connecting
edges being 1 or 2 or ≥ 3, we replace all three signatures by EXACTONEd+�−2, or find pinned edge, or
return 0. We hence assume no connection between any pair of EXACTONE’s.

Define an Ek-block as a connected component composed of =k and �=2. All external connecting edges
of each Ek-block are marked with + or − and this can be found by testing bipartiteness of an Ek-block
where we treat �=2’s as edges. If any Ek-block is not bipartite, then it is trivial and we return 0. We
contract all Ek-blocks and maintain planarity, one edge at a time, and remove self loops. We may assume
all Ek-blocks are nontrivial. If there is a nontrivial Ek-block of arity 2, its signature is �=2. We replace
it with an edge assigned �=2 to form an instance Ω′, maintaining planarity, such that any pinned edge
in Ω′ corresponds to a pinned edge in Ω. This new edge is between EXACTONE signatures and can be
dealt with as described earlier. So we may assume the arity of any Ek-block is at least 4. Since k ≥ 6,
the only possible Ek-blocks of arity 4 are those in Figure 2a up to a rotation. Since there is at least one
EXACTONEd signature with d ≥ 3, forming Ek-blocks does not consume all of Ω.
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After these steps we may consider Ω a bipartite graph, with one side consisting of Ek-blocks and
the other side consisting of EXACTONE signatures. They are now connected by edges assigned =2. It
is easy to verify that parallel edges between an Ek-block and an EXACTONEd signature always lead to
some pinned edges. Therefore, we may assume there are no parallel edges between any Ek-block and
any EXACTONE signature.

++

− −
+−

+ −

(a) An EO-Eq-4-block. Triangles are assigned
EXACTONE signatures, squares are assigned �=2,
and circles are Ek-blocks of arity 4.

(b) Break the EO-Eq-4-block into three compo-
nents, The one in the middle contains a cycle, and
hence is degenerate. The other two are EXACTONE
functions.

Figure 3: EO-Eq-4-blocks

Now consider Ek-blocks of arity 4 with EXACTONE signatures together. Call a connected component
consisting of Ek-blocks of arity 4 and EXACTONE an EO-Eq-4-block. Figure 3a illustrates an example.
Notice that the two possibilities of Ek-blocks of arity 4 can be viewed as two parallel �=2’s but with
some correlation between them, namely their satisfying assignments are paired up in a unique way. This
is illustrated in Figure 2b. Note that the two dotted lines in Figure 2b represent different correlations.

At this point, we would like to replace every arity 4 Ek-block by two parallel �=2’s. However this
replacement destroys the equivalence of the Holant values, before and after.

The surprising move of this proof is that we shall do so anyway!
We ignore the correlation for the time being and replace every arity 4 Ek-block by two parallel �=2’s

as in Figure 2b. This replacement produces a planar signature grid Ω1. Every edge in Ω1 corresponds
to a unique edge in Ω. The set of satisfying assignments of Ω1 is a superset of that of Ω. Moreover, if
there is an edge pinned in Ω1 to a known value, the corresponding edge is also pinned in Ω to the same
value. Once we find a pinned edge in Ω1, we revert back to work in Ω and apply the pinning to the
pinned edge.

All that remains to be shown is that pinning always happens in Ω1. Each EO-Eq-4-block splits into
some number of connected components in Ω1. Figure 3b is an example. We can show that any cycle
in such a component creates at least one pinned edge. Hence we may assume there are no cycles in
these components, and every such component forms a tree, whose vertices are EXACTONE functions and
edges are �=2’s. Suppose there are n ≥ 2 vertices and t many leaves in such a tree. One can verify that
replacing the whole tree by an EXACTONEt function of the same arity t maintains the number of satisfying
assignments. Since each vertex in the tree has degree at least 3, we have t ≥ 3n− 2(n− 1) = n+2 ≥ 4.
We replace these components by EXACTONEt’s.

Thus, each connected component in the graph underlying Ω1 is a planar bipartite graph with Ek-
blocks of arity at least 6 on one side and EXACTONEd signatures of arity at least 3 on the other. By
Lemma V.2, no component is simple, so there are parallel edges between some Ek-block and some
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EXACTONEd signature. Parallel edges between two parts lead to pinned edges, and we can find a pinned
edge with a known value in polynomial time. This finishes the proof.

· · ·

· · ·· · ·

(a) Type 1.

· · · · · ·

· · ·· · ·

(b) Type 2.

Figure 4: The wheel structures. Each circle is a E5-block and triangle a EXACTONE function.

Unlike the situation in Lemma V.2, a planar (5, 3)-regular bipartite graph can be simple. However, we
show that such graphs have a special structure. We call this structure a “wheel”, which is pictured in
Figure 4. There is an arity 5 vertex v in the middle, and all faces adjacent to this vertex must be 4-gons
(i.e. quadrilaterals). Moreover, at least four neighbors of v are of degree 3. Depending on the degree of
the fifth neighbor (whether it is 3 or not), we have two types of wheels, which are pictured in Figure 4a
and Figure 4b.

Lemma V.4. Let G = (L∪R, E) be a planar bipartite graph with parts L and R. Suppose every vertex
in L has degree at least 5 and every vertex in R has degree at least 3. If G is simple, then there exists
one of the two wheel structures in Figure 4 in G.

Proof: Let V = L ∪ R and F be the set of faces. We assign a “score” sv on each vertex v ∈ V .
We will define sv so that

∑
v∈V sv = |V | − |E| + |F | = 2 > 0. The base score is +1 for each vertex,

which accounts for |V |. For each k-gon face, we assign 1
k to each of its vertex. This accounts for |F |.

Notice that G is bipartite. Hence k ≥ 4 and a score coming from a face can be at most 1
4 .

For −|E|, we need to separate two cases. If one of the two endpoints has degree 3, we give the degree
3 vertex a score of − 7

12 , and the other one − 5
12 . This is well defined because all degree 3 vertices are

in R. Otherwise, we give each endpoint −1
2 . This accounts for −|E|.

One can verify that sv ≤ 0 unless v ∈ L has degree 5. Since the total score is positive, there must exist
v ∈ L, v has degree 5 and sv > 0. We then claim that there exists such a v so that all its adjacent faces
are 4-gons. Suppose otherwise. One can show that a positively scored vertex v is adjacent to exactly one
face with more than 4 edges. Call this face Fv.

In Fv, v has two neighbors in R. We match all vertices that have positive scores to their own clockwise
next one in Fv. We do this matching in all faces containing at least one positively scored vertex. Suppose
a vertex u ∈ R is matched with � different vertices. This means that u is adjacent to at least � many
k-gons with k ≥ 6. One can verify that su ≤ − �

12 . It implies that the total score of u and all positively
scored vertices matched with u is at most 0. However each positively scored vertex is matched with a
vertex in R. Hence the total score cannot be positive. Contradiction.

Therefore there exists v ∈ L such that sv > 0, deg(v) = 5, and all adjacent faces are 4-gons. We
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g0000 g0010 g0001 g0011

g0100 g0110 g0101 g0111

g1000 g1010 g1001 g1011

g1100 g1110 g1101 g1111

00

01
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11

00 01 10 11
wx
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(b)

Figure 5: The quaternary signature g is assigned to the vertex in (a). Its first input corresponds
to the edge marked with the diamond, which is w. The order of the remaining inputs is given
by traveling counterclockwise. In (b), gwxzy denotes the value g(w, x, y, z).

(a) ( �=2 |[0, 1, 0, 0, 0], [0, 0, 0, 1, 0], ĝ)-gate on right side (b) Gadget with a symmetric signature matrix

Figure 6: Two gadgets used in Lemma V.6.

further note that at most one neighbor of v is of degree ≥ 4, for otherwise, sv ≤ 0. It is type 1 as in
Figure 4a if all neighbors of v has degree 3, and is type 2 as in Figure 4b otherwise.

Either structure in Figure 4 leads to pinned edges. We get the following lemma, which finishes the
tractability of Theorem V.1.

Lemma V.5. Pl-Holant ( �=2 | =5, EO) is computable in polynomial time.

B. Hardness when k ∈ {3, 4}
We prove the hardness of Theorem V.1. The proofs differ for k = 3 and k = 4. For k = 3, we use the

following technical lemma. This lemma is invoked three times in the full proof of Theorem III.1. The
main challenge in these proofs is how to build planar gadgets. As discussed in the previous subsection,
parallel edges lead to degeneracy in the instance. A simple calculation based on Euler’s characteristic
implies that a large number of vertices is necessary to avoid parallel edges.

Lemma V.6. Let ĝ be the arity 4 signature whose support contains only 0101 and 1010 (invariant under
rotations). Then Pl-Holant ( �=2 | [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], ĝ) is #P-hard.

Proof: For an arity 4 signature, we can express it as a 4-by-4 matrix, where rows are indexed by
the two inputs on the left, and columns by the two inputs on the right in reversed order. This is depicted
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N1 N2

Ns

Ns+1

Figure 7: Linear recursive construction used for interpolation in a nonstandard basis.

(a) A counterclockwise rotation (b) Movement of signature matrix entries

Figure 8: The movement of the entries in the signature matrix of a quaternary signature
under a counterclockwise rotation of the input edges. Entires of Hamming weight 1 are in
the dotted cycle, entires of Hamming weight 2 are in the two solid cycles (one has length 4
and the other one is a swap), and entries of Hamming weight 3 are in the dashed cycle.

in Figure 5. With this notation, sequential connections correspond to matrix multiplications.
Consider the gadget in Figure 6a. We assign [0, 0, 0, 1, 0] to triangles, [0, 1, 0, 0, 0] to circles, ĝ to

the pentagon, and [0, 1, 0] to squares. The resulting signature is ĥ with Mĥ =

[
0 0 0 1
0 1 3 0
0 1 1 0
1 0 0 0

]
. Consider the

gadget in Figure 6b. We assign ĥ to circles and [0, 1, 0] to squares. The resulting signature is r̂ with

Mr̂ =

[
0 0 0 1
0 6 4 0
0 4 2 0
1 0 0 0

]
. We use r̂ to interpolate a signature r̂′ with Mr̂′ =

[
0 0 0 1
0 3 1 0
0 1 1 0
1 0 0 0

]
. Consider an instance

Ω of Pl-Holant ( �=2 | r̂′). Suppose that r̂′ appears n times in Ω. We construct from Ω a sequence of
instances Ωs of Pl-Holant ( �=2 | r̂) indexed by s ≥ 1. We obtain Ωs from Ω by replacing each occurrence
of r̂′ with the gadget Ns in Figure 7 with r̂ assigned to circles and [0, 1, 0] assigned to squares. In Ωs,
the edge corresponding to the ith significant index bit of Ns connects to the same location as the edge
corresponding to the ith bit of r̂′ in Ω.

The signature matrix of r̂′ is Mr̂′ = XPDP−1 where X =

[
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

]
, P =

[ 1 0 0 0
0 1 1 0
0
√

3 −
√

3 0
0 0 0 1

]
, and D

is a diagonal matrix diag
(
1, 1 +

√
3, 1−

√
3, 1

)
. The signature matrix of Ns is MNs

= X(XMr̂)
s =

XPDs
1P

−1, where D1 = diag
(
1, 4 + 2

√
3, 4− 2

√
3, 1

)
. We can view our construction of Ωs as first

replacing Mr̂′ with XPDP−1 (each matrix corresponds to a vertex), which does not change the Holant
value, and then replacing D with Ds

1.
We stratify the assignments in Ω based on the assignments to the n occurrences of the signature

corresponding to D. We only need to consider the assignments that assign i many times the bit patterns
0000 or 1111, j many times the bit pattern 0110, and k many times the bit pattern 1001, since any
other assignment contributes a factor of 0. Let cijk be the sum over all such assignments of the products
of evaluations of all other signatures (those corresponding to X , P , and P−1) in Ω except for those
corresponding to D. Then HolantΩ =

∑
i+j+k=n

(
1 +

√
3
)j (

1−
√

3
)k

cijk and the value of the Holant
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on Ωs, for s ≥ 1, is HolantΩs
=

∑
i+j+k=n

((
4 + 2

√
3
)j−k

4k
)s

cijk. We view cijk as unknown variables
to be solved, and the Vandermonde system given by HolantΩs

has full rank. To see this, we only need
to show that

(
4 + 2

√
3
)j−k

4k �=
(
4 + 2

√
3
)j′−k′

4k′
unless (j, k) = (j′, k′). If

(
4 + 2

√
3
)j−k

4k =(
4 + 2

√
3
)j′−k′

4k′
, then we have

(
4 + 2

√
3
)j−k−(j′−k′)

4k−k′
= 1. Since any nonzero integer power of

4 + 2
√

3 is not rational, we have j − k = j′ − k′, so k = k′ and j = j′.
Therefore, by polynomially many oracle calls to HolantΩs

, we can solve for the unknown cijk’s and
obtain HolantΩ. After a counterclockwise rotation of r̂′ (cf. Figure 8), we get a nonsingular redundant
matrix. The hardness follows (cf. Corollary 2.31 in the full version [8]).

(a) A cycle-like gadget used twice. (b) A gadget to realize ĝ.

Figure 9: Two gadgets in the proof of Lemma V.7.

Figure 10: The whole gadget to realize [0, 0, 0, 1, 0].
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Lemma V.7. Pl-Holant ( �=2 | =3, [0, 1, 0, 0]) is #P-hard.

Proof: By connecting two copies of [0, 1, 0, 0] together via �=2, we have [0, 1, 0, 0, 0] on the right. Con-
sider the gadget in Figure 9a. We assign =3 to triangles, [0, 1, 0, 0] to circles, [0, 1, 0, 0, 0] to the diamond,
and �=2 to squares. Let f be the signature of this gadget. The support of f is {0011, 0110, 1100, 1001}.
We construct the gadget in Figure 9a again. This time we assign [0, 1, 0, 0] to triangles, =3 to circles,
f to the diamond, and �=2 to squares. The resulting signature has support {0111, 1011, 1101, 1110},
and therefore is [0, 0, 0, 1, 0]. The whole gadget is illustrated in Figure 10, where circles are assigned
[0, 1, 0, 0], triangles =3, and squares �=2.

Consider the gadget in Figure 9b. We assign =3 to circles and �=2 to squares. It follows that the support
of the resulting signature is {0101, 1010}. This is ĝ from Lemma V.6. We have constructed [0, 1, 0, 0, 0],
[0, 0, 0, 1, 0], and ĝ, all on the right, so we are done by Lemma V.6.

Figure 11: A grid-like gadget used in the proof of Lemma V.8, whose support vectors are
00110011, 11001100, and 11111111.

Lemma V.8. Pl-Holant ( �=2 | =4, [0, 1, 0, 0]) is #P-hard.

Proof: Consider the gadget in Figure 11. We assign �=2 to squares, =4 to circles, and [0, 1, 0, 0] to
triangles. The resulting signature has support {00110011, 11001100, 11111111}, where each vector is the
assignment ordered clockwise starting from the diamond. Every two wires at each corner are always of
the same value. Further connect each corner to a =4 via two copies of �=2, resulting in a signature f
whose support is {11001100, 00110011, 00000000}, reversing the original.

Consider the gadget in Figure 12a. We assign �=2 to squares, =4 to circles, [0, 1, 0, 0] to triangles, and
f to pentagons. Each pair of parallel edges coming out of f are at the same corner of f . We call the
pentagon above f1, the one below f2, and the resulting signature g. We order the inputs to f1, f2, and
g clockwise starting from the diamond-marked edge. With this notation, we get Table 12b listing the
support of g.

The support of g is {11111111, 00001111, 0001110, 11110000, 00000000, 11100001}, and 00000000
has multiplicity 2. We pair adjacent outputs clockwise, starting from the diamond. We treat g as an arity 4
signature, using =4 to do a domain pairing argument. In the paired domain, =4 becomes =2, which lifts
the bipartite restriction. Moreover, 0001110 and 11100001 in the support of g are eliminated as they do not
agree on adjacent paired outputs. So in the paired domain, the support of g is {1111, 0011, 1100, 0000}
with multiplicity 2 for 0000. We rotate g so that the support is {1111, 0110, 1001, 0000}. The arity 4
signature matrix of g is diag(2, 1, 1, 1). We can show that Pl-#CSP([2, 1, 1]) ≤T Pl-Holant(g) (cf. Lemma
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f1

f2

(a) The gadget.

f1 f2 g

00000000 00000000 11111111
00110011 00000000 00001111
11001100 00000000 00011110
00000000 00110011 11110000
00110011 00110011 00000000
11001100 00110011 -
00000000 11001100 11100001
00110011 11001100 -
11001100 11001100 00000000

(b) The table of supports.

Figure 12: Another gadget used in the proof of Lemma V.8.

7.2 in the full version [8]), Pl-Holant(g) is #P-hard by the planar #CSP dichotomy (cf. Theorem 2.27
in the full version [8]), so we are done.
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Abstract

We prove a complexity dichotomy for complex-weighted Holant problems with an arbitrary
set of symmetric constraint functions on Boolean variables. This dichotomy is specifically to
answer the question: Is the FKT algorithm under a holographic transformation [38] a univer-
sal strategy to obtain polynomial-time algorithms for problems over planar graphs that are
intractable in general? This dichotomy is a culmination of previous ones, including those for
Spin Systems [25], Holant [21, 6], and #CSP [20].

In the study of counting complexity, such as #CSP, there are problems which are #P-hard
over general graphs but polynomial-time solvable over planar graphs. A recurring theme has
been that a holographic reduction to FKT precisely captures these problems. Surprisingly,
for planar Holant, we discover new planar tractable problems that are not expressible by a
holographic reduction to FKT. In particular, a straightforward formulation of a dichotomy for
planar Holant problems along the above recurring theme is false.

In previous work, an important tool was a dichotomy for #CSPd, which denotes #CSP
where every variable appears a multiple of d times. However the very first step in the #CSPd

dichotomy proof fundamentally violates planarity. In fact, due to our newly discovered tractable
problems, the putative form of a planar #CSPd dichotomy is false when d ≥ 5. Nevertheless,
we prove a dichotomy for planar #CSP2. In this case, the putative form of the dichotomy is
true. We manage to prove the planar Holant dichotomy without relying on a planar #CSPd

dichotomy for d ≥ 3, while the dichotomy for planar #CSP2 plays an essential role.
As a special case of our new planar tractable problems, counting perfect matchings (#PM)

over k-uniform hypergraphs is polynomial-time computable when the incidence graph is planar
and k ≥ 5. The same problem is #P-hard when k = 3 or k = 4, which is also a consequence of
our dichotomy. When k = 2, it becomes #PM over planar graphs and is tractable again. More
generally, over hypergraphs with specified hyperedge sizes and the same planarity assumption,
#PM is polynomial-time computable if the greatest common divisor (gcd) of all hyperedge sizes
is at least 5. It is worth noting that it is the gcd, and not a bound on hyperedge sizes, that is
the criterion for tractability.
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†School of Mathematics, Jilin University
‡Also supported by a Simons Award for Graduate Students in Theoretical Computer Science from the Simons

Foundation.
§Also supported by a Cisco Systems Distinguished Graduate Fellowship.
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1 Introduction

The Fisher-Kasteleyn-Temperley (FKT) algorithm [34, 23, 24] is a classical gem that counts perfect
matchings over planar graphs in polynomial time. This was an important milestone in a decades-
long research program by physicists in statistical mechanics to determine what is known as Exactly
Solved Models [1, 22, 32, 43, 44, 27, 34, 23, 24, 28, 29, 42].

For four decades, the FKT algorithm stood as the polynomial-time algorithm for any counting
problem over planar graphs that is #P-hard over general graphs. Then Valiant introduced match-
gates [36, 35] and holographic reductions to the FKT algorithm [38, 37]. These reductions differ
from classical ones by introducing quantum-like superpositions. This novel technique extended the
reach of the FKT algorithm and produced polynomial-time algorithms for a number of problems
for which only exponential-time algorithms were previously known.

Since the new polynomial-time algorithms appear so exotic and unexpected, and since they
solve problems that appear so close to being #P-hard, they challenge our faith in the well-accepted
conjecture that P 6= NP. Quoting Valiant [37]: “The objects enumerated are sets of polynomial
systems such that the solvability of any one member would give a polynomial time algorithm
for a specific problem. . . . the situation with the P = NP question is not dissimilar to that of
other unresolved enumerative conjectures in mathematics. The possibility that accidental or freak
objects in the enumeration exist cannot be discounted if the objects in the enumeration have not
been studied systematically.” Indeed, if any “freak” object exists in this framework, it would
collapse #P to P.

Therefore, over the past 10 to 15 years, this technique has been intensely studied in order to
gain a systematic understanding to the limit of the trio of holographic reductions, matchgates, and
the FKT algorithm [35, 3, 4, 10, 39, 11, 26, 30, 31]. Without settling the P versus #P question,
the best hope is to achieve a complexity classification. This program finds its sharpest expression
in a complexity dichotomy theorem, which classifies every problem expressible in a framework as
either solvable in P or #P-hard, with nothing in between.

Out of this work, a strong theme has emerged. For a wide variety of problems, such as those
expressible as a #CSP, holographic reductions to the FKT algorithm is a universal technique for
turning problems that are #P-hard in general to P-time solvable over planar graphs. In fact, a
preponderance of evidence suggests the following putative classification of all counting problems
defined by local constraints into exactly three categories: (1) those that are P-time solvable over
general graphs; (2) those that are P-time solvable over planar graphs but #P-hard over general
graphs; and (3) those that remain #P-hard over planar graphs. Moreover, category (2) consists
precisely of those problems that are holographically reducible to the FKT algorithm. This theme
is so strong that it has become an intuitive and trusty guide for us when we investigate unknown
problems and plan proof strategies. In fact, many of the results in the present paper were proved
in this way. However, one is still left wondering whether the FKT algorithm is universal, or more
precisely, is the combined algorithmic power of the trio sufficient to capture all tractable problems
over planar graphs that are intractable in general?

We list some of the supporting evidence for this putative classification. These date back to
the classification of the complexity of the Tutte polynomial [41, 40]. It has also been an unfailing
theme in the classification of spin systems and #CSP [25, 12, 9, 20]. However, these frameworks
do not capture all locally specified counting problems. Some natural problems, such as counting
perfect matchings (#PM), are not expressible as a point on the Tutte polynomial or a #CSP, and
#PM is provably not expressible within the special case of vertex assignment models [18, 17, 33].
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However, this is the problem for which FKT was designed, and is the basis of Valiant’s matchgates
and holographic reductions.

A refined framework, called Holant problems [13], was proposed to address this issue. It is an
edge assignment model. It naturally encodes and expresses #PM as well as Valiant’s matchgates
and holographic reductions. Thus, Holant is the proper framework in which to study the power of
holographic algorithms. It is also more general than #CSP in the sense that a complete complexity
classification for Holant problems implies one for #CSP.

In this paper, we classify for the first time the complexity of Holant problems over planar
graphs. Our result generalizes both the dichotomy for Holant [21, 6] and the dichotomy for planar
#CSP [12, 20]. Surprisingly, we discover new planar tractable problems that are not expressible
by a holographic reduction to matchgates and FKT. To the best of our knowledge, this is the first
primitive extension since FKT to a problem solvable in P over planar instances but #P-hard in
general. Furthermore, our dichotomy theorem says that this completes the picture: there are no
more undiscovered extensions for problems expressible in this framework, unless #P collapses to
P. In particular, the putative form of the planar Holant dichotomy is false.

Before stating our main theorem, we give a brief description of the Holant framework [13]. Fix
a set of local constraint functions F . A signature grid Ω = (G,π) is a tuple, where G = (V,E) is
a graph, π labels each v ∈ V with a function fv ∈ F with input variables from the incident edges
E(v) at v. Each fv maps {0, 1}deg(v) to C. We consider all 0-1 edge assignments. An assignment
σ for every e ∈ E gives an evaluation

∏
v∈V fv(σ |E(v)), where σ |E(v) denotes the restriction of σ

to E(v). The counting problem on the instance Ω is to compute

Holant(Ω;F) =
∑

σ:E→{0,1}

∏

v∈V

fv

(
σ |E(v)

)
. (1.1)

For example, #PM, the problem of counting perfect matchings in G, corresponds to assigning the
ExactOne function at every vertex of G. The Holant problem parameterized by the set F is
denoted by Holant(F).

At a high level, we can state our main theorem as follows.

Theorem 1.1. Let F be a set of complex-valued, symmetric functions on Boolean variables. Then
there is an effective classification for all possible F , according to which, Holant(F) is either (1)
P-time computable over general graphs, or (2) P-time computable over planar graphs but #P-hard
over general graphs, or (3) #P-hard over planar graphs.

The complete statement is given in Theorem 8.1. The classification is explicit. The tractability
criterion is decidable in polynomial time due to [11, 7]. Tractable problems over general graphs
have been previously studied in [6]. The planar tractable class includes both those solvable by
holographic reductions to FKT and those newly discovered. Explicit criteria for these are also
proved in this paper.

Let us meet some new tractable problems. They can be described as orientation problems, which
are Holant problems after a complex-valued holographic transformation.1 Given a planar graph,
we allow two kinds of vertices. The first kind can be either a sink or a source while the second kind

1This transformation is Z =
[

1 1
i −i

]
. It is common that one problem can be transformed to another over C while

one or both problems are specified by real-valued constraint functions, and provably no transformation exists over
R. Thus to study the classification question over complex-valued constraint functions is natural and proper. For
example, the integer-valued orientation problem studied here is complex weighted if expressed directly as Holant.
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only allow one incoming edge. The goal is to compute the number of orientations satisfying these
constraints. This problem can be expressed in the Holant framework under a Z-transformation.
It can be shown that this is equivalent to the Holant problem on the edge-vertex incidence graph
where we assign the Disequality function to every edge, and to each vertex, we assign either the
Equality function or the ExactOne function. Suppose vertices assigned Equality functions
all have degree k. If k = 2, then this problem can be solved by FKT. We show that this problem
is #P-hard if k = 3 or k = 4, but is tractable again if k ≥ 5. The algorithm involves a recursive
procedure that simplifies the instance until it can be solved by known algorithms, including FKT.
The algorithm crucially uses global topological properties of a planar graph, in particular Euler’s
characteristic formula. If the graph is not planar, then this algorithm does not work, and indeed
the problem is #P-hard over general graphs.

More generally, we allow vertices of arbitrary degrees to be assigned Equality. If all the degrees
are at most 2, then the problem is tractable by the FKT algorithm. Otherwise, the complexity
depends on the greatest common divisor (gcd) of the degrees. The problem is tractable if gcd ≥ 5
and #P-hard if gcd ≤ 4. It is worth noting that the criterion for tractability is not a degree lower
bound. Moreover, the planarity assumption and the degree rigidity pose a formidable challenge in
the hardness proofs for gcd ≤ 4.

If the graph is bipartite with Equality functions assigned on one side and ExactOne functions
on the other, then this is the problem of #PM over hypergraphs with planar incidence graphs. Our
results imply that the complexity of this problem depends on the gcd of the hyperedge sizes. The
problem is computable in polynomial time when gcd ≥ 5 and is #P-hard when gcd ≤ 4 (assuming
there are hyperedges of size at least 3). For a formal statement, see Theorem 7.15.

Most of the reductions in previous Holant dichotomy theorems [21, 6] do not hold for planar
graphs, so we are forced to develop new techniques and formulate new proof strategies. In particular,
an important ingredient in previous proofs is the #CSPd dichotomy by Huang and Lu [21]. Here
#CSPd denotes #CSP where every variable appears a multiple of d times. The very first step in
the #CSPd dichotomy proof uses the popular pinning technique. Multiple copies of an instance
are created and vertices are connected across different copies. But this construction fundamentally
violates planarity. Moreover, this violation of planarity is unavoidable, a consequence of the new
dichotomy. Due to our newly discovered tractable problems, the putative form of a planar #CSPd

dichotomy is false when d ≥ 5. Nevertheless, we prove a dichotomy for planar #CSP2 for which
the putative form is, luckily for us, true (but not obvious in hindsight). Obtaining a dichotomy
for planar #CSP2 is essential because it captures a significant fraction of planar Holant problems
either directly or through reductions. We manage to prove the planar Holant dichotomy without
appealing to planar #CSPd for d ≥ 3.

The proof of the planar #CSP2 dichotomy comprises the entire Part II of this paper that starts
on page 63. A brief outline of the proof is given in Section 5 of Part I. Among the concepts
and techniques introduced are some special tractable families of constraint functions specific to
the #CSP2 framework. We also introduce a derivative ∂ and its inverse operator integral

∫
to

streamline the proof argument. There is also an application of the theory of cyclotomic fields.
We began this project expecting to prove the putative form of the planar Holant dichotomy.

It was determined that a planar #CSPd dichotomy in the putative form would be both a more
modest, and thus hopefully more attainable, intermediate step as well as a good launch station
for the final goal. However after some attempt, even the planar #CSPd dichotomy appeared too
difficult to achieve, and so we scaled back the ambition to prove just a planar #CSP2 dichotomy.
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Luckily, a successful #CSP2 dichotomy can carry most of the weight of a full #CSPd dichotomy,
and, as it turned out, the putative form of the planar #CSP2 dichotomy is true while that for
planar #CSPd is not. Ironically, many steps of our proof in this paper were guided by the putative
form of the complexity classification. The discovery of the new tractable problems changed the
original plan, but also helped complete the picture.

Coming back to the challenge of the P vs. NP question posed by Valiant’s holographic algo-
rithms, we venture the opinion that the dichotomy theorem provides a satisfactory answer. Indeed,
it would be difficult to conceive a world where #P is P, and yet all this algebraic theory can
somehow maintain a consistent, sharp but faux division where there is none.

2 Preliminaries

2.1 Problems and Definitions

The framework of Holant problems is defined for functions mapping any [q]n → R for a finite
q and some commutative semiring R. In this paper, we investigate complex-weighted Boolean
Holant problems, that is, all functions are of the form [2]n → C. For consideration of models of
computation, functions take complex algebraic numbers.

Graphs may have self-loops and parallel edges. A graph without self-loops or parallel edges is
a simple graph. Fix a set of local constraint functions F . A signature grid Ω = (G,π) consists of
a graph G = (V,E), where π assigns to each vertex v ∈ V and its incident edges some fv ∈ F and
its input variables. We say that Ω is a planar signature grid if G is planar, where the variables
of fv are ordered counterclockwise starting from an edge specified by π. The Holant problem on
instance Ω is to evaluate Holant(Ω;F) =

∑
σ

∏
v∈V fv(σ |E(v)), a sum over all edge assignments

σ : E → {0, 1}, where E(v) denotes the incident edges of v and σ |E(v) denotes the restriction of σ
to E(v). We write G in place of Ω when π is clear from context.

A function fv can be represented by listing its values in lexicographical order as in a truth
table, which is a vector in C2deg(v)

, or as a tensor in (C2)⊗ deg(v). A function f ∈ F is also called
a signature. A symmetric signature f on n Boolean variables can be expressed as [f0, f1, . . . , fn],
where fw is the value of f on inputs of Hamming weight w. In this paper, we consider symmetric
signatures. An example is the Equality signature =n of arity n.

A Holant problem is parametrized by a set of signatures.

Definition 2.1. Given a set of signatures F , we define the counting problem Holant(F) as:
Input: A signature grid Ω = (G,π);
Output: Holant(Ω;F).

The problem Pl-Holant(F) is defined similarly using a planar signature grid.
A signature f of arity n is degenerate if there exist unary signatures uj ∈ C2 (1 ≤ j ≤ n)

such that f = u1 ⊗ · · · ⊗ un. A symmetric degenerate signature has the form u⊗n. Replacing
such signatures by n copies of the corresponding unary signature does not change the Holant value.
Replacing a signature f ∈ F by a constant multiple cf , where c 6= 0, does not change the complexity
of Holant(F). In this paper, we may say we obtain a signature f when in fact we have obtained a
signature cf for some c 6= 0. It introduces a global nonzero factor to Holant(Ω;F).

We allow F to be an infinite set. For Pl-Holant(F) to be tractable, the problem must be
computable in polynomial time even when the description of the signatures in the input Ω are
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included in the input size. In contrast, we say Pl-Holant(F) is #P-hard if there exists a finite
subset of F for which the problem is #P-hard. We say a signature set F is tractable (resp. #P-
hard) if the corresponding counting problem Pl-Holant(F) is tractable (resp. #P-hard). Similarly
for a signature f , we say f is tractable (resp. #P-hard) if {f} is. We follow the usual conventions
about polynomial time Turing reduction ≤T and polynomial time Turing equivalence ≡T .

2.2 Holographic Reduction

To introduce the idea of holographic reductions, it is convenient to consider bipartite graphs. For a
general graph, we can always transform it into a bipartite graph while preserving the Holant value,
as follows. For each edge in the graph, we replace it by a path of length two. (This operation is
called the 2-stretch of the graph and yields the edge-vertex incidence graph.) Each new vertex is
assigned the binary Equality signature (=2) = [1, 0, 1].

We use Holant (F | G) to denote the Holant problem over signature grids with a bipartite graph
H = (U, V,E), where each vertex in U or V is assigned a signature in F or G, respectively.
Signatures in F are considered as row vectors (or covariant tensors); signatures in G are considered
as column vectors (or contravariant tensors) [16]. Similarly, Pl-Holant (F | G) denotes the Holant
problem over signature grids with a planar bipartite graph.

For a 2-by-2 matrix T and a signature set F , define TF = {g | ∃f ∈ F of arity n, g = T⊗nf},
and similarly for FT . Whenever we write T⊗nf or TF , we view the signatures as column vectors;
similarly for fT⊗n or FT as row vectors. In the special case that T =

[
1 1
1 −1

]
, we also define

TF = F̂ .
Let T be an invertible 2-by-2 matrix. The holographic transformation defined by T is the

following operation: given a signature grid Ω = (H,π) of Holant (F | G), for the same bipartite
graph H, we get a new grid Ω′ = (H,π′) of Holant

(
FT | T−1G

)
by replacing each signature in F

or G with the corresponding signature in FT or T−1G.

Theorem 2.2 (Valiant’s Holant Theorem [38]). If T ∈ C2×2 is an invertible matrix, then we have
Holant(Ω;F | G) = Holant(Ω′;FT | T−1G).

Therefore, an invertible holographic transformation does not change the complexity of the
Holant problem in the bipartite setting. Furthermore, there is a special kind of holographic trans-
formation, the orthogonal transformation, that preserves the binary equality and thus can be used
freely in the standard setting.

Theorem 2.3 (Theorem 2.6 in [13]). If T ∈ O2(C) is an orthogonal matrix (i.e. TT T = I2), then
Holant(Ω;F) = Holant(Ω′;TF).

We frequently apply a holographic transformation defined by the matrix Z = 1√
2

[
1 1
i −i

]
(or

sometimes without the nonzero factor of 1√
2

since this does not affect the complexity). This

matrix has the property that the binary Equality signature (=2) = [1, 0, 1] is transformed to
[1, 0, 1]Z⊗2 = [0, 1, 0] = (6=2), the binary Disequality signature.

An important definition involving a holographic transformation is the notion of a signature set
being transformable.

Definition 2.4. We say a signature set F is C -transformable if there exists a T ∈ GL2(C) such
that [1, 0, 1]T⊗2 ∈ C and F ⊆ TC .
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This definition is important because if Pl-Holant(C ) is tractable, then Pl-Holant(F) is tractable
for any C -transformable set F .

2.3 Counting Constraint Satisfaction Problems

We can define the framework of counting constraint satisfaction problems (#CSP) in terms of the
Holant framework. An instance of #CSP(F) has the following bipartite view. Create a vertex
for each variable and each constraint. Connect a variable vertex to a constraint vertex if the
variable appears in the constraint. This bipartite graph is also known as the constraint graph.
Moreover, each variable can be viewed as an Equality function, as it takes two values. Under
this view, we see that #CSP(F) ≡T Holant (EQ | F), where EQ = {=1,=2,=3, . . . } is the set
of Equality signatures of all arities. By restricting to planar constraint graphs, we have the
planar #CSP framework, which we denote by Pl-#CSP. The construction above also shows that
Pl-#CSP(F) ≡T Pl-Holant (EQ | F).

For any positive integer d, the problem #CSPd(F) is the same as #CSP(F) except that every
variable appears a multiple of d times. Thus, Pl-#CSPd(F) ≡T Pl-Holant (EQd | F), where EQd =
{=d,=2d,=3d, . . . } is the set of Equality signatures of arities that are a multiple of d. If d ∈ {1, 2},
then we further have

Pl-#CSPd(F) ≡T Pl-Holant (EQd | F) ≡T Pl-Holant(EQd ∪ F). (2.2)

The reduction from left to right in the second equivalence is trivial. For the other direction, we take
a signature grid for the problem on the right and create a bipartite signature grid for the problem
on the left such that both signature grids have the same Holant value up to an easily computable
factor. If two signatures in F are assigned to adjacent vertices, then we subdivide all edges between
them and assign the binary Equality signature =2 ∈ EQd to all new vertices. Suppose Equality
signatures =n,=m ∈ EQd are assigned to adjacent vertices connected by k edges. If n = m = k,
then we simply remove these two vertices. The Holant of the resulting signature grid differs from
the original by a factor of 2. Otherwise, we contract all k edges and assign =n+m−2k ∈ EQd to the
new vertex.

2.4 Realization

One basic notion used throughout the paper is realization. We say a signature f is realizable or
constructible from a signature set F if there is a gadget with some dangling edges such that each
vertex is assigned a signature from F , and the resulting graph, when viewed as a black-box signature
with inputs on the dangling edges, is exactly f . If f is realizable from a set F , then we can freely
add f into F while preserving the complexity.

Formally, such a notion is defined by an F-gate [12]. An F-gate is similar to a signature grid
(G,π) for Holant(F) except that G = (V,E,D) is a graph with some dangling edges D. The
dangling edges define external variables for the F-gate. (See Figure 1 for an example.) We denote
the regular edges in E by 1, 2, . . . ,m and the dangling edges in D by m + 1, . . . ,m + n. Then we
can define a function Γ for this F-gate as

Γ(y1, . . . , yn) =
∑

x1,...,xm∈{0,1}
H(x1, . . . , xm, y1, . . . , yn),
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Figure 1: An F-gate with 5 dangling edges.

where (y1, . . . , yn) ∈ {0, 1}n is an assignment on the dangling edges and H(x1, . . . , xm, y1, . . . , yn)
is the value of the signature grid on an assignment of all edges in G, which is the product of
evaluations at all internal vertices. We also call this function Γ the signature of the F-gate.

An F-gate is planar if the underlying graph G is a planar graph, and the dangling edges, ordered
counterclockwise corresponding to the order of the input variables, are in the outer face in a planar
embedding. A planar F-gate can be used in a planar signature grid as if it is just a single vertex
with the particular signature.

Using the idea of planar F-gates, we can reduce one planar Holant problem to another. Suppose
g is the signature of some planar F-gate. Then Pl-Holant(F∪{g}) ≤T Pl-Holant(F). The reduction
is simple. Given an instance of Pl-Holant(F ∪ {g}), by replacing every appearance of g by the F-
gate, we get an instance of Pl-Holant(F). Since the signature of the F-gate is g, the Holant values
for these two signature grids are identical.

Although our main result is about symmetric signatures, some of our proofs utilize asymmetric
signatures. When a gadget has an asymmetric signature, we place a diamond on the edge corre-
sponding to the first input. The remaining inputs are ordered counterclockwise around the vertex.
(See Figure 8 for two examples.)

We note that even for a very simple signature set F , the signatures for all F-gates can be quite
complicated and expressive.

2.5 Tractable Signature Sets

We define the sets of signatures that were previously known to be tractable. All quotations of
results and definitions from [6, 20, 7], both in this section and throughout the paper, refer to the
full versions of these papers.

Affine Signatures

Definition 2.5 (Definition 3.1 in [15]). A k-ary function f(x1, . . . , xk) is affine if it has the form

λ · χAx=0 · i
∑n

j=1〈vj ,x〉,

where λ ∈ C, x = (x1, x2, . . . , xk, 1)
T, A is a matrix over F2, vj is a vector over F2, and χ is a 0-1

indicator function such that χAx=0 is 1 iff Ax = 0. Note that the dot product 〈vj , x〉 is calculated
over F2, while the summation

∑n
j=1 on the exponent of i =

√
−1 is evaluated as a sum mod 4 of

0-1 terms. We use A to denote the set of all affine functions.
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Notice that there is no restriction on the number of rows in the matrix A. It is permissible that
A is the zero matrix so that χAx=0 = 1 holds for all x. An equivalent way to express the exponent
of i is as a quadratic polynomial where all cross terms have an even coefficient (cf. [2]).

It is known that the set of non-degenerate symmetric signatures in A is precisely the nonzero
signatures (λ 6= 0) in F1 ∪ F2 ∪ F3 with arity at least 2, where F1, F2, and F3 are three families
of signatures defined as

F1 =
{
λ
(
[1, 0]⊗k + ir[0, 1]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
,

F2 =
{
λ
(
[1, 1]⊗k + ir[1,−1]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
, and

F3 =
{
λ
(
[1, i]⊗k + ir[1,−i]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
.

We explicitly list these signatures up to an arbitrary constant multiple from C:

1. [1, 0, . . . , 0,±1]; (F1, r = 0, 2)
2. [1, 0, . . . , 0,±i]; (F1, r = 1, 3)
3. [1, 0, 1, 0, . . . , 0 or 1]; (F2, r = 0)
4. [1,−i, 1,−i, . . . , (−i) or 1]; (F2, r = 1)
5. [0, 1, 0, 1, . . . , 0 or 1]; (F2, r = 2)
6. [1, i, 1, i, . . . , i or 1]; (F2, r = 3)
7. [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)]; (F3, r = 0)
8. [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)]; (F3, r = 1)
9. [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)]; (F3, r = 2)

10. [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)]. (F3, r = 3)

Product-Type Signatures

Definition 2.6 (Definition 3.3 in [15]). A function is of product type if it can be expressed as
a product of unary functions, binary equality functions ([1, 0, 1]), and binary disequality functions
([0, 1, 0]). We use P to denote the set of product-type functions.

An alternate definition for P, implicit in [14], is the tensor closure of signatures with support
on two complementary bit vectors. It can be shown (cf. Lemma A.1 in the full version of [21])
that if f is a symmetric signature in P, then f is either degenerate, binary Disequality 6=2, or
[a, 0, . . . , 0, b] for some a, b ∈ C.

Matchgate Signatures Matchgates were introduced by Valiant [36, 35] to give polynomial-time
algorithms for a collection of counting problems over planar graphs. As the name suggests, problems
expressible by matchgates can be reduced to computing a weighted sum of perfect matchings.
The latter problem is tractable over planar graphs by Kasteleyn’s algorithm [24], a.k.a. the FKT
algorithm [34, 23]. These counting problems are naturally expressed in the Holant framework using
matchgate signatures. We use M to denote the set of all matchgate signatures; thus Pl-Holant(M )
is tractable. Holographic transformations extend the reach of the FKT algorithm even further, as
stated below.

Theorem 2.7. Let F be any set of symmetric, complex-valued signatures in Boolean variables. If
F is M -transformable, then Pl-Holant(F) is computable in polynomial time.
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Matchgate signatures are characterized by the matchgate identities (see [5] for the identities
and a self-contained proof). The parity of a matchgate signature is even (resp. odd) if its support
is on entries of even (resp. odd) Hamming weight. We explicitly list all the symmetric signatures
in M (see [5]).

Proposition 2.8. Let f be a symmetric signature in M . Then there exists a, b ∈ C and n ∈ N
such that f takes one of the following forms:

1. [an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn] (of arity 2n ≥ 2);
2. [an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn, 0] (of arity 2n + 1 ≥ 1);
3. [0, an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn] (of arity 2n + 1 ≥ 1);
4. [0, an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn, 0] (of arity 2n + 2 ≥ 2).

In the last three cases with n = 0, the signatures are [1, 0], [0, 1], and [0, 1, 0]. Any multiple of these
is also a matchgate signature.

Roughly speaking, the symmetric matchgate signatures have 0 for every other entry (which is
called the parity condition), and form a geometric progression with the remaining entries.

Another useful way to view the symmetric signature in M is via a low tensor rank decomposi-
tion. To state these low rank decompositions, we use the following definition.

Definition 2.9. Let Sn be the symmetric group of degree n. Then for positive integers t and n
with t ≤ n and unary signatures v, v1, . . . , vn−t, we define

Symt
n(v; v1, . . . , vn−t) =

∑

π∈Sn

n⊗

k=1

uπ(k),

where the ordered sequence (u1, u2, . . . , un) = (v, . . . , v︸ ︷︷ ︸
t copies

, v1, . . . , vn−t).

Proposition 2.10. Let f be a symmetric signature in M of arity n. Then there exist a, b, λ ∈ C
such that f takes one of the following forms:

1. [a, b]⊗n + [a,−b]⊗n =

{
2[an, 0, an−2b2, 0, . . . , 0, bn] n is even,

2[an, 0, an−2b2, 0, . . . , 0, abn−1, 0] n is odd;

2. [a, b]⊗n − [a,−b]⊗n =

{
2[0, an−1b, 0, an−3b3, 0, . . . , 0, abn−1, 0] n is even,

2[0, an−1b, 0, an−3b3, 0, . . . , 0, bn] n is odd;

3. λSymn−1
n ([1, 0]; [0, 1]) = [0, λ, 0, . . . , 0];

4. λSymn−1
n ([0, 1]; [1, 0]) = [0, . . . , 0, λ, 0].

The understanding of matchgates was further developed in [11], which characterized, for every
symmetric signature, the set of holographic transformations under which the transformed signature
becomes a matchgate signature.

Vanishing Signatures Vanishing signatures were first introduced in [19] in the parity setting to
denote signatures for which the Holant value is always 0 modulo 2.

Definition 2.11. A set of signatures F is called vanishing if the value HolantΩ(F) is 0 for every
signature grid Ω. A signature f is called vanishing if the singleton set {f} is vanishing.
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A Holant problem defined only by vanishing signatures is trivially tractable by definition. Ques-
tion is how to determine which sets of signatures are vanishing? We introduce the following defini-
tions to answer this question.

Definition 2.12 (Definition 4.4 in [6]). A nonzero symmetric signature f of arity n has positive
vanishing degree k ≥ 1, which is denoted by vd+(f) = k, if k ≤ n is the largest positive integer
such that there exists n − k unary signatures v1, . . . , vn−k satisfying

f = Symk
n([1, i]; v1, . . . , vn−k).

If f cannot be expressed as such a symmetrization form, we define vd+(f) = 0. If f is the all zero
signature, define vd+(f) = n + 1.

We define negative vanishing degree vd− similarly, using −i instead of i.

Definition 2.13 (Definition 4.5 in [6]). For σ ∈ {+,−}, we define V σ = {f | 2 vdσ(f) > arity(f)}.
Furthermore, we let V = V +∪V −. The fact that V is closed under orthogonal transformations

follows directly from the next lemma.

Lemma 2.14. For a symmetric signature f of arity n, σ ∈ {+,−}, and an orthogonal matrix
T ∈ C2×2, either vdσ(f) = vdσ(T⊗nf) or vdσ(f) = vd−σ(T⊗nf).

The following characterization of vanishing signature sets holds.

Theorem 2.15 (Theorem 4.13 in [6]). Let F be a set of symmetric signatures. Then F is vanishing
if and only if F ⊆ V + or F ⊆ V −.

To prove this theorem, two more definitions were made, which complement the previous two
definitions because of Corollary 2.18.

Definition 2.16 (Definition 4.7 in [6]). A symmetric signature f = [f0, f1, . . . , fn] of arity n is
in R+

t for a nonnegative integer t ≥ 0 if t > n or for any 0 ≤ k ≤ n − t, fk, . . . , fk+t satisfy the
recurrence relation

(
t

t

)
itfk+t +

(
t

t − 1

)
it−1fk+t−1 + · · · +

(
t

0

)
i0fk = 0. (2.3)

We define R−
t similarly but with −i in place of i in (2.3).

Definition 2.17 (Definition 4.8 in [6]). For a nonzero symmetric signature f of arity n, it is
of positive (resp. negative) recurrence degree t ≤ n, denoted by rd+(f) = t (resp. rd−(f) = t),
if and only if f ∈ R+

t+1 − R+
t (resp. f ∈ R−

t+1 − R−
t ). If f is the all zero signature, we define

rd+(f) = rd−(f) = −1.

Corollary 2.18 (Corollary 4.16 in [6]). If f is a symmetric signature and σ ∈ {+,−}, then
vdσ(f) + rdσ(f) = arity(f).

An observation was made in Section 4.3 of [6] that we utilize. We state it here as a lemma.

Lemma 2.19. Suppose f is a symmetric signature of arity n. Let f̂ = (Z−1)⊗nf . If rd+(f) = d,
then f̂ = [f̂0, f̂1, . . . , f̂d, 0, . . . , 0] and f̂d 6= 0. Also f ∈ R+

d iff all nonzero entries of f̂ are among
the first d entries in its symmetric signature notation.

Similarly, if rd−(f) = d, then f̂ = [0, . . . , 0, f̂n−d, . . . , f̂n] and f̂n−d 6= 0. Also f ∈ R−
d iff all

nonzero entries of f̂ are among the last d entries in its symmetric signature notation.
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The following lemma is a reduction involving binary signatures in the Z basis. It is used in
Section 4 to help determine what binary signatures can mix with vanishing signatures. The original
statement is for general graphs, but the proof clearly holds for planar graphs as well.

Lemma 2.20 (Lemma A.1 in [6]). Let x ∈ C. If x 6= 0, then for any set F containing [x, 1, 0], we
have

Pl-Holant ( 6=2 | F ∪ {[v, 1, 0]}) ≤T Pl-Holant (6=2 | F)

for any v ∈ C.

2.6 Some Known Dichotomies

Here we list several known dichotomies. The first is the dichotomy for Holant.

Theorem 2.21 (Theorem 5.1 in [6]). Let F be any set of symmetric, complex-valued signatures in
Boolean variables. Then Holant(F) is #P-hard unless F satisfies one of the following conditions,
in which case the problem is in P:

1. All non-degenerate signatures in F are of arity at most 2;
2. F is A -transformable;
3. F is P-transformable;
4. F ⊆ V σ ∪ {f ∈ Rσ

2 | arity(f) = 2} for σ ∈ {+,−};
5. All non-degenerate signatures in F are in Rσ

2 for σ ∈ {+,−}.

We also use several dichotomy theorems for planar Holant problems with additional restrictions.
The first of these is a dichotomy theorem for a single signature of small arity. It is a combination
of Theorem V.1 in [12] and Theorem 14 in [20] for arity 3 and 4, respectively. This theorem forms
the base case of an inductive proof of Theorem 6.1, our single signature dichotomy.

Theorem 2.22. If f is a non-degenerate, symmetric, complex-valued signature of arity 3 or 4 in
Boolean variables, then Pl-Holant(f) is #P-hard unless f satisfies one of the following conditions,
in which case, the problem is computable in polynomial time:

1. Holant(f) is tractable (i.e. f is A -transformable, P-transformable, or vanishing);
2. f is M -transformable.

We also state a corollary of this result, which shows that counting weighted matchings in 4-
regular planar graphs is #P-hard. This is easier to apply than Theorem 2.22.

Corollary 2.23 (Lemma 5.5 in [20]). Let v ∈ C. If v 6= 0, then Pl-Holant([v, 1, 0, 0, 0]) is #P-hard.

Next is a dichotomy theorem about counting complex weighted graph homomorphisms over
degree prescribed graphs.

Theorem 2.24 (Theorem 3 in [8]). Let S ⊆ Z+ containing some r ≥ 3, let G = {=k| k ∈ S}, and
let d = gcd(S). Further suppose that f0, f1, f2 ∈ C. Then Pl-Holant ([f0, f1, f2] | G) is #P-hard
unless one of the following conditions holds:

1. f0f2 = f2
1 ;

2. f0 = f2 = 0;
3. f1 = 0;
4. f0f2 = −f2

1 and fd
0 = −fd

2 6= 0;
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5. fd
0 = fd

2 6= 0.
In all exceptional cases, the problem is computable in polynomial time.

Theorem 2.24 is the original statement as in [8]. It is explicit and easy to apply. Conceptually,
it can be restated as Theorem 2.24′, which supports the putative form of the Pl-#CSPd dichotomy.

Theorem 2.24′ (Theorem 3 in [8]). Let S ⊆ Z+ contain k ≥ 3, let G = {=k| k ∈ S}, and
let d = gcd(S). Further suppose that f is a non-degenerate, symmetric, complex-valued binary
signature in Boolean variables. Then Pl-Holant (f | G) is #P-hard unless f satisfies one of the
following conditions, in which case, the problem is computable in polynomial time:

1. there exists T ∈ T4d such that T⊗2f ∈ A ;
2. f ∈ P;
3. there exists T ∈ T2d such that T⊗2f ∈ M̂ .

Lastly, we quote the Pl-#CSP dichotomy. It also supports the putative form of a dichotomy,
which states that holographic algorithms using matchgates followed by the FKT algorithm is a
universal strategy.

Theorem 2.25 (Theorem 19 in [20]). Let F be any set of symmetric, complex-valued signatures

in Boolean variables. Then Pl-#CSP(F) is #P-hard unless F ⊆ A , F ⊆ P, or F ⊆ M̂ , in which
case the problem is computable in polynomial time.

2.7 Redundant Signature Matrices and Related Hardness Results

Definition 2.26 (Definition 6.1 in [6]). A 4-by-4 matrix is redundant if its middle two rows and
middle two columns are the same.

An example of a redundant matrix is the signature matrix of a symmetric arity 4 signature.

Definition 2.27 (Definition 6.2 in [6]). The signature matrix of a symmetric arity 4 signature
f = [f0, f1, f2, f3, f4] is

Mf =




f0 f1 f1 f2

f1 f2 f2 f3

f1 f2 f2 f3

f2 f3 f3 f4


 .

This definition extends to an asymmetric signature g as

Mg =




g0000 g0010 g0001 g0011

g0100 g0110 g0101 g0111

g1000 g1010 g1001 g1011

g1100 g1110 g1101 g1111


 ,

where gwxyz is the output of g on input wxyz. When we present g as an F-gate, we order the four
external edges ABCD counterclockwise. In Mg, the row index bits are ordered AB and the column
index bits are ordered DC, in reverse order. This is for convenience so that the signature matrix of
the linking of two arity 4 F-gates is the matrix product of the signature matrices of the two F-gates.
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(a) A counterclockwise rotation (b) Movement of signature matrix entries

Figure 2: The movement of the entries in the signature matrix of a quaternary signature
under a counterclockwise rotation of the input edges. Entires of Hamming weight 1
are in the dotted cycle, entires of Hamming weight 2 are in the two solid cycles (one
has length 4 and the other one is a swap), and entries of Hamming weight 3 are in the
dashed cycle.

If Mg is redundant, we also define the compressed signature matrix of g as

M̃g =



1 0 0 0
0 1

2
1
2 0

0 0 0 1


Mg




1 0 0
0 1 0
0 1 0
0 0 1


 .

Lemma 2.28 (Corollary 3.8 in [20]). Let f be an arity 4 signature with complex weights. If Mf is

redundant and M̃f is nonsingular, then Pl-Holant(f) is #P-hard.

Furthermore, by combining Lemma 2.28 with Lemma 6.8 in [6], we obtain the planar version
of Corollary 6.9 in [6].

Corollary 2.29. Let f be an arity 4 signature with complex weights. If there exists a nonsingular
matrix T ∈ C2×2 such that f̂ = T⊗4f , where Mf̂ is redundant and M̃f̂ is nonsingular, then

Pl-Holant(f) is #P-hard.

In the course of working with symmetric signature, we sometimes construct gadgets with sig-
natures that are not symmetric. The power of Lemma 2.28 and Corollary 2.29 is that they apply
to such signatures provided the corresponding signature matrix is redundant. Sometimes one can
apply a rotation to obtain a signature with a redundant signature matrix (see Figure 2).

3 A -, P-, and M -transformable Signatures

In this section, we investigate the properties of A -, P-, and M -transformable signatures. Through-

out, we define α = 1+i√
2

=
√

i = e
πi
4 and use O2(C) to denote the group of 2-by-2 orthogonal matrices

over C. While the main results in this section assume that the signatures involved are symmetric,
we note that some of the lemmas also hold without this assumption.
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3.1 Characterization of A - and P-transformable Signatures

A - and M -transformable signatures have been well studied in previous work [6, 7]. We summarize
some useful notions and lemmas here. The three sets A1, A2, and A3 capture all symmetric
A -transformable signatures.

Definition 3.1. A symmetric signature f of arity n is in, respectively, A1, or A2, or A3 if
there exist an H ∈ O2(C) and a nonzero constant c ∈ C such that f has the form, respectively,

cH⊗n
(
[ 1
1 ]

⊗n
+ β

[
1

−1

]⊗n
)
, or cH⊗n

(
[ 1

i ]
⊗n

+
[

1
−i

]⊗n
)
, or cH⊗n

(
[ 1
α ]⊗n + ir

[
1

−α

]⊗n
)
, where β =

αtn+2r, r ∈ {0, 1, 2, 3}, and t ∈ {0, 1}.

For k ∈ {1, 2, 3}, when such an orthogonal H exists, we say that f ∈ Ak with transformation
H. If f ∈ Ak with I2, then we say f is in the canonical form of Ak.

The following lemma characterizes the signatures in A2.

Lemma 3.2 (Lemma 8.8 in [6]). Let f be a symmetric signature of arity n. Then f ∈ A2 if and

only if f = c
(
[ 1

i ]
⊗n

+ β
[

1
−i

]⊗n
)

for some nonzero constants c, β ∈ C.

Membership in these three sets characterize the A -transformable signatures.

Lemma 3.3 (Lemma 8.10 in [6]). Let f be a non-degenerate symmetric signature. Then f is
A -transformable if and only if f ∈ A1 ∪ A2 ∪ A3.

There is a similar characterization for P-transformable signatures.

Definition 3.4. A symmetric signature f of arity n is in P1 if there exist an H ∈ O2(C) and a

nonzero c ∈ C such that f = cH⊗n
(
[ 1
1 ]

⊗n
+ β

[
1

−1

]⊗n
)
, where β 6= 0.

We define P2 = A2. For k ∈ {1, 2}, when such an H exists, we say that f ∈ Pk with
transformation H. If f ∈ Pk with I2, then we say f is in the canonical form of Pk.

Lemma 3.5 (Lemma 8.13 in [6]). Let f be a non-degenerate symmetric signature. Then f is
P-transformable if and only if f ∈ P1 ∪ P2.

3.2 Characterization of M -transformable Signatures

Now we develop a similar theory for the M -transformable signatures. Recall from Definition 2.4
that for a signature set F to be M -transformable, it must be that there exists a T ∈ GL2(C) such
that [1, 0, 1]T⊗2 ∈ M . Since [1, 0, 1] is symmetric, [1, 0, 1]T⊗2 is also symmetric. However, it is
unnecessary to consider all binary signatures in M . We can normalize via right multiplication by
elements in

Stab(M ) = {T ∈ GL2(C) | TM ⊆ M },
the stabilizer group of M . Technically this set is the left stabilizer group of M , but it is easy to
see that the left and right stabilizer groups of M coincide and that they are generated by nonzero
scalar multiples of matrices of the form [ 1 0

0 ν ] for any nonzero ν ∈ C and X = [ 0 1
1 0 ].

After this normalization, it is enough to consider cases 1 and 3 in the following proposition.

Proposition 3.6 (Proposition 8.1 in [6]). Let T ∈ C2×2 be a matrix. Then the following hold:

15



1. [1, 0, 1]T⊗2 = [1, 0, 1] if and only if T ∈ O2(C);
2. [1, 0, 1]T⊗2 = [1, 0, i] if and only if there exists an H ∈ O2(C) such that T = H [ 1 0

0 α ];
3. [1, 0, 1]T⊗2 = [0, 1, 0] if and only if there exists an H ∈ O2(C) such that T = 1√

2
H
[

1 1
i −i

]
.

Lemma 3.7. Let F be a set of signatures. Then F is M -transformable if and only if F ⊆
[

1 1
i −i

]
M

or there exists an H ∈ SO2(C) such that F ⊆ HM .

Proof. Sufficiency is easily verified by checking that =2 is transformed into M in both cases. In
particular, H leaves =2 unchanged.

If F is M -transformable, then by definition, there exists a matrix T such that (=2)T
⊗2 ∈ M

and F ⊆ TM . The non-degenerate binary signatures in M are either [0, 1, 0] or of the form [1, 0, ν],

up to a scalar. However, notice that [1, 0, 1] = [1, 0, ν]
[

1 0

0 ν− 1
2

]⊗2
and

[
1 0

0 ν− 1
2

]
∈ Stab(M ). Thus,

we only need to consider [1, 0, 1] and [0, 1, 0]. Now we apply Proposition 3.6.
1. If (=2)T

⊗2 = [1, 0, 1], then by case 1 of Proposition 3.6, we have T ∈ O2(C). If T ∈ SO2(C),
then we are done with H = T . Otherwise, T ∈ O2(C) − SO2(C). We want to find an
H ∈ SO2(C) such that F ⊆ HM . Let H = T

[
1 0
0 −1

]
∈ SO2(C). Then

F ⊆ TM = T

[
1 0
0 −1

]
M = HM

since
[

1 0
0 −1

]
∈ Stab(M ).

2. If (=2)T
⊗2 = [0, 1, 0], then by case 3 of Proposition 3.6, there exists an H ∈ O2(C) such that

T = 1√
2
H
[

1 1
i −i

]
. Therefore F ⊆ H

[
1 1
i −i

]
M . Furthermore, if H =

[
a b

−b a

]
∈ SO2(C), then

a2 + b2 = 1 and

F ⊆ H

[
1 1
i −i

]
M =

[
1 1
i −i

] [
a + bi 0

0 a − bi

]
M =

[
1 1
i −i

]
M

since H
[

1 1
i −i

]
=
[

1 1
i −i

] [
a+bi 0

0 a−bi

]
and

[
a+bi 0

0 a−bi

]
∈ Stab(M ). Otherwise, H =

[
a b
b −a

]
∈

O2(C) − SO2(C), so a2 + b2 = 1 and

F ⊆ H

[
1 1
i −i

]
M =

[
1 1
i −i

] [
0 a − bi

a + bi 0

]
M =

[
1 1
i −i

]
M

since H
[

1 1
i −i

]
=
[

1 1
i −i

] [
0 a−bi

a+bi 0

]
and

[
0 a−bi

a+bi 0

]
∈ Stab(M ).

We use four sets to characterize the M -transformable signatures. The notation Sym is from
Definition 2.9.

Definition 3.8. A symmetric signature f of arity n is in, respectively, M1, or M2, or M3, or
M4 if there exist an H ∈ O2(C) and nonzero constants c, γ ∈ C such that f has the form, re-

spectively, cH⊗n
(
[ 1
1 ]

⊗n ± in
[

1
−1

]⊗n
)
, or cH⊗n

([
1
γ

]⊗n ±
[

1
−γ

]⊗n
)
, or cH⊗n Symn−1

n ([ 1
0 ] ; [ 0

1 ]), or

cH⊗n Symn−1
n ([ 1

i ] ;
[

1
−i

]
).

For k ∈ {1, 2, 3, 4}, when such an H exists, we say that f ∈ Mk with transformation H. If
f ∈ Mk with I2, then we say f is in the canonical form of Mk.

Notice that {[ 1
i ] ,
[

1
−i

]
} is set-wise invariant under any transformation in O2(C) up to nonzero

constants. Using this fact, the following lemma gives a characterization of M4. It says that any
signature in M4 is essentially in canonical form.
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P1

A1

M1 A3

M2

A2 = P2

M3 M4

Figure 3: Relationships among A1, A2, A3, P1, P2, M1, M2, M3, and M4. Note that
P1 ∩ M2 ⊆ A1.

Lemma 3.9. Let f be a symmetric signature of arity n. Then f ∈ M4 if and only if f =
cSymn−1

n ([ 1
i ] ;
[

1
−i

]
) or f = cSymn−1

n (
[

1
−i

]
; [ 1

i ]) for some nonzero constant c ∈ C.

Proof. Suppose f ∈ M4, so that f = cH⊗n Symn−1
n ([ 1

i ] ;
[

1
−i

]
). If H ∈ SO2(C), then H =

[
a b

−b a

]

for some a, b ∈ C such that a2 + b2 = 1. Since H [ 1
i ] = (a + bi) [ 1

i ] and H
[

1
−i

]
= (a − bi)

[
1
−i

]
,

it follows that f = c(a + bi)n−1(a − bi) Symn−1
n ([ 1

i ] ;
[

1
−i

]
). Otherwise, H ∈ O2(C) − SO2(C), so

H =
[

a b
b −a

]
for some a, b ∈ C such that a2+b2 = 1. Then f = c(a+bi)(a−bi)n−1 Symn−1

n (
[

1
−i

]
; [ 1

i ]).
Now suppose f = cSymn−1

n ([ 1
i ] ;
[

1
−i

]
) or f = cSymn−1

n (
[

1
−i

]
; [ 1

i ]). The first case is already in
the standard form of M4. In the second case, we pick H =

[
1 0
0 −1

]
∈ O2(C). Then H⊗nf is in the

standard form of M4.

We further split M4 into M ±
4 for future use. Define M ±

4 = {f |f = cSymn−1
n (

[
1
±i

]
;
[

1
∓i

]
)}. In

other words, M +
4 contains signatures of the form Z⊗n[0, 1, 0, . . . , 0] and M −

4 contains signatures of
the form Z⊗n[0, . . . , 0, 1, 0] up to a scalar, where Z =

[
1 1
i −i

]
. We will denote [0, 1, 0, . . . , 0] of arity

k by ExactOnek, and [0, . . . , 0, 1, 0] of arity k by AllButOnek. Note that these are precisely
the Perfect Matching signatures and corresponding reversals.

Notice that M1 ⊂ A1 ⊂ P1 and A2 = P2 ⊂ M2. See Figure 3 for a visual description of the
relationships among sets.

Next we show that Mk for k = 1, 2, 3, 4 captures all M -transformable signatures.

Lemma 3.10. Let f be a non-degenerate symmetric signature. Then f is M -transformable if and
only if f ∈ M1 ∪ M2 ∪ M3 ∪ M4.

Proof. Assume that f is M -transformable of arity n. By applying Lemma 3.7 to {f}, we have
f ∈

[
1 1
i −i

]
M or there exists an H ∈ SO2(C) such that f ∈ HM . Proposition 2.10 lists the
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symmetric signatures in M . Since we are only interested in non-degenerate signatures, we only
consider a, b, and λ that are nonzero. Now we consider the possible cases.

1. Suppose f ∈
[

1 1
i −i

]
M .

• Further suppose f =
[

1 1
i −i

]⊗n
(
[ a
b ]⊗n ± [ a

−b ]⊗n
)

for some nonzero a, b ∈ C. Let T =

1−i
2 [ u v

v −u ], where u = a + bi and v = i(a − bi). Then f = T⊗n
(
[ 1
1 ]

⊗n ± in
[

1
−1

]⊗n
)
.

Since T ∈ O2(C) up to a nonzero factor of
√

2ab, we have f ∈ M1.

• Further suppose f = λ
[

1 1
i −i

]⊗n
Symn−1

n ([ 1
0 ] ; [ 0

1 ]) for some nonzero λ ∈ C. Then we
have f = λSymn−1

n ([ 1
i ] ;
[

1
−i

]
), so f ∈ M4.

• Further suppose f = λ
[

1 1
i −i

]⊗n
Symn−1

n ([ 0
1 ] ; [ 1

0 ]) for some nonzero λ ∈ C. Then we
have f = λSymn−1

n (
[

1
−i

]
; [ 1

i ]), so f ∈ M4 by Lemma 3.9.
2. Suppose f ∈ HM .

• Further suppose f = H⊗n
(
[ a
b ]⊗n ± [ a

−b ]⊗n
)

for some nonzero a, b ∈ C. Then we have

f = anH⊗n
([

1
γ

]⊗n ±
[

1
−γ

]⊗n
)
, where γ = b

a , so f ∈ M2.

• Further suppose f = λH⊗n Symn−1
n ([ 1

0 ] ; [ 0
1 ]) for some nonzero λ ∈ C. Then f ∈ M3.

• Further suppose f = λH⊗n Symn−1
n ([ 0

1 ] ; [ 1
0 ]) for some nonzero λ ∈ C. Let H ′ =

H [ 0 1
1 0 ] ∈ O2(C). Then we have f = λH ′⊗n Symn−1

n ([ 1
0 ] ; [ 0

1 ]), so f ∈ M3.
Conversely, if there exists a matrix H ∈ O2(C) such that H⊗nf is in one of the canonical forms

of M1, M2, M3, or M4, then one can directly check that f is M -transformable by Definition 2.4.
In fact, the transformations that we applied above are all invertible, except for M1, if the given
orthogonal transformation is of the form [ u −v

v u ], we do
[

1 0
0 −1

]
first followed by [ u v

v −u ].

Furthermore, we show that a nontrivial signature f in the set M3 is not A - or P-transformable.
Moreover, the only transformation to make f in M is very restricted. This is for future use.

Lemma 3.11. Let f ∈ M3 be a non-degenerate signature of arity n ≥ 3 with H ∈ O2(C). Then
f is not A - or P-transformable. Moreover, f is M -transformable with only HD or H [ 0 1

1 0 ] D for
some diagonal matrix D.

Proof. Suppose f = [f0, f1, . . . , fn]. If f is A - or P-transformable, then f has to satisfy a second
order recurrence relation that afi+bfi+1+cfi+2 = 0, for a, b, c ∈ C such that not all a, b, c are 0 and
b2 − 4ac 6= 0. In other words, the second order recurrence relation has to have distinct eigenvalues.
This is due to Lemma 6.15 or Lemma 7.2 in [7]. Moreover, this property is preserved by holographic
transformations (cf. Lemma 6.2 in [7]). However, f is in M3. Hence f = H⊗nExactOnen for
some H ∈ O2(C) up to a nonzer factor. On the other hand, ExactOnen does not satisfy a second
recurrence with distinct eigenvalues if n ≥ 3, a contradiction.

Moreover, notice that the only signatures in M that do not satisfy such second order recurrence
relations are ExactOnek and AllButOnek functions. If f is M -transformable, then there exists
a transformation T such that f = T⊗ng for some g ∈ M and [1, 0, 1]T⊗2 ∈ M . Hence g =
ExactOnen or AllButOnen. On the other hand f = H⊗nExactOnen up to a nonzer factor.
Therefore (T−1H)⊗nExactOnen = ExactOnen or AllButOnen up to a nonzer factor.

Let J = T−1H = [ x y
z w ] and let h = J⊗nExactOnen. As ExactOnen = Symn−1

n ([ 1
0 ] ; [ 0

1 ]),
h = ([ x y

z w ])⊗nExactOnen = Symn−1
n ([ x

z ] ; [ y
w ]). The first and last entries of h are xn−1y and

zn−1w. As h = ExactOnen or AllButOnen, we have that xn−1y = zn−1w = 0. It is easy to
see that x and z, or y and w cannot be both 0. Then x = w = 0 or y = z = 0. This implies that
J = D or J = D [ 0 1

1 0 ] for some diagonal matrix D. Thus T = HJ−1 = HD−1 or H [ 0 1
1 0 ]D−1.
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Let g = [x, y, 0, . . . , 0, z] have arity n ≥ 3, where xyz 6= 0. As an example of the theory
developed in this section, we discuss the signature Z⊗ng in the following lemma, which will be used
in Lemma 6.6 in the proof of the single signature dichotomy Theorem 6.1.

Lemma 3.12. Let n ≥ 3, g = [x, y, 0, . . . , 0, z] have arity n and xyz 6= 0. Then the signature Z⊗ng
is neither A -, P-, M -transformable, nor vanishing.

Remark 1. By Theorem 2.22, for arity n = 3 or 4, Lemma 3.12 implies that Pl-Holant(Z⊗ng)
is #P-hard. After we have proved Theorem 6.1, this lemma will imply that Pl-Holant(Z⊗ng) is
#P-hard for all n ≥ 3.

Proof. That Z⊗ng is not vanishing follows from Lemma 2.19 combined with Corollary 2.18 and
Theorem 2.15. To show that Z⊗ng is not A -, P-, M -transformable, we only need to show that
Z⊗ng 6∈ P1 ∪ M2 ∪ A3 ∪ M3 ∪ M4 by Lemma 3.3, 3.5 and 3.10, and the fact that M1 ⊂ A1 ⊂ P1

and A2 = P2 ⊂ M2. See Figure 3.
We first show that Z⊗ng 6∈ P1 ∪ M2 ∪ A3. We say a signature f = [f0, f1, . . . , fn] satisfies a

second order recurrence of type 〈a, b, c〉 if afk − bfk+1 + cfk+2 = 0 for 1 ≤ k ≤ n − 2, for some a, b
and c not all zero. Suppose Z⊗ng is a nonzer constant multiple of Hf ∈ P1 ∪M2 ∪A3 in the forms
given in Definitions 3.4, 3.8 and 3.1, then f , and hence also (Z−1)⊗nf , satisfies a second order
recurrence. We have H−1Z = ZD or ZD [ 0 1

1 0 ] for some non-singular diagonal D since H ∈ O2(C).
Thus f = Z⊗ng′ for some g′ = [x′, y′, 0, . . . , 0, z′] or [x′, 0, . . . , 0, y′, z′], with x′y′z′ 6= 0. We assume
the former; the proof is similar for the latter.

However, for n ≥ 4, g′ does not satisfy any second order recurrence. For a contradiction suppose
g′ does. By x′y′z′ 6= 0, ay′−b0+c0 = 0 gives a = 0, ax′−by′+c0 = 0 gives b = 0, and a0−b0+cz′ = 0
gives c = 0; but a, b, c cannot be all zero.

Next suppose n = 3, and we show that g′ = (Z−1)⊗nf is still impossible. For P1, f =

[ 1
1 ]

⊗3
+ β

[
1

−1

]⊗3
. It is easy to check that (Z−1)⊗nf satisfies a second order recurrence with its

two eigenvalues sum to zero. However g′ = [x′, y′, 0, z′] has type 〈y′z′, x′z′,−y′2〉, the sum of its two
eigenvalues is −x′z′/y′2 6= 0.

For M2, f =
[

1
γ

]⊗3 ±
[

1
−γ

]⊗3
. In (Z−1)⊗nf , Z−1

[
1 1
γ −γ

]
has the form [ u v

v u ], and (Z−1)⊗nf =

[ u
v ]⊗3 ± [ v

u ]⊗3. Thus the weight 1 and weight 2 entries of (Z−1)⊗nf are either equal or negative of
each other. If g′ = (Z−1)⊗nf this would imply y′ = 0, a contradiction.

For A3, f = [ 1
α ]⊗n + ir

[
1

−α

]⊗n
. Z−1

[
1 1
α −α

]
= [ u v

v u ], with u = 1 − αi and v = 1 + αi. The
weight 2 entry of (Z−1)⊗nf is uv2 + irvu2 = (uv)(v + iru). This is nonzer for all r. However
g′ = [x′, y′, 0, z′] has this property.

It remains to show that Z⊗ng 6∈ M3 ∪ M4. If Z⊗ng ∈ M3, then Z⊗ng = cHf for some
H ∈ O2(C) and f = Symn−1

n ([ 1
0 ] ; [ 0

1 ]). Again f = (cH)−1Z⊗ng = Z⊗ng′ for some g′ having the
same or its reversal form as g. Then g′ = (Z−1)⊗nf is the signature [n, n − 2, . . . ,−(n − 2),−n].
The weight 1 entry and weight n − 1 entry have the same absolute value. By the form of g′ this is
a contradiction.

Finally if Z⊗ng ∈ M4, then by Lemma 3.9, Z⊗ng = cZ⊗nf , for some nonzero constant c ∈ C,
and f = Symn−1

n ([ 1
0 ] ; [ 0

1 ]) or its reversal Symn−1
n ([ 0

1 ] ; [ 1
0 ]). In either case, after canceling out Z,

the weight 0 entry is 0 in the expression but not so in g; a contradiction.
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4 Mixing with Vanishing Signatures

In this section, we prove some hardness results for vanishing signature sets when augmented by
other signatures. We first consider the mixing of vanishing signatures with unary and binary
signatures. Over general graphs, these cases are handled by Lemma 7.1 and Lemma 7.2 in [6].
One can check that the hardness in Lemma 7.1 in [6] holds for planar graphs. We state the planar
version of Lemma 7.1 in [6] and provide a proof for completeness. Specifically, the reduction to
obtain the signature f ′′ is planar and Pl-Holant(f ′′) is #P-hard by Theorem 2.22.

Lemma 4.1. Let f ∈ V σ be a symmetric signature of arity n with rdσ(f) = d ≥ 2 where σ ∈
{+,−}. Suppose v = u⊗m is a symmetric degenerate signature for some unary signature u and
some integer m ≥ 1. If u is not a multiple of [1, σi], then Pl-Holant(f, v) is #P-hard.

Proof. We consider σ = + since the other case is similar. Since f ∈ V +, we have n > 2d ≥ 4.
Under a holographic transformation by Z, we have

Pl-Holant(f, v) ≡ Pl-Holant
(
6=2 | f̂ , [a, b]⊗m

)
,

where f̂ =
(
Z−1

)⊗n
f and [a, b]⊗m =

(
Z−1

)⊗m
v with b 6= 0 since u is not a multiple of [1, i].

Moreover, f̂ = [f̂0, f̂1, . . . , f̂d, 0, . . . , 0] with f̂d 6= 0 by Lemma 2.19.
We get f̂ ′ = [f̂d−2, f̂d−1, f̂d, 0, . . . , 0] of arity n − 2d + 4 by d − 2 self-loops via 6=2 on f̂ . This is

on the right side. With two more self-loops, we get [1, 0]⊗n−2d, also on the right.
We claim that we can use [1, 0]⊗n−2d and [a, b]⊗m to create [a, b]⊗n−2d. Let t = gcd(m,n − 2d).

If n − 2d > m, then we connect [a, b]⊗m to [1, 0]⊗n−2d via 6=2 to get [1, 0]⊗n−2d−m up to a nonzero
factor b 6= 0. We repeat this process until we get a tensor power [1, 0]⊗ℓ for some ℓ ≤ m. We can
do a similar construction if m > n − 2d. Repeat this process, which is a subtractive Euclidean
algorithm. Halt upon getting both [1, 0]⊗t and [a, b]⊗t. Then we combine n−2d

t copies of [a, b]⊗t to
get [a, b]⊗n−2d.

Now connecting [a, b]⊗n−2d back to f̂ ′ via 6=2, gives f̂ ′′ = [f̂ ′′
0, f̂

′′
1, f̂

′′
2, 0, 0] of arity 4. Moreover,

f̂ ′′
2 = bn−2df̂d 6= 0. Notice that Pl-Holant(6=2 | [f̂ ′′

0, f̂
′′
1, f̂

′′
2, 0, 0]) ≡ Pl-Holant (6=2 | [0, 0, 1, 0, 0]),

the Eulerian Orientation problem over planar 4-regular graphs, which is #P-hard by Corollary 2.29
(or more directly by [20, Theorem 3.7]). Thus, Pl-Holant(f, v) is #P-hard.

Next come binary signatures. The statement of Lemma 7.2 in [6] must be modified to rule out a
planar tractable case (which is proved #P-hard for general graphs in Lemma 7.2 in [6]). Excluding
this planar tractable case, there is one more nonplanar reduction in the proof of Lemma 7.2 in [6].
This reduction is used to show that Holant (6=2 | {[t, 1, 0, 0, 0], [c, 0, 1]}) is #P-hard when c 6= 0
(since the gadget in Figure 12a of [6] is nonplanar). In the following lemma, we first show that
this problem Holant (6=2 | {[t, 1, 0, 0, 0], [c, 0, 1]}) remains #P-hard even restricted to planar graphs
provided t 6= 0. If t = 0, then all signatures belong to M and the problem is tractable.

Lemma 4.2. Let c, t ∈ C. If ct 6= 0, then Pl-Holant (6=2 | [t, 1, 0, 0, 0], [c, 0, 1]) is #P-hard.

Proof. By connecting two copies of 6=2 to either side of [c, 0, 1], we get the signature [1, 0, c] on the
left. Clearly Pl-Holant ([1, 0, c] | [t, 1, 0, 0, 0]) ≤T Pl-Holant (6=2 | [t, 1, 0, 0, 0], [c, 0, 1]). Then under a
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Figure 4: Circle vertices are assigned [t, 1, 0, 0] and the square vertex is assigned 6=2.

holographic transformation by T−1, where T =
[

1 0
0

√
c

]
, we have

Pl-Holant ([1, 0, c] | [t, 1, 0, 0, 0]) ≡ Pl-Holant
(
[1, 0, c](T−1)⊗2 | T⊗4[t, 1, 0, 0, 0]

)

≡ Pl-Holant
(
[1, 0, 1] | [t,

√
c, 0, 0, 0]

)

≡ Pl-Holant([t,
√

c, 0, 0, 0]).

The last problem is #P-hard by Corollary 2.23 after dividing by
√

c.

Next we prove the planar version of Lemma 7.2 in [6] using Lemma 4.2. We have to rule out
the planar tractable case f ∈ M ±

4 . Also note that if f ∈ V ± is a symmetric non-degenerate
signature, then f has arity at least 3. This is because a unary signature is degenerate, and if a
binary symmetric signature f is vanishing, then its vanishing degree is greater than 1, hence at
least 2, and therefore f is also degenerate. In the following lemma, we explicitly state this condition
arity(f) ≥ 3.

Lemma 4.3. Let f ∈ V σ be a symmetric non-degenerate signature of arity n ≥ 3 for some
σ ∈ {+,−}. Suppose h is a non-degenerate binary signature. If f 6∈ M σ

4 and h /∈ Rσ
2 , then

Pl-Holant(f, h) is #P-hard.

Proof. We consider σ = + since the other case is similar. Under a Z transformation,

Pl-Holant(f, h) ≡ Pl-Holant
(
6=2 | f̂ , ĥ

)
,

where f̂ =
(
Z−1

)⊗n
f and ĥ =

(
Z−1

)⊗2
h. Since h 6∈ R+

2 , we may assume that ĥ = [a, b, 1] by

Lemma 2.19 with a nonzero entry ĥ2. Moreover since h is non-degenerate, so is ĥ, and b2 6= a.
We prove the lemma by induction on the arity of f (or equivalently f̂). There are two base

cases, n = 3 and n = 4. However, the arity 3 case is easily reduced to the arity 4 case. We show
this first, and then show that the lemma holds in the arity 4 case.

Assume n = 3. Since f ∈ V +, we have f̂ = [t, 1, 0, 0] for some t 6= 0, by Lemma 2.19 and
f 6∈ M +

4 . Consider the gadget in Figure 4. We assign f̂ to the circle vertices and 6=2 to the square

vertex. Let f̂ ′ be the signature of the resulting gadget. The signature f̂ ′ may not seem symmetric
by construction, but it is not hard to verify that indeed f̂ ′ = [2t, 1, 0, 0, 0]. The crucial observation
is that it takes the same value 0 on inputs 1010 and 1100, where bits are ordered counterclockwise,
starting from an arbitrary edge. This finishes our reduction to n = 4.

Now we consider the base case of n = 4. Since f ∈ V +, we have vd+(f) > 2 and rd+(f) < 2.
As f is not degenerate, rd+(f) 6∈ {−1, 0}. It implies that rd+(f) = 1 and by Lemma 2.19,
f̂ = [t, 1, 0, 0, 0].

Our next goal is to show that we can realize a signature of the form [c, 0, 1] with c 6= 0. Then
Pl-Holant ( 6=2 | [t, 1, 0, 0, 0], [c, 0, 1]) ≤ Pl-Holant(f, h). Moreover, t 6= 0 since f /∈ M +

4 . Then by
Lemma 4.2, Pl-Holant ( 6=2 | [t, 1, 0, 0, 0], [c, 0, 1]) is #P-hard.
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Figure 5: A sequence of binary gadgets that forms another binary gadget. The circles
are assigned [v, 1, 0], the squares are assigned 6=2, and the triangle is assigned [a, b, 1].

If b = 0, then ĥ is what we want since in this case a = a − b2 6= 0.
Otherwise b 6= 0. By connecting ĥ to f̂ via 6=2, we get [t + 2b, 1, 0]. If t 6= −2b, then by

Lemma 2.20, we can interpolate any binary signature of the form [v, 1, 0]. Otherwise t = −2b.
Then we connect two copies of ĥ via 6=2, and get ĥ′ = [2ab, a + b2, 2b]. By connecting this ĥ′ to
f̂ via 6=2, we get [2(a − b2), 2b, 0], using t = −2b. Since a 6= b2 and b 6= 0, we can once again
interpolate any [v, 1, 0] by Lemma 2.20.

Hence, we have the signature [v, 1, 0], where v ∈ C is for us to choose. We construct the gadget
in Figure 5 with the circles assigned [v, 1, 0], the squares assigned 6=2, and the triangle assigned
[a, b, 1]. The resulting gadget has signature [a + 2bv + v2, b + v, 1], which can be verified by the
matrix product

[
v 1
1 0

] [
0 1
1 0

] [
a b
b 1

] [
0 1
1 0

] [
v 1
1 0

]
=

[
a + 2bv + v2 b + v

b + v 1

]
.

By setting v = −b, we get [c, 0, 1], where c = a − b2 6= 0.
Now we do the induction step. Assume n ≥ 5. Since f is non-degenerate, rd+(f) ≥ 1. If

rd+(f) = 1, then f̂ = [t, 1, 0, . . . , 0] for some t 6= 0. We connect ĥ to f̂ via 6=2, getting [t +
2b, 1, 0, . . . , 0] of arity n−2 ≥ 3. If t+2b 6= 0, then we are done by induction hypothesis. Otherwise
t = −2b, and we connect two ĥ together via 6=2. The signature is ĥ′ := [2ab, b2 + a, 2b]. Connect ĥ′

to f̂ via 6=2. We get [−4b2 + 2(b2 + a), 2b, 0, . . . , 0] = [2(a − b2), 2b, 0, . . . , 0]. If b = 0, then t = 0.
Contradiction. Hence b 6= 0, and a − b2 6= 0 for b is not degenerate. Then we can apply induction
hypothesis on [2(a − b2), 2b, 0, . . . , 0].

The case left is that rd+(f) = d ≥ 2. Then f̂ = [f̂0, f̂1, . . . , f̂d, 0, . . . , 0] with f̂d 6= 0 by
Lemma 2.19. We do a self-loop of f̂ via 6=2, getting f̂ ′′ := [f̂1, . . . , f̂d, 0, . . . , 0] of arity n − 2 ≥ 3.
Since d ≥ 2, f̂ ′′ is non-degenerate and f ′′ = Z⊗(n−2)f̂ ′′ ∈ V +. If f ′′ 6∈ M +

4 , then apply the

induction hypothesis and we are done. Otherwise d = 2 and we may assume f̂ = [f̂0, 0, 1, 0, . . . , 0]
since f̂2 6= 0.

In this case, we connect ĥ to f̂ via 6=2, getting f̂ ′′′ := [a+ f̂0, 2b, 1, 0, . . . , 0] of arity n− 2 ≥ 3. If
n ≥ 7, then we can apply the induction hypothesis. If n = 6, then f̂ ′′′ = [a+ f̂0, 2b, 1, 0, 0] of arity 4.

Notice that Pl-Holant
(
[0, 1, 0] | [a + f̂0, 2b, 1, 0, 0]

)
is equivalent to Pl-Holant ([0, 1, 0] | [0, 0, 1, 0, 0]),

which is counting Eulerian orientations in 4-regular planar graphs. Then Pl-Holant
(
6=2 | f̂ ′′′

)
is

#P-hard by Corollary 2.29.
The only case left now is when n = 5 and f̂ = [f̂0, 0, 1, 0, 0, 0]. We do two self-loops on f̂ via

6=2 to get [1, 0]. Then connect [1, 0] to ĥ via 6=2 and get [b, 1]. At last, connect [b, 1] to f̂ via
6=2, resulting in [f̂0, b, 1, 0, 0]. Similar to the case above, this is counting Eulerian orientations in
4-regular planar graphs, and is #P-hard by Corollary 2.29.

If f ∈ M ±
4 , there is an additional case for the binary signature.
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Lemma 4.4. Let f ∈ M σ
4 be a symmetric non-degenerate signature with σ ∈ {+,−} of arity

k ≥ 3. Suppose h is a non-degenerate binary signature such that h /∈ Rσ
2 and h is not a multiple of

Z⊗2[a, 0, 1] for any a 6= 0. Then Pl-Holant(f, h) is #P-hard.

Proof. We assume f ∈ M +
4 since the other case is similar. Suppose h = Z⊗2[a, b, c] for some

a, b, c ∈ C. Since h /∈ R+
2 , we have c 6= 0, so we assume c = 1. Moreover b 6= 0. This is

because, if b = 0 then either h is degenerate or is a multiple of Z⊗2[a, 0, 1] for some a 6= 0. Either
case is a contradiction. Then under a holographic transformation by Z, the problem becomes
Pl-Holant ( 6=2 | ExactOnek, [a, b, 1]). If we connect two copies of ExactOnek via 6=2, we get
ExactOne2k−2. Hence we may assume that k ≥ 5. Then we connect [a, b, 1] to ExactOnek

via 6=2, and get [2b, 1, 0, . . . , 0] of arity k − 2 ≥ 3. Since b 6= 0, Pl-Holant(f, h) is #P-hard by
Lemma 4.3.

Next we consider mixing signatures from V + and V −. This is a planar version of Lemma 7.3
in [6]. However, for planar graphs, there is a tractable case when one signature is in M +

4 and the
other is in M −

4 . This case was shown to be #P-hard over general graphs by Lemma 6.12 in [6]
using a nonplanar reduction. One can check that the rest of the proof of Lemma 7.3 in [6] holds
for planar graphs. For completeness we include a proof.

Lemma 4.5. Let f ∈ V + and g ∈ V − be symmetric non-degenerate signatures of arities ≥ 3
respectively. If f /∈ M +

4 or g /∈ M −
4 then Pl-Holant(f, g) is #P-hard.

Proof. Let rd+(f) = d, rd−(g) = d′, arity(f) = n and arity(g) = n′, then 2d < n and 2d′ < n′.
Under a holographic transformation by Z =

[
1 1
i −i

]
, we have

Pl-Holant (=2 | f, g) ≡T Pl-Holant
(
6=2 | f̂ , ĝ

)
,

where f̂ := (Z−1)⊗nf = [f̂0, . . . , f̂d, 0, . . . , 0] and ĝ := (Z−1)⊗n′
g = [0, . . . , 0, ĝd′ , . . . , ĝ0] due to

Lemma 2.19. Moreover f̂d 6= 0 and ĝd′ 6= 0.
If d ≥ 2, we can do d′ many self-loops of 6=2 on ĝ, getting ĝ′ := [0, . . . , 0, ĝd′ ] of arity n′−2d′ ≥ 1.

Thus g′ := Z⊗(n′−2d′)ĝ′ = [1,−i]⊗(n′−2d′) up to a nonzero constant. We apply Lemma 4.1 to derive
that Pl-Holant(f, g) is #P-hard. If d′ ≥ 2, we can similarly get [1, i]⊗(n−2d) and apply Lemma 4.1.
Thus we can assume that d = d′ = 1.

So up to nonzero constants, we have f̂ = [a, 1, 0, . . . , 0] and ĝ = [0, . . . , 0, 1, b] for some a, b ∈ C.
We can assume that f /∈ M +

4 and a 6= 0. The case of b 6= 0 is similar. We show that it is always
possible to get two such signatures of the same arity min{n, n′}. Suppose n > n′. We form a
loop from f̂ via 6=2. It is easy to see that this signature is the degenerate signature 2[1, 0]⊗(n−2).
Similarly, we can form a loop from ĝ and can get 2[0, 1]⊗(n′−2). Thus we have both [1, 0]⊗(n−2) and
[0, 1]⊗(n′−2). We can connect all n′ − 2 edges of the second to the first, connected by 6=2. This
gives [1, 0]⊗(n−n′). We can continue subtracting the smaller arity from the larger one. We continue
this process in a subtractive version of the Euclidean algorithm, and end up with both [1, 0]⊗t and
[0, 1]⊗t, where t = gcd(n−2, n′ −2) = gcd(n−n′, n′−2). In particular, t | n−n′ and by taking n−n′

t

copies of [0, 1]⊗t, we can get [0, 1]⊗(n−n′). Connecting this back to f̂ via 6=2, we get a symmetric
signature of arity n′ consisting of the first n′ + 1 entries of f̂ . A similar proof works when n′ > n.

Thus we may assume n = n′. Connecting [0, 1]⊗(n−2) to f̂ = [a, 1, 0, . . . , 0] via 6=2 we get
ĥ = [a, 1, 0]. Recall that a 6= 0. Translating this back by Z, we have a binary signature h /∈ R−

2

and h is not a multiple of Z⊗2[c, 0, 1] for any c 6= 0. Since g ∈ V −, by Lemma 4.3 or Lemma 4.4,
Pl-Holant(g, h) is #P-hard. Hence Pl-Holant(f, g) is also #P-hard.
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When signatures in both M +
4 and M −

4 appear, we show that the only degenerate signatures
that mix must also be vanishing.

Lemma 4.6. Let f ∈ M +
4 and g ∈ M −

4 be two non-degenerate signatures of arity ≥ 3. Let
v = u⊗m be a degenerate signature for some unary signature u and some integer m ≥ 1. If u is not
a multiple of [1,±i], then Pl-Holant(f, g, v) is #P-hard.

Proof. Suppose f is of arity n and g of arity ℓ. Under a holographic transformation by Z, we have

Pl-Holant(f, g, v) ≡ Pl-Holant
(
6=2 | ExactOnen,AllButOneℓ, [a, b]⊗m

)
,

where ab 6= 0. Notice that v is transformed to (Z−1u)⊗m = [a, b]⊗m. We have ab 6= 0 since u is not
a multiple of [1,±i]. First we get [1, 0]⊗n−2 by a self-loop via 6=2 on ExactOnen. By the same
subtractive Euclidean argument as in Lemma 4.1, we can realize [a, b]⊗n−2 by [1, 0]⊗n−2 and [a, b]⊗m.
Connecting [a, b]⊗n−2 to ExactOnen via 6=2 we get a binary signature h = [(n − 2)abn−3, bn−2, 0].
After transforming back, we have

Pl-Holant(g, Z⊗2h) ≤T Pl-Holant(f, g, v).

However Z⊗2h /∈ R−
2 by Lemma 2.19 and it is not a multiple of Z⊗2[c, 0, 1] for any c 6= 0. Hence

Pl-Holant(f, g, v) is #P-hard by Lemma 4.4, where (g, Z⊗2h) plays the role of “(f, h)” in Lemma 4.4
and σ = −.

We also consider the mixing of vanishing signatures with those in P2.

Lemma 4.7. Let f ∈ V \ M4 and g ∈ P2 be two non-degenerate signatures with arities m and n
respectively. If m,n ≥ 3, then Pl-Holant(f, g) is #P-hard.

Proof. We claim that it suffices to consider f ∈ V + \ M4 and g = [ 1
i ]

⊗n
+
[

1
−i

]⊗n
. By Lemma 3.2,

we know that g = [ 1
i ]

⊗n
+ β

[
1
−i

]⊗n
for some β 6= 0 up to a nonzero scalar. Under a holographic

transformation by T = Z
[

1 0

0 β
1
n

]
Z−1, which is orthogonal up to a nonzero factor of β

1
n , we have

ĝ = (T−1)⊗ng = [ 1
i ]

⊗n
+
[

1
−i

]⊗n
. Now M4 is closed under orthogonal transformations by definition,

and V is closed under orthogonal transformations by Lemma 2.14. Thus, we still have a signature
f̂ = (T−1)⊗nf such that f̂ ∈ V \ M4. If f̂ ∈ V −, then under a holographic transformation by
D =

[
1 0
0 −1

]
, we have f̂ ∈ V +. Furthermore, ĝ is invariant under D. This proves the claim.

Now we assume that f ∈ V + \ M4 and g = [ 1
i ]

⊗n
+
[

1
−i

]⊗n
. By Corollary 2.18, we have

rd+(f) = d < m
2 . Under a holographic transformation by Z, we have

Pl-Holant (=2 | f, g) ≡ Pl-Holant
(
[1, 0, 1]Z⊗2 | Z−1{f, g}

)

≡ Pl-Holant
(
6=2 | f̂ ,=n

)
,

where f̂ = (Z−1)⊗mf . By Lemma 2.19, the support of f̂ is on entries with Hamming weight at
most d and includes the entry of Hamming weight exactly d. Now f /∈ M4, so by Lemma 3.9, we
either have d = 1 and f̂ = [f̂0, 1, 0, . . . , 0] with f̂0 6= 0 or d ≥ 2 and f̂ = [f̂0, f̂1, . . . , f̂d−1, 1, 0, . . . , 0]
(and up to a nonzero scalar in either case).

In the first case, a self-loop on f̂ via 6=2 gives [1, 0]⊗m−2 on the right side. Let r = gcd(n,m−2),
and let ℓ1, ℓ2 be two positive integers such that ℓ1n − ℓ2(m − 2) = r. We connect ℓ1 copies of
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=n with ℓ2 copies of [1, 0]⊗m−2 via 6=2’s to get [0, 1]⊗r . Since r | m − 2, we can also realize
[0, 1]⊗m−2 by putting m−2

r copies of [0, 1]⊗r together. Now connect [0, 1]⊗m−2 to f̂ via 6=2. The

resulting signature is [f̂0, 1, 0]. We can also move =n to the left using n copies of 6=2. Hence,
we have Pl-Holant(=n| [f̂0, 1, 0]) ≤T Pl-Holant(6=2 | f̂ ,=n). The former problem is #P-hard by
Theorem 2.24 since f̂0 6= 0, so the latter problem is #P-hard as well.

In the second case, we have m ≥ 5 since 2 ≤ d < m
2 . Furthermore, we may assume that

d = 2, since otherwise can we do d − 2 self-loops on f̂ via 6=2. With this assumption, we do two
self-loops on f̂ via 6=2 to get [1, 0]⊗m−4 on the right side. By a similar argument as in the previous
case, we can construct [0, 1]⊗m−4 by using [1, 0]⊗m−4 and =n via 6=2. Now connect [0, 1]⊗m−4

back to f̂ via 6=2. We get the arity 4 signature [f̂0, f̂1, 1, 0, 0]. Hence, we have Pl-Holant(6=2 |
[f̂0, f̂1, 1, 0, 0]) ≤T Pl-Holant(6=2 | f̂ ,=n). Note that Pl-Holant(6=2 | [f̂0, f̂1, 1, 0, 0]) is equivalent to
Pl-Holant(6=2 | [0, 0, 1, 0, 0]), counting Eulerian Orientations in planar 4-regular graphs, which is
#P-hard by Corollary 2.29. Thus Pl-Holant(6=2 | f̂ ,=n) is #P-hard as well.

5 Dichotomy for Pl-#CSP2 and Related Lemmas

In this section, we state the dichotomy for Pl-#CSP2. We defer the proof to Part II of this paper
starting on page 63. We provide a sketch of the proof here. Afterwards, we discuss several related
lemmas, which are used for the full dichotomy of Pl-Holant. Let Tk =

{
[ 1 0
0 ω ] ∈ C2×2 | ωk = 1

}
.

Theorem 5.1. Let F be a set of symmetric signatures. Then Pl-#CSP2(F) is #P-hard unless F
satisfies one of the following conditions:

1. there exists T ∈ T8 such that F ⊆ TA ;
2. F ⊆ P;
3. there exists T ∈ T4 such that F ⊆ TM̂ .

In each exceptional case, Pl-#CSP2(F) is computable in polynomial time.

Proof Sketch. We first define some tractable families of signatures specific to the Pl-#CSP2 frame-
work. Let Ã = A ∪

[
1 0
0 eπi/4

]
A and M̃ = M̂ ∪ [ 1 0

0 i ] M̂ . One can show that Ã covers Case 1

above, and M̃ covers Case 3. The proof will revolve around these tractable classes.
The overall plan is to break the proof into two main steps.
The first step is to prove the dichotomy theorem for Pl-#CSP2(F) when there is at least one

nonzero signature of odd arity in F . In this case, we can make use of a lemma showing that we can
simulate Pl-#CSP(F) by Pl-#CSP2(F) if F includes a unary signature [a, b] with ab 6= 0. Then
we can apply the known dichotomy Theorem 2.25 for Pl-#CSP. However this strategy (provably)
cannot work when every signature in F satisfies the parity constraint. In that case we employ other
means. This first step of the proof is relatively uncomplicated.

The second step is to deal with the case when all nonzero signatures in F have even arity.
This is where the real difficulties lie. In this case it is impossible to directly construct any unary
signature. So we cannot use that lemma pertaining to a unary signature. But we prove another
lemma which provides a way to simulate Pl-#CSP(F) by Pl-#CSP2(F) in a global fashion, if F
includes some tensor power of the form [a, b]⊗2 where ab 6= 0. Moreover, we have a lucky break (for

the complexity of the proof) if F includes a signature that is in M̂ \ (P ∪ Ã ). In this case, we
can construct a special binary signature, and obtain [1, 1]⊗2 by interpolation. This proof uses the
theory of cyclotomic fields. This simplifies the proof greatly. For all other cases (when F has only
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even arity signatures), the proof gets going in earnest—we will attempt an induction on the arity
of signatures.

The lowest arity of this induction will be 2. We will try to reduce the arity to 2 whenever possible;
however for many cases an arity reduction to 2 destroys the #P-hardness at hand. Therefore the
true basis of this induction proof of Pl-#CSP2 starts with arity 4. Consequently we will first prove
a dichotomy theorem for Pl-#CSP2(f), where f is a signature of arity 4. Several tools will be used.
These include the rank criterion for redundant signatures, Theorem 2.24 for arity 2 signatures, and
a trick we call the Three Stooges by domain pairing.

However, in the next step we do not attempt a general Pl-#CSP2 dichotomy for a single
signature of even arity. This would have been natural at this point, but it would have been too
difficult. We will need some additional leverage by proving a conditional “No-Mixing” Lemma for
pairs of signatures of even arity. So, seemingly taking a detour, we prove that for two signatures
f and g both of even arity, that individually belong to some tractable class, but do not belong
to a single tractable class in the conjectured dichotomy (that is yet to be proved), the problem
Pl-#CSP2(f, g) is #P-hard. We prove this No-Mixing Lemma for any pair of signatures f and g
both of even arity, not restricted to arity 4. Even though at this point we only have a dichotomy
for a single signature of arity 4, we prove this No-Mixing Lemma for higher even arity pairs f and
g by simulating two signatures f ′ and g′ of arity 4 that belong to different tractable sets, from
that of Pl-#CSP2(f, g). After this arity reduction (within the No-Mixing Lemma), we prove that
Pl-#CSP2(f ′, g′) is #P-hard by the dichotomy for a single signature of arity 4. After this, we prove
a No-Mixing Lemma for a set of signatures F of even arities, which states that if F is contained
in the union of all tractable classes, then it is still #P-hard unless it is entirely contained in one
single tractable class. Note that at this point we still only have a conditional No-Mixing Lemma
in the sense that we have to assume every signature in F belongs to some tractable set.

We then attempt the proof of a Pl-#CSP2 dichotomy for a single signature of arbitrary even
arity. This uses all the previous lemmas, in particular the (conditional) No-Mixing Lemma for a
set of signatures. However, after completing the proof of this Pl-#CSP2 dichotomy for a single
signature of even arity, the No-Mixing Lemma becomes absolute.

Finally the dichotomy for a single signature of even arity is logically extended to a dichotomy
theorem for Pl-#CSP2(F) where all signatures in F have even arity. Together with the first main
step when F contains some nonzero signature of odd arity, this completes the proof of Theorem 5.1.

5.1 Related Lemmas

Now we give some consequences of Theorem 5.1. These are cases that can be reduced to Pl-#CSP2.
We consider signatures in P1, M2 \ P2, A3, or M3.

We begin with the cases of P1 and A3. The following two lemmas are rephrased from [6]. One
can check that the reductions in these proofs are planar.

Lemma 5.2 (Lemma 8.15 in [6]). Let f ∈ P1 be a non-degenerate signature of arity n ≥ 3 with
an orthogonal transformation H and F be a set of signatures containing f . Let H2 be the 2-by-2
matrix 1√

2

[
1 1
1 −1

]
. Then Pl-#CSP2(H2HF) ≤T Pl-Holant(F).

Lemma 5.3 (Lemma 8.17 in [6]). Let f ∈ A3 be a non-degenerate signature of arity n ≥ 3 with
an orthogonal transformation H and F be a set of signatures containing f . Let α = eπi/4 and Y
be the 2-by-2 matrix

[
α 1

−α 1

]
. Then Pl-#CSP2(Y HF ∪ {[1,−i, 1]}) ≤T Pl-Holant(F).
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With these reductions, we can apply Theorem 5.1 to get the following corollaries. The next
one follows directly from Lemma 5.2 and Theorem 5.1 as H2 is orthogonal and every Pl-#CSP2

tractable case is also tractable for Pl-Holant.

Corollary 5.4. Let F be a set of signatures. Suppose there exists f ∈ F which is a non-degenerate
signature of arity n ≥ 3 in P1 with H ∈ O2(C). Then Pl-Holant(F) is #P-hard unless F is A -,
P-, or M -transformable, in which case Pl-Holant(F) is tractable.

The proof of this corollary is straightforward. To illustrate the power of Theorem 5.1, we give
a short proof here.

Proof. Let H ′ = (H2H)−1 ∈ O2(C). By Lemma 5.2 and Theorem 5.1, Pl-Holant(F) is #P-hard
unless either (1) F ⊆ H ′P, or (2) F ⊆ H ′TA , or (3) F ⊆ H ′T ′ [ 1 1

1 −1

]
M , where T ∈ T8 and

T ′ ∈ T4. In case (1), F is P-transformable since (=2)H
′⊗2 = (=2) ∈ P. In case (2), F is

A -transformable since (=2)(H
′T )⊗2 = (=2)T

⊗2 ∈ A . In case (3), F is M -transformable. If
T ′ =

[
1 0
0 ±1

]
, then T ′ ∈ O2(C). So (=2)(H

′T ′ [ 1 1
1 −1

]
)⊗2 = (=2) ∈ M . If T ′ =

[
1 0
0 ±i

]
, then

T ′ [ 1 1
1 −1

]
=
[

1 1
i −i

]
, and (=2)(H

′T ′ [ 1 1
1 −1

]
)⊗2 = 2[0, 1, 0] ∈ M .

Corollary 5.4 is useful in Section 8. In Section 6, we need the following further specialization.

Corollary 5.5. Suppose f is a non-degenerate signature of arity n ≥ 5. Let f ′ be f with a self
loop, and assume that f ′ ∈ P1 is non-degenerate. Then Pl-Holant(f) is #P-hard unless f is A -,
P-, or M -transformable, in which case Pl-Holant(f) is tractable.

For the other case of A3, some case analysis is required.

Corollary 5.6. Let F be a set of signatures. Suppose there exists f ∈ F which is a non-degenerate
signature of arity n ≥ 3 in A3. Then Pl-Holant(F) is #P-hard unless F is A - or M -transformable,
in which case Pl-Holant(F) is tractable.

Proof. Assume that f ∈ A3 with an orthogonal transformation H. By Lemma 5.3, we have
Pl-#CSP2(Y HF ∪ {[1,−i, 1]}) ≤T Pl-Holant(F), where Y =

[
α 1

−α 1

]
and α = eπi/4. Let g =

[1,−i, 1] and F ′ = Y HF ∪ {g}.
We apply Theorem 5.1 to Pl-#CSP2(F ′). The consequence is that Pl-#CSP2(F ′) (and hence

Pl-Holant (F )) is #P-hard unless F ′ ⊆ P, F ′ ⊆ [ 1 0
0 ir ] M̂ for some integer 0 ≤ r ≤ 3, or F ′ ⊆

[ 1 0
0 αr ]A for some integer 0 ≤ r ≤ 7 where α = eiπ/4. Notice that g 6∈ P and hence the first case is

impossible.
Suppose F ′ ⊆ [ 1 0

0 ir ] M̂ for some integer 0 ≤ r ≤ 3. Then as g 6∈ [ 1 0
0 ir ] M̂ for r = 1, 3, we have

that Y HF ⊆
[

1 0
0 ±1

]
M̂ . Moreover, notice that

[
1 0
0 −1

]
M̂ =

[
1 1
1 −1

]
[ 0 1
1 0 ]M =

[
1 1
1 −1

]
M = M̂ .

Hence Y HF ⊆ M̂ . Rewrite Y as Y =
[

1 1
−1 1

]
[ α 0
0 1 ]. We deduce that

HF ⊆ 1
2

[
α−1 0
0 1

] [
1 −1
1 1

]
M̂ = 1

2

[
α−1 0
0 1

] [
1 −1
1 1

] [
1 1
1 −1

]
M

=
[

α−1 0
0 1

]
[ 0 1
1 0 ]M = M .

Hence F is M -transformable in this case.
The last case is when F ′ ⊆ [ 1 0

0 αr ]A for some integer 0 ≤ r ≤ 7. It implies that r = 0, 2, 4, 6
as g ∈ [ 1 0

0 αr ]A and g 6∈ [ 1 0
0 α ]A . That is, F ′ ⊆

[
1 0
0 il

]
A for some integer 0 ≤ l ≤ 3. Notice that[

1 0
0 il

]
∈ Stab(A ). It implies that Y HF ⊆ A . Again, rewriting Y as Y =

[
1 1

−1 1

]
[ α 0
0 1 ], we have

HF ⊆ 1
2

[
α−1 0
0 1

] [
1 −1
1 1

]
A = 1

2

[
α−1 0
0 1

]
A .
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Therefore F is A -transformable. This finishes the proof.

Again, we specialize Corollary 5.6 to our need.

Corollary 5.7. Let f be a non-degenerate signature of arity n ≥ 5. Let f ′ be f with a self loop,
and f ′ is non-degenerate and f ′ ∈ A3 with an orthogonal transformation H. Then Pl-Holant(f) is
#P-hard unless f is A - or M -transformable, in which case Pl-Holant(f) is tractable.

The next case is when f is in M2 but not P2.

Lemma 5.8. Let F be a set of signatures. Suppose there exists f ∈ F which is a non-degenerate
signature of arity n ≥ 3 in M2 \ P2. Then Pl-Holant (F) is #P-hard unless F is A -, P-, or
M -transformable, in which case Pl-Holant (F) is tractable.

Proof. As f ∈ M2 \ P2, assume f = H⊗n
([

1
γ

]⊗n ±
[

1
−γ

]⊗n
)
, where H is an orthogonal 2-by-2

matrix and γ 6= 0,±i.
We first show that

Pl-#CSP2(T−1F , g) ≤T Pl-Holant ({f} ∪ F) , (5.4)

where T = H
[

1 1
γ −γ

]
and g = (=2)T

⊗2 = [1 + γ2, 1 − γ2, 1 + γ2]

Assume that f = H⊗n
([

1
γ

]⊗n
+
[

1
−γ

]⊗n
)

with the + sign. In this case, we do the transforma-

tion T :

Pl-Holant (=2 | f,F) ≡T Pl-Holant

(
[1, 0, 1]H⊗2

[
1 1
γ −γ

]⊗2
∣∣∣∣
([

1 1
γ −γ

]−1
)⊗n (

H−1
)⊗n

f, T−1F
)

≡T Pl-Holant
(
g | =n, T−1F

)
.

By connecting g to =n, we get =n−2 up to a constant factor of 1 + γ2 6= 0 as γ 6= ±i. We repeat
this process. If n is even, then we get =2 eventually, which is on the right hand side. If n is odd,
then eventually we get =3 and (=1) = [1, 1] on the right. Connecting [1, 1] to g we get 2[1, 1] on
the left. Then connecting [1, 1] to =3 we get =2 on the right. To summarize, we get that

Pl-Holant
(
g | =2,=n, T−1F

)
≤T Pl-Holant

(
g | =n, T−1F

)

≤T Pl-Holant (f,F) . (5.5)

Next we show that

Pl-Holant
(
=2, g | =2,=n, T−1F

)
≤T Pl-Holant

(
g | =2,=n, T−1F

)
. (5.6)

Let N =
[

1+γ2 1−γ2

1−γ2 1+γ2

]
be the signature matrix of g. If there is a positive integer k and a nonzero

constant c such that Nk = cI2, where I2 is the 2-by-2 identity matrix, then we may directly
implement =2 on the left by connecting k copies of [1 + γ2, 1 − γ2, 1 + γ2] via =2 on the right. It
implies (5.6) holds.

Otherwise such k and c do not exist. The two eigenvalues of N are λ1 = 2 and λ2 = 2γ2. If
λ1 = λ2, then γ2 = 1 and N = [ 2 0

0 2 ]. Contradiction. Hence λ1 6= λ2, and N is diagonalizable. Let

N = P
[

λ1 0
0 λ2

]
P−1, for some non-singular matrix P . By connecting l many copies of N on the left
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via =2 on the right, where l is a positive integer, we can implement N l = P
[

λl
1 0

0 λl
2

]
P−1. Since N

does not have finite order up to a scalar, for any positive integer l, (λ1/λ2)
l 6= 1.

Consider an instance Ω of Pl-Holant
(
=2, g |=2,=n, T−1F

)
. Suppose that the left =2 appears t

times. Let l be a positive integer. We obtain Ωl from Ω by replacing each occurrence of =2 on the
left with N l.

Since N l = P
[

λl
1 0

0 λl
2

]
P−1, we can view our construction of Ωl as replacing N l by 3 signatures,

with matrix P ,
[

λl
1 0

0 λl
2

]
, and P−1, respectively. This does not change the Holant value,

We stratify the assignments in Ωl based on the assignments to the t occurrences of the signature

whose matrix is the diagonal matrix
[

λl
1 0

0 λl
2

]
. Suppose there are i many times it was assigned 00

with function value λl
1, and j times 11 with function value λl

2. Clearly i+j = t if the assignment has
a nonzero evaluation. Let cij be the sum over all such assignments of the products of evaluations
of all signatures (including the signatures corresponding to matrices P and P−1) in Ωl except for
this diagonal one. Then

HolantΩl
=
∑

i+j=t

(
λl

1

)i (
λl

2

)j
cij

= λlt
2

∑

0≤i≤t

((
λ1

λ2

)l
)i

ci,t−i.

By an oracle of Pl-Holant
(
g |=2,=n, T−1F

)
, we can get HolantΩl

for any 1 ≤ l ≤ t + 1. Recall

that for any positive integer l, (λ1/λ2)
l 6= 1. This implies that for any two distinct integers i, j ≥ 0,

(λ1/λ2)
i 6= (λ1/λ2)

j . Therefore we get a non-singular Vandermonde system. We can solve all cij

for i + j = t given HolantΩl
for all 1 ≤ l ≤ t + 1. Then notice that

∑
i+j=t cij is the Holant value

of Ωl by replacing both λl
1 and λl

2 with 1, which is the instance Ω as PI2P
−1 = I2. Therefore we

may compute HolantΩ via t + 1 many oracle calls to Pl-Holant
(
g | =2,=n, T−1F

)
. This finishes

the reduction in (5.6).
In the left hand side of (5.6) we have =2 on both sides. Therefore we may lift the bipartite

restriction. Combining it with (5.5), we get

Pl-Holant
(
=n, g, T−1F

)
≤T Pl-Holant (f,F) .

Notice that given an equality of arity n ≥ 3, we can always construct all equalities of even arity,
regardless of the parity of n, in the Pl-Holant setting. Therefore, we have Pl-#CSP2(T−1F , g) ≤T

Pl-Holant (f,F).

To prove (5.4), there is another case that f = H⊗n
([

1
γ

]⊗n −
[

1
−γ

]⊗n
)
, with the − sign. Again

we do a T transformation, where (T−1)⊗f = [1, 0, . . . , 0,−1] has arity n:

Pl-Holant (=2 | f,F) ≡T Pl-Holant
(
g | [1, 0, . . . , 0,−1], T−1F

)
.

We then do the same construction as in the previous case of connecting g to [1, 0, . . . , 0,−1] repeat-
edly. Depending on the parity of n, we have two cases.

1. If n is odd, then eventually we get [1, 0, 0,−1] and [1,−1] on the right as γ 6= ±i, and therefore
2γ2[1,−1], i.e., [1,−1] on the left as γ 6= 0. Then connecting [1,−1] to [1, 0, 0,−1] we get =2
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on the right. Thus, for odd n,

Pl-Holant
(
g | =2, [1, 0, . . . , 0,−1], T−1F

)
≤T Pl-Holant

(
g | [1, 0, . . . , 0,−1], T−1F

)

≤T Pl-Holant (f,F) .

Notice that our previous binary interpolation proof only relies on g and =2. Hence we get

Pl-Holant
(
g | =2, [1, 0, . . . , 0,−1], T−1F

)
≥T Pl-Holant

(
=2, g | =2, [1, 0, . . . , 0,−1], T−1F

)

≡T Pl-Holant([1, 0, . . . , 0,−1], g, T−1F).

Moreover it is straightforward to construct all even equalities from [1, 0, . . . , 0,−1] in the
normal Pl-Holant setting as n ≥ 5. Combining everything together gives us

Pl-#CSP2(g, T−1F) ≤T Pl-Holant (f,F) .

2. Otherwise n is even. By the same construction of connecting g to [1, 0, . . . , 0,−1] repeatedly,
we get [1, 0, 0, 0,−1] and [1, 0,−1] on the right eventually. Then we connect two copies of g via

[1, 0,−1], resulting in
[

1+γ2 1−γ2

1−γ2 1+γ2

] [
1 0
0 −1

] [ 1+γ2 1−γ2

1−γ2 1+γ2

]
= 4γ2

[
1 0
0 −1

]
on the left. Then connect

[1, 0,−1] to [1, 0, 0, 0,−1] to get [1, 0, 1] on the right. At last we connect two [1, 0,−1]’s on the
left via [1, 0, 1] on the right to get [1, 0, 1] on the left. Then it reduces to the previous case.

This concludes the proof of (5.4).
We apply Theorem 5.1 to Pl-#CSP2(T−1F , g). Then we have that Pl-#CSP2(T−1F , g) (and

hence Pl-Holant(f,F)) is #P-hard unless T−1F ∪ {g} ⊆ P, or T−1F ∪ {g} ⊆ [ 1 0
0 ir ] M̂ for some

integer 0 ≤ r ≤ 3, or T−1F ∪ {g} ⊆ [ 1 0
0 αr ]A for some integer 0 ≤ r ≤ 7 where α = eiπ/4. We have

three cases.
1. The first case is that T−1F ∪{g} ⊆ P. Recall that γ 6= 0 or ±i, it can be verified that g 6∈ P

unless γ2 = 1. Hence γ = ±1. In either case we have that
[

1 1
γ −γ

]
is an orthogonal matrix up

to a nonzero scalar, and hence so is T . It implies that F is P-transformable.
2. Next suppose T−1F ∪ {g} ⊆ [ 1 0

0 ir ] M̂ for some integer 0 ≤ r ≤ 3. If γ = ±1, then T is
an orthogonal matrix as

[
1 1
γ −γ

]
is, up to a factor of 1√

2
. Hence F is M -transformable, as

F ⊆ T [ 1 0
0 ir ]

[
1 1
1 −1

]
M and (=2)

(
T [ 1 0

0 ir ]
[

1 1
1 −1

])⊗2
is either [1, 0, 1] when r = 0, 2, or [0, 1, 0]

when r = 1, 3, up to a nonzero factor.
Otherwise γ2 6= 1 and it is straightforward to verify that g 6∈ [ 1 0

0 ir ] M̂ for r = 1, 3. Hence we

may assume that T−1F ⊆
[

1 0
0 ±1

]
M̂ . Moreover,

[
1 0
0 −1

]
M̂ =

[
1 1
1 −1

]
[ 0 1
1 0 ]M =

[
1 1
1 −1

]
M =

M̂ . Then T−1F ⊆ M̂ . As T−1 =
[

1 1
γ −γ

]−1
H−1, it implies that

H−1F ⊆
[

1 1
γ −γ

]
M̂ =

[
1 0
0 γ

] [
1 1
1 −1

] [
1 1
1 −1

]
M

=
[

1 0
0 γ

]
M = M .

Hence F ⊆ HM and F is M -transformable.
3. In the last case, T−1F ∪ {g} ⊆ [ 1 0

0 αr ] A for some integer 0 ≤ r ≤ 7. If γ = ±1, then T is
an orthogonal matrix as

[
1 1
γ −γ

]
is, up to a factor of 1√

2
. Hence F is A -transformable, as

F ⊆ T [ 1 0
0 αr ]A and (=2) (T [ 1 0

0 αr ])
⊗2

is [1, 0, ir ] ∈ A , up to a nonzero factor.
Otherwise γ2 6= 1 and g 6∈ [ 1 0

0 αr ] A for any integer r = 1, 3, 5, 7. Hence T−1F ∪ {g} ⊆ A as

[ 1 0
0 ir ]A = A for any integer 0 ≤ r ≤ 3. If 1+γ2

1−γ2 6= ±i, then one can check that g 6∈ A . A
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(a) Triangle gadget (b) Planar tetrahedron gadget

Figure 6: Two gadgets used to create a signature in M2 \ P2.

contradiction. Otherwise 1+γ2

1−γ2 = ±i. It implies that γ = αl for some integer l = 1, 3, 5, 7. We

may assume l = 1 as other cases are similar. In this case it is possible that T−1F ∪ {g} ⊆ A .

As T−1 =
[

1 1
γ −γ

]−1
H−1 =

[
1 1
α −α

]−1
H−1, it implies that

H−1F ⊆
[

1 1
α −α

]
A = [ 1 0

0 α ]
[

1 1
1 −1

]
A = [ 1 0

0 α ]A .

Hence, F is A -transformable, so Pl-Holant(F) is tractable. This finishes the proof.

Lemma 5.8 leads to the following specialization.

Corollary 5.9. Let f be a non-degenerate signature of arity n ≥ 5. Let f ′ be f with a self loop,
and f ′ is non-degenerate and f ′ ∈ M2 \ P2. Then Pl-Holant(f) is #P-hard unless f is A -, P-,
or M -transformable, in which case Pl-Holant(f) is tractable.

We can reduce the case of f ∈ M3 to the previous case.

Lemma 5.10. Let F be a set of signatures. Suppose there exists f ∈ F which is a non-degenerate
signature of arity n ≥ 3 in M3 with H ∈ O2(C). Then Pl-Holant(F) is #P-hard unless F ⊆ HM ,
in which case F is M -transformable and Pl-Holant(F) is tractable.

Proof. We first claim that Pl-Holant(F) is #P-hard unless F is A -, P-, or M -transformable.
By the definition of M3, we may assume that f = ExactOnen is of arity n after an orthogonal

transformation H. After zero or more self loops, we can further assume that either f = ExactOne3

or f = ExactOne4 depending on the parity of n.
Suppose f = ExactOne3. Consider the gadget in Figure 6a. We assign f to all vertices.

The signature of the resulting gadget is g = [0, 1, 0, 1], which is in M2 and not in P2 = A2 by
Lemma 3.2. Thus, the claim follows from Lemma 5.8.

Otherwise, f = ExactOne4. Consider the gadget in Figure 6b. We assign f to all vertices.
Note that this is a matchgate. The signature of the resulting gadget is [0, 2, 0, 1, 0], which is in M2

and not in P2 = A2 by Lemma 3.2. Thus, the claim follows from Lemma 5.8.
However, as f ∈ F and f ∈ M3, F cannot be A - or P-transformable by Lemma 3.11. Also by

Lemma 3.11, if F is M -transformable, then F ⊆ HDM or H [ 0 1
1 0 ] DM for some diagonal matrix

D. Notice that D ∈ Stab(M ) and [ 0 1
1 0 ] D ∈ Stab(M ). It implies that F ⊆ HM .

Once again, we specialize Lemma 5.10 to our needs.

Corollary 5.11. Let f be a non-degenerate signature of arity n ≥ 5. Let f ′ be f with a self loop,
and f ′ is non-degenerate and f ′ ∈ M3. Then Pl-Holant(f) is #P-hard unless f is M -transformable,
in which case Pl-Holant(f) is tractable.
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...

(a) A binary construction

...

(b) An arity-4 construction

Figure 7: Two gadgets used. In the normal basis, circles are assigned f and squares
are assigned =2. In the Z basis, circles are assigned f̂ and squares are assigned 6=2.

6 Single Signature Dichotomy

Theorem 6.1 is the single signature dichotomy for Pl-Holant problems.

Theorem 6.1. If f is a non-degenerate symmetric signature of arity n ≥ 3 with complex weights
in Boolean variables, then Pl-Holant(f) is #P-hard unless f ∈ P1 ∪ M2 ∪ A3 ∪ M3 ∪ M4 ∪ V , in
which case the problem is computable in polynomial time.

We prove Theorem 6.1 by induction on the arity. Before proceeding to the proof, we first
introduce several lemmas involved in the inductive step.

6.1 Lemmas applied to Non-Degenerate Signatures in the Inductive Step

The single signature dichotomy relies on the following key lemma. The important assumption here
is that f ′ is non-degenerate.

Lemma 6.2. Suppose f is a non-degenerate signature of arity n ≥ 5. Let f ′ be f with a self
loop. If f ′ ∈ P1 ∪ M2 ∪ A3 ∪ M3 ∪ V is non-degenerate, then Pl-Holant(f) is #P-hard unless
f ∈ P1 ∪ M2 ∪ A3 ∪ M3 ∪ V .

Lemma 6.2 depends on several results, each of which handles a different case. In fact, the proof
of Lemma 6.2 is a straightforward combination of Corollary 5.5 (for P1), Corollary 5.7 (for A3),
Corollary 5.9 (for M2 \ P2), and Corollary 5.11 (for M3) from Section 5, as well as Corollary 6.4
(for P2) and Lemma 6.5 (for V ), which we will prove shortly. These last two results handle the
cases f ′ ∈ P2 and f ′ ∈ V respectively. First we consider the case of f ′ ∈ P2 and show the
following lemma.

Lemma 6.3. Let f be a non-degenerate signature of arity n ≥ 5. If f = Z⊗n[a, 1, 0, . . . , 0, 1, b] for
some a, b ∈ C, where the number of 0’s is n − 3. Then Pl-Holant(f) is #P-hard.

Proof. First we use the gadget in Figure 7b, where we put f on both vertices. Let the resulting
signature be h = Z⊗4ĥ. It is easier to calculate ĥ, that is, h in the Z basis. Indeed, ĥ is not
symmetric, but ĥ has the following matrix representation as n ≥ 5:

Mĥ =




0 a a ab + (n − 2)
a 2 2 b
a 2 2 b

ab + (n − 2) b b 0


 .
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Notice that this matrix is redundant, and det(M̃ĥ) = −4(n − 2)(ab + n − 2). If ab 6= 2 − n, then by
Corollary 2.29 Pl-Holant(h) is #P-hard, and so is Pl-Holant(f). Hence in the following we assume
ab = 2 − n.

Let f ′ be f with a self loop. Then apply the Z transformation as follows:

Pl-Holant
(
=2 | f, f ′) ≡T Pl-Holant

(
[0, 1, 0] | f̂ , f̂ ′

)

≡T Pl-Holant
(
[0, 1, 0] | f̂ , [1, 0, . . . , 0, 1]

)
,

where f̂ ′ = [1, 0, . . . , 0, 1] and f̂ = [a, 1, 0, . . . , 0, 1, b] for some a, b ∈ C. We get this expression of f̂ ′

because doing a self loop commutes with the operation of holographic transformations.
We connect f̂ ′ to f̂ via [0, 1, 0], getting [a, 2, b]. Then we connect [a, 2, b] to f̂ via [0, 1, 0] again,

getting ĝ = [ab + 4, b, 0, . . . , 0, a, ab + 4] of arity n − 2.
If n ≥ 7, then we use the gadget in Figure 7b again, where we put g on both vertices this time.

We get some signature h′, which in Z basis has the following matrix representation as n − 2 ≥ 5:

M
ĥ′ =




0 a(ab + 4) a(ab + 4) (n − 4)ab + (ab + 4)2

a(ab + 4) 2ab 2ab b(ab + 4)
a(ab + 4) 2ab 2ab b(ab + 4)

(n − 4)ab + (ab + 4)2 b(ab + 4) b(ab + 4) 0


 .

Once again this matrix is redundant. It can be simplified as ab = 2 − n. The compressed matrix is

M̃
ĥ′ =




0 −2(n − 6)a −6n + 28
−(n − 6)a 8 − 4n −(n − 6)b
−6n + 28 −2(n − 6)b 0


 .

It is easy to compute that det(M̃
ĥ′) = −8(3n − 14)(ab(n − 6)2 − 6n2 + 40n − 56) = 8(n − 4)(n −

2)2(3n − 14). Since n ≥ 7, det(M̃
ĥ′) > 0. Then by Corollary 2.29 Pl-Holant(h′) is #P-hard, and so

is Pl-Holant(f).
The remaining cases are n = 6 and n = 5. When n = 6, ab = 2 − n = −4. Moreover, ĝ is of

arity 4 and ĝ = [ab + 4, b, 0, a, ab + 4] = [0, b, 0, a, 0]. We do one more self loop on g via [0, 1, 0] in
the Z basis, resulting in ĝ′ = [b, 0, a]. Connecting ĝ′ to f̂ via [0, 1, 0], we get ĝ1 = [a2, a, 0, b, b2].

Hence det(M̃ĝ1
) = −4a2b2 = −64 6= 0. Then by Corollary 2.29 Pl-Holant(g1) is #P-hard, and so is

Pl-Holant(f).
At last, n = 5 and ab = 2 − n = −3. We also have ĝ = [ab + 4, b, a, ab + 4] = [1, b, a, 1]. One

more self loop on g via [0, 1, 0] in the Z basis results in ĝ′′ = [b, a]. Connecting ĝ′′ to f̂ via [0, 1, 0],

we get ĝ2 = [a2 + b, a, 0, b, b2 + a]. Hence det(M̃ĝ2
) = −2(a3 + 2a2b2 + b3) = −2(a3 + b3 + 18). If

a3 + b3 + 18 6= 0, then we are done by Corollary 2.29. Otherwise a3 + b3 = −18, and we construct
a binary signature [a, 0, b] by doing a self-loop on ĝ2 in Z basis. Then we construct another unary
signature by connecting ĝ′′ = [b, a] to [a, 0, b] via [0, 1, 0], which gives [a2, b2]. Connecting [a2, b2]
to f̂ via [0, 1, 0], we have another arity-4 signature ĝ3 = [ab2 + a2, b2, 0, a2, a2b + b2]. We compute

det(M̃ĝ3
) = −2(a6 + a5b2 + a2b5 + b6) = −2(a6 + b6 − 162). If a6 + b6 − 162 6= 0, again we are done

by Corollary 2.29. Otherwise a6 + b6 = 162. Together with a3 + b3 = −18 and ab = −3, there is no
solution of a and b. This finishes the proof.

This lemma essentially handles the case of f ′ ∈ P2 due to the following corollary.
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Corollary 6.4. Suppose f be a non-degenerate signature of arity n ≥ 5. Let f ′ be f with a self
loop. If f ′ ∈ P2 is non-degenerate, then Pl-Holant(f) is #P-hard.

Proof. Since f ′ ∈ P2, we have that f ′ = Z⊗n−2[1, 0, . . . , 0, 1] up to an orthogonal transformation
H. Since H does not change the complexity, we may assume we are under this transformation.
Then f is of the form Z⊗n[a, 1, 0, . . . , 0, 1, b]. The claim follows by Lemma 6.3.

The next lemma handles the case when f ′ is a non-degenerate vanishing signature. Its proof is
partly contained in the proof of Theorem 9.1 in [6]. We include this part here for completeness. As
we shall see, the case of f ′ ∈ M4 is a special case of this result.

Lemma 6.5. Suppose f is a non-degenerate signature of arity n ≥ 5. Let f ′ be f with a self loop.
If f ′ is non-degenerate and vanishing, then Pl-Holant(f) is #P-hard unless {f, f ′} is vanishing, in
which case Pl-Holant(f) is tractable.

Proof. Since f ′ is vanishing, f ′ ∈ V σ for some σ ∈ {+,−} by Theorem 2.15. For simplicity, assume
that f ′ ∈ V +. The other case is similar. Let rd+(f ′) = d − 1, where 2d < n and d ≥ 2 since f ′ is
non-degenerate. Then the entries of f ′ can be expressed as

f ′
k = ikq(k),

where q(x) is a polynomial of degree exactly d − 1. However, notice that if f ′ satisfies some
recurrence relation with characteristic polynomial t(x), then f satisfies a recurrence relation with
characteristic polynomial (x2 + 1)t(x). In this case, t(x) = (x − i)d. Then the corresponding
characteristic polynomial of f is (x − i)d+1(x + i), and thus the entries of f are

fk = ikp(k) + c(−i)k

for some constant c and a polynomial p(x) of degree at most d. However, the degree of p(x) is
exactly d, otherwise the polynomial q(x) for f ′ would have degree less than d − 1. If c = 0, then
{f, f ′} is vanishing, the tractable case. Now assume c 6= 0, and we want to show that Pl-Holant(f)
is #P-hard.

Thus, under the transformation Z = 1√
2

[
1 1
i −i

]
, we have

Pl-Holant (=2 | f) ≡T Pl-Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)

≡T Pl-Holant
(
[0, 1, 0] | f̂

)
,

where f̂ = [f̂0, f̂1, . . . , f̂d, 0, . . . , 0, c], with f̂d 6= 0. Taking a self loop in the original setting is
equivalent to connecting [0, 1, 0] to a signature after this transformation. Thus, doing this once on
f̂ , we get f̂ ′ = [f̂1, . . . , f̂d, 0, . . . , 0], corresponding to f ′ transformed, and doing this d − 2 times
on f̂ , we get a signature ĥ = [f̂d−2, f̂d−1, f̂d, 0, . . . , 0, 0/c] of arity n − 2(d − 2) = n − 2d + 4. The
last entry is c when d = 2 and is 0 when d > 2. As n > 2d, we may do two more self loops and
get [f̂d, 0, . . . , 0] of arity k = n − 2d. Now connect this signature back to f̂ via [0, 1, 0]. It is the
same as getting the last n − k + 1 = 2d + 1 signature entries of f̂ up to a nonzero scalar. We may
repeat this operation zero or more times until the arity k′ of the resulting signature is less than or
equal to k. We claim that this signature has the form ĝ = [0, . . . , 0, c]. In other words, the k′ + 1
entries of ĝ consist of the last c and k′ many 0’s from the signature f̂ , all appearing after f̂d. This
is because there are n − d − 1 many 0 entries in the signature f̂ after f̂d, and n − d − 1 ≥ k ≥ k′.
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Having both [f̂d, 0, . . . , 0] of arity k and ĝ = [0, . . . , 0, c] of arity k′ in the Z basis is equivalent to
having both [1, i]⊗k and [1,−i]⊗k′

in the standard basis. If k > k′, then we can connect [1,−i]⊗k′
to

[1, i]⊗k and get [1, i]⊗(k−k′). Replacing k by k − k′, we can repeat this process until the new k ≤ k′.
If the new k < k′, then we can continue as in the subtractive Euclid algorithm. We continue this
procedure and eventually we get [1, i]⊗t and [1,−i]⊗t, where t = gcd(k, k′) Now putting k/t many
copies of [1,−i]⊗t together, we get [1,−i]⊗k.

In the transformed setting, [1,−i]⊗k is [0, . . . , 0, 1] of arity k. Then we connect this back to ĥ
via [0, 1, 0]. Doing this is the same as forcing k connected edges of ĥ be assigned 0, because [0, 1, 0]
flips [0, . . . , 0, 1]. Thus we get a signature of arity n − 2d + 4 − k = 4, which is [f̂d−2, f̂d−1, f̂d, 0, 0].
Note that the last entry is 0 (and not c), because k ≥ 1 and arity(ĥ) ≥ 5.

However, Pl-Holant([0, 1, 0] | [f̂d−2, f̂d−1, f̂d, 0, 0]) is equivalent to Pl-Holant([0, 1, 0] | [0, 0, 1, 0, 0])
when f̂d 6= 0, which is transformed back by Z to Pl-Holant([3, 0, 1, 0, 3]). This is the Eulerian
Orientation problem on planar 4-regular graphs and is #P-hard by Theorem 2.22.

6.2 Lemmas applied to Degenerate Signatures in the Inductive Step

Lemma 6.2 does not solve the case when f ′ is degenerate. In general, when f ′ is degenerate, the
inductive step is straightforward unless f ′ is also vanishing. Lemma 6.6 and 6.8 are the two missing
pieces to this end.

Lemma 6.6. Let a, b ∈ C. Suppose f is a signature of the form
[

1 1
i −i

]⊗n
[a, 1, 0, . . . , 0, b] with arity

n ≥ 3. If ab 6= 0, then Pl-Holant(f) is #P-hard.

Proof. We prove by induction on n. For n = 3 or 4, it follows from Lemma 3.12 and Theorem 2.22
that Pl-Holant(f) is #P-hard.

Now assume n ≥ 5. Under a holographic transformation by Z =
[

1 1
i −i

]
, we have

Pl-Holant (=2 | f) ≡T Pl-Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)

≡T Pl-Holant
(
[0, 1, 0] | f̂

)
,

where f̂ = [a, 1, 0, . . . , 0, b]. Now consider the gadget in Figure 7a with f̂ assigned to both vertices.
This gadget has the binary signature ĝ1 = [0, ab, 2b], which is equivalent to [0, a, 2] since b 6= 0.
Translating back by Z to the original setting, this signature is g1 = [a + 1,−i, a − 1]. This can be
verified as [

1 1
i −i

] [
0 a
a 2

] [
1 1
i −i

]T
= 2

[
a + 1 −i
−i a − 1

]
.

By the form of ĝ1 = [0, ab, 2b] and b 6= 0, it follows from Lemma 2.19 that g1 6∈ R+
2 . Moreover,

since a 6= 0, g1 is non-degenerate.
Doing a self loop on f yields f ′ = Z⊗n−2[1, 0, . . . , 0]. Connecting f ′ back to f , we get a

binary signature g2 = Z⊗2[0, 0, b]. Once again we connect g2 to f , the resulting signature is
h = Z⊗n−2[a, 1, 0, . . . , 0] of arity n − 2 ≥ 3 up to the constant factor of b 6= 0.

Notice that h is non-degenerate and h ∈ V +. By Lemma 4.3, Pl-Holant(h, g1) is #P-hard,
hence Pl-Holant(f) is also #P-hard.

The next case uses the following technical lemma. It is also applied more than once in Section 7.
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(a) ( 6=2 | [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], ĝ)-gate on right side (b) Simpler construction with the same signature

Figure 8: Two gadgets with the same signature used in Lemma 6.7.

(a) Negating the second and fourth inputs (b) Movement of even Hamming weight entries

Figure 9: The movement of the even Hamming weight entries in the signature matrix
of a quaternary signature under the negation of the second and fourth inputs (i.e. the
square vertices are assigned [0, 1, 0]).

...

...

(a) Gadget that realizes a partial crossover (b) Gadget with a useful signature matrix

Figure 10: Two quaternary gadgets used in the proof of Lemma 6.7 and 6.8.

36



N1 N2

Ns

Ns+1

Figure 11: Linear recursive construction used for interpolation in a nonstandard basis.

Lemma 6.7. Let ĝ be the arity 4 signature whose matrix is

Mĝ =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 . (6.7)

Then Pl-Holant ( 6=2 | [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], ĝ) is #P-hard.

Proof. Consider the gadget in Figure 8a. We assign [0, 0, 0, 1, 0] to the triangle vertices, [0, 1, 0, 0, 0]
to the circle vertices, ĝ to the pentagon vertex, and [0, 1, 0] to the square vertices. Let ĥ be the
signature of this gadget. By adding two more disequality signatures and then grouping appropri-
ately, it is clear that the gadget in Figure 8b has the same signature of the gadget in Figure 8a,
where the circle vertices are still assigned [0, 1, 0, 0, 0], the square vertices are still assigned [0, 1, 0],
and the diamond vertex is assigned the quaternary equality signature. To compute the signature ĥ,
first compute the signature ĥ′ of the inner gadget enclosed by the dashed line, which has signature
matrix

Mĥ′ =




3 0 0 1
0 1 0 0
0 0 1 0
1 0 0 1


 . Then by Figure 9, the signature matrix of ĥ is Mĥ =




0 0 0 1
0 1 3 0
0 1 1 0
1 0 0 0


 .

One more gadget before we finish the proof using interpolation. Consider the gadget in Figure 10b.
We assign ĥ to the circle vertices and [0, 1, 0] to the square vertices. The signature of the resulting
gadget is r̂ with signature matrix Mr̂ (see Figure 2 for the signature of a rotated copy of ĥ that
appears as the second circle vertex in Figure 10b), where

Mr̂ =




0 0 0 1
0 1 3 0
0 1 1 0
1 0 0 0



([

0 1
1 0

]
⊗
[
0 1
1 0

])



0 0 0 1
0 1 1 0
0 3 1 0
1 0 0 0


 =




0 0 0 1
0 6 4 0
0 4 2 0
1 0 0 0


 .

Consider an instance Ω of Pl-Holant (6=2 | F ∪ {r̂′}) with r̂ ∈ F , where the signature matrix of r̂′ is

Mr̂′ =




0 0 0 1
0 3 1 0
0 1 1 0
1 0 0 0


 .

Suppose that r̂′ appears n times in Ω. We construct from Ω a sequence of instances Ωs of
Pl-Holant ( 6=2 | F) indexed by s ≥ 1. We obtain Ωs from Ω by replacing each occurrence of r̂′
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with the gadget Ns in Figure 11 with r̂ assigned to the circle vertices and [0, 1, 0] assigned to the
square vertices. In Ωs, the edge corresponding to the ith significant index bit of Ns connects to the
same location as the edge corresponding to the ith significant index bit of r̂′ in Ω.

We can express the signature matrix of Ns as

MNs = X(XMr̂)
s = XP diag

(
1, 4 + 2

√
3, 4 − 2

√
3, 1
)s

P−1,

where

X =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 and P =




1 0 0 0
0 1 1 0

0
√

3 −
√

3 0
0 0 0 1


 .

Since Mr̂′ = XP diag
(
1, 1 +

√
3, 1 −

√
3, 1
)
P−1, we can view our construction of Ωs as first re-

placing Mr̂′ with XP diag
(
1, 1 +

√
3, 1 −

√
3, 1
)
P−1, which does not change the Holant value, and

then replacing the diagonal matrix with the diagonal matrix diag
(
1, 4 + 2

√
3, 4 − 2

√
3, 1
)s

.
We stratify the assignments in Ω based on the assignments to the n occurrences of the signature

whose signature matrix is the diagonal matrix




1 0 0 0

0 1 +
√

3 0 0

0 0 1 −
√

3 0
0 0 0 1


 . (6.8)

We only need to consider the assignments that assign
• i many times the bit patterns 0000 or 1111,
• j many times the bit pattern 0110, and
• k many times the bit pattern 1001,

since any other assignment contributes a factor of 0. Let cijk be the sum over all such assignments of
the products of evaluations of all signatures (including the signatures corresponding to the signature
matrices X, P , and P−1) in Ω except for signature corresponding to the signature matrix in (6.8).
Then

HolantΩ =
∑

i+j+k=n

(
1 +

√
3
)j (

1 −
√

3
)k

cijk

and the value of the Holant on Ωs, for s ≥ 1, is

HolantΩs =
∑

i+j+k=n

((
4 + 2

√
3
)j (

4 − 2
√

3
)k
)s

cijk =
∑

i+j+k=n

((
4 + 2

√
3
)j−k

4k

)s

cijk.

We argue that this Vandermonde system has full rank, which is to say that
(
4 + 2

√
3
)j−k

4k 6=
(
4 + 2

√
3
)j′−k′

4k′
unless (j, k) = (j′, k′). If

(
4 + 2

√
3
)j−k

4k =
(
4 + 2

√
3
)j′−k′

4k′
, then we have

(
4 + 2

√
3
)j−k−(j′−k′)

4k−k′
= 1. Since any nonzero integer power of 4 + 2

√
3 is not rational, we

must have j − k = j′ − k′. And in this case, 4k−k′
= 1, and hence k = k′ and j = j′.

Therefore, we can solve for the unknown cijk’s and obtain the value of HolantΩ. Then after a
counterclockwise rotation of r̂′ (c.f. Figure 2), we are done by Corollary 2.29.
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With Lemma 6.7 at hand, we continue to prove Lemma 6.8.

Lemma 6.8. Let b ∈ C. Suppose f is a signature of the form
[

1 1
i −i

]⊗n
[0, 1, 0, . . . , 0, b] with arity

n ≥ 4. If b 6= 0, then Pl-Holant(f) is #P-hard.

Remark 2. For n = 3, Z⊗3[0, 1, 0, b] is tractable, as it is M -transformable.

Proof. If n = 4, then we are done by Corollary 2.29. Thus, assume that n ≥ 5.
Under a holographic transformation by Z =

[
1 1
i −i

]
, we have

Pl-Holant (=2 | f) ≡T Pl-Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)

≡T Pl-Holant
(
[0, 1, 0] | f̂

)
,

where f̂ = [0, 1, 0, . . . , 0, b]. We show how to construct the following three signatures: [0, 0, 0, 1, 0],
[0, 1, 0, 0, 0], and ĝ, where ĝ is defined by (6.7). Then we are done by Lemma 6.7.

Consider the gadget in Figure 7b. We assign f̂ to the circle vertices and [0, 1, 0] to the square
vertices. The signature of the resulting gadget is [0, 0, 0, 1, 0] up to a nonzero factor of b.

Taking a [0, 1, 0] self loop on [0, 0, 0, 1, 0] gives [0, 0, 1] = [0, 1]⊗2. We connect this back to f̂
through [0, 1, 0] until the arity of the resulting signature is either 4 or 5, depending on the parity of n.
If n is even, then we have [0, 1, 0, 0, 0] as desired. Otherwise, n is odd and we have [0, 1, 0, 0, 0, b/0],
where the last entry is b if n = 5 and 0 if n > 5. Connection [0, 1]⊗2 through [0, 1, 0] to f̂ twice
more gives [0, 1]. We connect this through [0, 1, 0] to [0, 1, 0, 0, 0, b/0] to get [0, 1, 0, 0, 0] as desired.

Taking a [0, 1, 0] self loop on [0, 1, 0, 0, 0] gives [1, 0, 0] = [1, 0]⊗2. Now consider the gadget in
Figure 10a. We assign f̂ to the circle vertices, [1, 0]⊗2 to the triangle vertices, and [0, 1, 0] to the
square vertices. Up to a factor of b2, the signature of the resulting gadget is ĝ with signature matrix
Mĝ given in (6.7). To see this, first replace the two copies of the signatures [1, 0]⊗2 assigned to the

triangle vertices with two copies of [1, 0] each. Then notice that f̂ simplifies to a weighted equality
signature when connected to [1, 0] through [0, 1, 0].

6.3 Proof of the Single Signature Dichotomy

Now we are ready to prove the dichotomy for a single signature. Recall that M1 ⊂ A1 ⊂ P1 and
A2 = P2 ⊂ M2. Thus f ∈ P1∪M2∪A3∪M3∪M4 if and only if f is A -, P-, or M -transformable
by Lemma 3.3, Lemma 3.5, or Lemma 3.10.

Proof of Theorem 6.1. The proof is by induction on n. The base cases of n = 3 and n = 4 are
proved in Theorem 2.22. Now assume n ≥ 5.

With the signature f , we form a self loop to get a signature f ′ of arity at least 3. In general
we use prime to denote the signature with a self loop. We consider separately whether or not f ′ is
degenerate.

• Suppose f ′ = [a, b]⊗(n−2) is degenerate. Then there are three cases to consider.
1. If a = b = 0, then f ′ is the all zero signature. For f , this means fk+2 = −fk for

0 ≤ k ≤ n − 2, so f ∈ P2 by Lemma 3.2, and therefore Pl-Holant(f) is tractable.
2. If a2 + b2 6= 0, then f ′ is nonzero and [a, b] is not a constant multiple of either [1, i] or

[1,−i]. We may normalize so that a2 + b2 = 1. Then the orthogonal transformation[
a b

−b a

]
transforms the column vector [a, b] to [1, 0]. Let f̂ be the transformed signature

from f , and f̂ ′ = [1, 0]⊗(n−2) the transformed signature from f ′.
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Since an orthogonal transformation keeps =2 invariant, this transformation commutes
with the operation of taking a self loop, i.e., f̂ ′ = (f̂)′. Here (f̂)′ is the function obtained
from f̂ by taking a self loop. As (f̂)′ = [1, 0]⊗(n−2), we have f̂0 + f̂2 = 1 and for
every integer 1 ≤ k ≤ n − 2, we have f̂k = −f̂k+2. With one or more self loops on
(f̂)′, we eventually obtain either [1, 0] when n is odd or [1, 0, 0] when n is even. In
either case, we connect [1, 0] or [1, 0, 0] to f̂ until we get an arity 4 signature, which
is ĝ = [f̂0, f̂1, f̂2,−f̂1,−f̂2]. This is possible because that the parity matches and the
arity of f̂ is at least 5. We show that Pl-Holant(ĝ) is #P-hard. To see this, we first

compute det(M̃g) = −2(f̂0 + f̂2)(f̂
2
1 + f̂2

2 ) = −2(f̂2
1 + f̂2

2 ), since f̂0 + f̂2 = 1. Therefore

if f̂2
1 + f̂2

2 6= 0, Pl-Holant(ĝ) is #P-hard by Lemma 2.28. Otherwise f̂2
1 + f̂2

2 = 0, and
we assume f̂2 = if̂1 since the other case is similar. Since f is non-degenerate, f̂ is non-
degenerate, which implies f̂2 6= 0. We can rewrite ĝ as [1, 0]⊗4 − f̂2[1, i]

⊗4. Under the

holographic transformation by T =
[

1 (−f̂2)1/4

0 i(−f̂2)1/4

]
, we have

Pl-Holant (=2 | ĝ) ≡T Pl-Holant
(
[1, 0, 1]T⊗2 | (T−1)⊗4ĝ

)

≡T Pl-Holant
(
ĥ | =4

)
,

where
ĥ = [1, 0, 1]T⊗2 = [1, (−f̂2)

1/4, 0]

and ĝ is transformed by T−1 into the arity 4 equality =4, since

T⊗4

([
1
0

]⊗4

+

[
0
1

]⊗4
)

=

[
1
0

]⊗4

− f̂2

[
1
i

]⊗4

= ĝ.

By Theorem 2.24, Pl-Holant
(
ĥ | =4

)
is #P-hard as f̂2 6= 0.

3. If a2 + b2 = 0 but (a, b) 6= (0, 0), then [a, b] is a nonzero multiple of [1,±i]. Ignoring the
constant multiple, we have f ′ = [1, i]⊗(n−2) or [1,−i]⊗(n−2). We consider the first case
since the other case is similar.
In the first case, the characteristic polynomial of the recurrence relation of f ′ is x − i,
so that of f is (x − i)(x2 + 1) = (x − i)2(x + i). Hence there exist a0, a1, and c such that

fk = (a0 + a1k)ik + c(−i)k

for every integer 0 ≤ k ≤ n. Let f+ and f− be two signatures of arity n such that
f+

k = (a0 + a1k)ik and f−
k = c(−i)k for every 0 ≤ k ≤ n. Hence fk = f+

k + f−
k and we

write f = f+ + f−. If a1 = 0, then f ′ is the all zero signature, a contradiction. If c = 0,
then f is vanishing, one of the tractable cases. Now we assume a1c 6= 0 and show that
Pl-Holant(f) is #P-hard. Hence rd+(f+) = 1 and rd−(f−) = 0. Under the holographic
transformation Z = 1√

2

[
1 1
i −i

]
, we have

Pl-Holant (=2 | f) ≡T Pl-Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)

≡T Pl-Holant
(
[0, 1, 0] | f̂

)
,

where f̂ takes the form [f̂0, f̂1, 0, . . . , 0, c
′] with c′ = 2n/2c 6= 0 and f̂1 6= 0, since f̂ is

the Z−1-transformation of the sum of f+ and f−, with rd+(f+) = 1 and rd−(f−) = 0
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respectively. On the other side, (=2) = [1, 0, 1] is transformed into (6=2) = [0, 1, 0]. De-
pending on whether f̂0 = 0 or not, we apply Lemma 6.8 or Lemma 6.6 and Pl-Holant(f)
is #P-hard.

• Suppose f ′ is non-degenerate. By inductive hypothesis, Pl-Holant(f) is #P-hard, unless
f ′ ∈ P1 ∪ M2 ∪ A3 ∪ M3 ∪ M4 ∪ V . Note that f ′ has arity n − 2 ≥ 3, and every signature
in M4 of arity at least 3 is also in V . Hence the exceptional case is equivalent to f ′ ∈
P1 ∪ M2 ∪ A3 ∪ M3 ∪ V . In this case, we apply Lemma 6.2 to f ′ and f . Hence Pl-Holant(f)
is #P-hard, unless f ∈ P1 ∪ M2 ∪ A3 ∪ M3 ∪ V . The exceptional cases imply that f is A -
or P- or M -transformable or vanishing, and Pl-Holant(f) is tractable.

7 Mixing P2 and M4—Equalities and Matchgates in the Z Basis

Given a set F of symmetric signatures, by Theorem 6.1, Pl-Holant(F) is #P-hard unless every
single non-degenerate signature f of arity at least 3 in F is in P1 ∪ M2 ∪ A3 ∪ M3 ∪ M4 ∪ V .
We have already proved that the desired full dichotomy holds if F contains such an f in P1, A3,
M2 \ P2, or M3 due to Corollary 5.4, Corollary 5.6, Lemma 5.8, or Lemma 5.10, respectively.

The remaining cases are when all non-degenerate signatures of arity at least 3 in F are contained
in P2∪M4∪V . In this section, we consider the mixing of P2 and M4. For this, we do a holographic
transformation by Z. Then the problem becomes Pl-Holant (6=2 | =k,ExactOned) with various
arities k and d. Recall that ExactOned denotes the exact one function [0, 1, 0, . . . , 0] of arity d.
These are the signatures for Perfect Matching and they are the basic components of Matchgates.

A big surprise, against the putative form of a complexity classification for planar counting
problems, is that we found the complexity of Pl-Holant (6=2 | =k,ExactOned) depends on the
values of d and k, and the problem is tractable for all large k. This result has the consequence
that, for the first time since Kasteleyn’s algorithm, we have discovered some new primitive tractable
family of counting problems on planar graphs. These problems cannot be captured by a holographic
reduction to Kasteleyn’s algorithm, or any other known algorithm. Thus for planar problems
the paradigm of holographic algorithms using matchgates (i.e., being M -transformable) is not
universal.

Let EO = {ExactOned | d ≥ 3}.

7.1 Hardness when k = 3 or 4

We begin with some hardness results.

Lemma 7.1. Pl-Holant (6=2 | =3, [0, 1, 0, 0]) is #P-hard.

Proof. By connecting two copies of [0, 1, 0, 0] together via 6=2, we have [0, 1, 0, 0, 0] on the right.
Consider the gadget in Figure 12a. We assign =3 to the triangle vertices, [0, 1, 0, 0] to the circle
vertices, 6=2 to the square vertices, and [0, 1, 0, 0, 0] on the diamond vertex in the middle. Let f be
the signature of this gadget.

We claim that the support of f is {0011, 0110, 1100, 1001}. To see this, notice that [0, 1, 0, 0, 0]
in the middle must match exactly one of the half edges, which forces the corresponding equality
signature to take the value 0 and all other equality signatures to take value 1. The two [0, 1, 0, 0]’s
adjacent to the equality assigned 0 must have 0 going out, and the other two [0, 1, 0, 0]’s have 1
going out.
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(a) Cycle-like gadget used twice (b) Gadget to realize ĝ

Figure 12: Two gadgets used in the proof of Lemma 7.1.

Figure 13: The whole gadget to realize [0, 0, 0, 1, 0].
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(a) Step one: Degree 4 vertex example (b) Step two: Contract edges

Figure 14: A reduction from Pl-Holant (EQ | h) to Pl-Holant(g) for any binary signature
h and a quaternary signature g that depends on h. The circle vertices are assigned =4

or =3 respectively, the triangle vertex is assigned h, and the square vertex is assigned
the signature of the gadget to its left.

Now we consider the gadget in Figure 12a again. This time we place [0, 1, 0, 0] on each triangle,
=3 on each circle, f on the middle diamond, and again 6=2 on each square. Now notice that
each support of f makes two [0, 1, 0, 0]’s that are cyclically adjacent on the outer cycle to become
[0, 1, 0] and the other two [1, 0, 0]. It is easy to see that the support of the resulting signature is
{0111, 1011, 1101, 1110}. Therefore it is the reversed ExactOne4 signature [0, 0, 0, 1, 0] (namely
AllButOne4). The whole gadget is illustrated in Figure 13, where each circle is assigned [0, 1, 0, 0],
triangle =3, and square 6=2.

Finally, we build the gadget in Figure 12b. We place =3 on each circle and 6=2 on each square.
It is easy to see that there are only two support vectors of the resulting signature, which are 0101
and 1010. Recall the definition (6.7) of the partial crossover ĝ. This gadget realizes exactly ĝ.

By Lemma 6.7, Pl-Holant (6=2 | [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], ĝ) is #P-hard. We have constructed
[0, 1, 0, 0, 0], [0, 0, 0, 1, 0], and ĝ on the right side. Therefore Pl-Holant (6=2 | =3, [0, 1, 0, 0]) is #P-
hard.

For k = 4, we need the following lemma.

Lemma 7.2. Let g be the arity 4 signature whose matrix is

Mg =




2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

Then Pl-Holant(g) is #P-hard.

Proof. Let h = [2, 1, 1]. We show that Pl-#CSP(h) ≤T Pl-Holant(g) in two steps. In each step,
we begin with a signature grid and end with a new signature grid such that the Holants of both
signature grids are the same. Then we are done by Theorem 2.25. Or more explicitly, since
Pl-#CSP(h) ≡ Pl-Holant (EQ | h) by (2.2), we are done by Theorem 2.24.

For step one, let G = (U, V,E) be an instance of Pl-Holant (EQ | h). Fix an embedding of G
in the plane. This defines a cyclic ordering of the edges incident to each vertex. Consider a vertex
u ∈ U of degree k. It is assigned the signature =k. We decompose u into k vertices. Then we
connect the k edges originally incident to u to these k new vertices so that each vertex is incident to
exactly one edge. We also connect these k new vertices in a cycle according to the cyclic ordering
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(a) (b) (c)

Figure 15: A plane graph (a), its medial graph (c), and both graphs superimposed (b).

induced on them by their incident edges. Each of these vertices has degree 3, and we assign them
=3. Clearly the Holant value is unchanged. This completes step one. An example of this step
applied to a vertex of degree 4 is given in Figure 14a. The resulting graph has the following
properties: (1) it is planar; (2) every vertex is either degree 2 (in V and assigned h) or degree 3
(newly created and assigned =3); (3) each degree 2 vertex is connected to two degree 3 vertices;
and (4) each degree 3 vertex is connected to one degree 2 vertex and two other degree 3 vertices.

Now step two. For every v ∈ V , v has degree 2. We contract the two edges incident to v, or
equivalently, we replace the two circle vertices and one triangle vertex boxed in Figure 14b with a
single (square) vertex of degree 4. The resulting graph G′ = (V ′, E′) is planar and 4-regular.

Next we determine what is the signature on v′ ∈ V ′ after this contraction. Clearly the two inputs
to each original circle have to be the same. Therefore its support is 0000, 0110, 1001, 1111, listed
starting from the diamond and going counterclockwise. Moreover, due to the triangle assigned h in
the middle, the weight on 0000 is 2, and every other weight is 1. Hence it is exactly the signature
g, with the diamond in Figure 14b marking the first input bit. This finishes the proof.

Remark 3. From the planar embedding of the graph G, treating h vertices as edges, the resulting
graph G′ is known as the medial graph of G. The (constructive) definition is usually phrased in
the following way. The medial graph Gm of plane graph G has a vertex on each edge of G and two
vertices in Gm are joined by an edge for each face of G in which their corresponding edges occur
consecutively. See Figure 15 for an example. However, our construction described in the proof
clearly extends to nonplanar graphs as well.

Lemma 7.3. Pl-Holant (6=2 | =4, [0, 1, 0, 0]) is #P-hard.

Proof. Consider the gadget in Figure 16. We assign binary disequality 6=2 to the square vertices,
=4 to the circle vertices, and [0, 1, 0, 0] to the triangle vertices. We show that the support of the
resulting signature is the set {00110011, 11001100, 11111111}, where each vector is the assignment
ordered counterclockwise starting from the diamond point.

We call the equality signature =4 in the middle the origin. There are two possible assignments
at the origin. If it is assigned 0, then every adjacent perfect matching signature [0, 1, 0, 0] is matched
to the half edge towards the origin, and every equality =4 is forced to be 1. This gives the support
vector 11111111.
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Figure 16: Grid-like gadget used in the proof of Lemma 7.3, whose support vectors are
00110011, 11001100, and 11111111. Each square is assigned a binary disequality 6=2,
circle =4, and triangle [0, 1, 0, 0].

f1

f2

(a) Gadget with signature g. Each square is
assigned a binary disequality 6=2, circle =4, tri-
angle [0, 1, 0, 0], and pentagon f .

f1 f2 g

00000000 00000000 11111111

00110011 00000000 01111000

11001100 00000000 11110000

00000000 00110011 10000111

00110011 00110011 00000000

11001100 00110011 -

00000000 11001100 00001111

00110011 11001100 -

11001100 11001100 00000000

(b) Support of g. Each vector is an assignment
ordered counterclockwise from the diamond.

Figure 17: Another gadget used in the proof of Lemma 7.3 and a Table listing the
support of its signature.
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The other possibility is that the origin is 1. In this case, we can remove the origin leaving the
outer cycle, with every [0, 1, 0, 0] becoming [0, 1, 0]. This is effectively a cycle of four equalities
connected by 6=2. It is easy to see that there are only two support vectors, which are exactly
00110011 and 11001100.

Every pair of half edges at each corner always take the same value. We further connect each pair
of these edges to different copy of =4 via two copies of 6=2. This results in a gadget with signature f
whose support is the complement of the original support, that is, {11001100, 00110011, 00000000}.

Now consider the gadget in Figure 17a. We assign 6=2 to the square vertices, =4 to the circle
vertices, [0, 1, 0, 0] to the triangle vertices, and f to the pentagon vertex. Notice that each pair of
edges coming out of the pentagon vertex are from the same corner of the gadget in Figure 16 used
to realize f . We now study the signature of this gadget.

Notice that if a =4 on the outer cycle is assigned 0, then the two adjacent perfect matchings
must match half edges toward that =4, and their outgoing edges must be 0. Furthermore, the two
=4 one more step away must be 1. A further observation is that any pair of consecutive =4’s cannot
be both 0, and if a pair of consecutive =4’s are both 1, then the [0, 1, 0, 0] in the middle must have
a 1 going out. In Figure 17a, we call the pentagon connecting to four equalities =4 on the upper
right f1 and the other one f2. Let g be the signature of resulting gadget. We further order the
external wires of f1, f2, and g counterclockwise, each starting from edge marked with a diamond.
With this notation and these observations, we get Table 17b listing the support of g. The support
of g is {11111111, 01111000, 11110000, 10000111, 00000000, 00001111, 00000000}, and 00000000 has
multiplicity 2.

Next we use a domain pairing argument. First we move =4 to the left hand side, by contracting
four 6=2 into it. We apply the domain pairing on the problem Pl-Holant (=4| g). Specifically, we use
=4 as =2, by pairing each pair of edges together. We also pair adjacent two outputs of g clockwise,
starting from the diamond point. Each pair of output wires of g are connected to a pair of wires
from =4 on the left hand side. Note that =4 enforces that each pair of edges always takes the same
value. We re-interpret 00 or 11 as 0 or 1 in the Boolean domain. In this way, we can treat g as an
arity 4 signature g′ in the Boolean domain. So the reduction is

Pl-Holant
(
=2 | g′) ≤T Pl-Holant (=4 | g) .

We get the expression of g′ next. The two support bit strings 01111000 and 10000111 of g are
eliminated as they do not agree on adjacent paired outputs. So in the paired (Boolean) domain,
the support of g′ becomes {1111, 1100, 0011, 0000} where 0000 has multiplicity 2. We further rotate
g′ as a Boolean domain signature such that the support is {1111, 0110, 1001, 0000}. Now it is easy
to see that the matrix of g′, an arity 4 signature in the Boolean domain, is

Mg′ =




2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

By Lemma 7.2 Pl-Holant(g′) is #P-hard. Hence Pl-Holant ( 6=2 | =4, [0, 1, 0, 0]) is #P-hard.

To extend Lemma 7.1 and Lemma 7.3 to general ExactOned functions, we show that we can
always realize constant functions [1, 0] and [0, 1] in this setting.
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Lemma 7.4. For any integer k ≥ 3 and d ≥ 3 and any signature set F ,

Pl-Holant ( 6=2 | =k,ExactOned, [0, 1], [1, 0],F) ≤T Pl-Holant ( 6=2 | =k,ExactOned,F) .

Proof. Given an instance Ω of Pl-Holant (6=2 | =k,ExactOned, [0, 1], [1, 0],F) with underlying pla-
nar graph G, if there is any [1, 0] on the right hand side, then it can be combined with 6=2 as a [0, 1]
on the left hand side, and then contracted into whatever function it is attached to. If it is connected
to [1, 0] or [0, 1], we either know the Holant is 0 or remove the two vertices. If it is connected to
ExactOned, then the contraction gives us d − 1 many [1, 0] pinnings. Similarly, if it is connected
to =k, the whole function decomposes into k − 1 many [0, 1]’s. These additional pinnings by [1, 0]’s
or [0, 1]’s can be recursively applied.

By a similar analysis, it is easy to show that the only nontrivial occurrences of [0, 1]’s are those
attached to ExactOned via 6=2. We may therefore assume there is no [1, 0] in Ω, and the only
appearances of [0, 1] and [1, 0]’s are those of [0, 1]’s applied to ExactOned via 6=2.

We can construct =ℓk for any integer ℓ ≥ 1, by 6=2 on the left and =k on the right. In fact if we
connect two copies of =k via 6=2 we get a signature of arity 2k − 2 with k − 1 consecutive external
wires labeled + and the others labeled −. As k ≥ 3, we can take 2 wires of the k − 1 wires labeled
− and attach to two copies of =k via two 6=2. This creates a signature of arity 3(k − 1) + (k − 3)
with 3(k − 1) consecutive wires labeled + and the other k − 3 wires labeled −. Finally connect
k − 3 pairs of adjacent +/− labeled wires by 6=2 recursively. This creates a planar gadget with an
equality signature of arity 3(k − 1) − (k − 3) = 2k. This can be extended to any =ℓk by applying
the same process on any consecutive k wires.

Next we construct [0, 1]⊗r for some integer r ≥ 1. We get [1, 0]⊗d−2 by a self-loop of ExactOned

via 6=2, ignoring the factor 2. We pick an integer ℓ large enough so that d − 2 < ℓk. Then we
connect [1, 0]⊗d−2 to =ℓk via 6=2 to get [0, 1]⊗(ℓk−d+2). This is what we claim with r = ℓk − d + 2.

One more construction we will use is ExactOne2+ℓ(d−2) for any integer ℓ ≥ 1. This is realizable
by connecting ℓ many copies of ExactOned sequentially via 6=2.

Consider the dual graph G∗ of G. Take a spanning tree T of G∗, with the external face as
the root. In each face F , let cF be the number of [0, 1]’s in the face. We start from the leaves
to recursively move all the pinnings of [0, 1] to the external face. Suppose we are working on the
face F as a leaf of T . If cF = 0 then we just remove the leaf from T and recurse on another
leaf. Otherwise we remove all [0, 1]’s in F . Let s be the smallest integer such that sr ≥ cF . We
replace the 6=2 edge bordering between F and its parent F ′ by a sequence of three signatures: 6=2,
ExactOne2+ℓ(d−2) and 6=2, where ℓ is a sufficiently large integer such that ℓ(d−2) ≥ sr−cF . From
ExactOne2+ℓ(d−2) there are two edges connected to the two adjacent copies of 6=2. Of the other
ℓ(d−2) edges we will put sr− cF many dangling edges in F , and the remaining ℓ(d−2)− (sr − cF )
dangling edges in F ′. Hence there are sr dangling edges in F , including those cF many that were
connected to [0, 1]’s before we removed the [0, 1]’s. We put s copies of [0, 1]⊗r inside the face F to
pin all of them in a planar way. We add ℓ(d − 2) − (sr − cF ) to cF ′ . Remove the leaf F from T ,
and recurse.

After the process, all [0, 1]’s are in the external face of G. Suppose the number is p. We put r
disjoint copies of G together to form a planar signature grid. Apply a total of pr many [0, 1]’s by p
copies of [0, 1]⊗r in a planar way. This is now an instance of Pl-Holant (6=2 | =k,ExactOned,F)
and the Holant value is the rth power of that of Ω. Since the Holant value of Ω is a nonnegative
integer, we can take the rth root and finish the reduction.
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Figure 18: Example E6-block. Circle vertices are assigned =6 and square vertices are
assigned 6=2.

Once we have constant functions [0, 1] and [1, 0], it is easy to construct ExactOne3 from
ExactOned. Therefore combining Lemma 7.4 with Lemma 7.1 and Lemma 7.3 we get the following
corollary.

Corollary 7.5. If d ≥ 3 and k ∈ {3, 4}, then Pl-Holant ( 6=2 | =k,ExactOned) is #P-hard.

7.2 Tractability when k ≥ 5

On the other hand, if the arity of the equality signature is at least 5, then the problem is tractable.
In this subsection we will first prove that the problem Pl-Holant (6=2 | =k, EO) is tractable for k ≥ 6.
After that we will return to =5.

To prove this, we first do some preprocessing. Let G be the underlying graph of an instance of
Pl-Holant ( 6=2 | =k, EO). Any self loop on an ExactOned by a 6=2 changes it to a [1, 0]⊗(d−2) with
factor 2. These pinning signatures can be applied recursively. Any [1, 0] is first transformed to [0, 1]
via 6=2 on LHS and then applied either to =k producing [0, 1]⊗(k−1), or to ExactOned (for some d)
producing [1, 0]⊗(d−1). Similarly, any [0, 1] is first transformed to [1, 0] via 6=2 on LHS and then ap-
plied either to =k producing [1, 0]⊗(k−1), or to ExactOned (for some d) producing ExactOned−1.
Note that if d = 3 then ExactOned−1 is just 6=2 on RHS, which combined with its adjacent two
copies of 6=2 of LHS, is equivalent to a single 6=2 of LHS. Moreover, whenever an ExactOned and
another ExactOneℓ are connected by a 6=2, we replace it by a single ExactOned+ℓ−2, shrinking
the edge between (and remove the connecting 6=2). On the other hand, consider a connected com-
ponent made of =k and 6=2. We call such a component an Ek-block. Notice that each Ek-block
has either exactly two or zero support vectors. This depends on whether or not there exists a
contradiction, which is formed by an odd cycle of =k connected by 6=2. We say an Ek-block is
trivial if it has no support. This is easy to check. The two support vectors of a nontrivial Ek-block
are complements of each other. We mark dangling edges of a nontrivial Ek-block by “+” or “−”
signs. Dangling edges marked with the same sign take the same value on both support vectors
while dangling edges marked with different signs take opposite values on both support vectors. Let
n± be the number of dangling edges marked ±. Then it is easy to see that

n+ ≡ n− mod k. (7.9)

An example of E6-block is illustrated in Figure 18, with 8 + signs and 2 − signs.
After contracting all edges between ExactOned’s and forming Ek-block’s we obtain a bipartite

graph connected between ExactOned’s and Ek-block’s by edges labeled by =2.
A key observation is that a planar (bipartite) graph cannot be simple, i.e., it must have parallel

edges, if its degrees are large.
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(a) Two different arity 4 Ek-blocks.
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(b) Replace them by parallel 6=2’s.

Figure 19: Arity 4 Ek-blocks.

Lemma 7.6. Let G = (L ∪ R,E) be a planar bipartite graph with parts L and R. If every vertex
in L has degree at least 6 and every vertex in R has degree at least 3, then G is not simple.

Proof. Suppose G is simple. Let v, e and f be the total number of vertices, edges, and faces,
respectively. Let vi be the number of vertices of degree i in L, where i ≥ 6, and uj be the number
of vertices of degree j in R, where j ≥ 3. Since G is simple and bipartite, each face has at least 4
edges. Thus,

2e ≥ 4f. (7.10)

Furthermore, it is easy to see that

v =
∑

i≥6

vi +
∑

j≥3

uj and e =
∑

i≥6

ivi =
∑

j≥3

juj . (7.11)

Then starting from Euler’s characteristic equation for planar graphs, we have

2 = v − e + f

≤ v − e

2
(By (7.10))

=
∑

i≥6

vi +
∑

j≥3

uj − 1

6

∑

i≥6

ivi − 1

3

∑

j≥3

juj (By (7.11))

=
∑

i≥6

6 − i

6
vi +

∑

j≥3

3 − j

3
uj ≤ 0,

a contradiction.

Lemma 7.6 does not give us tractability for the case of k ≥ 6 yet. The reason is that given
an instance of Pl-Holant (6=2 | =k, EO), after the preprocessing and forming Ek-blocks to make the
graph bipartite, it is possible to have Ek-blocks of arity less than 6, in which case Lemma 7.6 does
not apply. However, for k ≥ 6 and a nontrivial Ek-block of arity n where n < 6, by (7.9) and the
fact that 0 ≤ n+, n− ≤ n < k, we see that n+ = n−, and n = n+ + n− must be even. Moreover,
if n = 2, then this means that the Ek-block is just 6=2, in which case we can replace it by a single
6=2 connecting signatures from EO to produce a new ExactOne signature. The only problematic
case is when n = 4. We identify two possibilities of such Ek-blocks up to a rotation in Figure 19a.

Formally we define a contraction process on the connected graph of Ek-block with dangling
edges. Recursively, for any non-dangling non-loop edge e, we shrink it to a point, maintaining
planarity. The local cyclic orders of incident edges of the two vertices of e are spliced along e
to form the cyclic order of the new vertex. For any loop we simply remove it. This contraction
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process ends in a single point with a cyclic order of the dangling edges. Figure 19a depicts the two
possibilities of Ek-blocks of arity 4 up to a rotation. An Ek-block of arity 4 can be viewed as a
pair of 6=2 in parallel, but there is a correlation between them, namely their support vectors are
paired up in a unique way. If we replace the contracted Ek-block of arity 4 by two parallel edges
as indicated in Fig 19b, one can revert back to a planar realization in the Ek-block as it connects
to the rest of the graph. This can be seen by reversing the contraction process step by step.

We will show in the following lemma how to replace Ek-block of arity 4 by some other signatures
while keeping track of the Holant value. We also observe that this tractable set is compatible with
binary 6=2 and unary [1, 0] or [0, 1] signatures.

Lemma 7.7. For any integer k ≥ 6, Pl-Holant (6=2 | =k, EO, 6=2, [1, 0], [0, 1]) is tractable.

Proof. Let Ω be an instance of Pl-Holant (6=2 | =k, EO, 6=2, [1, 0], [0, 1]). Without loss of generality,
we assume that Ω is connected. Any occurrence of 6=2 of the right hand side can be removed as
follows: It is connected to two adjacent copies of 6=2 of the left hand side. We replace these 3 copies
of 6=2 by a single 6=2 from the left hand side.

The given signatures have no weight, however the proof below can be adapted to the weighted
case. For the unweighted case, we only need to count the number of satisfying assignments. We
call an edge pinned if it has the same value in all satisfying assignments, if there is any. Clearly
any edge incident to a vertex assigned [1, 0] or [0, 1] is pinned.

When an edge is pinned to a known value, we can get a smaller instance of the problem
Pl-Holant(6=2 |=k, EO, 6=2, [1, 0], [0, 1]) without changing the number of satisfying assignments. In
our algorithm we may also find a contradiction and simply return 0. If e is a pinned edge, then
it is adjacent to another edge e′ via 6=2 on the left hand side, and both e and e′ are pinned. We
remove e, e′, and 6=2, and perform the following on e (and on e′ as well). If the other endpoint of e
is u = [1, 0] or [0, 1] we either remove that u if the pinned value on e is consistent with u, or return
0 otherwise. If the other endpoint of e is =k, then all edges of this =k are pinned to the same value
which we can recursively apply. If the other endpoint of e is ExactOned ∈ EO, then we replace
this signature by ExactOned−1 when the pinned value is 0; or if the pinned value is 1 then the
remaining d − 1 edges of this ExactOned are pinned to 0 which we recursively apply. Notice that
we may create an ExactOne2 (i.e. 6=2) on the right hand side when we pin 0 on ExactOne3.
Such 6=2’s are replaced as described at the beginning. It is easy to see that all these procedures do
not change the number of satisfying assignments, and work in polynomial time.

We claim that there always exists an edge in Ω that is pinned, unless Ω does not contain =k, or
does not contain ExactOned functions (for some d ≥ 3), or there is a contradiction. Furthermore
if there are =k or ExactOned functions (for some d ≥ 3), in polynomial time we can find a pinned
edge with a known value, or return that there is a contradiction. (If there is a contradiction in Ω,
we may still return a purported pinned edge with a known value, which we can apply and simplify
Ω. The contradiction will eventually be found.) If Ω does not contain =k, or does not contain
ExactOned functions (for some d ≥ 3), then the problem is tractable, since Ω is an instance of
M , or an instance of P. The lemma follows from the claim, for we either recurse on a smaller
instance or have a tractable instance.

Suppose Ω is an instance where at least one =k and at least one ExactOned ∈ EO appear.
We assume no 6=2 appears on the right hand side. If any [1, 0] or [1, 0] appear, then we have found
a pinned edge with a known value. Hence we may assume neither [1, 0] nor [1, 0] appears in Ω.

If a signature ExactOned ∈ EO is connected to itself by a self-loop through a 6=2, then there
are two choices for the assignment on this pair of edges through the 6=2, but the remaining d−2 ≥ 1
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edges are pinned to 0. We can keep track of the factor 2 and have found a pinned edge with a
known value. Thus we may assume there are no self-loops via 6=2 on ExactOne signatures.

Next we consider the case that two separate signatures ExactOned and ExactOneℓ from EO
are connected by some number of 6=2’s. Depending on the number of connecting edges, there are
three cases:

1. The connection is by a single 6=2. We contract the connecting edge, maintaining planarity,
and replace these three signatures by an ExactOned+ℓ−2 to get a new instance Ω′. If an
edge is pinned in Ω′ then it is also pinned in Ω to the same value. We continue with Ω′.

2. The connection is by two 6=2’s. There are two choices for the assignment on these two pairs
of edges through 6=2, but the remaining d + ℓ − 4 ≥ 2 edges are pinned to 0.

3. The connection is by at least three 6=2’s. The three 6=2’s cannot be all satisfied, so there is
no satisfying assignment, a contradiction. We return the value 0.

Hence, we may assume there is no connection via any number of 6=2’s among ExactOne signatures.
Define an Ek-block as a connected component composed of =k and 6=2. All external connecting

edges of each Ek-block are marked with + or − and this can be found by testing bipartiteness
of a Ek-block where we treat 6=2’s as edges. If any Ek-block is not bipartite, we return 0. We
contract all Ek-blocks and maintain planarity. For each Ek-block we contract two vertices that
are connected by an edge, one edge at a time, and remove self loops in this contraction process.
If a trivial Ek-block appears, then there is no satisfying assignment, we return 0. Thus we may
assume all Ek-blocks are nontrivial. If there is a nontrivial Ek-block of arity 2, as discussed earlier,
its signature is 6=2. We replace it with an edge labeled by 6=2 to form an instance Ω′, maintaining
planarity, such that any pinned edge in Ω′ corresponds to a pinned edge in Ω. This new edge is
between ExactOne signatures and can be dealt with as described earlier. So we may assume the
arity of any Ek-block is at least 4. Since k ≥ 6, the only possible Ek-blocks of arity 4 are those in
Figure 19a up to a rotation. Since there is at least one ExactOned signature with d ≥ 3, forming
Ek-blocks does not consume all of Ω.

After these steps we may consider Ω a bipartite graph, with one side consisting of Ek-blocks
and the other side ExactOne signatures. And they are now connected by edges labeled by =2.

Suppose there are parallel edges between an Ek-block and an ExactOned signature. We show
that this always leads to some pinned edges. If two parallel edges are marked by the same sign
in the Ek-block, then they must be pinned to 0. If they are marked by different signs, then the
remaining d − 2 ≥ 1 edges of the ExactOned signature must be pinned to 0. Therefore, we may
assume there are no parallel edges between any Ek-block and any ExactOne signature.

The next thing we do is to consider Ek-blocks of arity 4 with ExactOne signatures together.
Call a connected component consisting of Ek-blocks of arity 4 and ExactOne an EO-Eq-4-block.
Figure 20a illustrates an example. Notice that the two possibilities of Ek-blocks of arity 4 can
be viewed as two parallel 6=2’s but with some correlation between them. This is illustrated in
Figure 19b. Note that the two dotted lines in Figure 19b represent different correlations.

At this point we would like to replace every arity 4 Ek-block by two parallel 6=2’s. However this
replacement destroys the equivalence of the Holant values, before and after.

The surprising move of this proof is that we shall do so anyway!
Suppose we ignore the correlation for the time being and replace every arity 4 Ek-block by two

parallel 6=2’s as in Figure 19b. This replacement produces a planar signature grid Ω1. Every edge
in Ω1 corresponds to a unique edge in Ω. The set of satisfying assignments of Ω1 is a superset of
that of Ω. Moreover, if there is an edge pinned in Ω1 to a known value, the corresponding edge is
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(a) An EO-Eq-4-block. Triangles are as-
signed ExactOne signatures and circles are
Ek-blocks of arity 4.

(b) Break the EO-Eq-4-block into three com-
ponents. Squares are assigned 6=2. The com-
ponent in the middle contains a cycle, and
hence is degenerate. The other two are equiv-
alent to ExactOne signatures.

Figure 20: EO-Eq-4-blocks

also pinned in Ω to the same value. Once we find that in Ω1 we revert back to work in Ω and apply
the pinning to the pinned edge.

All that remains to be shown is that pinning always happens in Ω1. Each EO-Eq-4-block
splits into some number of connected components in Ω1. If any component contains a cycle (which
must alternate between 6=2, which are the newly created ones from the Ek-blocks of arity 4, and
ExactOned signatures for d ≥ 3), then any edges not in the cycle but incident to some vertex
in the cycle is pinned to 0. Moreover such edges must exist, for ExactOned signatures in the
cycle are of arity at least 3. Note that the cycle has even length, and there are exactly two
satisfying assignments, which assign exactly one 0 and one 1 to the two cycle edges incident to each
ExactOned signature. This produces pinned edges.

Hence we may assume there are no cycles in these components, and every such component
forms a tree, whose vertices are ExactOne functions and edges are 6=2’s. Suppose there are n ≥ 2
vertices in such a tree. As discussed in item 1 above, the whole tree is an ExactOnet function for
some arity t. Since each vertex in the tree has degree at least 3, t ≥ 3n − 2(n − 1) = n + 2 ≥ 4. We
replace these components by ExactOnet’s.

Thus, each connected component in the graph underlying Ω1 is a planar bipartite graph with
Ek-blocks of arity at least 6 on one side and ExactOned signatures of arity at least 3 on the other.
By Lemma 7.6, no component is simple, which means that there are parallel edges between some
Ek-block and some ExactOned signature. As discussed earlier, there must exist some pinned edge,
and we can find a pinned edge with a known value in polynomial time. This finishes the proof.

Unlike the situation in Lemma 7.6, a planar (5, 3)-regular bipartite graph can be simple. How-
ever, we show that such graphs must have a special induced subgraph. We call this structure a
“wheel”, which is pictured in Figure 21. There is a vertex v of degree 5 in the middle, and all faces
adjacent to this vertex are 4-gons (i.e. quadrilaterals). Moreover, at least four neighbors of v have
degree 3. Depending on the degree of the fifth neighbor (whether it is 3 or not), we have two types
of wheel, which are pictured in Figure 21a and Figure 21b.

Lemma 7.8. Let G = (L ∪ R,E) be a planar bipartite graph with parts L and R. Every vertex in
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(a) Type 1

· · · · · ·

· · ·· · ·

(b) Type 2

Figure 21: Two types of wheels. Each circle is an E5-block and triangle an ExactOne
signature.

L has degree at least 5 and every vertex in R has degree at least 3. If G is simple, then there exists
one of the two wheel structures in Figure 21 in G.

Proof. Let V = L ∪ R be the set of vertices and let F be the set of faces. We assign a score sv to
each vertex v ∈ V . We will define sv so that

∑
v∈V sv = |V | − |E| + |F | = 2 > 0. The base score is

+1 for each vertex, which accounts for |V |. For each k-gon face, we assign 1
k to each of its vertex.

This accounts for |F |. As G is a bipartite and a simple graph, k ≥ 4 and a score coming from a
face to a vertex is at most 1

4 .
For −|E|, we separate two cases. For any edge if one of the two endpoints has degree 3, we give

the degree 3 vertex a score of − 7
12 , and the other one − 5

12 . This is well defined because all degree
3 vertices are in R. If the endpoints are not of degree 3, we give each endpoint −1

2 . This accounts
for −|E|.

Now we claim that sv ≤ 0 unless v ∈ L and has degree 5. Suppose v ∈ L and has degree d ≥ 6,
then

sv ≤ 1 +
d

4
− 5

12
d = 1 − d

6
≤ 0.

Now suppose v ∈ R and v has degree d ≥ 4. Then every edge adjacent to v gives a score −1
2 .

Hence,

sv ≤ 1 +
d

4
− 1

2
d = 1 − d

4
≤ 0.

The remaining case is that v ∈ R and v has degree 3. Then,

sv ≤ 1 +
d

4
− 7

12
d = 1 − d

3
≤ 0.

The claim is proved.
Since the total score is positive, there must exist v ∈ L, v has degree 5 and sv > 0. We then

claim that there must exist such a v so that all adjacent faces are 4-gons. Suppose otherwise. Then
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any such v is adjacent to at least one k-gon with k ≥ 6. In this case,

sv ≤ 1 +
1

4
· 4 +

1

6
− 5

12
· 5 =

1

12
.

Moreover, if v is adjacent to more than one k-gon with k ≥ 6, Then

sv ≤ 1 +
1

4
· 3 +

1

6
· 2 − 5

12
· 5 = 0,

contrary to the assumption that sv > 0. Hence v is adjacent to exactly one k-gon with k ≥ 6. Call
this face Fv.

In Fv, v has two neighbors in R. We match each vertex v that has a positive score to the vertex
on Fv that is the next one in clockwise order from v. By bipartiteness, every such v is matched to
a vertex in R. We do this matching in all faces containing at least one positively scored vertex. It
is possible that more than one such v are matched to the same u ∈ R. Suppose a vertex u ∈ R
is matched to from ℓ different such vertices of positive score. This means that u is adjacent to at
least ℓ many k-gons with k ≥ 6. Then, if u has degree 3 then u has score

su ≤ 1 +
1

4
· (3 − ℓ) +

1

6
· ℓ − 7

12
· 3 = − ℓ

12
.

If u has degree d ≥ 4 then u has score

su ≤ 1 +
1

4
· (d − ℓ) +

1

6
· ℓ − 1

2
· d ≤ − ℓ

12
.

Hence in any case, we have su ≤ − ℓ
12 . It implies that the total score of u and all positively scored

vertices matched to u is at most 0. However each positively scored vertex is matched to a vertex
in R. Hence the total score cannot be positive. This is a contradiction.

Therefore there exists v ∈ L such that sv > 0, and has degree 5, and all adjacent faces are
4-gons. We further note that at most one neighbor of v can have degree ≥ 4, for otherwise,

sv ≤ 1 +
5

4
− 1

2
· 2 − 5

12
· 3 = 0.

If all neighbors of v have degree 3, that is a wheel of type 1 as in Figure 21a. If one neighbor of v
has degree ≥ 4, that is a wheel of type 2 as in Figure 21b.

As we shall see, either structure in Figure 21 leads to pinned edges.

Lemma 7.9. Pl-Holant (6=2 | =5, EO, 6=2, [1, 0], [0, 1]) is tractable.

Proof. We proceed as in Lemma 7.7 up until the point of getting Ω1. Note that due to (7.9) the
only nontrivial E5-blocks of arity ≤ 4 are 6=2 and those in Figure 19a. Moreover, each connected
component of Ω1 is planar and bipartite with vertices on one side having degree at least 5 and
those on the other at least 3. We only need to show that there are edges pinned in Ω1.

Unlike in Lemma 7.7, these components do not satisfy the condition of Lemma 7.6 but that of
Lemma 7.8. If any such component is not simple, then there are pinned edges similar to Lemma 7.7.
Otherwise by Lemma 7.8, the wheel structure in Figure 21 appears. All we need to show is that
wheel structures of either type contain pinned edges.
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E1 P1
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· · ·· · ·

(a) Different signs of an E5-block along the cycle
lead to pinning

Eo

e

e′
P1

· · · · · ·

· · ·· · ·

(b) Edges e and e′ are pinned in wheels of type 2

Figure 22: Degeneracies in the wheel structure.

First we claim that if a wheel of either type has a E5-block, call it E1, on the outer cycle which
has different signs on the two edges incident to it along the cycle, then the middle =5, denoted by
Eo, is pinned. This is pictured in Figure 22a. It does not matter whether the wheel is type 1 or 2,
or the position of E1 relative to the special triangle P1 in type 2. Because Eo is an equality, both e1

and e2, the two edges incident to Eo that are connected to the two ExactOne signatures flanking
E1, must take the same value. If both e1 and e2 are assigned 1, then the two incoming wires of E1

along the cycle have to be both assigned 0, whereas they are marked by different signs. This is a
contradiction. Hence both e1 and e2 are pinned to 0 as well as all edges of Eo.

We may therefore assume that each E5-block has same signs along the outer cycle, either ++ or
−−. If the wheel is of type 1, then there is no valid assignment such that Eo is assigned 0 because
the cycle has odd length. In fact if Eo is assigned 0, then we can remove Eo and its incident edges,
and effectively the five ExactOne signatures are now 6=2’s forming a 5-cycle linked by binary
equalities. Hence Eo and all its edges are pinned to 1.

Otherwise the wheel is of type 2, and each E5-block has signs ++ or −− along the outer cycle.
We denote by P1 the special ExactOned function that has arity d > 3. We claim that the two
edges e and e′ incident to P1 along the cycle are both pinned to 0. This is illustrated in Figure 22b.
As P1 is ExactOned, at most one of e and e′ is 1. If one of e and e′ is 1, the other is 0, and as P1

is an ExactOned function its edge to Eo is also 0, and thus all edges incident to Eo are 0. As all
five neighbors of Eo are ExactOne functions, the four ExactOne3 functions effectively become
(6=2) functions along the wheel, and we can remove Eo and its incident edges. This becomes the
same situation as in the previous case of type 1, where effectively a cycle of five binary equalities
are linked by five binary disequalities, which has no valid assignment. It implies that both e and
e′ are pinned to 0. This finishes the proof.

7.3 Lemmas related to M4 and P2

Now we prove some lemmas relating to M4 and P2 that are used in the proof of the full dichotomy.
Recall that AllButOned is the signature [0, . . . , 0, 1, 0] of arity d, which is the reverse of

ExactOned. After a Z transformation, M4 contains both AllButOned and ExactOned. How-
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Figure 23: Gadget to realize ĝ in Lemma 7.10. Circle vertices are assigned =k and
square vertices are assigned 6=2. The number of parallel edges is k − 2.

ever, if both appear, then with any =k the problem is hard.

Lemma 7.10. If integers d1, d2, k ≥ 3, then Pl-Holant (6=2 | =k,ExactOned1 ,AllButOned2) is
#P-hard.

Proof. We apply Lemma 7.4 to create constant functions [1, 0] and [0, 1] first. Then we construct
ExactOne4 and AllButOne4. With both [1, 0] and [0, 1] in hand, we may reduce d1 or d2 to 4
if d1 > 4 or d2 > 4. If either of the two arities is 3, then we connect two copies together via 6=2 to
realize an arity 4 copy.

Moreover, we use the gadget illustrated in Figure 23 to create the function ĝ in Lemma 6.7 as an
Ek-block. Then by Lemma 6.7, Pl-Holant ( 6=2 | =k,ExactOned1 ,AllButOned2) is #P-hard.

In general signatures in P2 are non-degenerate weighted equalities under the Z transformation.
The next several lemmas show that the hardness criterion is the same regardless of the weight.

Lemma 7.11. Let f ∈ P2, g1 ∈ M +
4 , g2 ∈ M −

4 be non-degenerate signatures with arity ≥ 3.
Then Pl-Holant(f, g1, g2) is #P-hard.

Proof. Suppose the arities of f , g1, and g2 are n, m1, and m2 respectively. Under a holographic
transformation by Z, we have

Pl-Holant(f, g1, g2) ≡ Pl-Holant
(
6=2 |

(
Z−1

)⊗n
f,
(
Z−1

)⊗m1 g1,
(
Z−1

)⊗m2 g2

)

≡ Pl-Holant
(
6=2 | f̂ ,ExactOnem1 ,AllButOnem2

)
,

where f̂ = (Z−1)⊗nf which has the form [1, 0, . . . , 0, c] up to a nonzero constant, with c 6= 0, as
f ∈ P2. We do another diagonal transformation by D =

[
1 0
0 c1/n

]
. Then

Pl-Holant(f, g1, g2)

≡ Pl-Holant
(
(6=2)D

⊗2
∣∣∣ (D−1)⊗nf̂ , (D−1)⊗m1ExactOnem1 , (D

−1)⊗m2AllButOnem2

)

≡ Pl-Holant ( 6=2 | =n,ExactOnem1 ,AllButOnem2) ,

where in the last line we ignored several nonzero factors. The lemma follows from Lemma 7.10.

We also need to consider the mixture of P2 and binary signatures.
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Lemma 7.12. Let F be a set of symmetric signatures. Suppose F contains a non-degenerate
signature f ∈ P2 of arity n ≥ 3 and a binary signature h. Then Pl-Holant(F) is #P-hard unless
h ∈ ZP, or Pl-#CSP2(DZ−1F) ≤T Pl-Holant(F) for some diagonal transformation D.

Proof. We do a Z transformation and get

Pl-Holant(F) ≡ Pl-Holant(F , h, f)

≡ Pl-Holant
(
6=2 | Z−1F ,

(
Z−1

)⊗2
h, f̂

)
,

where f̂ = (Z−1)⊗nf = [1, 0, . . . , 0, t] up to a nonzero constant with t 6= 0. We further do another
diagonal transformation of D1 =

[
1 0
0 t1/n

]
. Then

Pl-Holant(F) ≡ Pl-Holant
(
(6=2)D

⊗2
1 | (D−1

1 )⊗nf̂ , (ZD1)
−1F ,

(
(ZD1)

−1
)⊗2

h
)

≡ Pl-Holant
(
6=2 | =n, (ZD1)

−1F ,
(
(ZD1)

−1
)⊗2

h
)

≥T Pl-Holant
(
=n | (ZD1)

−1F ,
(
(ZD1)

−1
)⊗2

h
)

,

where in the second line we ignore a nonzero factor on 6=2. Hence by Theorem 2.24, Pl-Holant(F) is

#P-hard unless
(
(ZD1)

−1
)⊗2

h ∈ P (cases 1, 2 or 3 in Theorem 2.24) or
(
(ZD1)

−1
)⊗2

h = [a, b, c]
for some a, b, c ∈ C such that ac 6= 0 and (a/c)2n = 1 (cases 4 or 5 in Theorem 2.24).

If
(
(ZD1)

−1
)⊗2

h ∈ P, then h ∈ ZD1P = ZP as D1 ∈ Stab(P). In the latter case, we
construct =2n on the right by connecting three copies of =n to one copy of =n via 6=2. We do the
same construction again to realize =4n using =2n. We connect n − 1 many [a, b, c]’s to =2n via 6=2

to realize a binary weighted equality [1, 0, r] with r = (a/c)n−1 6= 0 ignoring a factor of cn−1. Note

that r2n = (a/c)2n(n−1) = 1. Then we do another diagonal transformation of D2 =
[

1 0
0 r1/2

]
to get

Pl-Holant
(
6=2 | (ZD1D2)

−1F ,=2,
(
D−1

2

)⊗4n
(=4n)

)
. Notice that

(
D−1

2

)⊗4n
(=4n) = [1, 0, . . . , 0, r−2n] = (=4n),

as r2n = 1.
Hence we have =2 and =4n on the right. With 6=2 on the left, we get =2 on the left and therefore

equalities of all even arities on the right. Let D = (D1D2)
−1. Then we have the reduction chain:

Pl-Holant(F) ≥T Pl-Holant
(
6=2 | DZ−1F ∪ {=2,=4n}

)

≥T Pl-Holant
(
6=2 | DZ−1F ∪ EQ2

)

≥T Pl-Holant
(
EQ2 | DZ−1F

)
.

The last problem is Pl-#CSP2(DZ−1F). Thus Pl-#CSP2(DZ−1F) ≤T Pl-Holant(F).

At last, we strengthen Corollary 7.5, Lemma 7.7, and Lemma 7.9 to weighted equalities. We
split the hardness and tractability cases. For a set F of signatures, denote by F≥3

nd the set of
non-degenerate signatures in F of arity at least 3. Moreover denote by F∗ the signature set that
is the same as F but with each degenerate signature [a, b]⊗m in F replaced by the unary [a, b].

Notice that F ∩ P2 and F∗ ∩ P2 agree on signatures of arity at least 2, since signatures in P2

of arity at least 2 are non-degenerate. So F ∩ P2 ⊆ F∗ ∩ P2, and the only possible extra elements
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are some unary [x, y]’s from [x, y]⊗m ∈ F for some integer m ≥ 2 and [x, y] is not a multiple of
[1,±i]. Equivalently the only possible extra elements are unary signatures of the form Z[a, b] for
ab 6= 0, i.e., not of the form a multiple of Z[1, 0] or Z[0, 1], when Z−1F contains some degenerate
signatures of the form [a, b]⊗m for some integer m ≥ 2 and ab 6= 0.

Lemma 7.13. Let F be a set of symmetric signatures. Let F≥3
nd be the set of non-degenerate

signatures in F of arity at least 3. Suppose F≥3
nd contains f ∈ M4 of arity d ≥ 3. Moreover,

suppose F≥3
nd ∩P2 is nonempty, and let k be the greatest common divisor of the arities of signatures

in F∗ ∩ P2. If k ≤ 4, then Pl-Holant(F) is #P-hard.

Proof. We may assume that f ∈ M +
4 . Since F≥3

nd ∩ P2 is nonempty, there exists g ∈ F≥3
nd ∩ P2.

By the definition of F≥3
nd , g has arity n ≥ 3. We do a Z transformation,

Pl-Holant(F) ≡ Pl-Holant
(
6=2 | ĝ,ExactOned, Z

−1F
)
,

where ĝ = (Z−1)⊗ng has the form [1, 0, . . . , 0, c] of arity n for some c 6= 0 up to a nonzero factor.
We further do a diagonal transformation D =

[
1 0
0 c1/n

]
and get

Pl-Holant(F) ≡ Pl-Holant
(
6=2 | =n,ExactOned, (ZD)−1F

)
,

where we ignore nonzero factors on 6=2 and ExactOned. Then by Lemma 7.4,

Pl-Holant(F) ≥T Pl-Holant
(
6=2 | =n,ExactOned, [0, 1], [1, 0], (ZD)−1F

)
.

By a weighted equality we mean a signature of the form [a, 0, . . . , 0, b] of some arity ≥ 1, where
ab 6= 0. Recall that P2 consists of the Z transformation of all weighted equalities. Let G be the set
of weighted equalities in (ZD)−1F . In other words, G = (ZD)−1 (F ∩ P2) as (ZD)−1P2 contains
all weighted equalities. Moreover, up to a nonzero factor, (=n) ∈ G.

Let k′ be the gcd of all arities of signatures in G, or equivalently the gcd of all arities of signatures
in F ∩ P2. If k′ 6= k, then the only possibility is that (ZD)−1F contains a degenerate signature
[a, b]⊗m for some m ≥ 2 with ab 6= 0. In this case we use pinnings [1, 0] or [0, 1] to realize [a, b] from
[a, b]⊗m and put [a, b] in G. Hence we may assume that k′ = k.

Pick any g1, g2 ∈ G of arities ℓ1 and ℓ2. Let r = gcd(ℓ1, ℓ2). Let t1, t2 be two positive integers
such that t1ℓ1 − t2ℓ2 = r. Then connecting t1 copies of g1 and t2 copies of g2 via 6=2 in a bipartite
and planar way, we get a weighted equality signature of arity r.

Apply the same argument repeatedly. Eventually we construct a weighted equality h of arity
k. We further do a diagonal transformation D1 to make it =k, that is,

Pl-Holant(F) ≥T Pl-Holant (6=2 | G,ExactOned)

≥T Pl-Holant (6=2 | h,ExactOned,G)

≥T Pl-Holant
(
(6=2)D

⊗2
1 | =k,

(
D−1

1

)⊗d
ExactOned,D

−1
1 G

)

≥T Pl-Holant
(
6=2 | =k,ExactOned,D

−1
1 G

)
,

where in the last line we ignored nonzero factors of ExactOned and 6=2. If k = 3 or 4, then the
hardness follows from Corollary 7.5.

If k = 1 or 2, then on the right hand side we have =k, which is =1 or =2, and a weighted
equality

(
D−1

1

)⊗n
(=n) ∈ D−1

1 G. Call it ĝ′. We move the =k to the left hand side via 6=2. Then
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we connect zero or more copies of this =k, which is =1 or =2, to ĝ′ such that its arity is 3 or 4.
It is possible that n = 3 or 4 to begin with, and if so we do nothing. We are done by yet another
diagonal transformation and Corollary 7.5.

Lemma 7.14. Let F be a set of symmetric signatures. Suppose F ⊆ ZP∪M σ
4 for some σ ∈ {+,−}

and the greatest common divisor of the arities of all signatures in F∗ ∩ P2 is k ≥ 5. Then
Pl-Holant(F) can be computed in polynomial time.

Proof. We may assume that σ = + and the case of σ = − is similar. We do a Z transformation on
Pl-Holant(F), and get a problem of Pl-Holant

(
6=2 | Z−1F

)
.

In this bipartite setting, given =n on the right hand side, we can realize =ℓn for any integer ℓ ≥ 1
as an En-block on the right. The problem Pl-Holant (6=2 | EQn, EO, 6=2, [1, 0], [0, 1]) is tractable for
any n ≥ 5 by Lemma 7.7 and Lemma 7.9, where EQn denotes the set of all equalities of arity ℓn
for all integers ℓ ≥ 1.

The symmetric signatures in the set ZP consist of P2, Z⊗2(6=2), and degenerate signatures. If
there is any degenerate signature of the form (Z[a, b])⊗m ∈ F with ab 6= 0, then Z[a, b] ∈ F∗ ∩ P2.
This contradicts k ≥ 5. Hence all degenerate signatures in F are of the form (Z[1, 0])⊗m or
(Z[0, 1])⊗m, if any. Since F ⊆ ZP ∪M +

4 , after a Z transformation, Pl-Holant(F) is an instance of
Pl-Holant ( 6=2 | EQk, EO, 6=2, [1, 0], [0, 1]) except for the weights on the equalities. It can be checked
that the tractability results of Lemma 7.7 and Lemma 7.9 also apply to weighted equalities. The
lemma follows.

Let G = {=k | k ∈ S} be a set of Equality signatures, where S is a set of positive integers con-
taining at least one r ≥ 3. Moreover let EO+ := {ExactOned | d ∈ Z+} = EO∪{6=2, [0, 1]}. Then
Pl-Holant

(
G | EO+

)
is the problem of counting perfect matchings over hypergraphs with planar

incidence graphs, where the hyperedge sizes are prescribed by S. In the incidence graph, vertices as-
signed signatures in G on the left represent hyperedges, and vertices assigned signatures in EO+ on
the right represent vertices of the hypergraph. Let t = gcd(S). It is stated in the introduction that
this problem is tractable if t ≥ 5 and #P-hard if t ≤ 4. The tractability when t ≥ 5 follows from
Lemma 7.7 and 7.9, since we can reduce Pl-Holant

(
G | EO+

)
to Pl-Holant (6=2 | =t, EO, 6=2, [0, 1]).

The reduction goes as follows. With 6=2 on the left hand side and =t on the right hand side, we
can construct all Et-blocks and hence all of EQt on the right. Note that G ⊆ EQt. Then we move
all signatures in G to the left via 6=2.

The hardness of Pl-Holant
(
G | EO+

)
for t ≤ 4 follows from Corollary 7.5. The reason is as

follows. We construct 6=2 on the left using the gadget pictured in Figure 7a with (=r) ∈ G on the
left side assigned to circle vertices and 6=2 on the right side assigned to square vertices. Then we
move G to the right side via 6=2 on the right side. We construct =t on the right side in the same
Euclidean process using G of the right side and 6=2 of the left side. This gives us a reduction from
Pl-Holant ( 6=2 | =t, EO), which is #P-hard by Corollary 7.5 if t = 3, 4. Otherwise t = 1, 2. Recall
that (=r) ∈ G for some r ≥ 3. We use =t to reduce the arity of =r to 3 or 4, if necessary. Again
we are done by Corollary 7.5.

If we do not assume there is at least one hyperedge of size ≥ 3 in Pl-Holant
(
G | EO+

)
, and

t = gcd(S) ≤ 2, then the problem is tractable if and only if S ⊆ {1, 2}. The tractability is due to
Kasteleyn’s algorithm, as there is no hyperedge. In summary, we have the following theorem.
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Theorem 7.15. The problem Pl-Holant
(
G | EO+

)
counts perfect matchings over hypergraphs with

planar incidence graphs, where the hyperedge sizes are prescribed by a set S of positive integers. Let
t = gcd(S). If t ≥ 5 or S ⊆ {1, 2}, then the problem is computable in polynomial time. Otherwise
t ≤ 4, S 6⊆ {1, 2}, and the problem is #P-hard.

8 Full Dichotomy

We are finally ready to prove our main dichotomy theorem. Recall that for a set F of signatures,
F≥3

nd denotes the set of non-degenerate signatures in F of arity at least 3, and F∗ denotes F with
all degenerate signatures [a, b]⊗m replaced by unary [a, b].

Theorem 8.1. Let F be any set of symmetric, complex-valued signatures in Boolean variables.
Then Pl-Holant(F) is #P-hard unless F satisfies one of the following conditions:

1. All non-degenerate signatures in F are of arity at most 2;
2. F is A -transformable;
3. F is P-transformable;
4. F ⊆ V σ ∪ {f ∈ Rσ

2 | arity(f) = 2} for some σ ∈ {+,−};
5. All non-degenerate signatures in F are in Rσ

2 for some σ ∈ {+,−}.
6. F is M -transformable;
7. F ⊆ ZP ∪ M σ

4 for some σ ∈ {+,−}, and the greatest common divisor of the arities of the
signatures in F∗ ∩ P2 is at least 5.

In each exceptional case, Pl-Holant(F) is computable in polynomial time. If F satisfies condition
1, 2, 3, 4, or 5, then Holant(F) is computable in polynomial time without planarity; otherwise
Holant(F) is #P-hard.

Proof. We may assume that F contains no identically 0 signatures. We note that removing any
identically 0 signature from a set does not affect its complexity, being either tractable or #P-hard,
and it does not affect the set F satisfying any of the listed conditions in Case 1 to 7.

If all non-degenerate signatures in F are of arity at most 2, then the problem is tractable
case 1. Otherwise, there is a non-degenerate signature f ∈ F of arity at least 3. By Theorem 6.1,
Pl-Holant(F) is #P-hard unless f ∈ P1 ∪ M2 ∪ A3 ∪ M3 ∪ M4 or f is vanishing. If f ∈ P1 or
f ∈ M2\P2 or f ∈ A3 or f ∈ M3, then we are done by Corollary 5.4 or Lemma 5.8 or Corollary 5.6
or Lemma 5.10 respectively. Therefore, we assume that none of these is the case. This implies that
F≥3

nd is nonempty and that each of its signatures is in P2 or in M4 or vanishing. That is,

∅ 6= F≥3
nd ⊆ P2 ∪ M4 ∪ V .

Suppose there exists some f ∈ F≥3
nd which is in V \ M4. We assume f ∈ V + since the other

case V − is similar. In this case, we show that Pl-Holant(F) is #P-hard, unless F is in Case 4 or
Case 5. Assume that Pl-Holant(F) is not #P-hard. We will discuss non-degenerate signatures of
arity ≥ 3, of arity 2, and degenerate signatures separately.

1. For any g ∈ F≥3
nd , we claim that g ∈ V +. Suppose otherwise, then g ∈ P2 or g ∈ V −. Notice

that the latter covers the case where g ∈ M4 but g 6∈ V + (namely g ∈ M −
4 ). If g ∈ P2, then

Pl-Holant(f, g) is #P-hard by Lemma 4.7. If g ∈ V −, then Pl-Holant(f, g) is #P-hard by
Lemma 4.5 as f 6∈ M4.

2. For any non-degenerate binary signature h ∈ F , it must be that h ∈ R+
2 as otherwise

Pl-Holant(f, h) is #P-hard by Lemma 4.3.
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3. If rd+(g) = 1 for all g ∈ F≥3
nd , then F≥3

nd ⊆ R+
2 by Lemma 2.19. Together with the fact just

proved that all non-degenerate binary in F are in R+
2 , Case 5 is satisfied.

Otherwise there exists g ∈ F≥3
nd such that rd+(g) ≥ 2. Then g ∈ V + by the first item above.

If F contains any degenerate signature v = u⊗m for m ≥ 1 and some unary u that is not
a multiple of [1, i], then by Lemma 4.1, Pl-Holant(g, v) is #P-hard. Hence all degenerate
signatures are multiples of tensor powers of [1, i], which are in V +. It implies that F is in
Case 4.

Now we have that ∅ 6= F≥3
nd ⊆ P2 ∪ M4. We handle this in three cases.

1. Suppose F≥3
nd ⊆ M4. First suppose F≥3

nd ⊆ M σ
4 for some σ ∈ {+,−}. Assume σ = + as σ = −

is similar. Then F≥3
nd ⊆ R+

2 by Lemma 3.9 and 2.19. If all non-degenerate binary signatures
are in R+

2 as well, then this is Case 5 and tractable. Let h be a non-degenerate binary
signature in F that is not in R+

2 . We apply Lemma 4.4, and Pl-Holant(F) is #P-hard unless
h = Z⊗2[a, 0, 1] up to a nonzero factor, where a 6= 0. In this case we apply a Z transformation,
and get Pl-Holant

(
6=2| [a, 0, 1], Z−1F

)
. Then we do a diagonal transformation D =

[
a1/2 0

0 1

]
.

Note that this only changes 6=2 on the left hand side to a nonzero multiple of 6=2. Hence we
have the reduction chain:

Pl-Holant(F) ≡ Pl-Holant
(
6=2 | [a, 0, 1], Z−1F

)

≡ Pl-Holant
(
6=2 | [1, 0, 1],D−1Z−1F

)

≥T Pl-Holant(D−1Z−1F)

Notice that D−1Z−1F contains ExactOnek with k ≥ 3 that is in M3 with I2. Then by
Lemma 5.10, Pl-Holant(F) is #P-hard unless D−1Z−1F ⊆ I2M = M , i.e., F ⊆ ZDM =
ZM . The exceptional case implies that F is M -transformable via Z, and we are in the
tractable Case 6.
Otherwise F≥3

nd contains both f ∈ M +
4 and g ∈ M −

4 . Similarly as above, by Lemma 4.4, any
non-degenerate binary signature in F has to be in R+

2 ∩ R−
2 = {Z⊗2(6=2)} (cf. Lemma 2.19),

or is a nonzero constant multiple of Z⊗2[a, 0, 1] where a 6= 0, as otherwise Pl-Holant(F) is #P-
hard. Moreover, by Lemma 4.6, Pl-Holant(F) is #P-hard, unless all degenerate signatures in
F are of the form [1,±i]⊗m. Note that [1, i] = Z[1, 0] and [1,−i] = Z[0, 1]. When this is the
case, F is M -transformable via Z.

2. Suppose F≥3
nd ⊆ P2. If F contains a non-degenerate binary signature h, then we apply

Lemma 7.12 and Pl-Holant(F) is #P-hard unless h ∈ ZP, or Pl-#CSP2(DZ−1F) ≤T

Pl-Holant(F) for some diagonal transformation D. If it is the latter case, then by Theo-
rem 5.1, either Pl-Holant(F) is #P-hard, or DZ−1F is a subset of TA , P, or T

[
1 1
1 −1

]
M ,

for some diagonal matrix T . We claim that in any of these cases Pl-Holant(F) is tractable.
In fact,
(a) if DZ−1F ⊆ TA , then F is A -transformable as F ⊆ ZD−1TA and [1, 0, 1] (as a row

vector) is transformed into [1, 0, 1](ZD−1T )⊗2, which is [0, 1, 0] ∈ A up to a nonzero
constant;

(b) if DZ−1F ⊆ P, then F is P-transformable as F ⊆ ZD−1P and [1, 0, 1](ZD−1)⊗2 is
[0, 1, 0] ∈ P up to a nonzero constant;

(c) if DZ−1F ⊆ T
[

1 1
1 −1

]
M , then F is M -transformable as F ⊆ ZD−1T

[
1 1
1 −1

]
M and

[1, 0, 1] is transformed to [1, 0, 1](ZD−1T
[

1 1
1 −1

]
)⊗2, which is [1, 0,−1] ∈ M up to a

nonzero constant.
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Hence we may assume that every non-degenerate binary in F is in ZP. Notice that degen-
erate signatures are always in P under any transformation. Also F≥3

nd is a subset of ZP

because F≥3
nd ⊆ P2 and P2 is just weighted equalities under Z-transformation. It implies

that F is P-transformable under the Z transformation. Hence we are in Case 3.
3. Finally, suppose neither of the above is the case. Then there are f, g ∈ F≥3

nd with f ∈ M4

and g ∈ P2. If F≥3
nd contains both f ∈ M +

4 and f ′ ∈ M −
4 , then Pl-Holant(F) is #P-hard by

Lemma 7.11. Otherwise F≥3
nd ∩ M4 ⊆ M +

4 or M −
4 . Let G = F∗ ∩ P2, and let d be the gcd

of the arities of the signatures in G. Then G contains at least one non-degenerate signature
g of arity ≥ 3. If d ≤ 4, then Pl-Holant(F) is #P-hard by Lemma 7.13. Otherwise d ≥ 5. If
F contains a non-degenerate binary signature h, then we apply Lemma 7.12 and by a similar
analysis as in the case of “F≥3

nd ⊆ P2” above, we are done unless every such h is in ZP.
Ignoring a nonzero factor, it implies that either h = Z⊗2[1, 0, a] where a 6= 0 or h = Z⊗2(6=2).
If h = Z⊗2[1, 0, a], then h ∈ F∗ ∩ P2, and it contradicts d ≥ 5. Hence h = Z⊗2(6=2). If
there is any degenerate v = (Z[a, b])⊗m in F with ab 6= 0, then Z[a, b] ∈ F∗ ∩ P2 and it also
contradicts d ≥ 5.
In summary, Pl-Holant(F) is #P-hard unless F≥3

nd ⊆ P2 ∪ M4, F≥3
nd ∩ M4 ⊆ M σ

4 for some
σ ∈ {+,−}, the greatest common divisor of the arities of the signatures in F∗ ∩ P2 is at
least 5. Every non-degenerate binary in F is of the form Z⊗2(6=2), and every degenerate
in F is of the form (Z[1, 0])⊗m or (Z[0, 1])⊗m. Notice that P2, Z⊗2(6=2), (Z[1, 0])⊗m, and
(Z[0, 1])⊗m are all in ZP. Hence the exceptional case implies that F ⊆ ZP ∪ M σ

4 for some
σ ∈ {+,−} and the greatest common divisor of the arities of the signatures in F∗ ∩ P2 is at
least 5. This is tractable Case 7.

The tractability of Holant(F) in Case 1, Case 2, Case 3, Case 4, and Case 5 follows from the
Holant dichotomy Theorem 2.21, which also implies that Holant(F) is #P-hard otherwise. The
tractability of Pl-Holant(F) in Case 6 follows from Theorem 2.7. The tractability of Pl-Holant(F)
in Case 7 follows from Lemma 7.14. This completes the proof.
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A Holant Dichotomy: Is the FKT Algorithm Universal?

Part II: Planar #CSP2 Dichotomy

In Part II of this paper, we prove Theorem A.2, which is the complexity dichotomy theorem
of Pl-#CSP2(F), where F is a set of complex-valued symmetric signatures on Boolean variables.
After we define some relevant notions, we give an outline of the proof of Theorem A.2. Throughout
Part II, we denote by α (respectively ρ) any quantity that satisfies α4 = −1 (respectively ρ4 = 1).

A Preliminaries

We will first define some tractable families of signatures that are expressible under a holographic
transformation, specific to the Pl-#CSP2 framework.

Definition A.1. Let Tk =
{
[ 1 0
0 ω ] | ωk = 1

}
be a set of diagonal matrices of order dividing k and

Tk = T2k \ Tk =
{
[ 1 0
0 ω ] | ωk = −1

}
. Let A † = T4A and M̂ † = T2M̂ be the sets of signatures

transformed by T4 from the Affine family A and transformed by T2 from M̂ , respectively, where
for a class of signatures C , we denote

TkC = {T⊗ arity(f)f | T ∈ Tk and f ∈ C }.

Let
Ã = A ∪ A † and M̃ = M̂ ∪ M̂ †

be the A -transformable and M -transformable signatures for Pl-#CSP2.

Recall that M̂ = HM is the set of Matchgate signatures M transformed by the Hadamard
basis H =

[
1 1
1 −1

]
. Note that A is unchanged under the transformation by H, and thus there is no

need to define Â . Also note that P is unchanged under any diagonal matrix. Thus there is no need
to define P†. For T = [ 1 0

0 ω ] ∈ T4 with ω4 = 1, TA = A . Thus Ã is A under transformations

by T = [ 1 0
0 ω ] ∈ T8. For such T , we have (=2n)T⊗2n ∈ A . Hence Ã is A -transformable for

Pl-#CSP2. Similarly, for T =
[

1 0
0 ±1

]
, TH =

[
1 1

±1 ∓1

]
= either H or H [ 0 1

1 0 ], and [ 0 1
1 0 ] M = M .

Thus TM̂ = M̂ , and M̃ is M transformed under TH for all T ∈ T4. Also note that for all such
T , we have (=2n)(TH)⊗2n ∈ M . Hence M̃ is M -transformable for Pl-#CSP2.

In the proof of No-Mixing of different tractable sets, because of a particular order in which we
carry out the proof, to make an overall logical structure more apparent we introduce the following
notations

S1 = M̂ , S2 = M̂ †, S3 = A †, S4 = A , and S5 = P.
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We will prove the following Main Theorem of Part II. It is not hard to see that this is a
rephrase of Theorem 5.1 from Part I. It follows from Theorem C.13, Theorem H.5 and Theorem
G.4, which will be shown in later sections. It follows from the definition of P-transformability,
A -transformability and M -transformability that if F ⊆ Sk for any 1 ≤ k ≤ 5, then Pl-#CSP2(F)
is tractable.

Theorem A.2. For any set of complex-valued symmetric signatures F on Boolean variables, if
F ⊆ P, or A , or A †, or M̂ , or M̂ †, then Pl-#CSP2(F) is tractable. Otherwise, Pl-#CSP2(F)
is #P-hard.

Proof Outline. We now give an outline of the proof of Theorem A.2. The overall plan is to break
the proof into two main steps.

The first step is to prove the dichotomy theorem for Pl-#CSP2(F) when there is at least one
nonzero signature of odd arity in F . In this case we can make use of Lemma B.2 that shows that
we can simulate Pl-#CSP(F) by Pl-#CSP2(F) if F includes a unary signature [a, b] with ab 6= 0.
Then we can apply the known dichotomy Theorem A.22 for Pl-#CSP1. However this strategy
(provably) cannot work in the case when every signature in F satisfies the parity constraint. In
that case we employ other means. This first step of the proof is relatively uncomplicated.

The second step is to deal with the case when all nonzero signatures in F have even arity. This is
where the real difficulties lie. In this case it is impossible to directly construct any unary signature.
So we cannot use Lemma B.2 in this case. But Lemma B.3 provides a way to simulate Pl-#CSP(F)
by Pl-#CSP2(F) in a global fashion, if F includes some tensor power of the form [a, b]⊗2 where
ab 6= 0. Moreover, we have a lucky break (for the complexity of the proof) if F includes a signature

that is in M̂ \ (P ∪ Ã ). In this case, we can construct a special binary signature, and then use
Lemma E.2 to obtain [1, 1]⊗2 by interpolation. This proof uses the theory of cyclotomic fields. This
simplifies the proof greatly. For all other cases (when F has only even arity signatures), the proof
gets going in earnest—we will attempt an induction on the arity of signatures.

The lowest arity of this induction will be 2. We will try to reduce the arity to 2 whenever possible;
however for many cases an arity reduction to 2 destroys the #P-hardness at hand. Therefore the
true basis of this induction proof of Pl-#CSP2 starts with arity 4. Consequently we will first prove
a dichotomy theorem for Pl-#CSP2(f), where f is a signature of arity 4. This proof is presented
in Section D. Several tools will be used. These include the rank criterion for redundant signatures,
Theorem A.21 for arity 2 signatures, and a trick we call the Three Stooges by domain pairing.

However in the next step we do not attempt a general Pl-#CSP2 dichotomy for a single signature
of even arity. This would have been natural at this point, but it would have been too difficult.
We will need some additional leverage by proving a conditional No-Mixing Lemma for pairs of
signatures of even arity. So, seemingly taking a detour, we prove that for two signatures f and g
both of even arity, that individually belong to some tractable class, but do not belong to a single
tractable class in the conjectured Pl-#CSP2 dichotomy (that is yet to be proved), the problem
Pl-#CSP2(f, g) is #P-hard. We prove this No-Mixing Lemma for any pair of signatures f and g
both of even arity, not restricted to arity 4. Even though at this point we only have a dichotomy
for a single signature of arity 4, we prove this No-Mixing Lemma for higher even arity pairs f and
g by simulating two signatures f ′ and g′ of arity 4 that belong to different tractable sets, from
that of Pl-#CSP2(f, g). After this arity reduction (within the No-Mixing Lemma), we prove that
Pl-#CSP2(f ′, g′) is #P-hard by the dichotomy for a single signature of arity 4. After this, we prove
a No-Mixing Lemma for a set of signatures F of even arities, which states that if F is contained in
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the union of all tractable classes, then it is still #P-hard unless it is entirely contained in a single
tractable class. Note that at this point we still only have a conditional No-Mixing Lemma in the
sense that we have to assume every signature in F belongs to some tractable set.

We then attempt the proof of a Pl-#CSP2 dichotomy for a single signature of arbitrary even
arity. This uses all the previous lemmas, in particular the (conditional) No-Mixing Lemma for a
set of signatures. However, after completing the proof of this Pl-#CSP2 dichotomy for a single
signature of even arity, the No-Mixing Lemma becomes absolute.

Finally the dichotomy for a single signature of even arity is logically extended to a dichotomy
theorem for Pl-#CSP2(F) where all signatures in F have even arity. Together with the first main
step when F contains some nonzero signature of odd arity, this completes the proof of Theorem A.2.

In the rest of this Section A, we will introduce the operators ∂ and
∫

, and give some charac-
terizations of the tractable classes. We will also introduce some preliminary lemmas, including one
using the domain pairing technique, and list some known dichotomies. In Section B, we discuss a
technique to simulate Pl-#CSP by Pl-#CSP2. Section C proves Theorem A.2 in the case when F
contains at least one nonzero signature of odd arity. Section D proves the base case of the even
arity case of Theorem A.2 when F consists of a single signature of arity 4. Section E gives an appli-
cation of cyclotomic field which simplifies the proof of Theorem A.2 when F contains a signature in
M̃ \ (P ∪ Ã ). Section F proves the conditional No Mixing lemmas for a pair of signatures of even
arity. Section G generalizes the No Mixing lemmas to a set of signatures of even arity. Section H
finishes the proof of Theorem A.2.

Remark 4. We occasionally make some remarks (such as Remark 5 and Remark 6 in Subsection E.2)
to explain the complications forced upon the proof by various reasons, and why another more
straightforward approach would not succeed. These remarks are not logically necessary to the
proof, but hopefully they provide some insight and point out pitfalls in the proof.

The next lemma is a simple fact that is used many times. It essentially says that the set
{0, 1, i,−1,−i,∞} is closed set-wise under the mapping z 7→ z+1

z−1 . The proof is straightforward, so
we omit it.

Lemma A.3. Let x 6= y and λ = x+y
x−y . Then λ4 6∈ {0, 1} iff x4 6= y4 and xy 6= 0.

Definition A.4 (Derivative). Let f and g be two symmetric signatures of arities n and m respec-
tively, and n > m. By connecting all m input edges of g to f , we get a planar {f, g}-gate with a
signature of arity n − m. This derivative signature will be denoted by ∂g(f). If kn < m and we
connect k copies of g to f , which is the same as forming ∂g(f) sequentially k times, the resulting
repeated derivative signature is denoted by ∂k

g (f). If g = [1, 0, 1], we denote ∂g(f) simply by ∂(f).

Calculus: Our proof will make substantial use of a calculus using this notion of derivatives. This
calculus is essentially a systematic way to calculate the signatures of some gadget constructions.
In a Pl-Holant problem Pl-Holant(G | F), if g ∈ G and f ∈ F , then we say that g is from
the LHS and f is from the RHS. If f has arity n and g has arity m, and n > m, then we
can form the signature ∂g(f) and Pl-Holant(G | F ∪ {∂g(f)}) ≤T Pl-Holant(G | F). If m > n
we can form ∂f (g) and Pl-Holant(G ∪ {∂f (g)} | F) ≤T Pl-Holant(G | F). In particular, for
Pl-#CSP2(F) ≡ Pl-Holant(EQ2 | F) we consider all (=2k) as from the LHS. In this case if h ∈ F
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with arity < n then we can also form ∂h(f), by first moving h to LHS via (=2) ∈ EQ2, and
then Pl-#CSP2(F ∪ {∂h(f)}) ≤T Pl-#CSP2(F). Note that if we discuss Pl-#CSP4(F) then this
operation ∂h(f) is in general not permissible, and has to be justified in each individual case, e.g.
when h has even arity and one can construct [1, 0, 1]⊗2 in the LHS.

To familiarize the readers with this calculus, we list some simple calculations below, which we
will use often in our proofs freely without comment.

For any g, the operator ∂g(·) is a linear operator. It also depends on g linearly.
By definition ∂([f0, f1, . . . , fn]) = [f0 + f2, f1 + f3, . . . , fn−2 + fn] has arity n − 2.

1. If f = [s, t]⊗n, then
• ∂k

[a,b](f) = (as + bt)k[s, t]⊗n−k if n > k.

• ∂k
[a,b,c](f) = (as2 + 2bst + ct2)k[s, t]⊗n−2k if n > 2k;

in particular, ∂k(f) = (s2 + t2)k[s, t]⊗n−2k.
• ∂k

=4
(f) = (s4 + t4)k[s, t]⊗n−4k, if n > 4k.

• For g = [g0, g1, . . . , gm], we have ∂g(=n) = [g0, 0, . . . , 0, gm] of arity n−m, where n > m.
2. Let f be of arity n and fk = (±1)k(n − 2k) (0 ≤ k ≤ n), then

• ∂(f) has arity n′ = n − 2 and (∂(f))k = 2(±1)k(n′ − 2k). If n is odd, then ∂
n−1

2 (f) =

2
n−1

2 [1,∓1].
• ∂=4(f) has arity n′′ = n − 4 and (∂=4(f))k = 2(±1)k(n′′ − 2k).

If n ≡ 1 (mod 4), then ∂
n−1

4
=4 (f) = 2

n−1
4 [1,∓1].

If n ≡ 3 (mod 4), then ∂(∂
n−3

4
=4 (f)) = 2

n+1
4 [1,∓1].

3. Let f be of arity n and fk = (±i)k(n − 2k) (0 ≤ k ≤ n), then
• ∂(f) = 4[1,±i]⊗n−2.
• ∂=4(f) has arity m = n − 4 and (∂=4(f))k = 2(±i)k(m − 2k).

If n ≡ 1 (mod 4), then ∂
n−1

4
=4 (f) = 2

n−1
4 [1,∓i].

If n ≡ 3 (mod 4), then ∂(∂
n−3

4
=4 (f)) = 2

n+5
4 [1,±i].

Now we define an inverse operator
∫
(·) to ∂. Just like the usual calculus there is a certain

non-uniqueness in the expression in an indefinite integral; this non-uniqueness is addressed in
Lemma A.5. One reasonable definition for

∫
([f0, f1, . . . , fn]) is F = [F0, F1, . . . , Fn+2] such that

Fk =
∑

s≥0

(−1)sfk+2s = fk − fk+2 + fk+4 − . . .

where we define fk = 0 for all k > n. Clearly ∂(F ) = f .

Lemma A.5. Let F and G be symmetric signatures of arity n ≥ 3 and suppose ∂(F ) = ∂(G).
Then F − G = x[1, i]⊗n + y[1,−i]⊗n, for some constants x and y.

Proof. The signature H = F − G satisfies ∂(H) = 0, and thus satisfies the second order recurrence
relation Hk + Hk+2 = 0 for 0 ≤ k ≤ n − 2. Hence there exist constants x and y such that
H = x[1, i]⊗n + y[1,−i]⊗n.

Thus
∫
(·) is well-defined up to an additive term x[1, i]⊗n + y[1,−i]⊗n. In this paper, we choose

to write the expression
∫

(f) by the following definition when a certain special expression of f exists.
This is more convenient for our proofs.
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Definition A.6. For n ≥ 3,
•
∫

(0) = 0.
• For a2 + b2 6= 0,

∫
([a, b]⊗n−2) = 1

a2+b2
[a, b]⊗n.

•
∫

([1,±i]⊗n−2) has arity n and [
∫

([1,±i]⊗n−2)]k = 1
4 (±i)k(n − 2k).

• If the signature g has arity n − 2 and gk = (±1)k(n − 2 − 2k), then
∫
(g) has arity n and

[
∫

(g)]k = 1
2(±1)k(n − 2k).

• If the signature g has arity n − 2 and gk = (±i)k(n − 2 − 2k), then
∫

(g) has arity n and
[
∫

(g)]k = (−n
2k + 1

2k2)(±i)k.

Clearly for all f where
∫

(f) is given in the above definition, ∂[
∫

(f)] = f .
When we prove the dichotomy theorem for Pl-#CSP2(f), where f has arity n, we can get a

signature f ′ of arity n − 2 by taking a self loop with f , i.e., f ′ = ∂(f). Clearly Pl-#CSP2(f ′) ≤T

Pl-#CSP2(f). If f ′ /∈ P∪Ã ∪M̃ , then by induction Pl-#CSP2(f ′) is #P-hard. Thus Pl-#CSP2(f)
is also #P-hard. Definition A.6 allows us to write down an explicit expression for

∫
(f ′) for all cases

when f ′ ∈ P ∪ Ã ∪ M̃ .
The following is an explicit list of

∫
(f ′) for f ′ = ∂(f) ∈ P ∪ Ã ∪ M̃ . We can recover f up to

the constants x, y from ∂(f) by Lemma A.5. This list is for the convenience of the readers.

Proposition A.7 (Explicit List for
∫
(f ′)).

•
∫

(f ′) ≡ 0 if f ′ ≡ 0.
•
∫

([1, 0]⊗n−2 + a[0, 1]⊗n−2) = [1, 0]⊗n + a[0, 1]⊗n.
•
∫

([1, γ]⊗n−2 + ir[1,−γ]⊗n−2) = 1
1+γ2 [1, γ]⊗n + ir

1+γ2 [1,−γ]⊗n where γ2 6= −1, γ8 = 1.

•
∫

([s, tρ]⊗n−2 ± [t, sρ]⊗n−2) = 1
s2+ρ2t2

[s, ρt]⊗n ± 1
ρ2s2+t2

[t, ρs]⊗n, where ρ4 = 1, st 6= 0, s4 6= t4.

• [
∫

(f ′)]k = 1
2(±1)k(n − 2k) if f ′ has arity n − 2 and f ′

k = (±1)k(n − 2 − 2k).
• [
∫

(f ′)]k = 1
4(±i)k(n − 2k) if f ′ has arity n − 2 and f ′ = [1,±i]⊗n−2.

• [
∫

(f ′)]k = 1
4 [ik + ir(−i)k](n − 2k) if f ′ has arity n − 2 and f ′ = [1, i]⊗n−2 + ir[1,−i]⊗n−2.

• [
∫

(f ′)]k = (−n
2k + 1

2k2)(±i)k if f ′ has arity n − 2 and f ′
k = (±i)k(n − 2 − 2k).

The following lemma is used to determine whether a binary signature belongs to various
tractable sets P, A , A †, M̂ , and M̂ †. It can be proved directly by the definition.

Lemma A.8. For any binary symmetric signature f ,
• f ∈ P iff f = [a, 0, c] or f = [0, b, 0] or f = [a, b]⊗2.
• f ∈ A iff up to a scalar, f = [1, ρ,−ρ2] where ρ4 = 1, or [0, 1, 0], or [1, 0, ρ] where ρ4 = 1, or

[x, y]⊗2 where (x4 = y4 6= 0 or xy = 0).
• f ∈ A † iff up to a scalar, f = [1, α,−α2] where α4 = −1, or [0, 1, 0], or [1, 0, ρ] where ρ4 = 1,

or [x, y]⊗2 where (x4 = −y4 6= 0 or xy = 0).

• f ∈ M̂ iff f = [a, b, a] or [a, 0,−a].

• f ∈ M̂ † iff f = [a, b,−a] or [a, 0, a].

Corollary A.9 gives some necessary conditions for a binary signature to belong to a tractable set.

Corollary A.9. For any binary signature f = [a, b, c],
• f ∈ P =⇒ f satisfies either the parity constraint or b2 = ac.
• f ∈ A =⇒ a2 = c2 or b = 0. If f ∈ A \ P, then f = [1, ρ,−ρ2], ρ4 = 1.
• f ∈ A † =⇒ a2 = −c2 or b = 0. If f ∈ A † \ P, then f = [1, α,−α2], α4 = −1.

• f ∈ Ã =⇒ the norms of all nonzero entries are equal.
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• f ∈ M̃ =⇒ a2 = c2.

Furthermore, all signatures in each tractable set satisfy a second order recurrence relation.

Definition A.10. Let f = [f0, f1, . . . , fn]. If there exist constants a, b and c, not all zero, such
that afk − bfk+1 + cfk+2 = 0 for 1 ≤ k ≤ n − 2, then we say f has type 〈a, b, c〉, and it is denoted
by f ∈ 〈a, b, c〉.

For a non-degenerate symmetric signature f of arity at least 3, if f has type 〈a, b, c〉, its type is
uniquely determined up to a nonzero multiple. The next lemma states this type information for the
various tractable sets. We can use the lemma to check whether a symmetric signature can possibly
be in a tractable set.

Lemma A.11. Let f ∈ P ∪ Ã ∪ M̃ be non-degenerate and have arity ≥ 3.
• If f ∈ P then f ∈ 〈0, 1, 0〉.
• If f ∈ A then f ∈ 〈0, 1, 0〉 or f ∈ 〈1, 0,±1〉. If f ∈ A \ P then f ∈ 〈1, 0,±1〉.
• If f ∈ A † then f ∈ 〈0, 1, 0〉 or f ∈ 〈1, 0,±i〉. If f ∈ A † \ P then f ∈ 〈1, 0,±i〉.
• If f ∈ M̂ then f ∈ 〈0, 1, 0〉 or f ∈ 〈1, c, 1〉. If f ∈ M̂ \ (P ∪ Ã ) then f ∈ 〈1, c, 1〉 with c 6= 0.

• If f ∈ M̂ † then f ∈ 〈0, 1, 0〉 or f ∈ 〈1, c,−1〉. If f ∈ M̂ † \ (P ∪ Ã ) then f ∈ 〈1, c,−1〉 with
c 6= 0.

The following two corollaries follow from Lemma A.8 for the binary case, and Lemma A.11 for
arity n ≥ 3.

Corollary A.12. If f ∈ A \ P, then f /∈ A †. Similarly, If f ∈ A † \ P, then f /∈ A .

Corollary A.13. If f ∈ M̂ \ (P ∪ Ã ), then f /∈ M̂ †. Similarly, if f ∈ M̂ † \ (P ∪ Ã ), then

f /∈ M̂ .

The following lemma gives a characterization for M̃ \ (P ∪ Ã ).

Lemma A.14. Let f = [f0, . . . , fn] be a symmetric signature of arity n. Then f ∈ M̂ \ (P ∪ Ã )
iff

• n = 2 and f = λ[1, a, 1], where a4 6∈ {0, 1} and λ 6= 0; or
• n ≥ 3 and f = [s, t]⊗n ± [t, s]⊗n, where st 6= 0 and s4 6= t4; or
• n ≥ 3 and fk = λ(±1)k(n − 2k), where λ 6= 0.

Similarly, f ∈ M̂ † \ (P ∪ Ã ) iff
• n = 2 and f = λ[1, b,−1], where b4 6∈ {0, 1} and λ 6= 0; or
• n ≥ 3 and f = [s, ti]⊗n ± [t, si]⊗n where st 6= 0 and s4 6= t4; or
• n ≥ 3 and fk = λ(±i)k(n − 2k), where λ 6= 0.

Proof. We prove the lemma for M̂ . The proof for M̂ † follows from a holographic transformation
by [ 1 0

0 i ].

By Lemma A.8, a binary symmetric signature f ∈ M̂ has the form [a, b, a] or [a, 0,−a]. Since
[a, 0,−a] ∈ A as a multiple of [1, 0,−1], we exclude it. For [a, b, a], if ab = 0, then f ∈ P.
Also if a4 = b4, then [a, b, a] ∈ A , being a multiple of [1,±1]⊗2 or [1,±i, 1]. This gives the form

f = λ[1, b, 1] with b4 6∈ {0, 1} and λ 6= 0. Conversely, any f of this form belongs to M̂ \ (P ∪ Ã ).

For arity n ≥ 3, f ∈ M̂ iff f takes the form [s, t]⊗n ± [t, s]⊗n or fk = λ(±1)k(n − 2k). For the

latter case f ∈ M̂ \ (P ∪ Ã ) follows from its type 〈1,±2, 1〉.
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For f = [s, t]⊗n ± [t, s]⊗n, if st = 0, then f ∈ P. If s2 = t2, then f is degenerate, thus f ∈ P.
If s2 = −t2, then f ∈ A . Conversely, if st 6= 0 and s4 6= t4, then f is non-degenerate and fk has
type 〈1, s

t + t
s , 1〉. Note that s

t + t
s 6= 0 by s4 6= t4. Thus f ∈ M̂ \ (P ∪ Ã ) by Lemma A.11.

By the second recurrence relation of the signatures in M̃ \ (P ∪ Ã ), we have the following
lemma that will be used in the proof of Theorem C.11.

Corollary A.15. If f ∈ M̃ \ (P ∪ Ã ), then f does not satisfy parity constraints.

Proof. For f ∈ M̂ \ (P ∪ Ã ), if f has arity 2, then f = λ[1, a, 1] for some λ 6= 0, a4 6= 0, 1 by
Lemma A.14. Thus it does not satisfy parity constraints.

For f with arity n ≥ 3, by Lemma A.11, there exists a constants c 6= 0 such that f ∈ 〈1, c, 1〉.
Note that there exists fk 6= 0, where 1 ≤ k ≤ n− 1 by f /∈ P. If f satisfies parity constraints, then
fk−1 = fk+1 = 0. Moreover, by fk−1 − cfk + fk+1 = 0, we have c = 0. This is a contradiction.

The proof for f ∈ M̂ † \ (P ∪ Ã ) follows from a holographic transformation by [ 1 0
0 i ].

The following lemma gives a characterization of nonzero signatures in M̂ . A Gen-Eq is a
signature of the form f = [a, 0, . . . , 0, b], called a generalized equality (with a = 0 or b = 0 allowed.)

Lemma A.16. A Gen-Eq signature f is in M̂ iff f = λ[1, 0, . . . , 0,±1], for some λ.

Suppose f is a symmetric signature that is not a Gen-Eq. Then f ∈ M̂ iff f satisfies a second
order recurrence fk − cfk+1 + fk+2 = 0 (for 0 ≤ k ≤ arity(f)−2) and the following conditions hold.

If f has arity 2n, then
• fn−k = fn+k (for 0 ≤ k ≤ n), fn 6= 0, c = 2fn−1

fn
; or

• fn−k = −fn+k (for 0 ≤ k ≤ n), fn−1 6= 0, c = fn−2

fn−1
.

If f has arity 2n + 1, then
• fn−k = fn+1+k (for 0 ≤ k ≤ n), fn 6= 0, c = fn−1

fn
+ 1; or

• fn−k = −fn+1+k (for 0 ≤ k ≤ n), fn 6= 0, c = fn−1

fn
− 1.

Proof. Symmetric signatures in M̂ have the following forms, f = [s, t]⊗m ± [t, s]⊗m, or fk =

λ(±1)k(m − 2k) (0 ≤ k ≤ m). A Gen-Eq f ∈ M̂ iff it takes the first form with st = 0. Suppose f
is not a Gen-Eq, then we have st 6= 0 in the first form. In particular f is not identically zero. In
both forms, f satisfies a second order recurrence fk − cfk+1 + fk+2 = 0 (0 ≤ k ≤ m − 2), for some
c. For example in the first form with a tensor sum, the product of the eigenvalues s/t · t/s = 1.

For even arity m = 2n, and f = [s, t]⊗2n + [t, s]⊗2n, we have the symmetry fn+k = fn−k. Thus
fn−1 = fn+1 and cfn = 2fn−1. If fn = 0, then f is identically zero, a contradiction. Therefore, we
have c = 2fn−1

fn
.

For f = [s, t]⊗2n − [t, s]⊗2n, or fk = λ(±1)k(2n − 2k), we have fn+k = −fn−k. Thus we have
fn = 0 and cfn−1 = fn−2. If fn−1 = 0, then f is identically zero, a contradiction. Therefore, we
have c = fn−2

fn−1
.

Conversely, the second order recurrence fk − cfk+1 + fk+2 = 0 gives the expression f =
c1[s, t]

⊗2n +c2[t, s]
⊗2n, or in the double root case when c = ±2, we have the form fk = λ(±1)k(2n−

µk). If fn+k = −fn−k, then fn = 0, the double root case must be fk = λ(±1)k(2n − 2k), and the
tensor sum takes the form f = [s, t]⊗2n − [t, s]⊗2n. If fn+k = fn−k, then we only have the form
f = [s, t]⊗2n + [t, s]⊗2n.

For odd arity, the proof is similar. We omit it here.
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(a) (b)

Figure 24: Two gadgets used to obtain [1, 0,−1]⊗2. The circle vertices are assigned f
and the square vertices are assign =4.

Corollary A.17. If f ∈ M̂ † has even arity 2n, then for all 0 ≤ k ≤ 2n,

fk = f2n−k or fk = −f2n−k

and the signs strictly alternate.

Proof. By definition, M̂ † = [ 1 0
0 i ]

⊗2n M̂ . By Lemma A.16, for some ǫ = ±1, we have in−kfn−k =
ǫin+kfn+k for all k. The Corollary follows.

In the proof of Pl-#CSP2 dichotomy, we often use the following Corollary. It gives a charac-
terization of a signature of arity 4 in M̃ . It follows directly from Lemma A.16 and the definition
of M̂ †.

Corollary A.18. An arity 4 signature f ∈ M̂ has the following forms:
• [u, v, w, v, u] and (u + w)w = 2v2; or
• [u, v, 0,−v,−u].

An arity 4 signature f ∈ M̂ † has the following forms:
• [u, v, w,−v, u] and (u − w)w = 2v2,
• [u, v, 0, v,−u].

The following lemma can be proved by domain pairing. We can use it to derive #P-hardness
of Pl-#CSP2 problems by applying the known dichotomy of Pl-#CSP.

Lemma A.19. Suppose f = [f0, f1, . . . , f2n] is a symmetric signature of arity 2n. Let g =
[f0, f2, . . . , f2n] be a symmetric signature of arity n consisting of all even indexed entries of f .
Then

Pl-#CSP(g) ≤ Pl-#CSP2(f).

Proof. For any instance of Pl-#CSP(g), we replace each edge e by two edges that connect the same
incident nodes of e. For each variable node that is connected to k edges, we replace its label =k

by =2k. We replace each occurrence of g by f as a constraint. Then the new instance is a problem
in Pl-#CSP2(f) and has the same value as the given instance of Pl-#CSP(g), because gk = f2k.
Note that the values f2k+1 with an odd index contribute nothing to the partition function in this
instance.

The case when f = [1, i]⊗4 + a[1,−i]⊗4 poses some special difficulty, mainly because ∂(f) is
identically 0. The following lemma shows that in this case, with a 6= 0, we can construct [1, 0,−1]⊗2

in the LHS in a Pl-Holant problem with f on the RHS. Its utility is that after a holographic
transformation by [ 1 0

0 i ] or by
[

1 1
i −i

]
= [ 1 0

0 i ]
[

1 1
1 −1

]
we have [1, 0, 1]⊗2 on the LHS.
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Lemma A.20. Let F be a set of signatures containing f = [1, i]⊗4 + a[1,−i]⊗4. Then

Pl-Holant([1, 0,−1]⊗2 ∪ EQ2 | F) ≡ Pl-#CSP2(F).

Proof. Suppose a 6= −1 and consider the gadget in Figure 24a. We assign f to the circle vertex
and =4 to the square vertices. This gives (1 + a)[1, 0,−1]⊗2 on the left as desired.

Otherwise a = −1. Consider the gadget in Figure 24b. We assign f to the circle vertices and
=4 to the square vertices. This gives −8[1, 0,−1]⊗2 on the left as desired.

Coming up next are a couple of complexity dichotomy theorems that were previously shown.
They are also quoted in Section 2 of Part I. Here we restate them for easier reference. The first is a
dichotomy theorem about counting complex weighted graph homomorphisms over degree prescribed
graphs. It includes Pl-#CSP2(f), where f is a symmetric binary signature, as a special case. This
is also quoted as Theorem 2.24 in Part I.

Theorem A.21 (Theorem 3 in [8]). Let S ⊆ Z+ contain k ≥ 3, let G = {=k| k ∈ S}, and let
d = gcd(S). Further suppose that f0, f1, f2 ∈ C. Then Pl-Holant ([f0, f1, f2] | G) is #P-hard unless
one of the following conditions holds:

1. f0f2 = f2
1 ;

2. f0 = f2 = 0;
3. f1 = 0;
4. f0f2 = −f2

1 and fd
0 = −fd

2 6= 0;
5. fd

0 = fd
2 6= 0.

In any exceptional case, the problem is computable in polynomial time.

Theorem A.21 is the original statement as in [8]. It is explicit and easy to apply. Conceptually,
it can be restated as Theorem A.21′, which supports the putative form of the Pl-#CSPd dichotomy.

Theorem A.21′ (Theorem 3 in [8]). Let S ⊆ Z+ contain k ≥ 3, let G = {=k| k ∈ S}, and
let d = gcd(S). Further suppose that f is a non-degenerate, symmetric, complex-valued binary
signature in Boolean variables. Then Pl-Holant (f | G) is #P-hard unless f satisfies one of the
following conditions, in which case, the problem is computable in polynomial time:

1. there exists T ∈ T4d such that T⊗2f ∈ A ;
2. f ∈ P;
3. there exists T ∈ T2d such that T⊗2f ∈ M̂ .

The following theorem is the dichotomy theorem of Pl-#CSP(F), where F is a set of symmetric
signatures. This is also quoted as Theorem 2.25 in Part I.

Theorem A.22 (Theorem 19 in [20]). Let F be any set of symmetric, complex-valued signatures

in Boolean variables. Then Pl-#CSP(F) is #P-hard unless F ⊆ A , F ⊆ P, or F ⊆ M̂ , in which
case the problem is computable in polynomial time.

We repeat the definition of redundant matrices in Section 2.7.

Definition A.23 (Definition 6.1 in [6]). A 4-by-4 matrix is redundant if its middle two rows and
middle two columns are the same.

An example of a redundant matrix is the signature matrix of a symmetric arity 4 signature.
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Definition A.24 (Definition 6.2 in [6]). The signature matrix of a symmetric arity 4 signature
f = [f0, f1, f2, f3, f4] is

Mf =




f0 f1 f1 f2

f1 f2 f2 f3

f1 f2 f2 f3

f2 f3 f3 f4


 .

This definition extends to an asymmetric signature g as

Mg =




g0000 g0010 g0001 g0011

g0100 g0110 g0101 g0111

g1000 g1010 g1001 g1011

g1100 g1110 g1101 g1111


 .

When we present g as an F-gate, we order the four external edges ABCD counterclockwise. In Mg,
the row index bits are ordered AB and the column index bits are ordered DC, in reverse order. This
is for convenience so that the signature matrix of the linking of two arity 4 F-gates is the matrix
product of the signature matrices of the two F-gates.

If Mg is redundant, we also define the compressed signature matrix of g as

M̃g =



1 0 0 0
0 1

2
1
2 0

0 0 0 1


Mg




1 0 0
0 1

2 0
0 1

2 0
0 0 1


 .

The definition of compressed signature matrix is a slight change from [20] where M̃g

[
1 0 0
0 2 0
0 0 1

]
is

called by that name. It does not affect the following lemma. We repeat the following lemma from
[20], which is very convenient to apply.

Lemma A.25 (Corollary 3.8 in [20]). Let f be an arity 4 signature with complex weights. If Mf

is redundant and M̃f is nonsingular, then Pl-Holant(f) is #P-hard.

B Reduction from Pl-#CSP to Pl-#CSP2

Definition B.1. For k ≥ 1, ℓ ≥ 0 and any ω, we define Eℓ
k(ω) = [1, 0, . . . , 0, ωℓ] to be a signature

of arity k, and define E(ω) = {Eℓ
k(ω) | k ≡ ℓ (mod 2)}. We also write Eℓ

k for Eℓ
k(ω) when ω is

clear from the context.

The following lemma shows that if we have a unary [1, ω] ∈ F with ω 6= 0, then either F is
contained in one single tractable set or Pl-#CSP2(F) is #P-hard. We will use this lemma for the
case that F contains at least one nonzero signature of odd arity. The proof of this lemma also
demonstrates in a simple setting the idea that will be used in the proof of Lemma B.3.

Lemma B.2. Let ω 6= 0 and let F be a set of symmetric signatures containing [1, ω] ∈ F . If

F * P, F * A , F * A †, F * M̂ , and F * M̂ †, then Pl-#CSP2(F) is #P-hard.
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Proof. Firstly, we have Ek
k (ω) = ∂k

[1,ω](=2k) of arity k on the LHS in Pl-#CSP2(F), for all k ≥ 1.

By a holographic transformation using T−1, where T = [ 1 0
0 ω ], we have (Ek

k (ω))T−1 = (=k) on the
LHS, and

Pl-#CSP(TF) ≤T Pl-Holant(EQ ∪ EQ2T
−1 | TF) ≤T Pl-#CSP2(F),

where EQ on LHS of the Holant instance comes from Ek
k (ω) in the second step of the reduction.

If TF * P, TF * A and TF * M̂ , then Pl-#CSP(TF) is #P-hard by Theorem A.22. Thus
Pl-#CSP2(F) is #P-hard.

Otherwise, TF ⊆ P, TF ⊆ A or TF ⊆ M̂ . If TF ⊆ P, then F ⊆ P. In the following,
assume that TF * P, then TF ⊆ A or TF ⊆ M̂ .

Note that [1, ω2] ∈ TF . If ω8 6= 1, then [1, ω2] /∈ A ∪ M̂ . This is a contradiction.

If ω4 = −1, then [1, ω2] /∈ M̂ . Thus TF ⊆ A . It follows that F ⊆ A †.
For ω4 = 1, if TF ⊆ A , then F ⊆ A . If TF ⊆ M̂ , then either F ⊆ M̂ if ω2 = 1, or F ⊆ M̂ †

if ω2 = −1.

Lemma B.2 allows us to transfer the complexity question of Pl-#CSP2 to that of Pl-#CSP, to
which we can apply the known dichotomy (Theorem A.22). However it requires a unary signature.
We observe that if all signatures in F have even arities, then there is no way to construct a unary
in Pl-#CSP2(F). In this case, we use the next lemma, which is similar to Lemma B.2. It shows
that if we have [1, ω]⊗2 with ω 6= 0 in F , then we can still transfer the question of Pl-#CSP2 to
that of Pl-#CSP. It is proved using a global simulation of Pl-#CSP by Pl-#CSP2.

Lemma B.3. Let F be a set of signatures of even arities. Suppose [1, ω]⊗2 ∈ F for some ω 6= 0.

If F * P, F * A , F * A †, F * M̂ and F * M̂ †, then Pl-#CSP2(F) is #P-hard.

Proof. We first prove that Pl-Holant(E(ω) | F) ≤T Pl-#CSP2(F).
For k ≥ 1 and ℓ ≥ 0, we have all of E2ℓ

2k = E2ℓ
2k(ω) = ∂ℓ

[1,ω]⊗2(=2k+2ℓ) on LHS in Pl-#CSP2(F).

Given any instance Ω of Pl-Holant(E(ω) | F), since all signatures in F have even arities, the
number of Eℓ

k of odd arity must be even. In each connected component of Ω, we can connect all Eℓ
k

of odd arity in pairs, by some copies of [1, ω]⊗2 in a planar way. Note that when one input of Eℓ
k is

connected to a unary [1, ω], it becomes Eℓ+1
k−1. Hence a pair E2u+1

2v−1 and E2u′+1
2v′−1 can be functionally

replaced by a pair E2u
2v and E2u′

2v′ that are connected by [1, ω]⊗2.
Formally, we may assume the plane graph Ω is connected, since the Holant value on Ω is the

product over its connected components, and the number of Eℓ
k ∈ E(ω) of odd arity is even in each

connected component of Ω. We will connect pairs of Eℓ
k of odd arity by copies of [1, ω]⊗2 within

each connected component.
Let T be a spanning tree of the dual graph of Ω, and pick any node as the root of T . For

definiteness we pick the node of T that corresponds to the external face of Ω as root. If on a leaf
node of T , i.e., a face of Ω, there are an even number of Eℓ

k of odd arity, we can connect them
in pairs within the face by copies of [1, ω]⊗2, maintaining planarity. If there are an odd number
of them, we can pick any one, and still connect the others in pairs within the face by copies of
[1, ω]⊗2, maintaining planarity. On the edge connecting the leaf to its parent in the tree T , the
corresponding edge in Ω has an Et

s in one of the two incident nodes of Ω. If s is odd, we pick this
Et

s. If s is even, we pick the first Eℓ
k of odd arity in clockwise order in the face of Ω, which is the

leaf node in T , and connect it to that Et
s by one copy of [1, ω]⊗2. This effectively transforms that

Et
s to Et+1

s−1 of odd arity. We then delete the leaf node from T .
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Figure 25: Gadget used to obtain =4. The circle vertices are assigned f̂ and the
dashed subgadgets are assigned [1, 0, 1]⊗2 aligned horizontally so that it is equivalent
to assigning [1, 0, 1] to the square vertices.

The proof is completed by induction. Note that at the root of T , there must be an even number
of Eℓ

k of odd arity, including those which have been transformed by its children in T . Thus we can
simulate the Pl-Holant(E(ω) | F) problem Ω by Pl-#CSP2(F).

Note that Ek
k ∈ E(ω), for all k ≥ 1. Thus we have

Pl-Holant(E1
1 , E2

2 , . . . , Ek
k , . . . | F) ≤T Pl-Holant(E(ω) | F) ≤T Pl-#CSP2(F).

Then by a holographic transformation using T =
[

1 0
0 ω−1

]
, we have

Pl-#CSP(T−1F) ≡ Pl-Holant(E1
1 , E2

2 , . . . , Ek
k , . . . | F) ≤T Pl-#CSP2(F).

The rest of the proof is the same as the proof of Lemma B.2. We omit it here.

The next lemma shows that when we obtain [1, 0, 1]⊗2, we can reduce a Pl-#CSP2 problem to
a Pl-#CSP4 problem, when all signatures in F have arity divisible by 4.

Lemma B.4. Pl-#CSP2(F) ≤T Pl-#CSP4(F , [1, 0, 1]⊗2), if all signatures in F have arity ≡ 0
(mod 4).

Proof. Let Ω be an instance of Pl-#CSP2(F). Since all signatures in F have arity ≡ 0 (mod 4), the
number of Equalities of arity ≡ 2 (mod 4) must be even. We can connect in pairs all Equalities
of arity ≡ 2 (mod 4) by some copies of [1, 0, 1]⊗2 maintaining planarity similarly as in the proof
of Lemma B.3. When two inputs of =m+2 are connected to [1, 0, 1] it becomes ∂(=m+2) = (=m).
Hence a pair =4k−2 and =4ℓ−2 can be functionally replaced by a pair =4k and =4ℓ that are connected
by [1, 0, 1]⊗2. The rest of the proof is the same as in Lemma B.3 and we omit it here.

The next corollary is used in the proof of the No-Mixing theorems. We present it here since the
proof uses a global simulation that is similar to Lemma B.4.

Corollary B.5. Suppose f = [1, i]⊗4 + ir[1,−i]⊗4 ( 0 ≤ r ≤ 3 ) and g = [g0, . . . , g2n] with
gk = (±i)k(2n − 2k). Furthermore, let ĝ = (Z−1)⊗2ng, where Z =

[
1 1
i −i

]
. Then

Pl-#CSP2(ĝ) ≤T Pl-#CSP2(f, g).

Proof. Clearly ĝ = [0, 1, 0, . . . , 0] or ĝ = [0, . . . , 0, 1, 0], the perfect matching signature or its reversal.
By applying Lemma A.20 to f = [1, i]⊗4 + ir[1,−i]⊗4, we get [1, 0,−1]⊗2 on the left:

Pl-Holant([1, 0,−1]⊗2 ∪ EQ2 | f, g) ≤T Pl-#CSP2(f, g).

Under a holographic transformation by Z, we have

Pl-Holant([1, 0, 1]⊗2 | f̂ , ĝ) ≤T Pl-Holant([1, 0,−1]⊗2 ∪ EQ2 | f, g),
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where f̂ = (Z−1)⊗4f = [1, 0, 0, 0, ir ]. Note that [1, 0,−1]Z⊗2 = 2[1, 0, 1], as ZT
[

1 0
0 −1

]
Z = 2 [ 1 0

0 1 ].

Consider the gadget in Figure 25. We assign f̂ to the circle vertices and [1, 0, 1]⊗2 the dashed
subgadgets rotated appropriately so that it is equivalent to assigning [1, 0, 1] to the square vertices.
The signature of this gadget is =4, for any 0 ≤ r ≤ 3. Thus

Pl-Holant([1, 0, 1]⊗2 | =4, ĝ) ≤T Pl-Holant([1, 0, 1]⊗2 | f̂ , ĝ).

In Pl-Holant([1, 0, 1]⊗2 | =4, ĝ), by [1, 0, 1]⊗2 and =4, we can get all of =4k for k ≥ 1 on RHS and
then move them to LHS by [1, 0, 1]⊗2. Moreover, we have [1, 0, 1]⊗2 on RHS by connecting two
copies of =4 by [1, 0, 1]⊗2. Thus

Pl-Holant(EQ4 | [1, 0, 1]⊗2, ĝ) ≤T Pl-Holant([1, 0, 1]⊗2 | =4, ĝ).

Now we simulate Pl-#CSP2(ĝ) by Pl-Holant(EQ4 | [1, 0, 1]⊗2, ĝ). If ĝ has arity 2n ≡ 0 (mod 4),
then we are done by Lemma B.4.

If ĝ has arity 2n ≡ 2 (mod 4), then in an instance Ω of Pl-#CSP2(ĝ), the number of occurrences
of Equalities of arity ≡ 2 (mod 4) has the same parity as the number of occurrences of ĝ, which
could be odd. However, we observe that all entries of signatures in Pl-#CSP2(ĝ) are nonnegative
integers. Thus the value of Ω is a nonnegative integer. Let Ω ⊎ Ω be the disjoint union of two
copies of Ω as a plane graph with a common external face, then the value of Ω ⊎ Ω is the square of
the value of Ω. Thus computing the values on Ω ⊎ Ω and Ω are equivalent. In Ω ⊎ Ω, the number
of Equalities of arity ≡ 2 (mod 4) is even. Now we can use the same global simulation as in
Lemma B.4, except that in the last step we may use one extra copy of [1, 0, 1]⊗2 to connect two
Equalities of arity ≡ 2 (mod 4) at the two root nodes of the two spanning trees of the dual
graphs of Ω, if the number of occurrences of Equalities of arity ≡ 2 (mod 4) in Ω is odd. Thus
we have

Pl-#CSP2(ĝ) ≤ Pl-Holant(EQ4 | [1, 0, 1]⊗2, ĝ).

C Dichotomy Theorem when F Contains an Odd Arity Signature

In this section, we give a dichotomy theorem for Pl-#CSP2(F), where F includes at least one
nonzero signature f that has odd arity.

The next result is similar to Lemma 6.2 in [20].

Lemma C.1. Let x, y ∈ C and f = [x, 0, y, 0]. If y 6= 0 and x4 6= y4, then Pl-#CSP2(f) is
#P-hard.

Proof. We reduce from Pl-#CSP([x2, y2, y2]) to Pl-#CSP2(f). Since Pl-#CSP([x2, y2, y2]) is #P-
hard when y 6= 0 and x4 6= y4 by Theorem A.21, this shows that Pl-#CSP2(f) is also #P-hard.

An instance of Pl-#CSP([x2, y2, y2]) is a signature grid Ω with underlying graph G = (U, V,E),
where G is bipartite and planar, and every vertex in U has degree 2. We replace every vertex in
V of degree k (which is assigned =k ∈ EQ) with a vertex of degree 2k, and bundle two adjacent
variables to form k bundles of 2 edges each. The k bundles correspond to the k incident edges of
the original vertex with degree k. We assign =2k to the new vertices of degree 2k.

If the inputs to these equality signatures are restricted to {(0, 0), (1, 1)} on each bundle, then
these equality signatures take value 1 on ((0, 0), . . . , (0, 0)) and ((1, 1), . . . , (1, 1)) and take value 0
elsewhere. Thus, if we restrict the domain to {(0, 0), (1, 1)}, it is the equality signature =k.
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a1

a2

b1

b2

c

Figure 26: Gadget designed for the paired domain. Both vertices are assigned [x, 0, y, 0].

To simulate [x2, y2, y2], we connect two copies of f = [x, 0, y, 0] by a single edge as shown in
Figure 26 to form a gadget with signature

h(a1, a2, b1, b2) =
∑

c=0,1

f(a1, b1, c)f(a2, b2, c).

We replace every (degree 2) vertex in U (which is assigned [x2, y2, y2]) by a degree 4 vertex assigned
h, where the variables of h are bundled as (a1, a2) and (b1, b2).

The vertices in this new graph G′ are connected as in the original graph G, except that every
original edge is replaced by two edges that connect to the same side of the gadget in Figure 26.
Notice that h is only connected by (a1, a2) and (b1, b2) to some bundle of two incident edges of an
equality signature. Since this equality signature enforces that the value on each bundle is either
(0, 0) or (1, 1), we only need to consider the restriction of h to the domain {(0, 0), (1, 1)}. On this
domain, h = [x2, y2, y2] is a symmetric signature of arity 2. Therefore, the signature grid Ω′ with
underlying graph G′ has the same Holant value as the original signature grid Ω.

The following lemma is a dichotomy for Pl-#CSP2(f) where f is a symmetric ternary signature.

Lemma C.2. Let f be a symmetric signature of arity 3, then Pl-#CSP2(f) is #P-hard unless

f ∈ P ∪ Ã ∪ M̃ .

Proof. Let f = [f0, f1, f2, f3]. If f satisfies parity constraints, then f = [f0, 0, f2, 0] or f =
[0, f1, 0, f3].

For f = [f0, 0, f2, 0], if f2 = 0, then f ∈ P. If f2
0 = f2

2 , then f ∈ A . If f2
0 = −f2

2 , then
f ∈ A †. Otherwise, we have f2 6= 0 and f4

0 6= f4
2 . Thus Pl-#CSP2(f) is #P-hard by Lemma C.1.

For f = [0, f1, 0, f3], the proof follows from a holographic transformation using [ 0 1
1 0 ].

In the following, assume that f does not satisfy parity constraints. Firstly, we have ∂(f) =
[f0 + f2, f1 + f3].

• For (f0 + f2)(f1 + f3) 6= 0, we are done by Lemma B.2.
• For f0 + f2 = f1 + f3 = 0, f = [f0, f1,−f0,−f1]. Since f does not satisfy parity constraints,

we have f0f1 6= 0. If f2
0 = f2

1 , then f ∈ A .
Otherwise, we have ∂f (=4) = [f0,−f1] on LHS and ∂[f0,−f1](f) = [f2

0 − f2
1 , 2f0f1, f

2
1 − f2

0 ]
on RHS. Moreover, we have ∂[f2

0−f2
1 ,2f0f1,f2

1−f2
0 ](=4) = (f2

0 − f2
1 )[1, 0,−1] on LHS, where

f2
0 − f2

1 6= 0. So we have ∂[1,0,−1](f) = 2[f0, f1] on RHS. Then we are done by Lemma B.2
and f0f1 6= 0.

• For f0 +f2 6= 0, f1 +f3 = 0, we have f1 = −f3 6= 0 since f does not satisfy parity constraints.
Note that we have ∂(f) = (f0 + f2)[1, 0] in RHS, so we have ∂2

[1,0](f) = [f0, f1] in RHS. If
f0 6= 0, then we are done by Lemma B.2. If f0 = 0, then f2 6= 0 since f0 + f2 6= 0. Note that
we have f1[0, 1] and f2[1, 0] now. Thus we have ∂[1,0][∂[0,1](f)] = [f1, f2]. Then we are done
by Lemma B.2.

• For f0 + f2 = 0, f1 + f3 6= 0, the proof follows from a holographic transformation using [ 0 1
1 0 ].
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The next lemma shows that if we have an odd arity signature in M̃ \ (P ∪ Ã ), then we can
prove Theorem A.2 directly. The key point is that we can use such a signature to get a unary [1, ω]
with ω 6= 0.

Lemma C.3. Let F be a symmetric signature set and f ∈ F has odd arity.
• If f ∈ M̂ \ (P ∪ Ã ), then either F ⊆ M̂ or Pl-#CSP2(F) is #P-hard.

• If f ∈ M̂ † \ (P ∪ Ã ), then either F ⊆ M̂ † or Pl-#CSP2(F) is #P-hard.

Proof. We will use our calculus with the derivative operator ∂. Firstly, we prove the lemma for
f ∈ M̂ \ (P ∪ Ã ). We already have F * P, F * A , F * A † by the presence of f , and F * M̂ †

by Corollary A.13. If we can construct a unary [a, b] with ab 6= 0, then we can finish the proof by
Lemma B.2.

As f 6∈ P and has odd arity, its arity n ≥ 3. By Lemma A.14, the signature f ∈ M̂ \ (P ∪ Ã )
can take one of the following two forms (see the Calculus after Definition A.4):

• For f = [s, t]⊗n ± [t, s]⊗n, where n ≥ 3 is odd, we have st 6= 0 and s4 6= t4. Thus we have

∂
n−1

2 (f) = (s2 + t2)
n−1

2 ([s, t]± [t, s]) = (s2 + t2)
n−1

2 (s± t)[1,±1], a nonzero multiple of [1,±1].
So we are done by Lemma B.2.

• For fk = λ(±1)k(n − 2k), we have ∂
n−1

2 (f) = 2
n−1

2 λ[1,∓1] and we are done by Lemma B.2.

Similarly, for f ∈ M̂ † \ (P ∪ Ã ), we just need to construct a unary [a, b] with ab 6= 0.

• For f = [s, ti]⊗n ± [t, si]⊗n, we have ∂
n−1

2 (f) = (s2 − t2)
n−1

2 [s, ti] ± (t2 − s2)
n−1

2 [t, si] =

(s2 − t2)
n−1

2 (s ± t)[1,±i]. By Lemma A.14, we have st 6= 0 and s4 6= t4, and so this is a
nonzero multiple of [1,±i]. So we are done by Lemma B.2.

• For fk = λ(±i)k(n − 2k), if n ≡ 1 (mod 4), we have ∂
n−1

4
=4 (f) = 2

n−1
4 λ[1,∓i] and we are done

by Lemma B.2. If n ≡ 3 (mod 4), we have ∂[∂
n−3

4
=4 (f)] = 2

n+5
4 λ[1,±i] and we are done by

Lemma B.2.

We remark that the use of ∂=4 instead of just ∂ in this proof is necessary, because ∂2(f) = 0

when fk = λ(±i)k(n − 2k), and n ≥ 5. One may also suppose that the case for M̂ † \ (P ∪ Ã ) can

be reduced to the case for M̂ \ (P ∪ Ã ) by the transformation T = [ 1 0
0 i ]. While T transforms M̂ †

to M̂ , and keeps P and Ã invariant, this transformation does not keep EQ2 invariant. In fact
[1, 0, 1]T⊗2 = [1, 0,−1] 6∈ EQ2. Therefore we need to handle the proof for M̂ † \(P ∪ Ã ) separately.

By definitions of P and Ã , we have the following simple lemma.

Lemma C.4. If f ∈ P ∪ Ã , then f satisfies parity constraints iff f belongs to the following set,
up to a scalar factor

{
[1, 0]⊗n, [0, 1]⊗n, [1, 0]⊗2n + t[0, 1]⊗2n, [1, ρ]⊗n ± [1,−ρ]⊗n, [1, α]⊗n ± [1,−α]⊗n | t 6= 0, n ≥ 1

}
.

The next lemma shows that if we have a nonzero odd arity signature f ∈ P ∪ Ã that does not
satisfy parity constraints, then we can obtain a unary [a, b] with ab 6= 0. Note that if we have a
unary [a, b] with ab 6= 0, then we can apply Lemma B.2.

Lemma C.5. If f ∈ P ∪ Ã has odd arity and does not satisfy parity constraints, then we can
construct a unary [a, b] with ab 6= 0 in Pl-#CSP2(f).
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Proof. Let f have arity 2n + 1, n ≥ 0. Not satisfying parity constraints implies that f is not
identically 0. Up to a nonzero factor, f has the following forms.

If f ∈ P, then f = [a, b]⊗2n+1 with ab 6= 0 or f = [1, 0, . . . , 0, x] with x 6= 0.
• If f = [1, 0, . . . , 0, x], x 6= 0, then ∂n(f) = [1, x].
• If f = [a, b]⊗2n+1, a2 + b2 6= 0, then ∂n(f) = (a2 + b2)n[a, b].

• For f = [1,±i]⊗2n+1, if n is even, then ∂
n
2
=4(f) = 2

n
2 [1,±i]. If n is odd, then we have

∂f (=2n+2) = [1,∓i] on LHS and we have ∂2n
[1,∓i](f) = 22n[1,±i] on RHS.

For f ∈ Ã \ P, we have f = [1, ρ]⊗2n+1 ± i[1,−ρ]⊗2n+1 or f = [1, α]⊗2n+1 ± i[1,−α]⊗2n+1.
• If f = [1, α]⊗2n+1 ± i[1,−α]⊗2n+1, then ∂n(f) = (1 + α2)n[1 ± i, (1 ∓ i)α].
• If f = [1, ρ]⊗2n+1 ± i[1,−ρ]⊗2n+1 with ρ2 = 1, then ∂n(f) = (1 + ρ2)n[1 ± i, (1 ∓ i)ρ].

• For f = [1, ρ]⊗2n+1 ± i[1,−ρ]⊗2n+1 with ρ2 = −1, and if n is even, then we have ∂
n
2
=4(f) =

2
n
2 [1±i, (1∓i)ρ]. If n is odd, then 2n+1 ≡ 3 (mod 4), and (±ρ)2n+1 = ±ρ3 = ∓ρ, by ρ2 = −1.

Then we have ∂f (=2n+2) = [1, ρ2n+1] ± i[1, (−ρ)2n+1] = [1,−ρ] ± i[1, ρ] = (1 ± i)[1,±iρ] on
LHS. Note that (1∓i

1±i)
2n = (∓i)2n = (−1)n = −1 since n is odd.

Then we have ∂2n
[1,±iρ](f) = (1∓i)2n[1, ρ]±i(1±i)2n[1,−ρ] = (1±i)2n{(1∓i

1±i )
2n[1, ρ]±i[1,−ρ]}=

(1 ± i)2n{−[1, ρ] ± i[1,−ρ]} = (1 ± i)2n[−1 ± i,−ρ(1 ± i)].

If a signature f satisfies parity constraints, then there is no way to construct [a, b] with ab 6= 0
from f . In fact in Pl-#CSP2 using f , the signature of any {f}-gate will also satisfy the parity
constraints, and in particular for unary signature, it can only be a multiple of [1, 0] or [0, 1]. The

next lemma shows that if we have a nonzero odd arity signature f ∈ P ∪ Ã that satisfies parity
constraints, then we can obtain [1, 0] or [0, 1]. We also remark that in Pl-#CSP2 using signatures
of even arity one can only produce signatures of even arity, and thus no unary signatures.

Lemma C.6. If a nonzero f ∈ P ∪ Ã has odd arity and satisfies parity constraints, then we can
construct a unary [1, 0] or [0, 1] in Pl-#CSP2(f).

Proof. By Lemma C.4, an nonzero f of odd arity belongs to the following set, up to a nonzero
factor,

{
[1, 0]⊗2n+1, [0, 1]⊗2n+1, [1, ρ]⊗2n+1 ± [1,−ρ]⊗2n+1], [1, α]⊗2n+1 ± [1,−α]⊗2n+1] | n ≥ 0

}
.

For f = [1, 0]⊗2n+1 or f = [0, 1]⊗2n+1 we have ∂n(f) = [1, 0] or [0, 1] respectively.
For f = [1, α]⊗2n+1 ± [1,−α]⊗2n+1, ∂n(f) = (1 + α2)n[1 ± 1, (1 ∓ 1)α], a nonzero multiple of

[1, 0] or [0, 1].
For f = [1, ρ]⊗2n+1 ± [1,−ρ]⊗2n+1 with ρ2 = 1, ∂n(f) = (1 + ρ2)n[1 ± 1, (1 ∓ 1)ρ], a nonzero

multiple of [1, 0] or [0, 1].

For f = [1, ρ]⊗2n+1 ± [1,−ρ]⊗2n+1, with ρ2 = −1, if 2n + 1 ≡ 1 (mod 4), then ∂
n
2
=4(f) =

2
n
2 [1±1, (1∓1)ρ], a nonzero multiple of [1, 0] or [0, 1]. If 2n+1 ≡ 3 (mod 4), then (±ρ)2n+1 = ∓ρ.

If we write f = [f0, f1, . . . , f2n+1], then exactly one of f0 and f2n+1 is nonzero. We have the unary
u = ∂f (=2n+2) = [f0, f2n+1] in LHS, a nonzero multiple of [1, 0] or [0, 1]. Then we get ∂2n

u (f) in
RHS, also a nonzero multiple of [1, 0] or [0, 1].

The next lemma shows that if we already have [1, 0] or [0, 1] and also a signature f of any arity
that does not satisfy the parity constraints, then we can construct a unary [a, b] with ab 6= 0.
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Lemma C.7. If f does not satisfy the parity constraints, then we can construct a unary [a, b] with
ab 6= 0 in Pl-#CSP2([1, 0], f) or Pl-#CSP2([0, 1], f).

Proof. We prove the lemma for Pl-#CSP2([1, 0], f). The proof for the other case follows from a
holographic transformation by [ 0 1

1 0 ].
Let f = [f0, f1, . . . , fn]. Since f does not satisfy the parity constraints, there exist 0 ≤ i < j ≤ n

such that [fi, fi+1, . . . , fj−1, fj] = [fi, 0, . . . , 0, fj ], where fifj 6= 0 and j − i is odd. We can get both

f ′ = ∂n−i
[1,0] = [f0, f1, . . . , fi] and f ′′ = ∂n−j

[1,0] = [f0, f1, . . . , fj] on RHS. Either i or j is odd. And so

we have either =i+1 or =j+1, and we can get either ∂f ′(=i+1) = [f0, fi] or ∂f ′′(=j+1) = [f0, fj ] on
LHS. Without loss of generality, assume that we have [f0, fi] on LHS.

If f0 = 0, then we have [0, 1] on LHS and f ′′′ = ∂
j−i−1

2 (∂i
[0,1](f

′′)) = ∂
j−i−1

2 ([fi, 0, . . . , 0, fj ]) =

[fi, fj] on RHS, and we are done.
If f0 6= 0, let m = min

1≤k≤n
{k | fk 6= 0}. (As j > 0 and fj 6= 0, this m is well-defined.) Then

f (4) = ∂n−m
[1,0] (f) = [f0, 0, . . . , 0, fm]. Moreover, we have ∂m−1

[f0,fi]
(f (4)) = [fm

0 , fm−1
i fm].

The next lemma assumes the presence of a non-degenerate binary Gen-Eq. The conclusion is
about a transformed signature but still in the Pl-#CSP2 setting.

Lemma C.8. For any x 6= 0 and any signature f of arity 2n, let f̂ =
[

1 0

0 x− 1
2

]⊗2n
f . Then

Pl-#CSP2(f̂) ≤T Pl-#CSP2(f, [1, 0, x]).

Proof. After a holographic transformation by
[

1 0

0 x
1
2

]
, we have

Pl-#CSP2([1, 0, x], f) ≡T Pl-Holant([1, 0, x], [1, 0, 0, 0, x2 ], · · · | [1, 0, 1], f̂ ).

If x is a root of unity, then there exists a t ≥ 1 such that xt = 1. Thus we have =2kt for all k ≥ 1
on LHS. Moreover, we have =2k by ∂k(t−1)(=2kt) on LHS for all k ≥ 1. Thus we are done.

If x is not a root of unity, then we have ∂d−2(Ed
2d(x)) = [1, 0, 0, 0, xd ] of arity 4 on LHS for

all d ≥ 2, where Ed
2d(x) = [1, 0, . . . , 0, xd] has arity 2d. Thus we can get [1, 0, 0, 0, 1] on LHS by

interpolation. Then we can get all of =2k on LHS since we have [1, 0, 1] on RHS.

Lemma C.9. Suppose either f = [1, ρ]⊗3±[1,−ρ]⊗3 or f = [1, α]⊗3±[1,−α]⊗3, and let h = [1, 0, x].
If x4 6∈ {0, 1}, then Pl-#CSP2(f, h) is #P-hard.

Proof. We prove the lemma for f = [1, ρ]⊗3 ± [1,−ρ]⊗3. The proof for f = [1, α]⊗3 ± [1,−α]⊗3 is
similar and we omit it here.

Let f̂ = [1, x− 1
2 ρ]⊗3 ± [1,−x− 1

2 ρ]⊗3, then Pl-#CSP2(f̂) ≤Pl-#CSP2(f, h) by Lemma C.8. f̂

satisfies a second order recurrence with eigenvalues ±x− 1
2 ρ with sum 0 and product −ρ2/x. Hence

f̂ has type 〈−ρ2/x, 0, 1〉. Moreover, the second recurrence relation is unique up to a scalar since f̂

is non-degenerate and has arity 3. By (x−1ρ2)4 6= 1, we have f̂ /∈ P ∪ Ã ∪ M̃ by Lemma A.11. So
Pl-#CSP2(f̂) is #P-hard by Lemma C.2. Thus Pl-#CSP2(f, h) is #P-hard.

Lemma C.10. Let f = [1, ρ]⊗3 ± [1,−ρ]⊗3 and g = [1, α]⊗3 ± [1,−α]⊗3. Then Pl-#CSP2(f, g) is
#P-hard.

79



Figure 27: Gadget used to obtain a signature of the form [a, 0, b] with |a| 6= |b|. The
circle vertices are assigned f and the triangle vertices are assigned g.

Proof. Consider the gadget in Figure 27. We assign f to the circle vertices and g to the triangle
vertices. Let h be the signature of this gadget.

• If f = [1, ρ]⊗3 + [1,−ρ]⊗3 and g = [1, α]⊗3 + [1,−α]⊗3, then h = 32[ρ2α2, 0,−2].
• If f = [1, ρ]⊗3 − [1,−ρ]⊗3 and g = [1, α]⊗3 + [1,−α]⊗3, then h = 32ρ2[−2, 0, ρ2α2].
• If f = [1, ρ]⊗3 + [1,−ρ]⊗3 and g = [1, α]⊗3 − [1,−α]⊗3, then h = 32α2[ρ2α2, 0, 2].
• If f = [1, ρ]⊗3 − [1,−ρ]⊗3 and g = [1, α]⊗3 − [1,−α]⊗3, then h = 32ρ2α2[2, 0, ρ2α2].

Note that both f and g satisfy parity constraints, and thus h also satisfies that. Hence, e.g., in the
first case, f = 2[1, 0, ρ2, 0] and g = 2[1, 0, α2, 0], we only need to calculate h0 and h2, since h1 = 0
by parity. In fact the left half of Figure 27, connecting f to g, also satisfies parity and has the
signature 4[1 + ρ2α2, 0, 2ρ2α2], and thus h = 16[(1 + ρ2α2)2, 0, 4(ρ2α2)2] = 32[ρ2α2, 0,−2].

Since |αρ| = 1 6= 2, we are done by Lemma C.9.

Now we can prove a conditional No-Mixing theorem for Pl-#CSP2 when a set of signatures F
is assumed to consist of only tractable signatures and has at least one nonzero signature of odd
arity.

Theorem C.11. Let F ⊆ ⋃5
k=1 Sk be a set of symmetric signatures that includes at least one

nonzero signature of odd arity. If F * Sk for all 1 ≤ k ≤ 5, then Pl-#CSP2(F) is #P-hard.

Proof. If F contains a signature of odd arity in M̃ \ (P ∪ Ã ), then we are done by Lemma C.3.

Thus we can assume that F contains at least one nonzero signature of odd arity f ∈ P ∪ Ã .
By Lemma C.5, if f does not satisfy parity constraints, then we have a unary [a, b] with ab 6= 0

and we are done by Lemma B.2. Otherwise, we have [1, 0] or [0, 1] by Lemma C.6. If there exists
a signature in F that does not satisfy parity constraints, then we can obtain a unary [a, b] with
ab 6= 0 by Lemma C.7. Thus we are done by Lemma B.2.

Now we can assume that F includes a nonzero odd arity signature f ∈ P∪Ã and all signatures

in F satisfy parity constraints. Thus F ⋂
(
M̃ \ (P ∪ Ã )

)
= ∅ by Corollary A.15. So we have

F ⊆ P ∪ Ã , i.e., F ⊆ ⋃5
k=3 Sk. Then by Lemma C.4, we have, up to scalar multiples,

F ⊆
{

[1, 0]⊗n, [0, 1]⊗n, [1, 0]⊗2n + t[0, 1]⊗2n,

[1, ρ]⊗n ± [1,−ρ]⊗n, [1, α]⊗n ± [1,−α]⊗n

∣∣∣∣ t 6= 0 and n ≥ 1

}
.

Note that the following signatures are all in
⋂5

k=3 Sk (see Figure 35):

[1, 0]⊗n and [0, 1]⊗n,

[1, 0]⊗2n + t[0, 1]⊗2n with t4 = 1,

[1, ρ]⊗m ± [1,−ρ]⊗m and [1, α]⊗ℓ ± [1,−α]⊗ℓ with 1 ≤ m, ℓ ≤ 2.

Let

F ′ = F
⋂ {

[1, 0]⊗2n + t[0, 1]⊗2n,

[1, ρ]⊗m ± [1,−ρ]⊗m, [1, α]⊗ℓ ± [1,−α]⊗ℓ

∣∣∣∣ t4 6∈ {0, 1} and m, ℓ ≥ 3

}
.
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Then F ′ * Sk for 3 ≤ k ≤ 5. Indeed if F ′ ⊆ Sk for some 3 ≤ k ≤ 5, then F ⊆ Sk. Let

S = F ′ ⋂ {
[1, ρ]⊗m ± [1,−ρ]⊗m | m ≥ 3

}
and T = F ′ ⋂ {

[1, α]⊗ℓ ± [1,−α]⊗ℓ | ℓ ≥ 3
}

.

If S 6= ∅ and T 6= ∅, then there exist g, h ∈ F ′ such that g = [1, α]⊗m ± [1,−α]⊗m and
h = [1, ρ]⊗ℓ ± [1,−ρ]⊗ℓ, where m, ℓ ≥ 3. By Lemma C.6, we can get [1, 0] or [0, 1] from f . If we have
[1, 0], then we have g′ = ∂m−3

[1,0] (g) = [1, α]⊗3 ± [1,−α]⊗3 and h′ = ∂ℓ−3
[1,0](h) = [1, ρ]⊗3 ± [1,−ρ]⊗3, and

are done by Lemma C.10. If we have [0, 1], then the proof follows from a transformation by [ 0 1
1 0 ].

If exactly one of S and T is not empty, then there exists some [1, 0]⊗2n+t[0, 1]⊗2n with t4 /∈ {0, 1}
in F ′, since otherwise F ′ would be contained in either A or A †. This contradicts F ′ * Sk for
3 ≤ k ≤ 5. By taking ∂n−1, we have [1, 0, t]. Moreover, we have g = [1, α]⊗m ± [1,−α]⊗m

or h = [1, ρ]⊗ℓ ± [1,−ρ]⊗ℓ in F ′, where m, ℓ ≥ 3. By a similar proof with the previous case, first
getting [0, 1] or [1, 0] by Lemma C.6, we can have g′ = [1, α]⊗3 ± [1,−α]⊗3 or h′ = [1, ρ]⊗3± [1,−ρ]⊗3

in F ′. Thus Pl-#CSP2(F ′) is #P-hard by Lemma C.9. So Pl-#CSP2(F) is #P-hard.
If S = ∅ and T = ∅, then F ′ ⊆

{
[1, 0]⊗2n + t[0, 1]⊗2n | t4 /∈ {0, 1}

}
⊆ P. This contradicts that

F ′ * Sk for 3 ≤ k ≤ 5.

Now we can prove the dichotomy for Pl-#CSP2 with a single symmetric signature of odd arity.

Theorem C.12. If f is a symmetric signature of odd arity, then either Pl-#CSP2(f) is #P-hard

or f ∈ P ∪ Ã ∪ M̃ .

Proof. Let f have arity 2n + 1. If 2n + 1 = 1, then f ∈ P. If 2n + 1 = 3, then we are done
by Lemma C.2. In the following, assume that 2n + 1 ≥ 5. Let f ′ = ∂(f). If f ′ /∈ P ∪ Ã ∪ M̃ ,
then Pl-#CSP2(f ′) is #P-hard by induction. Thus Pl-#CSP2(f) is #P-hard as well. Otherwise,

f ′ ∈ P ∪ Ã ∪ M̃ .
If f ′ ∈ M̃ \ (P ∪ Ã ), then we are done by Lemma C.3. So we can assume that f ′ ∈ P ∪ Ã .

Note that f ′ has odd arity, so if f ′ does not satisfy parity constraints, then we have [a, b] with
ab 6= 0 by Lemma C.5 and we are done by Lemma B.2. Otherwise, either f ′ is identically zero or,
as f ′ has odd arity and satisfies parity, by Lemma C.4

f ′ ∈
{
[1, 0]⊗2n−1, [0, 1]⊗2n−1, [1, ρ]⊗2n−1 ± [1,−ρ]⊗2n−1, [1, α]⊗2n−1 ± [1,−α]⊗2n−1

}
.

If f ′ ≡ 0, then f = x[1, i]⊗2n+1 +y[1,−i]2n+1 by Lemma A.5. If x = 0 or y = 0 or [xy 6= 0∧x4 =
y4], then f ∈ A . Otherwise, xy 6= 0 ∧ x4 6= y4.

• For 2n + 1 ≡ 1 (mod 4), we have ∂
n
2
=4(f) = 2

n
2 {x[1, i] + y[1,−i]} = 2

n
2 [x + y, (x − y)i]. Note

that x + y 6= 0, x − y 6= 0 by x4 6= y4. Then we are done by Lemma B.2.

• For 2n + 1 ≡ 3 (mod 4), we have f ′′ = ∂
n−1

2
=4 (f) = 2

n−1
2 {x[1, i]⊗3 + y[1,−i]⊗3}. Note that

xy 6= 0 and f is non-degenerate. And by its second order recurrence, f ∈ 〈1, 0, 1〉. it follows

from Lemma A.11 that f ′′ /∈ P ∪ Ã ∪ M̃ since x4 6= y4. Thus Pl-#CSP2(f ′′) is #P-hard by
Lemma C.2. So Pl-#CSP2(f) is #P-hard.

If f ′ ∈ {[1, 0]⊗2n−1, [0, 1]⊗2n−1, [1, ρ]⊗2n−1 ± [1,−ρ]⊗2n−1, [1, α]⊗2n−1 ± [1,−α]⊗2n−1}, then we
have [1, 0] or [0, 1] by Lemma C.6. So if f does not satisfy parity constraints, then we have [a, b]
with ab 6= 0 by Lemma C.7 and we are done by Lemma B.2. So we can assume that f satisfies
parity constraints in the following.
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Figure 28: Gadget used to obtain a signature whose signature matrix is redundant.

• For f ′ = [1, 0]⊗2n−1, f = x[1, i]⊗2n+1 +y[1,−i]2n+1 +[1, 0]⊗2n+1 by Lemma A.5. If x = y = 0,
then f ∈ P. Otherwise, (x, y) 6= (0, 0).
Let a = x + y, b = (x − y)i, then (a, b) 6= (0, 0). Note that f = [1 + a, b,−a,−b, . . . ,±a,±b].
Since 1 + a and −a cannot be both 0, by the parity constraints, we have b = 0. And thus
a 6= 0. Moreover we have ∂n−1([1, 0]2n−1) = [1, 0] and f ′′′ = ∂2n−3

[1,0] (f) = [1 + a, 0,−a, 0, a].

We note that 2n − 3 ≥ 1 and so ∂2n−3
[1,0] is defined. Note that f ′′′ is a redundant signature and

its compressed signature matrix
[ 1+a 0 −a

0 −a 0
−a 0 a

]
is nonsingular, so Pl-#CSP2(f ′′′) is #P-hard by

Lemma A.25. Thus Pl-#CSP2(f) is #P-hard.
• For f ′ = [0, 1]⊗2n−1, the proof follows from the previous case by a transformation using [ 0 1

1 0 ].
• For f ′ = [1, α]⊗2n−1 ± [1,−α]⊗2n−1, f = x[1, i]⊗2n+1 + y[1,−i]2n+1 + 1

1+α2 {[1, α]⊗2n+1 ±
[1,−α]⊗2n+1} by Lemma A.5. If x = y = 0, then f ∈ A †. Otherwise, (x, y) 6= (0, 0). Firstly,
we construct [1, 0, α2] by f . Note that we have f (4) = ∂n−1(f) = (1 + α2)n−2{[1, α]⊗3 ±
[1,−α]⊗3}.
If f (4) = (1+ α2)n−2{[1, α]⊗3 + [1,−α]⊗3} with a + sign, we have ∂(f (4)) = 2(1+ α2)n−1[1, 0]
and ∂[1,0](f

(4)) = 2(1 + α2)n−2[1, 0, α2].

If f (4) = (1+α2)n−2{[1, α]⊗3 − [1,−α]⊗3} with a − sign, we have ∂(f (4)) = 2α(1+α2)n−1[0, 1]
and ∂[0,1](f

(4)) = 2α(1 + α2)n−2[1, 0, α2].

In either case, we have [1, 0, α2]. Then we have f (5) = ∂n−1
[1,0,α2]

(f) = (1 − α2)n−1{x[1, i]⊗3 +

y[1,−i]3}. If x = 0 or y = 0 or [xy 6= 0 ∧ x4 = y4], then f (5) ∈ A \ A †. By the eigenvalues,

f ′ ∈ 〈1, 0 ± i〉, hence f ′ ∈ A † \ (P ∪ A ∪ M̃ ) in this case. So Pl-#CSP2(f (5), f ′) is #P-

hard by Theorem C.11. Otherwise, xy 6= 0 and x4 6= y4. Then f (5) /∈ P ∪ Ã ∪ M̃ . Thus
Pl-#CSP2(f (5)) is #P-hard by Lemma C.2. So Pl-#CSP2(f) is #P-hard.

The final case is f ′ = [1, ρ]⊗2n−1 ± [1,−ρ]⊗2n−1.

• For f ′ = [1, 1]⊗2n−1 + [1,−1]⊗2n−1,

f = x[1, i]⊗2n+1 + y[1,−i]2n+1 +
1

2

{
[1, 1]⊗2n+1 + [1,−1]⊗2n+1

}
.

If x = y = 0, then f ∈ A . In the following, assume that (x, y) 6= (0, 0). Let a = x + y,
b = (x − y)i, then (a, b) 6= (0, 0). Moreover, f = [a, b,−a,−b, . . . ,±b] + [1, 0, 1, 0, . . . , 0] =
[a + 1, b,−a + 1,−b, a + 1, . . . ,±b]. Since a + 1 and −a + 1 cannot be both 0, and f satisfies
parity, we have b = 0. Thus f = [a+1, 0,−a+1, 0, a+1, . . . ,±a+1, 0]. As b = 0 we have a 6= 0.
Note that we have ∂n(f) = 2n[1, 0]. Thus we have f (6) = ∂2n−3

[1,0] (f) = [a+1, 0,−a+1, 0, a+1].

The compressed signature matrix of f (6) is
[ a+1 0 −a+1

0 −a+1 0
−a+1 0 a+1

]
with determinant 4a(1 − a). If

a 6= 1, then by a 6= 0, this determinant is nonzero. Thus the compressed signature matrix
of f (6) is nonsingular and Pl-#CSP2(f (6)) is #P-hard by Lemma A.25. So Pl-#CSP2(f) is
#P-hard.
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If a = 1, then we have f (7) = ∂2n−4
[1,0] (f) = 2[1, 0, 0, 0, 1, 0] of arity 5 (note that 2n − 4 ≥ 0).

Consider the gadget in Figure 28. We assign [1, 0, 0, 0, 1, 0] to both vertices. The signature of

this gadget is redundant, and its compressed signature matrix is
[

1 0 0
0 1 0
0 0 3

]
. Since this matrix is

nonsingular, we are done by Lemma A.25.
• For f ′ = [1, 1]⊗2n−1 − [1,−1]⊗2n−1,

f = x[1, i]⊗2n+1 + y[1,−i]2n+1 +
1

2

{
[1, 1]⊗2n+1 − [1,−1]⊗2n+1

}
.

After the holographic transformation by [ 0 1
1 0 ], we have Pl-#CSP2(f, f ′) ≡ Pl-#CSP2(f̂ , f̂ ′),

where f̂ ′ = [1, 1]⊗2n−1 + [1,−1]⊗2n−1, and f̂ = xi2n+1[1,−i]⊗2n+1 + y(−i)2n+1[1, i]2n+1 +
1
2{[1, 1]⊗2n+1 + [1,−1]⊗2n+1}. Thus we are done by the previous case.

• For f ′ = [1, i]⊗2n−1 + [1,−i]⊗2n−1, f has arity 2n + 1 and using Proposition A.7 (the Explicit
List for

∫
(f ′)),

∫
([1,±i]⊗2n−1) is a sum of λ[1,±i]⊗2n+1 with a signature having the k-th term

of the form −1
2k(±i)k. Thus, we can write fk = (x − 1

2k)ik + (y − 1
2k)(−i)k by Lemma A.5.

We have ∂f ′(=2n) = ∂∂(f)(=2n) = 2[1, 0] on LHS.
Let a = x+y, b = (x−y)i, then f = [a, b,−a+2,−b, a−4, . . . ,±b]. Since a and −a+2 cannot
be both 0, and f satisfies parity, we have b = 0. Then we have f (8) = ∂2n−3

[1,0] (f) = [a, 0,−a +

2, 0, a − 4]. If a 6= 2, then the compressed signature matrix of f (8) is
[ a 0 −a+2

0 −a+2 0
−a+2 0 a−4

]
, and

is nonsingular and we are done by Lemma A.25.
For a = 2, we have ∂2n−4

[1,0] (f) = 2[1, 0, 0, 0,−1, 0]. Consider the gadget in Figure 28. We

assign [1, 0, 0, 0,−1, 0] to both vertices. The signature of this gadget is redundant, and its

compressed signature matrix is
[

1 0 0
0 1 0
0 0 3

]
. Since this matrix is nonsingular, we are done by

Lemma A.25.
• For f ′ = [1, i]⊗2n−1 − [1,−i]⊗2n−1, the proof follows from the previous case by a holographic

transformation using [ 0 1
1 0 ].

By Theorem C.11 and Theorem C.12, we have the following dichotomy theorem.

Theorem C.13. For any set of symmetric signatures F which contains at least one nonzero sig-
nature with odd arity, if F ⊆ P, or A , or A †, or M̂ , or M̂ †, then Pl-#CSP2(F) is tractable.
Otherwise, Pl-#CSP2(F) is #P-hard.

D The Arity 4 Dichotomy

The goal of this section is a dichotomy theorem for Pl-#CSP2(f) when f is a symmetric signature
of arity 4. Frequently our first test uses the determinantal criterion of a redundant signature of
arity 4 based on Lemma A.25.

Lemma D.1. Let f be an arity 4 signature. If the signature matrix of f is redundant, and its
compressed form is nonsingular, then Pl-#CSP2(f) is #P-hard.

Proof. Since Pl-Holant(f) ≤T Pl-#CSP2(f), we are done by Lemma A.25.
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Figure 29: Gadget used in Lemma D.2. Both vertices are assigned f .

Next we introduce a trick which we call the “Three Stooges”. For f = [a, b, c, d, e], define

f× = [a, c, e]

f×× = [a2 + c2 + 2b2, ac + ce + 2bd, c2 + e2 + 2d2], and

f ×× = [a2 + c2 + 2b2, b2 + d2 + 2c2, c2 + e2 + 2d2].

The following lemma is proved by the technique of domain pairing.

Lemma D.2. If f = [a, b, c, d, e], then Pl-#CSP(f×, f ×× , f××) ≤T Pl-#CSP2(f).

Proof. Let f ′ be the signature of the gadget in Figure 29 and f ′′ be the signature of the gadget in
Figure 29 rotated 90◦. Then f ′ has a signature matrix on the left, and f ′′ has a signature matrix
on the right:



a2+c2+2b2 ab+cd+2bc ab+cd+2bc ac+ce+2bd

ab+cd+2bc b2+d2+2c2 b2+d2+2c2 bc+de+2cd

ab+cd+2bc b2+d2+2c2 b2+d2+2c2 bc+de+2cd

ac+ce+2bd bc+de+2cd bc+de+2cd c2+e2+2d2


 ;




a2+c2+2b2 ab+cd+2bc ab+cd+2bc b2+d2+2c2

ab+cd+2bc ac+ce+2bd b2+d2+2c2 bc+de+2cd

ab+cd+2bc b2+d2+2c2 ac+ce+2bd bc+de+2cd

b2+d2+2c2 bc+de+2cd bc+de+2cd c2+e2+2d2


 .

We highlight the relevant entries in the display below (in fact, readers should only focus on the
entries highlighted; see Figure 2 in Part I for an illustration of the rotation operation):



a2+c2+2b2 ∗ ∗ ac+ce+2bd

∗ b2+d2+2c2 ∗ ∗
∗ ∗ b2+d2+2c2 ∗

ac+ce+2bd ∗ ∗ c2+e2+2d2


 ;




a2+c2+2b2 ∗ ∗ b2+d2+2c2

∗ ac+ce+2bd ∗ ∗
∗ ∗ ac+ce+2bd ∗

b2+d2+2c2 ∗ ∗ c2+e2+2d2‘


 .

For any instance of Pl-#CSP(f×, f ×× , f××), we replace each edge e by two edges that connect the
same incident nodes of e. For each variable node that is connected to k edges, we replace its label

=k by =2k. We replace each occurrence of f×, f ×× , f×× by f, f ′, f ′′ as a constraint respectively. Then
the new instance is a problem in Pl-#CSP2(f, f ′, f ′′) and has the same value as the given instance

of Pl-#CSP(f×, f ×× , f××). By Pl-#CSP2(f, f ′, f ′′) ≡ Pl-#CSP2(f), we complete the proof.

We demonstrate a simple use of the “Three Stooges” in the following lemma.

Lemma D.3. If a4 /∈ {0, 1}, then Pl-#CSP2([1, 0, a, 0, a2 ]) is #P-hard.

Proof. For f = [1, 0, a, 0, a2], we have f× = [1, a, a2] and f ×× = [1 + a2, 2a2, a2(1 + a2)]. By

Lemma A.8, f× /∈ A ∪M̂ since a4 /∈ {0, 1}. By the same reason and Lemma A.8, the only possibility

for f ×× ∈ P is being degenerate. Thus a2(1 + a2)2 = 4a4. This implies that a = 0 or a = ±1; a

contradiction. This implies that f× and f ×× cannot both be in P,A , or M̂ . Thus Pl-#CSP(f×, f ×× )
is #P-hard by Theorem A.22. Then by Lemma D.2, Pl-#CSP2(f) is #P-hard.
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. . .

Figure 30: Gadget Γk, which has k − 1 copies of the dashed box. Circle vertices are
assigned f̂ , square vertices are assigned =2, and the triangle vertex is assigned [1, 0, a].

Lemma D.4. Let f = [1, 1]⊗4 + a[1,−1]⊗4, where a4 6= 0, 1. Then Pl-#CSP2(f) is #P-hard.

Proof. Under a holographic transformation by H =
[

1 1
1 −1

]
, we have

Pl-#CSP2(f) ≡ Pl-Holant(EQ2 | f) (D.12)

≡ Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], . . . | f̂), (D.13)

where f̂ = (H−1)⊗4f = [1, 0, 0, 0, a]. By Lemma D.3, Pl-#CSP2([1, 0, a, 0, a2 ]) is #P-hard, and we
have

Pl-#CSP2([1, 0, a, 0, a2 ]) ≡ Pl-Holant(EQ2 | [1, 0, a, 0, a2 ]) (D.14)

≡ Pl-Holant([1, 0, a], [1, 0, 0, 0, a2 ], · · · | [1, 0, 1, 0, 1]) (D.15)

≤ Pl-Holant([1, 0, a], [1, 0, 0, 0, a2 ], · · · | [1, 0, 1], [1, 0, 1, 0, 1], · · · ), (D.16)

where the second equivalence ≡ is by a holographic transformation with
[

1 0
0

√
a

]
.

The problem in (D.13) can simulate the problem in (D.16). With [1, 0, 1] on the left and f̂ on the
right in (D.13), we can get ∂(f̂) = [1, 0, a] on the right. Now consider the gadget in Figure 30. We
assign f̂ to the circle vertices, =2 to the square vertices, and [1, 0, a] to the triangle vertex. If there
are k − 1 occurrences of the dashed subgadget, then the signature of this gadget is [1, 0, . . . , 0, ak]
of arity 2k. Thus

Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], · · · | [1, 0, a], [1, 0, 0, 0, a2 ], · · · )
≤ Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], · · · | f̂).

Then combining three reductions, we have Pl-#CSP2([1, 0, a, 0, a2 ]) ≤ Pl-#CSP2(f), where a4 6=
0, 1. Thus Pl-#CSP2(f) is #P-hard by Lemma D.3.

Now we are ready to prove the following theorem.

Theorem D.5. Let f be a signature of arity 4, then Pl-#CSP2(f) is #P-hard or f ∈ P ∪ Ã ∪M̃ .

Proof. The first step is to apply Lemma D.2 to f×. For f = [f0, f1, f2, f3, f4] we have f× =
[f0, f2, f4]. If Pl-#CSP(f×) is #P-hard, then Pl-#CSP2(f) is #P-hard by Lemma D.2. In the
following, assume that Pl-#CSP(f×) is not #P-hard, and hence tractable by the dichotomy The-
orem A.21, and [f0, f2, f4] takes the following form

[0, 0, 0], [1, 0, 0], [0, 0, 1], [1, r, r2], [0, 1, 0], [1, 0, a], [1, 1,−1], [1,−1,−1], or [1, b, 1]

up to a scalar, where r 6= 0, a 6= 0, and b2 /∈ {0, 1}.
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Case 1: [f0, f2, f4] = [0, 0, 0]

In this case, f = [0, x, 0, y, 0] and f ×× = [2x2, x2 + y2, 2y2].
• If x2 = y2, then f = [0, x, 0,±x, 0] ∈ A .

• If x2 = −y2, then f = [0, 1, 0,±i, 0] ∈ A † since
[

1 0
0

√
i

]⊗4
f ∈ A .

• If x4 6= y4, then Pl-#CSP(f ×× ) is #P-hard by Theorem A.21, so Pl-#CSP2(f) is #P-hard
by Lemma D.2.

Case 2: [f0, f2, f4] = [1, 0, 0] or [0, 0, 1]
We prove the case for [f0, f2, f4] = [1, 0, 0] , i.e., f = [1, x, 0, y, 0]. The other case is similar.
Note that we have ∂(f) = [1, x + y, 0]. If x + y 6= 0, then Pl-#CSP2([1, x + y, 0]) is #P-hard
by Theorem A.21. Thus Pl-#CSP2(f) is #P-hard.
If x = −y 6= 0, then Pl-#CSP2(f) is #P-hard by Lemma D.1.
If x = −y = 0, then f = [1, 0]⊗4 ∈ P.

Case 3: [f0, f2, f4] = [1, r, r2] with r 6= 0
In this case, f = [1, x, r, y, r2]. If rx 6= y, then Pl-#CSP2(f) is #P-hard by Lemma D.1.
Otherwise, f = [1, x, r, xr, r2]. Then we have ∂(f) = (1 + r)[1, x, r]. If r 6= −1, then we have
[1, x, r]. In the following we will separate out the cases according to value of r.

For r4 6= 1 in f = [1, x, r, xr, r2].
• If x = 0, then f = [1, 0, r, 0, r2 ], and Pl-#CSP2(f) is #P-hard by Lemma D.3.
• If x2 = r, then f = [1, x]⊗4 ∈ P.
• If x2 6= r and x 6= 0, then Pl-#CSP2([1, x, r]) is #P-hard by Theorem A.21. Thus

Pl-#CSP2(f) is #P-hard.

For r = 1, then f = [1, x, 1, x, 1].
• If x4 = 0 or 1, then f ∈ A .
• If x4 6= 0, 1, then let a = 1−x

1+x and we have a4 6= 0, 1 by Lemma A.3. Note that

f = 1
1+a

{
[1, 1]⊗4 + a[1,−1]⊗4

}
. By Lemma D.4, Pl-#CSP2(f) is #P-hard.

For r = −1, then f = [1, x,−1,−x, 1].
• If x4 = 0 or 1, then f ∈ A .
• If x4 6= 0, 1, then let a = 1+xi

1−xi and we have a4 6= 0, 1 by Lemma A.3. Note that f =
1

a+1

{
[1, i]⊗4 + a[1,−i]⊗4

}
. Thus we have [1, 0,−1]⊗2 on the left by Lemma A.20. Under

the holographic transformation by [ 1 0
0 i ], this [1, 0,−1]⊗2 is transformed to [1, 0, 1]⊗2, and

we have

Pl-#CSP2(f) ≡T Pl-Holant(EQ4 ∪ {[1, 0, 1]⊗2 , [1, 0,−1], [1, 0, 0, 0, 0, 0,−1], · · · } | f ′),
(D.17)

where f ′ = 1
1+a

{
[1, 1]⊗4 + a[1,−1]⊗4

}
. Now having [1, 0, 1]⊗2 on the left, we can form

a pair of self loops in a planar way for a pair of adjacent f ′ and get (∂(f ′))⊗2 =(
2

1+a [1 + a, 1 − a, 1 + a]
)⊗2

on the right side. Since we have [1, 0, 1]⊗2 on the left side,

we can obtain [1, 0, 1]⊗2 on the right side by interpolation using [1 + a, 1 − a, 1 + a]⊗2.
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Note that the matrix
[

1+a 1−a
1−a 1+a

]
can be diagonalized by

[
1 1
1 −1

]
. This implies that

Pl-#CSP4(f ′, [1, 0, 1]⊗2) ≤T

Pl-Holant(EQ4 ∪ {[1, 0, 1]⊗2 , [1, 0,−1], [1, 0, 0, 0, 0, 0, −1], · · · } | f ′).

Then by (D.17) and Lemma B.4, we have

Pl-#CSP2(f ′) ≤ Pl-#CSP4(f ′, [1, 0, 1]⊗2) ≤ Pl-#CSP2(f). (D.18)

By Lemma D.4, Pl-#CSP(f ′) is #P-hard. Thus Pl-#CSP(f) is #P-hard.

For r2 = −1, then r = ±i in f = [1, x, r, xr,−1].

• If x = 0, then f = [1, 0, r, 0,−1] ∈ A † since
[

1 0
0

√
i

]⊗4
f = [1, 0,±1, 0, 1] ∈ A .

• If x2 = r, then f = [1, x]⊗4 ∈ P.

• If x2 = −r, then f = [1, x,−x2,−x3,−1] ∈ A † since
[

1 0
0 x−1

]⊗4
f ∈ A , with x4 = −1.

• If x4 6= 0,−1, thus x2 6= ±r. Then Pl-#CSP2([1, x, r]) is #P-hard by Theorem A.21.
Thus Pl-#CSP2(f) is #P-hard.

Case 4: [f0, f2, f4] = [0, 1, 0]
In this case, f = [0, x, 1, y, 0]. We first apply Lemma D.1 and calculate the determinant of
the compressed matrix for f , which is 2xy − 1. If xy 6= 1

2 , then Pl-#CSP2(f) is #P-hard by
Lemma D.1.
If xy = 1

2 and x − y = 0, then f = [0, 1√
2
, 1, 1√

2
, 0] or f = [0,− 1√

2
, 1,− 1√

2
, 0]. Both are in M̂ ,

by Lemma A.18.
If xy = 1

2 and x+ y = 0, then f = [0, i√
2
, 1,− i√

2
, 0] or f = [0,− i√

2
, 1, i√

2
, 0]. Both are in M̂ †,

by Lemma A.18. In fact from the previous line with [0,± 1√
2
, 1,± 1√

2
, 0], we can see directly

[ 1 0
0 i ]

⊗4
f ∈ M̂ .

In the following we have xy = 1
2 and x2 6= y2. Then f ×× = [1 + 2x2, 2 + x2 + y2, 1 + 2y2] and

f×× = [1+2x2, 1, 1+2y2]. We will prove that Pl-#CSP(f ×× , f××) is #P-hard by showing that

f ×× , f×× cannot be both in the same P,A , or M̂ .
• By x2 6= y2 and Lemma A.8, we have f×× /∈ M̂ .

• Suppose {f ×× , f××} ⊂ P. f×× is not of the form [1, 0, a], and also not of the form [0, 1, 0]
since 1 + 2x2 6= 1 + 2y2. Thus f×× is degenerate, i.e., (1 + 2x2)(1 + 2y2) = 1. Note that

f ×× is not of the form [0, 1, 0] since 1 + 2x2 6= 1 + 2y2. If f ×× is of the form [1, 0, a], then
x2 + y2 = −2. Then together with xy = 1

2 we obtain (1 + 2x2)(1 + 2y2) = −2 6= 1.

This contradicts that f×× is degenerate. Thus f ×× and f×× are both degenerate. Then
we have

(1 + 2x2)(1 + 2y2) = (x2 + y2 + 2)2,

(1 + 2x2)(1 + 2y2) = 1. (D.19)

Together we have (x2 + y2 + 2)2 = 1, i.e., x2 + y2 = −3 or x2 + y2 = −1. However both

possibilities contradict (D.19) and xy = 1
2 . Thus f ×× and f×× cannot both belong to P.
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• Suppose {f ×× , f××} ⊂ A . By f×× ∈ A and the middle term is nonzero, by Corollary A.9
we have 1 + 2x2 = ±(1 + 2y2). Since x2 6= y2, we have 1 + 2x2 = −1 − 2y2. This leads
to (x + y)2 = 0 by using xy = 1

2 . This contradicts x2 6= y2.

We have proved that f ×× , f×× cannot be both in P, or A , or M̂ . Thus Pl-#CSP(f ×× , f××) is
#P-hard by Theorem A.22. So Pl-#CSP2(f) is #P-hard by Lemma D.2.

Case 5: [f0, f2, f4] = [1, 0, a] with a 6= 0
In this case, f = [1, x, 0, y, a]. We first apply Lemma D.1 and calculate the determinant of
the compressed matrix for f , which is −(ax2 + y2). If ax2 + y2 6= 0, then Pl-#CSP2(f) is
#P-hard by Lemma D.1. In the following we assume ax2 + y2 = 0.
If x = y = 0, then f ∈ P.
If x = y 6= 0, then a = −1. So f = [1, x, 0, x,−1] ∈ M̂ †, by Corollary A.18.

If x = −y 6= 0, then a = −1. So f = [1, x, 0,−x,−1] ∈ M̂ , by Corollary A.18.
Now we assume ax2 + y2 = 0 and x2 6= y2. Then a 6= −1 and xy 6= 0 by a 6= 0. In this case,
the “Three Stooges” are

f× = [1, 0, a], f ×× = [1+2x2, x2 + y2, a2 +2y2], and f×× = [1+2x2, 2xy, a2 +2y2].

By ax2 + y2 = 0, we have

f ×× = [1 + 2x2, (1 − a)x2, a2 − 2ax2] and f×× = [1 + 2x2, 2xy, a2 − 2ax2].

We will prove that Pl-#CSP(f×, f ×× , f××) is #P-hard by showing that f×, f ×× and f×× cannot

be all in the same P,A , or M̂ .
• Assume that {f×, f××} ⊆ M̂ . Note that a 6= −1. If f× ∈ M̂ , we have a = 1 by

Lemma A.8. Then by f×× ∈ M̂ and Lemma A.8, we have 1 + 2x2 = 1 − 2x2 or 2xy = 0.
This is a contradiction.

• Assume that {f ×× , f××} ⊆ P. If 1 + 2x2 and a2 − 2ax2 are both zero, then a = 0 or −1.

This is a contradiction. Thus f ×× , f×× are not of the form [0, 1, 0]. By xy 6= 0, f×× is not
of the form [1, 0, c] with c 6= 0. Thus f×× is degenerate by Lemma A.8, i.e.,

(1 + 2x2)(a2 − 2ax2) = 4x2y2 = −4ax4, (D.20)

where the last equality is by ax2 + y2 = 0.
If a = 1, we have 1 − 4x4 = −4x4 by (D.20). This is a contradiction.

If a 6= 1, then f ×× is not of the form [1, 0, c] with c 6= 0. Thus f ×× is degenerate by f ×× ∈ P,
i.e.,

(1 + 2x2)(a2 − 2ax2) = (1 − a)2x4.

Then by (D.20), we have −4ax4 = (1 − a)2x4. This implies that −4a = (1 − a)2 by
x 6= 0. Then (1 + a)2 = 0, contradicting a 6= ±1.

• Suppose {f×, f××} ⊂ A . By f× ∈ A , and a 6= 0, we get a4 = 1 from Lemma A.8. It
follows that a = 1 or a2 = −1, as we have a 6= −1.
For a = 1, the equation ax2 + y2 = 0 gives us y2 = −x2. Then from Corollary A.9 we
have

(1 + 2x2)2 = (1 − 2x2)2
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by f×× ∈ A and 2xy 6= 0. Thus x = 0. This is a contradiction.
For a2 = −1, by f×× ∈ A and 2xy 6= 0, we have (1 + 2x2)2 = (−1 − 2ax2)2 by
Corollary A.9. 1 + 2x2 = 1 + 2ax2 leads to a contradiction a = 1, hence 1 + 2x2 =
−(1 + 2ax2). Then x2 = − 1

a+1 and f×× = [a−1
a+1 , 2xy, a−1

a+1 ]. Note that a + 1 6= 0. We

observe that the norm of x2 is 1√
2

and the norm of x is equal to the norm of y by

ax2 = −y2 and a2 = −1. Thus the norm of 2xy is
√

2. Moreover, the norm of a−1
a+1 is 1,

as a = ±i. Thus the norm of 2xy is not equal to the norm of a−1
a+1 , and are nonzero. So

f×× /∈ A by Corollary A.9.

This implies that f×, f ×× and f×× cannot be all in P, or all in A , or all in M̂ . Thus the

problem Pl-#CSP(f×, f ×× , f××) is #P-hard by Theorem A.22. So Pl-#CSP2(f) is #P-hard.

Case 6: [f0, f2, f4] = [1,±1,−1]
In this case, f = [1, x, 1, y,−1] or [1, x,−1, y,−1]. We consider the first case; the second case
is similar.
We have ∂(f) = [2, x + y, 0]. If x + y 6= 0, then Pl-#CSP2([2, x + y, 0]) is #P-hard by
Theorem A.21. Thus Pl-#CSP2(f) is #P-hard. Now we assume x + y = 0. Next we apply
Lemma D.1 and calculate the determinant of the compressed matrix for f , which is a nonzero
constant multiple of x2 + 1. If x2 + 1 6= 0, then Pl-#CSP2(f) is #P-hard by Lemma D.1.
If x + y = 0 and x2 + 1 = 0, then f = [1,±i, 1,∓i,−1]. We have

∂(f) = 2[1, 0, 0], ∂[1,0,0](f) = [1,±i, 1], and ∂[1,±i,1](f) = [0,±2i, 2].

Then Pl-#CSP2([0,±2i, 2]) is #P-hard by Theorem A.21. Thus Pl-#CSP2(f) is #P-hard.

Case 7: [f0, f2, f4] = [1, b, 1] with b2 6= 0, 1
In this last case of Theorem D.5, f = [1, x, b, y, 1] and the determinant of the compress
signature matrix is

D = b + 2bxy − b3 − x2 − y2. (D.21)

If D 6= 0, then Pl-#CSP2(f) is #P-hard by Lemma D.1. In the following we assume that
D = 0.
If x = y = 0, then b = 0 or b2 = 1 by D = b(1 − b2) = 0. This is a contradiction.
If x = y 6= 0, then D = (1 − b)[b(1 + b) − 2x2] = 0. By b 6= 1, we have b(1 + b) = 2x2. This

implies that f ∈ M̂ by Corollary A.18.
Similarly, if x = −y 6= 0, then D = (1 + b)[b(1 − b) − 2x2] = 0. By b 6= −1, we have

b(1 − b) = 2x2. This implies that f ∈ M̂ † by Corollary A.18.
In the following, assume that x2 6= y2 in addition to D = 0. In this case, the “Three Stooges”
are

f× = [1, b, 1],

f ×× = [1 + b2 + 2x2, 2b2 + x2 + y2, 1 + b2 + 2y2], and

f×× = [1 + b2 + 2x2, 2b + 2xy, 1 + b2 + 2y2].

We will prove that Pl-#CSP(f×, f ×× , f××) is #P-hard by showing that f×, f ×× , f×× cannot all

be in the same P, or A , or M̂ .
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By b2 6= 0, 1, we have f× /∈ P by Lemma A.8.
• Suppose b2 6= −1. Then in addition to b2 6= 0, 1, we have b4 6= 0, 1. Then f× /∈ A by

Lemma A.8. Moreover, if f ×× ∈ M̂ , then by Lemma A.8 and the fact that x2 6= y2, we
must have

1 + b2 + 2x2 = −(1 + b2 + 2y2) and 2b2 + x2 + y2 = 0. (D.22)

From (D.22), we get b2 = 1. This is a contradiction. This implies that f×, f ×× cannot be

all in P, or all in A , or all in M̂ when b2 6= −1.

• Now suppose b2 = −1. Then f ×× = [2x2, x2 + y2 − 2, 2y2] and f×× = 2[x2, b + xy, y2]. If

f ×× ∈ M̂ , then by x2 6= y2 and Lemma A.8, we have

x2 = −y2 and x2 + y2 − 2 = 0

This is a contradiction.

Finally suppose {f ×× , f××} ⊂ A .
– If x2 + y2 = 0, then xy = −1 by b2 = −1 and

D = b + 2bxy − b3 − x2 − y2 = 0.

Then f ×× = 2[x2,−1, y2], f×× = 2[x2, b − 1, y2] both have all nonzero entries. If they
are both in A , the norm of their entries must be all the same |b−1| = |x2| = |−1| = 1,
by Corollary A.9. However b − 1 does not have norm 1 since b2 = −1.

– If x2 + y2 6= 0, then, since we also have x2 6= y2, the first and the last entries

of both f ×× and f×× are neither equal nor negative of each other. It follows from
membership in A that x2 + y2 − 2 = 0 and b + xy = 0 by Corollary A.9. Then by
D = b + 2bxy − b3 − x2 − y2 = 0 and b2 = −1, we get a contradiction.

We have proved that f×, f ×× , f×× cannot be all in P, or all in A , or all in M̂ when
b2 = −1.

From above, f×, f ×× , f×× cannot be all in P, or all in A , or all in M̂ when x2 6= y2 and D = 0.

Thus Pl-#CSP(f×, f ×× , f××) is #P-hard by Theorem A.22. So Pl-#CSP2(f) is #P-hard. This
completes the proof of Case 7.

This completes the proof of Theorem D.5.

E An Application of Cyclotomic Field

E.1 Dichotomy Theorem with a Signature in M̂ \ (P ∪ Ã )

The next three lemmas are crucial. The purpose of these lemmas is to give a similar result as
Lemma C.3 when the signature set F contains some f ∈ M̂ \ (P ∪ Ã ), and all signatures in F
have even arity. The proof uses an argument involving the degree of extension of a cyclotomic field.

We first prove that if we have an even arity signature in M̂ \ (P ∪ Ã ), then we can construct
a binary [1, a, 1] with a4 /∈ {0, 1}.
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Figure 31: Gadget used in the proof of Lemma E.1.

Lemma E.1. Let F be a set of symmetric signatures containing some f ∈ M̂ \ (P ∪ Ã ), which
has even arity. Then

Pl-#CSP2([1, a, 1],F) ≤T Pl-#CSP2(F)

for some a satisfying a4 /∈ {0, 1}.

Proof. If f has arity 2, then we are done by Lemma A.14. Thus, we assume that f has arity
2n ≥ 4. By Lemma A.14, we have either f = [s, t]⊗2n ± [t, s]⊗2n with s4 6= t4 and st 6= 0 or
fk = (±1)k(2n − 2k) up to a scalar.

For f = [s, t]⊗2n+[t, s]⊗2n, we have ∂n−1(f) = (s2+t2)n−1{[s, t]⊗2+[t, s]⊗2} = (s2+t2)n[1, a, 1],
where a = 2st

s2+t2
. Note that s2 + t2 6= 0 and a 6= 0,±1. If a 6= ±i, then we are done. Suppose

a = ±i. Then g = ∂n−2(f) = (s2 + t2)n−2{[s, t]⊗4 + [t, s]⊗4}. A simple calculation shows that g =
−2s2t2(s2 + t2)n−2[3,±i,−1,±i, 3]. Consider the gadget in Figure 31. We assign [3,±i,−1,±i, 3]
to the circle vertices and =6 to the square vertex. Its signature is [8,±6i, 8], so we are done.

For f = [s, t]⊗2n−[t, s]⊗2n, we have ∂n−1(f) = (s2+t2)n−1{[s, t]⊗2−[t, s]⊗2} = λ[1, 0,−1], where
λ = (s2 + t2)n−1(s2 − t2) 6= 0. For 2n ≥ 6, we have ∂[1,0,−1](f) = (s2 − t2){[s, t]⊗2n−2 + [t, s]⊗2n−2}
and we are done by the proof of the previous case, as 2n−2 ≥ 4. For 2n = 4, we have ∂[1,0,−1](f) =

(s2 − t2){[s, t]⊗2 +[t, s]⊗2} = (s4 − t4)[1, a, 1], where a = 2st
s2+t2 6= 0,±1. If a 6= ±i, then we are done.

Suppose a = ±i, then a simple calculation shows that f is a nonzero multiple of [2i,∓1, 0,±1,−2i].

(One can verify that s3t−st3

s4−t4
= st

s2+t2
= a

2 = ± i
2 .) Consider the gadget in Figure 31. We assign

[2i,∓1, 0,±1,−2i] to the circle vertices and =6 to the square vertex.. The signature of this gadget
is [−3,∓4i,−3], so we are done.

For fk = (±1)k(2n − 2k), we have ∂n−2(f) = 2n−1[2,±1, 0,∓1,−2]. Consider the gadget in
Figure 31. We assign [2,±1, 0,∓1,−2] to the circle vertices and =6 to the square vertex. The
signature of this gadget is [5,±4, 5], so we are done.

The next lemma shows that if we have [1, a, 1] with a4 6= 0, 1, then we can obtain [1, 1]⊗2 by
interpolation.

Lemma E.2. For any signature set F and any a4 /∈ {0, 1},

Pl-#CSP2({[1, 1]⊗2} ∪ F) ≤T Pl-#CSP2({[1, a, 1]} ∪ F).

Proof. The eigenvalues of
[

1 b
b 1

]
are 1 + b and 1 − b respectively. If we have a signature [1, b, 1], for

some b 6= 1, such that ratio 1+b
1−b of eigenvalues is not a root of unity, then we can interpolate any

binary signature [1, x, 1] for x ∈ C. In particular, we could interpolate the desired [1, 1]⊗2.
Indeed, let Ω be an instance of Pl-#CSP2({[1, x, 1]}∪F) in which [1, x, 1] occurs n times. Write

[ 1 x
x 1 ] as H

[
1+x 0
0 1−x

]
H, where H = 1√

2

[
1 1
1 −1

]
. We can stratify the partition function value on Ω

as Z(Ω) =
∑n

ℓ=1 cℓ(1 + x)ℓ(1 − x)n−ℓ, where cℓ is the sum, over all assignments that assign 00
to ℓ copies of

[
1+x 0

0 1−x

]
and 11 to the remaining n − ℓ copies, of the product of evaluations of

all other signatures from F and those copies of H. If we construct a sequence Ωk of instances of
Pl-#CSP2({[1, b, 1]}∪F), where we replace each occurrence of [1, x, 1] by a chain of k linked copies
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of [1, b, 1], then since
[

1 b
b 1

]k
= H

[
(1+b)k 0

0 (1−b)k

]
H, we have Z(Ωk) = (1 − b)kn

∑n
ℓ=1 cℓ(

1+b
1−b )

kℓ, for

0 ≤ k ≤ n. This is a Vandermonde system of full rank, and we can solve for all cℓ and find the
value Z(Ω).

The simple gadget with two copies of =2k connected by 2k − 1 parallel copies of [1, a, 1] has
signature [1, a2k−1, 1]. Our key claim is that there exists a k ≥ 1, depending only on a, such that
1+a2k−1

1−a2k−1 is not a root of unity. Then we are done by the interpolation given above.

For a contradiction, assume that 1+a2k−1

1−a2k−1 is a root of unity for all k ≥ 1. For k = 1, 1+a
1−a is

some root of unity e2πij/m, where gcd(j,m) = 1. Then a ∈ Φm = Q(e2πi/m), the m-th cyclotomic
field. Therefore a2k−1 ∈ Φm as well for all k ≥ 1. Furthermore, |1+a

1−a | = 1, so a is purely imaginary,

i.e. a = ih for some real h /∈ {0,±1} since a4 /∈ {0, 1}. First we consider the case 0 < |h| < 1. Then
a2k−1 = ±ih2k−1 and limk→∞ h2k−1 = 0.

For all k ≥ 1, 1+a2k−1

1−a2k−1 is some root of unity e2πiJ/M (in which J and M depend on k), where

0 < |J | < M/2 with gcd(J,M) = 1. Then e2πi/M ∈ Φm as well, so ΦM ⊆ Φm. Note that
| tan(πJ/M)| = |h|2k−1. Hence |h|2k−1 ≥ tan(π/M) ≥ π/M . Thus M ≥ π/|h|2k−1.

However, the M -th cyclotomic field ΦM has degree of extension [Q(e2πi/M ) : Q] = ϕ(M), where
ϕ is the Euler totient function. We have a crude estimate (ϕ(M))2 ≥ M/2, which is obvious by
considering each prime dividing M . Then it follows that limM→∞ ϕ(M) = ∞, which contradicts
ϕ(M) ≤ ϕ(m) < ∞.

The remaining case |h| > 1 can be handled similarly. In fact, if |h2k−1| is large, then the angle

tan−1(|h2k−1|) is close (but unequal) to π/2. Then the angle of
(

1+a2k−1

1−a2k−1

)2
is close (but unequal)

to 0 mod 2π.

Combining Lemma B.3, Lemma E.1 and Lemma E.2, we have proved the following.

Lemma E.3. Let F be a set of even-arity signatures containing f . If f ∈ M̂ \ (P ∪ Ã ), then

Pl-#CSP2(F) is #P-hard unless F ⊆ M̂ .

E.2 Dichotomy Theorem with a Signature in M̂ † \ (P ∪ Ã )

We would like to prove a corresponding statement to Lemma E.3 after replacing the condition
f ∈ M̂ \ (P ∪ Ã ) by f ∈ M̂ † \ (P ∪ Ã ). This corresponding statement is indeed true and
is implied by Theorem A.2, the final dichotomy theorem for Pl-#CSP2. However, at this point
leading up to the proof of Theorem A.2, we are not able to prove it. Instead, we prove a weaker
version, Lemma E.7, in which f is assisted by a binary signature other than a multiple of [1, 0, 1].

Remark 5. Here we explain some of the difficulties in the proof caused by structural complications
of the signatures involved.

When we prove the No-Mixing statements for M̂ the crucial step is the ability to construct
[1, ω]⊗2 with ω 6= 0 in the Pl-#CSP2 setting (cf. Lemma E.1 and Lemma E.2). This is the key, and
the only known method, for us to leverage the existing dichotomy for Pl-#CSP (cf. Lemma B.3).
Then in a similar spirit, to prove the No-Mixing statements for M̂ †, we would like to be able to
construct [1, ω]⊗2 as well.

A signature f = [f0, . . . , fn] is called an odd signature if f2k = 0 for all k ≥ 0, and an even
signature if f2k+1 = 0 for all k ≥ 0.

In any F-gate H, if every signature in F satisfies parity constraints, then the signature of H also
satisfies parity constraints. In fact the parity of the signature of H is the same as the parity of the
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number of occurrences of odd signatures of F in H. To see this, suppose σ is a {0, 1}-assignment to
all the edges of H, including internal and external edges, that has a nonzero evaluation on H. By
parity constraints, each odd (resp. even) signature appearing in H has an odd (resp. even) number
of incident edges assigned 1. Adding up all these numbers mod 2, noting that each internal edge
of H assigned 1 contributes 2 to the sum while each external edge of H assigned 1 contributes 1,
we get N ≡ 2X + Y ≡ Y (mod 2), where N is the number of occurrences of odd signatures of F
in H, and X (resp. Y ) is the number of internal (resp. external) edges assigned to 1 by σ. Hence
H has the same parity as N .

For any signature of the form f = [s, ti]⊗m ± [t, si]⊗m, or fk = (±i)k(m − 2k), for any arity
m, (Z−1)⊗mf satisfies the parity constraints, where Z = 1

2

[
1 1
i −i

]
. In fact for f of the first type,

(Z−1)⊗mf = [u, v]⊗m ± [u,−v]⊗m for u = s + t and v = s − t, and for f of the second type,
(Z−1)⊗mf = 2m[0, 1, 0, . . . , 0] or 2m[0, . . . , 0, 1, 0]. Note that

[
1 1
i −1

]⊗m
[0, 1, 0, . . . , 0] = Symn−1

n ([ 1
i ] ;
[

1
−i

]
)

has its k-th term ik(m − 2k). Similarly,
[

1 1
i −i

]⊗m
[0, . . . , 0, 1, 0] has its k-th term (−i)k(m − 2k).

Under the holographic transformation Z, we have

Pl-#CSP2(f) ≡T Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂), (E.23)

where f̂ = (Z−1)⊗mf , and 1
2 [0, 1, 0] = (=2)Z

⊗2, 1
23 [1, 0, 1, 0, 1] = (=4)Z

⊗4, etc. Notice that for
the signatures (=2n)Z⊗2n, if the arity 2n ≡ 2 (mod 4) then the signature is odd, and if 2n ≡ 0
(mod 4) then the signature is even.

Every signature of the form [s, ti]⊗m + [t, si]⊗m is even, every signature of the form [s, ti]⊗m −
[t, si]⊗m is odd, and for even arity 2n the signatures [0, 1, 0, . . . , 0] and [0, . . . , 0, 1, 0] are both odd.

Thus, if we focus on signatures f = [s, ti]⊗2n + [t, si]⊗2n with arity 2n ≡ 0 (mod 4), or f =
[s, ti]⊗2n − [t, si]⊗2n with arity 2n ≡ 2 (mod 4), or fk = (±i)k(2n − 2k) with arity 2n ≡ 2 (mod 4),
then the following property holds for all the signatures in the bipartite Pl-Holant problem in (E.23):

All signatures of arity 2n ≡ 2 (mod 4) satisfy odd parity and all signatures of arity
2n ≡ 0 (mod 4) satisfy even parity.

It follows that, for such f , any gadget constructed from (E.23) has the same parity as the
number of occurrences of signatures of arity 2n ≡ 2 (mod 4).

Furthermore, in a bipartite gadget construction in Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂), if the
resulting signature of the gadget is binary, the number of occurrences of signatures of arity 2n ≡ 2
(mod 4) in this gadget must be odd. Indeed let N0 (resp. N2) denote the number of occurrences
of signatures of arity 2n ≡ 0 (mod 4) (resp. 2n ≡ 2 (mod 4)) in this bipartite gadget, and we add
up the arities of all signatures modulo 4, we get 0N0 + 2N2 ≡ 2NI + 2 (mod 4), where NI is the
number of internal edges in the bipartite gadget, and the additive term 2 is because the gadget is
a binary gadget. Thus N2 ≡ NI + 1 (mod 2). On the other hand, since the gadget is bipartite, NI

is the sum of all arities of signatures from RHS, and minus 2 if the external 2 edges come from the
RHS. As all signatures in this gadget have even arity, NI ≡ 0 (mod 2). Hence N2 ≡ 1 (mod 2).

This implies that any binary signature constructed in Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂)
must have odd parity, i.e., they are all of the form λ[0, 1, 0]. Thus, before the Z-transformation,
one can only construct binary signatures of the form λ

2 [1, 0, 1] = λZ⊗2[0, 1, 0] in Pl-#CSP(f) by
gadget construction. This can be verified as

[
1 1
i −i

]
[ 0 1
1 0 ]

[
1 i
1 −i

]
= 2 [ 1 0

0 1 ].
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In particular one cannot construct [1, ω]⊗2 in Pl-#CSP2(f) by gadget construction. This ex-
plains the extra mile we have to travel in this proof.

As indicated, therefore, we prove a weaker version of Lemma E.3 in this subsection, namely
Lemma E.7, in which f is assisted by a binary signature other than a multiple of [1, 0, 1].

We begin with the following lemma.

Lemma E.4. Let F be any set of symmetric signatures of even arities, and suppose F contains
signatures f and g, where f ∈ M̂ † \ (P ∪ Ã ), and g = [g0, g1, . . . , g2n] and there exists a positive

integer s such that gs
0 = −gs

2n 6= 0. Then either F ⊆ M̂ † or Pl-#CSP2(F) is #P-hard.

Proof. Let E2k(−1) = [1, 0, . . . , 0,−1] have arity 2k and E(−1) = {E2k(−1) | k ≥ 1}. Firstly, by
our calculus we have ∂s

g(=2ns+2k) = gs
0E2k(−1) on LHS for k ≥ 1. Thus we have

Pl-Holant(E(−1) ∪ EQ2 | F) ≤T Pl-#CSP2(F).

Under a holographic transformation by T−1 = [ 1 0
0 i ], the set E(−1) ∪ EQ2 is set-wise invariant.

Indeed, for all k ≥ 1, signatures of arity 4k in E(−1) ∪ EQ2 are pointwise fixed, and signatures of
arity 4k − 2 in E(−1) and in EQ2 are interchanged. Thus,

Pl-#CSP2(TF) ≤T Pl-Holant(E(−1) ∪ EQ2 | TF) ≡T Pl-Holant(E(−1) ∪ EQ2 | F).

Note that T⊗2nf ∈ TF is in M̂ \ (P ∪ Ã ). Thus either TF ⊆ M̂ or Pl-#CSP2(TF) is #P-hard

by Lemma E.3. Note that TF ⊆ M̂ iff F ⊆ M̂ †. Thus either F ⊆ M̂ † or Pl-#CSP2(F) is
#P-hard.

The next two lemmas show that if we have a signature in M̂ † \ (P ∪ Ã ) and a binary signature

that is not a multiple of [1, 0, 1], then we have the same statement for M̂ †, as Lemma E.3 is for

M̂ . This will be stated as Lemma E.7. Note that if f ∈ M̂ † \ (P ∪ Ã ) is a binary signature, then
f takes the form [1, b,−1] by Lemma A.14, and this case is covered by Lemma E.4, where f also

plays the role of g. Thus we assume f ∈ M̂ † \ (P ∪ Ã ) has arity ≥ 4. By Lemma A.14, such a
signature f has two forms. Lemma E.5 and E.6 handle these two cases respectively.

Lemma E.5. Let F be any set of symmetric signatures of even arities, and suppose F contains
signatures f and h, where f = [s, ti]⊗2n ± [t, si]⊗2n with 2n ≥ 4, s4 6= t4 and st 6= 0, and h is any

nonzero binary signature other than λ[1, 0, 1]. Then either F ⊆ M̂ † or Pl-#CSP2(F) is #P-hard.

Proof. Firstly, by our calculus, ignoring the nonzero factor (s2 − t2)n−2 in ∂n−2(f), we have g =
[s, ti]⊗4 ± (−1)n−2[t, si]⊗4. If g = [s, ti]⊗4 − [t, si]⊗4, then we have ∂(g) = (s2 − t2){[s, ti]⊗2 +
[t, si]⊗2} = (s2 − t2)[s2 + t2, 2sti,−(s2 + t2)] and we are done by Lemma E.4.

Suppose g = [s, ti]⊗4 + [t, si]⊗4, and we also have h 6= λ[1, 0, 1]. If h /∈ P ∪ Ã ∪ M̃ , then
Pl-#CSP2(F) is #P-hard by Theorem A.21′. Otherwise, by Lemma A.8, the possibilities for h,
after normalizing, are

[a, b]⊗2, [1, 0, x], [0, 1, 0], [1, ρ,−ρ2], [1, α,−α2], [1, u, 1], and [1, v,−1],

where x /∈ {0, 1}, ρ4 = 1, α4 = −1, u4 /∈ {0, 1}, and v4 /∈ {0, 1}.
• If h = [a, b]⊗2 with ab 6= 0, then we are done by Lemma B.3.
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• If h ∈ {[1, 0,−1], [1, 0,±i], [1, ±1,−1], [1, α,−α2 ], [1, v,−1]}, then we are done by Lemma E.4.

• If h = [1, u, 1] with u4 6= 0, 1, then h ∈ M̂ \ (P ∪ Ã ) by Lemma A.14. Thus we are done by
Lemma E.3.

The remaining cases are h = [1, 0]⊗2, [0, 1]⊗2, [1, 0, x], [0, 1, 0] or [1,±i, 1], where x4 6= 0, 1.
• If h = [1, 0, x] with x4 6= 0, 1, then by taking 4 copies of h and connecting one input of h

to each edge of g, we have ĝ = [ 1 0
0 x ]

⊗2n
g = [s, xti]⊗4 + [t, xsi]⊗4. The signature ĝ is non-

degenerate, has arity 4, and satisfies a second recurrence relation. The eigenvalues of the
recurrence relation are xti

s and xsi
t . By the trace and product, ĝ has type 〈−x2, xti

s + xsi
t , 1〉.

Thus ĝ /∈ P ∪ Ã ∪ M̃ by Lemma A.11, since (−x2)2 6= 0, 1 and t
s + s

t 6= 0. So Pl-#CSP2(ĝ)
is #P-hard by Theorem D.5. Thus Pl-#CSP2(F) is #P-hard.

• If h = [0, 1, 0], then ∂h(g) = 2sti{[s, ti]⊗2 + [t, si]⊗2} = 2sti[s2 + t2, 2sti,−(s2 + t2)]. Then we
are done by Lemma E.4.

• If h = [1,±i, 1], by connecting two copies of [1,±i, 1] we have ±2i[0, 1, 0], as
[

1 ±i
±i 1

]2
=[

0 ±2i
±2i 0

]
. Then we are done by the previous case.

• If h = [1, 0]⊗2, then we have g′ = ∂h(g) = s2[s, ti]⊗2+t2[t, si]⊗2 = [s4+t4, (s2+t2)sti,−2s2t2].

We claim that g′ /∈ P ∪ Ã ∪ M̃ .
– If g′ ∈ P, then g′ is degenerate by (s2 + t2)sti 6= 0 and −2s2t2 6= 0. So −2s2t2(s4 + t4) =

−(s2 + t2)2s2t2. Thus st = 0 or (s2 − t2)2 = 0. This is a contradiction.
– If g′ ∈ A \ P, then g′ = [1, ρ,−ρ2] up to a scalar by Corollary A.9, where ρ4 = 1. By

ρ2 = ±1, we have s4 + t4 = ±2s2t2. This contradicts that s4 6= t4.
– If g′ ∈ A † \ P, then g′ = [1, α,−α2] up to a scalar by Corollary A.9, where α4 = −1.

Thus 2s2t2(s4 + t4) = −(s2 + t2)2s2t2. Then, by st 6= 0, we have 3(s4 + t4) = −2s2t2 6= 0,
and so |s4 + t4| 6= | − 2s2t2|. This implies that the norms of two nonzero entries of g′ are
not equal. This contradicts the form g′ = λ[1, α,−α2].

– Since s4 6= t4 we have s4 + t4 6= ±2s2t2. Hence g′ /∈ M̃ by Corollary A.9.
Then by Theorem A.21′, Pl-#CSP2(g′) is #P-hard. Thus Pl-#CSP2(F) is #P-hard.

• If h = [0, 1]⊗2, then we apply the transformation [ 0 1
1 0 ] and are done by the previous case.

Lemma E.6. Let F be any set of symmetric signatures of even arities, and suppose F contains
signatures f and h, where f has arity 2n ≥ 4 and fk = (±i)k(2n−2k), and h is any nonzero binary

signature other than λ[1, 0, 1]. Then either F ⊆ M̂ † or Pl-#CSP2(F) is #P-hard.

Proof. If 2n ≡ 0 (mod 4), then f0 = −f2n = 2n. Thus we are done by Lemma E.4.

Suppose 2n ≡ 2 (mod 4). Thus n ≥ 3 and we have g = ∂
n−3

2
=4 (f) of arity 6. Ignoring the nonzero

factor 2
n−3

2 , we have gk = (±i)k(6 − 2k). Removing another factor 2, we have

g = [3,±2i,−1, 0,−1,∓2i, 3].

We also have a nonzero binary signature h 6= λ[1, 0, 1]. If h /∈ P ∪ Ã ∪ M̃ , then Pl-#CSP2(F) is
#P-hard by Theorem A.21′. Otherwise (similar to the proof of Lemma E.5), by Lemma A.8, the
possibilities for h, after normalizing, are

[a, b]⊗2, [1, 0, x], [0, 1, 0], [1, ρ,−ρ2], [1, α,−α2], [1, u, 1], and [1, v,−1],

where x /∈ {0, 1}, ρ4 = 1, α4 = −1, u4 /∈ {0, 1}, and v4 /∈ {0, 1}. If h = [1, 0,−1], [1, 0,±i],
[1,±1,−1], [1, α,−α2], [1, v,−1], [1, u, 1], or [a, b]⊗2 with ab 6= 0, then we are done with the same
proof as in Lemma E.5.
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The remaining cases are h = [1, 0]⊗2, [0, 1]⊗2, [1, 0, x], [0, 1, 0], or [1,±i, 1], where x4 /∈ {0, 1}.
• For h = [1, 0, x] with x4 /∈ {0, 1}, we have g′ = ∂h(g) = [3 − x,±2i,−1 − x,∓2xi,−1 + 3x].

The signature g′ is non-degenerate because (±2i)(∓2xi) 6= (−1 − x)2 by x 6= 1. Moreover,

g′ satisfies the second recurrence relation with type 〈1,∓2i,−1〉. Thus g′ /∈ P ∪ Ã ∪ M̂

by Lemma A.11. Moreover, by x 6= ±1, we have 3 − x 6= ±(−1 + 3x), so g′ /∈ M̂ † by
Corollary A.17. So Pl-#CSP2(g′) is #P-hard by Theorem D.5. Thus Pl-#CSP2(F) is #P-
hard.

• If h = [0, 1, 0], then ∂h(g) = [±2i,−1, 0,−1,∓2i]. Then we are done by Lemma E.4.
• If h = [1,±i, 1], by connecting two copies of [1,±i, 1] we have ±2i[0, 1, 0]. Then we are done

by the proof of the previous case.
• If h = [1, 0]⊗2, then we have g′′ = ∂2

h(g) = [3,±2i,−1]. By Corollary A.9, we have g′′ /∈
P ∪ Ã ∪ M̃ . Then by Theorem A.21′, Pl-#CSP2(g′′) is #P-hard. Thus Pl-#CSP2(F) is
#P-hard.

• If h = [0, 1]⊗2, we apply the transformation [ 0 1
1 0 ] and it follows from the previous case.

Lemma E.7. Let F be any set of symmetric signatures of even arities, and suppose F contains
signatures f and h, where f ∈ M̂ † \ (P ∪ Ã ), and h is any nonzero binary signature other than

λ[1, 0, 1]. Then either F ⊆ M̂ † or Pl-#CSP2(F) is #P-hard.

Proof. If f has arity 2, then f = [1, b,−1] by Lemma A.14. Then we are done by Lemma E.4.
If f has arity 2n ≥ 4, then by Lemma A.14, we have f = [s, ti]⊗2n ± [t, si]⊗2n with st 6= 0,

s4 6= t4, or fk = (±i)k(2n − 2k) up to a scalar. These two cases are proved in Lemma E.5, and E.6
respectively.

Remark 6. Lemma E.3 and Lemma E.7 will substantially simplify the succeeding proof for No-
Mixing Lemmas concerning M̂ and M̂ †. Thus it is natural that we wish to do the same for
A , and that means we would like to construct [1, ω]⊗2 with ω 6= 0 in Pl-#CSP2(f) for f ∈ A .
Unfortunately, for most cases of f ∈ A this is impossible.

First, for a signature f ∈ A , if f satisfies parity constraints, then all signatures constructed
in Pl-#CSP2(f) satisfy parity constraints, since all EQ2 also satisfy parity constraints. So it is
impossible to construct [1, ω]⊗2 with ω 6= 0 in Pl-#CSP2(f).

If a signature f ∈ A is degenerate and does not satisfy parity constraints, then f = [1,±1]⊗2n

or f = [1,±i]⊗2n up to a scalar. For f = [1,±1]⊗2n, we have ∂n−1(f) = 2n−1[1,±1]⊗2. For

f = [1,±i]⊗2n and 2n ≡ 2 (mod 4), we have ∂
n−1

2
=4 (f) = 2

n−1
2 [1,±i]⊗2. Thus in these two particular

cases we can get [1, ω]⊗2 with ω 6= 0. We will show that these are the only cases that this is possible.
Let f = [1,±i]⊗2n and 2n ≡ 0 (mod 4). After a holographic transformation by Z =

[
1 1
i −i

]
, we

have
Pl-#CSP2(f) ≡T Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂),

where f̂ = (Z−1)⊗2nf , i.e., f̂ = [1, 0]⊗2n or f̂ = [0, 1]⊗2n. In Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂),
all signatures of arity ≡ 0 (mod 4) have even parity and all signatures of arity ≡ 2 (mod 4) have
odd parity. By the same proof in Remark 6, all nonzero binary signatures that can be constructed
in Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂) are multiples of [0, 1, 0]. In terms of signatures that can be
constructed before the Z-transformation, this is equivalent to say that all nonzero binary signatures
that can be constructed in Pl-#CSP2(f) must be multiples of [1, 0, 1]. In particular, one cannot
construct [1, ω]⊗2 with ω 6= 0 in Pl-#CSP2(f).
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If f ∈ A is non-degenerate and does not satisfy parity constraints, then f = [1, i]⊗2n±i[1,−i]⊗2n

or f = [1, 1]⊗2n ± i[1,−1]⊗2n. If we can construct [1, ω]⊗2 with ω 6= 0 in Pl-#CSP2(f), then [1, ω]⊗2

must be in A . Thus [1, ω]⊗2=[1,±1]⊗2 or [1,±i]⊗2.
For f = [1, i]⊗2n ± i[1,−i]⊗2n, f = [1,±1,−1,∓1, . . . , (−1)n] up to the scalar 1 ± i. In any

construction in Pl-#CSP2(f), if we ignore a global scalar factor which is a power of 1± i, all entries
of the constructed signature are real numbers. Thus the ratio of any two nonzero entries is a real
number. But this is not the case with [1,±i]⊗2. This implies that we cannot construct [1,±i]⊗2 in
Pl-#CSP2(f) by gadget construction.

Moreover, we claim that it is impossible to get [1,±1]⊗2 in Pl-#CSP2(f) by gadget construction.
After a holographic transformation by Z =

[
1 1
i −i

]
, we have

Pl-#CSP2(f) ≡T Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂),

where f̂ = (Z−1)⊗2nf = [1, 0, . . . , 0,±i]. All signatures in Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂)
satisfy parity constraints. Thus we cannot construct (Z−1)⊗2[1,±1]⊗2 = ∓ i

2 [1,±i]⊗2, which does
not satisfy parity constraints, by gadget construction. Thus we cannot get [1,±1]⊗2 in Pl-#CSP2(f)
by gadget construction.

For f = [1, 1]⊗2n ± i[1,−1]⊗2n, after a holographic transformation by [ 1 0
0 i ], we can use the same

argument as the previous case for [1,±i]⊗2 to prove that we cannot get [1,±1]⊗2 in Pl-#CSP2(f)
by gadget construction. Moreover, it is also impossible to get [1,±i]⊗2 in Pl-#CSP2(f) by gadget
construction. After a holographic transformation by H =

[
1 1
1 −1

]
, we have

Pl-#CSP2(f) ≡T Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], . . . | f̂),

where f̂ = (H−1)⊗2nf = [1, 0, . . . , 0,±i]. All signatures in Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], . . . | f̂)
satisfy parity constraints. Thus we cannot construct (H−1)⊗2[1,±i]⊗2 = ± i

2 [1,∓i]⊗2 by gadget
construction. This implies that we cannot get [1,±i]⊗2 in Pl-#CSP2(f) by gadget construction.

F No-Mixing of a Pair of Signatures of Even Arity

The general theme of this section and the next is that, for planar Pl-#CSP2 problems, various
tractable signatures of different types cannot mix. In these two sections, all signatures are of even
arity. In this section we prove a No-Mixing theorem for a pair of signatures. This will be extended
to a set of signatures in the next section.

The general form of the No-Mixing theorem to be proved in this section is as follows: Let f
and g be two symmetric signatures of even arity. Suppose for some 1 ≤ j < i ≤ 5, f ∈ Si \ Sj and
g ∈ Sj \ Si, and for all 1 ≤ k ≤ 5, {f, g} 6⊆ Sk. Then Pl-#CSP2(f, g) is #P-hard. We will call such
a statement No-Mixing-(i, j).

It is easy to see that, with possibly switching the names f and g, the condition stated above is
equivalent to the following assumption:

{f, g} ⊂
5⋃

k=1

Sk but for any 1 ≤ k ≤ 5, we have {f, g} 6⊆ Sk.

However under this assumption, we make the following observation that any index i for which
f ∈ Si can be chosen as the distinguishing index:
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If f ∈ Si for some i, then there exists some j 6= i such that g ∈ Sj \ Si and f ∈ Si \ Sj.

In particular, neither f nor g can be identically 0.
We will prove the No-Mixing theorem-(i, j) in a reverse lexicographic order of (i, j): We order the

statements as (5, 4), (5, 3), (5, 2), (5, 1), (4, 3), (4, 2), (4, 1), (3, 2), (3, 1), (2, 1). After having proved all
No-Mixing theorem-(i′, j′) preceding (i, j) in this order, we assume there are two signatures f and
g such that f ∈ Si \ Sj and g ∈ Sj \ Si. Now we may make the following additional assumption:

f, g /∈
⋃

i<k≤5

Sk and g /∈
⋃

j<k≤i

Sk.

Indeed, if f or g belongs to Sk for some k > i, then let k be the maximum index such that Sk

contains either f or g. Then by the observation above, there exists some j 6= k such that one
signature belongs to Sj \Sk, and the other one belongs to Sk \Sj . By the maximality of k, we have
k > j. Since k > i and No-Mixing theorem-(k, j) has already been proved, we have Pl-#CSP2(f, g)
is #P-hard. Moreover, if g ∈ ⋃j<ℓ≤i Sℓ, then g ∈ Sℓ for some j < ℓ < i, as g /∈ Si. Then f ∈ Si \Sℓ

since {f, g} 6⊆ Sℓ, and also g ∈ Sℓ \ Si. Hence Pl-#CSP2(f, g) is #P-hard by No-Mixing-(i, k)
already proved.

We now proceed with this plan. We first prove a preliminary result, which allows us to construct
signatures of arbitrarily high even arities from a given binary signature.

Lemma F.1. For any binary signature [a, b, c], any integer k ≥ 1, and any signature set F ,

Pl-#CSP2([a, b]⊗2k + [b, c]⊗2k,F) ≤T Pl-#CSP2([a, b, c],F).

Proof. We take 2k copies of [a, b, c] and connect one input of each [a, b, c] to an edge of =2k. The

resulting signature is [a, b]⊗2k + [b, c]⊗2k, since
[

a b
b c

]⊗n
(
[ 1
0 ]

⊗n
+ [ 0

1 ]
⊗n
)

= [ a
b ]⊗n + [ b

c ]
⊗n

.

In the next lemma, we will prove that for any symmetric signature f ∈ A \ P of even arity,
we can construct an arity 4 signature g ∈ A \ P in Pl-#CSP2({f} ∪ F). Thus we can assume
that we have an arity 4 signature g ∈ A \ P in the proof of the No-Mixing lemma of P versus
A , namely No-Mixing-(5, 4). We can prove a similar result for A † \ P. This is for the proof of
No-Mixing-(5, 3).

Lemma F.2. For any symmetric signature f ∈ A \ P (respectively, f ∈ A † \ P) of even arity
2n ≥ 2, there exists a symmetric signature g ∈ A \ P (respectively, g ∈ A † \ P) of arity 4, such
that for any set F ,

Pl-#CSP2({g} ∪ F) ≤T Pl-#CSP2({f} ∪ F).

Proof. If f has arity 2n = 4, then there is nothing to prove. Suppose 2n 6= 4. For f ∈ A † \ P, if
2n = 2, then f = [1, α,−α2] by Corollary A.9. By Lemma F.1, we have g = [1, α]⊗4 − [1,−α]⊗4,
since α4 = −1. Clearly g ∈ A † and is non-degenerate. Note that g satisfies a second recurrence
relation of type 〈−α2, 0, 1〉, since the eigenvalues of the recurrence are ±α with trace 0 and product
−α2. Thus g /∈ P by Lemma A.11. For 2n ≥ 6, we have f = [1, α]⊗2n + ir[1,−α]⊗2n by definitions
(see Figure 35). Then by our calculus, we have ∂n−2(f) = (1 + α2)n−2{[1, α]⊗4 + ir[1,−α]⊗4}.
Clearly it is in A † and is non-degenerate. It also has type 〈−α2, 0, 1〉 and therefore it is not in P.
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For f ∈ A \ P, if 2n = 2, then f = [1, ρ,−ρ2] by Corollary A.9. By Lemma F.1, we have
g = [1, ρ]⊗4 + [1,−ρ]⊗4, since ρ4 = 1. Clearly g ∈ A and is non-degenerate. Note that g has type
〈−ρ2, 0, 1〉, since the eigenvalues of its second recurrence relation are ±ρ with trace 0 and product
−ρ2. Thus g /∈ P by Lemma A.11.

For 2n ≥ 6, we have f = [1, ρ]⊗2n+ir[1,−ρ]⊗2n by definitions (see Figure 35). If 2n ≡ 0 (mod 4),

then n is even, and we have ∂
n−2

2
=4 (f) = 2

n−2
2 {[1, ρ]⊗4 + ir[1,−ρ]⊗4} that is in A , and not in P by

its type 〈−ρ2, 0, 1〉. For 2n ≡ 2 (mod 4), we have h = ∂
n−1

2
=4 (f) = 2

n−1
2 {[1, ρ]⊗2 + ir[1,−ρ]⊗2}.

• If r = 2, then we have h = 2
n−1

2 [0, 2ρ, 0]. Thus we have [0, 1, 0] up to a nonzero scalar and
∂n−2

[0,1,0](f) = (2ρ)n−2{[1, ρ]⊗4 + ir(−1)n−2[1,−ρ]⊗4} that is in A , and not in P by its type

〈−ρ2, 0, 1〉.
• If r 6= 2, then h = 2

n−1
2 (1 + ir)[1, 1−ir

1+ir ρ, ρ2]. Then we have ∂[1, 1−ir

1+ir
ρ,ρ2](=4) = [1, 0, ρ2] on

LHS and ∂n−2
[1,0,ρ2]

(f) = 2n−2{[1, ρ]⊗4 + ir[1,−ρ]⊗4} by ρ4 = 1, that is in A \ P by the same
reason.

We note that the complication for the case f ∈ A \ P is unavoidable since if ρ = ±i, then
∂(f) = 0, therefore we need to use ∂=4(f).

F.1 Mixing with P

In this subsection, we prove No-Mixing-(5, j), for 1 ≤ j ≤ 4, namely the No-Mixing of one signature
in P and another signature in a different tractable set. Thus we assume there is some f ∈ S5 = P,
and some g ∈ Sk for some 1 ≤ k ≤ 4, and for no 1 ≤ k ≤ 5, {f, g} ⊂ Sk. Under this assumption
we show that Pl-#CSP2(f, g) is #P-hard. As explained earlier, for j < k < 5, when we prove
No-Mixing-(5, j), we can make logical use of No-Mixing-(5, k).

Lemma F.3. Let {f, g} ⊆ ⋃5
k=1 Sk and {f, g} * Sj for every 1 ≤ j ≤ 5. Assume that f ∈ P,

then Pl-#CSP2(f, g) is #P-hard.

Proof. As explained earlier, since f ∈ P, there exists some 1 ≤ k ≤ 4, such that g ∈ Sk \ P and
f ∈ P \ Sk. Since [0, 1, 0] ∈ ⋂5

k=1 Sk, we know that f is not a multiple of [0, 1, 0]. Then by f ∈ P
(see Figure 35), we have f = [a, b]⊗2n with a and b not both 0 (because f is not identically 0), or
f = [1, 0, . . . , 0, x] with x 6= 0.

We first consider the case f = [a, b]⊗2n, with (a, b) 6= (0, 0). It has three subcases.
• If ab 6= 0 (i.e., a and b both nonzero) and a2 + b2 6= 0, then we have ∂n−1(f) = (a2 +

b2)n−1[a, b]⊗2. We are done by Lemma B.3.
• If ab 6= 0 and a2 + b2 = 0, then f = [1,±i]⊗2n up to a nonzero scalar. Note that f ∈

P ∩ A ∩ M̂ †. Hence g ∈ A † \ (P ∪ A ∪ M̂ †) or g ∈ M̂ \ (P ∪ A ∪ M̂ †).
If g ∈ M̂ \ (P ∪ Ã ∪ M̂ †), then a fortiori, g ∈ M̂ \ (P ∪ Ã ). Therefore we are done by
Lemma E.3.
The other case is g ∈ A † \(P ∪A ∪M̂ †), then a fortiori, g ∈ A † \P, and by Lemma F.2, we
have an arity 4 signature g′ ∈ A †\P. By definition (see Figure 35), g′ = [1, α]⊗4+ir[1,−α]⊗4.
For r = 2, we have ∂(g′) = 2α(1 + α2)[0, 1, 0] and ∂n−1

[0,1,0](f) = (±2i)n−1[1,±i]⊗2. Then we
are done by Lemma B.3. For r 6= 2, we have on LHS

∂g′(=6) = ∂[1,α]⊗4(=6) + ir∂[1,−α]⊗4(=6) = [1, 0, α4] + ir[1, 0, (−α)4] = (1 + ir)[1, 0,−1]

and ∂n−1
[1,0,−1](f) = 2n−1[1,±i]⊗2. Then again we are done by Lemma B.3.
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(a) (b)

Figure 32: Two gadgets used in the proof of Lemma F.4.

• For f = [1, 0]⊗2n or [0, 1]⊗2n, we have ∂n−1(f) = [1, 0]⊗2 or [0, 1]⊗2. Note that f ∈ P∩A ∩A †.
Thus g ∈ M̃ \ (P ∪ Ã ). If g ∈ M̂ \ (P ∪ Ã ), then we are done by Lemma E.3. If

g ∈ M̂ † \ (P ∪ Ã ), then we are done by Lemma E.7, where the binary signature is supplied
by ∂n−1(f) = [1, 0]⊗2 or [0, 1]⊗2.

The remaining case is f = [1, 0, . . . , 0, x] with x 6= 0. We have ∂n−1(f) = [1, 0, x].

Suppose g ∈ Ã . As f ∈ P, we have g 6∈ P. Then we have an arity 4 signature g′ ∈ Ã \ P
by Lemma F.2. Moreover, by definition (see Figure 35), we have g′ = [1, γ]⊗4 + ir[1,−γ]⊗4 where
γ8 = 1. Depending on whether g ∈ A or A †, we have either f ∈ P \ A , or f ∈ P \ A †. Then we
claim that x4 6= 1. Note that f has even arity 2n. If x4 = 1, then f = [1, 0, . . . , 0, x] ∈ A as well
as [ 1 0

0 α ]
⊗2n

f = [1, 0, . . . , 0, xin] ∈ A thus f ∈ A †. This is a contradiction. Thus we have x4 6= 0, 1.

Let ĝ′ = [1, x− 1
2 γ]⊗4+ir[1,−x− 1

2 γ]⊗4. Then by Lemma C.8, Pl-#CSP2(ĝ′) ≤Pl-#CSP2(f, g). Note
that ĝ′ has type 〈−x−1γ2, 0, 1〉 by calculating the trace and product of the eigenvalues of the second

recurrence relation. Note that (−x−1γ2)4 = x−4 6= 0, 1. Thus ĝ′ 6∈ P ∪ Ã ∪ M̃ by Lemma A.11.
This implies that Pl-#CSP2(ĝ′) is #P-hard by Theorem D.5. So Pl-#CSP2(f, g) is #P-hard.

Now we may assume that g /∈ Ã . Thus g ∈ M̃ \ (P ∪ Ã ). If g ∈ M̂ \ (P ∪ Ã ), then

we are done by Lemma E.3. If g ∈ M̂ † \ (P ∪ Ã ), then f ∈ P \ M̂ †. In this case we claim

that x 6= 1. Suppose for a contradiction that x = 1, then we show that f ∈ M̂ †. Notice that
f = [1, 0, . . . , 0, 1] = (=2n) and M̂ † = ZM , where Z =

[
1 1
i −i

]
. Crucially recall that f has even

arity. Then, up to a nonzero scalar, (Z−1)⊗2nf = [1, 0, 1, . . . , 0, 1] ∈ M of arity 2n (if n is even) or
(Z−1)⊗2nf = [0, 1, 0, . . . , 1, 0] ∈ M of arity 2n (if n is odd). Hence x 6= 1. Then we are done by

Lemma E.7, with g ∈ M̂ † \ (P ∪ Ã ), and the help of ∂n−1(f) = [1, 0, x].

F.2 Mixing with A

In this subsection, we prove the No-Mixing lemma of A with other tractable sets. Because we
have already proved Lemma F.3, the No-Mixing lemma for S5 = P, we only need to consider
No-Mixing-(4, j) of S4 = A with Sj for 1 ≤ j ≤ 3.

There is a particular case involving A and A † that requires some special care. This is when
two signatures f ∈ A and g ∈ A † both satisfy the parity constraint. We deal with this case first.
Furthermore, by Lemma F.2, for two signatures f ∈ A \ P and g ∈ A † \ P we may assume the
signatures f and g have arity 4. Hence the next lemma considers signatures f and g of arity 4.

Lemma F.4. Let f = [1, ρ]⊗4 ± [1,−ρ]⊗4 ∈ A and g = [1, α]⊗4 ± [1,−α]⊗4 ∈ A †. Then
Pl-#CSP2(f, g) is #P-hard.

Proof. There are four cases depending on the combination of the two ± signs. Suppose f =
[1, ρ]⊗4 + [1,−ρ]⊗4 and g = [1, α]⊗4 + [1,−α]⊗4. Consider the gadget in Figure 32a. We assign g to
the circle vertex and f to the triangle vertex. Since both f = 2[1, 0, ρ2, 0, 1] and g = 2[1, 0, α2, 0,−1]
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have even parity, the signature of this gadget also has even parity. It is also clearly a redundant
signature by design. Hence there are only five signature entries we need to compute. E.g., the
entry of Hamming weight 0 is g0f0 + g2f2 = 4(1 + α2ρ2). Up to a factor of 4, the signature of this
gadget has signature matrix




α2ρ2 + 1 0 0 α2 + ρ2

0 2α2ρ2 2α2ρ2 0
0 2α2ρ2 2α2ρ2 0

α2 − ρ2 0 0 α2ρ2 − 1


 , which becomes




α2ρ2 + 1 0 0 2α2ρ2

0 α2 − ρ2 2α2ρ2 0
0 2α2ρ2 α2 + ρ2 0

2α2ρ2 0 0 α2ρ2 − 1




after a 90◦ counterclockwise rotation of the gadget. (See Figure 2 in Part I for an illustration
of the rotation operation.) Taking the four corner entries, we define the binary signature h =
[α2ρ2 + 1, 2α2ρ2, α2ρ2 − 1]. By domain pairing, Pl-#CSP(h) ≤T Pl-#CSP2(f, g). (Domain pairing
is the following reduction: In an instance of Pl-#CSP(h) replace every occurrence of h by a copy
of the 90◦ counterclockwise rotated gadget, and replace both edges of h by two parallel edges each,
and replace every (=k) in the Pl-#CSP(h) instance by (=2k) in Pl-#CSP2(f, g). Note that the
rotation is necessary to create a symmetric binary signature h in the paired domain.)

Note that α2 = ±i and ρ2 = ±1, so α2ρ2 ± 1 has norm
√

2, while 2α2ρ2 has norm 2. Also
α2ρ2 + 1 6= α2ρ2 − 1. Hence h /∈ P ∪ A by Corollary A.9 and also h /∈ M̂ by Lemma A.8. Thus
Pl-#CSP(h) is #P-hard by Theorem A.22. So Pl-#CSP2(f, g) is #P-hard.

Suppose f = [1, ρ]⊗4 − [1,−ρ]⊗4 and g = [1, α]⊗4 − [1,−α]⊗4. Consider the same construction.
Up to a nonzero factor of 4αρ, the signature of this gadget has the signature matrix




2 0 0 2ρ2

0 1 + α2ρ2 1 + α2ρ2 0
0 1 + α2ρ2 1 + α2ρ2 0

2α2 0 0 2α2ρ2


 , which becomes




2 0 0 1 + α2ρ2

0 2α2 1 + α2ρ2 0
0 1 + α2ρ2 2ρ2 0

1 + α2ρ2 0 0 2α2ρ2




after a 90◦ counterclockwise rotation of the gadget. Let h = [2, 1+α2ρ2, 2α2ρ2]. By domain pairing,
we have Pl-#CSP(h) ≤T Pl-#CSP2(f, g). Note that 1+α2ρ2 = 1± i has norm

√
2 while 2α2ρ2 6= 2

but has norm 2. Hence h /∈ P ∪ A ∪ M̂ by Corollary A.9 and Lemma A.8. Thus we are done by
Theorem A.22.

Suppose f = [1, ρ]⊗4 − [1,−ρ]⊗4 and g = [1, α]⊗4 +[1,−α]⊗4. Consider the gadget in Figure 32b.
We assign f to the circle vertices and g to the triangle vertex. Up to a nonzero factor of 16α2ρ2,
the signature of this gadget has the signature matrix




2 0 0 2ρ2

0 ρ2 ρ2 0
0 ρ2 ρ2 0

2ρ2 0 0 2


 , which becomes




2 0 0 ρ2

0 2ρ2 ρ2 0
0 ρ2 2ρ2 0
ρ2 0 0 2




after a 90◦ rotation of the gadget. Let h = [2, ρ2, 2]. We also have g× = 2[1, α2]⊗2 by domain pairing
with g (see Lemma A.19). Then Pl-#CSP(g×, h) ≤T Pl-#CSP2(f, g). Note that |ρ2| = 1 6= 2, so

by Lemma A.8 and Corollary A.9, h ∈ M̂ \ (P ∪ A ). Also by Lemma A.8 and (α2)2 = −1 6= 1

we have g× /∈ M̂ . Thus we are done by Theorem A.22. Note that in this case, the rotation is
necessary to create a non-degenerate binary signature h in the paired domain.
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Finally, suppose f = [1, ρ]⊗4 + [1,−ρ]⊗4 and g = [1, α]⊗4 − [1,−α]⊗4. Consider the gadget in
Figure 32b. We assign g to the circle vertices and f to the triangle vertex. Up to a nonzero factor
of 16α2ρ2, the signature of this gadget has the signature matrix




2 0 0 2α2

0 α2 α2 0
0 α2 α2 0

2α2 0 0 −2


 , which becomes




2 0 0 α2

0 α2 2α2 0
0 2α2 α2 0
α2 0 0 −2




after a 90◦ rotation of the gadget. Let h = [2, α2,−2], then Pl-#CSP(h) ≤T Pl-#CSP2(f, g) by

domain pairing. Since |α2| = 1 6= 2, we have h /∈ P ∪ A by Corollary A.9 and also h /∈ ∪M̂
by Lemma A.8. Thus we are done by Theorem A.22. Note that in this case, the rotation is also
necessary to create a non-degenerate binary signature h in the paired domain.

Remark 7. The use of a more complicated construction in the third case is necessary. Notice that
g = [1, α]⊗4 + [1,−α]⊗4 = 2[1, 0, α2 , 0,−1] has an even parity, while f = [1, ρ]⊗4 − [1,−ρ]⊗4 =
2ρ[0, 1, 0, ρ2 , 0] has an odd parity. Then in any construction of a signature using f and g, if the
number of occurrences Nf of f is odd (resp. even), then the resulting signature also has an odd
(resp. even) parity. To see this, let H be an arbitrary {f, g}-gate with Nf occurrences of f . Suppose
σ is a {0, 1}-assignment to all the edges of H, including internal and external edges, that has a
nonzero evaluation on H. Then each copy of f has an odd number of incident edges assigned to 1.
Summing these numbers (mod 2) over all copies of f we get a number ≡ Nf (mod 2), since each
of these numbers is ≡ 1 (mod 2). Similarly each copy of g has an even number of incident edges
assigned to 1. Summing these numbers (mod 2) over all copies of g we get a number ≡ 0 (mod 2).
On the other hand, if we add these two sums together we get 2X + Y where X is the number of
internal edges and Y is the number of external edges assigned to 1 by σ. This is because each
internal edge assigned to 1 appears exactly twice in the sum. Hence this number is ≡ Y (mod 2).
We conclude that Nf ≡ Y (mod 2), the Hamming weight of σ on the external edges.

If Nf is odd, from any constructed signature of arity 4, by rotation and domain pairing we can
only get the identically zero binary signature. Thus we must use f an even number of times. Using
g alone will not get out of A †, which is a tractable set. Thus we must use f at least twice. Also
using g alone will not get out of A , another tractable set. Therefore we must use g at least once.
Therefore the construction we give is the simplest possible.

The same consideration applies for the construction in the fourth case.

The next Lemma deals with the situation when we have a binary signature in A \ P and an
arity 4 signature in A † \ P.

Lemma F.5. Let f = [1, ρ,−ρ2] and g = [1, α]⊗4 + ir[1,−α]⊗4. Then Pl-#CSP2(f, g) is #P-hard.

Proof. By our calculus, we have ∂[1,ρ,−ρ2](g) = λ[1, α]⊗2 + irµ[1,−α]⊗2, where λ = 1 − ρ2α2 + 2ρα

and µ = 1 − ρ2α2 − 2ρα. Note that 1 − ρ2α2 = 1 ± i has norm
√

2 and |2ρα| = 2, we have
λ 6= 0. Let x = irµ/λ, then ∂[1,ρ,−ρ2](g) = λ(1+x)[1, 1−x

1+xα,α2]. By norm, (1−ρ2α2)4 6= (2ρα)4 and

(1−ρ2α2)(2ρα) 6= 0, we have x4 6= 0, 1 by Lemma A.3. By Lemma A.3 again, we have (1−x
1+x)4 6= 0, 1.

Thus [1, 1−x
1+xα,α2] /∈ P ∪ Ã ∪ M̃ by Corollary A.9. This implies that Pl-#CSP2([1, 1−x

1+xα,α2]) is

#P-hard by Theorem A.21′. Thus Pl-#CSP2(f, g) is #P-hard.

102



The next lemma is the No-Mixing lemma of A with the other tractable sets, namely the
statements No-Mixing-(4, j) for 1 ≤ j ≤ 3. Having already proved Lemma F.3, we can assume that
both f and g are not in S5 = P.

Lemma F.6. Let {f, g} ⊆
(⋃4

k=1 Sk

)
\ S5 and {f, g} * Sj for every 1 ≤ j ≤ 4. Assume that

f ∈ A , then Pl-#CSP2(f, g) is #P-hard.

Proof. By f ∈ A , we have g /∈ A . Thus, g ∈ (A † ∪ M̂ ∪ M̂ †) \ (P ∪ A ).
1. Suppose g ∈ A † \ (P ∪ A ). Then a fortiori, g ∈ A † \ P. As f ∈ A \ P, by Lemma F.2, we

have some f ′ ∈ A \ P and g′ ∈ A † \ P, both of arity 4. Without loss of generality, we will
assume the given f and g are of arity 4. By definition (see Figure 35), we can assume that

f = [1, ρ]⊗4 + ir[1,−ρ]⊗4 and g = [1, α]⊗4 + is[1,−α]⊗4 where r, s = 0, 1, 2, 3.

• If both r, s ≡ 0 (mod 2), then f = [1, ρ]⊗4 ± [1,−ρ]⊗4 and g = [1, α]⊗4 ± [1,−α]⊗4.
This is the case where both f and g satisfy the parity constraint, and it is proved in
Lemma F.4.

• If r ≡ 1 (mod 2) then f = [1, ρ]⊗4 ± i[1,−ρ]⊗4. For ρ2 = 1, by our calculus we have

∂(f) = 2{[1, ρ]⊗2 ± i[1,−ρ]⊗2} = 2(1 ± i)[1,∓iρ, ρ2] = 2(1 ± i)[1, ρ′,−ρ′2],

where ρ′ = ∓iρ, and ρ′4 = 1. Thus Pl−#CSP2([1, ρ′,−ρ′2], g) is #P-hard by Lemma F.5.
So Pl−#CSP2(f, g) is #P-hard.
For ρ2 = −1, we cannot use [1, 0, 1] to reduce the arity of f , because ∂(f) = 0 in this case.
Instead we construct a suitable binary signature from g. If s 6= 2, then we have g0 =
1 + is 6= 0 and g4 = α4 + is(−α)4 = −(1 + is) = −g0, and therefore ∂g(=6) = g0[1, 0,−1]
on the LHS. Then we have ∂[1,0,−1](f) = 2{[1, ρ]⊗2 ± i[1,−ρ]⊗2} = 2(1 ± i)[1,∓iρ, ρ2] =
2(1 ± i)[1, ρ′,−ρ′2], where ρ′ = ∓iρ and ρ′4 = 1. Then we are done by Lemma F.5. If
s = 2, then ∂(g) = (1+α2){[1, α]⊗2 − [1,−α]⊗2}, a nonzero multiple of [0, 1, 0]. Thus we
have ∂[0,1,0](f) = 2ρ{[1, ρ]⊗2 ∓ i[1,−ρ]⊗2} = 2ρ(1 ∓ i)[1,±iρ, ρ2] = 2ρ(1 ∓ i)[1, ρ′,−ρ′2],
where ρ′ = ±iρ and ρ′4 = 1. Then we are done by Lemma F.5 again.

• If r ≡ 0 (mod 2) and s ≡ 1 (mod 2), i.e., f = [1, ρ]⊗4 ± [1,−ρ]⊗4 and g = [1, α]⊗4 ±
i[1,−α]⊗4, then we will construct a binary signature h = [1, b,±1]. Note that h ∈ M̃

by Lemma A.8. Furthermore, we will ensure that b4 6= 0, 1, thus h /∈ P ∪ Ã by
Corollary A.9. Then we are done by Lemma E.3 and Lemma E.7.
We have ∂(g) = (1 + α2){[1, α]⊗2 ± i[1,−α]⊗2} = (1 + α2)(1 ± i)[1,∓iα, α2], a nonzero
multiple of [1, α′,−α′2], where α′ = ∓iα and α′4 = −1. Moreover, we have h =
∂[1,α′,−α′2](f) = λ[1, ρ]⊗2±µ[1,−ρ]⊗2, where λ = 1−ρ2α′2+2ρα′ and µ = 1−ρ2α′2−2ρα′.
Then h = λ(1 ± x)[1, aρ, ρ2], where x = µ/λ and a = 1∓x

1±x . Note that 1 − ρ2α′2 = 1 ± i

has norm
√

2 and |2ρα′| = 2, thus λ 6= 0 and (1 − ρ2α′2)4 6= (2ρα′)4 by norm, therefore
x4 6= 0, 1 by Lemma A.3. Then by Lemma A.3 again, a4 6= 0, 1, and so (aρ)4 6= 0, 1 as
well. As λ 6= 0, 1±x 6= 0, ρ2 = ±1, we have a nonzero multiple of [1, aρ,±1], our desired
binary signature, and we are done by Lemma E.3 and Lemma E.7.

In the following we may assume g /∈ A †.
2. Suppose g ∈ M̂ \ (P ∪ A ), then g ∈ M̂ \ (P ∪ Ã ). We also have f /∈ M̂ , lest {f, g} ⊆ M̂ ,

and we are done by Lemma E.3.
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3. Suppose g ∈ M̂ † \ (P ∪ A ), then g ∈ M̂ † \ (P ∪ Ã ). Now f ∈ A \ (P ∪ M̂ †). Note that

[1, 1]⊗2n ± [1,−1]⊗2n ∈ M̂ †. This can be verified as follows: Let Z =
[

1 1
i −i

]
, then M̂ † = ZM ,

and Z−1 = 1
2

[
1 −i
1 i

]
. We first verify that [1, 0]⊗2n ± [0, 1]⊗2n ∈ M̂ †, by

[
1 −i
1 i

]⊗2n

{[
1
0

]⊗2n

±
[
0
1

]⊗2n
}

=

[
1
1

]⊗2n

± (−i)2n

[
1

−1

]⊗2n

=

[
1
1

]⊗2n

± (−1)n
[

1
−1

]⊗2n

∈ M .

Then notice that
[
1
1

]⊗2n

±
[

1
−1

]⊗2n

=

[
1 1
1 −1

]⊗2n
{[

1
0

]⊗2n

±
[
0
1

]⊗2n
}

∈
[
1 1
1 −1

]
M̂ †.

However [
1 1
1 −1

] [
1 1
i −i

]
=

[
1 + i 1 − i
1 − i 1 + i

]
=

[
1 1
i −i

] [
0 1 − i

1 + i 0

]

and
[

0 1−i
1+i 0

]
M = M , therefore

[
1 1
1 −1

]
M̂ † =

[
1 1
1 −1

]
ZM = Z

[
0 1−i

1+i 0

]
M = ZM = M̂ †.

(Also see Figure 36).

Since [1, 1]⊗2n ± [1,−1]⊗2n ∈ M̂ † and f /∈ M̂ †, f cannot take the form [1, 1]⊗2n ± [1,−1]⊗2n.
Then by definition (see Figure 35) f takes the form

[1, ρ,−ρ2], or [1, 1]⊗2n ± i[1,−1]⊗2n, or [1, i]⊗2n + ir[1,−i]⊗2n, where 2n ≥ 4.

The following three cases are immediately done by Lemma E.7:
• f = [1, ρ,−ρ2].
• f = [1, 1]⊗2n ± i[1,−1]⊗2n with 2n ≥ 4, then we have ∂n−1(f) = 2n−1[1 ± i, 1 ∓ i, 1 ± i]

which is not λ[1, 0, 1].

• If f = [1, i]⊗2n + ir[1,−i]⊗2n with 2n ≡ 2 (mod 4), then we have ∂
n−1

2
=4 (f) = 2

n−1
2 [1 +

ir, (1 − ir)i,−(1 + ir)] which is not λ[1, 0, 1], no matter what value r takes.
The remaining case is that f = [1, i]⊗2n + ir[1,−i]⊗2n with 2n ≡ 0 (mod 4). In this case, we
have

∂
n−2

2
=4 (f) = 2

n−2
2 {[1, i]⊗4 + ir[1,−i]⊗4}.

We will denote by f ′ = [1, i]⊗4 + ir[1,−i]⊗4. If g has arity 2, then up to a nonzero scalar,
g = [1, b,−1] with b4 6= 0, 1 by Lemma A.14, and we are done by Lemma E.7. In the following,
assume that g has arity 2m ≥ 4. By Lemma A.14, either g = [s, ti]⊗2m±[t, si]⊗2m with s4 6= t4

and st 6= 0, or g has arity 2m and gk = (±i)k(2m − 2k).
• If g has arity 2m ≥ 4 and gk = (±i)k(2m − 2k) up to a nonzero scalar, then let

ĝ = (Z−1)⊗2mg, where Z =
[

1 1
i −i

]
. Then ĝ = [0, 1, 0, . . . , 0] or ĝ = [0, . . . , 0, 1, 0] of

arity 2m. By Corollary B.5, we have

Pl-#CSP2(ĝ) ≤ Pl-#CSP2(f ′, g).

Let ĝ′ = ∂m−2(ĝ) = [0, 1, 0, 0, 0] or [0, 0, 0, 1, 0]. Clearly ĝ′ is non-degenerate. It also has

a second order recurrence of type 〈0, 0, 1〉 or 〈1, 0, 0〉. By Lemma A.11, ĝ′ /∈ P ∪ Ã ∪M̃ .
Then Pl-#CSP2(ĝ′) is #P-hard by Theorem D.5 and we are done.

104



• If g = [s, ti]⊗2m ± [t, si]⊗2m, we have

g′ = ∂m−2(g) = (s2 − t2)m−2
{
[s, ti]⊗4 ± (−1)m−2[t, si]⊗4

}

and from f ′ we get [1, 0,−1]⊗2 on LHS by Lemma A.20, thus

Pl-Holant([1, 0,−1]⊗2 ∪ EQ2 | f ′, g′) ≤ Pl-#CSP2(f, g).

After a holographic transformation using T =
[

1 0
0 −i

]
, we have

Pl-Holant([1, 0, 1]⊗2, [1, 0,−1], [1, 0, 0, 0, 1], . . . | f̂ ′, ĝ′)

≡ Pl-Holant([1, 0,−1]⊗2 ∪ EQ2 | f ′, g′),

where f̂ ′ = (T−1)⊗4f ′ = [1, 1]⊗4+ir[1,−1]⊗4 and ĝ′ = (T−1)⊗4g′. Note that f̂ ′ satisfies a

second order recurrence of type 〈−1, 0, 1〉. Thus f̂ ′ /∈ M̂ by Lemma A.11. Also note that

P and Ã are invariant under T , and since g′ ∈ M̂ †\(P∪Ã ), we have ĝ′ ∈ M̂ \(P∪Ã ).
In the following, we will construct [1, 0, 1]⊗2 on RHS for

Pl-Holant([1, 0, 1]⊗2, [1, 0,−1], [1, 0, 0, 0, 1], . . . | f̂ ′, ĝ′).

Since we have [1, 0, 1]⊗2 on LHS, we can get [∂(f̂ ′)]⊗2 = 4[1+ ir, 1− ir, 1+ ir]⊗2 on RHS.
– If r = 0, then we directly have [1, 0, 1]⊗2 on RHS.
– If r = 2, then we have [0, 1, 0]⊗2 on RHS. Thus we can move [1, 0, 1]⊗2 on LHS to

RHS.
– If r = 1 or 3, then we have [1,±i, 1]⊗2 on RHS. By connecting two copies of

[1,±i, 1]⊗2 by [1, 0, 1]⊗2 of LHS, we have a nonzero multiple of [0, 1, 0]⊗2 on RHS.
Then we can move [1, 0, 1]⊗2 on LHS to RHS.

From the above, we have

Pl-Holant([1, 0, 1]⊗2, [1, 0,−1], [1, 0, 0, 0, 1], . . . | f̂ ′, ĝ′, [1, 0, 1]⊗2)

≤ Pl-Holant([1, 0, 1]⊗2, [1, 0,−1], [1, 0, 0, 0, 1], . . . | f̂ ′, ĝ′).

Note that we have all of =4k on the LHS. Thus by Lemma B.4,

Pl-#CSP2(f̂ ′, ĝ′) ≤ Pl-Holant([1, 0, 1]⊗2, [1, 0,−1], [1, 0, 0, 0, 1], . . . | f̂ ′, ĝ′, [1, 0, 1]⊗2).

Recall that ĝ′ ∈ M̂ \ (P ∪ Ã ) and f̂ ′ /∈ M̂ . Thus we are done by Lemma E.3.

F.3 Mixing with A †

In this subsection, we prove the No-Mixing lemma for A † with other tractable sets, namely the
statements No-Mixing-(3, j), for 1 ≤ j ≤ 2. Because we have already proved Lemma F.3 and
Lemma F.6, the No-Mixing lemmas for S5 = P and S4 = A respectively, we only need to consider
the mixing of S3 = A † with Sj for 1 ≤ j ≤ 2. Thus we may assume f ∈ A † and g ∈ M̃ \ A †.
Moreover, we can assume that f, g /∈ P ∪ A .

Lemma F.7. Let {f, g} ⊆
(⋃3

k=1 Sk

)
\ (S4 ∪ S5) and {f, g} * Sj for 1 ≤ j ≤ 3. Assume that

f ∈ A †, then Pl-#CSP2(f, g) is #P-hard.
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Proof. Firstly, we have f ∈ A † \ P, thus f ∈ {[1, α,−α2], [1, α]⊗2n + ir[1,−α]⊗2n | 2n ≥ 4}
(see Figure 35). Clearly [1, α,−α2] is not λ[1, 0, 1]. If f = [1, α]⊗2n + ir[1,−α]⊗2n, then we have
∂n−1(f) = (1 + α2)n−1{[1, α]⊗2 + ir[1,−α]⊗2} = (1 + α2)n−1[1 + ir, (1 − ir)α, (1 + ir)α2] which is
not λ[1, 0, 1]. Hence we can always obtain a nonzero binary signature that is not λ[1, 0, 1] from f .

Note that g ∈ M̃ \ (P ∪ Ã ). If g ∈ M̂ \ (P ∪ Ã ), we are done by Lemma E.3. For

g ∈ M̂ † \ (P ∪ Ã ), since we have a nonzero binary signature that is not λ[1, 0, 1], we are done by
Lemma E.7.

F.4 Mixing with M̂

In this subsection, we prove the No-Mixing lemma for M̂ with other tractable sets. Because we
have already proved Lemma F.3, Lemma F.6, and Lemma F.7, the No-Mixing lemmas for S5 = P,
S4 = A , and S3 = A † respectively, we only need to consider the No-Mixing of S2 = M̂ with
S1 = M̂ †.

Lemma F.8. Let {f, g} ⊆
(⋃2

k=1 Sk

)
\ (S3 ∪ S4 ∪ S5) and {f, g} * Sj for 1 ≤ j ≤ 2. Then

Pl-#CSP2(f, g) is #P-hard.

Proof. Either f or g ∈ M̂ , otherwise {f, g} ⊆ M̂ †. As they do not belong to S3 ∪S4 ∪S5 = P ∪ Ã ,

we have a signature in M̂ \ (P ∪ Ã ). Thus we are done by Lemma E.3.

By Lemma F.3, Lemma F.6, Lemma F.7 and Lemma F.8, we have the following No-Mixing
theorem for two signatures with even arities.

Theorem F.9. Let f and g be two symmetric signatures of even arity. If {f, g} ⊆ ⋃5
k=1 Sk and

{f, g} * Sj for 1 ≤ j ≤ 5, then Pl-#CSP2(f, g) is #P-hard.

G No-Mixing of Even Arity Signature Set

In this section, we extend Theorem F.9, the No-Mixing theorem for a pair of two sigatures of even
arity, to Theorem G.4, the No-Mixing theorem for a set of signatures of even arity. For convenience,
we explicitly list some signature sets that are be used in the proof of Theorem G.4.

Lemma G.1. For nonzero even arity signatures, ignoring a nonzero factor, we have
1. A † ∩ (P ∪ A ) is the set

{[1, α]⊗2n, [1, 0]⊗2n, [0, 1]⊗2n, [0, 1, 0], [1, 0, . . . , 0, ir ] | n ≥ 1, 0 ≤ r ≤ 3}.

2. M̂ ∩ (P ∪ Ã ) is the set

{[1,±1]⊗2m, [0, 1, 0], [1,±i, 1], [1, 0, . . . , 0,±1], [1, i]⊗2n ± [1,−i]⊗2n | m ≥ 1, n ≥ 2}.

3. M̂ † ∩ (P ∪ Ã ) is the set

{[1,±i]⊗2m, [0, 1, 0], [1,±1,−1], [1, 0, . . . , 0,±1], [1, 1]⊗2n ± [1,−1]⊗2n | m ≥ 1, n ≥ 2}.

4.
⋂

3≤k≤5

Sk is the set {[1, 0]⊗2n, [0, 1]⊗2n, [0, 1, 0], [1, 0, . . . , 0, ir] | n ≥ 1, 0 ≤ r ≤ 3}.
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5.
⋂

1≤k≤5

Sk =
⋂

2≤k≤5

Sk is the set {[0, 1, 0], [1, 0, . . . , 0,±1]}.

Proof. For all five cases, it is easy to show that the listed signatures in the displayed set are indeed
members of the respective stated intersection, bear in mind that the signatures all have even arity.
E.g., the signature f = [1, 0, . . . , 0, ir] is clearly in P (as well as A ), and it has even arity 2n, and
thus under the transformation T = [ 1 0

0 α ], (T−1)2nf = [1, 0, . . . , 0, is] ∈ A , for some 0 ≤ s ≤ 3.
Thus f ∈ A †.

In the following, we prove that if f has even arity and is in the stated intersection then it is
among the listed types.

1. (a.) Firstly, suppose that f ∈ A †∩(P ∪A ) is degenerate, i.e., f = [a, b]2n. If f = [1, 0]2n

or [0, 1]2n up to a nonzero scalar, then f is among the listed. Suppose ab 6= 0. Then up to a
nonzero scalar, f = [1, ω]2n, for some ω 6= 0. By f ∈ A †, we have [ 1 0

0 α ]2n f = [1, αω]2n ∈ A .
Thus (αω)4 = 1, i.e., ω4 = −1. So f is among the listed types.

(b.) If f ∈ A †∩(P∪A ) is a non-degenerate binary signature, by f ∈ A † and Lemma A.8,
we have f = [1, α,−α2], or [0, 1, 0], or [1, 0, ρ] up to a scalar, where α4 = −1, ρ4 = 1. Note
that [1, α,−α2] /∈ P ∪ A by Corollary A.9. Thus f = [0, 1, 0] or [1, 0, ρ]; these are among the
listed types.

(c.) If f ∈ A † ∩ (P ∪ A ) is non-degenerate and and has arity 2n ≥ 4, by f ∈ A †

and Lemma A.11, f has type 〈0, 1, 0〉 or 〈1, 0,±i〉 and the second order recurrence relation
is unique up to a scalar. If f has type 〈1, 0,±i〉, then f /∈ P ∪ A by Lemma A.11. This
contradicts that f ∈ A † ∩ (P ∪A ). If f has type 〈0, 1, 0〉, then f = [1, 0, . . . , 0, x] with x 6= 0
up to a nonzero scalar, because f is non-degenerate. Moreover, if x4 6= 1, bear in mind that
f has even arity, then f /∈ A † and this contradicts that f ∈ A † ∩ (P ∪ A ). Hence x4 = 1
and f = [1, 0, . . . , 0, ir], for some 0 ≤ r ≤ 3; this is among the listed types.
Summarizing, we proved that if f ∈ A † ∩ (P ∪ A ) then f is among the listed types.

2. (a.) Suppose f ∈ M̂ ∩ (P ∪ Ã ) is a nonzero degenerate signature, i.e., f = [a, b]⊗2n.

By f ∈ M̂ we have
[

1 1
1 −1

]⊗2n
f = [a + b, a − b]⊗2n ∈ M , which must satisty the parity

constraints. Thus a = ±b and f = [1,±1]⊗2n up to a nonzero scalar.

(b.) If f ∈ M̂ ∩(P∪Ã ) is a non-degenerate binary signature, by f ∈ M̂ and Lemma A.8,
we have f = [0, 1, 0], or [1, b, 1], or [1, 0,−1] up to a nonzero scalar. If f = [1, b, 1] and

b4 6= 0, 1, then f /∈ P ∪ Ã , by Corollary A.9. This contradicts that f ∈ M̂ ∩ (P ∪ Ã ). Thus,
f = [0, 1, 0], [1, 0, 1], [1, ir, 1] or [1, 0,−1], where 0 ≤ r ≤ 3. Note that if r = 0 or 2, then
[1, ir , 1] = [1,±1, 1] = [1,±1]⊗2. Thus all these binary signatures are in the listed types.

(c.) If f ∈ M̂ ∩ (P ∪ Ã ) is non-degenerate and has arity 2n ≥ 4, by f ∈ M̂ and
Lemma A.11, f has type 〈0, 1, 0〉 or 〈1, c, 1〉, and the second order recurrence relation is

unique up to a scalar. If f has type 〈1, c, 1〉 with c 6= 0, then f /∈ P ∪ Ã by Lemma A.11

and this contradicts that f ∈ M̂ ∩ (P ∪ Ã ). If f has type 〈1, 0, 1〉, then there exist constants
x and y such that f = x[1, i]⊗2n + y[1,−i]⊗2n. By non-degeneracy, we get xy 6= 0, and by

its type 〈1, 0, 1〉, f 6∈ P by Lemma A.11. Thus f ∈ Ã . In fact by Lemma A.11 and its
type 〈1, 0, 1〉, f 6∈ A † \ P, thus it follows that f ∈ A \ P. Then there are two possiblities:

Either f =
[

1 1
1 −1

]⊗2n {
[1, 0]⊗2n + ir[0, 1]⊗2n

}
, or f =

[
1 1
i −i

]⊗2n {
[1, 0]⊗2n + ir[0, 1]⊗2n

}
, up

to a nonzero scalar, where 0 ≤ r ≤ 3. By
[

1 1
1 −1

]−1
Z = 1

2Z
[

0 1−i
1+i 0

]
the first possiblity

quickly reaches a contradiction. Thus f = [1, i]⊗2n + ir[1,−i]⊗2n up to a nonzero scalar, for

some 0 ≤ r ≤ 3. If f = [1, i]⊗2n ± i[1,−i]⊗2n, then
[

1 1
1 −1

]⊗2n
f is a nonzero multiple of the
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form [1, i]⊗2n ± i[1,−i]⊗2n, which does not satisfy parity, and hence not in M . So f is not in

M̂ . Hence f = [1, i]⊗2n ± [1,−i]⊗2n, which is among the listed types.

If f has type 〈0, 1, 0〉, then f = [1, 0, . . . , 0, x] with x 6= 0, up to a nonzero scalar. By f ∈ M̂
and Lemma A.16, we have x2 = 1. Thus f = [1, 0, . . . , 0,±1], which is among the listed types.

Summarizing, we proved that if f ∈ M̂ ∩ (P ∪ Ã ), then f is among the listed types.

3. Note that P ∪ Ã is unchanged under the transformation by [ 1 0
0 i ]. Thus

M̂ † ∩ (P ∪ Ã ) = [ 1 0
0 i ]

{
M̂ ∩ (P ∪ Ã )

}
.

Then the proof of this case follows from the previous case by a transformation using [ 1 0
0 i ].

4. If f ∈ ⋂5
k=3 Sk, then a fortiori, f ∈ A † ∩ (P ∪ A ). This implies that

f ∈ {[1, α]⊗2n, [1, 0]⊗2n, [0, 1]⊗2n, [0, 1, 0], [1, 0, . . . , 0, ir ] | n ≥ 1, 0 ≤ r ≤ 3}.

Note that [1, α]⊗2m /∈ A . Thus f = [1, 0]⊗2n, or [0, 1]⊗2n, or [0, 1, 0], or [1, 0, . . . , 0, ir ]. All of
these four types are among the listed.

5. We already have

{[0, 1, 0], [1, 0, . . . , 0,±1]} ⊆
⋂

1≤k≤5

Sk ⊆
⋂

2≤k≤5

Sk.

If f ∈ ⋂5
k=2 Sk, then f ∈ ⋂5

k=3 Sk. This implies that

f ∈ {[1, 0]⊗2n, [0, 1]⊗2n, [0, 1, 0], [1, 0, . . . , 0, ir ] | n ≥ 1, 0 ≤ r ≤ 3}.

Moreover, if f = [1, 0]⊗2n, or [0, 1]⊗2n or [1, 0, . . . , 0,±i], then f /∈ M̂ , because
[

1 1
1 −1

]⊗2n
f

does not satisfy parity constraints. Hence f = [0, 1, 0], or [1, 0, . . . , 0,±1], and both types are
among the listed.

We state the following simple lemma which allows us to replace a signature set F in the proof
of the No-Mixing Theorem by a smaller set F ′ that subtracts from F those signatures that belong
to all common tractable signature sets.

Lemma G.2. Let F be a set of symmetric signatures such that for all 1 ≤ k ≤ 5, F 6⊆ Sk. Let
F ′ = F \ (

⋂5
k=1 Sk). Then for all 1 ≤ k ≤ 5, F ′ 6⊆ Sk and Pl-#CSP2(F ′) ≤ Pl-#CSP2(F).

Proof. Suppose for some 1 ≤ k ≤ 5, F ′ ⊆ Sk, then clearly F ⊆ Sk. The reduction is trivial since
F ′ ⊆ F .

Suppose F is as given in Lemma G.2, and F ∩ (
⋃5

k=1 Sk) 6= ∅. Let j = min{k | F ∩ Sk 6=
∅, 1 ≤ k ≤ 5}. Then j is well defined. The same proof shows that F ′ = F \ (

⋂5
k=j Sk) also has the

property that F ′ 6⊆ Sk, for j ≤ k ≤ 5, and F ′ ∩ Sk = ∅ for 1 ≤ k < j.

Corollary G.3. Let F be a set of symmetric signatures such that for all 1 ≤ k ≤ 5, F 6⊆ Sk.
Furthermore suppose F ∩ (

⋃5
k=1 Sk) 6= ∅ and let j = min{k | F ∩ Sk 6= ∅, 1 ≤ k ≤ 5}. Let

F ′ = F \ (
⋂5

k=j Sk). Then for all 1 ≤ k ≤ 5, F ′ 6⊆ Sk and Pl-#CSP2(F ′) ≤ Pl-#CSP2(F).

Recall that S1 = M̂ , S2 = M̂ †, S3 = A †, S4 = A and S5 = P.
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Theorem G.4. Let F ⊆ ⋃5
k=1 Sk be a set of symmetric signatures of even arities. If F ⊆ Sk for

some 1 ≤ k ≤ 5, then Pl-#CSP2(F) is tractable. Otherwise, Pl-#CSP2(F) is #P-hard.

Proof. If F ⊆ Sk for some 1 ≤ k ≤ 5, then tractability follows from the definition of P-
transformability, A -transformability and M -transformability.

Now suppose F * Sk for all 1 ≤ k ≤ 5. We first replace F by F ′ = F \ (
⋂5

k=1 Sk). This also
excludes the identically 0 signature. By Lemma G.2, we still have F ′ * Sk for 1 ≤ k ≤ 5, and we
only need to prove Pl-#CSP2(F ′) is #P-hard.

We will treat the tractable sets in the order S1, S2, . . . , S5, starting with S1 = M̂ .
1. Suppose that F ′ ∩ S1 6= ∅.

Let G1 = F ′ ∩ S1, and H1 = F ′ \ S1. Then G1 6= ∅, and since F ′ * S1 we also have H1 6= ∅. If

there exists g ∈ G1 such that g ∈ M̂ \ (P ∪ Ã ), then we are done by Lemma E.3. Otherwise,

G1 ⊆ M̂ ∩ (P ∪ Ã ). Then by the forms given in Lemma G.1, ignoring nonzero scalars,
G1 ⊆ {[1,±1]⊗2m, [1,±i, 1], [1, i]⊗2n ± [1,−i]⊗2n | m ≥ 1, n ≥ 2}. Note that we have excluded⋂5

k=1 Sk in F ′, hence also in G1. By Lemma G.1, [1, 0, . . . , 0,±1], [0, 1, 0] 6∈ F ′.
If [1,±1]⊗2m ∈ G1 for some m ≥ 1, then we can construct ∂m−1([1,±1]⊗2m) = 2m−1[1,±1]⊗2,
and we are done by Lemma B.3.
Otherwise, by the forms in

G1 ⊆ {[1,±i, 1], [1, i]⊗2n ± [1,−i]⊗2n | n ≥ 2}, (G.24)

we have G1 ⊆ A . If H1 ⊆ A , then we would have F ′ ⊆ A , a contradiction. Thus H1 * A .

Thus there exists h ∈ H1 \ A . By definition of H1, h 6∈ M̂ . Also H1 ⊆ ⋃5
k=1 Sk, thus

h ∈ (P ∪ A † ∪ M̂ †) \ (A ∪ M̂ ). By the forms of signatures in the nonempty set G1 in

(G.24) we have G1 ∩ (P ∪ A † ∪ M̂ †) = ∅. To check this: for the binary [1,±i, 1], we apply
Lemma A.8; for [1, i]⊗2n ± [1,−i]⊗2n we use its second order recurrence of type 〈1, 0, 1〉 and
then we apply Lemma A.11. Thus Pl-#CSP2(F ′) is #P-hard by Theorem F.9.

2. We have F ′ ∩ S1 = ∅. We replace F ′ by F ′′ = F ′ \ (
⋂5

k=2 Sk). By Corollary G.3, we still have
F ′′ * Sk for 2 ≤ k ≤ 5, F ′′ ∩ S1 = ∅, and we only need to prove Pl-#CSP2(F ′′) is #P-hard.
Now suppose that F ′′ ∩ S2 6= ∅.
By Lemma G.1, [1, 0, . . . , 0,±1], [0, 1, 0] 6∈ F ′′.
Let G2 = F ′′ ∩ S2 and H2 = F ′′ \ S2. Both G2, H2 6= ∅ and by definition H2 ∩ M̃ = ∅.
Thus there exists h ∈ H2 \ M̃ . If there exists g ∈ G2 such that g ∈ M̂ † \ (P ∪ Ã ), then
Pl-#CSP2(f, g) is #P-hard by Theorem F.9.

Otherwise, G2 ⊆ M̂ † ∩ (P ∪ Ã ). Then G2 ⊆ {[1,±i]2m, [1,±1,−1], [1, 1]⊗2n ± [1,−1]⊗2n |
m ≥ 1, n ≥ 2} by Lemma G.1. By its form G2 ⊆ A . If H2 ⊆ A , then we would have
F ′′ ⊆ A , a contradiction. Thus H2 * A . Hence there exists h′ ∈ H2 \ A . By definition of

H2, h′ 6∈ M̃ . As F ′′ ⊆ ⋃5
k=2 Sk, h′ ∈ (P ∪ A †) \ (A ∪ M̃ ). If G2 includes either [1,±1,−1]

or [1, 1]⊗2n ± [1,−1]⊗2n for some n ≥ 2, both are not in P ∪ A †. To see this, we apply
Corollary A.9 to the binary [1,±1,−1]. For [1, 1]⊗2n ± [1,−1]⊗2n with n ≥ 2, we note its
recurrence type 〈−1, 0, 1〉 and then apply Lemma A.11. Then Pl-#CSP2(F ′′) is #P-hard by
Theorem F.9.
We are left with the case where the nonempty set G2 ⊆ {[1,±i]2m | m ≥ 1}. By its form

G2 ⊆ P ∩ A ∩ M̂ † and G2 ∩ A † = ∅. If there exists h′′ ∈ H2 \ (A ∪ P), then by definition of

H2 this h′′ 6∈ M̃ as well, and we conclude that Pl-#CSP2(F ′′) is #P-hard by Theorem F.9.
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So we may assume H2 ⊆ A ∪ P. If H2 ⊆ A , then we would have F ′′ ⊆ A , a contradiction.
Thus there exists h′′′ ∈ (H2 ∩ P) \ A . Considering the forms of signatures in P \ A , it
takes the form h′′′ = [a, b]⊗2n with a4 6= b4, ab 6= 0, or h′′′ = [1, 0, . . . , 0, x] of arity 2n, with
x4 6= 0, 1, for some n ≥ 1. Taking h(4) = ∂n−1(h′′′), we get a nonzero multiple of either [a, b]⊗2

or [1, 0, x]. Then taking ∂m−1
h(4) ([1,±i]⊗2m), for some m ≥ 1, where [1,±i]⊗2m ∈ G2 which is

nonempty, we get a nonzero multiple of [1,±i]⊗2, and we are done by Lemma B.3.
3. Now we have F ′′ ∩ S2 = ∅.

We replace F ′′ by F ′′′ = F ′′\(
⋂5

k=3 Sk). By Lemma G.2, we still have F ′′′ * Sk for 3 ≤ k ≤ 5,
F ′′′ ∩ (S1 ∪ S2) = ∅, and we only need to prove Pl-#CSP2(F ′′′) is #P-hard.
Suppose that F ′′′ ∩ S3 6= ∅.
By Lemma G.1, the following signatures [1, 0, . . . , 0, ir ] of arity 2n, [0, 1, 0], [1, 0]⊗2n , [0, 1]⊗2n

are all out of F ′′′, for any 0 ≤ r ≤ 3 and any n ≥ 1.
Let G3 = F ′′′ ∩ S3, H3 = F ′′′ \ S3. Both G3, H3 6= ∅. Thus there exists h ∈ H3 such that

h ∈ (P ∪A )\(A †∪M̃ ). If there exists g ∈ G3 such that g ∈ A †\P, then by Corollary A.12,
g 6∈ A . Thus Pl-#CSP2(g, h) is #P-hard by Theorem F.9.
Otherwise, we have G3 ⊆ A † ∩ P. Thus we have G3 ⊆ {[1, α]⊗2m | m ≥ 1}. Note that by
Lemma G.1, we have excluded [1, 0, . . . , 0, ir ] of arity 2n, [0, 1, 0], [1, 0]⊗2n , [0, 1]⊗2n which are
all in

⋂5
k=3 Sk. (See Figure 35.)

Then we have ∂m−1([1, α]⊗2m) = (1 + α2)[1, α]⊗2 and we are done by Lemma B.3.
4. Finally we have F ′′′ ∩ S3 = ∅.

We have F ′′′ * Sk for 4 ≤ k ≤ 5, F ′′′ ∩ (S1 ∪ S2 ∪ S3) = ∅, and thus F ′′′ ⊆ S4 ∪ S5. Then we
are done directly by Theorem F.9.

H Dichotomy Theorem for an Even-Arity Signature

In this section, we prove the dichotomy theorem for Pl-#CSP2(f), where f has a general even arity
2n. If 2n = 2 or 4, then it has been proved in Theorem A.21′ and Theorem D.5 respectively. Thus
we will assume 2n ≥ 6.

The next simple lemma is to determine if a symmetric signature satisfies a second order re-
currence relation. In the following proof, we often argue that a signature f does not belong to
P ∪ Ã ∪ M̃ by Lemma A.11, and by showing that f does not satisfy any second order recurrence
relation.

Lemma H.1. For a symmetric signature f = [f0, f1, . . . , fn], let Mf =




f0 f1 f2

f1 f2 f3

...
...

...
fn−2 fn−1 fn


, then f

satisfies a second order recurrence relation iff rank(Mf ) ≤ 2.

Proof. The signature f satisfies a second order recurrence relation afk + bfk+1 + cfk+2 = 0 for
0 ≤ k ≤ n − 2 iff the linear system MfX = 0 has a nonzero solution (a, b, c)T iff rank(Mf ) ≤ 2.

We often use the following argument to prove hardness: Firstly, we prove f /∈ P ∪ Ã ∪
M̃ using Lemma H.1. Moreover, if we can get [1, ω]⊗2 in Pl-#CSP2(f) for some ω 6= 0, then

Pl-#CSP2(f, [1, ω]⊗2) is #P-hard by Lemma B.3. Or if we can get a signature g ∈ M̂ \ (P ∪ Ã )
in Pl-#CSP2(f), then Pl-#CSP2(f, g) is #P-hard by Lemma E.3.
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Figure 33: Gadget used to obtain a signature whose signature matrix is redundant.
Both vertices are assigned f .

The next three lemmas are some special cases of Theorem H.5 which is the main result of this
section. We prove these lemmas separately to facilitate the presentation of the proof of Theo-
rem H.5.

Lemma H.2. Suppose ab 6= 0 and f = [1, a, 0,−a, 0, a, b], then Pl-#CSP2(f) is #P-hard.

Proof. Note that Mf =




f0 f1 f2

f1 f2 f3

f2 f3 f4

f3 f4 f5

f4 f5 f6


 =

[ 1 a 0
a 0 −a
0 −a 0

−a 0 a
0 a b

]
has rank 3. Thus f does not satisfy any second

order recurrence relation by Lemma H.1. So f /∈ P ∪ Ã ∪ M̃ by Lemma A.11.
Moreover, we have ∂=4(f) = [1, 2a, b]. If [1, 2a, b] is degenerate, then [1, 2a, b] = [1, 2a]⊗2. We

are done since Pl-#CSP2(f, [1, 2a]⊗2) is #P-hard by Lemma B.3. Otherwise,

• For b4 6= 1, we have [1, 2a, b] /∈ P ∪ Ã ∪ M̃ by Corollary A.9 and Lemma A.8. Thus
Pl-#CSP2([1, 2a, b]) is #P-hard by Theorem A.21′ and we are done.

• For b2 = −1, we have ∂2
[1,2a,b](=6) = [1, 0,−1] on the left and we have f ′ = ∂[1,0,−1](f) =

[1, 2a, 0,−2a,−b]. Note that f ′ is redundant and the determinant of its compressed signature
matrix is 4(b − 1)a2 6= 0. Thus Pl-#CSP2(f ′) is #P-hard by Lemma A.25 and we are done.

• For b2 = 1, if (2a)4 6= 1, then we have [1, 2a, b] ∈ M̃ \ (P ∪ Ã ) by Lemma A.14. Thus
Pl-#CSP2(f, [1, 2a, b]) is #P-hard by Lemma E.3 and Lemma E.7 and we are done.
Otherwise, we have (2a)4 = 1. This implies that (2a)2 = ±b. Since [1, 2a, b] is non-
degenerate, we have (2a)2 6= b, thus (2a)2 = −b. Moreover, we have f ′′ = ∂[1,2a,b](f) =
[1 + (2a)2, (1 − b)a,−(2a)2,−(1 − b)a, b2 + (2a)2]. Note that f ′′ = [0, 0, 1, 0, 0] for b = 1 and
f ′′ = [2,±1,−1,∓1, 2] for b = −1. Both of [0, 0, 1, 0, 0] and [2,±1,−1,∓1, 2] are redundant
and their compressed signature matrices are nonsingular. Thus Pl-#CSP2(f ′′) is #P-hard by
Lemma A.25 and we are done.

The next lemma shows that if ∂(f) = [1, 0]⊗2n−2 + t[0, 1]⊗2n−2 with t 6= 0, then either f =
[1, 0]⊗2n + t[0, 1]⊗2n or Pl-#CSP(f) is #P-hard. We will use this lemma in Theorem H.5 for the
cases where ∂(f) is a non-degenerate generalized equality Gen-Eq.

For f = [a, b]⊗2n = [f0, f1, . . . , f2n] we have fk = an−kbk. Then it is easy to see that f̄ =
[a2, b2]⊗n = [f0, f2, . . . , f2n], consisting of even indexed entries of f . This observation also extends
to a sum of tensor powers by linearity. We will use this simple fact in the next lemma.

Lemma H.3. Suppose that (x, y) 6= (0, 0) and f = x[1, i]⊗2n + y[1,−i]⊗2n + [1, 0]⊗2n + t[0, 1]⊗2n,
where 2n ≥ 6 and t 6= 0, then Pl-#CSP(f) is #P-hard.

Proof. Let a = x + y, b = (x − y)i, then (a, b) 6= (0, 0). Note that

f = [a, b,−a,−b, . . . ,±b,∓a] + [1, 0, . . . , 0, t] = [a + 1, b,−a,−b, a, . . . ,±b,∓a + t].
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Since Mf has a rank 3 submatrix

[
f0 f1 f2

f1 f2 f3

f2 f3 f4

f2n−2 f2n−1 f2n

]
=

[
a+1 b −a

b −a −b
−a −b a
±a ±b ∓a+t

]
, Mf has rank 3. By

Lemma H.1, f does not satisfy any second order recurrence relation. So f /∈ P ∪ Ã ∪ M̃ by
Lemma A.11.

1. For a 6= 0, let f̄ = [f0, f2, . . . , f2n], then f̄ = a[1,−1]⊗n+[1, 0]⊗n+t[0, 1]⊗n and Pl-#CSP(f̄) ≤
Pl-#CSP2(f) by Lemma A.19. Note that f̄ = [a + 1,−a, a, . . . ,±a,∓a + t] has arity n ≥ 3.

• For 2n ≥ 8 or [2n = 6 and t 6= −1], we claim that f̄ /∈ P ∪ A ∪ M̂ .

For 2n ≥ 8, Since Mf̄ has a rank 3 submatrix

[
f̄0 f̄1 f̄2

f̄1 f̄2 f̄3

f̄n−2 f̄n−1 f̄n

]
=
[

a+1 −a a
−a a −a
∓a ±a ∓a+t

]
, Mf̄ has

rank 3. Thus f̄ does not satisfy any second order recurrence relation by Lemma H.1. So
f̄ /∈ P ∪ A ∪ M̂ by Lemma A.11.
For 2n = 6 and t 6= −1, Mf̄ is a 2 × 3 matrix and has rank less than 3. So it always

satisfies a second order recurrence relation. But we still show that f̄ /∈ P ∪ A ∪ M̂ .
Note that f̄ = [a + 1,−a, a,−a + t] when n = 3.

– f̄ is non-degenerate by (f̄1)
2 6= f̄0f̄2 and f̄ is not Gen-Eq since f̄1 6= 0, so f̄ /∈ P.

– If f̄ ∈ A \ P, then f̄ has type 〈1, 0,±1〉 by Lemma A.11. By f̄0 − f̄2 6= 0, f̄ does
not have type 〈1, 0,−1〉. If f̄ has type 〈1, 0, 1〉, then f̄0 + f̄2 = 0, f̄1 + f̄3 = 0. This
implies t = −1. It is a contradiction. Thus f̄ /∈ A \ P.

– By f̄1 = −f̄2 6= 0 and Lemma A.16, if f̄ ∈ M̂ , then f̄0 = −f̄3. This contradicts that
t 6= −1. Thus f̄ /∈ M̂ .

To summarize, f̄ /∈ P ∪ A ∪ M̂ for 2n ≥ 8, or [2n = 6 and t 6= −1]. Thus Pl-#CSP(f̄)
is #P-hard by Theorem A.22. So Pl-#CSP2(f) is #P-hard.

• For 2n = 6 and t = −1, we have f = [a + 1, b,−a,−b, a, b,−a − 1]. Firstly, we have
∂2(f) = [1, 0,−1] and f ′ = ∂[1,0,−1](f) = [1 + 2a, 2b,−2a,−2b, 1 + 2a]. The compressed

signature matrix of f ′ is

[
1+2a 2b −2a

2b −2a −2b
−2a −2b 1+2a

]
and its determinant is −2(4a2 + 4b2 + a). If

4a2 + 4b2 + a 6= 0, then it is nonsingular, and we are done by Lemma A.25.
Otherwise we have 4a2 + 4b2 + a = 0. Consider the gadget in Figure 33. We assign f to
both vertices. The signature of this gadget is redundant, and its compressed signature
matrix is



1 + 2a + 8a2 + 8b2 b −2a − 8a2 − 8b2

b 8a2 + 8b2 −b
−2a − 8a2 − 8b2 −b 1 + 2a + 8a2 + 8b2


 =




1 b 0
b −2a −b
0 −b 1


 .

If a + b2 6= 0, then this matrix is nonsingular, so we are done by Lemma A.25.
Otherwise we have 4a2+4b2+a = 0 and a+b2 = 0. Also we have a 6= 0. By solving these

two equations, a = 3
4 and b = ±

√
3

2 i. Moreover, we have ∂=4(f) = [1+2a, 2b,−1− 2a] =

[52 ,±
√

3i,−5
2 ]. By Lemma A.14, ∂=4(f) ∈ M̂ † \ (P ∪ A ). Recall that f /∈ M̂ †. Thus

Pl-#CSP2(f, [1 + 2a, 2b,−1 − 2a]) is #P-hard by Lemma E.7 and we are done.
2. For a = 0, then b 6= 0 by (a, b) 6= (0, 0).

• if 2n ≡ 0 (mod 4) and t 6= −1, then

f ′′ = ∂
n−2

2
=4 (f) = 2

n−2
2 x[1, i]⊗4 + 2

n−2
2 y[1,−i]⊗4 + [1, 0]⊗4 + t[0, 1]⊗4,
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...

(a) (b)

Figure 34: Two gadgets used to obtain a signature whose signature matrix is redun-
dant. The dashed subgadgets are assigned [1, 0, 1]⊗2 rotated so that it is equivalent to
assigning [1, 0, 1] to the square vertices.

i.e., f ′′ = [1, 2
n−2

2 b, 0,−2
n−2

2 b, t]. Note that f ′′ is redundant and the determinant of its
compressed signature matrix is −2n−2b2(t + 1). By t 6= −1 and b 6= 0, the compressed
signature matrix is nonsingular. So Pl-#CSP2(f ′′) is #P-hard by Lemma A.25. Thus
Pl-#CSP2(f) is #P-hard.

• if 2n ≡ 0 (mod 4) and t = −1, we have ∂n−1(f) = [1, 0,−1] and

f ′′′ = ∂n−3
[1,0,−1](f) = 2n−3x[1, i]⊗6 + 2n−3y[1,−i]⊗6 + [1, 0]⊗6 + (−1)n−2[0, 1]⊗6,

i.e., f ′′′ = [1, 2n−3b, 0,−2n−3b, 0, 2n−3b, (−1)n−2]. By Lemma H.2, Pl-#CSP2(f ′′′) is
#P-hard and we are done.

• if 2n ≡ 2 (mod 4), we have

f (4) = ∂
n−3

2
=4 (f) = 2

n−3
2 x[1, i]⊗6 + 2

n−3
2 y[1,−i]⊗6 + [1, 0]⊗6 + t[0, 1]⊗6.

Note that f (4) = [1, 2
n−3

2 b, 0,−2
n−3

2 b, 0, 2
n−3

2 b, t]. By Lemma H.2, Pl-#CSP2(f (4)) is
#P-hard and we are done.

We will use the next lemma in the proof of Theorem H.5 for the case that ∂(f) = [1, i]⊗2n−2 +
ir[1,−i]⊗2n−2. In this case, we will transform Pl-#CSP2 to Pl-#CSP4 by holographic transforma-
tion and gadget construction. This is why we have to deal with Pl-#CSP4 problems in the next
lemma.

Lemma H.4. Suppose f = [0, 1, 0, . . . , 0, a, 0] has arity 2n ≥ 6. If a4 = 1, then the problem
Pl-#CSP4(f, [1, 0, 1]⊗2, [1, 0, 1, 0, 1]) is #P-hard.

Proof. In Pl-#CSP4(f, [1, 0, 1]⊗2, [1, 0, 1, 0, 1]), we do not have =2 on the left, so we cannot connect
the two edges on the right freely. But we do have [1, 0, 1]⊗2 on the right and =4 on the left, so we
can do a loop to a pair of =4 on the left respectively and we get [1, 0, 1]⊗2 on the left.

Suppose a2 = 1. Consider the gadget in Figure 34a. We assign f to the circle vertices and
[1, 0, 1]⊗2 to the dashed subgadgets rotated so that it is equivalent to assigning [1, 0, 1] to the
square vertices, where there are 2n − 2 parallel edges connecting the 2 copies of f with 2n − 2
square vertices. The signature of this gadget is redundant, and its compressed signature matrix is[

2n−2 0 0
0 1+a2 0
0 0 (2n−2)a2

]
, which is nonsingular, by a2 = 1. Thus we have

Pl-#CSP2(f ′) ≤T Pl-#CSP4(f ′, [1, 0, 1]⊗2) ≤T Pl-#CSP4(f, [1, 0, 1]⊗2, [1, 0, 1, 0, 1]),

where the first ≤T is by Lemma B.4. Then we are done by Lemma A.25.
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For a2 = −1, the gadget in Figure 34a cannot work since the compressed signature matrix of

its resulting signature is
[

2n−2 0 0
0 0 0
0 0 −2n+2

]
which is singular.

We consider two cases.
• Suppose 2n ≡ 0 (mod 4). Then by Lemma B.4, we have

Pl-#CSP2(f, [1, 0, 1, 0, 1]) ≤T Pl-#CSP4(f, [1, 0, 1, 0, 1], [1, 0, 1]⊗2). (H.25)

In Pl-#CSP2(f, [1, 0, 1, 0, 1]), we have f ′ = ∂n−2(f) = [0, 1, 0,±i, 0]. Note that f ′ ∈ A † by

considering [ 1 0
0 α ]

⊗4
f ′, and also f ′ /∈ P ∪ A ∪ M̃ by considering its type 〈1, 0,±i〉, and by

Lemma A.11. Furthermore we have [1, 0, 1, 0, 1] ∈ A , and also [1, 0, 1, 0, 1] /∈ A † by its type
〈1, 0,−1〉, and by Lemma A.11. Thus Pl-#CSP2(f ′, [1, 0, 1, 0, 1]) is #P-hard by Theorem G.4
and we are done.

• For 2n ≡ 2 (mod 4), we cannot use Lemma B.4 to get the reduction in (H.25) since Lemma B.4

requires that all signatures on the right have arity ≡ 0 (mod 4). But we have f ′ = ∂
n−3

2
=4 (f) =

[0, 1, 0, 0, 0,±i, 0] as well as ∂=4(f
′) = (1 ± i)[0, 1, 0]. We may use [1, 0, 1]⊗2 of the LHS to

transport this [0, 1, 0] from the RHS to the LHS as follows: Let f(x1, y1, x2, y2) be the func-
tion [1, 0, 1]⊗2 which is 1 iff x1 = y1 and x2 = y2, and 0 otherwise. Then we connect x1

and x2 with the two edges of [0, 1, 0] from the RHS. This creates [0, 1, 0] on the LHS, with
which we can take derivative of f ′ from the RHS. Then we have ∂[0,1,0](f

′) = [1, 0, 0, 0,±i].
Consider the gadget in Figure 34b. We assign f ′ to the circle vertices, [1, 0, 0, 0,±i] to the
triangle vertex, and [1, 0, 1]⊗2 to the dashed subgadgets rotated so that it is equivalent to
assigning [1, 0, 1] to the square vertices. The signature f ′′ of this gadget is redundant, and

its compressed signature matrix is
[

2 0 0
0 1∓i 0
0 0 ∓2i

]
, which is nonsingular. Thus Pl-#CSP2(f ′′) is

#P-hard by Lemma A.25. Moreover, we have

Pl-#CSP4(f ′′, [1, 0, 1]⊗2) ≤T Pl-#CSP4(f, [1, 0, 1, 0, 1], [1, 0, 1]⊗2)

and
Pl-#CSP2(f ′′) ≤T Pl-#CSP4(f ′′, [1, 0, 1]⊗2)

by Lemma B.4 and we are done. Now Lemma B.4 can work since f ′′ has arity 4.

Now we are ready to prove the main theorem of this section, the dichotomy of Pl-#CSP2(f),
where f has a general even arity 2n. We will prove the theorem by induction on the arity 2n. The
base cases 2n = 2 and 2n = 4 are already done in Theorem A.21′ and Theorem D.5, respectively.
We always have f ′ = ∂(f) in Pl-#CSP2(f) which has arity 2n − 2. If f ′ /∈ P ∪ Ã ∪ M̃ , then
Pl-#CSP2(f ′) is #P-hard by induction and Pl-#CSP2(f) is #P-hard. Otherwise, for f ′ ∈ P ∪
Ã ∪ M̃ , we can explicitly express f by the integral operator

∫
(f ′). We will prove the theorem in

the following order:
(1) f ′ ∈ P, (2) f ′ ∈ A † \ P, (3) f ′ ∈ A \ P, (4) f ′ ∈ M̂ \ (P ∪ Ã ), and (5) f ′ ∈ M̂ † \ (P ∪ Ã ).

Note that by Corollary A.13, Case (4) is equivalent to f ′ ∈ M̂ \ (P ∪ Ã ∪ M̂ †), and Case (5)

is equivalent to f ′ ∈ M̂ † \ (P ∪ Ã ∪ M̂ ).
In the proof, to use Theorem D.5, we often construct arity 4 signatures by our Calculus with

binary signatures or =4.

Theorem H.5. Let f be a symmetric signature of even arity 2n. If f ∈ P ∪ Ã ∪ M̃ , then
Pl-#CSP2(f) is tractable. Otherwise, Pl-#CSP2(f) is #P-hard.
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Proof. If f ∈ P ∪ Ã ∪ M̃ , then tractability follows from the definition of P-transformability,
A -transformability, and M -transformability. Now suppose f /∈ P ∪ Ã ∪ M̃ . If 2n ∈ {2, 4}, then
we are done by Theorem A.21′ and Theorem D.5 respectively.

For 2n ≥ 6, we will prove the theorem by induction on arity 2n. If f ′ = ∂(f) /∈ P ∪ Ã ∪ M̃ ,
then Pl-#CSP2(f ′) is #P-hard by induction. Thus Pl-#CSP2(f) is #P-hard. Otherwise, f ′ ∈
P ∪ Ã ∪ M̃ .

1. For f ′ ∈ P, we have f ′ ≡ 0 or f ′ = [a, b]⊗2n−2 (where (a, b) 6= (0, 0)) or f ′ = [1, 0]⊗2n−2 +
t[0, 1]⊗2n−2 with t 6= 0 by definition. Note that 2n − 2 ≥ 4.
(a) f ′ ≡ 0. Then f = x[1, i]⊗2n +y[1,−i]⊗2n by Proposition A.7 (the Explicit List for

∫
(f ′)).

If x = 0 or y = 0, then f ∈ P. If xy 6= 0 and x4 = y4, then f ∈ A . In the following,
assume that xy 6= 0 and x4 6= y4.

• For 2n ≡ 0 (mod 4), we have f ′′ = ∂
n−2

2
=4 (f) = 2

n−2
2 x[1, i]⊗4 + 2

n−2
2 y[1,−i]⊗4. By

xy 6= 0, f ′′ is non-degenerate, and has the unique recurrence type 〈1, 0, 1〉. Therefore

f ′′ /∈ P ∪ A † ∪ M̃ by Lemma A.11. By x4 6= y4 it is also not in A . Thus
f ′′ /∈ P ∪ Ã ∪ M̃ . Therefore Pl-#CSP2(f ′′) is #P-hard by Theorem D.5. So
Pl-#CSP2(f) is #P-hard.

• For 2n ≡ 2 (mod 4), we cannot reduce the arity of f to 4 by =4 directly as in the
previous case. We will construct a binary signature that is not λ[1, 0, 1] to reduce

the arity of f . Firstly, we have f ′′′ = ∂
n−1

2
=4 (f) = 2

n−1
2 x[1, i]⊗2 + 2

n−1
2 y[1,−i]⊗2 =

2
n−1

2 [a, b,−a], where a = x + y, b = (x − y)i. We remark that [a, b,−a] can reduce
the arity of f , but it involves a case analysis of a and b. Instead we use [a, b,−a] to
construct a simpler binary signature.
Note that a 6= 0 by x4 6= y4. Then we have ∂[a,b,−a](=4) = a[1, 0,−1] on the left.

Thus we have f (4) = ∂n−2
[1,0,−1](f) = 2n−2x[1, i]⊗4 + 2n−2y[1,−i]⊗4. With the same

reason as in the previous case, f (4) /∈ P∪Ã ∪M̃ by its type, and by xy 6= 0, x4 6= y4.
Thus Pl-#CSP2(f (4)) is #P-hard by Theorem D.5. So Pl-#CSP2(f) is #P-hard.

(b) f ′ = [a, b]⊗2n−2 with ab 6= 0. If a2 + b2 6= 0, we have ∂n−2(f) = (a2 + b2)n−2[a, b]⊗2 and
we are done by Lemma B.3.
Suppose a2 + b2 = 0, i.e., f ′ = [1,±i]⊗2n−2 up to a scalar.

• For 2n ≡ 0 (mod 4), we have ∂
n−2

2
=4 (f ′) = 2

n−2
2 [1,±i]⊗2 and are done by Lemma B.3.

• For 2n ≡ 2 (mod 4), we cannot get [1,±i]⊗2 in Pl-#CSP2(f ′) by Remark 6 (note
that the arity of f ′ is 2n − 2 ≡ 0 (mod 4)). To get [1,±i]⊗2, we need the help of
f . By Proposition A.7 (the Explicit List for

∫
(f ′)), f = x[1, i]⊗2n + y[1,−i]⊗2n + g,

where g has arity 2n and gk = 1
4 (±i)k(2n − 2k). If x = y = 0, then f ∈ M̂ †.

Otherwise, let a = x + y, b = (x − y)i, then (a, b) 6= (0, 0). We have ∂
n−1

2
=4 (f) =

2
n−1

2 x[1, i]⊗2 +2
n−1

2 y[1,−i]⊗2+2
n−3

2 [1, 0, 1], i.e., ∂
n−1

2
=4 (f) = 2

n−3
2 [2a+1, 2b,−2a+1].

If a 6= 0, then we have ∂[2a+1,2b,−2a+1](=4) = [2a + 1, 0,−2a + 1] on the left and

∂n−2
[2a+1,0,−2a+1](f

′) = (4a)n−2[1,±i]⊗2. Then we are done by Lemma B.3.

If a = 0, then b 6= 0 and we have [1, 2b, 1] and ∂n−2
[1,2b,1](f

′) = (±4bi)n−2[1,±i]⊗2.
Then we are done by Lemma B.3 again.

(c) f ′ = [1, 0]⊗2n−2. Then f = x[1, i]⊗2n + y[1,−i]⊗2n + [1, 0]⊗2n by Proposition A.7 (the
Explicit List for

∫
(f ′)). If x = y = 0, then f ∈ P. In the following, assume that
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(x, y) 6= (0, 0). Let a = x + y, b = (x − y)i, then (a, b) 6= (0, 0).
We have ∂n−1(f) = [1, 0]⊗2 and f ′′ = ∂n−2

[1,0]⊗2(f) = x[1, i]⊗4 + y[1,−i]⊗4 + [1, 0]⊗4, i.e.,

f ′′ = [1+a, b,−a,−b, a]. Note that f ′′ is redundant. If a2 + b2 6= 0, then the compressed
signature matrix of f ′′ is nonsingular and we are done by Lemma A.25.
Otherwise, we have a = ±ib. We claim that f ′′ /∈ P ∪ Ã ∪ M̃ . Note that ab 6= 0
by (a, b) 6= (0, 0) and a = ±ib. If f ′′ is degenerate, then by (f ′′

1 )2 = f ′′
0 f ′′

2 , we have
−a − a2 = b2. This implies that a = 0. It is a contradiction. Moreover, note that
f ′′ = [1 + a,∓ia,−a,±ia, a] and has type 〈0, 1,±i〉. Since f ′′ is non-degenerate and has
arity ≥ 3, the second order recurrence relation 〈0, 1,±i〉 is unique up to a scalar. Thus

f ′′ /∈ P ∪ Ã ∪ M̃ by Lemma A.11. So Pl-#CSP2(f ′′) is #P-hard by Theorem D.5 and
we are done.

(d) f ′ = [0, 1]⊗2n−2. The proof follows from the previous case by a holographic transforma-
tion using [ 0 1

1 0 ].
(e) f ′ = [1, 0]⊗2n−2 + t[0, 1]⊗2n−2 with t 6= 0. Then f = x[1, i]⊗2n + y[1,−i]⊗2n + [1, 0]⊗2n +

t[0, 1]⊗2n by Proposition A.7 (the Explicit List for
∫
(f ′)). If x = y = 0, then f ∈ P.

Otherwise, we have (x, y) 6= (0, 0) and we are done by Lemma H.3.
2. For f ′ ∈ A †\P, we have f ′ = [1, α]⊗2n−2+ir[1,−α]⊗2n−2 by definition (See Figure 35). Then

f = x[1, i]⊗2n + y[1,−i]⊗2n + 1
1+α2 {[1, α]⊗2n + ir[1,−α]⊗2n} by Proposition A.7 (the Explicit

List for
∫

(f ′)). If x = y = 0, then f ∈ A †. In the following, assume that (x, y) 6= (0, 0).
Note that f ′ has type 〈1, 0,±i〉 up to a scalar. And this second order recurrence relation is

unique up to a scalar. Thus f ′ ∈ A † \ (P ∪ A ∪ M̃ ) by Lemma A.11. In the following,

we complete the proof by constructing a signature of even arity in (P ∪ A ∪ M̃ ) \ A † and

apply Theorem G.4, or constructing an arity 4 signature that is not in P ∪ Ã ∪M̃ and apply
Theorem D.5.
Firstly, we have f ′′ = ∂n−3(f ′) = (1 + α2)n−3{[1, α]⊗4 + ir[1,−α]⊗4}. We will discard the
nonzero factor that are powers of 1 + α2. If r 6= 2, we have ∂(f ′′) = (1 + ir)[1, 1−ir

1+ir α,α2]

and we have ∂[1, 1−ir

1+ir
α,α2](=4) = [1, 0, α2] on the left. For r = 2, ∂(f ′′) is a nonzero multiple

of [0, 1, 0] and we have ∂[0,1,0](f
′′) = 2α[1, 0, α2 ] on the right. Either way, we can take the

derivative (for [1, 0, α2] in RHS we connect it via (=2) of LHS to f)

f ′′′ = ∂n−2
[1,0,α2]

(f) = (1 − α2)n−2{x[1, i]⊗4 + y[1,−i]⊗4}.

Note that ∂[1,0,α2]([1,±α]2n) is the identically zero signature, since α4 = −1.

If xy = 0, or [xy 6= 0 and x4 = y4], then f ′′′ ∈ A \ A †. So Pl-#CSP2(f ′, f ′′′) is #P-hard by
Theorem G.4. Thus Pl-#CSP2(f) is #P-hard.

Otherwise, xy 6= 0 and x4 6= y4, so f ′′′ /∈ P ∪ Ã ∪ M̃ (by the same reason as before: first
by its type 〈1, 0, 1〉 it could only possibly be in A among the five classes by Lemma A.11;
but x4 6= y4 rules that out too). Thus Pl-#CSP2(f ′′′) is #P-hard by Theorem D.5. So
Pl-#CSP2(f) is #P-hard.

3. For f ′ ∈ A \ P, we have f ′ = [1, ρ]⊗2n−2 + ir[1,−ρ]⊗2n−2 by definition (See Figure 35).
• If f ′ = [1, 1]⊗2n−2 + ir[1,−1]⊗2n−2, then f = x[1, i]⊗2n + y[1,−i]⊗2n + 1

2{[1, 1]⊗2n +
ir[1,−1]⊗2n} by Proposition A.7 (the Explicit List for

∫
(f ′)). If x = y = 0, then f ∈ A .

In the following, assume that (x, y) 6= (0, 0).
By a holographic transformation using H =

[
1 1
1 −1

]
, we have

Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], . . . | f̂ ′, f̂) ≡ Pl-#CSP2(f ′, f),
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where f̂ ′ = (H−1)⊗2n−2f ′ = [1, 0]2n−2 + ir[0, 1]2n−2 = [1, 0, . . . , 0, ir], f̂ = (H−1)⊗2nf =

x′[1,−i]⊗2n + y′[1, i]⊗2n + 1
2{[1, 0]⊗2n + ir[0, 1]⊗2n}, where x′ = (1+i)2n

22n x, y′ = (1−i)2n

22n y.
Note that (x′, y′) 6= (0, 0).
Since we have [1, 0, 1] on the left and [1, 0, . . . , 0, ir] of arity 2n − 2 ≥ 4 on the right in

Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], . . . | f̂ ′, f̂),

we can construct =2k on the right for k ≥ 1 in the following way: Firstly, connect four
copies of [1, 0, . . . , 0, ir ] by three copies of [1, 0, 1] in a planar fashion, to form an equality
[1, 0, . . . , 0, 1] of arity 4(2n − 2) − 6 = 8n − 14. Then use 4n − 9 copies of [1, 0, 1] to form
loops on (=8n−14), and we get (=4). From this, and (=2) = [1, 0, 1] on the left, we can
get all (=2k) on the right for k ≥ 1. Then by =2 on the left, we can construct all of =2k

on the left. Thus

Pl-#CSP2(f̂ ′, f̂) ≤ Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], . . . | f̂ ′, f̂).

By Lemma H.3 Pl-#CSP2(f̂) is #P-hard. Thus Pl-#CSP2(f) is #P-hard.
• If f ′ = [1, i]⊗2n−2 +ir[1,−i]⊗2n−2, then f = x[1, i]⊗2n +y[1,−i]⊗2n + f̃ , where f̃ has arity

2n and f̃k = 1
4

{
ik(2n − 2k) + ir(−i)k(2n − 2k)

}
by Proposition A.7 (the Explicit List

for
∫
(f ′)). Under the holographic transformation by Z =

[
1 1
i −i

]
, the expressions are

more revealing: f = Z⊗2n[x, 1, 0, . . . , 0, ir, y], and f ′ = ∂(f) = Z⊗(2n−2)[1, 0, . . . , 0, ir].
However, if we apply the holographic transformation Z to Pl-#CSP2(f, f ′), we have

Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂ , f̂ ′) ≡ Pl-Holant(EQ2 | f, f ′),

where f̂ = (Z−1)⊗2nf = [x, 1, 0, . . . , 0, ir , y], and f̂ ′ = (Z−1)⊗4f = [1, 0, . . . , 0, ir ]. Note
that now we do not have =2 on the left in Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . |f̂ , f̂ ′). This
is inconvenient to construct gadget. So, in the following steps we first try to construct
[1, 0,−1]⊗2 on the LHS of Pl-#CSP2(f) to get Pl-Holant([1, 0,−1]⊗2 ∪ EQ2 | f). This
will be done with the help of Lemma A.20. Then after the holographic transformation
by Z, we have [1, 0,−1]⊗2Z⊗2 = 4[1, 0, 1]⊗2 on the left.
To apply Lemma A.20, we construct [1, i]⊗4 + is[1,−i]⊗4 in Pl-#CSP2(f, f ′) for some
0 ≤ s ≤ 3 as follows.

– If 2n ≡ 2 (mod 4), then we have ∂
n−3

2
=4 (f ′) = 2

n−3
2 {[1, i]⊗4 + ir[1,−i]⊗4}.

– If 2n ≡ 0 (mod 4), then we have ∂
n−2

2
=4 (f ′) = 2

n−2
2 {[1, i]⊗2 + ir[1,−i]⊗2} = 2

n−2
2 [1 +

ir, (1 − ir)i,−(1 + ir)]. This is a nonzero multiple of [1,±1,−1] if r 6= 2, and a
nonzero multiple of [0, 1, 0] if r = 2.
If r 6= 2, then we have ∂[1,±1,−1](=4) = [1, 0,−1] on the left and

∂n−2
[1,0,−1](f

′) = 2n−2{[1, i]⊗4 + ir[1,−i]⊗4}.

If r = 2, we have ∂n−2
[0,1,0](f

′) = (2i)n−2{[1, i]⊗4 + ir(−1)n−2[1,−i]⊗4}.
Thus we have f ′′ = [1, i]⊗4 + is[1,−i]⊗4, for some 0 ≤ s ≤ 3, in Pl-#CSP2(f, f ′). Then
by Lemma A.20, we have [1, 0,−1]⊗2 on the left, i.e., we have

Pl-Holant(EQ2, [1, 0,−1]⊗2 | f, f ′′) ≡ Pl-#CSP2(f).
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By a holographic transformation using Z =
[

1 1
i −i

]
, we have

Pl-Holant([1, 0, 1]⊗2 , [0, 1, 0], [1, 0, 1, 0, 1], . . . |f̂ , f̂ ′′) ≡ Pl-Holant(EQ2, [1, 0,−1]⊗2|f, f ′′),

where f̂ = (Z−1)⊗2nf = [x, 1, 0, . . . , 0, ir , y], and f̂ ′′ = (Z−1)⊗4f = [1, 0, 0, 0, is ].

In Pl-Holant([1, 0, 1]⊗2 , [0, 1, 0], [1, 0, 1, 0, 1], . . . |f̂ , f̂ ′′), by [1, 0, 1]⊗2 on the left and f̂ ′′ on

the right, we get =4 on the right as follows: Use 4 copies of f̂ ′′, connected together by
3 copies of [1, 0, 1]⊗2 in a planar way. Each copy of [1, 0, 1]⊗2 connects two edges of one

copy of f̂ ′′ to another copy of f̂ ′′ in such a way that the effect is equivalent to connecting
them by two copies of (=2) = [1, 0, 1]. This way we get an arity 16 − 12 = 4 signature
(=4) = [1, 0, 0, 0, (is)4]. Moreover, we have =4k for k ≥ 1 on the right by [1, 0, 1]⊗2 on
the left and =4 on the right in a similar way. Then we can move f̂ to LHS by [1, 0, 1]⊗2

because f̂ has even arity. Thus we have

Pl-Holant([1, 0, 1]⊗2, [1, 0, 1, 0, 1], f̂ |EQ4) ≤ Pl-Holant([1, 0, 1]⊗2 , [1, 0, 1, 0, 1], . . . |f̂ , f̂ ′′).

Note that

Pl-#CSP4(f̂ , [1, 0, 1, 0, 1], [1, 0, 1]⊗2) ≡ Pl-Holant([1, 0, 1]⊗2, [1, 0, 1, 0, 1], f̂ | EQ4).

We will prove that Pl-#CSP4(f̂ , [1, 0, 1, 0, 1], [1, 0, 1]⊗2 ) is #P-hard to complete the proof
of this case.

Note that

[
f̂0 f̂1 f̂2

f̂1 f̂2 f̂3

f̂2n−3 f̂2n−2 f̂2n−1

]
=
[

x 1 0
1 0 0
0 0 ir

]
has rank 3. Thus f̂ does not satisfy any second

order recurrence relation by Lemma H.1. So f̂ /∈ P ∪ Ã ∪ M̃ by Lemma A.11.
If (x, y) = (0, 0), we are done by Lemma H.4. In the following, assume that (x, y) 6= (0, 0).

– If 2n ≡ 0 (mod 4), then

Pl-#CSP2(f̂) ≤ Pl-#CSP4(f̂ , [1, 0, 1]⊗2) (H.26)

by Lemma B.4.
For Pl-#CSP2(f̂), we have f̂ ′′′ = ∂n−2(f̂) = [x, 1, 0, ir , y]. Note that f̂ ′′′ is redun-

dant. If (−1)rx + y 6= 0, then the compressed signature matrix of f̂ ′′′ is nonsingular
and we are done by Lemma A.25.
Otherwise, we have x = ±y, and thus both x, y 6= 0. It is easy to see that f̂ ′′′ does
not satisfy the second order recurrence relations 〈0, 1, 0〉, 〈1, 0,±1〉, 〈1, 0,±i〉. Thus

f̂ ′′′ /∈ P ∪ Ã by Lemma A.11.
We consider three possibilities for f̂ ′′′.
• If f̂ ′′′ ∈ M̂ \ (P ∪ Ã ), then Pl-#CSP2(f̂ , f̂ ′′′) is #P-hard by Lemma E.3, where

we have f̂ /∈ M̂ because we have noted earlier that f̂ /∈ P ∪ Ã ∪ M̃ . Thus
Pl-#CSP4(f̂ , [1, 0, 1]⊗2) is #P-hard by (H.26) and we are done.

• If f̂ ′′′ ∈ M̂ † \(P ∪Ã ), then f̂ ′′′ = [x, 1, 0, 1,−x] by Corollary A.18 (the other form
[u, v, w, v, u] with (u + w)w = 2v2 in Corollary A.18 is impossible because w = 0
here and (u + w)w = 2v2 would force v = 0.) Then we are done by Lemma E.4,

because f̂ ′′′ plays the role of g in Lemma E.4, and f̂ /∈ M̂ † by f̂ /∈ P ∪ Ã ∪ M̃ .
• If f̂ ′′′ /∈ P ∪ Ã ∪ M̃ , then Pl-#CSP2(f̂ ′′′) is #P-hard by Theorem D.5 and we
are done.
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– For 2n ≡ 2 (mod 4), we cannot use the reduction in (H.26) since Lemma B.4 requires
that all signatures on the right have arity ≡ 0 (mod 4). We get around this difficulty
by constructing some arity 4 signatures in Pl-#CSP4(f̂), and then use Lemma B.4
for these arity 4 signatures.

Firstly, we have ĝ = ∂
n−3

2
=4 (f̂) = [x, 1, 0, 0, 0, ir , y]. We also have ∂=4(ĝ) = [x, 1+ir, y].

They are both on the right. Then we have ∂[x,1+ir,y](=4) = [x, 0, y] on the left. We
also connect [x, 0, y] and [x, 1 + ir, y] and then [x, 0, y] in a chain, to get another
binary signature h = [x3, (1 + ir)xy, y3] on the left. This can be verified by

[
x 0
0 y

] [
x 1 + ir

1 + ir y

] [
x 0
0 y

]
=

[
x3 (1 + ir)xy

(1 + ir)xy y3

]
.

From these we produce two arity 4 signatures on the right:

ĝ′ = ∂[x,0,y](ĝ) = [x2, x, 0, iry, y2]

ĝ′′ = ∂h(ĝ) = [x4 + 2(1 + ir)xy, x3, 0, iry3, y4 + 2ir(1 + ir)xy].

Thus

Pl-#CSP4(ĝ′, ĝ′′, [1, 0, 1]⊗2 , [1, 0, 1, 0, 1]) ≤ Pl-#CSP4(f̂ , [1, 0, 1]⊗2 , [1, 0, 1, 0, 1]).

Moreover, note that all signatures in {ĝ′, ĝ′′, [1, 0, 1, 0, 1])} have arity 4. Then by
Lemma B.4, we have

Pl-#CSP2(ĝ′, ĝ′′, [1, 0, 1, 0, 1]) ≤ Pl-#CSP4(ĝ′′, ĝ′′, [1, 0, 1]⊗2 , [1, 0, 1, 0, 1]).

It is easy to see that ĝ′ is non-degenerate and does not satisfy the second order
recurrence relations 〈0, 1, 0〉, 〈1, 0,±1〉, 〈1, 0,±i〉, because (x, y) 6= (0, 0). Thus ĝ′ /∈
P ∪Ã by Lemma A.11. If ĝ′ /∈ M̃ , then Pl-#CSP2(ĝ′) is #P-hard by Theorem D.5
and we are done.
Otherwise, ĝ′ ∈ M̂ \ (P ∪ Ã ) or ĝ′ ∈ M̂ † \ (P ∪ Ã ).
Note that [1, 0, 1, 0, 1] has type 〈1, 0,−1〉 and the second order recurrence relation is

unique up to a scalar. Thus [1, 0, 1, 0, 1] /∈ M̂ by Lemma A.11. If ĝ′ ∈ M̂ \(P ∪Ã ),
then Pl-#CSP2(ĝ′, ĝ′′, [1, 0, 1, 0, 1]) is #P-hard by Lemma E.3 and we are done.

Therefore we may assume ĝ′ ∈ M̂ † \ (P ∪ Ã ∪ M̂ ).

By Corollary A.18, for ĝ′ ∈ M̂ †\(P∪Ã ∪M̂ ), it cannot be of the form [u, v, w,−v, u]
with (u−w)w = 2v2; for if it were so, then by w = 0 in this case, we would have v = 0,
and this would imply that x = iry = 0 in ĝ′. It contradicts that (x, y) 6= (0, 0). So
ĝ′ must be of the form [u, v, 0, v,−u], i.e., x2 = −y2, x = iry. Thus we have x = ǫiy
and ir = ǫi, for some ǫ = ±1, and x 6= 0. Hence both x, y 6= 0 and 1 + ir 6= 0. It
follows that x3 = −ǫiy3 6= ǫiy3 = iry3.
Moreover, if ĝ′′ ∈ M̂ †, it cannot take the form [u, v, w,−v, u] with (u − w)w = 2v2

in Corollary A.18 because if so then w = 0 would force v = 0 and that would force
both x = y = 0. Then ĝ′′ must be of the form [u, v, 0, v,−u]. But this would force

x3 = iry3, a contradiction. Thus ĝ′′ /∈ M̂ †.
If ĝ′′ /∈ P ∪ Ã ∪ M̃ , then Pl-#CSP2(ĝ′′) is #P-hard by Theorem D.5 and we are

done. Otherwise, ĝ′′ ∈ (P∪Ã ∪M̂ )\M̂ †, Pl-#CSP2(ĝ′, ĝ′′, [1, 0, 1, 0, 1]) is #P-hard
by Lemma E.4 and we are done.
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4. For f ′ ∈ M̂ \ (P ∪ Ã ), we are done by Lemma E.3.

5. For f ′ ∈ M̂ †\(P∪Ã ), or equivalently, f ′ ∈ M̂ †\(P∪Ã ∪M̂ ), f ′ = [s, ti]⊗2n−2±[t, si]⊗2n−2,
st 6= 0, s4 6= t4, or f ′ has arity 2n − 2 and f ′

k = (±i)k(2n − 2 − 2k) by Lemma A.14. Note
that we are done if we have a nonzero binary signature that is not λ[1, 0, 1] by Lemma E.7.

Moreover, if we have an arity 4 signature h that is not in M̂ † then we are done by the following
argument: if h ∈ (P ∪Ã ∪M̂ )\M̂ †, then Pl-#CSP2(h, f ′) is #P-hard by Theorem G.4 since

f ′ ∈ M̂ † \ (P ∪ Ã ∪M̂ ); if h /∈ P ∪ Ã ∪M̃ , then Pl-#CSP2(h) is #P-hard by Theorem D.5.

• For f ′ = [s, ti]⊗2n−2 + [t, si]⊗2n−2 with 2n ≡ 0 (mod 4) or f ′ = [s, ti]⊗2n−2 − [t, si]⊗2n−2

with 2n ≡ 2 (mod 4), we have ∂n−1(f) = (s2 + t2)(s2 − t2)n−1[1, 2sti
s2+t2

,−1] 6= λ[1, 0, 1].

• For f ′ = [s, ti]⊗2n−2 + [t, si]⊗2n−2 with 2n ≡ 2 (mod 4), f = x[1, i]⊗2n + y[1,−i]⊗2n +
1

s2−t2
{[s, ti]⊗2n −[t, si]⊗2n} by Proposition A.7 (the Explicit List for

∫
(f ′)). If x = y = 0,

then f ∈ M̂ †. Otherwise, we have

f ′′′ = ∂
n−1

2
=4 (f) = 2

n−1
2 x[1, i]⊗2 + 2

n−1
2 y[1,−i]⊗2 +

(s4 + t4)
n−1

2

s2 − t2
{
[s, ti]⊗2 − [t, si]⊗2

}

= 2
n−1

2 x[1, i]⊗2 + 2
n−1

2 y[1,−i]⊗2 + (s4 + t4)
n−1

2 [1, 0, 1]

Let a = 2
n−1

2 (x + y), b = 2
n−1

2 (x − y)i and c = (s4 + t4)
n−1

2 , then f ′′′ = [c + a, b, c − a].
Note that (a, b) 6= (0, 0). If b 6= 0, it is obvious that f ′′′ 6= λ[1, 0, 1]. If b = 0, then a 6= 0.
Then f ′′′ 6= λ[1, 0, 1] by c + a 6= c − a.

• For the case that f ′ has arity 2n − 2 and f ′
k = (±i)k(2n − 2 − 2k) with 2n ≡ 2 (mod 4),

we have f ′′ = ∂
n−3

2
=4 (f ′) which has arity 4 and f ′′

k = 2
n−3

2 (±i)k(4 − 2k). Moreover, we

have ∂(f ′′) = 2
n+1

2 [1,±i,−1] 6= λ[1, 0, 1]. We remark that it is necessary to use =4 that
many times, since f with two loops by =2 is already identically zero.

• For the case that f ′ has arity 2n − 2 and f ′
k = (±i)k(2n − 2 − 2k) with 2n ≡ 0 (mod 4),

we may consider only the case where the sign ± is +. Indeed under Z =
[

1 1
i −i

]
, for the +

sign f ′ = Z⊗(2n−2)[0, 1, 0, . . . , 0] and for the − sign f ′ = Z⊗(2n−2)[0, . . . , 0, 1, 0], a reversal
under the Z-transformation. If we take a holographic transformation by T =

[
1 0
0 −1

]
, we

have TZ =
[

1 1
−i i

]
= Z [ 0 1

1 0 ], and so (TZ)⊗(2n−2)[0, . . . , 0, 1, 0] = Z⊗(2n−2)[0, 1, 0, . . . , 0].
Meanwhile, EQ2 is invariant under T .
Thus we consider f ′ of arity 2n − 2 where f ′

k = ik(2n − 2 − 2k) with 2n ≡ 0 (mod 4).

Let f̂ ′ = (Z−1)⊗(2n−2)f ′ = [0, 1, 0, . . . , 0] and let f̂ = (Z−1)⊗(2n−2)f . Then we have
(Z−1)⊗(2n−2)(∂(f)) = ∂[0,1,0](f̂) up to a scalar. This implies ∂[0,1,0](f̂) = [0, 1, 0, . . . , 0].

Thus there exist constants x and y such that f̂ = [x, 0, 1, 0, . . . , 0, y]. By the holographic
transformation using Z, we have

Pl-#CSP2(f) ≡ Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂).

We remark that, in Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂), all signatures have even ari-
ties. And all signatures of arity 2m ≡ 2 (mod 4) satisfy odd parity and all signatures
of arity 2m ≡ 0 mod 4 satisfy even parity. Then by the statement of Remark 5, any
binary signature constructed in Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂) can only be of the
form λ[0, 1, 0]. This implies that the binary signature constructed in Pl-#CSP2(f) can
only be of the form λ[1, 0, 1] before the Z-transformation. This forces us to construct
signatures of arity at least 4 to prove hardness.
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In Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . |f̂), note that by 2n ≡ 0 mod 4 we have 2n ≥ 8,

and ĝ = ∂
n−2

2

[1,0,1,0,1](f̂) = [x + n−2
2 · 6, 0, 1, 0, y]. It has arity 4. If (x + n−2

2 · 6)y 6= 1, then

ĝ /∈ M , because symmetric matchgate signatures must form geometric series in alternate
terms. Thus we have Z⊗4(ĝ) /∈ M̂ † in Pl-#CSP2(f, f ′) and we are done.
If (x + n−2

2 · 6)y = 1, then y 6= 0. Firstly, we have an arity 8 signature

ĝ′ = ∂
n−4

2

[1,0,1,0,1](f̂) = [x +
n − 4

2
· 6, 0, 1, 0, 0, 0, 0, 0, y]

(note that n ≥ 4 when 2n ≡ 0 mod 4), and we have ∂2
[0,1,0](ĝ

′) = [1, 0]⊗4 on the right.

So we have [0, 1]⊗4 on the left. Moreover, we have ∂[0,1]⊗4(ĝ′) = y[0, 1]⊗4 on the right.

So we have [1, 0]⊗4 on the left. Then we have ĝ′′ = ∂
n−2

2

[1,0]⊗4(f̂) = [x, 0, 1, 0, 0] on the right.

Note that ĝ′′ /∈ M . Thus we have Z⊗4(ĝ′′) /∈ M̂ † in Pl-#CSP2(f, f ′) and we are done.
• For the last case of Case 5, f ′ = [s, ti]⊗2n−2 − [t, si]⊗2n−2 with 2n ≡ 0 (mod 4), we let

u = s−t
s+t , then u4 6= 0, 1 by Lemma A.3. Let Z =

[
1 1
i −i

]
, then

f̂ ′ = (Z−1)⊗2n−2(f ′)

=
1

22n−2

{
[s + t, s − t]⊗2n−2 − [s + t, t − s]⊗2n−2

}

=
(s + t)2n−2

22n−2

{
[1, u]⊗2n−2 − [1,−u]⊗2n−2

}

= λ[0, u2, 0, u4, . . . , u2n−2, 0],

where λ = (s+t)2n−2

22n−3u
6= 0. Let (Z−1)⊗2nf = f̂ , then (Z−1)⊗2n−2(∂(f)) = ∂[0,1,0](f̂) up

to a scalar. This implies that ∂[0,1,0](f̂) = λ[0, u2, 0, u4, . . . , u2n−2, 0]. Thus there exist

constants x and y such that f̂ = (Z−1)⊗2nf = λ[1 + x, 0, u2, 0, u4, . . . , u2n−2, 0, u2n + y],
where we append the terms 1 and u2n for future convenience. (This can be accommo-

dated by naming different x and y.) If x = y = 0, then f̂ ∈ M and f ∈ M̂ †. In the
following, assume that (x, y) 6= (0, 0). By the holographic transformation using Z, we
have

Pl-#CSP2(f) ≡ Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂).

By the same argument as the previous case, it is impossible to construct a “good” binary
signature in this case. So we have to construct signatures of arity at least 4 to prove
hardness.
We will repeatedly use the following computation in the remainder of this proof: Let
ḡ = ∂[1,0,v,0,v2](g) for some v, then arity(ḡ) = arity(g)−4 and ḡk = gk +6vgk+2 +v2gk+4.

We will complete the proof by constructing some arity 4 signatures ĥ in the setting after
the Z-transformation Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂) that cannot all belong to

M . We note that if ĥ /∈ M then h = Z⊗4ĥ /∈ M̂ †. This will imply Pl-#CSP2(h, f ′) is
#P-hard as noted earlier, thus complete the proof of this Case 5.
In Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂), we have ∂n−2

[0,1,0](f̂) which is a nonzero multiple

of [1, 0, u2, 0, u4]. Then we have [u4, 0, u2, 0, 1] = u4[1, 0, u−2, 0, u−4] on the left. Ignoring
λ 6= 0, we write

f̂ = [1, 0, u2, 0, u4, 0, . . . , 0, u2n] + [x, 0, 0, 0, 0, . . . , 0, y]
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which has arity 2n ≥ 8, and we have

f̂ (4) = ∂
n−4

2

[1,0,u−2,0,u−4]
(f̂)

= 8
n−4

2 [1, 0, u2, 0, u4, 0, u6, 0, u8] + [x, 0, 0, 0, 0, 0, 0, 0, yu−2(n−4) ]

= [x + 8
n−4

2 , 0, 8
n−4

2 u2, 0, 8
n−4

2 u4, 0, 8
n−4

2 u6, 0, 8
n−4

2 u8 + yu−2(n−4)].

Let x′ = x

8
n−4

2
, y′ = yu−2(n−4)

8
n−4

2
, then f̂ (4) = [x′ + 1, 0, u2, 0, u4, 0, u6, 0, u8 + y′] up to the

scalar 8
n−4

2 . Further, we have f̂ (5) = ∂[1,0,u−2,0,u−4](f̂
(4)) = [x′ + 8, 0, 8u2, 0, 8u4 + y′u−4].

If x′ = 0 or y′ = 0, then f̂ (5) /∈ M by (x′ + 8)(8u4 + y′u−4) 6= (8u2)2 and we are done.
So we can assume that x′y′ 6= 0 in the following.
In the following, if we have the signature [1, 0, v, 0, v2 ] with v 6= 0 on the left, then we

have ∂[1,0,v,0,v2](f̂
(4)) = [x′ + c, 0, cu2, 0, y′v2 + cu4], where c = 1 + 6u2v + u4v2. If c = 0,

then we have [x′, 0, 0, 0, y′v2] /∈ M and we are done. So in the following, we always
suppose that c = 1 + 6u2v + u4v2 6= 0. Moreover, if (x′ + c)(y′v2 + cu4) 6= (cu2)2, then
[x′+c, 0, cu2, 0, y′v2+cu4] /∈ M and we are done. So we assume that (x′+c)(y′v2+cu4) =
(cu2)2. This implies that x′ + c 6= 0 and x′y′v2 + (x′u4 + y′v2)c = 0. To summerize, in
the following if we have [1, 0, v, 0, v2 ] with v 6= 0 on the left, then we have

c = 1 + 6u2v + u4v2 6= 0,

x′ + c 6= 0,

x′y′v2 + (x′u4 + y′v2)c = 0.

(H.27)

Firstly, by f̂ (5) = ∂[1,0,u−2,0,u−4](f̂
(4)) = [x′ +8, 0, 8u2, 0, 8u4 +y′u−4] and (H.27), we have

x′ + 8 6= 0,

x′y′u−4 + 8(x′u4 + y′u−4) = 0.
(H.28)

Note that we have [1, 0, 1, 0, 1] on the left, so we have f̂ (6) = ∂[1,0,1,0,1](f̂ (4)) = [x′ +
c1, 0, c1u

2, 0, y′ + c1u
4], where c1 = 1 + 6u2 + u4. Then by (H.27), we have c1 6= 0 and

x′ + c1 6= 0,

x′y′ + (x′u4 + y′)c1 = 0.
(H.29)

By (H.28), (H.29), and x′y′ 6= 0, we have

1 + (
u8

y′ +
1

x′ )8 = 0,

1 + (
u4

y′ +
1

x′ )c1 = 0.

Then we have

1

x′ =
c1 − 8u4

8c1(u4 − 1)
= − 1 + 7u2

8(1 + u2)(1 + 6u2 + u4)
,

1

y′ =
8 − c1

8c1(u8 − u4)
= − 7 + u2

8u4(1 + u2)(1 + 6u2 + u4)
.
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Since x′ 6= 0, we have 1 + 7u2 6= 0.

For f̂ (5), f̂ (6), let v2 = x′+8
8u2 and v3 = x′+c1

c1u2 , then v2 6= 0, v3 6= 0 by x′ + 8 6= 0 and

x′ + c1 6= 0, and f̂ (5) = [1, 0, v−1
2 , 0, v−2

2 ], f̂ (6) = [1, 0, v−1
3 , 0, v−2

3 ] up to the scalars x′ + 8,
x′ + c1 respectively. So we have [1, 0, v2, 0, v

2
2 ], [1, 0, v3, 0, v

2
3 ] on the left. Moreover, let

c2 = 1 + 6u2v2 + u4v2
2 , c3 = 1 + 6u2v3 + u4v2

3 , then we have by (H.27)

x′y′v2
2 + (x′u4 + y′v2

2)c2 = 0,

x′y′v2
3 + (x′u4 + y′v2

3)c3 = 0.
(H.30)

In (H.30), we have

c1 = 1 + 6u2 + u4,

1

x′ =
c1 − 8u4

8c1(u4 − 1)
= − 7u2 + 1

8(u2 + 1)(u4 + 6u2 + 1)
,

1

y′ =
8 − c1

8c1(u8 − u4)
= − u2 + 7

8u4(u2 + 1)(u4 + 6u2 + 1)
,

v2 =
x′ + 8

8u2
=

−7u2 − u4

7u2 + 1
,

c2 = 1 + 6u2v2 + u4v2
2 =

u12 + 14u10 + 7u8 − 300u6 + 7u4 + 14u2 + 1

(7u2 + 1)2
,

v3 =
x′ + c1

c1u2
= − 7 + u2

u2(1 + 7u2)
,

c3 = 1 + 6u2v3 + u4v2
3 =

8u4 − 272u2 + 8

(1 + 7u2)2
.

Note that all of them are functions of u. Thus (H.30) gives two equations of u as
following:

8u4c2
1(1 + u2)2 · p1(u)

(1 + 7u2)4
= 0,

3072u2(1 + u2)2c1 · p2(u)

(1 + 7u2)4
= 0,

(H.31)

where p1(u) = u12 + 14u10 − 49u8 − 700u6 − 49u4 + 14u2 + 1, p2(u) = 7u4 + 2u2 + 7.
Note that q1(u)p1(u) + q2(u)p2(u) = 244224, where q1(u) = −188 − 315u2, q2(u) =
34916 − 9555u2 − 32872u4 − 2058u6 + 644u8 + 45u10, thus gcd(p1(u), p2(u)) = 1. Then
by u4 6= 0, 1, c1 6= 0, the two equations in (H.30) have no common solution in u. This is
a contradiction and we finish the proof.

We hereby finish the proof of Theorem H.5, and hence we complete the proof of the main
theorem of Part II—Theorem A.2 is a straightforward combination of Theorem C.13, Theorem H.5
and Theorem G.4.
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A A †

P

[1, 0]
[0, 1]
[0, 1, 0]

[1, 0]⊗2n+ρ[0, 1]⊗2n

[1, α]
[1, 0]⊗2n+1+α[0, 1]⊗2n+1

[1, ρ]
[1, 0]⊗2n+1 +ρ[0, 1]⊗2n+1

[1, ρ,−ρ2]
[1, ρ]⊗n+2 +ir[1,−ρ]⊗n+2

[1, α,−α2]
[1, α]⊗n+2 +ir[1,−α]⊗n+2

[1, x] with x8 6∈ {0, 1}
[1, 0]⊗2n + x[0, 1]⊗2n with x4 6∈ {0, 1}
[1, 0]⊗2n+1 + x[0, 1]⊗2n+1 with x8 6∈ {0, 1}

Figure 35: A Venn diagram of the #CSP2 tractable sets A , A †, and P. Note that
ρ4 = 1, α4 = −1, and n ≥ 1. Excluded are tensor products of unary signatures.
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M̂ M̂ †

Ã ∪ P

[0, 1, 0]
[1, 0]⊗2n±[0, 1]⊗2n

[1,±i]
[1,±1,−1]

[1, 0]⊗2n+1 ± i[0, 1]⊗2n+1

[1, 1]⊗2n+2± [1,−1]⊗2n+2

[1, 1]⊗2n+1±i[1,−1]⊗2n+1

[1,±1]
[1,±i, 1]

[1, 0]⊗2n+1 ± [0, 1]⊗2n+1

[1, i]⊗2n+2 ± [1,−i]⊗2n+2

[1, i]⊗2n+1 ±i[1,−i]⊗2n+1

[1, x, 1] with x4 6∈ {0, 1}
[1, x]⊗n+2 ± [x, 1]⊗n+2

with x4 6∈ {0, 1}
fk = (±1)k(m − 2k)

with arity(f) = m ≥ 3

[1, x,−1] with x4 6∈ {0, 1}
[1, xi]⊗n+2 ± [x, i]⊗n+2

with x4 6∈ {0, 1}
fk = (±i)k(m − 2k)

with arity(f) = m ≥ 3

[1, 0]
[0, 1]
[1, x] with x4 6∈ {0, 1}
[1, α,−α2]

[1, 0]⊗2n + x[0, 1]⊗2n with x2 6∈ {0, 1}
[1, 0]⊗2n+1 + x[0, 1]⊗2n+1 with x4 6∈ {0, 1}
[1, ρ]⊗2n+1 ± [1,−ρ]⊗2n+1

[1, ρ]⊗2n+2 ± i[1,−ρ]⊗2n+2

[1, α]⊗n+2 + ir[1,−α]⊗n+2

Figure 36: A Venn diagram of the Pl-#CSP2 tractable sets M̂ and M̂ † along with the
set Ã ∪ P of all tractable #CSP2 signatures. Note that ρ4 = 1, α4 = −1, and n ≥ 1.
Excluded are tensor products of unary signatures.
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The Complexity of Counting Edge Colorings
and a Dichotomy for Some Higher Domain Holant Problems

(Extended Abstract)
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Abstract—We show that an effective version of Siegel’s
Theorem on finiteness of integer solutions for a specific
algebraic curve and an application of elementary Galois
theory are key ingredients in a complexity classification of
some Holant problems. These Holant problems, denoted
by Holant(f), are defined by a symmetric ternary function
f that is invariant under any permutation of the κ ≥ 3
domain elements. We prove that Holant(f) exhibits a
complexity dichotomy. The hardness, and thus the di-
chotomy, holds even when restricted to planar graphs.
A special case of this result is that counting edge κ-
colorings is #P-hard over planar 3-regular multigraphs
for all κ ≥ 3. In fact, we prove that counting edge κ-
colorings is #P-hard over planar r-regular multigraphs
for all κ ≥ r ≥ 3. The problem is polynomial-time
computable in all other parameter settings. The proof of
the dichotomy theorem for Holant(f) depends on the fact
that a specific polynomial p(x, y) has an explicitly listed
finite set of integer solutions, and the determination of the
Galois groups of some specific polynomials. In the process,
we also encounter the Tutte polynomial, medial graphs,
Eulerian partitions, Puiseux series, and a certain lattice
condition on the (logarithm of) the roots of polynomials.

Keywords-counting problems; dichotomy theorem;
Holant problems; edge coloring;

I. INTRODUCTION

What do Siegel’s Theorem and Galois theory have to
do with complexity theory? In this paper, we show that
an effective version of Siegel’s Theorem on finiteness
of integer solutions for a specific algebraic curve and
an application of elementary Galois theory are key
ingredients in a chain of steps that lead to a com-
plexity classification of some counting problems. More
specifically, we consider a certain class of counting
problems that are expressible as Holant problems with
an arbitrary domain of size κ over 3-regular multigraphs
(i.e. self-loops and parallel edges are allowed), and
prove a dichotomy theorem for this class of problems.
The hardness, and thus the dichotomy, holds even when

restricted to planar multigraphs. Among other things,
the proof of the dichotomy theorem depends on the
following: (A) the specific polynomial

p(x, y) = x5−2x3y−x2y2−x3+xy2+y3−2x2−xy

has only the integer solutions

(x, y) = (−1, 1), (0, 0), (1,−1), (1, 2), (3, 3),
and (B) the determination of the Galois groups of some
specific polynomials. In the process, we also encounter
the Tutte polynomial, medial graphs, Eulerian partitions,
Puiseux series, and a certain lattice condition on the
(logarithm of) the roots of polynomials such as p(x, y).

A special case of this dichotomy theorem is the
problem of counting edge colorings over planar 3-
regular multigraphs using κ colors. In this case, the cor-
responding constraint function is the ALL-DISTINCT3,κ

function, which takes value 1 when all three inputs from
[κ] are distinct and 0 otherwise. We further prove that
the problem using κ colors over r-regular multigraphs
is #P-hard for all κ ≥ r ≥ 3, even when restricted
to planar multigraphs. The problem is polynomial-time
computable in all other parameter settings. This solves
a long-standing open problem.

We give a brief description of the framework of
Holant problems [20], [18], [15], [17]. The problem
Holant(F), defined by a set of functions F , takes as
input a signature grid Ω = (G, π), where G = (V,E) is
a multigraph, π assigns each v ∈ V a function fv ∈ F ,
and fv maps [κ]deg(v) to C for some integer κ ≥ 2.
An edge κ-labeling σ : E → [κ] gives an evaluation∏

v∈V fv(σ |E(v)), where E(v) denotes the incident
edges of v and σ |E(v) denotes the restriction of σ to
E(v). The counting problem on the instance Ω is to
compute

Holant(Ω,F) =
∑

σ:E→[κ]

∏

v∈V
fv

(
σ |E(v)

)
.
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Counting edge κ-colorings over r-regular multigraphs
amounts to setting fv = ALL-DISTINCTr,κ for all v.
We also use Pl-Holant(F) to denote the restriction of
Holant(F) to planar multigraphs.

Holant problems appear in many areas under a variety
of different names. They are equivalent to counting
Constraint Satisfaction Problems (#CSP) [5], [7] with
the restriction that all variables are read twice,1 to the
contraction of a tensor network [21], [31], and to the
partition function of graphical models in Forney nor-
mal form [32], [35] from artificial intelligence, coding
theory, and signal processing. Special cases of Holant
problems include simulating quantum circuits [42], [36],
counting graph homomorphisms [1], [23], [3], [28],
[9], and evaluating the partition function of the edge-
coloring model [1, Section 3.6].

An edge κ-coloring of a graph G is an edge κ-
labeling of G such that any two incident edges have
different colors. A fundamental problem in graph theory
is to determine how many colors are required to edge
color G. The obvious lower bound is Δ(G), the max-
imum degree of the graph. By Vizing’s Theorem [44],
an edge coloring using just Δ(G) + 1 colors always
exists for simple graphs (i.e. graphs without self-loops
or parallel edges). Whether Δ(G) colors suffice depends
on the graph G.

Consider the edge coloring problem over 3-
regular graphs. It follows from the parity condition
(Lemma IV.4) that any graph containing a bridge does
not have an edge 3-coloring. For bridgeless planar
simple graphs, Tait [41] showed that the existence of
an edge 3-coloring is equivalent to the Four-Color
Theorem. Thus, the answer for the decision problem
over planar 3-regular simple graphs is that there is an
edge 3-coloring iff the graph is bridgeless.

Without the planarity restriction, determining if a 3-
regular (simple) graph has an edge 3-coloring is NP-
complete [30]. This hardness extends to finding an edge
κ-coloring over κ-regular (simple) graphs for all κ ≥
3 [33]. However, these reductions are not parsimonious,
and, in fact, it is claimed that no parsimonious reduction
exists unless P = NP [46, p. 118]. The counting
complexity of this problem has remained open.

We prove that counting edge colorings over planar
regular multigraphs is #P-hard.2

1Without this restriction, #CSPs are a special case of Holant
problems.

2Vizing’s Theorem is for simple graphs. In Holant problems as well
as counting complexity such as graph homomorphism or #CSP, one
typically considers multigraphs (i.e. self-loops and parallel edges are
allowed). However, our hardness result for counting edge 3-colorings
over planar 3-regular multigraphs also holds for simple graphs. See
Theorem 4.9 in [11].

Theorem I.1. #κ-EDGECOLORING is #P-hard over
planar r-regular multigraphs for all κ ≥ r ≥ 3.

See Theorem IV.8 for the proof when κ = r. Theo-
rem 4.20 in [11] considers κ > r.

The techniques we develop to prove Theorem I.1 nat-
urally extend to a class of Holant problems with domain
size κ ≥ 3 over planar 3-regular multigraphs. Functions
such as ALL-DISTINCT3,κ are symmetric, which means
that they are invariant under any permutation of its three
inputs. But ALL-DISTINCT3,κ has another invariance—
it is invariant under any permutation of the κ domain
elements. We call the second property domain invari-
ance.

A ternary function that is both symmetric and domain
invariant is specified by three values, which we denote
by 〈a, b, c〉. The output is a when all inputs are the same,
c when all inputs are distinct, and b when two inputs
are the same but the third input is different.

We prove a dichotomy theorem for such functions
with complex weights.

Theorem I.2. Suppose κ ≥ 3 is the domain size and
a, b, c ∈ C. Then either Holant(〈a, b, c〉) is computable
in polynomial time or Pl-Holant(〈a, b, c〉) is #P-hard.
Furthermore, given a, b, c, there is a polynomial-time
algorithm that decides which is the case.

See Theorem 10.1 in [11] for an explicit listing of the
tractable cases. Note that counting edge κ-colorings
over 3-regular multigraphs is the special case when
〈a, b, c〉 = 〈0, 0, 1〉.

There is only one previous dichotomy theorem for
higher domain Holant problems [19]. The important
difference is that the present work is for general domain
size κ ≥ 3 while the previous result is for domain size
κ = 3. When restricted to domain size 3, the result
in [19] assumes that all unary functions are available,
while this dichotomy does not assume that; however it
does assume domain invariance. Dichotomy theorems
for an arbitrary domain size are generally difficult to
prove. The Feder-Vardi Conjecture for decision Con-
straint Satisfaction Problems (CSP) is still open [27]. It
was a major achievement to prove this conjecture for
domain size 3 [4]. The #CSP dichotomy was proved
after a long series of work [6], [5], [3], [22], [2], [15],
[8], [12], [24], [29], [13], [7].

Our proof of Theorem I.2 has many components, and
a number of new ideas are introduced in this proof. We
discuss some of these ideas and give an outline of our
proof in Section II.
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II. PROOF OUTLINE AND TECHNIQUES

As usual, the difficult part of a dichotomy theorem is
to carve out exactly the tractable problems in the class,
and prove all the rest #P-hard. A dichotomy theorem
for Holant problems has the additional difficulty that
some tractable problems are only shown to be tractable
under a holographic transformation, which can make the
appearance of the problem rather unexpected. For exam-
ple, we show [11] that Holant(〈−3−4i, 1,−1+2i〉) on
domain size 4 is tractable. Despite its appearance, this
problem is intimately connected with a tractable graph
homomorphism problem defined by the Hadamard ma-

trix
[ 1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

]
. In order to understand all problems

in a Holant problem class, we must deal with such
problems. Dichotomy theorems for graph homomor-
phisms and for #CSP do not have to deal with as
varied a class of such problems, since they implicitly
assume all EQUALITY functions are available and must
be preserved. This restricts the possible transformations.

After isolating a set of tractable problems, our #P-
hardness results in both Theorem I.1 and Theorem I.2
are obtained by reducing from evaluations of the Tutte
polynomial over planar graphs. A dichotomy is known
for such problems (Theorem IV.1).

The chromatic polynomial, a specialization of the
Tutte polynomial, is concerned with vertex colorings.
On domain size κ, one starting point of our hardness
proofs is the chromatic polynomial, which contains the
problem of counting vertex colorings using at most κ
colors. By the planar dichotomy for the Tutte polyno-
mial, this problem is #P-hard for all κ ≥ 3.

Another starting point for our hardness reductions
is the evaluation of the Tutte polynomial at an integer
diagonal point (x, x), which is #P-hard for all x ≥ 3 by
the same planar Tutte dichotomy. These are new starting
places for reductions involving Holant problems. These
problems were known to have a so-called state-sum
expression (Lemma IV.3), which is a sum over weighted
Eulerian partitions. This sum is not over the original
planar graph but over its directed medial graph, which
is always a planar 4-regular graph (Figure 1). We show
that this state-sum expression is naturally expressed as a
Holant problem with a particular quaternary constraint
function (Lemma IV.6).

To reduce from these two problems, we execute the
following strategy. First, we attempt to construct the
unary constraint function 〈1〉, which takes value 1 on all
κ inputs. Second, we attempt to interpolate all succinct
binary signatures assuming that we have 〈1〉. (See
Section III for the definition of a succinct signature.)

Lastly, we attempt to construct a ternary signature
with a special property assuming that all these binary
signatures are available. At each step, there are some
problems specified by certain signatures 〈a, b, c〉 for
which our attempts fail. In such cases, we directly obtain
a dichotomy without the help of additional signatures.

Below we highlight some of our proof techniques.

Interpolation within an orthogonal subspace: We
develop the ability to interpolate when faced with some
nontrivial null spaces inherently present in interpolation
constructions. In any construction involving an initial
signature and a recurrence matrix, it is possible that the
initial signature is orthogonal to some row eigenvectors
of the recurrence matrix. Previous interpolation results
always attempt to find a construction that avoids this.
In the present work, this avoidance seems impossible.
We prove an interpolation result that can succeed in
this situation to the greatest extent possible. We prove
that one can interpolate any signature provided that it
is orthogonal to the same set of row eigenvectors, and
the relevant eigenvalues satisfy a lattice condition.

Satisfy lattice condition via Galois theory: A key
requirement for this interpolation to succeed is the
lattice condition (Definition V.1), which involves the
roots of the characteristic polynomial of the recurrence
matrix. We use Galois theory to prove that our construc-
tions satisfy this condition. If a polynomial has a large
Galois group, such as Sn or An, and its roots do not
all have the same complex norm, then we show that its
roots satisfy the lattice condition.

Effective Siegel’s Theorem via Puiseux series: We
need to determine the Galois groups for an infinite
family of polynomials, one for each domain size. If
these polynomials are irreducible, then we can show
they all have the full symmetric group as their Galois
group, and hence fulfill the lattice condition. We suspect
that these polynomials are all irreducible but are unable
to prove it.

A necessary condition for irreducibility is the absence
of any linear factor. This infinite family of polynomials,
as a single bivariate polynomial in (x, κ), defines an
algebraic curve, which has genus 3. By a well-known
theorem of Siegel [39], there are only a finite number
of integer values of κ for which the corresponding
polynomial has a linear factor. However this theorem
and others like it are not effective in general. There are
some effective versions of Siegel’s Theorem that can
be applied to the algebraic curve, but the best general
effective bound is over 1020,000 [45] and hence cannot
be checked in practice. Instead, we use Puiseux series in
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Section V to show that this algebraic curve has exactly
five explicitly listed integer solutions.

Eigenvalue Shifted Triples: For a pair of eigenval-
ues, the lattice condition is equivalent to the statement
that the ratio of these eigenvalues is not a root of
unity. A sufficient condition is that the eigenvalues have
distinct complex norms. We prove three results, each
of which is a different way to satisfy this sufficient
condition. Chief among them is the technique we call
an Eigenvalue Shifted Triple (EST). In an EST, we
have three recurrence matrices, each of which differs
from the other two by a nonzero additive multiple of
the identity matrix. Provided these two multiples are
linearly independent over R, we show at least one of
these matrices has eigenvalues with distinct complex
norms. (However determining which one succeeds is
a difficult task; but we need not know that).

E Pluribus Unum: When the ratio of a pair of
eigenvalues is a root of unity, it is a challenge to ef-
fectively use this failure condition. Direct application of
this cyclotomic condition is often of limited use. We in-
troduce an approach that uses this cyclotomic condition
effectively. A direct recursive construction involving
these two eigenvalues only creates a finite number of
different signatures. We reuse all of these signatures in
a multitude of new interpolation constructions, one of
which we hope will succeed. If the eigenvalues in all of
these constructions also satisfy a cyclotomic condition,
then we obtain a more useful condition than any of the
previous cyclotomic conditions. This idea generalizes
the anti-gadget technique [14], which only reuses the
“last” of these signatures.

Local holographic transformation: One reason to
obtain all succinct binary signatures is for use in the
gadget construction known as a local holographic trans-
formation. This construction mimics the effect of a
holographic transformation applied on a single signa-
ture. In particular, using this construction, we attempt to
obtain a succinct ternary signature of the form 〈a, b, b〉,
where a �= b. This signature turns out to have some
magical properties in the Bobby Fischer gadget, which
we discuss next.

Bobby Fischer gadget: Typically, any combinato-
rial construction for higher domain Holant problems
produces very intimidating looking expressions that are
nearly impossible to analyze. In our case, it seems nec-
essary to consider a construction that has to satisfy mul-
tiple requirements involving at least nine polynomials.
However, we are able to combine the signature 〈a, b, b〉,
where a �= b, with a succinct binary signature of our

choice in a special construction that we call the Bobby
Fischer gadget. This gadget is able to satisfy seven
conditions using just one degree of freedom. This ability
to satisfy a multitude of constraints simultaneously in
one magic stroke reminds us of some unfathomably
brilliant moves by Bobby Fischer, the chess genius
extraordinaire.

III. PRELIMINARIES

In this paper, we investigate some complex-weighted
Holant problems on domain size κ ≥ 3. A constraint
function, or signature, of arity n, maps from [κ]n → C.
For consideration of models of computation, functions
take complex algebraic numbers.

Graphs (called multigraphs in Section I) may have
self-loops and parallel edges. A graph without self-loops
or parallel edges is a simple graph. A signature grid
Ω = (G, π) of Holant(F) consists of a graph G =
(V,E), where π assigns each vertex v ∈ V and its
incident edges with some fv ∈ F and its input variables.
We say Ω is a planar signature grid if G is planar, where
the variables of fv are ordered counterclockwise. The
Holant problem on instance Ω is to evaluate

Holant(Ω;F) =
∑

σ

∏

v∈V
fv(σ |E(v)),

a sum over all edge labelings σ : E → [κ], where E(v)
denotes the incident edges of v and σ |E(v) denotes the
restriction of σ to E(v).

A function fv can be represented by listing its values
in lexicographical order as in a truth table, which is a
vector in Cκdeg(v)

, or as a tensor in (Cκ)⊗ deg(v). In this
paper, we consider symmetric signatures. An example
of a symmetric signature is the EQUALITY signature =r

of arity r. A Holant problem is parametrized by a set
of signatures.

Definition III.1. Given a set of signatures F , we define
the counting problem Holant(F) as:

Input: A signature grid Ω = (G, π);
Output: Holant(Ω;F).

The problem Pl-Holant(F) is defined similarly using a
planar signature grid. Replacing a signature f ∈ F by
a constant multiple cf , where c �= 0, does not change
the complexity of Holant(F). It introduces a global
nonzero factor to Holant(Ω;F). We follow the usual
conventions about polynomial time Turing reduction
≤T .

We say a signature f is realizable or constructible
from a signature set F if there is a gadget with some
dangling edges such that each vertex is assigned a
signature from F , and the resulting graph, when viewed
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as a black-box signature with inputs on the dangling
edges, is exactly f . If f is realizable from a set F ,
then we can freely add f into F while preserving the
complexity.

Formally, such a notion is defined by an F-gate [15],
[16]. An F-gate is similar to a signature grid (G, π) for
Holant(F) except that G = (V,E, D) is a graph with
some dangling edges D. The dangling edges define ex-
ternal variables for the F-gate. (See Figure 3 for an ex-
ample.) We denote the regular edges in E by 1, 2, . . . , m
and the dangling edges in D by m+1, . . . , m+n. Then
we can define a function Γ for this F-gate as

Γ(y1, y2, . . . , yn) =∑

x1,x2,...,xm∈[κ]
H(x1, x2, . . . , xm, y1, y2, . . . , yn),

where (y1, . . . , yn) ∈ [κ]n denotes a labeling on the
dangling edges and H(x1, . . . , xm, y1, . . . , yn) denotes
the value of the signature grid on a labeling of all
edges in G, which is the product of evaluations at all
vertices. We also call this function Γ the signature of
the F-gate. An F-gate is planar if the underlying graph
G is a planar graph, and the dangling edges, ordered
counterclockwise corresponding to the order of the input
variables, are in the outer face in a planar embedding. A
planar F-gate can be used in a planar signature grid as
if it is just a single vertex with the particular signature.

Using the idea of planar F-gates, we can reduce
one planar Holant problem to another. Suppose g is
the signature of some planar F-gate. Then we obtain
Pl-Holant(F ∪ {g}) ≤T Pl-Holant(F), by replacing
every appearance of g by the F-gate. Since the signature
of the F-gate is g, the Holant values for these two
signature grids are identical.

Our main results are about symmetric signatures
(i.e. signatures that are invariant under any permutation
of inputs). However, we also need some asymmetric
signatures in our proofs. When a gadget has an asym-
metric signature, we place a diamond on the edge
corresponding to the first input. The remaining inputs
are ordered counterclockwise around the vertex. (See
Figure 3 for an example.)

An arity r signature on domain size κ is fully
specified by κr values. However, some special cases
can be defined using far fewer values. Consider the
signature ALL-DISTINCTr,κ of arity r on domain size
κ that outputs 1 when all inputs are distinct and 0
otherwise. We also denote this signature by ADr,κ. In
addition to being symmetric, it is also invariant under
any permutation of the κ domain elements. We call the
second property domain invariance. The signature of an

F-gate in which all signatures in F are domain invariant
is itself domain invariant.

Definition III.2 (Succinct signature). Let τ =
(P1, P2, . . . , P�) be a partition of [κ]r listed in some
order. We say that f is a succinct signature of type τ
if f is constant on each Pi. A set F of signatures is
of type τ if every f ∈ F has type τ . We denote a
succinct signature f of type τ by 〈f(P1), . . . , f(P�)〉,
where f(P ) = f(x) for any x ∈ P .

Furthermore, we may omit 0 entries. If f is a succinct
signature of type τ , we also say f is a succinct signature
of type τ ′ with length �′, where τ ′ lists �′ parts of the
partition τ and we write f as 〈f1, f2, . . . , f�′〉, provided
all nonzero values f(Pi) are listed. When using this
notation, we will make it clear which zero entries have
been omitted.

For example, a symmetric signature in the Boolean
domain (i.e. κ = 2) has been denoted in previous
work [10] by [f0, f1, . . . , fr], where fw is the output
on inputs of Hamming weight w. This corresponds to
the succinct signature type (P0, P1, . . . , Pr), where Pw

is the set of inputs of Hamming weight w.
We prove a dichotomy theorem for Pl-Holant(f)

when f is a succinct ternary signature of type τ3 on
domain size κ ≥ 3. For κ ≥ 3, the succinct signature
of type τ3 = (P1, P2, P3) is a partition of [κ]3 with
Pi = {(x, y, z) ∈ [κ]3 : |{x, y, z}| = i} for 1 ≤ i ≤ 3.
The notation {x, y, z} denotes a multiset and |{x, y, z}|
denotes the number of distinct elements in it. Succinct
signatures of type τ3 are exactly the symmetric and
domain invariant ternary signatures. In particular, the
succinct ternary signature for AD3,κ is 〈0, 0, 1〉.
IV. COMPLEXITY OF COUNTING EDGE COLORINGS

Here we prove that counting edge κ-colorings over
planar r-regular graphs is #P-hard provided κ = r ≥ 3.
For the proof when κ > r ≥ 3, see Theorem 4.20
in [11]. We reduce from evaluating the Tutte polynomial
of a planar graph at the positive integer points on the
diagonal x = y. For x ≥ 3, evaluating the Tutte
polynomial of a planar graph at (x, x) is #P-hard.

Theorem IV.1 (Theorem 5.1 in [43]). For x, y ∈ C,
evaluating the Tutte polynomial at (x, y) is #P-hard
over planar graphs unless (x − 1)(y − 1) ∈ {1, 2}
or (x, y) ∈ {(1, 1), (−1,−1), (ω, ω2), (ω2, ω)}, where
ω = e2πi/3. In each exceptional case, the computation
can be done in polynomial time.

To state the connection with the diagonal of the Tutte
polynomial, we need to consider Eulerian subgraphs in
directed medial graphs. We say a graph is an Eulerian
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(a) (b) (c)

Figure 1: A plane graph ((a)), its directed medial graph ((c)), and both superimposed ((b)).

(di)graph if every vertex has even degree (resp. in-
degree equal to out-degree), but connectedness is not
required. Now recall the definition of a medial graph
and its directed variant.

Definition IV.2 (cf. Section 4 in [25]). For a connected
plane graph G (i.e. a planar embedding of a connected
planar graph), its medial graph Gm has a vertex on
each edge of G and two vertices in Gm are joined by
an edge for each face of G in which their corresponding
edges occur consecutively.

The directed medial graph �Gm of G colors the faces
of Gm black or white depending on whether they
contain or do not contain, respectively, a vertex of G.
Then the edges of the medial graph are directed so that
the black face is on the left.

See Figure 1 for an example. Notice that the directed
medial graph is always a planar 4-regular graph. Now
we can give the connection with the diagonal of the
Tutte polynomial. A monochromatic vertex is a vertex
with all its incident edges having the same color.

Lemma IV.3 (Equation (17) in [25]). Suppose G is a
connected plane graph and �Gm is its directed medial
graph. For κ ∈ N, let C(�Gm) be the set of all edge
κ-labelings of �Gm so that each (possibly empty) set of
monochromatic edges forms an Eulerian digraph. Then

κT(G;κ+ 1, κ+ 1) =
∑

c∈C(�Gm)

2m(c), (1)

where m(c) is the number of monochromatic vertices in
the coloring c.

The Eulerian partitions in C(�Gm) have the property
that the subgraphs induced by each partition do not
intersect (or crossover) each other due to the orientation
of the edges in the medial graph. We call the counting
problem defined by the sum on the right-hand side of (1)
as counting weighted Eulerian partitions over planar 4-
regular graphs. This problem also has an expression as
a Holant problem using a succinct signature. To define

this succinct signature, it helps to know the following
basic result about edge colorings.

When the number of available colors coincides with
the regularity parameter of the graph, the cuts in any
coloring satisfy a well-known parity condition. The par-
ity condition we state here follows from a more general
parity argument (see (1.2) and the Parity Argument on
page 95 in [40]).

Lemma IV.4 (Parity Condition). Let G be a κ-regular
graph and consider a cut C in G. For any edge κ-
coloring of G, c1 ≡ c2 ≡ · · · ≡ cκ (mod 2), where ci
is the number of edges in C colored i.

Consider all quaternary {ADκ,κ}-gates on domain
size κ ≥ 3. These gadgets have a succinct signature of
type τcolor = (P 1 1

1 1
, P 1 2

1 2
, P 1 2

2 1
, P 1 1

2 2
, P 1 4

2 3
, P0), where

P 1 1
1 1

= {(w, x, y, z) ∈ [κ]4 | w = x = y = z},
P 1 2

1 2
= {(w, x, y, z) ∈ [κ]4 | w = x �= y = z},

P 1 2
2 1

= {(w, x, y, z) ∈ [κ]4 | w = y �= x = z},
P 1 1

2 2
= {(w, x, y, z) ∈ [κ]4 | w = z �= x = y},

P 1 4
2 3

= {(w, x, y, z) ∈ [κ]4 | w, x, y, z are distinct},
P0 = [κ]4 − P 1 1

1 1
− P 1 2

1 2
− P 1 2

2 1
− P 1 1

2 2
− P 1 4

2 3
.

Any quaternary signature of an {ADκ,κ}-gate is con-
stant on the first five entries of τcolor since ADκ,κ is
domain invariant. Using Lemma IV.4, we can show that
the entry corresponding to P0 is 0.

Lemma IV.5. Suppose κ ≥ 3 is the domain size and
let F be a quaternary {ADκ,κ}-gate with succinct
signature f of type τcolor. Then f(P0) = 0.

By Lemma IV.5, we denote a quaternary signa-
ture f of an {ADκ,κ}-gate by the succinct signature
〈f(P 1 1

1 1
), f(P 1 2

1 2
), f(P 1 2

2 1
), f(P 1 1

2 2
), f(P 1 4

2 3
)〉 of type

τcolor, which has the entry for P0 omitted. When κ = 3,
P 1 4

2 3
is empty and we define its entry in the succinct

signature to be 0.
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Ns

Ns+1

Figure 2: Recursive construction to interpolate 〈2, 1, 0, 1, 0〉. Vertices assigned the signature of the gadget in Figure 3.

Lemma IV.6. Let G be a connected plane graph and
let Gm be the medial graph of G. Then

κT(G;κ+ 1, κ+ 1) = Pl-Holant(Gm; 〈2, 1, 0, 1, 0〉),
where the Holant problem has domain size κ and
〈2, 1, 0, 1, 0〉 is a succinct signature of type τcolor.

Proof: Let f = 〈2, 1, 0, 1, 0〉. By Lemma IV.3, we
only need to prove that

∑

c∈C(�Gm)

2m(c) = Pl-Holant(Gm; f), (2)

where the notation is from Lemma IV.3.
Each c ∈ C(�Gm) is also an edge κ-labeling of Gm.

At each vertex v ∈ V (�Gm), the four incident edges are
assigned at most two distinct colors by c. If all four
edges are assigned the same color, then the constraint f
on v contributes a factor of 2 to the total weight. This
is given by the value in the first entry of f . Otherwise,
there are two different colors, say x and y. Because the
orientation at v in �Gm is cyclically “in, out, in, out”,
the coloring around v can only be of the form xxyy or
xyyx. These correspond to the second and fourth entries
of f . Therefore, every term in the summation on the
left-hand side of (2) appears (with the same nonzero
weight) in the summation Pl-Holant(Gm; f).

It is also easy to see that every nonzero term in
Pl-Holant(Gm; f) appears in the sum on the left-hand
side of (2) with the same weight of 2 to the power of the
number of monochromatic vertices. In particular, any
coloring with a vertex that is cyclically colored xyxy
for different colors x and y does not contribute because
f(P 1 2

2 1
) = 0.

By Theorem IV.1 and Lemma IV.6, the problem
Pl-Holant(〈2, 1, 0, 1, 0〉) is #P-hard.

Corollary IV.7. Suppose κ ≥ 3 is the domain size. Let
〈2, 1, 0, 1, 0〉 be a succinct quaternary signature of type
τcolor. Then Pl-Holant(〈2, 1, 0, 1, 0〉) is #P-hard.

With this connection established, we can now show
that counting edge colorings is #P-hard over planar
regular graphs when the number of colors and the
regularity parameter coincide.

Figure 3: Quaternary gadget f used in the interpolation
construction below. All vertices are assigned ADκ,κ.
The bold edge represents κ− 2 parallel edges.

Theorem IV.8. #κ-EDGECOLORING is #P-hard over
planar κ-regular graphs for all κ ≥ 3.

Proof: Let κ be the domain size of all Holant
problems in this proof and let 〈2, 1, 0, 1, 0〉 be a succinct
quaternary signature of type τcolor. We reduce from
Pl-Holant(〈2, 1, 0, 1, 0〉) to Pl-Holant(ADκ,κ), which
denotes the problem of counting edge κ-colorings in
planar κ-regular graphs as a Holant problem. Then by
Corollary IV.7, we conclude that Pl-Holant(ADκ,κ) is
#P-hard.

Consider the gadget in Figure 3, where the bold edge
represents κ−2 parallel edges. We assign ADκ,κ to both
vertices. Up to a nonzero factor of (κ− 2)!, this gadget
has the succinct quaternary signature f = 〈0, 1, 1, 0, 0〉
of type τcolor. Consider the recursive construction in
Figure 2. All vertices are assigned the signature f . Let
fs be the succinct quaternary signature of type τcolor
for the sth gadget of the recursive construction. Then
f1 = f and fs = Msf0, where

M =

[
0 κ−1 0 0 0
1 κ−2 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

]
and f0 =

[
1
0
0
1
0

]
.

The signature f0 is simply the succinct quaternary
signature of type τcolor for two parallel edges. We can
express M via the Jordan decomposition M = PΛP−1,
where

P =

[
1 1−κ 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 −1 0
0 0 0 0 1

]

and Λ = diag(κ−1,−1, 1,−1, 1). Then for t = 2s, we
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have

ft = P

[
κ−1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

]t

P−1

[
1
0
0
1
0

]

= P

[
x 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
P−1

[
1
0
0
1
0

]
=

[
y+1
y
0
1
0

]
,

where x = (κ− 1)t and y = x−1
κ .

Consider an instance Ω of Pl-Holant(〈2, 1, 0, 1, 0〉)
on domain size κ. Suppose 〈2, 1, 0, 1, 0〉 appears n times
in Ω. We construct from Ω a sequence of instances Ωt

of Pl-Holant(f) indexed by t, where t = 2s with s ≥ 0.
We obtain Ωt from Ω by replacing each occurrence of
〈2, 1, 0, 1, 0〉 with the gadget ft.

As a polynomial in x = (κ − 1)t, Pl-Holant(Ωt; f)
is independent of t and has degree at most n with
integer coefficients. Using our oracle for Pl-Holant(f),
we can evaluate this polynomial at n+1 distinct points
x = (κ − 1)2s for 0 ≤ s ≤ n. Then via polynomial
interpolation, we can recover the coefficients of this
polynomial efficiently. Evaluating this polynomial at
x = κ + 1 (so that y = 1) gives the value of
Pl-Holant(Ω; 〈2, 1, 0, 1, 0〉), as desired.

V. DOSE OF AN EFFECTIVE SIEGEL’S THEOREM

We jump into the middle of our proof for Theo-
rem I.2. Consider the polynomial p(x, y) ∈ Z[x, y]
defined by

p(x, y) = x5−(2y+1)x3−(y2+2)x2+y(y−1)x+y3.

We consider y = κ + 1 as an integer parameter
y ≥ 4, and treat p(x, y) as an infinite family of quintic
polynomials in x with integer coefficients. We want to
show that the roots of all these quintic polynomials
satisfy the lattice condition. (For κ ∈ {3, 4}, we need
alternative proofs.)

Definition V.1. Fix some � ∈ N. We say that
λ1, λ2, . . . , λ� ∈ C − {0} satisfy the lattice condition
if for all x ∈ Z� − {0} with

∑�
i=1 xi = 0, we have

�∏

i=1

λxi
i �= 1.

We suspect that for any integer y ≥ 4, p(x, y) is in
fact irreducible over Q as a polynomial in x. We can
show that this is a sufficient condition for the roots of
p(x, y) to satisfy the lattice condition for any integer
y ≥ 4. When considering y as an indeterminate, the
bivariate polynomial p(x, y) is irreducible over Q and
the algebraic curve defined by it has genus 3, so by

Theorem 1.2 in [37], p(x, y) is reducible over Q for at
most a finite number of y ∈ Z.

We know of just five values of y ∈ Z for which
p(x, y) is reducible as a polynomial in x:

p(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(x− 1)(x4 + x3 + 2x2 − x+ 1) y = −1
x2(x3 − x− 2) y = 0

(x+ 1)(x4 − x3 − 2x2 − x+ 1) y = 1

(x− 1)(x2 − x− 4)(x2 + 2x+ 2) y = 2

(x− 3)(x4 + 3x3 + 2x2 − 5x− 9) y = 3.

These five factorizations also give five integer solutions
to p(x, y) = 0. It is a well-known theorem of Siegel [39]
that an algebraic curve of genus at least 1 has only
a finite number of integral points. For this curve of
genus 3, Faltings’ Theorem [26] says that there can
be only a finite number of rational points. However
these theorems are not effective in general. There are
some effective versions of Siegel’s Theorem that can be
applied to our polynomial, but the best effective bound
that we can find is over 1020,000 [45] and hence cannot
be checked in practice.

However, it is shown in the next lemma that in fact
these five are the only integer solutions. In particular,
for any integer y ≥ 4, p(x, y) does not have a linear
factor in Z[x]. The following proof is based on a key
auxiliary function g2(x, y) = y2

x + y − x2 + 1 due to
Aaron Levin [34]. We thank Aaron and also thank Bjorn
Poonen [38] who suggested a similar proof.

Lemma V.2. The only integer solutions to p(x, y) = 0
are (1,−1), (0, 0), (−1, 1), (1, 2), and (3, 3).

Proof sketch: Clearly these five points are solu-
tions to p(x, y) = 0. Let (a, b) ∈ Z2 be a solution to
p(x, y) = 0 with a �= 0. We claim a | b2. By definition
of p(x, y), clearly a | b3. If p is a prime that divides
a, then let ordp(a) = e and ordp(b) = f be the exact
orders with which p divides a and b respectively. Then
f ≥ 1 since 3f ≥ e and our claim is that 2f ≥ e. Sup-
pose for a contradiction that 2f < e. From p(a, b) = 0,
we have a2(a3 − 2ab− a− b2 − 2) = −b3 − ab(b− 1).
The order with respect to p of the left-hand side is
ordp

(
a2(a3 − 2ab− a− b2 − 2)

)
≥ ordp

(
a2

)
= 2e.

Since p is relatively prime to b− 1, ordp (ab(b− 1)) =
e + f > 3f , and therefore the order of the right-hand
side with respect to p is ordp

(
−b3 − ab(b− 1)

)
=

ordp(b
3) = 3f. However, 2e > 3f , a contradiction.

This proves the claim.
Now consider the functions g1(x, y) = y − x2 and

g2(x, y) = y2

x + y − x2 + 1. Whenever (a, b) ∈ Z2 is a
solution to p(x, y) = 0 with a �= 0, g1(a, b) and g2(a, b)
are integers. We compute the Puiseux series expansions
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y1(x) for x ∈ R, y2(x) for x > 0, and y3(x) for x > 0,
where

y1(x) = x2 + 2x−1 + 2x−2 − 6x−4 − 18x−5 +O(x−6),

y2(x) = x3/2 − 1

2
x+

1

8
x1/2 − 65

128
x−1/2 − x−1

− 1471

1024
x−3/2 − x−2 +O(x−5/2), and

y3(x) = − x3/2 − 1

2
x− 1

8
x1/2 +

65

128
x−1/2 − x−1

+
1471

1024
x−3/2 − x−2 +O(x−5/2),

to obtain asymptotic approximations to the roots of
these polynomials with y expanded as a Puiseux series
of x. These series converge to the actual roots of p(x, y)
for large x. The basic idea of the proof—called Runge’s
method—is that, for example, when we substitute y2(x)
in g2(x, y), we get g2(x, y2(x)) = O(x−1/2), where
the multiplier in the O-notation is bounded both above
and below by a nonzero constant in absolute value.
Thus for large x, this cannot be an integer. However,
for integer solutions (x, y) of p(x, y), this must be an
integer. We prove that |x| > 16 suffices to show this for
each asymptotic approximation. For |x| ≤ 16, one can
directly check that there are no other integer solutions.
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Abstract

We show that an effective version of Siegel’s theorem on finiteness of integer solutions
for a specific algebraic curve and an application of elementary Galois theory are key
ingredients in a complexity classification of some Holant problems. These Holant
problems, denoted by Holant(f ), are defined by a symmetric ternary function f that is
invariant under any permutation of the κ ≥ 3 domain elements. We prove that
Holant(f ) exhibits a complexity dichotomy. The hardness, and thus the dichotomy,
holds even when restricted to planar multigraphs. A special case of this result is that
counting edge κ-colorings is #P-hard over planar 3-regular multigraphs for all κ ≥ 3. In
fact, we prove that counting edge κ-colorings is #P-hard over planar r-regular
multigraphs for all κ ≥ r ≥ 3. The problem is polynomial time computable in all other
parameter settings. The proof of the dichotomy theorem for Holant(f ) depends on the
fact that a specific polynomial p(x, y) has an explicitly listed finite set of integer solutions
and the determination of the Galois groups of some specific polynomials. In the
process, we also encounter the Tutte polynomial, medial graphs, Eulerian partitions,
Puiseux series, and a certain lattice condition on the (logarithm of) the roots of
polynomials.

1 Introduction
What do Siegel’s theorem and Galois theory have to do with complexity theory? In
this paper, we show that an effective version of Siegel’s theorem on finiteness of inte-
ger solutions for a specific algebraic curve and an application of elementary Galois
theory are key ingredients in a chain of steps that lead to a complexity classification
of some counting problems. More specifically, we consider a certain class of count-
ing problems that are expressible as Holant problems with an arbitrary domain of
size κ over 3-regular multigraphs (i.e., self-loops and parallel edges are allowed) and
prove a dichotomy theorem for this class of problems. The hardness, and thus the
dichotomy, holds even when restricted to planar multigraphs. Among other things, the
proof of the dichotomy theorem depends on the following: (A) the specific polynomial
p(x, y) = x5 − 2x3y − x2y2 − x3 + xy2 + y3 − 2x2 − xy has only the integer solutions
(x, y) = (−1, 1), (0, 0), (1,−1), (1, 2), (3, 3), and (B) the determination of the Galois groups
of some specific polynomials. In the process, we also encounter the Tutte polynomial,

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.
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medial graphs, Eulerian partitions, Puiseux series, and a certain lattice condition on the
(logarithm of) the roots of polynomials such as p(x, y).
A special case of this dichotomy theorem is the problem of counting edge colorings over

planar 3-regular multigraphs using κ colors. In this case, the corresponding constraint
function is the All-Distinct3,κ function, which takes value 1 when all three inputs from
[κ] are distinct and 0 otherwise. We further prove that the problem using κ colors over
r-regular multigraphs is #P-hard for all κ ≥ r ≥ 3, even when restricted to planar multi-
graphs. The problem is polynomial time computable in all other parameter settings. This
solves a long-standing open problem.
We give a brief description of the framework of Holant problems [18,20,21,23]. The

problem Holant(F ), defined by a set of functions F , takes as input a signature grid � =
(G,π ), where G = (V, E) is a multigraph, π assigns each v ∈ V a function fv ∈ F , and
fv maps [κ]deg(v) to C for some integer κ ≥ 2. An edge κ-labeling σ : E → [κ] gives an
evaluation

∏
v∈V fv(σ |E(v)), where E(v) denotes the incident edges of v and σ |E(v) denotes

the restriction of σ to E(v). The counting problem on the instance � is to compute

Holant(�,F ) =
∑

σ :E→[κ]

∏

v∈V
fv
(
σ |E(v)

)
.

Counting edge κ-colorings over r-regular multigraphs amounts to setting fv =
All-Distinctr,κ for all v.We also use Pl-Holant(F ) to denote the restriction of Holant(F )
to planar multigraphs.
Holant problems appear in many areas under a variety of different names. They are

equivalent to counting constraint satisfaction problems (#CSPs) [7,9] with the restriction
that all variables are read twice,1 to the contraction of a tensor network [25,41], and to the
partition function of graphical models in Forney normal form [42,47] from artificial intel-
ligence, coding theory, and signal processing. Special cases of Holant problems include
simulating quantumcircuits [48,56], counting graphhomomorphisms [2,5,12,27,34], and
evaluating the partition function of the edge-coloring model [2, Section 3.6].
An edge κ-coloring of a graph G is an edge κ-labeling of G such that any two incident

edges have different colors. A fundamental problem in graph theory is to determine how
many colors are required to edge colorG. The obvious lower bound is�(G), themaximum
degree of the graph. By Vizing’s theorem [60], an edge coloring using just�(G)+ 1 colors
always exists for simple graphs (i.e., graphs without self-loops or parallel edges). Whether
�(G) colors suffice depends on the graph G.
Consider the edge-coloring problem over 3-regular graphs. It follows from the parity

condition (Lemma 4.4) that any graph containing a bridge does not have an edge 3-
coloring. For bridgeless planar simple graphs, Tait [55] showed that the existence of an
edge 3-coloring is equivalent to the four-color theorem. Thus, the answer for the decision
problem over planar 3-regular simple graphs is that there is an edge 3-coloring iff the
graph is bridgeless.
Without the planarity restriction, determining whether a 3-regular (simple) graph

has an edge 3-coloring is NP-complete [39]. This hardness extends to finding an edge
κ-coloring over κ-regular (simple) graphs for all κ ≥ 3 [45]. However, these reductions
are not parsimonious, and, in fact, it is claimed that no parsimonious reduction exists

1 Without this restriction, #CSPs are a special case of Holant problems.
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unless P = NP [62, p. 118]. The counting complexity of this problem has remained
open.
We prove that counting edge colorings over planar regular multigraphs is #P-hard.2

Theorem 1.1 #κ-EdgeColoring is #P-hard over planar r-regular multigraphs if κ ≥
r ≥ 3.

This theorem is proved in Theorem 4.8 for κ = r and Theorem 4.20 for κ > r.
The techniques we develop to prove Theorem 1.1 naturally extend to a class of Holant

problems with domain size κ ≥ 3 over planar 3-regular multigraphs. Functions such
as All-Distinct3,κ are symmetric, which means that they are invariant under any per-
mutation of its three inputs. But All-Distinct3,κ has another invariance—it is invariant
under any permutation of the κ domain elements. We call the second property domain
invariance.
A ternary function that is both symmetric and domain invariant is specified by three

values, which we denote by 〈a, b, c〉. The output is a when all inputs are the same, the
output is c when all inputs are distinct, and the output is b when two inputs are the same
but the third input is different.
We prove a dichotomy theorem for such functions with complex weights.

Theorem 1.2 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Then either
Holant(〈a, b, c〉) is computable in polynomial time or Pl-Holant(〈a, b, c〉) is #P-hard. Fur-
thermore, given a, b, c, there is a polynomial-time algorithm that decides which is the
case.

See Theorem 10.1 for an explicit listing of the tractable cases. Note that counting edge
κ-colorings over 3-regular multigraphs is the special case when 〈a, b, c〉 = 〈0, 0, 1〉.
There is only one previous dichotomy theorem for higher domain Holant prob-

lems [22] (see Theorem 5.1). The important difference is that the present work is
for general domain size κ ≥ 3, while the previous result is for domain size κ = 3.
When restricted to domain size 3, the result in [22] assumes that all unary functions
are available, while this dichotomy does not assume that; however, it does assume
domain invariance. Dichotomy theorems for an arbitrary domain size are generally dif-
ficult to prove. The Feder-Vardi conjecture for decision constraint satisfaction prob-
lems (CSPs) is still open [32]. It was a major achievement to prove this conjecture for
domain size 3 [6]. The #CSP dichotomy was proved after a long series of papers [4,5,7–
9,11,15,16,24,26,28,35].
Our proof of Theorem 1.2 has many components, and a number of new ideas are

introduced in this proof. We discuss some of these ideas and give an outline of our proof
in Sect. 2. In Sect. 3, we review basic terminology and define the notation of a succinct
signature. Section 4 contains our proof of Theorem 1.1 about edge coloring. In Sect. 5, we
discuss the tractable cases of Theorem 1.2. In Sect. 6, we extend ourmain proof technique
of polynomial interpolation. Then in Sects. 7, 8, and 9, we develop our hardness proof and
tie everything together in Sect. 10.

2 Vizing’s theorem is for simple graphs. InHolant problemsaswell as counting complexity suchas graphhomomorphism
or #CSP, one typically considers multigraphs (i.e., self-loops and parallel edges are allowed). However, our hardness
result for counting edge 3-colorings over planar 3-regular multigraphs also holds for simple graphs (Theorem 4.9).
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2 Proof outline and techniques
Asusual, thedifficult part of adichotomy theorem is to carveout exactly the tractableprob-
lems in the class and prove all the rest #P-hard. A dichotomy theorem forHolant problems
has the additional difficulty that some tractable problems are only shown to be tractable
under aholographic transformation,which canmake the appearanceof theproblemrather
unexpected. For example, we show in Sect. 5 that the problemHolant(〈−3−4i, 1,−1+2i〉)
on domain size 4 is tractable. Despite its appearance, this problem is intimately con-
nected with a tractable graph homomorphism problem defined by the Hadamard matrix[

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

]

. In order to understand all problems in a Holant problem class, we

must deal with such problems. Dichotomy theorems for graph homomorphisms and for
#CSP do not have to deal with as varied a class of such problems, since they implicitly
assume all Equality functions are available and must be preserved. This restricts the
possible transformations.
After isolating a set of tractable problems, our #P-hardness results in both Theorem 1.1

and Theorem 1.2 are obtained by reducing from evaluations of the Tutte polynomial over
planar graphs. A dichotomy is known for such problems (Theorem 4.1).
The chromatic polynomial, a specialization of the Tutte polynomial (Proposition 4.10),

is concerned with vertex colorings. On domain size κ , one starting point of our hard-
ness proofs is the chromatic polynomial, which contains the problem of counting vertex
colorings using at most κ colors. By the planar dichotomy for the Tutte polynomial, this
problem is #P-hard for all κ ≥ 3.
Another starting point for our hardness reductions is the evaluation of the Tutte poly-

nomial at an integer diagonal point (x, x), which is #P-hard for all x ≥ 3 by the same planar
Tutte dichotomy. These are new starting places for reductions involvingHolant problems.
These problemswere known to have a so-called state-sum expression (Lemma 4.3), which
is a sum over weighted Eulerian partitions. This sum is not over the original planar graph
but over its directed medial graph, which is always a planar 4-regular graph (Fig. 4). We
show that this state-sum expression is naturally expressed as a Holant problem with a
particular quaternary constraint function (Lemma 4.6).
To reduce from these two problems, we execute the following strategy. First, we attempt

to construct the unary constraint function 〈1〉, which takes value 1 on all κ inputs
(Lemma 8.1). Second, we attempt to interpolate all succinct binary signatures, assum-
ing that we have 〈1〉 (Sect. 9). (See Sect. 3 for the definition of a succinct signature.) Lastly,
we attempt to construct a ternary signaturewith a special property, assuming that all these
binary signatures are available (Lemma 7.1). At each step, there are some problems spec-
ified by certain signatures 〈a, b, c〉 for which our attempts fail. In such cases, we directly
obtain a dichotomy without the help of additional signatures. See Fig. 1 for a flowchart of
hardness reductions.
Below we highlight some of our proof techniques.

Interpolation within an orthogonal subspace We develop the ability to interpolate
when faced with some nontrivial null spaces inherently present in interpolation construc-
tions. In any construction involving an initial signature and a recurrence matrix, it is
possible that the initial signature is orthogonal to some row eigenvectors of the recur-
rence matrix. Previous interpolation results always attempt to find a construction that
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Pl-Holant(〈a, b, c〉)

Attempts 1 and 2
Lemma 8.1

Attempt 1
Lemma 9.4

Attempt 2
Cases 1, 2, 3, 4, 5

Lemmas 9.5, 9.6, 9.7, 9.11, 9.12

Attempts 3 and 4
All Cases
Lemma B.1

Attempt 1
Lemma 7.1

Bobby Fischer Gadget
Lemma 4.18

Counting Vertex κ-Colorings
Corollary 4.19

Fail

Interpolate
all 〈x, y〉

Corollary 9.13

Construct 〈1〉

Construct 〈a, b, b〉
with a �= b

Corollary 8.4

Lemma 8.2

Lemma 8.3

Construct
〈3(κ−1), κ−3, −3〉

Lemma 7.3

Counting
Weighted
Eulerian
Partitions

Corollary 7.13

Lemmas 7.14
and 7.15

Succeed

Succeed

Succeed

Fail
B = 0

Fail
A = 0

Fig. 1 Flowchart of hardness reductions in our proof of Theorem 1.2 going back to our two starting points of
hardness

avoids this. In the present work, this avoidance seems impossible. In Sect. 6, we prove an
interpolation result that can succeed in this situation to the greatest extent possible. We
prove that one can interpolate any signature, provided that it is orthogonal to the same set
of row eigenvectors, and the relevant eigenvalues satisfy a lattice condition (Lemma 6.6).

Satisfy lattice condition via Galois theory A key requirement for this interpolation
to succeed is the lattice condition (Definition 6.3), which involves the roots of the char-
acteristic polynomial of the recurrence matrix. We use Galois theory to prove that our
constructions satisfy this condition. If a polynomial has a large Galois group, such as Sn
or An, and its roots do not all have the same complex norm, then we show that its roots
satisfy the lattice condition (Lemma 6.5).

Effective Siegel’s theorem via Puiseux series We need to determine the Galois groups
for an infinite family of polynomials, one for each domain size. If these polynomials are
irreducible, then we can show they all have the full symmetric group as their Galois group
andhence fulfill the lattice condition.We suspect that these polynomials are all irreducible
but are unable to prove it.
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A necessary condition for irreducibility is the absence of any linear factor. This infinite
family of polynomials, as a single bivariate polynomial in (x, κ), defines an algebraic curve,
which has genus 3. By a well-known theorem of Siegel [52], there are only a finite number
of integer values of κ forwhich the corresponding polynomial has a linear factor. However,
this theoremandothers like it are not effective in general. There are some effective versions
of Siegel’s theorem that can be applied to the algebraic curve, but the best general effective
bound is over 1020,000 [61] and hence cannot be checked in practice. Instead, we use
Puiseux series to show that this algebraic curve has exactly five explicitly listed integer
solutions (Lemma 7.6).

Eigenvalue shifted triples For a pair of eigenvalues, the lattice condition is equivalent
to the statement that the ratio of these eigenvalues is not a root of unity. A sufficient
condition is that the eigenvalues have distinct complex norms. We prove three results,
each of which is a different way to satisfy this sufficient condition. Chief among them is
the technique we call an Eigenvalue Shifted Triple (EST). These generalize the technique
of Eigenvalue Shifted Pairs from [43]. In an EST, we have three recurrence matrices, each
of which differs from the other two by a nonzero additive multiple of the identity matrix.
Provided these two multiples are linearly independent over R, we show at least one of
these matrices has eigenvalues with distinct complex norms (Lemma 9.10). (However,
determining which one succeeds is a difficult task, but we need not know that).

EPluribusUnum When the ratio of a pair of eigenvalues is a root of unity, it is a challenge
to effectively use this failure condition. Direct application of this cyclotomic condition
is often of limited use. We introduce an approach that uses this cyclotomic condition
effectively. A direct recursive construction involving these two eigenvalues only creates
a finite number of different signatures. We reuse all of these signatures in a multitude
of new interpolation constructions (Lemma 9.3), one of which we hope will succeed. If
the eigenvalues in all of these constructions also satisfy a cyclotomic condition, then we
obtain a more useful condition than any of the previous cyclotomic conditions. This idea
generalizes the anti-gadget technique [17], which only reuses the “last” of these signatures.

Local holographic transformation One reason to obtain all succinct binary signatures
is for use in the gadget construction known as a local holographic transformation (Fig. 11).
This construction mimics the effect of a holographic transformation applied on a single
signature. In particular, using this construction, we attempt to obtain a succinct ternary
signature of the form 〈a, b, b〉, where a �= b (Lemma 7.1). This signature turns out to have
some magical properties in the Bobby Fischer gadget, which we discuss next.

Bobby Fischer gadget Typically, any combinatorial construction for higher domain
Holant problems produces very intimidating looking expressions that are nearly impos-
sible to analyze. In our case, it seems necessary to consider a construction that has to
satisfy multiple requirements involving at least nine polynomials. However, we are able
to combine the signature 〈a, b, b〉, where a �= b, with a succinct binary signature of our
choice in a special construction that we call the Bobby Fischer gadget (Fig. 9). This gadget
is able to satisfy seven conditions using just one degree of freedom (Lemma 4.18). This
ability to satisfy a multitude of constraints simultaneously in one magic stroke reminds us
of some unfathomably brilliant moves by Bobby Fischer, the chess genius extraordinaire.
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3 Preliminaries
3.1 Problems and definitions

The framework of Holant problems is defined for functions mapping any [κ]n → R for a
finite κ and some commutative semiring R. In this paper, we investigate some complex-
weighted Holant problems on domain size κ ≥ 3. A constraint function, or signature, of
arity nmaps from [κ]n → C. For consideration of models of computation, functions take
complex algebraic numbers.
Graphs (called multigraphs in Sect. 1) may have self-loops and parallel edges. A graph

without self-loops or parallel edges is a simple graph. A signature grid � = (G,π ) of
Holant(F ) consists of a graph G = (V, E), where π assigns to each vertex v ∈ V and its
incident edges some fv ∈ F and its input variables. We say � is a planar signature grid if
G is planar, where the variables of fv are ordered counterclockwise. The Holant problem
on instance � is to evaluate Holant(�;F ) = ∑

σ

∏
v∈V fv(σ |E(v)), a sum over all edge

assignments σ : E → [κ], where E(v) denotes the incident edges of v and σ |E(v) denotes
the restriction of σ to E(v).
A function fv can be represented by listing its values in lexicographical order as in a

truth table, which is a vector in Cκdeg(v) , or as a tensor in (Cκ )⊗ deg(v). In this paper, we
consider symmetric signatures. An example of which is the Equality signature =r of
arity r. Sometimes we represent f as a matrixMf that we call its signature matrix, which
has row index (x1, . . . , xt ) and column index (xk , . . . , xt+1) (in reverse order) for some t
that will be clear from context.
A Holant problem is parametrized by a set of signatures.

Definition 3.1 Given a set of signatures F , we define the counting problem Holant(F )
as:

Input: A signature grid � = (G,π );
Output: Holant(�;F ).

The problem Pl-Holant(F ) is defined similarly using a planar signature grid.
A signature f of arity n is degenerate if there exist unary signatures uj ∈ Cκ (1 ≤ j ≤ n)

such that f = u1⊗· · ·⊗un. A symmetric degenerate signature has the form u⊗n. For such
signatures, it is equivalent to replace it by n copies of the corresponding unary signature.
Replacing a signature f ∈ F by a constant multiple cf , where c �= 0, does not change the
complexity of Holant(F ). It introduces a global nonzero factor to Holant(�;F ).
We allow F to be an infinite set. For Holant(F ) to be tractable, the problem must be

computable in polynomial time even when the description of the signatures in the input�
is included in the input size. In contrast, we say Holant(F ) is #P-hard if there exists a finite
subset ofF forwhich the problem is #P-hard. The samedefinitions apply for Pl-Holant(F )
when � is a planar signature grid. We say a signature set F is tractable (resp. #P-hard)
if the corresponding counting problem Holant(F ) is tractable (resp. #P-hard). We say F
is tractable (resp. #P-hard) for planar problems if Pl-Holant(F ) tractable (resp. #P-hard).
Similarly for a signature f , we say f is tractable (resp. #P-hard) if {f } is.
We follow the usual conventions about polynomial-time Turing reduction ≤T and

polynomial-time Turing equivalence ≡T . We use In and Jn to denote the n-by-n identity
matrix and n-by-nmatrix of all 1’s, respectively.
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3.2 Holographic reduction

To introduce the idea of holographic reductions, it is convenient to consider bipartite
graphs. For a general graph, we can always transform it into a bipartite graph while
preserving the Holant value, as follows. For each edge in the graph, we replace it by a path
of length two. (This operation is called the 2-stretch of the graph and yields the edge-vertex
incidence graph.) Each new vertex is assigned the binary Equality signature =2.
We use Holant(F | G) to denote the Holant problem on bipartite graphsH = (U,V, E),

where each vertex in U or V is assigned a signature in F or G, respectively. Signatures in
F are considered as row vectors (or covariant tensors); signatures in G are considered as
column vectors (or contravariant tensors) [25]. Similarly, Pl-Holant(F | G) denotes the
Holant problem over signature grids with a planar bipartite graph.
For a κ-by-κ matrix T and a signature set F , define TF = {g | ∃f ∈ F of arity

n, g = T⊗nf }, similarly for FT . Whenever we write T⊗nf or TF , we view the signatures
as column vectors, similarly for fT⊗n or FT as row vectors.
Let T be an invertible κ-by-κ matrix. The holographic transformation defined by T is

the following operation: given a signature grid � = (H,π ) of Holant(F | G), for the same
bipartite graphH , we get a new grid�′ = (H,π ′) of Holant(FT | T−1G) by replacing each
signature in F or G with the corresponding signature in FT or T−1G. Valiant’s Holant
Theorem [57] (see also [13]) is easily generalized to domain size κ ≥ 3.

Theorem 3.2 Suppose κ ≥ 3 is the domain size. If T ∈ Cκ×κ is an invertible matrix, then
Holant(�;F | G) = Holant(�′;FT | T−1G).

Therefore, an invertible holographic transformation does not change the complexity
of the Holant problem in the bipartite setting. Furthermore, there is a special kind of
holographic transformation, the orthogonal transformation, that preserves the binary
equality and thus can be used freely in the standard setting. For κ = 2, this first appeared
in [18] as Theorem 2.2.

Theorem 3.3 Suppose κ ≥ 3 is the domain size. If T ∈ Cκ×κ is an orthogonal matrix
(i.e., TTT = Iκ ), then Holant(�;F ) = Holant(�′;TF ).

Since the complexity of a signature is unchanged by a nonzero constantmultiple, we also
call a transformationT such thatTTT = λI for some λ �= 0 an orthogonal transformation.
Such transformations do not change the complexity of a problem.

3.3 Realization

One basic notion used throughout the paper is realization. We say a signature f is realiz-
able or constructible from a signature set F if there is a gadget with some dangling edges
such that each vertex is assigned a signature fromF , and the resulting graph, when viewed
as a black-box signature with inputs on the dangling edges, is exactly f . If f is realizable
from a set F , then we can freely add f into F while preserving the complexity.
Formally, such a notion is defined by an F-gate [18,19]. An F-gate is similar to a

signature grid (G,π ) forHolant(F ) except thatG = (V, E, D) is a graphwith somedangling
edges D. The dangling edges define external variables for the F-gate. (See Fig. 2 for an
example.) We denote the regular edges in E by 1, 2, . . . , m and the dangling edges in D by
m + 1, . . . , m + n. Then we can define a function � for this F-gate as
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Fig. 2 AnF -gate with 5 dangling edges

�(y1, . . . , yn) =
∑

x1 ,...,xm∈[κ]
H (x1, . . . , xm, y1, . . . , yn),

where (y1, . . . , yn) ∈ [κ]n is an assignment on the dangling edges andH (x1, . . . , xm, y1, . . . ,
yn) is the value of the signature grid on an assignment of all edges in G, which is the
product of evaluations at all internal vertices. We also call this function � the signature of
the F-gate.
An F-gate is planar if the underlying graphG is a planar graph, and the dangling edges,

ordered counterclockwise corresponding to the order of the input variables, are in the
outer face in a planar embedding. A planar F-gate can be used in a planar signature grid
as if it is just a single vertex with the particular signature.
Using the idea of planar F-gates, we can reduce one planar Holant problem to

another. Suppose g is the signature of some planar F-gate. Then Pl-Holant(F ∪ {g}) ≤T
Pl-Holant(F ). The reduction is simple. Given an instance of Pl-Holant(F ∪{g}), by replac-
ing every appearance of g by the F-gate, we get an instance of Pl-Holant(F ). Since the
signature of the F-gate is g , the Holant values for these two signature grids are identical.
Although our main results are about symmetric signatures (i.e., signatures that are

invariant under any permutation of inputs), some of our proofs utilize asymmetric sig-
natures. When a gadget has an asymmetric signature, we place a diamond on the edge
corresponding to the first input. The remaining inputs are ordered counterclockwise
around the vertex. (See Fig. 5 for an example.)
We note that even for a very simple signature set F , the signatures for all F-gates can

be quite complicated and expressive.

3.4 Succinct signatures

An arity r signature on domain size κ is fully specified by κr values. However, some special
cases can be defined using far fewer values. Consider the signature All-Distinctr,κ of
arity r on domain size κ that outputs 1 when all inputs are distinct and 0 otherwise. We
also denote this signature by ADr,κ . In addition to being symmetric, it is also invariant
under any permutation of the κ domain elements. We call the second property domain
invariance. The signature of an F-gate in which all signatures in F are domain invariant
is itself domain invariant.

Definition 3.4 (Succinct signature) Let τ = (P1, P2, . . . , P
) be a partition of [κ]r listed
in some order. We say that f is a succinct signature of type τ if f is constant on each Pi. A
set F of signatures is of type τ if every f ∈ F has type τ . We denote a succinct signature
f of type τ by 〈f (P1), . . . , f (P
)〉, where f (P) = f (x) for any x ∈ P.
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Furthermore, we may omit 0 entries. If f is a succinct signature of type τ , we also say
f is a succinct signature of type τ ′ with length 
′, where τ ′ lists 
′ parts of the partition τ ,
and we write f as 〈 f1, f2, . . . , f
′ 〉, provided that all nonzero values f (Pi) are listed. When
using this notation, we will make it clear which zero entries have been omitted.

For example, a symmetric signature in theBoolean domain (i.e., κ = 2) has been denoted
in previous work [14] by [ f0, f1, . . . , fr], where fw is the output on inputs of Hamming
weight w. This corresponds to the succinct signature type (P0, P1, . . . , Pr), where Pw is the
set of inputs of Hamming weight w. A similar succinct signature notation was used for
symmetric signatures on domain size 3 [22, p. 1282].
We prove a dichotomy theorem for Pl-Holant(f ) when f is a succinct ternary signature

of type τ3 on domain size κ ≥ 3. For κ ≥ 3, the succinct signature of type τ3 = (P1, P2, P3)
is a partition of [κ]3 with Pi = {(x, y, z) ∈ [κ]3 : |{x, y, z}| = i} for 1 ≤ i ≤ 3. The notation
{x, y, z} denotes a multiset, and |{x, y, z}| denotes the number of distinct elements in it.
Succinct signatures of type τ3 are exactly the symmetric and domain invariant ternary
signatures. In particular, the succinct ternary signature for AD3,κ is 〈0, 0, 1〉.
We use several other succinct signature types as well. For domain invariant unary signa-

tures, there are only two signatures up to a nonzero scalar. Using the trivial partition that
contains all inputs, we denote these two succinct unary signatures as 〈0〉 and 〈1〉 and say
that they have succinct type τ1. We also need a succinct signature type for domain invari-
ant binary signatures. Such signatures are necessarily symmetric. We call their succinct
signature type τ2 = (P1, P2), where Pi = {(x, y) ∈ [κ]2 : |{x, y}| = i} for 1 ≤ i ≤ 2.
We note that the number of succinct signature types for arity r signatures on domain

size κ that are both symmetric and domain invariant is the number of partitions of r into
at most κ parts. This is related to the partition function from number theory, which is not
to be confused with the partition function with its origins in statistical mechanics and has
been intensively studied in complexity theory of counting problems.
While there are some other succinct signature types that we define later as needed,

there is one more important type that we define here. Any quaternary signature f that
is domain invariant has a succinct signature of length at most 15. When a signature
has both vertical and horizontal symmetry, there is a shorter succinct signature that has
only length 9. We say a signature f has vertical symmetry if f (w, x, y, z) = f (x, w, z, y)
and horizontal symmetry if f (w, x, y, z) = f (z, y, x, w). For example, the signature of
the gadget in Fig. 9 has both vertical and horizontal symmetry. Accordingly, let τ4 =
(P 1 1

1 1
, P 1 2

1 1
, P 1 2

1 2
, P 1 3

1 2
, P 1 2

2 1
, P 1 3

2 1
, P 1 1

2 2
, P 1 1

2 3
, P 1 4

2 3
) be a type of succinct quaternary signature

with partitions

P 1 1
1 1

= {(w, x, y, z) ∈ [κ]4 | w = x = y = z},

P 1 2
1 1

=
{

(w, x, y, z) ∈ [κ]4
∣
∣ (w = x = y �= z) ∨ (w = x = z �= y)
∨(w = y = z �= x) ∨ (x = y = z �= w)

}

,

P 1 2
1 2

= {(w, x, y, z) ∈ [κ]4 | w = x �= y = z},
P 1 3

1 2
= {(w, x, y, z) ∈ [κ]4 | (w = x �= y �= z �= x) ∨ (y = z �= w �= x �= z)},

P 1 2
2 1

= {(w, x, y, z) ∈ [κ]4 | w = y �= x = z},
P 1 3

2 1
= {(w, x, y, z) ∈ [κ]4 | (w = y �= x �= z �= y) ∨ (x = z �= w �= y �= z)},

P 1 1
2 2

= {(w, x, y, z) ∈ [κ]4 | w = z �= x = y},
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P 1 1
2 3

= {(w, x, y, z) ∈ [κ]4 | (w = z �= x �= y �= z) ∨ (x = y �= w �= z �= y)}, and
P 1 4

2 3
= {(w, x, y, z) ∈ [κ]4 | w, x, y, z are all distinct}.

4 Counting edge κ-colorings over planar r-regular graphs
In this section, we show that counting edge κ-colorings over planar r-regular graphs is
#P-hard provided κ ≥ r ≥ 3. When this condition fails to hold, the problem is trivially
tractable. There are two cases depending on whether κ = r or not.

4.1 The Case κ = r

When κ = r, we reduce from evaluating the Tutte polynomial of a planar graph at the
positive integer points on the diagonal x = y. For x ≥ 3, evaluating the Tutte polynomial
of a planar graph at (x, x) is #P-hard.

Theorem 4.1 (Theorem 5.1 in [59]) For x, y ∈ C, evaluating the Tutte polynomial
at (x, y) is #P-hard over planar graphs unless (x − 1)(y − 1) ∈ {1, 2} or (x, y) ∈
{(1, 1), (−1,−1), (ω,ω2), (ω2,ω)}, where ω = e2π i/3. In each exceptional case, the com-
putation can be done in polynomial time.

To state the connection with the diagonal of the Tutte polynomial, we need to consider
Eulerian subgraphs in directed medial graphs. We say a graph is an Eulerian (di)graph if
every vertex has even degree (resp. in-degree equal to out-degree), but connectedness is
not required. Now recall the definition of a medial graph and its directed variant.

Definition 4.2 (cf. Section 4 in [30]) For a connected plane graphG (i.e., a planar embed-
ding of a connected planar graph), itsmedial graph Gm has a vertex on each edge ofG and
two vertices in Gm are joined by an edge for each face of G in which their corresponding
edges occur consecutively.
The directed medial graph �Gm of G colors the faces of Gm black or white depending on

whether they contain or do not contain, respectively, a vertex of G. Then the edges of the
medial graph are directed so that the black face is on the left.

Figures 3 and4 give examples of amedial graph and adirectedmedial graph, respectively.
Notice that the (directed) medial graph is always a planar 4-regular graph.
Building on previous work [1,29,49,58], Ellis-Monaghan gave the following connection

with the diagonal of the Tutte polynomial. A monochromatic vertex is a vertex with all its
incident edges having the same color.

(a) (b) (c)

Fig. 3 A plane graph (a), its medial graph (c), and the two graphs superimposed (b)
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(a) (b) (c)

Fig. 4 A plane graph (a), its directed medial graph (c), and both superimposed (b)

Lemma 4.3 (Equation (17) in [30]) Suppose G is a connected plane graph and �Gm is its
directed medial graph. For κ ∈ N, let C( �Gm) be the set of all edge κ-labelings of �Gm so that
each (possibly empty) set of monochromatic edges forms an Eulerian digraph. Then

κ T(G; κ + 1, κ + 1) =
∑

c ∈ C( �Gm)

2m(c), (1)

where m(c) is the number of monochromatic vertices in the coloring c.

The Eulerian partitions in C( �Gm) have the property that the subgraphs induced by each
partition do not intersect (or crossover) each other due to the orientation of the edges in
themedial graph.We call the counting problem defined by the sum on the right-hand side
of (1) counting weighted Eulerian partitions over planar 4-regular graphs. This problem
also has an expression as a Holant problem using a succinct signature. To define this
succinct signature, it helps to know the following basic result about edge colorings.
When the number of available colors coincides with the regularity parameter of the

graph, the cuts in any coloring satisfy a well-known parity condition. This parity condition
follows from amore general parity argument (see (1.2) and the parity argument on page 95
in [54]).We state this simpler parity condition and provide a short proof for completeness.

Lemma 4.4 (Parity Condition) Let G be a κ-regular graph and consider a cut C in G. For
any edge κ-coloring of G,

c1 ≡ c2 ≡ · · · ≡ cκ (mod 2),

where ci is the number of edges in C colored i for 1 ≤ i ≤ κ .

Proof Consider two distinct colors i and j. Remove from G all edges not colored i or j.
The resulting graph is a disjoint union of cycles consisting of alternating colors i and j.
Each cycle in this graph must cross the cut C an even number of times. Therefore, ci ≡ cj
(mod 2). ��
Consider all quaternary {ADκ ,κ }-gates on domain size κ ≥ 3. These gadgets have a

succinct signature of type τcolor = (P 1 1
1 1
, P 1 2

1 2
, P 1 2

2 1
, P 1 1

2 2
, P 1 4

2 3
, P0), where

P 1 1
1 1

= {(w, x, y, z) ∈ [κ]4 | w = x = y = z},
P 1 2

1 2
= {(w, x, y, z) ∈ [κ]4 | w = x �= y = z},

P 1 2
2 1

= {(w, x, y, z) ∈ [κ]4 | w = y �= x = z},
P 1 1

2 2
= {(w, x, y, z) ∈ [κ]4 | w = z �= x = y},

P 1 4
2 3

= {(w, x, y, z) ∈ [κ]4 | w, x, y, z are distinct}, and
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P0 = [κ]4 − P 1 1
1 1

− P 1 2
1 2

− P 1 2
2 1

− P 1 1
2 2

− P 1 4
2 3
.

Any quaternary signature of an {ADκ ,κ }-gate is constant on the first five parts of τcolor since
ADκ ,κ is domain invariant. Using Lemma 4.4, we can show that the entry corresponding
to P0 is 0.

Lemma 4.5 Suppose κ ≥ 3 is the domain size and let F be a quaternary {ADκ ,κ }-gate
with succinct signature f of type τcolor. Then f (P0) = 0.

Proof Let σ0 ∈ P0 be an edge κ-labeling of the external edges of F . Assume for a con-
tradiction that σ0 can be extended to an edge κ-coloring of F . We form a graph G from
two copies of F (namely, F1 and F2) by connecting their corresponding external edges.
Then G has a coloring σ that extends σ0. Consider the cut C = (F1, F2) in G whose cut
set contains exactly those edges labeled by σ0. By Lemma 4.4, the counts of the colors
assigned by σ0 must satisfy the parity condition. However, this is a contradiction since no
edge κ-labeling in P0 satisfies the parity condition. ��

By Lemma 4.5, we denote a quaternary signature f of an {ADκ ,κ }-gate by the succinct
signature 〈f (P 1 1

1 1
), f (P 1 2

1 2
), f (P 1 2

2 1
), f (P 1 1

2 2
), f (P 1 4

2 3
)〉 of type τcolor, which has the entry for P0

omitted.3 When κ = 3, P 1 4
2 3

is empty and we define its entry in the succinct signature to
be 0.

Lemma 4.6 Let G be a connected plane graph and let Gm be the medial graph of G. Then

κ T(G; κ + 1, κ + 1) = Pl-Holant(Gm; 〈2, 1, 0, 1, 0〉),
where the Holant problem has domain size κ and 〈2, 1, 0, 1, 0〉 is a succinct signature of
type τcolor.

Proof Let f = 〈2, 1, 0, 1, 0〉. By Lemma 4.3, we only need to prove that
∑

c ∈ C( �Gm)

2m(c) = Pl-Holant(Gm; f ), (2)

where the notation is from Lemma 4.3.
Each c ∈ C( �Gm) is also an edge κ-labeling of Gm. At each vertex v ∈ V ( �Gm), the four

incident edges are assigned at most two distinct colors by c. If all four edges are assigned
the same color, then the constraint f on v contributes a factor of 2 to the total weight.
This is given by the value in the first entry of f . Otherwise, there are two different colors,
say x and y. Because the orientation at v in �Gm is cyclically “in, out, in, out,” the coloring
around v can only be of the form xxyy or xyyx. These correspond to the second and fourth
entries of f . Therefore, every term in the summation on the left-hand side of (2) appears
(with the same nonzero weight) in the summation Pl-Holant(Gm; f ).
It is also easy to see that every nonzero term in Pl-Holant(Gm; f ) appears in the sum

on the left-hand side of (2) with the same weight of 2 to the power of the number of

3 If κ > 4, then Lemma 4.4 further implies that these signatures are also 0 on P 1 4
2 3

. However, when κ = 4, this value
might be nonzero. The AD4,4 signature is an example of this. Instead of using this observation that depends on κ in
our proof, we only construct gadgets such that their signatures are 0 on P 1 4

2 3
for any value of κ .
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monochromatic vertices. In particular, any coloring with a vertex that is cyclically colored
xyxy for different colors x and y does not contribute because f (P 1 2

2 1
) = 0. ��

Remark This result shows that this planarHolant problem is at least as hard as computing
the Tutte polynomial at the point (κ + 1, κ + 1) over planar graphs, which implies #P-
hardness. Of course they are equally difficult in the sense that both are #P-complete. In
fact, they are more directly related since every 4-regular plane graph is the medial graph
of some plane graph.

By Theorem 4.1 and Lemma 4.6, the problem Pl-Holant(〈2, 1, 0, 1, 0〉) is #P-hard. We
state this as a corollary.

Corollary 4.7 Suppose κ ≥ 3 is the domain size. Let 〈2, 1, 0, 1, 0〉 be a succinct quaternary
signature of type τcolor. Then Pl-Holant(〈2, 1, 0, 1, 0〉) is #P-hard.
With this connection established, we can now show that counting edge colorings is #P-

hard over planar regular graphs when the number of colors and the regularity parameter
coincide.

Theorem 4.8 #κ-EdgeColoring is #P-hard over planar κ-regular graphs for all κ ≥ 3.

Proof Let κ be the domain size of all Holant problems in this proof and let 〈2, 1, 0, 1, 0〉 be
a succinct quaternary signature of type τcolor. We reduce from Pl-Holant(〈2, 1, 0, 1, 0〉) to
Pl-Holant(ADκ ,κ ), which denotes the problem of counting edge κ-colorings over pla-
nar κ-regular graphs as a Holant problem. Then by Corollary 4.7, we conclude that
Pl-Holant(ADκ ,κ ) is #P-hard.
Consider the gadget in Fig. 5, where the bold edge represents κ − 2 parallel edges. We

assign ADκ ,κ to both vertices. Up to a nonzero factor of (κ − 2)!, this gadget has the
succinct quaternary signature f = 〈0, 1, 1, 0, 0〉 of type τcolor. Now consider the recursive
construction in Fig. 6. All vertices are assigned the signature f . Let fs be the succinct
quaternary signature of type τcolor for the sth gadget of the recursive construction. Then
f1 = f and fs = Ms f0, where

Fig. 5 Quaternary gadget used in the interpolation construction below. All vertices are assigned ADκ ,κ . The
bold edge represents κ − 2 parallel edges

N1 N2

Ns

Ns+1

Fig. 6 Recursive construction to interpolate 〈2, 1, 0, 1, 0〉. The vertices are assigned the signature of the
gadget in Fig. 5
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M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 κ − 1 0 0 0
1 κ − 2 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and f0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The signature f0 is simply the succinct quaternary signature of type τcolor for two parallel
edges. We can expressM via the Jordan decompositionM = P�P−1, where

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 − κ 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 −1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and � = diag(κ − 1,−1, 1,−1, 1). Then for t = 2s, we have

ft = P

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

κ − 1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

t

P−1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= P

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

P−1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

y + 1
y
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where x = (κ − 1)t and y = x−1
κ

.
Consider an instance�ofPl-Holant(〈2, 1, 0, 1, 0〉) ondomain sizeκ . Suppose 〈2, 1, 0, 1, 0〉

appears n times in �. We construct from � a sequence of instances �t of Pl-Holant(f )
indexed by t, where t = 2swith s ≥ 0.We obtain�t from� by replacing each occurrence
of 〈2, 1, 0, 1, 0〉 with the gadget ft .
As a polynomial in x = (κ − 1)t , Pl-Holant(�t ; f ) is independent of t and has degree at

most n with integer coefficients. Using our oracle for Pl-Holant(f ), we can evaluate this
polynomial at n + 1 distinct points x = (κ − 1)2s for 0 ≤ s ≤ n. Then via polynomial
interpolation, we can recover the coefficients of this polynomial efficiently. Evaluating this
polynomial at x = κ + 1 (so that y = 1) gives the value of Pl-Holant(�; 〈2, 1, 0, 1, 0〉), as
desired. ��
Remark For κ = 3, the interpolation step is actually unnecessary since the succinct
signature of f2 happens to be 〈2, 1, 0, 1, 0〉.
When κ = 3, it is easy to extend Theorem 4.8 by further restricting to simple graphs,

i.e., graphs without self-loops or parallel edges.

Theorem 4.9 #3-EdgeColoring is #P-hard over simple planar 3-regular graphs.

Proof By Theorem 4.8, it suffices to efficiently compute the number of edge 3-colorings
of a planar 3-regular graph G that might have self-loops and parallel edges. Furthermore,
we can assume that G is connected since the number of edge colorings is multiplicative
over connected components. If G contains a self-loop, then there are no edge colorings
in G, so assume G contains no self-loops. If G also contains no parallel edges, then G is
simple and we are done.
Thus, assume that G contains n vertices and parallel edges between some distinct ver-

tices u and v. If u and v are connected by three edges, then this constitutes the whole
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graph, which has six edge 3-colorings. Otherwise, u and v are connected by two edges.
Then there exist vertices u′ and v′ such that u and u′ are connected by a single edge, v and
v′ are connected by a single edge, and u′ �= v′. In any edge 3-coloring ofG, it is easy to see
that the edges (u, u′) and (v, v′) must be assigned the same color. By removing u, v, and
their incident edges while adding an edge between u′ and v′, we have a planar 3-regular
graph G′ on n − 2 vertices with half as many edge colorings as G. Then by induction, we
can efficiently compute the number of edge 3-colorings in G′. ��

In “Appendix 3”, we give an alternative proof of Theorem 4.8, which uses the interpo-
lation techniques we develop in Sect. 6. The purpose of “Appendix 3” is to show how a
recursive construction in an interpolation proof can be used to form a hypothesis about
possible invariance properties. One example of an invariance property is that any planar
{ADκ ,κ }-gate with a succinct quaternary signature 〈a, b, c, d, e〉 of type τcolor must satisfy
a + c = b + d (Lemma 13.1).

4.2 The case κ > r

Now we consider κ > r ≥ 3. This time, we reduce from the problem of counting vertex
κ-colorings over planar graphs. This problem is also #P-hard by the same dichotomy for
the Tutte polynomial (Theorem 4.1) since the chromatic polynomial is a specialization
the Tutte polynomial.

Proposition 4.10 (Proposition 6.3.1 in [3]) Let G = (V, E) be a graph. Then χ (G; λ), the
chromatic polynomial of G, is expressed as a specialization of the Tutte polynomial via the
relation

χ (G; λ) = (−1)|V |−k(G)λk(G) T(G; 1 − λ, 0),

where k(G) is the number of connected components of the graph G.

The first step in the proof is to interpolate every possible binary signature that is domain
invariant, which are necessarily symmetric. These signatures have the succinct signature
type τ2.

Lemma 4.11 Suppose κ ≥ 3 is the domain size and let x, y ∈ C. If we assign the succinct
binary signature 〈x, y〉 of type τ2 to every vertex of the recursive construction in Fig. 7, then
the corresponding recurrence matrix is

[
x (κ−1)y
y x+(κ−2)y

]
with eigenvalues x + (κ − 1)y and

x − y.

Proof Let f
 be the signature of the 
th gadget in this construction. To obtain f
+1 from f
,
we view f
 as a column vector andmultiply it by the recurrencematrixM =

[
x (κ−1)y
y x+(κ−2)y

]
.

f1 f2

f�

f�+1

Fig. 7 Recursive construction to interpolate any succinct binary signature of type τ2. All vertices are assigned
the same succinct binary signature of type τ2
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In general, we have f
 = M
 f0, where f0 is the initial signature, which is just a single edge
and has the succinct binary signature 〈1, 0〉 of type τ2. The (column) eigenvectors of M
are
[ 1
1
]
and

[ 1−κ
1
]
with eigenvalues x + (κ − 1)y and x − y, respectively, as claimed. ��

The success of interpolation depends on these eigenvalues and the relationship between
the recurrence matrix and the initial signature of the construction. To show that the
interpolation succeeds,weuse a result from [36], the full versionof [37]. This result is about
interpolating unary signatures on a Boolean domain for planar Holant problems, but the
same proof applies equally well for higher domains using a binary recursive construction
(like that in Fig. 7) and a succinct signature type with length 2.

Lemma 4.12 (Lemma 4.4 in [36]) Suppose F is a set of signatures and τ is a succinct
signature type with length 2. If there exists an infinite sequence of planarF-gates defined by
an initial succinct signature s ∈ C2×1 of type τ and recurrence matrixM ∈ C2×2 satisfying
the following conditions,

1. det(M) �= 0;
2. det([s Ms]) �= 0;
3. M has infinite order modulo a scalar;

then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F ),

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ .

Consider the recursive construction in Fig. 7. To every vertex, we assign the succinct
binary signature 〈x, y〉. Since the initial signature is s = 〈1, 0〉, the determinant of the
matrix [s Ms] is simply y. In order to interpolate all binary succinct signatures of type τ2,
we need to satisfy the second condition of Lemma 4.12, which is y �= 0. However, when
y = 0, the recurrence matrix is a scalar multiple of the identity matrix, which implies that
the eigenvalues are the same. For two-dimensional interpolation using a matrix with a full
basis of eigenvectors, as is the case here, the third condition of Lemma 4.12 is equivalent
to the ratio of the eigenvalues not being a root of unity. In particular, the eigenvalues
cannot be the same. Therefore, when using the recursive construction in Fig. 7, it suffices
to satisfy the first and third conditions of Lemma 4.12. We state this as a corollary.

Corollary 4.13 Suppose F is a set of signatures. Let s = 〈1, 0〉 of type τ2 be the initial
succinct binary signature and let M ∈ C2×2 be the recurrence matrix for some infinite
sequence of planar F-gates defined by the recursive construction in Fig. 7. If M satisfies the
following conditions,

1. det(M) �= 0;
2. M has infinite order modulo a scalar;

then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F ),

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.
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Lemma 4.14 Suppose κ is the domain size with κ > r for any integer r ≥ 3, and x, y ∈ C.
Let F be a signature set containing ADr,κ . Then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F ),

where 〈x, y〉 is a succinct binary signature of type τ2.

Proof Let (n)k = n(n−1) · · · (n−k +1) be the kth falling power of n. Consider the gadget
in Fig. 8. We assign ADr,κ to both vertices. The succinct binary signature of type τ2 for
this gadget is f = 〈(κ − 1)r−1, (κ − 2)r−1〉. Up to a nonzero factor of (κ − 2)r−2, we have
the signature f ′ = 1

(κ−2)r−2
f = 〈κ − 1, κ − r〉.

Consider the recursive construction in Fig. 7.We assign f ′ to all vertices. By Lemma4.11,
the eigenvalues of the corresponding recurrence matrix are (r − 1) > 0 and (κ − 1)(κ −
r + 1) > 0. Thus, M is nonsingular. Furthermore, the eigenvalues are not equal since
κ /∈ {0, r}. Therefore, we are done by Corollary 4.13. ��
Nextwe show that Pl-Holant(ADr,κ ) is at least as hard as Pl-Holant(AD3,κ ). To overcome

a difficulty when r is even, we apply the following result, which uses the notion of a planar
pairing.

Definition 4.15 (Definition 11 in [37]) A planar pairing in a graph G = (V, E) is a set of
edges P ⊂ V ×V such that P is a perfect matching in the graph (V,V ×V ), and the graph
(V, E ∪ P) is planar.

Lemma 4.16 (Lemma 12 in [37]) For any planar 3-regular graph G, there exists a planar
pairing that can be computed in polynomial time.

Lemma 4.17 Suppose κ is the domain size with κ > r for any integer r ≥ 3. Then

Pl-Holant(AD3,κ ) ≤T Pl-Holant(ADr,κ ).

Proof By Lemma 4.14, we can assume that 〈1, 1〉 is available. Take ADr,κ and first form
t = ⌈ r−4

2
⌉
self-loops. Then add a new vertex on each self-loop and assign 〈1, 1〉 to each

of these new vertices. Up to a nonzero factor of (κ − 3)2t , the resulting signature is AD3,κ
if r is odd and AD4,κ if r is even. To reduce from r = 3 to r = 4, we use a planar pairing,
which can be efficiently computed by Lemma 4.16.We add a new vertex on each edge in a
planar pairing and assign 〈1, 1〉 to each of these new vertices. Then up to a nonzero factor
of κ − 3, the signature at each vertex of the initial graph is effectively AD3,κ . ��
The succinct binary signature 〈1 − κ , 1〉 of type τ2 has a special property. Let u be

any constant unary signature, which has a succinct signature of type τ1. If 〈1 − κ , 1〉 is
connected to u, then the resulting unary signature is identically 0.
This observation is the key to what follows. We use it in the next lemma to achieve

what would appear to be an impossible task. The requirements, if duly specified, would
result in multiple conditions to be satisfied by nine separate polynomials pertaining to

Fig. 8 Binary gadget used in the interpolation construction of Fig. 7. Both vertices are assigned ADr,κ , and
the bold edge represents r − 1 parallel edges
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some construction in place of the gadget in Fig. 9. And yet we are able to use just one
degree of freedom to cause seven of the polynomials to vanish, satisfying most of these
conditions. In addition, the other two polynomials are not forgotten. They are nonzero,
and their ratio is not a root of unity, which allows interpolation to succeed.
This ability to satisfy a multitude of constraints simultaneously in one magic stroke

reminds us of some unfathomably brilliant moves by Bobby Fischer, the chess genius
extraordinaire, and so we name this gadget (Fig. 9) the Bobby Fischer gadget.
This gadget is the new idea that allows us to prove Theorem 4.20.

Lemma 4.18 Suppose κ ≥ 3 is the domain size and a, b ∈ C. Let F be a signature
set containing the succinct ternary signature 〈a, b, b〉 of type τ3 and the succinct binary
signature 〈1 − κ , 1〉 of type τ2. If a �= b, then

Pl-Holant(F ∪ {=4}) ≤T Pl-Holant(F ).

Proof Consider the gadget in Fig. 9. We assign 〈a, b, b〉 to the circle vertices and 〈1− κ , 1〉
to the square vertex. This gadget has a succinct quaternary signature of type τ4, which has
length 9. However, all but two of the entries in this succinct signature must be 0.
To see this, consider an assignment that assigns different values to the two edges incident

to the circle vertex on top. Since the assignment to these two edges differs, the signature
〈a, b, b〉 contributes a factor of b regardless of the value of its third edge, which is connected
to the square vertex assigned 〈1− κ , 1〉. From the perspective of 〈1− κ , 1〉, this behavior is
equivalent to connecting it to the succinct unary signature b〈1〉 of type τ1. Thus, the sum
over the possible assignments to this third edge is 0. The same argument shows that the
two edges incident to the circle vertex on the bottom do not contribute anything to the
Holant sum when assigned different values.
Thus, any nonzero contribution to the Holant sum comes from assignments where the

top two dangling edges are assigned the same value and the bottom two dangling edges
are assigned the same value. There are only two entries that satisfy this requirement in
the succinct quaternary signature of type τ4 for this gadget, which are the entries for P 1 1

1 1

and P 1 1
2 2
. To compute those two entries, we use the following trick. Since the two external

edges of each circle vertex must be assigned the same value, we think of them as just a
single edge. Then the effective succinct binary signature of type τ2 for the circle vertices
is just 〈a, b〉. By connecting the first 〈a, b〉 with 〈1 − κ , 1〉, the result is (a − b)〈1 − κ , 1〉
like it is an eigenvector. Connecting the other copy of 〈a, b〉 to (a − b)〈1 − κ , 1〉 gives
(a−b)2〈1− κ , 1〉. This computation is expressed via the matrix multiplication [bJκ + (a−
b)Iκ ][Jκ − κIκ ][bJκ + (a− b)Iκ ] = (a− b)[Jκ − κIκ ][bJκ + (a− b)Iκ ] = (a− b)2[Jκ − κIκ ].
Thus up to a nonzero factor of (a− b)2, the corresponding succinct quaternary signature
of type τ4 for this gadget is f = 〈1 − κ , 0, 0, 0, 0, 0, 1, 0, 0〉.

Fig. 9 The Bobby Fischer gadget, which achieves many objectives using only a single degree of freedom
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Consider the recursive construction in Fig. 6. We assign f to all vertices. Let fs be the
signature of the sth gadget in this construction. The seven entries that are 0 in the succinct
signature of type τ4 for f are also 0 in the succinct signature of type τ4 for fs. Thus, we
can express fs via a succinct signature of type τ ′

4 with length 2, defined as follows. The
first two parts in τ ′

4 are P 1 1
1 1

and P 1 1
2 2

from the succinct signature type τ4. The last part
contains all the remaining assignments. Then the succinct signature for fs of type τ ′

4 is
Ms f0, where M = [ 1−κ 0

0 1
]
and f0 = 〈1, 1〉, which is just the succinct signature of type τ ′

4
for two parallel edges.
Clearly the conditions in Lemma 4.12 hold, so we can interpolate any succinct signature

of type τ ′
4. In particular, we can interpolate our target signature =4, which is 〈1, 0〉 when

expressed as a succinct signature of type τ ′
4. ��

Remark The nine polynomials mentioned before Lemma 4.18 correspond to the nine
entries of some quaternary gadget with a succinct signature of type τ4. In light of
Lemma 4.14, this gadget might involve many succinct binary signatures 〈x, y〉 of type
τ2 for various choices of x, y ∈ C. Each distinct binary signature provides an additional
degree of freedom to these polynomials. Our construction in Fig. 9 only requires one
binary signature 〈x, y〉, and we use our one degree of freedom to set x

y = 1 − κ .

With the aid of the succinct unary signature 〈1〉 of type τ1 and the succinct binary
signature 〈0, 1〉 of type τ2, the assumptions in the previous lemma are sufficient to prove
#P-hardness.

Corollary 4.19 Suppose κ ≥ 3 is the domain size and a, b ∈ C. Let F be a signature set
containing the succinct ternary signature 〈a, b, b〉 of type τ3, the succinct unary signature
〈1〉 of type τ1, and the succinct binary signatures 〈1 − κ , 1〉 and 〈0, 1〉 of type τ2. If a �= b,
then Pl-Holant(F ) is #P-hard.

Proof By Lemma 4.18, we have =4. Connecting 〈1〉 to =4 gives =3. With =3, we can
construct the equality signatures of every arity. Alongwith the binary disequality signature
�=2, which is the succinct binary signature 〈0, 1〉 of type τ2, we can express the problem of
counting the number of vertex κ-colorings over planar graphs. By Proposition 4.10, this
is, up to a nonzero factor, the problem of evaluating the Tutte polynomial at (1 − κ , 0),
which is #P-hard by Theorem 4.1. ��
Now we can show that counting edge colorings is #P-hard over planar regular graphs

when there are more colors than the regularity parameter.

Theorem 4.20 #κ-EdgeColoring is #P-hard over planar r-regular graphs for all κ >

r ≥ 3.

Proof By Lemma 4.17, it suffices to consider r = 3. By Lemma 4.14, we can assume that
any succinct binary signature of type τ2 is available.
Consider the gadget in Fig. 10. We assign AD3,κ to the circle vertex and 〈3− κ , 1〉 to the

square vertices. By Lemma 11.6, the succinct ternary signature of type τ3 for this gadget
is f = 2(κ − 2)〈−(κ − 3)(κ − 1), 1, 1〉.
Now take two edges of AD3,κ and connect them to the two edges of 〈1, 1〉. Up to a

nonzero factor of (κ − 1)(κ − 2), this gadget has the succinct unary signature 〈1〉 of type
τ1. Then we are done by Corollary 4.19. ��
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Fig. 10 Local holographic transformation gadget construction for a ternary signature

5 Tractable problems
In the rest of the paper, we adapt and extend our previous proof techniques to obtain a
dichotomy for Pl-Holant(〈a, b, c〉), where 〈a, b, c〉 is a succinct ternary signature of type τ3
on domain size κ ≥ 3, for any a, b, c ∈ C. In this section, we show how to compute a few
of these problems in polynomial time.

5.1 Previous dichotomy theorem

There is only one previous dichotomy theorem for higher domain Holant problems. It
is a dichotomy for a single symmetric ternary signature on domain size κ = 3 in the
framework of Holant∗ problems, which means that all unary signatures are assumed to be
freely available.
In Theorem 5.1, the notation f �g denotes the signature that results from connecting

one edge incident to a vertex assigned the signature f to one edge incident to a vertex
assigned the signature g . When f and g are both unary signatures, which are represented
by vectors, then the resulting 0-ary signature is just a scalar.

Theorem 5.1 (Theorem 3.1 in [22]) Let f be a symmetric ternary signature on domain
size 3. Then Holant∗(f ) is #P-hard unless f is of one of the following forms, in which case,
the problem is computable in polynomial time.

1. There exists α,β , γ ∈ C3 that are mutually orthogonal (i.e., α�β = α�γ = β�γ =
0) and

f = α⊗3 + β⊗3 + γ ⊗3;

2. There exists α,β1,β2 ∈ C3 such that α�β1 = α�β2 = β�
1 β1 = β�

2 β2 = 0 and

f = α⊗3 + β⊗3
1 + β⊗3

2 ;

3. There exists β , γ ∈ C3 and fβ ∈ (C3)⊗3 such that β �= 0, β�β = 0, f �
β β = 0, and

f = fβ + β⊗2 ⊗ γ + β ⊗ γ ⊗ β + γ ⊗ β⊗2.

Some domain invariant signatures are tractable by Theorem 5.1.

Corollary 5.2 Suppose the domain size is 3 and a, b, λ ∈ C. Let f be a succinct ternary
signature of type τ3. Then Holant(f ) is computable in polynomial time when f has one of
the following forms:

1. f = λ〈1, 0, 0〉 = λ
[
(1, 0, 0)⊗3 + (0, 1, 0)⊗3 + (0, 0, 1)⊗3];

2. f = 3λ〈−5,−2, 4〉 = λ
[
(1,−2,−2)⊗3 + (−2, 1,−2)⊗3 + (−2,−2, 1)⊗3];
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3. f = 〈a, b, a〉 = a+2b
3 (1, 1, 1)⊗3 + a−b

3
[
(1,ω,ω2)⊗3 + (1,ω2,ω)⊗3],

where ω is a primitive third root of unity.

In Corollary 5.2, form 1 is the ternary equality signature =3, which is trivially tractable
for any domain size. Then form 2 is just form 1 after a holographic transformation by the
matrix T =

[ 1 −2 −2
−2 1 −2
−2 −2 1

]
, which is orthogonal after scaling by 1

3 . This is an example of
two problems that must have the same complexity by Theorem 3.3.
The tractability of these two problems for higher domain sizes is stated in the following

corollary.

Corollary 5.3 Suppose κ ≥ 3 is the domain size and λ ∈ C. Let f be a succinct ternary
signature of type τ3. Then Holant(f ) is computable in polynomial time if f has one of the
following forms:

1. f = λ〈1, 0, 0〉;
2. f = λT⊗3〈1, 0, 0〉 = λκ〈κ2 − 6κ + 4,−2(κ − 2), 4〉,

where T = κIκ − 2Jκ .

Note that T = κIκ − 2Jκ is an orthogonal matrix after scaling by 1
κ
.

5.2 Affine signatures

Let ω be a primitive third root of unity. Consider the ternary signature f (x, y, z) with
succinct ternary signature 〈1, 0, c〉 of type τ3 on domain size 3, where c3 = 1. Its support
is an affine subspace of Z3 defined by x + y+ z = 0. Furthermore, consider the quadratic
polynomial qc(x, y, z) = λc(xy + xz + yz), where λ1 = 0, λω = 2, and λω2 = 1. Then
ωqc(x,y,z) agrees with f when x + y + z = 0. This function f is an example of a ternary
domain affine signature.

Definition 5.4 A k-ary function f (x1, . . . , xk ) is affine on domain size 3 if it has the form

λ · χAx=0 · e 2π i
3 q(x),

where λ ∈ C, x = (x1, x2, . . . , xk , 1)T, A is a matrix over Z3, q(x) ∈ Z3 is a quadratic
polynomial, and χ is a 0-1 indicator function such that χAx=0 is 1 iff Ax = 0. We use A
to denote the set of all affine functions.

The ternary domain affine signatures are tractable just as those in the Boolean domain
are [10].

Lemma 5.5 Suppose the domain size is 3. Then Holant(A ) is computable in polynomial
time.

Proof Given an instance of Holant(A ), the output can be expressed as the summation of
a single function F = χAx=0 · e 2π i

3 q(x1 ,x2 ,...,xk ) since A is closed under multiplication. In
polynomial time, we can solve the linear system Ax = 0 over Z3 and decide whether it is
feasible. If the linear system is infeasible, then the function is the identically 0 function, so
the output is just 0.
Otherwise, the linear system is feasible (including possibly vacuous). Without loss of

generality,we can assume that y1, y2, . . . , ys are independent variables overZ3 while all oth-



Cai et al. Res Math Sci (2016) 3:18 Page 23 of 77

ers are dependent variables, where 0 ≤ s ≤ k . Each dependent variable can be expressed
by an affine linear form of y1, y2, . . . , ys. We can substitute for all of the dependent vari-
ables in q(x1, x2, . . . , xk ), which gives a new quadratic polynomial q′(y1, y2, . . . , ys). Thus,
we have

∑

x1 ,...,xk∈Z3

χAx=0 · e 2π i
3 q(x1,x2 ,...,xk ) =

∑

y1 ,...,ys∈Z3

e
2π i
3 q′(y1 ,y2 ,...,ys). (3)

Then the right-hand side of (3) is computable in polynomial time by Theorem 1 in [24].
��

After multiplying the function 〈1, 0, c〉 by a scalar, we obtain the succinct ternary signa-
ture 〈a, 0, c〉 of type τ3 such that a3 = c3. Since undergoing an orthogonal transformation
does not change the complexity of the problem by Theorem 3.3, we obtain the following
corollary of the previous result.

Corollary 5.6 Suppose the domain size is 3 and a, c ∈ C. Let T ∈ O3(C) and let 〈a, 0, c〉 be
a succinct ternary signature of type τ3. If a3 = c3, then Holant(T⊗3〈a, 0, c〉) is computable
in polynomial time.

For domain size 3, the only orthogonal matrix T such that T⊗3〈a, b, c〉 is still a succinct
ternary signature of type τ3 is ± 1

3

[ 1 −2 −2
−2 1 −2
−2 −2 1

]
. However, the tractability in Corol-

lary 5.6 holds for any orthogonal matrix T .
We introduce another affine signature. It can be considered as a signature of arity 4 on

the Boolean domain. When placed in a planar signature grid, its input variables are listed
in a cyclic order x1, x2, y2, y1 counterclockwise. We then consider it as a binary signature
on domain size 4, where the two variables (x1, x2) and (y1, y2) range over the four values
in {0, 1}2. Notice the reversal of the order y2, y1. This is to allow a planar connection

between these signatures. We list its values as the matrix H4 =
[

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

]

,

which is an Hadamard matrix, where the row index is (x1, x2) and the column index is
(y1, y2), both ordered lexicographically. A closed-form expression showing that this is an
affine signature on the Boolean domain is f (x1, x2, y2, y1) = (−1)q(x1,x2 ,y1 ,y2), where q is the
quadratic polynomial

q(x1, x2, y1, y2) = x1 + x2 + x1x2 + y1 + y2 + y1y2 + x1y2 + x2y1. (4)

As a binary signature on domain size 4, f has the succinct signature 〈1,−1〉 of type
τ2. The fact that f is an affine signature on the Boolean domain shows that the Holant
problem defined by f on domain size 4 is tractable. This follows fromTheorem 1.4 in [24],
or the more general graph homomorphism dichotomy theorems [12,34].
We are interested in this problem because its tractability implies the tractability of a set

of problems defined by a succinct ternary signature of type τ3.

Lemma 5.7 Suppose the domain size is 4 and λ,μ ∈ C. Let 〈μ2, 1,μ〉 be a succinct ternary
signature of type τ3. If μ = −1 + ε2i with ε = ±1, then Holant(λ〈μ2, 1,μ〉) is computable
in polynomial time.

Proof Let T = 1
2

[ x y y y
y x y y
y y x y
y y y x

]

, where x = −3 − εi and y = 1 − εi. Then up to a factor

of λn on graphs with n vertices, the output of Holant(λ〈μ2, 1,μ〉) is the same as the output
for
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Holant(〈μ2, 1,μ〉) = Holant(〈−3 − ε4i, 1,−1 + ε2i〉)
≡T Holant(=2 | T⊗3(=3))

= Holant((=2)T⊗2 | =3)

= Holant(2〈1,−1〉 | =3)

≤T Holant(〈1,−1〉 | {=k | k ∈ Z
+}).

Since Holant(〈1,−1〉 | {=k | k ∈ Z+}) is the Holant expression for the graph homomor-

phism problem defined by the Hadamard matrix
[

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

]

, we can finish the

proof by applying the dichotomy theorems for symmetric matrices in [12,34]. For exam-
ple, this problem is tractable by Theorem 1.2 in [34] (see also [24]), where the quadratic
representation is q(x1, x2, y1, y2) from (4). ��

We restate this lemma as a simple corollary for later convenience.

Corollary 5.8 Suppose the domain size is 4 and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If a+5b+2c = 0 and 5b2+2bc+c2 = 0, thenHolant(〈a, b, c〉)
is computable in polynomial time.

Proof Since a = −5b − 2c and b = 1
5 (−1 ± 2i)c, after scaling by μ = −1 ∓ 2i, we have

μ〈a, b, c〉 = c〈μ2, 1,μ〉 and are done by Lemma 5.7. ��

6 An interpolation result
Thegoal of this section is to generalize an interpolation result from [21],whichwe rephrase
using our notion of a succinct signature (cf. Lemma 4.12).

Theorem 6.1 (Theorem 3.5 in [21]) Suppose F is a set of signatures and τ is a succinct
signature type with length 3. If there exists an infinite sequence of planar F-gates defined
by an initial succinct signature s ∈ C3×1 of type τ and a recurrence matrix M ∈ C3×3 with
eigenvalues α, β , and γ satisfying the following conditions:

1. det(M) �= 0;
2. s is not orthogonal to any row eigenvector of M;
3. for all (i, j, k) ∈ Z3 − {(0, 0, 0)} with i + j + k = 0, we have αiβ jγ k �= 1;

then

Pl-Holant(F ∪ {f }) ≤T Pl-Holant(F ),

for any succinct ternary signature f of type τ .

Our generalization of this result is designed to relax the second condition so that s can
be orthogonal to some row eigenvectors ofM. Suppose r is a row eigenvector ofM, with
eigenvalue λ, that is orthogonal to s (i.e., the dot product r · s is 0). ConsiderMks, the kth
signature in the infinite sequence defined byM and s. This signature is also orthogonal to
r since r ·Mks = λkr · s = 0.We do not know of any way of interpolating a signature using
this infinite sequence that is not also orthogonal to r. On the other hand, we would like to
interpolate those signatures that do satisfy this orthogonality condition. Our interpolation
result gives a sufficient condition to achieve this.
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We assume our n-by-n matrix M is diagonalizable, i.e., it has n linearly independent
(row and column) eigenvectors. We do not assume that M necessarily has n distinct
eigenvalues (although this would be a sufficient condition for it to be diagonalizable). The
relaxation of the second condition is that, for some positive integer 
, the initial signature
s is not orthogonal to exactly 
 of these linearly independent row eigenvectors of M. To
satisfy this condition, we use a two-step approach. First, we explicitly exhibit n−
 linearly
independent row eigenvectors of M that are orthogonal to s. Then we use the following
lemma to show that the remaining row eigenvectors of M are not orthogonal to s. The
justification for this approach is that the eigenvectors orthogonal to s are often simple to
express while the eigenvectors not orthogonal to s tend to be more complicated.

Lemma 6.2 For n ∈ Z+, let s ∈ Cn×1 be a vector and let M ∈ Cn×n be a diagonalizable
matrix. If rank([s Ms . . . Mn−1s]) ≥ 
, then for any set of n linearly independent row
eigenvectors, s is not orthogonal to at least 
 of them.

Proof SinceM is diagonalizable, it has n linearly independent eigenvectors. Suppose for a
contradiction that there exists a set of n linearly independent row eigenvectors ofM such
that s is orthogonal to t > n − 
 of them. Let N ∈ Ct×n be the matrix whose t rows are
the row eigenvectors of M that are orthogonal to s. Then N [s Ms . . . Mn−1s] is the zero
matrix. From this, it follows that rank([s Ms . . . Mn−1s]) < 
, a contradiction. ��

The third condition of Theorem 6.1 is also known as the lattice condition.

Definition 6.3 Fix some 
 ∈ N. We say that λ1, λ2, . . . , λ
 ∈ C − {0} satisfy the lattice
condition if for all x ∈ Z
 − {0} with∑


i=1 xi = 0, we have
∏


i=1 λ
xi
i �= 1.

When 
 ≥ 3, we use Galois theory to show that the lattice condition is satisfied. The
idea is that the lattice condition must hold if the Galois group of the polynomial, whose
roots are the λi’s, is large enough. In [21], for the special case n = 
 = 3, it was shown that
the roots of most cubic polynomials satisfy the lattice condition using this technique.

Lemma 6.4 (Lemma 5.2 in [21]) Let f (x) ∈ Q[x] be an irreducible cubic polynomial.
Then the roots of f (x) satisfy the lattice condition iff f (x) is not of the form ax3 + b for some
a, b ∈ Q.

In the following lemma, we show that if the Galois group for a polynomial of degree n is
one of the two largest possible groups, Sn or An, then its roots satisfy the lattice condition
provided these roots do not all have the same complex norm.

Lemma 6.5 Let f be a polynomial of degree n ≥ 2 with rational coefficients. If the Galois
group of f over Q is Sn or An and the roots of f do not all have the same complex norm,
then the roots of f satisfy the lattice condition.

Proof We consider An since the same argument applies to Sn ⊃ An. For 1 ≤ i ≤ n, let
ai be the roots of f such that |a1| ≤ · · · ≤ |an|. By assumption, as least one of these
inequalities is strict. Suppose for a contradiction that these roots fail to satisfy the lattice
condition. This means there exists x ∈ Zn − {0} satisfying∑n

i=1 xi = 0 such that
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ax11 · · · axnn = 1. (5)

Since x is not all 0, it must contain some positive entries and some negative entries.
We can rewrite (5) as by11 · · · byss = cz11 · · · cztt , where s, t ≥ 1, b1, . . . , bs, c1, . . . , ct are s + t
distinct members from {a1, . . . , an}, yi > 0 for 1 ≤ i ≤ s, zi > 0 for 1 ≤ i ≤ t, and
y1 + · · · + ys = z1 + · · · + zt . We omit factors in (5) with exponent 0.
If n = 2, then s = t = 1 and |b1| = |c1|. This is a contradiction to the assumption

that roots of f do not all have the same complex norm. Otherwise, assume n ≥ 3. If
s = t = 1, then |b1| = |c1| again. We apply 3-cycles from An to conclude that all roots
of f have the same complex norm, a contradiction. Otherwise, s + t > 2. Without loss
of generality, suppose s ≥ t, which implies s ≥ 2. Pick j ∈ {0, . . . , n − s − t} such that
|aj+1| ≤ · · · ≤ |aj+s+t | contains a strict inequality.We permute the roots so that bi = aj+i
for 1 ≤ i ≤ s and ci = aj+s+i for 1 ≤ i ≤ t (or possibly swapping b1 and b2 if necessary
to ensure the permutation is in An). Then taking the complex norm of both sides gives a
contradiction. ��

Remark This result can simplify the interpolation arguments in [21]. Since each of their
cubic polynomials is irreducible, the correspondingGalois groups are transitive subgroups
of S3, namely S3 orA3 (and in fact by inspection, they are all S3). Then Lemma4.5 from [44]
(the full version of [43]) shows that the eigenvalues of these polynomials do not all have
the same complex norm. Thus, the roots of all polynomials exhibited in [21] satisfy the
lattice condition by Lemma 6.5.

In the current paper, we apply Lemma 6.5 to an infinite family of quintic polynomials
that we encounter in Sect. 7. If the polynomials are irreducible, then we are able to apply
this lemma.Unfortunately,we are unable to show that all these polynomials are irreducible
and thus also have to consider the possible ways in which they could factor. Nevertheless,
we are still able to show that all these polynomials satisfy the lattice condition.
To conclude, we state and prove our new interpolation result.

Lemma 6.6 Suppose F is a set of signatures and τ is a succinct signature type with length
n ∈ Z+. If there exists an infinite sequence of planar F-gates defined by an initial succinct
signature s ∈ Cn×1 of type τ and a recurrence matrix M ∈ Cn×n satisfying the following
conditions,

1. M is diagonalizable with n linearly independent eigenvectors;
2. s is not orthogonal to exactly 
 of these linearly independent row eigenvectors of M

with eigenvalues λ1, . . . , λ
;
3. λ1, . . . , λ
 satisfy the lattice condition;

then

Pl-Holant(F ∪ {f }) ≤T Pl-Holant(F )

for any succinct signature f of type τ that is orthogonal to the n − 
 of these linearly
independent eigenvectors of M to which s is also orthogonal.

Proof Let λ1, . . . , λn be the n eigenvalues ofM, with possible repetition. SinceM is diag-
onalizable, we can write M as T�T−1, where � is the diagonal matrix

[
B1 0
0 B2

]
with

B1 = diag(λ1, . . . , λ
) and B2 = diag(λ
+1, . . . , λn). Notice that the columns of T are the
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column eigenvectors of M and the rows of T−1 are the row eigenvectors of M. Let ti be
the ith column T and let T−1s = [α1 . . . αn]T. Then αi �= 0 for 1 ≤ i ≤ 
 and αi = 0 for

 < i ≤ n, since s is not orthogonal to exactly the first 
 row eigenvectors ofM.
Now we can write

Mks = T
[
Bk
1 0
0 Bk

2

]

T−1s = T
[
Bk
1 0
0 Bk

2

]
⎡

⎢
⎢
⎢
⎣

α1
...

α

0
...
0

⎤

⎥
⎥
⎥
⎦

= T diag (α1λ
k
1 , . . . ,α
λ

k

 , 0, . . . , 0)

= T diag(α1, . . . ,α
, 0, . . . , 0)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λk1
...

λk

0
...
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= [α1t1, . . . ,α
t
, 0, . . . , 0]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λk1
...

λk

0
...
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

For 1 ≤ i ≤ 
, let t′i = αiti. Both the columns of T and the rows of T−1 are linearly
independent. From T−1T = Im, we see that ti for 1 ≤ i ≤ 
 is orthogonal to the last n− 


rows of T−1. Thus span{t1, . . . , t
} = span{t′1, . . . , t′
} is precisely the space of vectors
orthogonal to the last n − 
 rows of T−1.
Consider an instance � of Pl-Holant(F ∪ {f }). Let Vf be the subset of vertices assigned

f with nf = |Vf |. Since f is orthogonal to any row eigenvector of M to which s is also
orthogonal, we have f ∈ span{t′1, . . . , t′
}. Let f = β1t′1+· · ·+β
t′
. Then Pl-Holant(�;F ∪
{f }) is a homogeneous polynomial in the βi ’s of total degree nf . For y = (y1, . . . , y
) ∈ N
,
let cy be the coefficient of βy1

1 · · ·βy


 in Pl-Holant(�;F ∪ {f }) so that

Pl-Holant(�;F ∪ {f }) =
∑

y1+···+y
=nf

cyβ
y1
1 · · · βy



 .

We construct from � a sequence of instances �k of Pl-Holant(F ) indexed by k ∈ N.
We obtain �k from � by replacing each occurrence of f withMks, for k ≥ 0. Then

Pl-Holant(�k ;F ) =
∑

y1+···+y
=nf

cy
(
λ
y1
1 · · · λy



)k .

Note that, crucially, the same cy coefficients appear. We treat this as a linear system
with the cy’s as the unknowns. The coefficient matrix is a Vandermonde matrix of order
(nf +
−1


−1
)
, which is polynomial in nf and thus polynomial in the size of �. It is nonsingular

if every λ
y1
1 · · · λy

 is distinct, which is indeed the case since λ1, . . . , λ
 satisfy the lattice

condition.
Therefore, we can solve for the cy’s in polynomial time and compute Pl-Holant(�;F ∪

{f }). ��
Remark When restricted to n = 
 = 3, this proof is simpler than the one given in [21]
for Theorem 6.1 due to our implicit use of a local holographic transformation (i.e., the
writing of f as a linear combination of t′1, . . . , t′
 and expressing Pl-Holant(�;F ∪ {f }) in
terms of this).

7 Puiseux series, Siegel’s theorem, and Galois theory
We prove our main dichotomy theorem in three stages. This section covers the last
stage, which assumes that all succinct binary signatures of type τ2 are available. Among
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the ways we utilize this assumption is to build the gadget known as a local holographic
transformation (see Fig. 11), which is the focus of Sect. 7.1. Then in Sect. 7.2, our efforts
are largely spent, proving that a certain interpolation succeeds. To that end, we employ
Galois theory aided by an effective version of Siegel’s theorem for a specific algebraic
curve, which is made possible by analyzing Puiseux series expansions.
We define the following expressions which appear throughout the rest of the paper:

A = a − 3b + 2c; (6)

B = A + κ(b − c) = a + (κ − 3)b − (κ − 2)c; and (7)

C = B + κ[2b + (κ − 2)c] = a + 3(κ − 1)b + (κ − 1)(κ − 2)c. (8)

7.1 Constructing a special ternary signature

We construct one of two special ternary signatures. Either we construct a signature of
the form 〈a, b, b〉 with a �= b and can finish the proof with Corollary 4.19 or we construct
〈3(κ − 1), κ − 3,−3〉. With this latter signature, we can interpolate the weighted Eulerian
partition signature.
A key step in our dichotomy theorem occurred back in Sect. 4.2 through Lemma 4.18

with the Bobby Fischer gadget. To apply this lemma, we need to construct a gadget
with a succinct ternary signature of type τ3 such that the last two entries are equal and
different from the first. This is the goal of the next lemma, which assumesB �= 0.We will
determine the complexity of the case B = 0 in Corollary 8.4 without using the results
from this section.

Lemma 7.1 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let F be a signature
set containing the succinct ternary signature 〈a, b, c〉 of type τ3 and the succinct binary
signature 〈x, y〉 of type τ2 for all x, y ∈ C. If AB �= 0, then there exist a′, b′ ∈ C satisfying
a′ �= b′ such that

Pl-Holant(F ∪ {〈a′, b′, b′〉}) ≤T Pl-Holant(F ),

where 〈a′, b′, b′〉 is a succinct ternary signature of type τ3.

Proof Consider the gadget in Fig. 11.We assign 〈a, b, c〉 to the circle vertex and 〈x, y〉 to the
square vertices for some x, y ∈ C of our choice, to be determined shortly. By Lemma 11.6,
the succinct ternary signature of type τ3 for the resulting gadget is 〈a′, b′, c′〉, where

a′ − b′ = (x − y)2[2D + A(x − y)] and b′ − c′ = (x − y)2D

Fig. 11 Local holographic transformation gadget construction for a ternary signature
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withD = (b − c)(x − y) + By. We pick x = B + y and y = −(b − c) so that D = 0 and
thus b′ − c′ = 0. Then the first difference simplifies to a′ − b′ = AB3 �= 0. This signature
has the desired properties, so we are done. ��
The previous proof fails when A = 0 because such signatures are invariant set-wise

under this type of local holographic transformation. With the exception of a single point,
we can use this same gadget construction to reduce between any two of these points.

Lemma 7.2 Suppose κ ≥ 3 is the domain size and b, c, s, t ∈ C. Let F be a signature set
containing the succinct ternary signature 〈3b − 2c, b, c〉 of type τ3 and the succinct binary
signature 〈x, y〉 of type τ2 for all x, y ∈ C. If b �= c, 3b+ (κ −3)c �= 0, and 3s+ (κ −3)t �= 0,
then

Pl-Holant(F ∪ {〈3s − 2t, s, t〉}) ≤T Pl-Holant(F ),

where 〈3s − 2t, s, t〉 is a succinct ternary signature of type τ3.

Proof Consider the gadget in Fig. 11. We assign 〈3b − 2c, b, c〉 to the circle vertex and
〈x, y〉 to the square vertices for some x, y ∈ C of our choice, to be determined shortly. By
Lemma 11.6, the signature of this gadget is f = [x + (κ − 1)y]〈3b̂ − 2ĉ, b̂, ĉ〉, where

b̂ = bx2 + 2[2b + (κ − 3)c]xy + [(3κ − 5)b + (κ2 − 5κ + 6)c]y2 and

ĉ = cx2 + 2[3b + (κ − 4)c]xy + [(3κ − 6)b + (κ2 − 5κ + 7)c]y2.

We note that the difference b̂ − ĉ nicely factors as

b̂ − ĉ = (b − c)(x − y)2.

We pick x = y+ √
s − t so that b̂− ĉ = (b− c)(s − t) is the desired difference s − t up to

a nonzero factor of b − c. Then we want to set ĉ to be (b − c)t. With x = y + √
s − t, we

can simplify (b − c)t − ĉ to

(b − c)t − ĉ = −κ[3b + (κ − 3)c]y2 − 2
√
s − t[3b + (κ − 3)c]y + bt − cs. (9)

Since κ[3b+(κ−3)c] �= 0, (9) is a nontrivial quadratic polynomial in y, so we can set y such
that this expression vanishes. Then the signature is f = (b− c)[x+ (κ − 1)y]〈3s− 2t, s, t〉.
It remains to check that x + (κ − 1)y �= 0.
If x + (κ − 1)y = 0, then y = −

√
s−t
κ

. However, plugging this into (9) gives
(b−c)[3s+(κ−3)t]

k �= 0, so x + (κ − 1)y is indeed nonzero. ��
If A = 0 and 3b + (κ − 3)c = 0, then −3〈a, b, c〉 simplifies to c〈3(κ − 1), κ − 3,−3〉,

which is a failure condition of the previous lemma. The reason is that this signature is
pointwise invariant under such local holographic transformations. However, a different
ternary construction can reach this point.

Lemma 7.3 Suppose κ ≥ 3 is the domain size and b, c ∈ C. Let F be a signature set
containing the succinct ternary signature 〈3b − 2c, b, c〉 of type τ3 and the succinct binary
signature 〈x, y〉 of type τ2 for every x, y ∈ C. If b �= c, then

Pl-Holant(F ∪ {〈3(κ − 1), κ − 3,−3〉}) ≤T Pl-Holant(F ),

where 〈3(κ − 1), κ − 3,−3〉 is a succinct ternary signature of type τ3.
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Proof If 3b+ (κ − 3)c = 0, then up to a nonzero factor of −c
3 , 〈3b− 2c, b, c〉 is already the

desired signature. Otherwise, 3b + (κ − 3)c �= 0. By Lemma 7.2, we have 〈3s − 2t, s, t〉 for
any s, t ∈ C satisfying 3s + (κ − 3)t �= 0.
Consider the gadget in Fig. 12. We assign 〈3s − 2t, s, t〉 to vertices for some s, t ∈ C

satisfying 3s + (κ − 3)t �= 0 of our choice, to be determined shortly. By Lemma 11.4, the
signature of this gadget is 〈3s′ − 2t ′, s′, t ′〉, where

s′ = (5κ + 14)s3 + (κ2 + 9κ − 42)s2t + (7κ2 − 33κ+42)st2 + (κ − 2)(κ2 − 6κ+7)t3,

and

t ′ = (κ + 14)s3 + 21(κ − 2)s2t + 3(3κ2 − 15κ + 14)st2 + (κ3 − 9κ2 + 23κ − 14)t3.

It suffices to pick s and t satisfying 3s + (κ − 3)t �= 0 such that s′ = κ − 3 and t ′ = −3 up
to a common nonzero factor.
We note that the difference s′ − t ′ factors as

s′ − t ′ = κ(s − t)2[4s + (κ − 4)t].

We pick s = −(κ−4)t+1
4 so that s′ − t ′ = κ(s − t)2 is the desired difference κ up to a factor

of (s − t)2. Then we want to set t ′ to be −3(s − t)2. With s = −(κ−4)t+1
4 , we can simplify

−3(s − t)2 − t ′ to

− 3(s − t)2 − t ′ = 1
64
[
κ3(κ − 2)t3 − 3κ2(κ + 2)t2 + 3κ(κ − 10)t − (κ + 26)

]
. (10)

Since κ ≥ 3, (10) is a nontrivial cubic polynomial in t, so we can set t such that this
expression vanishes. Then 〈3s′ − 2t ′, s′, t ′〉 = (s − t)2〈3(κ − 1), κ − 3,−3〉. It remains to
check that s �= t and 3s + (κ − 3)t �= 0.
If s = t, then t = 1

κ
. Plugging this into (10) gives −1, so s �= t. If 3s + (κ − 3)t = 0, then

t = − 3
κ
. Plugging this into (10) gives 1 − κ �= 0, so 3s + (κ − 3)t �= 0. ��

7.2 Dose of an effective Siegel’s theorem and Galois theory

It suffices to show that 〈3(κ−1), κ−3,−3〉 is #P-hard for all κ ≥ 3.The general strategy is to
use interpolation. However, proving that this interpolation succeeds presents a significant
challenge.
Consider the polynomial p(x, y) ∈ Z[x, y] defined by

p(x, y) = x5 − 2x3y − x2y2 − x3 + xy2 + y3 − 2x2 − xy

= x5 − (2y + 1)x3 − (y2 + 2)x2 + y(y − 1)x + y3.

We consider y as an integer parameter y ≥ 4 and treat p(x, y) as an infinite family of
quintic polynomials in x with integer coefficients. We want to show that the roots of all

Fig. 12 Triangle gadget used to construct 〈3(κ − 1), κ − 3,−3〉
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these quintic polynomials satisfy the lattice condition. First, we determine the number of
real and nonreal roots.

Lemma 7.4 For any integer y ≥ 1, the polynomial p(x, y) in x has three distinct real roots
and two nonreal complex conjugate roots.

Proof Up to a factor of −4y2, the discriminant of p(x, y) (with respect to x) is

27y11 − 4y10 + 726y9 − 493y8 + 2712y7 − 400y6 − 2503y5

+ 475y4 + 956y3 − 904y2 + 460y + 104.

By replacing y with z + 1, we get

27z11 + 293z10 + 2171z9 + 10316z8 + 33334z7 + 77398z6 + 127383z5

+ 141916z4 + 102097z3 + 44373z2 + 10336z + 1156,

which is positive for any z ≥ 0. Thus, the discriminant is negative.
Therefore, p(x, y) has distinct roots in x for all y ≥ 1. Furthermore, with a negative

discriminant, p(x, y) has 2s nonreal complex conjugate roots for some odd integer s. Since
p(x, y) is a quintic polynomial (in x), the only possibility is s = 1. ��
We suspect that for any integer y ≥ 4, p(x, y) is in fact irreducible overQ as a polynomial

in x.When considering y as an indeterminate, the bivariate polynomialp(x, y) is irreducible
overQ and the algebraic curve it defines has genus 3, so by Theorem 1.2 in [50], p(x, y) is
reducible over Q for at most a finite number of y ∈ Z. For any integer y ≥ 4, if p(x, y) is
irreducible overQ as a polynomial in x, then its Galois group is S5 and its roots satisfy the
lattice condition.

Lemma 7.5 For any integer y ≥ 4, if p(x, y) is irreducible in Q[x], then the roots of p(x, y)
satisfy the lattice condition.

Proof By Lemma 7.4, p(x, y) has three distinct real roots and two nonreal complex con-
jugate roots. With three distinct real roots, we know that not all the roots have the same
complex norm. It is well known that an irreducible polynomial of prime degree n with
exactly two nonreal roots has Sn as a Galois group over Q (for example, Theorem 10.15
in [53]). Then we are done by Lemma 6.5. ��
We know of just five values of y ∈ Z for which p(x, y) is reducible as a polynomial in x:

p(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − 1)(x4 + x3 + 2x2 − x + 1) y = −1,

x2(x3 − x − 2) y = 0,

(x + 1)(x4 − x3 − 2x2 − x + 1) y = 1,

(x − 1)(x2 − x − 4)(x2 + 2x + 2) y = 2,

(x − 3)(x4 + 3x3 + 2x2 − 5x − 9) y = 3.

These five factorizations also give five integer solutions to p(x, y) = 0. It is a well-known
theorem of Siegel [52] that an algebraic curve of genus at least 1 has only a finite number
of integral points. For this curve of genus 3, Faltings’ theorem [31] says that there can
be only a finite number of rational points. However, these theorems are not effective in
general. There are some effective versions of Siegel’s theorem that can be applied to our
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polynomial, but the best effective bound that we can find is over 1020,000 [61] and hence
cannot be checked in practice.
However, it is shown in the next lemma that in fact these five are the only integer

solutions. In particular, for any integer y ≥ 4, p(x, y) does not have a linear factor in
Z[x], and hence by Gauss’s Lemma, also no linear factor in Q[x]. The following proof
is essentially due to Aaron Levin [46]. We thank Aaron for suggesting the key auxiliary
function g2(x, y) = y2

x + y− x2 + 1, as well as for his permission to include the proof here.
We also thank Bjorn Poonen [51] who suggested a similar proof. After the proof, we will
explain certain complications in the proof.

Lemma 7.6 The only integer solutions to p(x, y) = 0 are (1,−1), (0, 0), (−1, 1), (1, 2), and
(3, 3).

Proof Clearly these five points are solutions to p(x, y) = 0. For a ∈ Z with −3 < a < 17,
one can directly check that p(a, y) = 0 has no other integer solutions in y.
Let (a, b) ∈ Z2 be a solution to p(x, y) = 0 with a �= 0. We claim a | b2. By definition of

p(x, y), clearly a | b3. If p is a prime that divides a, then let ordp(a) = e and ordp(b) = f
be the exact orders with which p divides a and b, respectively. Then f ≥ 1 since 3f ≥ e
and our claim is that 2f ≥ e. Suppose for a contradiction that 2f < e. From p(a, b) = 0,
we have

a2(a3 − 2ab − a − b2 − 2) = −b3 − ab(b − 1).

The order with respect to p of the left-hand side is

ordp
(
a2(a3 − 2ab − a − b2 − 2)

) ≥ ordp
(
a2
) = 2e.

Since p is relatively prime to b−1, ordp (ab(b − 1)) = e+ f > 3f , and therefore, the order
of the right-hand side with respect to p is

ordp
(−b3 − ab(b − 1)

) = ordp(b3) = 3f.

However, 2e > 3f , a contradiction. This proves the claim.
Now consider the functions g1(x, y) = y − x2 and g2(x, y) = y2

x + y − x2 + 1. Whenever
(a, b) ∈ Z2 is a solution to p(x, y) = 0 with a �= 0, g1(a, b) and g2(a, b) are integers.
However, we show that if a ≤ −3 or a ≥ 17, then either g1(a, b) or g2(a, b) is not an
integer.
Let c2 = −(x − 1)x, c1 = −x(2x2 + 1), and c0 = x2(x3 − x − 2) so that p(x, y) =

y3 + c2y2 + c1y + c0. Then the discriminant of p(x, y) with respect to y is

discy(p(x, y)) = c22c
2
1 − 4c31 − 4c32c0 − 27c20 + 18c2c1c0

= (x − 1)x3(4x7 + 5x6 + x5 + 45x4 + 151x3 + 163x2 + 67x − 4). (11)

Suppose x ≤ −3. Replacing x with −z − 1 in (11) gives

−(z + 1)3(z + 2)(4z7 + 23z6 + 55z5 + 25z4 + 21z3 + 39z2 + 17z + 14).

This is clearly negative (for z ≥ 0), so (11) is negative. Thus p(x, y) only has one real
root as a polynomial in y. Let y1(x) be that root and consider y−

1 (x) = x2 + 2x−1 and
y+
1 (x) = x2 + 2x−1 + 2x−2. We have p(x, y−

1 (x)) = −2x2 + 6 + 4x−1 + 8x−3 < 0. Also
p(x, y+

1 (x)) = 6 + 18x−1 + 16x−2 + 12x−3 + 24x−4 + 24x−5 + 8x−6 > 0.
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Hence, y−
1 (x) < y1(x) < y+

1 (x), and all three are positive since y
−
1 (x) is positive. Then for

x ≤ −3,

−1 < 2x−1 = g1(x, y−
1 (x)) < g1(x, y1(x)) < g1(x, y+

1 (x)) = 2x−1 + 2x−2 < 0,

so g1(x, y1(x)) is not an integer. Therefore, y1(x), the only real root for any integer x ≤ −3,
is not an integer.
Now suppose x ≥ 17. Then (11) is positive, and there are three distinct real roots. Similar

to the previous argument, we have p(x, y−
1 (x)) < 0 and p(x, y+

1 (x)) > 0. Hence, there is
some root y1(x) in the open interval (y−

1 (x), y
+
1 (x)). All three terms y−

1 (x) < y1(x) < y+
1 (x)

are positive because y−
1 (x) > 0. Then

0 < 2x−1 = g1(x, y−
1 (x)) < g1(x, y1(x)) < g1(x, y+

1 (x)) = 2x−1 + 2x−2 < 1,

so g1(x, y1(x)) is not an integer.
There are two more real roots. Consider

y−
2 (x) = x3/2 − 1

2
x + 1

8
x1/2 − 65

128
x−1/2 − 2x−1 and

y+
2 (x) = x3/2 − 1

2
x + 1

8
x1/2 − 65

128
x−1/2.

Replacing x with (z + 2)2 in

p(x, y−
2 (x)) = 2x5/2 − 2495

512
x2 + 1087

512
x3/2 − 19569

16384
x − 8579

16384
x1/2 + 126847

32768

+ 1452419
131072

x−1/2 − 317
256

x−1 + 2871103
2097152

x−3/2 − 12675
8192

x−2

− 195
32

x−5/2 − 8x−3

gives
1

2097152(z + 2)6

×
⎛

⎜
⎝

4194304z11 + 82055168z10 + 722808832z9 + 3774605184z8

+ 12935149184z7 + 30375187136z6 + 49489164080z5 + 55372934880z4

+ 41238374079z3 + 19431701370z2 + 5465401844z + 812262392

⎞

⎟
⎠,

which is clearly positive (z ≥ 0). Thus, p(x, y−
2 (x)) > 0. Also

p(x, y+
2 (x)) = −2x5/2 − 447

512
x2 − 193

512
x3/2 − 3185

16384
x + 20605

16384
x1/2 − 4225

32768

+ 12675
131072

x−1/2 − 274625
2097152

x−3/2 < 0.

Hence, there is some root y2(x) in the open interval (y−
2 (x), y

+
2 (x)). All three terms y−

2 (x) <

y2(x) < y+
2 (x) are positive because y

−
2 (x) > 0. Hence, for x ≥ 17,

−1 < − 4x−1/2 − 65
512

x−1 − 1
2
x−3/2 + 4225

16384
x−2 + 65

32
x−5/2 + 4x−3

= g2(x, y−
2 (x)) < g2(x, y2(x)) < g2(x, y+

2 (x)) = − 65
512

x−1 + 4225
16384

x−2 < 0,

so g2(x, y2(x)) is not an integer.
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Finally, consider

y−
3 (x) = −x3/2 − 1

2
x − 1

8
x1/2 + 65

128
x−1/2 − x−1 and

y+
3 (x) = −x3/2 − 1

2
x − 1

8
x1/2 + 65

128
x−1/2 − 1

2
x−1.

We have

p(x, y−
3 (x)) = − 1471

512
x2 − 447

512
x3/2 − 11377

16384
x − 6013

16384
x1/2 + 94079

32768
− 339331

131072
x−1/2

− 61
512

x−1 − 511807
2097152

x−3/2 − 12675
16384

x−2 + 195
128

x−5/2 − x−3

< 0.

Replacing x with (z + 3)2 in

p(x, y+
3 (x)) = x5/2 − 959

512
x2 − 127

512
x3/2 − 7281

16384
x − 13309

16384
x1/2+ 53119

32768
− 77699
131072

x−1/2

+ 67
1024

x−1 + 78017
2097152

x−3/2 − 12675
32768

x−2 + 195
512

x−5/2 − 1
8
x−3

gives

1
2097152(z + 3)6

×
⎛

⎜
⎝

2097152z11 + 65277952z10 + 919728128z9 + 7736969088z8

+ 43137332608z7+167175471424z6+458797435600z5+889807335920z4

+1191781601633z3+1045691960361z2+537771428331z+121660965323

⎞

⎟
⎠,

which is clearly positive (z ≥ 0). Thus, p(x, y+
3 (x)) > 0. Hence, there is some root y3(x)

in the open interval (y−
3 (x), y

+
3 (x)). All three terms y−

3 (x) < y3(x) < y+
3 (x) are negative

because y+
3 (x) < 0. Furthermore, the partial derivative ∂g2(x,y)

∂y = 2x−1y+ 1 and ∂2g2(x,y)
∂y2 =

2x−1 > 0. Thus, ∂g2(x,y)
∂y ≤ ∂g2(x,y)

∂y |y=y+3 (x)
= −2x1/2 − 1

4x
−1/2 + 65

64x
−3/2 − x−2 < 0,

for all y ∈ (−∞, y+
3 (x)]. Thus, g2(x, y) is decreasing monotonically in y over the interval

(−∞, y+
3 (x)]. Then

0 < x−1/2 − 65
512

x−1 + 1
8
x−3/2 + 4225

16384
x−2 − 65

128
x−5/2 + 1

4
x−3

= g2(x, y+
3 (x)) < g2(x, y3(x)) < g2(x, y−

3 (x))

= 2x−1/2 − 65
512

x−1 + 1
4
x−3/2 + 4225

16384
x−2 − 65

64
x−5/2 + x−3 < 1,

so g2(x, y3(x)) is not an integer. To complete the proof, notice that the intervals
(y−

1 (x), y
+
1 (x)), (y

−
2 (x), y

+
2 (x)), and (y−

3 (x), y
+
3 (x)) are disjoint. Therefore, we have shown

that none of the three roots is an integer for any integer x ≥ 17. ��

Remark One can obtain the Puiseux series expansions for p(x, y), which are

y1(x) = x2 + 2x−1 + 2x−2 − 6x−4 − 18x−5 + O(x−6) for x ∈ R,

y2(x) = x3/2 − 1
2x + 1

8x
1/2 − 65

128x
−1/2 − x−1 − 1471

1024 x
−3/2 − x−2 + O(x−5/2) for x > 0, and

y3(x) = −x3/2 − 1
2x − 1

8x
1/2 + 65

128x
−1/2 − x−1 + 1471

1024 x
−3/2 − x−2 + O(x−5/2) for x > 0.
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These series converge to the actual roots of p(x, y) for large x. The basic idea of the proof—
called Runge’s method—is that, for example, when we substitute y2(x) in g2(x, y), we get
g2(x, y2(x)) = O(x−1/2), where the multiplier in the O-notation is bounded both above
and below by a nonzero constant in absolute value. Thus, for large x, this cannot be an
integer. However, for integer solutions (x, y) of p(x, y), this must be an integer.
We note that the expressions for the y+

i (x) and y−
i (x) are the truncated or rounded

Puiseux series expansions. The reason we discuss y+
i (x) and y−

i (x) is because we want to
prove an absolute bound, instead of the asymptotic bound implied by the O-notation.

By Lemma 7.6, if p(x, y) is reducible over Q as a polynomial in x for any integer y ≥ 4,
then the onlyway it can factor is as a product of an irreducible quadratic and an irreducible
cubic. The next lemma handles this possibility.

Lemma 7.7 For any integer y0 ≥ 4, if p(x, y0) is reducible overQ, then the roots of p(x, y0)
satisfy the lattice condition.

Proof Let q(x) = p(x, y0) for a fixed integer y0 ≥ 4. Suppose that q(x) = f (x)g(x), where
f (x), g(x) ∈ Q[x] are monic polynomials of degree at least 1. By Lemma 7.6, the degree
of each factor must be at least 2. Then without loss of generality, let f (x) and g(x) be
quadratic and cubic polynomials, respectively, both of which are irreducible over Q. By
Gauss’ Lemma, we can further assume f (x), g(x) ∈ Z[x].
Let Qf and Qg denote the splitting fields over Q of f and g , respectively. Suppose α,β

are the roots of f (x) and γ , δ, ε are the roots of g(x). Of course none of these roots are 0.
Suppose there exist i, j, k,m, n ∈ Z such that

αiβ j = γ kδmεn and i + j = k + m + n. (12)

We want to show that i = j = k = m = n = 0.
We first show that if i = j and k = m = n, then i = j = k = m = n = 0. By (12), we

have (αβ)i = (γ δε)k and 2i = 3k . Suppose i �= 0, then also k �= 0. We can write i = 3t
and k = 2t for some nonzero t ∈ Z. Let A = αβ and B = γ δε. Then, both A and B are
integers and AB = y30. From A3t = B2t , we have A3 = ±B2. Then y60 = A2B2 = ±A5, and
since y0 > 3, there is a nonzero integer s > 1 such that y0 = s5. This implies A = ±s6 and
B = ±s9 (with the same ± sign). Then f (x) = x2 + c1x ± s6, g(x) = x3 + c′2x2 + c′1x ± s9,
and q(x) = x5 − (2s5 + 1)x3 − (s10 + 2)x2 + s5(s5 − 1)x+ s15. We consider the coefficient
of x in q(x) = f (x)g(x). This is s10 − s5 = ±c′1s6 ± c1s9. Since s > 1, there is a prime p
such that pu | s and pu+1 � | s, for some u ≥ 1. But then p6u divides s5 = s10 ± c′1s6 ± c1s9.
This is a contradiction. Hence, i = j and k = m = n imply i = j = k = m = n = 0.
Now we claim that ω = α/β is not a root of unity. For a contradiction, suppose that ω

is a primitive dth root of unity. Since ω ∈ Qf , which is a degree 2 extension over Q, we
have φ(d) | 2, where φ(·) is Euler’s totient function. Hence, d ∈ {1, 2, 3, 4, 6}. The quadratic
polynomial f (x) has the form x2 − (1 + ω)βx + ωβ2 ∈ Z[x]. Hence, r = (1+ω)

ωβ
∈ Q. We

prove the claim separately according to whether r = 0 or not.
If r = 0, then ω = −1 and d = 2. In this case, f (x) has the form x2 + a for some a ∈ Z.

It is easy to check that q(x) has no such polynomial factor in Z[x] unless y0 = 0. In fact,
suppose x2+a | q(x) inZ[x]. Then q(x) = (x2+a)(x3+bx+c) since the coefficient of x4 in
q(x) is 0. Also a+b = −(2y0+1), c = −(y20+2), ab = y0(y0−1) and ac = y30. It follows that
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a and b are the two roots of the quadratic polynomial X2 + (2y0 + 1)X + y20 − y0 ∈ Z[X].
Since a, b ∈ Z, the discriminant 8y0 + 1 must be a perfect square, and in fact an odd
perfect square (2z − 1)2 for some z ∈ Z. Thus, y0 = z(z − 1)/2. By the quadratic formula,
a = −y0 + z − 1 or −y0 − z. On the other hand, a = ac/c = −y30/(y

2
0 + 2). In both cases,

this leads to a polynomial in z inZ[z] that has no integer solutions other than z = 0, which
gives y0 = 0.
Now suppose r �= 0. Plugging r back in f (x), we have f (x) = x2 − (2+ ω + ω−1)r−1x +

(2 + ω + ω−1)r−2. The quantity 2 + ω + ω−1 = 4, 1, 2, 3 when d = 1, 3, 4, 6, respectively.
Since (2+ω +ω−1)r−2 ∈ Z, the rational number r−1 must be an integer when d = 3, 4, 6
and half an integer when d = 1. In all cases, it is easy to check that a polynomial f (x) of
the specified form does not divide q(x) unless y = 0 or y = −1. Thus, we have proved the
claim that ω = α/β is not a root of unity.
Next consider the case that f (x) is irreducible over Qg . Let E be the splitting field of f

over Qg . Then, [E : Qg ] = 2. Therefore, there exists an automorphism τ ∈ Gal(E/Qg )
that swaps α and β but fixes Qg and thus fixes γ , δ, ε pointwise. By applying τ to (12), we
have αjβ i = γ kδmεn. Dividing by (12) gives (α/β)j−i = 1. Since α/β is not a root of unity,
we get i = j. Hence, we have (αβ)i = γ kδmεn. The order of Gal(Qg/Q) is [Qg : Q], which
is divisible by 3. Thus, Gal(Qg/Q) ⊆ S3 contains an element of order 3, which must act as
a 3-cycle on γ , δ, ε. Since αβ ∈ Q, applying this cyclic permutation gives (αβ)i = γmδnεk .
Therefore, γ k−mδm−nεn−k = 1. Notice that (k − m) + (m − n) + (n − k) = 0.
It can be directly checked that q(x) is not divisible by any x3 + c ∈ Z[x],
and therefore by Lemma 6.4, the roots γ , δ, ε of the cubic polynomial g(x) satisfy the

lattice condition. Therefore, k = m = n. Again, we have shown that i = j and k = m = n
imply i = j = k = m = n = 0.
The last case is when f (x) splits in Qg [x]. Then Qf is a subfield of Qg , and 2 = [Qf :

Q]|[Qg : Q]. Therefore, [Qg : Q] = 6 and Gal(Qg/Q) = S3. Since Qf is normal over Q,
being a splitting field of a separable polynomial in characteristic 0, by the fundamental
theorem of Galois theory, the corresponding subgroup for Qf is Gal(Qg/Qf ), which is
a normal subgroup of S3 with index 2. Such a subgroup of S3 is unique, namely A3. In
particular, the transposition τ ′ that swaps γ and δ but fixes ε is an element inGal(Qg/Q) =
S3 but not in Gal(Qg/Qf ) = A3. This transposition must fix α and β setwise but not
pointwise. Hence, it must swap α and β .
By applying τ ′ to (12), we have αjβ i = γmδkεn. Then dividing these two equations

gives (α/β)i−j = (δ/γ )m−k . Similarly, by considering the transposition that switches γ

and ε and fixes δ, we get (α/β)i−j = (γ /ε)k−n. By combining these two equations, we have
γ n−mδm−kεk−n = 1. Note that (n − m) + (m − k) + (k − n) = 0.
As we noted above, the roots of the irreducible g(x) satisfy the lattice condition, so we

conclude that k = n = m. From (α/β)i−j = (δ/γ )m−k = 1, we get i = j since α/β is not
a root of unity. We conclude that i = j = k = m = n = 0, so the roots of q(x) satisfy the
lattice condition. ��

Even though p(x, 3) = (x− 3)(x4 + 3x3 + 2x2 − 5x− 9) is reducible, its roots still satisfy
the lattice condition. To show this, we utilize a few results, Theorem 7.8, Lemma 7.9, and
Lemma 7.10.
The first is a well-known theorem of Dedekind.
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Theorem 7.8 (Theorem 4.37 [40]) Suppose f (x) ∈ Z[x] is a monic polynomial of degree
n. For a prime p, let fp(x) be the corresponding polynomial in Zp[x]. If fp(x) has distinct
roots and factors over Zp[x] as a product of irreducible factors with degrees d1, d2, . . . , dr ,
then the Galois group of f overQ contains an element with cycle type (d1, d2, . . . , dr ).

With the second result, we can show that x4 + 3x3 + 2x2 − 5x − 9 has Galois group S4
overQ.

Lemma 7.9 (Lemma on page 98 in [33]) For n ≥ 2, let G be a subgroup of Sn. If G is
transitive, contains a transposition and contains a p-cycle for some prime p > n/2, then
G = Sn.

In the contrapositive, the third result shows that the roots of x4 + 3x3 + 2x2 − 5x − 9
do not all have the same complex norm.

Lemma 7.10 (Lemma D.2 in [17]) If all roots of x4 +a3x3 +a2x2 +a1x+a0 ∈ C[x] have
the same complex norm, then a2|a1|2 = |a3|2a2a0.

Theorem 7.11 The roots of p(x, 3) = (x − 3)(x4 + 3x3 + 2x2 − 5x − 9) satisfy the lattice
condition.

Proof Let f (x) = x4 + 3x3 + 2x2 − 5x − 9 and let Gf be the Galois group of f overQ. We
claim that Gf = S4. As a polynomial over Z5, f (x) ≡ x4 + 3x3 + 2x2 + 1 is irreducible, so
f (x) is also irreducible over Z. By Gauss’ Lemma, this implies irreducibility over Q. Over
Z13, f (x) factors into the product of irreducibles (x2 + 7)(x + 6)(x + 10) and clearly has
distinct roots, so by Theorem 7.8, Gf contains a transposition. Over Z3, f (x) factors into
the product of irreducibles x(x3+2x+1) and has distinct roots because its discriminant is
1 �≡ 0 (mod 3), so by Theorem 7.8, Gf contains a 3-cycle. Then by Lemma 7.9, Gf = S4.
Let α,β , γ , δ be the roots of f (x). Suppose there exist i, j, k, 
, n ∈ Z satisfying n =

i + j + k + 
 such that 3n = αiβ jγ kδ
. Now Gf = S4 contains the 4-cycle (1 2 3 4) that
cyclically permutes the roots of f (x) but fixes Q. We apply it zero, one, two, and three
times to get

3n = αiβ jγ kδ
,

= β iγ jδkα
,

= γ iδjαkβ
, and

= δiαjβkγ 
.

Then 34n = (αβγ δ)i+j+k+
 = (−9)i+j+k+
. Since n = i + j + k + 
, this can only hold
when n = 0.
Thus, it suffices to show that the roots of f (x) satisfy the lattice condition. By the

contrapositive of Lemma 7.10, the roots of f (x) do not all have the same complex norm.
Then we are done by Lemma 6.5. ��

From Lemma 7.5, Lemma 7.7, and Theorem 7.11, we obtain the following Theorem.

Theorem 7.12 For any integer y0 ≥ 3, the roots of p(x, y0) satisfy the lattice condition.
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We use Theorem 7.12 to prove Lemma 7.14. We note that the succinct signature type
τ4 is a refinement of τcolor, so any succinct signature of type τcolor can also be expressed
as a succinct signature of type τ4. In particular, the succinct signature 〈2, 1, 0, 1, 0〉 of type
τcolor is written 〈2, 0, 1, 0, 0, 0, 1, 0, 0〉 of type τ4. Then the following is a restatement of
Corollary 4.7.

Corollary 7.13 Suppose κ ≥ 3 is the domain size. Let 〈2, 0, 1, 0, 0, 0, 1, 0, 0〉 be a succinct
quaternary signature of type τ4 . Then Pl-Holant(〈2, 0, 1, 0, 0, 0, 1, 0, 0〉) is #P-hard.

Lemma 7.14 Suppose κ ≥ 4 is the domain size. Then Pl-Holant(〈3(κ − 1), κ − 3,−3〉) is
#P-hard.

Proof Let 〈2, 0, 1, 0, 0, 0, 1, 0, 0〉 be a succinct quaternary signature of type τ4. We reduce
from Pl-Holant(〈2, 0, 1, 0, 0, 0, 1, 0, 0〉), which is #P-hard by Corollary 7.13.
Consider the gadget in Fig. 13. We assign 〈3(κ − 1), κ − 3,−3〉 to the vertices. By

Lemma 11.3, the signature of this gadget is f = 〈 f 1 1
1 1
, f 1 2

1 1
, f 1 2

1 2
, f 1 3

1 2
, f 1 2

2 1
, f 1 3

2 1
, f 1 1

2 2
, f 1 1

2 3
, f 1 4

2 3
〉

up to a nonzero factor of κ , where

f 1 1
1 1

= (κ − 1)(κ + 3),

f 1 2
1 1

= κ − 3,

f 1 2
1 2

= 2κ − 3,

f 1 3
1 2

= κ − 3,

f 1 2
2 1

= 2κ − 3,

f 1 3
2 1

= κ − 3,

f 1 1
2 2

= (κ − 3)(κ + 1),

f 1 1
2 3

= κ − 3, and

f 1 4
2 3

= −3.

Now consider the recursive construction in Fig. 14. We assign f to every vertex. Up to
a nonzero factor of κs, let gs be the succinct signature of type τ4 for the sth gadget in this
construction. Then g0 = 〈1, 0, 0, 0, 0, 0, 1, 0, 0〉 and gs = Msg0, where M is the matrix in
Table 1.
The row vectors

(0, 0, 0, 0,−1, 0, 0, 0, 1),

(0,−1, 0, 1,−1, 0, 0, 1, 0),

(−1, 0, 1, 0,−1, 0, 1, 0, 0), and

(0, 0, 0, 0,−1, 1, 0, 0, 0)

Fig. 13 Quaternary gadget used in the interpolation construction below. All vertices are assigned
〈3(κ − 1), κ − 3,−3〉
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N0

N
s

Ns+1

Fig. 14 Recursive construction to interpolate the weighted Eulerian partition signature. The vertices are
assigned the signature of the gadget in Fig. 13

are linearly independent row eigenvectors of M, all with eigenvalue κ3, that are orthog-
onal to the initial signature g0. Note that our target signature 〈2, 0, 1, 0, 0, 0, 1, 0, 0〉 is also
orthogonal to these four row eigenvectors.
Up to a factor of (x − κ3)4, the characteristic polynomial ofM is

h(x, κ) = x5−κ6(2κ−1)x3−κ9(κ2−2κ+3)x2+(κ−2)(κ−1)κ12x+(κ−1)3κ15.

Since h(κ3, κ) = (κ − 3)κ17 and κ ≥ 4, we know that κ3 is not a root of h(x, κ) as a
polynomial in x. Thus, none of the remaining eigenvalues are κ3. The roots of h(x, κ)
satisfy the lattice condition iff the roots of

h̃(x, κ) = 1
κ15 h(κ

3x, κ)

= x5 − (2κ − 1)x3 − (κ2 − 2κ + 3)x2 + (κ − 2)(κ − 1)x + (κ − 1)3

satisfy the lattice condition. In h̃(x, κ), we replace κ by y + 1 to get p(x, y) = x5 − (2y +
1)x3 − (y2 + 2)x2 + (y − 1)yx + y3. By Theorem 7.12, the roots p(x, y0) satisfy the lattice
condition for any integer y0 ≥ 3. Thus, the roots of h̃(x, κ) satisfy the lattice for any κ ≥ 4.
In particular, this means that the five eigenvalues of M different from κ3 are distinct, so
M is diagonalizable.
The 5-by-5 matrix in the upper-left corner of [g0 Mg0 . . . M8g0] is
⎡

⎢
⎢
⎣

1 9(κ−1)2κ (κ−1)κ4(κ3−3κ2+11κ+3) (κ−1)κ7(κ3+12κ2−11κ+6) (κ−1)κ10(κ4+4κ3−4κ2+44κ−33)
0 3(κ−3)(κ−1)κ −(κ−3)κ4(κ2−2κ−1) (κ−3)κ7(3κ2−3κ+2) (κ−3)κ10(κ3−4κ2+16κ−11)
0 9(κ−1)2κ κ4(κ4−4κ3+6κ2+4κ−3) κ7(15κ3−28κ2+11κ−6) κ10(κ5+3κ4−22κ3+72κ2−83κ+33)
0 3(κ−3)(κ−1)κ −(κ−3)(κ−1)κ4(κ+1) 2(κ−3)κ7(2κ2−κ+1) (κ−3)(κ−1)κ10(κ2−6κ+11)
0 (κ−3)2κ (κ−3)κ4(κ+1) (κ−3)κ7(κ2−κ+2) (κ−3)κ10(κ3−2κ2+10κ−11)

⎤

⎥
⎥
⎦ .

Its determinant is (κ − 3)3(κ − 1)2κ26(κ4 + κ3 + 17κ2 + 3κ + 2), which is nonzero since
κ ≥ 4. Thus, [g0 Mg0 . . . M8g0] has rank at least 5, so by Lemma 6.2, g0 is not orthogonal
to the five remaining row eigenvectors ofM.
Therefore, by Lemma 6.6, we can interpolate 〈2, 0, 1, 0, 0, 0, 1, 0, 0〉, which completes the

proof. ��
When κ = 3, 〈3(κ − 1), κ − 3,−3〉 simplifies to −3〈−2, 0, 1〉. We have a much simpler

proof that this signature is #P-hard.

Lemma 7.15 Suppose the domain size is 3. Then Pl-Holant(〈−2, 0, 1〉) is #P-hard.
Proof Let g = 〈2, 0, 1, 0, 0, 0, 1, 0〉 be a succinct quaternary signature of type τ4.We reduce
from Pl-Holant(g), which is #P-hard by Corollary 7.13.
Consider the gadget in Fig. 15. The vertices are assigned 〈−2, 0, 1〉. Up to a factor of 9,

the signature of this gadget is g , as desired. ��
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⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
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Fig. 15 Square gadget used to construct the weighted Eulerian partition signature

We summarize this sectionwith the following result.With all succinct binary signatures
of type τ2 available as well as the succinct unary signature 〈1〉 of type τ1, any succinct
ternary signature 〈a, b, c〉 of type τ3 satisfyingB �= 0 is #P-hard.

Lemma 7.16 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let F be a signature set
containing the succinct ternary signature 〈a, b, c〉 of type τ3, the succinct unary signature
〈1〉 of type τ1, and the succinct binary signature 〈x, y〉 of type τ2 for all x, y ∈ C. If B �= 0,
then Pl-Holant(F ) is #P-hard.

Proof Suppose A �= 0. By Lemma 7.1, we have a succinct ternary signature 〈a′, b′, b′〉 of
type τ3 with a′ �= b′. Then we are done by Corollary 4.19.
Otherwise, A = 0. SinceB �= 0, we have b �= c. By Lemma 7.3, we have 〈3(κ − 1), κ −

3,−3〉. If κ ≥ 4, then we are done by Lemma 7.14. Otherwise, κ = 3 and we are done by
Lemma 7.15. ��

8 Constructing a nonzero unary signature
The primary goal of this section is to construct the succinct unary signature 〈1〉 of type
τ1. However, this is not always possible. For example, the succinct ternary signature
〈0, 0, 1〉 = AD3,3 of type τ3 (on domain size 3) cannot construct 〈1〉. This follows from
the parity condition (Lemma 4.4). In such cases, we show that the problem is either
computable in polynomial time or #P-hard without the help of additional signatures.
Lemma 8.1 handles two easy cases for which it is possible to construct 〈1〉.

Lemma 8.1 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let F be a signature
set containing the succinct ternary signature 〈a, b, c〉 of type τ3. If a + (κ − 1)b �= 0 or
[2b + (κ − 2)c][b2 − 4bc − (κ − 3)c2] �= 0, then

Pl-Holant(F ∪ {〈1〉}) ≤T Pl-Holant(F ),

where 〈1〉 is a succinct unary signature of type τ1.

Proof Suppose a+ (κ − 1)b �= 0. Consider the gadget in Fig. 16a. We assign 〈a, b, c〉 to its
vertex. By Lemma 11.1, this gadget has the succinct unary signature 〈u〉 of type τ1, where
u = a + (κ − 1)b. Since u �= 0, this signature is equivalent to 〈1〉.

(a) (b)

Fig. 16 Two simple unary gadgets a is a simple self-loop and b contains parallel edges
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Otherwise, a + (κ − 1)b = 0, and [2b + (κ − 2)c][b2 − 4bc − (κ − 3)c2] �= 0. Consider
the gadget in Fig. 16b. We assign 〈a, b, c〉 to all three vertices. By Lemma 11.1, this gadget
has the succinct unary signature 〈u′〉 of type τ1, where u′ = −(κ − 1)(κ − 2)[2b + (κ −
2)c][b2 − 4bc − (κ − 3)c2]. Since u′ �= 0, this signature is equivalent to 〈1〉. ��
One of the failure conditions of Lemma 8.1 is when both a+ (κ −1)b = 0 and b2−4bc−

(κ −3)c2 = 0 hold. In this case, 〈a, b, c〉 = c〈−(κ −1)(2±√
κ + 1), 2±√

κ + 1, 1〉. If c = 0,
then a = b = c = 0 and the signature is trivial. Otherwise, c �= 0. Then up to a nonzero
factor of c, this signature further simplifies to AD3,3 by taking the minus sign when κ = 3.
Just like AD3,3, we show (in Lemma 8.2) that all of these signatures are #P-hard.
Similar to the proof of Theorem 4.8, we prove the hardness in Lemma 8.2 by reducing

from counting weighted Eulerian partitions.

Lemma 8.2 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If a + (κ − 1)b = 0 and b2 − 4bc − (κ − 3)c2 = 0, then

〈a, b, c〉 = c〈−(κ − 1)(2 + ε
√

κ + 1), 2 + ε
√

κ + 1, 1〉,
where ε = ±1, and Pl-Holant(〈a, b, c〉) is #P-hard unless c = 0, in which case, the problem
is computable in polynomial time.

Proof If c = 0, then a = b = c = 0 so the output is always 0. Otherwise, c �= 0. Up to
a nonzero factor of c, 〈a, b, c〉 can be written as 〈−(κ − 1)(2 + ε

√
κ + 1), 2 + ε

√
κ + 1, 1〉

under the given assumptions, where ε = ±1.
Suppose κ = 3. If ε = −1, then we have 〈0, 0, 1〉 = AD3,3 and we are done by Theo-

rem 4.8. Otherwise, ε = 1 and we have 〈8,−4,−1〉. Let T = 1
3

[ 1 −2 −2
−2 1 −2
−2 −2 1

]
, which is an

orthogonal matrix. It follows from Theorem 3.3 and Lemma 11.6 that

Pl-Holant(〈8,−4,−1〉) ≡T Pl-Holant(T⊗3〈8,−4,−1〉) ≡T Pl-Holant(〈0, 0, 1〉),
so again we are done by Theorem 4.8.
Nowwe suppose κ ≥ 4. Let g = 〈2, 0, 1, 0, 0, 0, 1, 0, 0〉 be a succinct quaternary signature

of type τ4. We reduce from Pl-Holant(g) to Pl-Holant(〈a, b, c〉). Then by Corollary 7.13,
Pl-Holant(〈a, b, c〉) is #P-hard. We write this signature as 〈−(κ − 1)γ , γ , 1〉, where γ =
2+ ε

√
κ + 1. Consider the gadget in Fig. 17. We assign 〈−(κ − 1)γ , γ , 1〉 to both vertices.

By Lemma 11.3, up to a nonzero factor of γ − 1, this gadget has the succinct quaternary
signature f of type τ4, where

f = 〈
(κ − 1)(γ − 3)γ 2, −(κ − 2)γ , 3γ − 1, 2γ , 3γ − 1, 2γ ,

−(γ − 3)γ 2, 2γ , γ + 1
〉
.

Now consider the recursive construction in Fig. 6. We assign f to all vertices. Let fs
be the succinct signature of type τ4 for the sth gadget in this recursive construction.

Fig. 17 Quaternary gadget used in the interpolation construction below. All vertices are assigned
〈−(κ − 1)γ , γ , 1〉
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The initial signature, which is just two parallel edges, has the succinct signature f0 =
〈1, 0, 0, 0, 0, 0, 1, 0, 0〉 of type τ4. We can express fs as Ms f0, where M is the matrix in
Table 2.
Consider an instance � of Pl-Holant(g). Suppose g appears n times in �. We construct

from � a sequence of instances �s of Pl-Holant(f ) indexed by s ≥ 0. We obtain �s from
� by replacing each occurrence of g with the gadget fs.
We can expressM as (γ − 1)3P−1�P, where P is the matrix in Table 3,

� = diag(−1,−1,−1,−1, κ − 2, κ − 2, κ − 1, κ − 1, λ),

and λ = (κ−2)(κ+2γ−4)
(γ−1)2 . The rows of P are linearly independent since

det(P) = (κ − 1)(κ − 2)2(γ − 1)6(γ − 3)3γ �= 0.

For 1 ≤ i ≤ 9, let ri be the ith row of P. Notice that the initial signature f0 and the
target signature g are orthogonal to the same set of row eigenvectors of M, namely
{r1, r2, r3, r5, r7, r9}. Up to a common factor of (γ − 1)3, the eigenvalues for M corre-
sponding to r4, r6, and r8 (the three row eigenvectors ofM not orthogonal to f0) are −1,
κ −2, and κ −1, respectively. Since κ ≥ 4, κ −2 and κ −1 are relatively prime and greater
than 1, so these three eigenvalues satisfy the lattice condition. Thus by Lemma 6.6, we can
interpolate g as desired. ��

Remark Although the matrices in Table 2 and Table 3 seem large, they are probably
the smallest possible to succeed in this recursive quaternary construction. In fact, for
quaternary signatures one would normally expect these matrices to be even larger since
there are typically fifteen different entries in a domain invariant signature of arity 4.

The other failure condition of Lemma 8.1 is when both a+ (κ − 1)b = 0 and 2b+ (κ −
2)c = 0 hold. In this case, 〈a, b, c〉 = c〈(κ − 1)(κ − 2),−(κ − 2), 2〉. If this signature is
connected to 〈1〉, then the first entry of the resulting succinct binary signature of type τ2 is
(κ −1)(κ −2) ·1− (κ −2) · (κ −1) = 0 while the second entry is−(κ −2) ·2+2 · (κ −2) = 0.
That is, the resulting binary signature is identically 0. This suggests we apply a holographic
transformation such that the support of the resulting signature is only on κ − 1 of the
domain elements.
If c = 0, then a = b = c = 0 and the signature is trivial. Otherwise, c �= 0. If κ = 3, then

up to a nonzero factor of c, this signature further simplifies to 〈2,−1, 2〉, which is tractable
by case 3 of Corollary 5.2. Otherwise, κ ≥ 4, and we show the problem is #P-hard.

Lemma 8.3 Suppose κ ≥ 4 is the domain size. Let f = 〈(κ − 1)(κ − 2),−(κ − 2), 2〉 be a
succinct ternary signature of type τ3. Then Pl-Holant(f ) is #P-hard.

Proof Consider the matrix T = [ 1 1
1 T ′

] ∈ Cκ×κ , where T ′ = yJκ−1 + (x − y)Iκ−1 with
x = − κ+√

κ−1√
κ+1 and y = 1√

κ+1 . After scaling by 1√
κ
, we claim that T is an orthogonal

matrix.
Let ri be the ith row of 1√

κ
T . First we compute the diagonal entries of 1

κ
TTT. Clearly

r1rT1 = 1. For 2 ≤ i ≤ κ , we have

rirTi = 1
κ

[
1 + x2 + (κ − 2)y2

] = 1
κ

[

1 + (κ + √
κ − 1)2

(
√

κ + 1)2
+ κ − 2

(
√
k + 1)2

]

= 1.
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Now we compute the off-diagonal entries. For 2 ≤ i ≤ κ , we have

r1rTi = 1
κ

[
1 + x + (κ − 2)y

] = 1
κ

[

1 − κ + √
κ − 1√

κ + 1
+ κ − 2√

κ + 1

]

= 0.

For 2 ≤ i < j ≤ κ , we have

rirTj = 1
κ

[
1 + 2xy + (κ − 3)y2

] = 1
κ

[

1 − 2(κ + √
κ − 1)

(
√

κ + 1)2
+ κ − 3

(
√
k + 1)2

]

= 0.

This proves the claim.
We apply a holographic transformation by T to the signature f to obtain f̂ = T⊗3f ,

which does not change the complexity of the problem by Theorem 3.3. Since the first row
of T is a row of all 1’s, the output of f̂ on any input containing the first domain element
is 0. When restricted to the remaining κ − 1 domain elements, f̂ is domain invariant and
symmetric, so it can be expressed as a succinct ternary signature of type τ3.
Up to anonzero factor of κ3

(
√

κ+1)2 , it canbe verified that f̂ = 〈−(κ−2)(2+√
κ), 2+√

κ , 1〉.
One way to do this is as follows. We write f = 〈a, b, 2〉 and T = [ 1 1

1 T ′
] ∈ Cκ×κ , where

T ′ = yJκ−1 + (x − y)Iκ−1. The entries of f̂ are polynomials in κ with coefficients from
Z[a, b, x, y]. The degree of these polynomials is at most 3 since the arity of f is 3. After
computing the entries of f̂ for domain sizes 3 ≤ κ ≤ 6 as elements in Z[a, b, x, y], we
interpolate the entries of f̂ as elements in (Z[a, b, x, y])[κ]. Then replacing a, b, x, y with
their actual values gives the claimed expression for the signature.
Since κ ≥ 4, f̂ is #P-hard by Lemma 8.2, which completes the proof. ��
At this point, we have achieved the broader goal of this section. For any a, b, c ∈ C

and domain size κ ≥ 3, either Pl-Holant(〈a, b, c〉) is computable in polynomial time, or
Pl-Holant(〈a, b, c〉) is #P-hard, or we can use 〈a, b, c〉 to construct 〈1〉 (i.e., the reduction
Pl-Holant({〈a, b, c, 〉, 〈1〉} ≤T Pl-Holant(〈a, b, c〉) holds). However, Lemma 8.3 is easily
generalized, and this generalization turns out to be necessary to obtain our dichotomy.
Recall that connecting f = 〈(κ − 1)(κ − 2),−(κ − 2), 2〉 to 〈1〉 results in an identically 0

signature. This suggests that we consider the more general signature f̃ = α〈1〉⊗3 + βf
for any α ∈ C and any nonzero β ∈ C since this does not change the complexity (as we
argue in Corollary 8.4). For any a, b, c ∈ C satisfyingB = 0 (cf. (7)), if α = 2b+(κ−2)c

κ
and

β = −b+c
κ

, then f̃ = 〈a, b, c〉. We note that the condition B = 0 can also be written as
(κ − 2)(b − c) = b − a. We now prove a dichotomy for the signature f̃ .

Corollary 8.4 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If B = 0, then Pl-Holant(〈a, b, c〉) is #P-hard unless b = c or
κ = 3, in which case, the problem is computable in polynomial time.

Proof If b = c, then byB = 0we have a = b = c, whichmeans the signature is degenerate
and the problem is trivially tractable. If κ = 3, then a = c and the problem is tractable by
case 3 of Corollary 5.2. Otherwise b �= c and κ ≥ 4.
Since B = 0, it can be verified that 〈a, b, c〉 = 2b+(κ−2)c

κ
〈1〉⊗3 + −b+c

κ
f , where f =

〈(κ − 1)(κ − 2),−(κ − 2), 2〉. We show that Pl-Holant(〈a, b, c〉) is #P-hard iff Pl-Holant(f )
is. Since Pl-Holant(f ) is #P-hard by Lemma 8.3, this proves the result.
Let G = (V, E) be a connected planar 3-regular graph with n = |V | and m = |E|. We

can view Pl-Holant(G; 〈a, b, c〉) as a sum of 2n Holant computations using the signatures
α〈1〉⊗3 and βf . Each of these Holant computations considers a different assignment of
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eitherα〈1〉⊗3 orβf to each vertex. Since connecting f to 〈1〉 gives an identically 0 signature,
if any connected signature grid contains both α〈1〉⊗3 and βf , then that particular Holant
computation is 0. This is because a vertex of degree three assigned 〈1〉⊗3 is equivalent
to three vertices of degree one connected to the same three neighboring vertices and
each assigned 〈1〉. There are only two possible assignments that could be nonzero. If
all vertices are assigned α〈1〉⊗3, then the Holant is αnκm. Otherwise, all vertices are
assigned βf and the Holant is βn Pl-Holant(G; f ). Thus, Pl-Holant(G;α〈1〉⊗3 + βf ) =
αnκm + βn Pl-Holant(G; f ). Since β �= 0, one can solve for either Holant value given the
other. ��

9 Interpolating all binary signatures of type τ2

In this section, we show how to interpolate all binary succinct signatures of type τ2 in
most settings. We use two general techniques to achieve this goal. In the first subsection,
we use a generalization of the anti-gadget technique that creates a multitude of gadgets.
They are so numerous that one is most likely to succeed. In the second subsection, we
introduce a new technique called Eigenvalue Shifted Triples (ESTs). These generalize the
technique of Eigenvalue Shifted Pairs from [43], and we use EST to interpolate binary
succinct signatures in cases where the anti-gadget technique cannot handle. There are a
few isolated problems for which neither technique works. However, these problems are
easily handled separately in Lemma 12.1 in “Appendix 2”.
FromSect. 8, every problemfits intooneof three cases: either (1) theproblem is tractable,

(2) the problem is #P-hard, or (3) we can construct the succinct unary signature 〈1〉 of
type τ1. Thus, many results in this section assume that 〈1〉 is available.

9.1 E pluribus unum

we use Lemma 4.12 to prove our interpolation results. The main technical difficulty is to
satisfy the third condition of Lemma 4.12, which is to prove that some recurrence matrix
(that defines a sequence of gadgets) has infinite order up to a scalar. When the matrix
has a finite order up to a scalar, we can utilize this failure condition to our advantage by
constructing an anti-gadget [17], which is the “last” gadget with a distinct signature (up to
a scalar) in the infinite sequence of gadgets. To make sure that we construct a multitude
of nontrivial gadgets without cancelation, we put the anti-gadget inside another gadget
(contrast the gadget in Fig. 18 with the gadget in Fig. 19b). From among this plethora of
gadgets, at least one must succeed under the right conditions.
Although this idea works quite well in that some gadget among those constructed does

succeed, we still must prove that one such gadget succeeds in every setting. We aim to
exhibit a recurrence matrix whose ratio of eigenvalues is not a root of unity. We consider
three related recurrence matrices at once. The next two lemmas consider two similar
situations involving the eigenvalues of three such matrices. When applied, these lemmas
show that some recurrence matrix must have eigenvalues with distinct complex norms,
even though exactly which one among them succeeds may depend on the parameters in
a complicated way.

Lemma 9.1 Let d0, d1, d2,� ∈ C. If d0, d1, andd2 have the sameargument but are distinct,
then for all ρ ∈ R, there exists i ∈ {0, 1, 2} such that |� + di| �= ρ.
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Fig. 18 Binary gadget that generalizes the anti-gadget technique. The circle vertices are assigned 〈a, b, c〉,
while the square and triangle vertices are each assigned the signature of some gadget

(a) (b)

Fig. 19 Binary gadgets used to interpolate any succinct binary signature of type τ2. In a circle vertices are
assigned 〈a, b, c〉, and the square vertex is assigned 〈1〉. In b Both circle vertices are assigned 〈a, b, c〉

Proof Assume to the contrary that there exists ρ ∈ R such that |� + di| = ρ for every
i ∈ {0, 1, 2}. In the complex plane, consider the circle centered at the origin of radius ρ.
Each � + di is a distinct point on this circle as well as a distinct point on a common line
through � . However, the line intersects the circle in at most two points, a contradiction.

��

Lemma 9.2 Let d0, d1, d2,� ∈ C. If d0, d1, and d2 have the same complex norm but are
distinct and � �= 0, then for all ρ ∈ R, there exists i ∈ {0, 1, 2} such that |� + di| �= ρ.

Proof Let 
 = |d0|. Assume to the contrary that there exists ρ ∈ R such that |� +di| = ρ

for every i ∈ {0, 1, 2}. In the complex plane, consider the circle centered at the origin of
radius ρ and the circle centered at � of radius 
. Since � �= 0, these circles are distinct.
Each � + di is a distinct point on both circles. However, these circles intersect in at most
two points, a contradiction. ��

Now we use Lemma 9.1 and Lemma 9.2 as well as our generalization of the anti-gadget
technique to establish a crucial lemma.

Lemma 9.3 Suppose κ ≥ 3 is the domain size anda, b, c,ω ∈ C. LetF be a set of signatures
containing the succinct binary signature 〈ω+κ−1,ω−1〉 of type τ2 and the succinct ternary
signature 〈a, b, c〉 of type τ3. If the following three conditions are satisfied:

1. ω /∈ {0,±1},
2. B �= 0, and
3. at least one of the following holds:

(i) C = 0 or
(ii) C2 = ω2
B2 for some 
 ∈ {0, 1} but either C2 �= A2 or κ �= 3,

then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.



Cai et al. Res Math Sci (2016) 3:18 Page 49 of 77

We use this lemma to establish that various 2-by-2 recurrence matrices have infinite
order modulo scalars. When applied, ω will be the ratio of two eigenvalues, one of which
is a multiple ofB orB2 by a nonzero function of κ .

Proof of Lemma 9.3 Let � = C2

B2 and � = (κ−2)A2

B2 . Consider the recursive construction
in Fig. 7. After scaling by a nonzero factor of κ , we assign f = 1

κ
〈ω + κ − 1,ω − 1〉

to every vertex. Let fs be the succinct binary signature of type τ2 for the sth gadget
in this construction. We can express fs as Ms [ 1

0
]
, where M = 1

κ

[
ω+κ−1 (κ−1)(ω−1)

ω−1 (κ−1)ω+1

]
=

[ 1 1−κ
1 1

] [
ω 0
0 1
] [ 1 1−κ

1 1
]−1 by Lemma 4.11. Then fs = 1

κ
〈ωs+κ −1,ωs−1〉. The eigenvalues

ofM are 1 and ω, so the determinant ofM is ω �= 0. If ω is not a root of unity, then we are
done by Corollary 4.13.
Otherwise, supposeω is a primitive root of unity of ordern. Sinceω �= ±1by assumption,

n ≥ 3. Now consider the gadget in Fig. 18. We assign 〈a, b, c〉 to the circle vertices,
fr = 1

κ
〈ωr + κ − 1,ωr − 1〉 to the square vertex, and fs = 1

κ
〈ωs + κ − 1,ωs − 1〉 to

the triangle vertex, where r, s ≥ 0 are parameters of our choice. By Lemma 11.5, up to a
nonzero factor of B2

κ
, this gadget has the succinct binary signature

f (r, s) = 1
κ
〈�ωr+s + (κ − 1)(ωr + ωs + � + 1), �ωr+s − (ωr + ωs + � + 1) + κ〉

of type τ2. Consider using this gadget in the recursive construction of Fig. 7. Let ft (r, s) be
the succinct binary signature of type τ2 for the tth gadget in this recursive construction.
Then f1(r, s) = f (r, s) and ft (r, s) = (M(r, s))t

[ 1
0
]
, where the eigenvalues of M(r, s) are

�ωr+s + κ − 1 and ωr + ωs + � by Lemma 4.11. Thus, the determinant of M(r, s) is
(�ωr+s + κ − 1)(ωr + ωs + �). Since � is either 0 or a power of ω by condition 3, the first
factor is nonzero for any choice of r and s. However, for some r and s, it might be that
g(r, s) = ωr + ωs + � = 0.
Suppose � = 0. We consider the two possible cases of � in order to finish the proof

under this assumption.

1. Suppose � = 0. Consider the gadgetM(0, 1). The determinant ofM(0, 1) is nonzero
since g(0, 1) �= 0 and the ratio of its eigenvalues is not a root of unity because they
have distinct complex norms. Thus, we are done by Corollary 4.13.

2. Suppose � = ω2
 for some 
 ∈ {0, 1}. Consider the gadget M(n − 
, n − 
). The
determinant of M(n − 
, n − 
) is nonzero since g(n − 
, n − 
) �= 0 and the ratio
of its eigenvalues is not a root of unity because they have distinct complex norms.
Thus, we are done by Corollary 4.13.

Otherwise, � �= 0. We claim that g(r, s) = 0 can hold for at most one choice of
r, s ∈ Zn (modulo the swapping of r and s). To see this, consider r1, s1, r2, s2 such that
g(r1, s1) = 0 = g(r2, s2). Thenωr1 +ωs1 = −� = ωr2 +ωs2 . By taking complex norms and
applying the law of cosines, we have cos θ1 = cos θ2, where θj = arg(ωsj−rj ) is the angle
from ωrj to ωsj for j ∈ {1, 2}. Thus, θ1 = ±θ2. Since � �= 0, we have θ1 �= ±π . If θ1 = θ2,
then ωr1 (1 + eiθ1 ) = ωr2 (1 + eiθ1 ). Since θ1 �= ±π , the factor 1 + eiθ1 is nonzero. After
dividing by this factor, we conclude that r1 = r2 and thus s1 = s2. Otherwise, θ1 = −θ2.
Then ωr1 (1+ eiθ1 ) = ωs2 (1+ eiθ1 ), and we conclude that r1 = s2 and s1 = r2. This proves
the claim.
Suppose n ≥ 4 and let S0 = {(0, 0), (1, n−1), (2, n−2)} and S1 = {(1, 1), (2, 0), (3, n−1)}.

Then g(r, s) = 0 holds for at most one (r, s) ∈ S0∪S1. In particular, g(r, s) is either nonzero
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for all (r, s) ∈ S0 or nonzero for all (r, s) ∈ S1. Pick j ∈ {0, 1} such that g(r, s) is nonzero for
all (r, s) ∈ Sj . By Lemma 9.1 with di = (ωi + ω−i)ωj and ρ = |�ω2j + κ − 1|, there exists
some (r, s) ∈ Sj such that the eigenvalues of M(r, s) have distinct complex norms, so we
are done by Corollary 4.13.
Otherwise, n = 3. We consider the two possible cases of � in order to finish the proof.

1. Suppose � = 0. Let Sj = {(0, j), (1, j + 1), (2, j + 2)}. Then g(r, s) = 0 holds for at
most one (r, s) ∈ S0 ∪ S1. In particular, g(r, s) is either nonzero for all (r, s) ∈ S0 or
nonzero for all (r, s) ∈ S1. Pick j ∈ {0, 1} such that g(r, s) is nonzero for all (r, s) ∈ Sj .
By Lemma 9.2 with di = (1 + ωj)ωi and ρ = κ − 1, there exists some (r, s) ∈ Sj
such that the eigenvalues ofM(r, s) have distinct complex norms, so we are done by
Corollary 4.13.

2. Suppose � = ω2
 for some 
 ∈ {0, 1} but either C2 �= A2 or κ �= 3.
Note that this is equivalent to � �= � or κ �= 3. Consider the set S =
{(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)}. If there exists some (r, s) ∈ S such that g(r, s) �=
0 and the eigenvalues of M(r, s) have distinct complex norms, then we are done by
Corollary 4.13.

Otherwise, for every (r, s) ∈ S, either g(r, s) = 0 or the eigenvalues of M(r, s) have the
same complex norm. If the latter condition were to always hold, then we would have

|2 + �| =
∣
∣
∣ω2
 + κ − 1

∣
∣
∣ = |−1 + �| ,

∣
∣2ω2 + �

∣
∣ =

∣
∣
∣ω2
+1 + κ − 1

∣
∣
∣ = ∣∣−ω2 + �

∣
∣ , and

|2ω + �| =
∣
∣
∣ω2
+2 + κ − 1

∣
∣
∣ = |−ω + �| ,

where each equality corresponds to one of the six M(r, s) having eigenvalues of equal
complex norm for (r, s) ∈ S. Of the six equalities, atmost onemay not hold since g(r, s) = 0
for at most one (r, s) ∈ S. Since n = 3, two of the three terms of the form |ω2
+m + κ − 1|
must be equal, so we can write the stronger condition

∣
∣2ω2 + �ω


∣
∣ = |ω + κ − 1| = ∣∣−ω2 + �ω


∣
∣

‖
∣
∣2ω + �ω


∣
∣ = ∣∣ω2 + κ − 1

∣
∣ = ∣∣−ω + �ω


∣
∣ .

(13)

As it is, one of the horizontal equalities in (13) may not hold. However, even without one
of these equalities, we can still reach a contradiction.
We show that �ω
 ∈ R even if one of the equalities in (13) does not hold. In fact, either

the left or the right half of the equalities in (13) hold. In the first case, |2ω2+�ω
| = |2ω+
�ω
| holds andwe get�ω
 ∈ R. Similarly in the second case, |−ω2+�ω
| = |−ω+�ω
|
holds and we get �ω
 ∈ R as well. Next, we use real and imaginary parts to calculate the
complex norms even if one of the equalities in (13) does not hold. Either the top half of the
equalities hold and thus |2ω2 +�ω
| = |−ω2 +�ω
|, or the bottom half of the equalities
hold and thus |2ω + �ω
| = |−ω + �ω
|. In any case, it readily follows that �ω
 = 1.
This implies � = ω2
, so we can rewrite (13) as

√
3 = |ω + κ − 1| = √

3
‖√

3 = ∣∣ω2 + κ − 1
∣
∣ = √

3,
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where at most one equation may not hold. This forces κ = 3. However, � = ω2
 = �

and κ = 3 is a contradiction. ��
The previous lemma is strong enough to handle the typical case.

Lemma 9.4 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let F be a signature set
containing the succinct ternary signature 〈a, b, c〉 of type τ3 and the succinct unary signature
〈1〉 of type τ1. If

1. B �= 0,
2. C �= 0,
3. C2 �= B2, and
4. either C2 �= A2 or κ �= 3,

then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.

Proof Letω = C
B , which is well defined. Consider the gadget in Fig. 19a.We assign 〈a, b, c〉

to the circle vertex and 〈1〉 to the square vertex. Up to a nonzero factor of B
κ
, this gadget

has the succinct binary signature
κ

B
〈a + (κ − 1)b, 2b + (κ − 2)c〉 = 〈ω + κ − 1,ω − 1〉

of type τ2. Then we are done by Lemma 9.3 with 
 = 1 in case (ii) of condition 3. ��
If B = 0, then we already know the complexity by Corollary 8.4. The other failure

conditions from the previous lemma are:

C − B = κ[2b + (κ − 2)c] = 0; (14)

C + B = 2a + 2(2κ − 3)b + (κ − 2)2c = 0; (15)

C = 0; (16)

κ = 3 and C − A = 0, or equivalently κ = 3 and b = 0; (17)

κ = 3 and C + A = 0, or equivalently κ = 3 and 2a + 3b + 4c = 0. (18)

Notice that these five failure conditions are linear in a, b, c.
By starting the proof with a different gadget, Lemma 9.3 can handle the first three failure

conditions. The last two failure conditions require a new idea, Eigenvalue Shifted Triples,
whichwe introduce in Sect. 9.2. In fact, these two cases are equivalent under an orthogonal
holographic transformation.
The next lemma considers the failure condition in (14).Note thatC = B iff the signature

can bewritten as 〈2a,−(κ−2)c, 2c〉up to a factor of 2. The first excluded case in Lemma9.5
is handled by Corollary 8.4, and the last two excluded cases are tractable by Corollary 5.3.

Lemma 9.5 Suppose κ ≥ 3 is the domain size and a, c ∈ C. Let F be a signature set
containing the succinct ternary signature 〈2a,−(κ − 2)c, 2c〉 of type τ3 and the succinct
unary signature 〈1〉 of type τ1. If

1. 2a �= (κ − 1)(κ − 2)c,



Cai et al. Res Math Sci (2016) 3:18 Page 52 of 77

2. 4a �= (κ2 − 6κ + 4)c, and
3. c �= 0,

then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.

Proof Note thatwhen 2b = −(κ−2)c, we haveB = C = 2a−(κ−1)(κ−2)c by (14), which
is nonzero by condition 1 of the lemma. Letω0 = 4a2+ (κ −2)[4ac+ (2κ2+κ −2)c2] and
assumeω0 �= 0. Then letω = B2

ω0
�= 0. By conditions 2 and 3, it follows thatω �= 1. Alsowe

note that when 2b = −(κ−2)c, we have 2A = 2a+(3κ−2)c and 2C = 2a−(κ−1)(κ−2)c.
By the same conditions, 2 and 3, we haveC2 �= A2.We further assume thatω �= −1, which
is equivalent to 8a2 − 4(κ − 2)2ac + (κ − 2)(κ3 − 2κ2 + 6κ − 4)c2 �= 0.
Consider the gadget in Fig. 19b. We assign 〈2a,−(κ − 2)c, 2c〉 to the vertices. Up to a

nonzero factor of ω0
κ
, this gadget has the succinct binary signature

κ

ω0
〈4a2 + (κ − 1)(κ − 2)(3κ − 2)c2, −(κ − 2)[4ac − (κ2 − 6κ + 4)c2]〉

= 〈ω + κ − 1, ω − 1〉
of type τ2. Then we are done by Lemma 9.3 with 
 = 0 in case (ii) of condition 3.
Now we deal with the following exceptional cases.

1. Ifω0 = 0, then 2a = −[κ −2± iκ
√
2(κ − 2)

]
c. Up to a nonzero factor of−c, we have

− 1
c 〈2a,−(κ − 2)c, 2c〉 = 〈κ − 2± iκ

√
2(κ − 2), κ − 2,−2〉 and are done by case 1 of

Lemma 12.1.
2. If 8a2 − 4(κ − 2)2ac + (κ − 2)(κ3 − 2κ2 + 6κ − 4)c2 = 0, then 4a = [

(κ − 2)2 ±
iκ

√
κ2 − 4

]
c. Up to a nonzero factor of c

2 , we have

2
c
〈2a,−(κ − 2)c, 2c〉 = 〈(κ − 2)2 ± iκ

√
κ2 − 4,−2(κ − 2), 4〉

and are done by case 2 of Lemma 12.1. ��

The next lemma considers the failure condition in (15). Note that C = −B iff the
signature can be written as 〈−2(2κ − 3)b − (κ − 2)2c, 2b, 2c〉 up to a factor of 2. The first
excluded case in Lemma 9.6 is handled by Corollary 8.4, and the last excluded case is
tractable by Corollary 5.8.

Lemma 9.6 Suppose κ ≥ 3 is the domain size and a, b ∈ C. Let F be a signature set
containing the succinct ternary signature 〈−2(2κ − 3)b − (κ − 2)2c, 2b, 2c〉 of type τ3 and
the succinct unary signature 〈1〉 of type τ1. If

1. 2b �= −(κ − 2)c and
2. κ �= 4 or 5b2 + 2bc + c2 �= 0,

then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.
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Proof Note that when 2a = −2(2κ − 3)b − (κ − 2)2c, we have B = −C by (15) and
2B = −κ[2b + (κ − 2)c], which is nonzero by condition 1 of the lemma. Let ω0 =
8(2κ − 3)b2 + (κ − 2)

[
8(κ − 3)bc + (κ2 − 6κ + 12)c2

]
and assume ω0 �= 0. Then let

ω = κ[2b+(κ−2)c]2
ω0

. By condition 1, ω �= 0. It can be shown that κ[2b + (κ − 2)c]2 = ω0
is equivalent to (b − c)[3b + (κ − 3)c] = 0. Thus, assume b �= c and 3b �= −(κ − 3)c.
Then ω �= 1. Also we note that when 2a = −2(2κ − 3)b − (κ − 2)2c, we have 2A =
−κ[4b + (κ − 4)c] and 2C = κ[2b + (κ − 2)c]. By the same assumptions, b �= c and
3b �= −(κ − 3)c, we have C2 �= A2. Further assume that ω �= −1, which is equivalent to
2(5κ − 6)b2 + (κ − 2)[6(κ − 2)bc + (κ2 − 4κ + 6)c2] �= 0.
Consider the gadget in Fig. 19b. We assign 〈−2(2κ − 3)b − (κ − 2)2c, 2b, 2c〉 to the

vertices. Up to a nonzero factor of ω0
4 , this gadget has the succinct binary signature

1
ω0

〈x, y〉 = 〈ω + κ − 1,ω − 1〉 of type τ2, where

x = 4(4κ2 − 9κ + 6)b2 + (κ − 2)
[
4(κ − 2)(2κ − 3)bc + (κ3 − 6κ2 + 16κ − 12)c2

]

and

y = −4(κ − 2)
[
3b3 + (κ − 6)bc − (κ − 3)c2

]
.

Then we are done by Lemma 9.3 with 
 = 0 in case (ii) of condition 3.
Now we deal with the following exceptional cases.

1. If ω0 = 0, then we have −4(2κ − 3)b = [2(κ − 3)(κ − 2)± iκ
√
2(κ − 2)

]
c but κ �= 4

by condition 2 since otherwise ω0 = 8(5b2 + 2bc + c2) �= 0. Up to a nonzero factor
of c

2(2κ−3) ,

2(2κ − 3)
c

〈−2(2κ − 3)b − (κ − 2)2c, 2b, 2c〉
=
〈
−(2κ − 3)

[
2(κ − 2) ∓ iκ

√
2(κ − 2)

]
,

− 2 (κ − 3)(κ − 2) ∓ iκ
√
2(κ − 2), 4(2κ − 3)

〉

and are done by case 3 of Lemma 12.1.
2. If b = c, then up to a nonzero factor of c, we have 1

c 〈−2(2κ−3)b−(κ−2)2c, 2b, 2c〉 =
〈−κ2 + 2, 2, 2〉 and are done by case 4 Lemma 12.1.

3. If 3b = −(κ − 3)c, then up to a nonzero factor of c
3 , we have

3
c 〈−2(2κ − 3)b − (κ −

2)2c, 2b, 2c〉 = 〈κ2 − 6κ + 6,−2(κ − 3), 6〉 and are done by case 5 of Lemma 12.1.
4. If 2(5κ − 6)b2 + (κ − 2)[6(κ − 2)bc + (κ2 − 4κ + 6)c2] = 0, then −2(5κ − 6)b =
[
3(κ − 2)2 ± iκ

√
κ2 − 4

]
c. Up to a nonzero factor of c

5κ−6 ,

5κ − 6
c

〈−2(2κ − 3)b − (κ − 2)2c, 2b, 2c〉
=
〈
(κ − 3)(κ − 2)2 ± iκ(2κ − 3)

√
κ2 − 4,

− 3 (κ − 2)2 ∓ iκ
√

κ2 − 4, 2(5κ − 6)
〉

and are done by case 6 of Lemma 12.1. ��
The next lemma considers the failure condition in (16). Note thatC = 0 iff the signature

can be written as 〈−3(κ − 1)b − (κ − 1)(κ − 2)c, b, c〉. The excluded case in Lemma 9.7 is
handled by Corollary 8.4.
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Lemma 9.7 Suppose κ ≥ 3 is the domain size and b, c ∈ C. Let F be a signature set
containing the succinct ternary signature 〈−3(κ −1)b− (κ −1)(κ −2)c, b, c〉 of type τ3 and
the succinct unary signature 〈1〉 of type τ1. If 2b �= −(κ − 2)c, then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.

Proof Note that when a = −3(κ − 1)b − (κ − 2)(κ − 1)c, we have C = 0 and 2B =
−κ[2b+ (κ −2)c], which is nonzero by assumption. Letω0 = (9κ −10)b2+ (κ −2)[2(3κ −
5)bc+ (κ2−4κ +5)c2] and assumeω0 �= 0. Then letω = (κ−1)[2b+(κ−2)c]2

ω0
. By assumption,

ω �= 0. Assume ω �= 1, which is equivalent to −(5κ − 6)b2 − (κ − 3)(κ − 2)(2b− c)c �= 0.
Further assume ω �= −1, which is equivalent to (13κ − 14)b2 + (κ − 2)[2(5κ − 7)bc +
(2κ2 − 7κ + 7)c2] �= 0.
Consider the gadget in Fig. 19b. We assign 〈−3(κ − 1)b − (κ − 1)(κ − 2)c, b, c〉 to

the vertices. Up to a nonzero factor of ω0, this gadget has the succinct binary signature
1
ω0

〈x, y〉 = 〈ω + κ − 1,ω − 1〉 of type τ2, where

x = (κ − 1)
{
3(3κ − 2)b2 + (κ − 2)

[
6bc + (κ2 − 3κ + 3)c2

]}
and

y = −(5κ − 6)b2 − (κ − 3)(κ − 2)(2b − c)c.

Then we are done by Lemma 9.3 via case (i) of condition 3.
Now we deal with the following exceptional cases.

1. If ω0 = 0, then −(9κ − 10)b = [(κ − 2)(3κ − 5) ± iκ
√
2(κ − 2)]c. Up to a nonzero

factor of c
9κ−10 , we have

9κ − 10
c

〈−3(κ − 1)b − (κ − 1)(κ − 2)c, b, c〉
= 〈−(κ − 1)

[
5(κ − 2) ∓ 3iκ

√
2(κ − 2)

]
,

−(κ − 2)(3κ − 5) ∓ iκ
√
2(κ − 2), 9κ − 10〉

and we are done by case 7 of Lemma 12.1.
2. If −(5κ − 6)b2 − (κ − 3)(κ − 2)(2b − c)c = 0, then −(5κ − 6)b = [(κ − 3)(κ − 2) ±

κ
√

κ2 − 5κ + 6
]
c. Up to a nonzero factor of − c

5κ−6 , we have

−5κ − 6
c

〈−3(κ − 1)b − (κ − 1)(κ − 2)c, b, c〉
= 〈(κ − 1)

[
(κ − 2)(2κ + 3) ∓ 3κ

√
κ2 − 5κ + 6

]
,

(κ − 3)(κ − 2) ± κ
√

κ2 − 5κ + 6, −5κ + 6〉
and are done by case 8 Lemma 12.1.

3. If (13κ − 14)b2 + (κ − 2)[2(5κ − 7)bc+ (2κ2 − 7κ + 7)c2] = 0, then −(13κ − 14)b =
[
(κ − 2)(5κ − 7) ± iκ

√
κ2 − κ − 2

]
c. Up to a nonzero factor of c

13κ−14 , we have

13κ − 14
c

〈−3(κ − 1)b − (κ − 1)(κ − 2)c, b, c〉
= 〈(κ − 1)

[
(κ − 2)(2κ − 7) ± 3iκ

√
κ2 − κ − 2

]
,

−(κ − 2)(5κ − 7) ∓ iκ
√

κ2 − κ − 2, 13κ − 14〉
and are done by case 9 of Lemma 12.1. ��
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9.2 Eigenvalue shifted triples

To handle failure conditions (17) and (18) from Lemma 9.4, we need another technique.
We introduce an Eigenvalue Shifted Triple, which extends the concept of an Eigenvalue
Shifted Pair.

Definition 9.8 (Definition 4.6 in [43]) A pair of nonsingular matrices M,M′ ∈ C2×2 is
called an Eigenvalue Shifted Pair if M′ = M + δI for some nonzero δ ∈ C, and M has
distinct eigenvalues.

Eigenvalue Shifted Pairs were used in [43] to show that interpolation succeeds in most
cases since these matrices correspond to some recursive gadget constructions and at least
one of them usually has eigenvalues with distinct complex norms. In [43], it is shown that
the interpolation succeeds unless the variables in question take real values. Then other
techniques were developed to handle the real case. We use Eigenvalue Shifted Pairs in a
stronger way. We exhibit three matrices such that any two form an Eigenvalue Shifted
Pair. Provided that these shifts are linearly independent over R, this is enough to show
that interpolation succeeds for both real and complex settings of the variables. We call
this an Eigenvalue Shifted Triple.

Definition 9.9 A trio of nonsingularmatricesM0,M1,M2 ∈ C2×2 is called an Eigenvalue
Shifted Triple (EST) if M0 has distinct eigenvalues and there exist nonzero δ1, δ2 ∈ C

satisfying δ1
δ2

/∈ R such thatM1 = M0 + δ1I , andM2 = M0 + δ2I .

Wenote that ifM0,M1, andM2 formanEigenvalue ShiftedTriple, then any permutation
of the matrices is also an Eigenvalue Shifted Triple.
The proof of the next lemma is similar to the proof of Lemma 4.7 in [44], the full version

of [43].

Lemma 9.10 Suppose α,β , δ1, δ2 ∈ C. If α �= β , δ1, δ2 �= 0, and δ1
δ2

/∈ R, then |α| �= |β| or
|α + δ1| �= |β + δ1| or |α + δ2| �= |β + δ2|.
Proof Assume for a contradiction that |α| = |β|, |α+δ1| = |β+δ1|, and |α+δ2| = |β+δ2|.
After a rotation in the complex plane, we can assume that α = β . Note that all of our
assumptions are unchanged by this rotation. For i ∈ {1, 2}, we have

(α + δi)(α + δi) = |α + δi|2
= |β + δi|2
= (β + δi)(β + δi) = (α + δi)(α + δi).

This implies (α − α)(δi − δi) = 0. Since α �= β = α, we have δi ∈ R. Then δ1
δ2

∈ R, a
contradiction. ��
The next lemma considers the failure condition in (17), which is κ = 3 and b = 0,

so the signature has the form 〈a, 0, c〉. If a = 0, then the problem is already #P-hard by
Theorem 4.8. If c = 0, then the problem is tractable by case 1 of Corollary 5.2. If a3 = c3,
then the problem is tractable by Corollary 5.6.

Lemma 9.11 Suppose the domain size is 3anda, c ∈ C. LetF be a signature set containing
the succinct ternary signature 〈a, 0, c〉 of type τ3 and the succinct unary signature 〈1〉 of
type τ1. If ac �= 0 and a3 �= c3, then
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Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.

Proof Assume 2a + c �= 0 and let ω = a2+2c2
c(2a+c) . Assume a2 + 2c2 so that ω �= 0. Further

assume a2 + 2ac + 3c2 �= 0 so that ω2 �= 1 as well as a2 + ac + 7c2 �= 0 so that ω3 �= 1.
Note that these conclusions also require a �= c and a3 �= c3, respectively.
Consider using the recursive construction in Fig. 20. The circle vertices are assigned

〈a, 0, c〉, and the square vertex is assigned 〈1〉. Let z = c
a , which is well defined by assump-

tion. The succinct signature of type τ2 for the initial gadgetN0 in this construction is 〈a, c〉.
Up to a nonzero factor of a, this signature is f0 = 1

a 〈a, c〉 = 〈1, z〉. Then up to a nonzero
factor of c(2a+ c), the succinct signature of type τ2 for the sth gadget in this construction
is fs = 〈ωk , z〉 = Ms f0, where

M = 1
c(2a + c)

[
a2 + 2c2 0

0 c(2a + c)

]

=
[
ω 0
0 1

]

.

ClearlyM is nonsingular. The determinant of [ f0 M f0] = [ a aω
c c ] is z(1− ω) �= 0. If ω is

not a root of unity, then we are done by Lemma 4.12.
Otherwise, suppose ω is a primitive root of unity of order n. By assumption, n ≥ 4.

Now consider the recursive construction in Fig. 7. We assign fs to every vertex, where
s ≥ 0 is a parameter of our choice. Let gt (s) be the signature of the tth gadget in this
recursive construction when using fs. Then g1(s) = fs and gt (s) = (N (s))t

[ 1
0
]
, where

N (s) = [ ωs 2z
z ωs+z

]
.

By Lemma 4.11, the eigenvalues of N (s) are ωs + 2z and ωs − z, which means the
determinant ofN (s) is (ωs + 2z)(ωs − z). Each eigenvalue can vanish for at most one value
of s ∈ Zn since both eigenvalues are linear polynomials in ωs that are not identically 0.
Furthermore, at least one of the eigenvalues never vanishes for all s ∈ Zn since otherwise
1 = |z| = 1

2 .
Thus, atmost onematrix amongN (0),N (1),N (2), andN (3) can be singular. Pick distinct

j, k, 
 ∈ {0, 1, 2, 3} such that N (j), N (k), and N (
) are nonsingular. To finish the proof, we
show that N (j), N (k), and N (
) form an Eigenvalue Shifted Triple. Then by Lemma 9.10,
at least one of the matrices has eigenvalues with distinct complex norms, so we are done
by Corollary 4.13.
The eigenvalue shift from N (j) to N (k) is δj,k = ωj(ωk−j − 1), which is nonzero since j

and k are distinct in Zn. Assume for a contradiction that δj,k
δj,


∈ R, which is equivalent to
arg(δj,k ) = arg(±δj,
). Then we have

arg
(
ωk−j − 1

)
= arg

(
±(ω
−j − 1)

)
. (19)

N0 N1

Ns

Ns+1

Fig. 20 Alternative recursive construction to interpolate a binary signature (cf. Fig. 7). The circle vertices are
assigned 〈a, b, c〉, and the square vertex is assigned 〈1〉
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In the complex plane, any nonzero x − 1 ∈ C with |x| = 1 lies on the circle of radius 1
centered at (−1, 0). Such x satisfy π

2 < arg(x − 1) < 3π
2 . Thus, the argument of x − 1

is unique, even up to a sign, contradicting (19). Therefore, Mj , Mk , and M
 form an
Eigenvalue Shifted Triple as claimed.
Now we deal with the following exceptional cases.

1. If 2a + c = 0, then up to a nonzero factor of a, we have 1
a 〈a, 0, c〉 = 〈1, 0,−2〉 and

are done by case 10 of Lemma 12.1.
2. If a2 + 2c2 = 0, then a = ±i

√
2c. Up to a nonzero factor of c, we have 1

c 〈a, 0, c〉 =
〈±i

√
2, 0, 1〉 and are done by case 11 of Lemma 12.1.

3. If a2 + 2ac + 3c2 = 0, then a = c(−1 ± i
√
2). Up to a nonzero factor of c, we have

1
c 〈a, 0, c〉 = 〈−1 ± i

√
2, 0, 1〉 and are done by case 12 of Lemma 12.1.

4. If a2 + ac + 7c2 = 0, then 2a = c(−1± 3i
√
3). Up to a nonzero factor of c

2 , we have
2
c 〈a, 0, c〉 = 〈−1 ± 3i

√
3, 0, 2〉 and are done by case 13 of Lemma 12.1. ��

The next lemma considers the failure condition in (18). Since this failure condition is
just a holographic transformation of the failure condition in (17), the excluded cases in
this lemma are handled exactly as those preceding Lemma 9.11.

Lemma 9.12 Suppose the domain size is 3and b, c ∈ C. LetF be a signature set containing
the succinct ternary signature 〈−3b−4c, 2b, 2c〉 of type τ3 and the succinct unary signature
〈1〉 of type τ1. Assume T⊗3〈−3b− 4c, 2b, 2c〉 = 〈â, b̂, ĉ〉, where T =

[ 1 −2 −2
−2 1 −2
−2 −2 1

]
. If âĉ �= 0

and â3 �= ĉ3, then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.

Proof By Lemma 11.6 with x = 1 and y = −2, we have b̂ = 0. Thus, after a holographic
transformation by T , we are in the case covered by Lemma 9.11. Since T is orthogonal
after scaling by 1

3 , the complexity of these problems is unchanged by Theorem 3.3. ��

We summarize this section with the following lemma.

Corollary 9.13 Suppose the domain size is κ ≥ 3 and a, b, c ∈ C. Let F be a signature set
containing the succinct ternary signature 〈a, b, c〉 of type τ3 and the succinct unary signature
〈1〉 of type τ1. Then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2, unless

• B = 0 or
• there exist λ ∈ C and T ∈ {Iκ , κIκ − 2Jκ} such that

〈a, b, c〉 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T⊗3λ〈1, 0, 0〉, or
T⊗3λ〈0, 0, 1〉 and κ = 3, or

T⊗3λ〈1, 0,ω〉 and κ = 3 where ω3 = 1, or

T⊗3λ〈μ2, 1,μ〉 and κ = 4 where μ = −1 ± 2i.
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Proof If failure condition (14), (15), (16), (17), or (18) holds, then we are done by
Lemma 9.5, Lemma 9.6, Lemma 9.7, Lemma 9.11, or Lemma 9.12, respectively, with
the various excluded cases listed. If none of (14), (15), (16), (17), and (18) hold, then we
are done by Lemma 9.4. ��

10 Themain dichotomy
Now we can prove our main dichotomy theorem.

Theorem 10.1 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. Then Pl-Holant(〈a, b, c〉) is #P-hard unless at least one of the
following holds:

1. a = b = c;
2. a = c and κ = 3;

there exists λ ∈ C and T ∈ {Iκ , κIκ − 2Jκ} such that

3. 〈a, b, c〉 = T⊗3λ〈1, 0, 0〉;
4. 〈a, b, c〉 = T⊗3λ〈1, 0,ω〉 and κ = 3 where ω3 = 1;
5. 〈a, b, c〉 = T⊗3λ〈μ2, 1,μ〉 and κ = 4 where μ = −1 ± 2i;

in which case, the computation can be done in polynomial time.

Proof The signature in case 1 is degenerate, which is trivially tractable. Case 2 is tractable
by case 3 of Corollary 5.2. Case 3 is tractable by Corollary 5.3. Case 4 is tractable by
Corollary 5.6. Case 5 is tractable by Lemma 5.7.
Otherwise, 〈a, b, c〉 is none of these tractable cases. If B = 0, then we are done by

Corollary 8.4, so assume thatB �= 0. If a+ (κ −1)b = 0 and b2−4bc− (κ −3)c2 = 0, then
we are done by Lemma 8.2, so assume that a+ (κ − 1)b �= 0 or b2 − 4bc − (κ − 3)c2 �= 0.
If a + (κ − 1)b �= 0, then we have the succinct unary signature 〈1〉 of type τ1 by

Lemma 8.1. Otherwise, a + (κ − 1)b = 0 and b2 − 4bc − (κ − 3)c2 �= 0. SinceB �= 0, we
have 2b + (κ − 2)c �= 0. Then again we have 〈1〉 by Lemma 8.1. Thus, in either case, we
have 〈1〉.
By Corollary 9.13, we have all binary succinct signatures 〈x, y〉 for any x, y ∈ C. Then we

are done by Lemma 7.16. ��
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11 Appendix 1: Computing gadget signatures
In this paper, some of the more difficult claims to verify are those when we say that a
particular F-gate (or gadget) has a particular signature. This is an essential difficultly
that cannot be avoided. We are proving that Pl-Holant(F ) is #P-hard for various F (and
computing the signature of an F-gate is a generalization of this problem). Thus, one
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should not expect to be able to compute these signatures significantly faster in general
than what the naive algorithm can do.
This has always been an issue for any dichotomy theorem about counting problems,

but with larger domain sizes, we seem to be reaching the limit of what can be computed
by hand for the signatures of gadget constructions that are presented in our proofs. To
counter this, the standard techniques are to utilize the smallest gadgets (that suffice) or an
infinite family of related gadgets with a (small) description of finite size, whichwe certainly
employ. Additionally, we point out some tricks, where they exist, to save as much work as
possible.
Beyond all this, we also face another problem. We would like to express the signature

of a gadget as a function of the domain size. To compute the signature of a gadget for
every domain size is no longer a finite computation. However, each entry of the gadget’s
signature is a polynomial in the domain size of degree at most the number of internal
edges in the gadget. To obtain these polynomials, one can interpolate them by computing
the signature for small domain sizes. It is easy to write a program to do this.
When computing by hand, there is another possibility that works quite well. One par-

titions the internal edge assignments into a limited number of parts such that the assign-
ments in each part contribute the same quantity to the Holant sum. This is best explained
with some examples.

Lemma 11.1 Suppose κ ≥ 3 is the domain size and a, b, c, x, y ∈ C. Let 〈a, b, c〉 be a
succinct ternary signature of type τ3 and let 〈x, y〉 be a succinct signature of type τ2. If we
assign 〈a, b, c〉 to the circle vertex and 〈x, y〉 to the square vertex of the gadget in Fig. 21c,
then the succinct unary signature of type τ1 of the resulting gadget is 〈x[a + (κ − 1)b] +
y(κ − 1)[2b + (κ − 2)c]〉.
If the square vertex is replaced by Fig. 21d, then the resulting signature is 〈a+ (κ −1)b〉. If

the square vertex is replaced by Fig. 21e, and a+ (κ − 1)b = 0, then the resulting signature
is

〈−(κ − 1)(κ − 2)[2b + (κ − 2)c][b2 − 4bc − (κ − 3)c2]〉. (20)

Proof Since 〈a, b, c〉 and 〈x, y〉 are domain invariant, the signatures of these gadgets are
also domain invariant. Any domain invariant unary signature has a succinct signature of
type τ1.
Let g ∈ [κ] be a possible edge assignment, which we call a color. Suppose the external

edge is assigned g and consider all internal edge assignments that assign the same colors
to both edges. For such assignments, 〈x, y〉 contributes a factor of x. Now if this color
assigned to both internal edges is also g , then 〈a, b, c〉 contributes a factor of a. Thus, the

(a) (b) (c) (d) (e)

Fig. 21 Gadgets (a) and (b) are used to construct 〈1〉. They are special cases of (c) and are obtained by
replacing the square in (c) with either (d) or (e), respectively. All (circle) vertices are assigned 〈a, b, c〉
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Holant sum includes one factor of ax. If the two internal edges are assigned any color
different from g , then 〈a, b, c〉 contributes a factor of b. Since there are κ − 1 such colors,
this adds (κ − 1)bx to the Holant sum.
Now consider all internal assignments that assign different colors to the edges. For such

assignments, 〈x, y〉 contributes a factor of y. First, suppose that one of the internal edges
is assigned g . There are two ways this could happen and 〈a, b, c〉 contributes a factor of
b. Since there are κ − 1 choices for the remaining edge assignment, this adds 2(κ − 1)by
to the Holant sum. Lastly, suppose that the two internal edges are not assigned g . Then
〈a, b, c〉 contributes a factor of c. Since there are (κ −1)(κ −2) such assignments, this adds
(κ − 1)(κ − 2)cy to the Holant sum. Thus, the resulting signature is 〈x[a + (κ − 1)b] +
y(κ − 1)[2b + (κ − 2)c]〉 as claimed.
Replacing the square by Fig. 21d is equivalent to setting x = 1 and y = 0, which gives

〈a + (κ − 1)b〉. Replacing the square by Fig. 21e is equivalent to setting x and y to the
values given in Lemma 11.2. The resulting signature is indeed (20). ��

Lemma 11.2 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If we assign 〈a, b, c〉 to both vertices of the gadget in Fig. 22,
then the succinct binary signature of type τ2 of the resulting gadget is 〈x, y〉, where

x = a2 + 3(κ − 1)b2 + (κ − 1)(κ − 2)c2 and

y = 2ab + κb2 + 4(κ − 2)bc + (κ − 2)(κ − 3)c2.

Proof Since 〈a, b, c〉 is domain invariant, the signature of this gadget is also domain invari-
ant. Any domain invariant binary signature has a succinct signature of type τ2.
Let g, r ∈ [κ] be distinct edge assignments.Wehave two entries to compute. To compute

x, suppose that both external edges are assigned g . We begin with the case where both
internal edges have the same assignment. If this assignment is g , then a2 is contributed
to the sum. If this assignment is not g , then b2 is contributed to the sum for a total
contribution of (κ − 1)b2. Now consider the case that the two internal edges have a
different assignment. If one of these assignments is g , then b2 is contributed to the sum
for a total contribution of 2(κ − 1)b2. If neither assignment is g , then c2 is contributed to
the sum for a total contribution of (κ − 1)(κ − 2)c2. These total contributions sum to the
value for x given in Lemma 11.2.
To compute y, suppose one external edge is assigned g and the other is assigned r.

We begin with the case where both internal edges have the same assignment. If this
assignment is g or r, then ab is contributed to the sum for a total contribution of 2ab. If
this assignment is not g or r, then b2 is contributed to the sum for a total contribution of
(κ − 2)b2. Now consider the case that the two internal edges have a different assignment.
If both are assigned g or r, then b2 is contributed to the sum for a total contribution of 2b2.
If exactly one is assigned g or r, then bc is contributed to the sum for a total contribution
of 4(κ − 2)bc. If neither is assigned g or r, then c3 is contributed to the sum for a total

Fig. 22 A simple binary gadget
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contribution of (κ − 2)(κ − 3)c3. These total contributions sum to the value for y given in
Lemma 11.2. ��

When checking these proofs, a concern is that some assignments might not have been
counted. One sanity check to address this concern is to set a = b = c = 1 and inspect the
resulting expression. If computed correctly, the result will be κm, wherem is the number
of internal edges, which is the number of internal edge assignments.

Lemma 11.3 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If we assign 〈a, b, c〉 to both vertices of the gadget in Fig. 23,
then the succinct quaternary signature of type τ4 of the resulting gadget is

f =
〈
f 1 1
1 1
, f 1 2

1 1
, f 1 2

1 2
, f 1 3

1 2
, f 1 2

2 1
, f 1 3

2 1
, f 1 1

2 2
, f 1 1

2 3
, f 1 4

2 3

〉
,

where
f 1 1
1 1

= a2 + (κ − 1)b2,

f 1 2
1 1

= b[a + b + (κ − 2)c],

f 1 2
1 2

= 2b2 + (κ − 2)c2,

f 1 3
1 2

= b2 + 2bc + (κ − 3)c2,

f 1 2
2 1

= f 1 2
1 2
,

f 1 3
2 1

= f 1 3
1 2
,

f 1 1
2 2

= b[2a + (κ − 2)b],

f 1 1
2 3

= ac + 2b2 + (κ − 3)bc, and

f 1 4
2 3

= c[4b + (κ − 4)c].

Proof Since 〈a, b, c〉 is domain invariant, the signature of this gadget is also domain invari-
ant. The vertical and horizontal symmetry of this gadget implies that its signature has a
succinct signature of type τ4.
Letw, x, y, z ∈ [κ] be distinct edge assignments.We have nine entries to compute. Recall

that the edge with the diamond is considered the first input and the rest are ordered
counterclockwise.

1. To compute f 1 1
1 1
, suppose the external assignment is (w,w, w, w). If the internal edge

is also assigned w, then a2 is contributed to the sum. If the internal edge is not
assigned w, then b2 is contributed to the sum for a total contribution of (κ − 1)b2.

2. To compute f 1 2
1 1
, suppose the external assignment is (w,w, w, x). If the internal edge

is assigned w, then ab is contributed to the sum. If the internal edge is assigned x,
then b2 is contributed to the sum. If the internal edge is not assigned w or x, then bc
is contributed to the sum for a total contribution of (κ − 2)bc.

Fig. 23 A simple quaternary gadget
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3. To compute f 1 2
1 2
, suppose the external assignment is (w,w, x, x). If the internal edge

is assigned w, then b2 is contributed to the sum. If the internal edge is assigned x,
then b2 is contributed to the sum. If the internal edge is not assigned w or x, then c2

is contributed to the sum for a total contribution of (κ − 2)c2.
4. To compute f 1 3

1 2
, suppose the external assignment is (w,w, x, y). If the internal edge is

assigned w, then b2 is contributed to the sum. If the internal edge is assigned x, then
bc is contributed to the sum. If the internal edge is assigned y, then bc is contributed
to the sum. If the internal edge is not assigned w, x or y, then c2 is contributed to the
sum for a total contribution of (κ − 3)c2.

5. To compute f 1 3
1 2
, suppose the external assignment is (w, x, w, x). This entry is the

same as that for (w,w, x, x). The reason is that the signature is unchanged if the two
external edges of the lower vertex are swapped since 〈a, b, c〉 is symmetric.

6. To compute f 1 3
2 1
, suppose the external assignment is (w, x, w, y). This entry is the

same as that for (w,w, x, y) for the same reason as the previous entry.
7. To compute f 1 1

2 2
, suppose the external assignment is (w, x, x, w). If the internal edge

is assigned w, then ab is contributed to the sum. If the internal edge is assigned x,
then ab is contributed to the sum. If the internal edge is not assigned w or x, then b2

is contributed to the sum for a total contribution of (κ − 2)b2.
8. To compute f 1 1

2 3
, suppose the external assignment is (w, x, y, w). If the internal edge is

assigned w, then ac is contributed to the sum. If the internal edge is assigned x, then
b2 is contributed to the sum. If the internal edge is assigned y, then b2 is contributed
to the sum. If the internal edge is not assigned w, x or y, then bc is contributed to the
sum for a total contribution of (κ − 3)c2.

9. To compute f 1 4
2 3
, suppose the external assignment is (w, x, y, z). If the internal edge

is assigned w, x, y, or z, then bc is contributed to the sum for a total contribution of
4bc. If the internal edge is not assigned w, x, y or z, then c2 is contributed to the sum
for a total contribution of (κ − 4)c2.

These total contributions each sumto their corresponding entry of f given in the statement
of Lemma 11.3. ��

Although possible, it would be difficult to compute the signature of the gadget in Fig. 24c
throughpartitioning of the internal edge assignments alone.To simplifymatters,weutilize
the calculations from Lemma 11.3. Since composing the gadget in Fig. 24a with the one
in Fig. 24b gives a symmetric signature, we refrain from distinguishing the external edges
of the gadget in Fig. 24b.

(a) (b) (c)

Fig. 24 Decomposition of a ternary gadget. All circle vertices are assigned 〈a, b, c〉, and the square vertex
in (b) is assigned the signature of the gadget in (a). a Inner structure b outer structure c entire binary gadget
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Lemma 11.4 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If we assign 〈a, b, c〉 to all vertices of the gadget in Fig. 24c, then
the succinct ternary signature of type τ3 of the resulting gadget is 〈a′, b′, c′〉, where

a′ = a3 + 3(κ − 1)ab2 + 4(κ − 1)b3 + 3(κ − 1)(κ − 2)(b2c + bc2)

+ (κ − 1)(κ − 2)(κ − 3)c3,

b′ = a2b + 4ab2 + 2(κ − 2)abc + (κ − 2)ac2 + (5κ − 7)b3 + (κ − 2)(κ + 5)b2c

+ (κ − 2)(7κ − 18)bc2 + (κ − 2)(κ − 3)2c3, and

c′ = 3ab2 + 6abc + 3(κ − 3)ac2 + (κ + 5)b3 + 3(7κ − 18)b2c + 9(κ − 3)2bc2

+ (κ3 − 9κ2 + 29κ − 32)c3.

Furthermore, if A = 0, then

a′ = 3b′ − 2c′,
b′ = (5κ + 14)b3 + (κ2 + 9κ − 42)b2c + (7κ2 − 33κ + 42)bc2

+ (κ − 2)(κ2 − 6κ + 7)c3, and

c′ = (κ+14)b3+21(κ−2)b2c+3(3κ2−15κ+14)bc2+(κ3−9κ2+23κ−14)c3.

Proof Since 〈a, b, c〉 is domain invariant, the signature of this gadget is also domain invari-
ant. As a ternary signature, the rotational symmetry of this gadget implies the symmetry of
the signature. Any symmetric domain invariant ternary signature has a succinct signature
of type τ3.
Consider the gadget in Fig. 24a.We assign 〈a, b, c〉 to both vertices. Then by Lemma11.3,

the succinct quaternary signature of this gadget is the signature f given in Lemma 11.3.
Now consider the gadget in Fig. 24b. We assign 〈a, b, c〉 to the circle vertex and f to the

square vertex. The resulting gadget is the one in Fig. 24c, which is symmetric. Thus, there
is no need to distinguish the external edges. We have three entries to compute.
Let g, r, y ∈ [κ] be distinct edge assignments. To compute a′, suppose that all external

edges are assigned g . We begin with the case where both internal edges have the same
assignment. If this assignment is g , then a f 1 1

1 1
is contributed to the sum. If this assignment

is not g , then b f 1 2
1 2

is contributed to the sum for a total contribution of (κ − 1)b f 1 2
1 2
.

Now consider the case that the two internal edges have a different assignment. If one
of these assignments is g , then b f 1 2

1 1
is contributed to the sum for a total contribution

of 2(κ − 1)b f 1 2
1 1
. If neither assignment is g , then c f 1 3

1 2
is contributed to the sum for a

total contribution of (κ − 1)(κ − 2)c f 1 3
1 2
. After substituting for the entries of f , these total

contributions sum to the value for a′ given in Lemma 11.4.
To compute b′, suppose the left external edges are assigned g and the right external edge

is assigned r.We begin with the case where both internal edges have the same assignment.
If this assignment is g , then b f 1 1

1 1
is contributed to the sum. If this assignment is r, then

a f 1 2
1 2

is contributed to the sum. If this assignment is not g or r, then b f 1 2
1 2

is contributed to
the sum for a total contribution of (κ−2)b f 1 2

1 2
. Now consider the case that the two internal

edges have a different assignments. If both are assigned g or r, then b f 1 2
1 1

is contributed to
the sum for a total contribution of 2b f 1 2

1 1
. If one is assigned g and the other is not assigned

r, then c f 1 2
1 1

is contributed to the sum for a total contribution of 2(κ − 2)c f 1 2
1 1
. If one is

assigned r and the other is not assigned g , then b f 1 3
1 2

is contributed to the sum for a total
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contribution of 2(κ − 2)b f 1 3
1 2
. If neither is assigned g or r, then c f 1 3

1 2
is contributed to the

sum for a total contribution of (κ − 2)(κ − 3)c f 1 3
1 2
. After substituting for the entries of f ,

these total contributions sum to the value for b′ given in Lemma 11.4.
To compute c′, suppose the upper-left external edge is assigned g , the lower-left external

edge is assigned r, and the right external edge is assigned y. We begin with the case
where both internal edges have the same assignment. If this assignment is g , then b f 1 2

1 1
is

contributed to the sum. If this assignment is r, then b f 1 2
1 1

is contributed to the sum. If this
assignment is y, then a f 1 3

1 2
is contributed to the sum. If this assignment is not g , r, or y,

then b f 1 3
1 2

is contributed to the sum for a total contribution of (κ − 3)b f 1 3
1 2
. Now consider

the case that the two internal edges have a different assignments. If the top internal edge
is assigned g and the bottom one is assigned r, then c f 1 1

2 2
is contributed to the sum. If the

top internal edge is assigned r and the bottom one is assigned g , then c f 1 2
2 1

is contributed
to the sum. If the top internal edge is assigned g and the bottom one is assigned y, then
b f 1 1

2 3
is contributed to the sum. If the top internal edge is assigned y and the bottom one

is assigned g , then b f 1 3
2 1

is contributed to the sum. If the top internal edge is assigned r
and the bottom one is assigned y, then b f 1 3

2 1
is contributed to the sum. If the top internal

edge is assigned y and the bottom one is assigned r, then b f 1 1
2 3

is contributed to the sum.
If the top internal edge is assigned g and the bottom one not assigned r or y, then c f 1 1

2 3
is

contributed to the sum for a total contribution of (κ − 3)c f 1 1
2 3
. If the bottom internal edge

is assigned g and the top one not assigned r or y, then c f 1 3
2 1

is contributed to the sum for
a total contribution of (κ − 3)c f 1 3

2 1
. If the top internal edge is assigned r and the bottom

one not assigned g or y, then c f 1 3
2 1

is contributed to the sum for a total contribution of
(κ − 3)c f 1 3

2 1
. If the bottom internal edge is assigned r and the top one not assigned g or

y, then c f 1 1
2 3

is contributed to the sum for a total contribution of (κ − 3)c f 1 1
2 3
. If the one

internal edge is assigned y and the other is not assigned g or r, then b f 1 4
2 3

is contributed to
the sum for a total contribution of 2(κ − 3)b f 1 4

2 3
. If neither internal edge is assigned g r, or

y, then c f 1 4
2 3

is contributed to the sum for a total contribution of (κ − 3)(κ − 4)c f 1 4
2 3
. After

substituting for the entries of f , these total contributions sum to the value for c′ given in
Lemma 11.4. ��

The signature of the gadget in Fig. 25 is difficult to compute using gadget compositions
and partitioning of internal edge assignments as we have been doing. Instead, we compute
this signature using matrix product, trace, and polynomial interpolation.

Lemma 11.5 Suppose κ ≥ 3 is the domain size and a, b, c, x1, y1, x2, y2 ∈ C. Let 〈a, b, c〉 be
a succinct ternary signature of type τ3 and 〈x1, y1〉 and 〈x2, y2〉 be succinct binary signatures
of type τ2. If to the gadget in Fig. 25 we assign 〈a, b, c〉 to the circle vertices, 〈x1, y1〉 to the
square vertex, and 〈x2, y2〉 to the triangle vertex, then the succinct binary signature of type
τ2 of the resulting gadget is 〈x, y〉, where

Fig. 25 A more complicated binary gadget
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x = x1x2a2 + 2(κ − 1)(x1y2 + x2y1 + y1y2)ab + 2(κ − 1)(κ − 2)y1y2ac

+ (κ − 1)[3x1x2 + κ(x1y2 + x2y1) + (7κ − 12)y1y2]b2

+ 2(κ − 1)(κ − 2)[2(x1y2 + x2y1) + (3κ − 7)y1y2]bc

+ (κ − 1)(κ − 2)[x1x2 + (κ − 3)(x1y2 + x2y1) + (κ2 − 5κ + 7)y1y2]c2 and

y = y1y2a2 + 2[x1x2 + x1y2 + x2y1 + 3(κ − 2)y1y2]ab

+ 2(κ − 2)[x1y2 + x2y1 + (κ − 3)y1y2]ac

+ [κx1x2 + (7κ − 12)(x1y2 + x2y1) + 3(3κ2 − 11κ + 11)y1y2]b2

+ 2(κ − 2)[2x1x2 + (3κ − 7)(x1y2 + x2y1) + 3(κ2 − 4κ + 5)y1y2]bc

+ (κ − 2)[(κ − 3)x1x2 + (κ2 − 5κ + 7)(x1y2 + x2y1)+(κ3−6κ2+14κ − 13)]c2.

Furthermore, if 〈x1, y1〉 = 1
κ
〈ωr + κ − 1,ωr − 1〉 and 〈x2, y2〉 = 1

κ
〈ωs + κ − 1,ωs − 1〉, then

x = B2

κ2
[
�ωr+s + (κ − 1)(ωr + ωs + � + 1)

]
and

y = B2

κ2
[
�ωr+s − (ωr + ωs + � + 1) + κ

]
,

where � = C2

B2 and � = (κ−2)A2

B2 .

Proof Since 〈a, b, c〉, 〈x1, y1〉, and 〈x2, y2〉 are domain invariant, the signature of this gadget
is also domain invariant. Any domain invariant binary signature has a succinct signature
of type τ2.
We compute a′, b′, and c′ using the algorithm for Holant(F ) when every nondegenerate

signature in F is of arity at most 2, which is to use matrix product and trace. Then we
finish with polynomial interpolation. LetMκ (t) be a κ-by-κ matrix such that

(Mκ (t))i,j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a i = j = t,

b i = j �= t,

b i �= j and (i = t or j = t),

c otherwise.

For example, M4(1) =
[ a b b b
b b c c
b c b c
b c c b

]

. If we fix an input of 〈a, b, c〉 to t ∈ [κ], then the

resulting binary signature (which is no longer domain invariant) has the signature matrix
Mκ (t).
Consider x and y as polynomials in κ with coefficients in Z[a, b, c, x1, y1, x2, y2]. Then

x(κ) = tr
(
Mκ (1)[y1Jκ + (x1 − y1)Iκ ]Mκ (1)[y2Jκ + (x2 − y2)Iκ ]

)
and

y(κ) = tr
(
Mκ (1)[y1Jκ + (x1 − y1)Iκ ]Mκ (2)[y2Jκ + (x2 − y2)Iκ ]

)
.

Since there are just four internal edges in this gadget, both of x(κ) and y(κ) are of degree at
most 4 in κ . Therefore, we interpolate each of these polynomials using their evaluations
at 3 ≤ κ ≤ 7 and obtain the expressions for x and y given in Lemma 11.5. ��

Remark Lemma 11.2 is the special case of Lemma 11.5 with 〈x1, y1〉 = 〈x2, y2〉 = 〈1, 0〉.
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In order to apply a holographic transformation on a particular signature, it is convenient
to express the signature as a sum of degenerate signatures. Let eκ ,i be the standard basis
vector of length κ with a 1 at location i and 0 elsewhere. Also let 1κ be the all 1’s vector of
length κ . Then the succinct ternary signature 〈a, b, c〉 on domain size κ can be expressed
as

〈a, b, c〉 = c1⊗3
κ + (a − c)

κ∑

i=1
e⊗3
κ ,i + (b − c)

∑

i,j∈[κ]
i �=j

⎛

⎜
⎝

eκ ,i ⊗ eκ ,i ⊗ eκ ,j
+ eκ ,i ⊗ eκ ,j ⊗ eκ ,i
+ eκ ,j ⊗ eκ ,i ⊗ eκ ,i

⎞

⎟
⎠ (21)

= b1⊗3
κ + (a − b)

κ∑

i=1
e⊗3
κ ,i + (c − b)

∑

σ :1,2,3→[κ]
σ injective

eκ ,σ (1) ⊗ eκ ,σ (2) ⊗ eκ ,σ (3). (22)

The expression in (21) contains 1 + κ + 3κ(κ − 1) = 3κ2 − 2κ + 1 summands. In
general, this is smaller than the one in (22), which contains 1 + κ + κ(κ − 1)(κ − 2) =
κ3 − 3κ2 + 3κ + 1 summands. It is advantageous to find an expression that minimizes
the number of summands. This leads to less computation in the proof of Lemma 11.6.
However, determining the fewest number of summands for a given signature is exactly
the problem of determining tensor rank, which is a problem well known to be difficult
[38].
There is a gadget construction thatmimics thebehavior of aholographic transformation.

This construction is called a local holographic transformation [24]. For x, y ∈ C, let 〈x, y〉
be a succinct binary signature of type τ2. Consider the gadget in Fig. 26. If we assign
〈a, b, c〉 to the circle vertex and 〈x, y〉 to the square vertex, then the resulting signature of
this gadget is the same as applying a holographic transformation on 〈a, b, c〉 with basis
T = yJκ + (x − y)Iκ . We use this fact in the following proof.

Lemma 11.6 Suppose κ ≥ 3 is the domain size and a, b, c, x, y ∈ C. Let 〈a, b, c〉 be a
succinct signature of type τ3 and let T = yJκ + (x − y)Iκ . Then T⊗3〈a, b, c〉 = 〈a′, b′, c′〉,
where

a′ = a
[
x3 + (κ − 1)y3

]

+ 3b(κ − 1)
[
x2y + xy2 + (κ − 2)y3

]

+ c(κ − 1)(κ − 2)
[
3xy2 + (κ − 3)y3

]
,

b′ = a
[
x2y + xy2 + (κ − 2)y3

]

+ b
[
x3 + κx2y + (7κ − 12)xy2 + (3κ2 − 11κ + 11)y3

]

+ c(κ − 2)
[
2x2y + (3κ − 7)xy2 + (κ2 − 4κ + 5)y3

]
, and

Fig. 26 Local holographic transformation gadget construction for a ternary signature
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c′ = a
[
3xy2 + (κ − 3)y3

]

+ 3b
[
2x2y + (3κ − 7)xy2 + (κ2 − 4κ + 5)y3

]

+ c
[
x3 + 3(κ − 3)x2y + 3(κ2 − 5κ + 7)xy2 + (κ3 − 6κ2 + 14κ − 13)y3

]
.

In particular,

a′ − b′ = (x − y)2[2D + A(x − y)] and b′ − c′ = (x − y)2D,

whereD = (b − c)(x − y) + By. Furthermore, if A = 0, then

a′ = 3b′ − 2c′,
b′ = [x + (κ − 1)y]

{
bx2 + 2[2b + (κ − 3)c]xy + [(3κ − 5)b + (κ2 − 5κ + 6)c]y2

}
and

c′ = [x + (κ − 1)y]
{
cx2 + 2[3b + (κ − 4)c]xy + [(3κ − 6)b + (κ2 − 5κ + 7)c]y2

}
.

If κ = 3, x = −1, and y = 2, then

a′ = −3(5a + 12b − 8c), b′ = −3(2a + 3b + 4c), and c′ = 3(4a − 12b − c).

Proof Let f̂ = T⊗3〈a, b, c〉. Since 〈a, b, c〉 and 〈x, y〉 are domain invariant, the signature of
the gadget in Fig. 26, which is the same signature f̂ , is also domain invariant. As a ternary
signature, the rotational symmetry of this gadget implies the symmetry of the signature.
Any symmetric domain invariant ternary signature has a succinct signature of type τ3.
The entries of f̂ are polynomials in κ with coefficients from Z[a, b, c, x, y]. The degree

of these polynomials is at most 3 since the arity of 〈a, b, c〉 is 3. We compute the entries
of f̂ = T⊗3〈a, b, c〉 as elements in Z[a, b, c, x, y] for domain sizes 3 ≤ κ ≤ 6 by replacing
〈a, b, c〉 with an equivalent expression from either (21) or (22). Then we interpolate the
entries of f̂ as elements in (Z[a, b, c, x, y])[κ]. The resulting expressions for the signature
entries are as given in the statement of Lemma 11.6.
It is straightforward to verify the expressions for a′ − b′ and b′ − c′ given those for a′,

b′, and c′. Recall that A = a − 3b + 2c. If A = 0, then it follows that a′ − 3b′ + 2c′ = 0 as
well since

a′ − 3b′ + 2c′ = a′ − b′ − 2(b′ − c′)
= (x − y)2[2D + A(x − y)] − 2(x − y)2D

= A(x − y)3 = 0.

The expressions for b′ and c′ when A = 0 directly follow from their general expressions
above. ��

By composing smaller gadgets, we can easily compute the signatures of rather large
gadgets.

Lemma 11.7 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If 〈a, b, c〉 is assigned to every vertex of the gadget in Fig. 27c,
then the resulting signature is the succinct binary signature 〈x, y〉 of type τ2, where
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(a) (b) (c)

Fig. 27 Decomposition of a binary gadget. All circle vertices are assigned 〈a, b, c〉, and the square vertex
in (b) is assigned the signature of the gadget in (a). a Inner structure b Outer structure c Entire binary gadget

x = a4 + 6(κ − 1)a2b2 + 16(κ − 1)ab3 + 12(κ − 1)(κ − 2)ab2c

+ 12(κ − 1)(κ − 2)abc2 + 4(κ − 1)(κ − 2)(κ − 3)ac3 + 3(κ − 1)(5κ − 7)b4

+ 4(κ − 1)(κ − 2)(κ + 5)b3c + 6(κ − 1)(κ − 2)(7κ − 18)b2c2

+ 12(κ − 3)2(κ − 1)(κ − 2)bc3 + (κ − 1)(κ − 2)(κ3 − 9κ2 + 29κ − 32)c4 and

y = 2a3b + (κ + 4)a2b2 + 4(κ − 2)a2bc + (κ − 2)a2c2 + 2(9κ − 11)ab3

+ 2(κ − 2)(3κ + 8)ab2c + 2(κ − 2)(12κ − 31)abc2 + 2(κ − 2)(2κ2 − 11κ + 16)ac3

+ (7κ2 + 3κ − 24)b4 + 2(κ − 2)(κ2 + 31κ − 70)b3c + (κ − 2)(48κ2 − 234κ + 301)b2c2

+ 2(κ − 2)(6κ3 − 45κ2 + 121κ − 116)bc3

+ (κ − 2)(κ − 3)(κ3 − 7κ2 + 19κ − 20)c4 .

Proof Since 〈a, b, c〉 is domain invariant, the signature of this gadget is also domain invari-
ant. Any domain invariant binary signature has a succinct signature of type τ2.
Consider the gadget in Fig. 27a. We assign 〈a, b, c〉 to both vertices. By Lemma 11.3, this

gadget has the succinct quaternary signature f of type τ4, where f is given in Lemma 11.3.
Now consider the gadget in Fig. 27b. We assign 〈a, b, c〉 the circle vertices and f to

the square vertex. By partitioning the internal edge assignments into parts with the same
contribution to the sum, one can verify that this gadget has the succinct binary signature
〈x, y〉 of type τ2, where

x = f 1 1
1 1

[
a2 + (κ − 1)b2

]

+ 4(κ − 1) f 1 2
1 1

[
ab + b2 + (κ − 2)bc

]

+ (κ − 1) f 1 2
1 2

[
2ab + (κ − 2)b2

]

+ 2(κ2 − 3κ + 2) f 1 3
1 2

[
ac + 2b2 + (κ − 3)bc

]

+ (κ − 1) f 1 2
2 1

[
2b2 + (κ − 2)c2

]

+ 2(κ2 − 3κ + 2) f 1 3
2 1

[
b2 + 2bc + (κ − 3)c2

]

+ (κ − 1) f 1 1
2 2

[
2b2 + (κ − 2)c2

]

+ 2(κ2 − 3κ + 2) f 1 1
2 3

[
b2 + 2bc + (κ − 3)c2

]

+ (κ3 − 6κ2 + 11κ − 6) f 1 4
2 3

[
4bc + (κ − 4)c2

]
and

y = f 1 1
1 1

[
2ab + (κ − 2)b2

]

+ 4 f 1 2
1 1

[
ab + (κ − 2)ac + (2κ − 3)b2 + (κ − 2)2bc

]

+ f 1 2
1 2

[
a2 + 2(κ − 2)ab + (κ2 − 3κ + 3)b2

]

+ 2(κ − 2) f 1 3
1 2

[
2ab + (κ − 3)ac + 2(κ − 2)b2 + (κ2 − 4κ + 5)bc

]

+ f 1 2
2 1

[
2b2 + 4(κ − 2)bc + (κ2 − 5κ + 6)c2

]

+ 2(κ − 2) f 1 3
2 1

[
3b2 + 2(2κ − 5)bc + (κ2 − 5κ + 7)c2

]
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+ f 1 1
2 2

[
2b2 + 4(κ − 2)bc + (κ2 − 5κ + 6)c2

]

+ 2(κ − 2) f 1 1
2 3

[
3b2 + 2(2κ − 5)bc + (κ2 − 5κ + 7)c2

]

+ (κ2 − 5κ + 6) f 1 4
2 3

[
4b2 + 4(κ − 3)bc + (κ2 − 5κ + 8)c2

]
.

Substituting for the entries of f gives the result stated in Lemma 11.7. ��

Lemma 11.8 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If 〈a, b, c〉 is assigned to every vertex of the gadget in Fig. 28c,
then the resulting signature is the binary succinct signature 〈x, y〉 of type τ2, where x and y
are given in Table 4.

Proof Since 〈a, b, c〉 is domain invariant, the signature of this gadget is also domain invari-
ant. Any domain invariant binary signature has a succinct signature of type τ2.
Consider the gadget in Fig. 28a. We assign 〈a, b, c〉 to all vertices. By Lemma 11.4, this

gadget has the succinct ternary signature f = 〈a0, b0, c0〉 of type τ4, where a0, b0, and c0
are given in the statement of Lemma 11.4 as a′, b′, and c′, respectively.
Now consider the gadget in Fig. 28b. We assign f to the vertices. By Lemma 11.2, the

resulting gadget has the binary succinct signature 〈x, y〉 of type τ2, where

x = a20 + 3(κ − 1)b20 + (κ − 1)(κ − 2)c20 and

y = 2a0b0 + κb20 + 4(κ − 2)b0c0 + (κ − 2)(κ − 3)c20 .

Substituting for a0, b0, and c0 gives the result in Table 4. ��
Beyond the gadgets in this section, there are two 9-by-9 recurrencematrices that appear

in our proofs (seeTable 1 andTable 2). No entry in those recurrencematrices is any harder
to compute than any signature entry appearing in this section. The difficulty with these
recurrence matrices is the sheer number of terms that must be computed.

12 Appendix 2: More binary interpolation
For some settings of a, b, c ∈ C, Lemma 9.3 and Lemma 9.11 do not apply. However, these
settings are easily handled on a case-by-case basis.

Lemma 12.1 Suppose κ ≥ 3 is the domain size. Let F be a signature set containing the
succinct unary signature 〈1〉 of type τ1 and any of the following succinct ternary signatures
of type τ3:

1. 〈κ − 2 ± iκ
√
2(κ − 2), κ − 2,−2〉;

2. 〈(κ − 2)2 ± iκ
√

κ2 − 4,−2(κ − 2), 4〉;

(a) (b) (c)

Fig. 28 Decomposition of a binary gadget. All circle vertices are assigned 〈a, b, c〉, and the triangle vertices
in (b) is assigned the signature of the gadget in (a). a Inner structure, b outer structure c entire binary gadget
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Table 4 The signature of the gadget in Fig. 28c is 〈x, y〉 for the x and y above

x = a6 + 9(κ − 1)a4b2 + 32(κ − 1)a3b3 + 18(κ − 1)(κ − 2)a3b2c + 12(κ − 1)(κ − 2)a3bc2

+ 2(κ − 1)(κ − 2)(κ − 3)a3c3 + 3(κ − 1)(16κ − 7)a2b4 + 6(κ − 1)(κ − 2)(κ + 19)a2b3c

+ 18(κ − 1)(κ − 2)(4κ − 7)a2b2c2 + 6(κ − 1)(κ − 2)(κ2 + 2κ − 13)a2bc3

+ 3(κ − 1)(κ − 2)(3κ2 − 17κ + 25)a2c4 + 6(κ − 1)(κ2 + 27κ − 42)ab5

+ 6(κ − 1)(κ − 2)(40κ − 41)ab4c + 24(κ − 1)(κ − 2)(3κ2 + 8κ − 36)ab3c2

+ 6(κ − 1)(κ − 2)(κ3 + 50κ2 − 285κ + 393)ab2c3

+ 6(κ − 1)(κ − 2)(13κ3 − 108κ2 + 311κ − 307)abc4

+ 6(κ − 1)(κ − 2)(κ − 3)(κ3 − 8κ2 + 24κ − 26)ac5

+ (κ − 1)(κ3 + 83κ2 − 189κ + 81)b6 + 18(κ − 1)(κ − 2)(4κ2 + 13κ − 43)b5c

+ 3(κ − 1)(κ − 2)(7κ3 + 222κ2 − 1156κ + 1442)b4c2

+ 2(κ − 1)(κ − 2)(κ4 + 221κ3 − 1725κ2 + 4576κ − 4153)b3c3

+ 3(κ − 1)(κ − 2)(43κ4 − 441κ3 + 1791κ2 − 3393κ + 2505)b2c4

+ 6(κ − 1)(κ − 2)(κ − 3)(3κ4 − 29κ3 + 116κ2 − 228κ + 182)bc5

+ (κ − 1)(κ − 2)(κ6 − 15κ5 + 98κ4 − 361κ3 + 798κ2 − 1004κ + 556)c6

and

y = 2a5b + (κ + 8)a4b2 + 4(κ − 2)a4bc + 2(κ − 2)a4c2 + 4(9κ − 11)a3b3 + 2(κ − 2)(3κ + 17)a3b2c

+ 4(κ − 2)(7κ − 18)a3bc2 + 2(κ − 3)2(κ − 2)a3c3 + (23κ2 + 49κ − 114)a2b4

+ 2(κ − 2)(κ2 + 94κ − 147)a2b3c + 6(κ − 2)(12κ2 − 34κ + 17)a2b2c2

+ 2(κ − 2)(3κ3 + 9κ2 − 97κ + 149)a2bc3 + (κ − 2)(9κ3 − 68κ2 + 181κ − 171)a2c4

+ 2(3κ3 + 73κ2 − 183κ + 99)ab5 + 2(κ − 2)(96κ2 − 43κ − 255)ab4c

+ 4(κ − 2)(16κ3 + 94κ2 − 655κ + 855)ab3c2

+ 2(κ − 2)(3κ4 + 159κ3 − 1233κ2 + 3164κ − 2809)ab2c3

+ 2(κ − 2)(39κ4 − 375κ3 + 1425κ2 − 2555κ + 1825)abc4

+ 2(κ − 2)(3κ5 − 36κ4 + 181κ3 − 482κ2 + 686κ − 418)ac5

+ (κ4 + 50κ3 − 17κ2 − 396κ + 486)b6

+ 2(κ − 2)(28κ3 + 251κ2 − 1302κ + 1467)b5c

+ (κ − 2)(19κ4 + 745κ3 − 5374κ2 + 12664κ − 10320)b4c2

+ 2(κ − 2)(κ5 + 224κ4 − 2062κ3 + 7371κ2 − 12357κ + 8227)b3c3

+ (κ − 2)(129κ5 − 1464κ4 + 6952κ3 − 17464κ2 + 23397κ − 13387)b2c4

+ 2(κ − 2)(9κ6 − 123κ5 + 727κ4 − 2405κ3 + 4754κ2 − 5374κ + 2718)bc5

+ (κ − 3)(κ − 2)(κ6 − 13κ5 + 74κ4 − 239κ3 + 470κ2 − 544κ + 292)c6 .

3. 〈−(2κ − 3)
[
2(κ − 2) ± iκ

√
2(κ − 2)

]
,−2(κ − 3)(κ − 2) ± iκ

√
2(κ − 2), 4(2κ − 3)〉

with κ �= 4;
4. 〈−κ2 + 2, 2, 2〉;
5. 〈κ2 − 6κ + 6,−2(κ − 3), 6〉;
6. 〈(κ − 3)(κ − 2)2 ± iκ(2κ − 3)

√
κ2 − 4,−3(κ − 2)2 ∓ iκ

√
κ2 − 4, 2(5κ − 6)〉;

7. 〈−(κ − 1)
[
5(κ − 2) ± 3iκ

√
2(κ − 2)

]
,−(κ − 2)(3κ − 5) ± iκ

√
2(κ − 2), 9κ − 10〉;

8. 〈(κ−1)
[
(κ−2)(2κ+3)±3κ

√
κ2 − 5κ + 6

]
, (κ−3)(κ−2)∓κ

√
κ2 − 5κ + 6,−5κ+6〉;

9. 〈(κ−1)
[
(κ−2)(2κ−7)±3iκ

√
κ2−κ − 2

]
,−(κ−2)(5κ−7)∓ iκ

√
κ2−κ−2, 13κ−14〉;

10. 〈1, 0,−2〉 with κ = 3;
11. 〈±i

√
2, 0, 1〉 with κ = 3;

12. 〈−1 ± i
√
2, 0, 1〉 with κ = 3;

13. 〈−1 ± 3i
√
3, 0, 2〉 with κ = 3;

Then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.



Cai et al. Res Math Sci (2016) 3:18 Page 71 of 77

Proof In each case, we use the recursive construction in Fig. 7. We simply state which
gadget we use, the signature of that gadget, and the eigenvalues of its associated recur-
rence matrix (cf. Lemma 4.11). Then the result easily follows from Corollary 4.13 as the
eigenvalues have distinct complex norms.
We use three possible gadgets, which are in Figs. 19a, 27c, and 28c. The signatures for

the last two gadgets are given by Lemmas 11.7 and 11.8, respectively.

1. For 〈κ − 2 ± iκ
√
2(κ − 2), κ − 2,−2〉, we first use the gadget in Fig. 27c. Let

γ = ±i
√
2(κ − 2). Up to a nonzero factor of (γ−2)7γ 2(γ+2)3

64 , the signature of the
gadget is 〈−1, 1〉, which means the eigenvalues are κ − 2 and −2. If κ �= 4, then
these eigenvalues have distinct complex norms. Otherwise, κ = 4 and we use the
gadget in Fig. 28c. Up to a factor of±65536i, the signature of this gadget is 〈1,−3〉,
which means the eigenvalues are −8 and 4.

2. For 〈(κ − 2)2 ± iκ
√

κ2 − 4,−2(κ − 2), 4〉, we first use the gadget in Fig. 27c. Let
γ = ±i

√
κ2 − 4. Up to a nonzero factor of−4(κ −2)κ3(κ2−4γ −8), the signature

of this gadget is 〈κ2−6κ+4,−2(κ−4)〉, whichmeans the eigenvalues are−(κ−2)2

and κ2 − 4k − 4. If κ ≥ 5, then these eigenvalues have opposite signs but cannot
be the negative of each other. Thus, they have distinct complex norms. The same
conclusion holds for κ = 3 by direct inspection. Otherwise, κ = 4 and we use the
gadget in Fig. 28c. Up to a factor of 2097152, the signature of this gadget is 〈5, 1〉,
which means the eigenvalues are 8 and 4.

3. For 〈−(2κ−3)
[
2(κ−2)±iκ

√
2(κ − 2)

]
,−2(κ−3)(κ−2)±iκ

√
2(κ − 2), 4(2κ−3)〉,

we have κ �= 4. We use the gadget in Fig. 27c. Let γ = ±i
√
2(κ − 2). Up to a

nonzero factor of−4(κ −2)κ6(3κ −4)(4κ2 −28κ +41−4γ (2κ −5)), the signature
of the gadget is 1

κ
〈3κ − 4, κ − 4〉, which means the eigenvalues are κ − 2 and 2.

4. For 〈−κ2+2, 2, 2〉, we use the gadget in Fig. 27c. Up to a nonzero factor of (κ−2)κ5,
the signature for this gadget is 〈κ2 + 2κ − 4,−4〉, which means the eigenvalues are
(κ − 2)κ and κ(κ + 2).

5. For 〈κ2 − 6κ + 6,−2(κ − 3), 6〉, we use the gadget in Fig. 27c. Up to a nonzero
factor of (κ − 2)κ5, the signature for this gadget is 〈κ2 + 2κ − 4,−4〉, which means
the eigenvalues are (κ − 2)κ and κ(κ + 2).

6. For 〈(κ − 3)(κ − 2)2 ± iκ(2κ − 3)
√

κ2 − 4,−3(κ − 2)2 ∓ iκ
√

κ2 − 4, 2(5κ − 6)〉,
we use the gadget in Fig. 27c. Let γ = ±i

√
κ2 − 4. Up to a nonzero factor of

(γ − 2)2(γ + 2)2(κ − 2)κ[7κ2 + 60κ − 164 + 8γ (3κ − 10)], the signature of the
gadget is 〈−κ4 + 6κ3 + 4κ2 − 24κ + 16, 2(κ3 − 2κ2 − 8κ + 8)〉, which means the
eigenvalues are λ1 = (κ − 2)κ(κ2 + 2κ − 4) and λ2 = −κ(κ + 2)(κ2 − 6κ + 4). For
3 ≤ κ ≤ 5, one can directly check that these eigenvalues have distinct complex
norms. For κ ≥ 6, we have λ2 < 0, so these eigenvalues have the same complex
norm preciously when λ1 = −λ2. However, λ1 +λ2 = 4κ3 �= 0, so the eigenvalues
have distinct complex norms.

7. For 〈−(κ −1)
[
5(κ −2)±3iκ

√
2(κ − 2)

]
,−(κ −2)(3κ −5)± iκ

√
2(κ − 2), 9κ −10〉,

we first use the gadget in Fig. 27c. Let γ = ±i
√
2(κ − 2). Up to a nonzero factor of

−(κ −2)(κ −1)κ5[81κ2−756κ +1252−24(9κ −26)γ ], the signature of this gadget
is 〈5κ −6, κ −6〉, whichmeans the eigenvalues are κ −2 and 4. If κ �= 6, then these
eigenvalues have distinct complex norms. Otherwise, κ = 6 and we use the gadget
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in Fig. 28c. Up to a factor of −17199267840(1169 ± 450i
√
2), the signature of this

gadget is 〈7, 13〉, which means the eigenvalues are 72 and −6.
8. For 〈(κ−1)

[
(κ−2)(2κ+3)±3κ

√
κ2 − 5κ + 6

]
, (κ−3)(κ−2)∓κ

√
κ2 − 5κ + 6,−5κ+

6〉, we first use the gadget in Fig. 27c. Let γ = ±√
κ2 − 5κ + 6. Up to a factor of

(κ − 2)(κ − 1)κ5[313κ2 − 1500κ + 1764 − 24(13κ − 30)γ ], the signature of this
gadget is 〈κ3 − 3κ2 + 3,−κ + 3〉, which means the eigenvalues are λ1 = (κ − 2)2κ
and λ2 = κ(κ2 − 3κ + 1). If κ ≥ 4, these eigenvalues are positive, so they have the
same complex norm preciously when λ1 = λ2. However, λ1−λ2 = −(κ −3)κ �= 0,
so the eigenvalues have distinct complex norms. Otherwise, κ = 3 and we use the
gadget in Fig. 28c. Up to a factor of 9565938, the signature of this gadget is 〈5, 2〉,
which means the eigenvalues are 9 and 3.

9. For 〈(κ−1)
[
(κ−2)(2κ−7)±3iκ

√
κ2 − κ − 2

]
,−(κ−2)(5κ−7)∓iκ

√
κ2 − κ − 2, 13κ−

14〉, we use the gadget in Fig. 27c. Let γ = ±i
√

κ2 − κ − 2. Up to a nonzero factor
of (κ − 2)(κ − 1)κ5[119κ2 + 76κ − 772 + 24(5κ − 22)γ ], the signature of this
gadget is 〈−κ3 + 7κ2 − 4κ − 3, 2κ2 − 7κ − 3〉, which means the eigenvalues are
λ1 = (κ − 2)κ2 and λ2 = −κ(k2 − 5κ − 3). For 3 ≤ κ ≤ 5, one can directly check
that these eigenvalues have distinct complex norms. For κ ≥ 6, we have λ2 < 0,
so these eigenvalues have the same complex norm preciously when λ1 = −λ2.
However, λ1 + λ2 = 3κ(κ + 1) �= 0, so the eigenvalues have distinct complex
norms.

10. For 〈1, 0,−2〉 with κ = 3, we use the gadget in Fig. 27c. Up to a factor of 3, the
signature of this gadget is 〈11,−4〉, which means the eigenvalues are 3 and 15.

11. For 〈±i
√
2, 0, 1〉 with κ = 3, we use the gadget in Fig. 19a. The signature of this

gadget is 〈±i
√
2, 1〉, which means the eigenvalues are 2 ± i

√
2 and −1 ± i

√
2.

12. For 〈−1± i
√
2, 0, 1〉with κ = 3, we use the gadget in Fig. 19a. The signature of this

gadget is 〈−1 ± i
√
2, 1〉, which means the eigenvalues are 1 ± i

√
2 and −2 ± i

√
2.

13. For 〈−1 ± 3i
√
3, 0, 2〉 with κ = 3, we use the gadget in Fig. 27c. Up to a factor

of 72, the signature of this gadget is 1
3 〈25 ± 13

√
3,−5 ± i

√
3〉, which means the

eigenvalues are 5(1 ± i
√
3) and 2(5 ± 2

√
3). ��

13 Appendix 3: Invariance properties from row eigenvectors
The purpose of this section is to show how a recursive construction in an interpolation
proof can be used to form a hypothesis about possible invariance properties. We often
find that no matter what constructions one considers, all signatures they produce satisfy
certain invariance. Instead of defining this notion formally, we prove the following lemma
as an example. After this lemma and its proof, we explain that this invariance can be
suggested by certain recursive constructions in an alternative proof of Theorem 4.8, that
it is #P-hard to count edge κ-coloring over planar κ-regular graphs for all κ ≥ 3. This
alternative proof uses the interpolation techniques that we developed in Sect. 6.

Lemma 13.1 Suppose κ ≥ 3 is the domain size. If F is a planar {ADκ ,κ }-gate with succinct
quaternary signature 〈a, b, c, d, e〉 of type τcolor, then a + c = b + d.

Proof Fix two distinct colors g, y ∈ [κ]. We define the swap of an edge colored g or y to be
the opposite of these two colors. That is, swapping the color of an edge colored g (resp. y)
gives the same edge colored y (resp. g). The ith external edge of F is the external edge that
corresponds to the ith input of F . Recall that the input edges of F are ordered cyclically.
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For 1 ≤ i ≤ 4, let Si (resp. S′
i) be the set of colorings of the edges (both internal and

external) of F with an external coloring in the partition Pi of the succinct signature type
τcolor such that the first external edge of F is colored g (resp. y) and the remaining external
edges are either colored g or y (as dictated by Pi). Note that |Si| = |S′

i| for 1 ≤ i ≤ 4.
Furthermore, the sizes of these sets do not depend on the choice of g, y ∈ [κ]. Thus, it
suffices to show that

|S1 ∪ S′
1 ∪ S3 ∪ S′

3| = |S2 ∪ S′
2 ∪ S4 ∪ S′

4|. (23)

Let σ ∈ S1 ∪ S′
1 ∪ S3 ∪ S′

3 be a coloring of F . Starting at the first external edge of F ,
there is a unique path π1 that alternates in edge colors between g and y and terminates
at another external edge of F . Suppose for a contradiction that this path terminates at
the third external edge of F . Also consider the unique path π2 that starts at the second
external edge of F , alternates in edge colors between g and y, and must terminate at the
fourth external edge of F . These two paths must cross somewhere since their ends are
crossed. By planarity, they must cross at a vertex, and yet they must be vertex disjoint.
This is a contradiction. Therefore, the path π1 either terminates at the second or fourth
external edge of F .
Suppose π1 terminates at the second external edge of F . If σ ∈ S1 (resp. σ ∈ S′

1), then
swapping the colors of every edge in π1 gives a new coloring π ′

1 ∈ S′
2 (resp. π ′

1 ∈ S2).
Similarly, if σ ∈ S3 (resp. σ ∈ S′

3), then swapping the colors of every edge in π1 gives a
new coloring π ′

1 ∈ S′
4 (resp. π

′
1 ∈ S4).

Otherwise, π1 terminates at the fourth external edge of F . If σ ∈ S1 (resp. σ ∈ S′
1), then

swapping the colors of every edge in π1 gives a new coloring π ′
1 ∈ S′

4 (resp. π ′
1 ∈ S4).

Similarly, if σ ∈ S3 (resp. σ ∈ S′
3), then swapping the colors of every edge in π1 gives a

new coloring π ′
1 ∈ S′

2 (resp. π
′
1 ∈ S2).

Furthermore, this mapping from S1 ∪ S′
1 ∪ S3 ∪ S′

3 to S2 ∪ S′
2 ∪ S4 ∪ S′

4 is invertible.
Therefore, we have established (23), as desired. ��
Now we give an alternative proof of Theorem 4.8. The recursive construction in this

proof will suggest the invariance in Lemma 13.1.
Let q(x, κ) = x3 − x2 + x− (κ − 1). First we determine the nature of the roots of q(x, κ).

Lemma 13.2 For all κ ∈ Z, the polynomial q(x, κ) in x has one real root r ∈ R and two
nonreal complex conjugate roots α,α ∈ C, such that α + α = 1 − r and αα = r2 − r + 1.
Furthermore, if q(x, κ) is reducible inQ[x] and κ ≥ 3, then r ≥ 2 is an integer.

Proof The discriminant of q(x, κ) with respect to x is discx(q(x, κ)) = −27κ2+68κ −44 <

0, so q(x, κ) has one real root r ∈ R and two nonreal complex conjugate roots α,α ∈ C.
We have

α + α + r = 1

αα + (α + α)r = 1

ααr = κ − 1.

It follows that α + α = 1 − r, αα = r2 − r + 1, and

κ = r3 − r2 + r + 1. (24)
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If q(x, κ) is reducible in Q[x] with κ ≥ 3, then r ∈ Z by Gauss’s Lemma and so r ≥ 2
by (24). ��
Lemma 13.3 If κ ≥ 3 is an integer, then the roots of x3 −x2 +x− (κ −1) satisfy the lattice
condition.

Proof If q(x, κ) is irreducible in Q[x], then its roots satisfy the lattice condition by
Lemma 6.4.
Otherwise, q(x, κ) is reducible in Q[x]. By Lemma 13.2, q(x, κ) has one real root r ∈ Z

satisfying r ≥ 2 and two nonreal complex conjugate rootsα,α ∈ C satisfying α+α = 1−r
and αα = r2 − r + 1. Suppose there exist i, j, k ∈ Z such that αiαj = rk and i+ j = k . We
want to show that i = j = k = 0.
There is an element in the Galois group of q(x, κ) that fixes Q pointwise and swaps α

and α. Thus, αjαi = rk . Dividing these two equations gives (α/α)i−j = 1. We claim that
ω = α/α cannot be a root of unity and hence i = j. For a contradiction, suppose ω is a dth
primitive root of unity. Let f (x) = (x − α)(x − α) = x2 + (r − 1)x + (r2 − r + 1) ∈ Z[x].
Then ω belongs to the splitting field of f over Q, which is a degree 2 extension over Q.
This implies that the Euler totient function φ(d) | 2. Therefore, d ∈ {1, 2, 3, 4, 6}. Let
ρ = α+α

αα
= 1+ω

ωα
= 1−r

r2−r+1 ∈ Q. Since r ≥ 2, we have ρ �= 0 and hence d �= 2. Moreover,
f (x) = x2− (2+ω+ω−1)ρ−1x+ (2+ω+ω−1)ρ−2. Notice that the quantity 2+ω+ω−1 is
4, 1, 2, 3, respectively, when d = 1, 3, 4, 6. As (2+ ω + ω−1)ρ−2 ∈ Z, we get that ρ−1 must
be an integer when d = 3, 4, 6 and half an integer when d = 1. However ρ−1 = −r + 1

r−1 .
The only possibility is r = 3 and d = 1, yet it is easy to check that ω �= 1 when this holds.
This proves the claim.
From αα = r2 − r + 1, we have (r2 − r + 1)i = (αα)i = rk . Since r and r2 − r + 1 are

relatively prime and r ≥ 2, we must have i = k = 0. ��

Alternative proof of Theorem 4.8 Asbefore, letκ be thedomain size of allHolant problems
in this proof and let 〈2, 1, 0, 1, 0〉be a succinct quaternary signatureof type τcolor.We reduce
fromPl-Holant(〈2, 1, 0, 1, 0〉) to Pl-Holant(ADκ ,κ ), which denotes the problemof counting
edge κ-colorings in planar κ-regular graphs as a Holant problem. Then by Corollary 4.7,
we conclude that Pl-Holant(ADκ ,κ ) is #P-hard.
Consider the gadget in Fig. 5, where the bold edge represents κ − 2 parallel edges. We

assign ADκ ,κ to both vertices. Up to a nonzero factor of (κ − 2)!, this gadget has the
succinct quaternary signature f = 〈0, 1, 1, 0, 0〉 of type τcolor. Now consider the recursive
construction in Fig. 29. All vertices are assigned the signature f . Let fs be the succinct

N0 N1

N
k

Nk+1

Fig. 29 Alternate recursive construction to interpolate 〈2, 1, 0, 1, 0〉. The vertices are assigned the signature
of the gadget in Fig. 5
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quaternary signature of type τcolor for the sth gadget of the recursive construction. Then
f0 = f and fs = Ms f0, where

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 κ − 1 0
1 0 0 κ − 2 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The row vectors

(1,−1, 1,−1, 0) and (0, 0, 0, 0, 1)

are linearly independent row eigenvectors ofM, with eigenvalues −1 and 1, respectively,
that are orthogonal to the initial signature f0. Note that our target signature 〈2, 1, 0, 1, 0〉
is also orthogonal to these two row eigenvectors.
Up to a factor of (x−1)(x+1), the characteristic polynomial ofM is x3−x2+x− (κ −1).

The roots of this polynomial satisfy the lattice condition by Lemma 13.3. In particular,
these three roots are distinct. By Lemma 13.2, the only real root is at least 2. Thus, all five
eigenvalues ofM are distinct, soM is diagonalizable.
The 3-by-3 matrix in the upper-left corner of [ f0 M f0 . . . M4 f0] is

[ 0 0 κ−1
1 0 κ−2
1 1 0

]
. Its deter-

minant is κ − 1 �= 0. Thus, [ f0 M f0 . . . M4 f0] has rank at least 3, so by Lemma 6.2, f0 is
not orthogonal to the three remaining row eigenvectors ofM.
Therefore, by Lemma 6.6, we can interpolate 〈2, 1, 0, 1, 0〉, which completes the proof.

��

Notice that the row eigenvector (1,−1, 1,−1, 0) suggests that a − b + c − d = 0 is
an invariance shared by all signatures of symmetric ternary constructions. Some row
eigenvectors, like (0, 0, 0, 0, 1), only indicate an invariance present in some recursive con-
structions. (When κ = 4, there are recursive constructions for which (0, 0, 0, 0, 1) is not a
row eigenvector of the recurrence matrix.) The row eigenvector (1,−1, 1,−1, 0) is more
intrinsic; it must appear because of the invariance present in all constructions as shown
in Lemma 13.1.
This suggests an approach to discover new invariance properties. Given a set F of

signatures, create some recursive construction and inspect the row eigenvectors of the
resulting recurrence matrix. For example, consider the set FA = {〈a, b, c〉 | a, b, c ∈
C and A = 0}, whereA = a−3b+2c. It seems thatFA is closed under symmetric ternary
constructions, such as those in Sect. 7.1. In particular, (1,−3, 2) is a row eigenvector of
the recurrence matrix for every recursive ternary construction with symmetric signatures
that we tried. However, we do not know how to prove this closure property.

Received: 9 June 2015 Accepted: 5 May 2016

References
1. Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial: a new graph polynomial. In: SODA, pp. 237–245. Society

for Industrial and Applied Mathematics (2000)
2. Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Vesztergombi, K.: Counting graph homomorphisms. In: Klazar, M., Kratochvíl,

J., Loebl, M., Matous̆ek, J., Valtr, P., Thomas, R. (eds.) Topics in Discrete Mathematics, volume 26 of Algorithms and
Combinatorics, pp. 315–371. Springer, Berlin (2006)

3. Brylawski, T., Oxley, J.: The Tutte polynomial and its applications. In: White, N. (ed.) Matriod Applications, pp. 123–225.
Cambridge University Press, Cambridge (1992)



Cai et al. Res Math Sci (2016) 3:18 Page 76 of 77

4. Bulatov, A., Dyer, M., Ann Goldberg, L., Jalsenius, M., Richerby, D.: The complexity of weighted Boolean #CSP with
mixed signs. Theor. Comput. Sci. 410(38–40), 3949–3961 (2009)

5. Bulatov, A., Grohe, M.: The complexity of partition functions. Theor. Comput. Sci. 348(2), 148–186 (2005)
6. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM 53(1), 66–120

(2006)
7. Bulatov, A.A.: The complexity of the counting constraint satisfaction problem. J. ACM 60(5), 34:1–34:41 (2013)
8. Bulatov, A.A., Dalmau, V.: Towards a dichotomy theorem for the counting constraint satisfaction problem. Inform.

Comput. 205(5), 651–678 (2007)
9. Cai, J.-Y., Chen, X.: Complexity of counting CSP with complex weights. In: STOC, pp. 909–920. ACM (2012)
10. Cai, J.-Y., Chen, X., Lipton, R.J., Lu, P.: On tractable exponential sums. In: FAW, pp. 148–159. Springer, Berlin (2010)
11. Cai, J.-Y., Chen, X., Lu, P.: Non-negatively weighted #CSP: an effective complexity dichotomy. In: CCC, pp. 45–54. IEEE

Computer Society (2011)
12. Cai, J.-Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: a dichotomy theorem. SIAM J. Comput. 42(3),

924–1029 (2013)
13. Cai, J.-Y., Choudhary, V.: Valiant’s Holant theorem and matchgate tensors. Theor. Comput. Sci. 384(1), 22–32 (2007)
14. Cai, J.-Y., Guo, H., Williams, T.: A complete dichotomy rises from the capture of vanishing signatures (extended

abstract). In: STOC, pp. 635–644. ACM (2013)
15. Cai, J.-Y., Huang, S., Pinyan, L.: From Holant to #CSP and back: Dichotomy for Holantc problems. Algorithmica 64(3),

511–533 (2012)
16. Cai, J.-Y., Kowalczyk, M.: Spin systems on k-regular graphs with complex edge functions. Theor. Comput. Sci. 461,

2–16 (2012)
17. Cai, J.-Y., Kowalczyk, M., Williams, T.: Gadgets and anti-gadgets leading to a complexity dichotomy. In: ITCS, pp.

452–467. ACM (2012)
18. Cai, J.-Y., Lu, P., Xia, M.: Holant problems and counting CSP. In: STOC, pp. 715–724. ACM (2009)
19. Cai, J.-Y., Lu, P., Xia, M.: Holographic algorithms with matchgates capture precisely tractable planar #CSP. In: FOCS, pp.

427–436. IEEE Computer Society (2010)
20. Cai, J.-Y., Pinyan, L., Xia, M.: Computational complexity of Holant problems. SIAM J. Comput. 40(4), 1101–1132 (2011)
21. Cai, J.-Y., Pinyan, L., Xia, M.: Holographic reduction, interpolation and hardness. Comput. Complex. 21(4), 573–604

(2012)
22. Cai, J.-Y., Lu, P., Xia, M.: Dichotomy for Holant* problems with domain size 3. In: SODA, pp. 1278–1295. SIAM (2013)
23. Cai, J.-Y., Pinyan, L., Xia, M.: Holographic algorithms by Fibonacci gates. Linear Algebra Appl. 438(2), 690–707 (2013)
24. Cai, J.-Y., Pinyan, L., Xia, M.: The complexity of complex weighted Boolean #CSP. J. Comput. Syst. Sci. 80(1), 217–236

(2014)
25. Dodson, C.T.J., Poston, T.: Tensor Geometry. Graduate Texts in Mathematics, vol. 130, 2nd edn. Springer, Berlin (1991)
26. Dyer, M., Ann Goldberg, L., Jerrum, M.: The complexity of weighted Boolean #CSP. SIAM J. Comput. 38(5), 1970–1986

(2009)
27. Dyer, M., Greenhill, C.: The complexity of counting graph homomorphisms. Random Struct. Algorithms 17(3–4),

260–289 (2000)
28. Dyer, M., Richerby, D.: On the complexity of #CSP. In: STOC, pp. 725–734. ACM (2010)
29. Ellis-Monaghan, J.A.: New results for the Martin polynomial. J. Comb. Theory Ser. B 74(2), 326–352 (1998)
30. Ellis-Monaghan, J.A.: Identities for circuit partition polynomials, with applications to the Tutte polynomial. Adv. Appl.

Math. 32(1–2), 188–197 (2004)
31. Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983)
32. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: a study

through Datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1998)
33. Gallagher, P.X.: The large sieve and probabilistic Galois theory. In: Proc. Symp. Pure Math., volume 24 of Analytic

Number Theory, pp. 91–101. American Mathematical Society (1973)
34. Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for partition functions with mixed signs.

SIAM J. Comput. 39(7), 3336–3402 (2010)
35. Guo, H., Huang, S., Lu, P., Xia, M.: The complexity of weighted Boolean #CSPmodulo k. In: STACS, pp. 249–260. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik (2011)
36. Guo, H., Williams, T.: The complexity of planar Boolean #CSP with complex weights. CoRR, abs/1212.2284 (2012)
37. Guo, H., Williams, T.: The complexity of planar Boolean #CSP with complex weights. In: ICALP, pp. 516–527. Springer,

Berlin (2013)
38. Håstad, J.: Tensor rank is NP-complete. J. Algorithm. 11(4), 644–654 (1990)
39. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)
40. Jacobson, N.: Basic Algebra I, 2nd edn. W. H. Freeman & Co., San Francisco (1985)
41. Joshi, A.W.: Matrices and Tensors in Physics. New Age International, revised third edition(1995)
42. David Forney Jr., G.: Codes on graphs: normal realizations. IEEE Trans. Inf. Theory 47(2), 520–548 (2001)
43. Kowalczyk, M., Cai, J.-Y.: Holant problems for regular graphs with complex edge functions. In: STACS, pp. 525–536.

Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik (2010)
44. Kowalczyk, M., Cai, J.-Y.: Holant problems for regular graphs with complex edge functions. CoRR. arXiv:1001.0464

(2010)
45. Leven, D., Galil, Z.: NP completeness of finding the chromatic index of regular graphs. J. Algorithm 4(1), 35–44 (1983)
46. Levin, A.: Private communication (2013)
47. Loeliger, H.-A.: An introduction to factor graphs. IEEE Signal Process. Mag. 21(1), 28–41 (2004)
48. Markov, I.L., Shi, Y.: Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38(3), 963–981

(2008)
49. Martin, P.:. Enumérations Eulériennes dans les multigraphes et invariants de Tutte-Grothendieck. PhD thesis, Joseph

Fourier University (1977). http://tel.archives-ouvertes.fr/tel-00287330



Cai et al. Res Math Sci (2016) 3:18 Page 77 of 77

50. Müller, P.: Hilbert’s irreducibility theorem for prime degree and general polynomials. Israel J. Math. 109(1), 319–337
(1999)

51. Poonen, B.: Private communication (2013)
52. Siegel, C.L.: Über einige anwendungen diophantischer approximationen. Abh. Pruess. Akad. Wiss. Phys. Math. Kl., pp.

41–69 (1929)
53. Stewart, I.: Galois Theory, 3rd edn. Chapman Hall/CRC Mathematics Series. Taylor & Francis, London (2003)
54. Stiebitz, M., Scheide, D., Toft, B., Favrholdt, L.M.: Graph Edge Coloring: Vizing’s Theorem and Goldberg’s Conjecture.

Wiley, New York (2012)
55. Tait, P.: Remarks on the colourings of maps. Proc. R. Soc. Edinb. 10, 729 (1880)
56. Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial time. SIAM J. Comput. 31(4), 1229–1254

(2002)
57. Leslie Valiant, G.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008)
58. Michel Las Vergnas: Le polynôme de Martin d’un graphe Eulerien. Ann. Discrete Math. 17, 397–411 (1983)
59. Vertigan, D.: The computational complexity of Tutte invariants for planar graphs. SIAM J. Comput. 35(3), 690–712

(2005)
60. Vizing, V.G.: Critical graphs with given chromatic class. Metody Diskret. Analiz. 5, 9–17 (1965)
61. Walsh, P.G.: A quantitative version of Runge’s theorem on Diophantine equations. Acta Arith. 62(2), 157–172 (1992)
62. Welsh, D.: Complexity: Knots. Colourings and Countings. London Mathematical Society Lecture Note Series. Cam-

bridge University Press (1993)



Paper 5



19

Complexity of Counting CSP with Complex Weights
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We give a complexity dichotomy theorem for the counting constraint satisfaction problem (#CSP in short)
with algebraic complex weights. To this end, we give three conditions for its tractability. Let F be any finite
set of algebraic complex-valued functions defined on an arbitrary finite domain. We show that #CSP(F) is
solvable in polynomial time if all three conditions are satisfied and is #P-hard otherwise.

Our dichotomy theorem generalizes a long series of important results on counting problems and reaches
a natural culmination: (a) the problem of counting graph homomorphisms is the special case when F has a
single symmetric binary function [Dyer and Greenhill 2000; Bulatov and Grohe 2005; Goldberg et al. 2010;
Cai et al. 2013]; (b) the problem of counting directed graph homomorphisms is the special case when F
has a single but not necessarily symmetric binary function [Dyer et al. 2007; Cai and Chen 2010]; (c) the
unweighted form of #CSP is when all functions in F take values in {0, 1} [Bulatov 2008; Dyer and Richerby
2013].
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1. INTRODUCTION

It is well known that if NP �= P, then there is an infinite hierarchy of complexity classes
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These dichotomy theorems can be seen as providing support to the intuitive notion
that most problems studied in computer science are either in P or NP-hard, Ladner’s
theorem [1975] notwithstanding. However, there are some exceptions. For example,
Integer Factoring and Graph Isomorphism are suspected to be neither in P nor NP-
hard. A question of foundational importance in complexity theory is this: For how broad
a class of problems can one hope to prove a complexity dichotomy theorem? Given a
class of problems, what is the criterion that distinguishes the tractable problems from
the intractable ones?

CSP provides a sufficiently broad framework to address a large class of problems for
which one can hope to prove dichotomies. The famous CSP dichotomy conjecture by
Feder and Vardi [1999] on decision CSP motivated much of the subsequent work, but
remains open to date (see Hell and Nešetřil [2008] for a recent survey). For counting
problems, the natural corresponding framework is called the counting constraint satis-
faction problem or #CSP in short, and one can hope to prove dichotomy theorems that
give a broad classification of counting problems to be either in P or #P-hard. This natu-
rally leads to the sum-of-products-type computations, or partition functions, which also
have a deep root in statistical physics and other fields. For example, the ferromagnetic
two-dimensional Ising model consists of a set of variables si on each lattice point, called
spins, that can be assigned one of two states {+1,−1}. The Hamiltonian is

E(s) = −
∑

edge {i, j}
sisj .

The partition function is Z = ∑
s e−E(s)/kT , where k is Boltzmann’s constant and T is

the (absolute) temperature. Note that the exponential e−E(s)/kT turns this into a sum-
of-products function exactly as we discussed in #CSP. In Baxter’s classical book on “Ex-
actly solved models in statistical mechanics” [1982], after defining partition func-
tions in Equation (1.4.1) on page 8, he states on page 9 that “The basic problem
of equilibrium statistical mechanics is therefore to calculate the sum-over-states in
Equation (1.4.1)...”

In this article, we study the complexity of #CSP with algebraic and complex weights.
Let D = {1, . . . , d} denote a finite set, called a domain, where d is arbitrary. A weighted
constraint language F over the domain D is an arbitrary finite set of algebraic complex-
valued functions {F1, . . . , Fh}, where Fi : Dri → C for some ri ≥ 1. The language F
defines the following counting constraint satisfaction problem, denoted by #CSP(F).
The input of #CSP(F) consists of a tuple x = (x1, . . . , xn) of variables over D and a
finite multiset I of tuples (F, i1, . . . , ir) in which F is an r-ary function from F and
i1, . . . , ir ∈ [n] = {1, . . . , n}. It then defines the following n-ary function FI over x ∈ Dn:

FI(x) =
∏

( f,i1,...,ir )∈I

F(xi1 , . . . , xir ).

The output of the problem is the following sum, called the partition function:

Z(I) =
∑
x∈Dn

FI(x).

Many well-studied counting problems can be formulated as a #CSP. For example,
if D = {1, 2} and F consists of a single binary function with F(1, 1) = F(1, 2) =
F(2, 1) = 1 and F(2, 2) = 0, then #CSP(F) is exactly the counting version of the
vertex cover problem. When F consists of a single binary function over D = {1, . . . , d},
where F(i, j) = 1 if i �= j and 0 otherwise, #CSP(F) is the counting version of the
d-coloring problem. In this article, we study #CSP under the most general setting with
complex and algebraic weights. In the presence of complex numbers, cancellations
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may, in fact, be the source of surprisingly efficient algorithms for computing Z(I) for
certain constraint languages F . For example, viewing D = {0, 1, . . . , d − 1} as Zd, if
F = {F1, . . . , Fh} and each Fj is an rj-ary function of the form1

Fj(x1, . . . , xrj ) = e
2πi

d · f j (x1,...,xrj )
,

with f j being a quadratic polynomial over Zd, then Cai, Chen, Lipton, and Lu in [2010]
showed that #CSP(F) is solvable in polynomial time.

Various subclasses of #CSP have been studied intensively:

The partition function of graph homomorphisms to a fixed graph: This is
the special case when the language F has a single symmetric binary function. A
series of dichotomies of increasing generality has been discovered, starting with
{0, 1}-valued functions by Dyer and Greenhill [2000], nonnegative functions by
Bulatov and Grohe [2005], real-valued functions by Goldberg et al. [2010], and
complex-valued functions by Cai et al. [2013].

The partition function of directed graph homomorphisms to a fixed
graph: This is the special case when F has a single not necessarily symmet-
ric binary function. Dyer et al. [2007] gave a dichotomy theorem for {0, 1}-valued
functions that induce an acyclic graph when viewed as the adjacency matrix of a
directed graph. Then, Cai and Chen [2010] gave a dichotomy for all nonnegative
binary functions. Before the present work, the case of directed graph homomor-
phisms with a single real-valued (but not necessarily symmetric) binary function
remained open.

Unweighted #CSP: This is the special case when every function in F is {0, 1}-
valued. Creignou and Hermann [1996] first obtained a dichotomy for unweighted
#CSP with a two-element domain, the counting analog of Schaefer’s theorem.
Bulatov [2008] made a breakthrough and gave a dichotomy theorem for all un-
weighted #CSP (also see Bulatov [2013]). Later Dyer and Richerby [2013] gave an
alternative proof of Bulatov’s theorem and also proved the decidability of the di-
chotomy criterion. It was extended to #CSP with nonnegative and rational weights
by Bulatov et al. [2012], and then to #CSP with nonnegative weights by Cai et al.
[2016].

In this article, we prove a general dichotomy theorem for #CSP with algebraic com-
plex weights, whereby all these previous dichotomies are special cases:

THEOREM 1.1. Given any constraint language F with algebraic complex weights, the
problem #CSP(F) defined by F is either solvable in polynomial time or #P-hard.

The restriction to algebraic complex numbers in the theorem statement is primarily
due to considerations of models of computation; see Section 2.2 for a brief discussion.

To prove our main theorem, we introduce three conditions on a given language F : the
Block Orthogonality condition, the Type Partition condition, and the Mal’tsev condition.
We then show that

(1) #CSP(F) is #P-hard if F violates any of these three conditions; and
(2) #CSP(F) can be solved in polynomial-time when F satisfies all three conditions.

For example, viewing D = {0, 1, . . . , d − 1} as Zd for some prime power d, let

F(x1, x2, x3) = e
2πi

d ·x1x2x3 . (1)

1We use i to denote the imaginary unit with i2 = −1, and use i to denote an integer index.
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One can check that F = {F} violates the Block Orthogonality condition (indeed, F [2] as
defined in Equation (2) violates the condition). Thus, the proof of Theorem 1.1 implies
that #CSP(F) is #P-hard.

Even at 38 pages, the proof of this dichotomy theorem is significantly shorter than
one might expect for general #CSP with complex, algebraic weights. For example, even
for the special case of counting graph homomorphisms (i.e., #CSP(F) when F consists
of a single binary symmetric function), it takes 66 pages and 106 pages, respectively,
to prove a dichotomy theorem for real [Goldberg et al. 2010] and complex weights
[Cai et al. 2013]). The reason is because the tractability criterion of our dichotomy is
much less explicit compared to those of Goldberg et al. [2010] and Cai et al. [2013].
While one can follow the proofs of Goldberg et al. [2010] and Cai et al. [2013] to check
in polynomial time whether a given problem is in P or #P-hard, checking whether a
general language F satisfies each of the three conditions listed above requires one
to verify a condition on an infinitary object defined from F (see details in Section 3).
At this time, it remains an open problem as whether the tractability criterion of our
dichotomy is decidable.2

Proof Sketch

The main idea starts with the following approach for solving #CSP(F). Let I be an
instance of #CSP(F) and F be the n-ary function it defines. For each t ∈ [n], we use F[t]

to denote the following t-ary function:

F [t](x1, . . . , xt) =
∑

xt+1,...,xn∈D

F(x1, . . . , xt, xt+1, . . . , xn). (2)

For the discussion below, it is more convenient to view the function F[t] as a dt−1 × d
matrix when t ≥ 2: the rows are indexed by x = (x1, . . . , xt−1) ∈ Dt−1; the columns are
indexed by i ∈ D; the (x, i)th entry of the matrix is F [t](x, i). We let F [t](x, ∗) denote the
d-dimensional row vector indexed by x ∈ Dt−1:

F [t](x, ∗) = (
F [t](x, 1), . . . , F [t](x, d)

)
.

To compute Z(I), for now assume that we have access to the following oracle. We can
send any x ∈ Dt−1, t ≥ 2, to the oracle, and it returns a d-dimensional vector v that is
linearly dependent with F [t](x, ∗). Here, either v = 0 if F [t](x, ∗) = 0, or v has its first
non-zero entry normalized to 1 so v is uniquely defined.

Temporarily suspending disbelief that such a helpful oracle might exist, we show
that Z(I) can be computed efficiently given access to this oracle as follows. From Z(I) =∑

a∈D F [1](a), it suffices to compute F [1](a) for each a ∈ D. Now pick any a1 ∈ D and send
it to the oracle. The oracle returns a d-dimensional vector v that is linearly dependent
with F [2](a1, ∗). If v = 0, then we have F[1](a1) = ∑

b∈D F [2](a1, b) = 0. Otherwise, let
a2 ∈ D denote the index of the first non-zero entry of v, with va2 = 1. Then,

F [1](a1) =
∑
b∈D

F [2](a1, b) = F [2](a1, a2) ·
∑
b∈D

vb,

where the last equation follows from the assumption that v and F[2](a1, ∗) are linearly
dependent. This reduces the computation of F[1](a1) to that of F [2](a1, a2).

Next, we send (a1, a2) to the oracle. Either the vector w we receive is 0 for which case
F [2](a1, a2) = 0, or we can use w to further reduce the computation of F [1](a1) to that

2This indeed makes it difficult for us to come up with an example of #CSP(F) that is tractable according to
our dichotomy theorem but is not known to be tractable before our work.
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of F [3](a1, a2, a3), for some appropriate a3. Repeating this process for n − 1 rounds, it
suffices to compute F [n](a1, a2, . . . , an) for some appropriate a2, . . . , an ∈ D. This gives an
efficient algorithm for computing F[1](a1), since F = F [n] can be evaluated efficiently
using the input instance I.

As a result, we can solve #CSP(F) efficiently using this oracle. It turns out that
almost the whole proof of Theorem 1.1 is trying to understand how and when we can
efficiently implement this oracle. Notice that we need to “collect” the following huge
amount of information: For each t ∈ [n], we need to compute a set of pairwise linearly
independent (and normalized) d-dimensional vectors v[t,1], . . . , v[t,st], for some st ≥ 0, so
every nonzero row vector F[t](x, ∗) is linearly dependent with one of them. Moreover,
for each vector v[t, j], we need to know the set of x ∈ Dt−1, denoted by S[t, j] ⊆ Dt−1, such
that F [t](x, ∗) is nonzero and linearly dependent with v[t, j]. Two difficulties arise. First,
note that in general an m× d matrix may have m pairwise linearly independent row
vectors. So, in general, we may need to keep track of exponentially many vectors v[t, j].
Second, for each v[t, j], the size of S[t, j] can in general be exponential in t.

To overcome the first difficulty, we drew inspiration from the recent dichotomy theo-
rems for counting graph homomorphisms with real [Goldberg et al. 2010] and complex
weights [Cai et al. 2013]. In both dichotomies, the tractable cases are closely related to
matrices in which every two row vectors are either linearly dependent or orthogonal,
for example, the Hadamard matrices and the so-called discrete unitary matrices [Cai
et al. 2013]. This inspires us to introduce the first necessary condition for tractability:
the Block Orthogonality condition. It requires that for any F defined by an instance of
#CSP(F) and for any t ∈ [n], every two row vectors of F[t] are either linearly dependent
or orthogonal; otherwise, we show that #CSP(F) is #P-hard. Indeed, a requirement that
is more stringent than the orthogonality must hold (as the word “block” suggests); oth-
erwise, we show that the problem is #P-hard. See the formal definition in Section 3.1.
Assume that F satisfies the Block Orthogonality condition. Then, we know for sure that
each F [t] has at most d pairwise linearly independent (and indeed pairwise orthogonal)
row vectors.

To overcome the second difficulty, we need some of the powerful techniques developed
for unweighted #CSP [Bulatov 2013; Dyer and Richerby 2013]. One of the tools used
there is the notion of Mal’tsev polymorphism from Universal Algebra (see Section 2.8).
For any set � ⊆ Dn that has a Mal’tsev polymorphism ϕ. Dyer and Richerby [2013]
introduce a succinct representation called a witness function, which is of linear size in n,
the arity of �, and essentially contains all the information about �. In particular, with
a witness function one can decide whether a given tuple x ∈ Dn belongs to � efficiently.
From here, it is only natural to ask whether the sets S[t, j] associated with each v[t, j] have
a Mal’tsev polymorphism. This is where we introduce the second necessary condition,
which we call simply the Mal’tsev condition. Roughly speaking, it requires all the sets
S[t, j] ⊆ Dt−1, defined from all F, t, and j, to share a common Mal’tsev polymorphism
ϕ; otherwise, we prove that the problem #CSP(F) is #P-hard.

Assume that F satisfies both the Block Orthogonality condition and Mal’tsev con-
dition; otherwise, we already know that #CSP(F) is #P-hard. We can now refine the
plan of implementing the oracle as follows. Given an input instance I of #CSP(F) that
defines an n-ary function F, we compute for each t : 2 ≤ t ≤ n,

(a) A set of (at most d) pairwise orthogonal and normalized d-dimensional vectors
v[t,1], . . . , v[t,st], for some st : 0 ≤ st ≤ d, such that every nonzero row F [t](x, ∗) is
linearly dependent with one of them.

(b) A witness function ω[t, j] for each set S[t, j] ⊆ Dt−1, which can be used to decide
membership efficiently.
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So the algorithmic problem left is, how and when can we compute the objects in (a) and
(b) efficiently?

To this end, we start with t = n and F = F [n]. First, by using the Mal’tsev condition
and an elegant algorithm from Dyer and Richerby [2013], we can construct efficiently
a witness function ω for R ⊆ Dn where x ∈ R if and only if F(x) �= 0. Given ω, it is also
easy to construct a witness function ω′ for R′ ⊆ Dn−1, the projection of R on its first
n − 1 coordinates. We are getting closer, since according to the definition of S[n, j], R′ is
exactly the union of the sn pairwise disjoint sets S[n,1], . . . , S[n,sn] ⊆ Dn−1. It turns out
that a key algorithmic step we need is the following operation over witness functions:

Splitting: Let � ⊆ Dn be a nonempty set, and let �1, . . . , �s be an s-way partition
of �, for some s ∈ [d]: The �i ’s are nonempty, pairwise disjoint, and satisfy
� = �1 ∪ · · · ∪ �s. Assume that we are given ϕ, a Mal’tsev polymorphism of � as
well as all the �i ’s. At the beginning, we have absolutely no information about
the �i ’s, not even the number s of the �i ’s, though we do know that s ∈ [d]. The
only resources we have are a witness function ω for � and a black box to query:
We can send any x ∈ � to the black box and it returns the unique index k ∈ [s],
such that x ∈ �k. The question is: Can we use ω and the black box to compute
the value of s as well as a witness function ωk for each �k in polynomial time and
using polynomially many queries?

In general, it is not clear how to implement the splitting operation efficiently. How-
ever, if the sets � and �1, . . . , �s (as well as their permutations, see Lemma 7.3) satisfy
the so-called partition condition (see Definition 2.26), then we give an algorithm that
computes s ∈ [d] and a witness function ωk for each �k in polynomial time and using
polynomially many queries. This brings us to the third and last condition: the Type
Partition condition. It turns out that this condition is necessary for tractability as
well: #CSP(F) must be #P-hard if F violates it. Roughly speaking, the Type Partition
condition requires that whenever we need to apply the splitting operation, the sets
� and �1, . . . , �s (and their permutations) must satisfy the partition condition so our
algorithm applies. In particular, it allows us to apply the splitting operation on R′ and
S[n,1], . . . , S[n,sn] to (1) compute the value of sn, and (2) construct a witness function for
each S[n, j], j ∈ [sn], using ω′. The proof showing that the Type Partition condition is
actually necessary for tractability, and the polynomial-time algorithm for the splitting
operation assuming the partition condition (Section 5 and Section 7.3) are among the
most challenging in the article. Using the splitting operation and the Type Partition
condition, we can inductively compute a witness function for each S[t, j] from t = n
to 2. This gives an efficient implementation of the oracle and thus, a polynomial-time
algorithm for #CSP(F) when F satisfies all three necessary conditions. This finishes
the proof of the dichotomy theorem.

2. PRELIMINARIES

2.1. Notation

We use C to denote the set of algebraic complex numbers throughout the article. Given
a positive integer n, we let [n] = {1, . . . , n}.

Let D = [d] be a finite set, for some d ≥ 1. Given an n-ary algebraic complex-valued
function F : Dn → C, we use Im(F) to denote the image of F, that is,

Im(F) = {c ∈ C : c = F(x) for some x ∈ Dn}.
Given a finite set F = {F1, . . . , Fh} of functions, we use Im(F) to denote the image of F :

Im(F) = Im(F1) ∪ · · · ∪ Im(Fh).
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Given F : Dn → C, we use |F| to denote the real and nonnegative function that maps
x to |F(x)| for all x ∈ Dn, where | · | in |F(x)| denotes the complex norm. When n ≥ 2, we
sometimes consider F as a matrix with exponentially many rows but only d columns.
We use MF to denote the following dn−1 × d matrix: its rows and columns are indexed
by x = (x1, . . . , xn−1) ∈ Dn−1 and xn ∈ D, respectively; the (x, xn)th entry of MF is

MF(x, xn) = F(x, xn) = F(x1, . . . , xn−1, xn).

We use F(x, ∗), where x ∈ Dn−1, to denote the d-dimensional vector whose ith entry is
F(x, i) and |F(x, ∗)| to denote the d-dimensional real and non-negative vector whose
ith entry is |F(x, i)|. Given a matrix M we use M(i, ∗) to denote its ith row vector. We
also write |M| to denote the matrix of the same size as M, with its (i, j)th entry being
|M(i, j)|, the complex norm of M(i, j). (Determinant is never used in this article, so the
notation should be clear from the context.)

Two vectors x, y ∈ Cd are said to be orthogonal if they satisfy
∑

i∈[d] xi yi = 0, where
yi denotes the conjugate of yi.

Given x ∈ Dn and � ∈ [n], we use Pr[�] x to denote its prefix of length �. Let � ⊆ Dn

be an n-ary relation. For each � ∈ [n], we use Pr�� ⊆ D to denote the projection of � on
the �th coordinate: a ∈ Pr�� if and only if there is an x ∈ � such that x� = a. We call
x a witness for a at the �th coordinate, or simply a witness for the pair (�, a). We also
use Pr[�]� ⊆ D� to denote the projection of � on the first � coordinates: y ∈ Pr[�]� if and
only if there exists an x ∈ � such that y = Pr[�]x.

Given a ∈ D� for some � ∈ [n], we use �(a, ∗) = �(a1, . . . , a�, ∗) to denote the relation
on n − � variables with the first � variables fixed to a: y ∈ �(a, ∗) iff a ◦ y ∈ �, where
a ◦ y denotes the concatenation of a and y.

Given a permutation π of [n], let π (�) be the n-ary relation such that x ∈ π (�) iff(
xπ(1), . . . , xπ(n)

) ∈ �.

Finally, we use ≤T to denote polynomial-time Turing reductions between problems,
and ≡T to denote equivalence under polynomial-time Turing reductions.

2.2. Counting CSP with Algebraic Weights

Let D = [d] be a domain, and let F = {F1, . . . , Fh} be a finite set of algebraic complex-
valued functions over D. Recall the definition of #CSP(F) in the introduction. When F =
{F} has only one function, we denote #CSP(F) by #CSP(F) for convenience. Sometimes
we write #CSP(F) simply as #CSP(F1, . . . , Fh) to list the functions explicitly.

To complete the definition of #CSP(F) as a computational problem, we need to specify
the model of computation for algebraic numbers, that is, how the numbers in F and the
output Z(I) are encoded. We can take any reasonable model, for example, the one used
earlier in Lenstra [1992], Thurley [2009], and Cai et al. [2013]. Note that functions in
F are constants when F is fixed and the complexity of #CSP(F) is concerned. The input
size only depends on the number of variables, and |I| depends on the the number of
tuples in I.

Given D and F , we define the following problem denoted by COUNT(F): the input is a
pair (I, c), where I is an input instance of #CSP(F) and c is an algebraic complex num-
ber. Let x1, . . . , xn denote the variables over D in I. The output is then the number of
x = (x1, . . . , xn) ∈ Dn such that FI(x) = c, where FI is the function defined by I. It turns
out that COUNT(F) and #CSP(F) are equivalent under polynomial-time Turing reduc-
tions. The proofs of Lemmas 2.1 and 2.2 use the technique of interpolations, which was
first used in this context by Dyer and Greenhill [2000].

LEMMA 2.1. COUNT(F) ≡T #CSP(F).
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PROOF. Let Im(F) = {c1, . . . , ck}, where k = |Im(F)| is a constant for fixed F . Let I be
an input instance of #CSP(F) over n variables x ∈ Dn with m = |I|, and let F be the
n-ary function that I defines. First, we can compute the following set of numbers in
time polynomial in m:

Cm = {
c�1

1 · · · c�k
k : �1, . . . , �k are non-negative integers and �1 + · · · + �k = m

}
, (3)

since k is a constant. It follows from the definition of F that F(x) ∈ Cm for all x ∈ Dn.
For each c ∈ Cm, we let Nc denote the number of x ∈ Dn such that F(x) = c. Then,

Z(I) =
∑
x∈Dn

F(x) =
∑
c∈Cm

c · Nc .

This immediately gives us a polynomial-time reduction from #CSP(F) to COUNT(F).
We prove the other direction: Given any I, we use a subroutine for #CSP(F) to

compute Nc for all c ∈ Cm. For this purpose, we let C ′
m = Cm − {0} and let s = |C ′

m|,
which is polynomial in m. We build from I the following instances I1, . . . , Is: to get I�,
� ∈ [s], we make � copies of each tuple in I (and thus, I1 = I and |I�| = � · |I|). We also
let F� denote the n-ary function defined by I�.

By the construction of I�, it is easy to see that F�(x) = (F(x))� for all x ∈ Dn. Thus,

Z(I�) =
∑
x∈Dn

F�(x) =
∑
c∈Cm

c� · Nc =
∑
c∈C ′

m

c� · Nc , for each � = 1, . . . , s.

The left-hand side of the equations can be obtained by calling a subroutine for #CSP(F)
on I�. We can then solve the Vandermonde system above to get Nc for each c ∈ C ′

m. If
0 ∈ Cm, then we can also derive N0 using the fact that the sum of all the Nc ’s, c ∈ Cm,
is dn. This finishes the proof of the lemma.

In certain situations the problem COUNT(F) is easier to deal with. For example, we
can use the connection above to prove the following lemma.

LEMMA 2.2. #CSP(|F1|, . . . , |Fh|) ≤T #CSP(F).

PROOF. It suffices to show COUNT(|F1|, . . . , |Fh|) ≤T COUNT(F) by Lemma 2.1. We
let Im(F) = {c1, . . . , ck} where k is a constant for fixed F .

Let I be an instance of #CSP(|F1|, . . . , |Fh|) and F be the n-ary non-negative function
it defines. Let a be a non-negative number, and we are asked to compute the number
of x ∈ Dn such that F(x) = a.

From I it is natural to construct an input instance I′ of #CSP(F) by simply replacing
the function |Fi| in each tuple of I with its corresponding function Fi in F . Let F ′ denote
the function that I′ defines. Then it is clear that F(x) = |F ′(x)| for all x ∈ Dn.

Let m = |I| = |I′|. Then, we can compute Cm as defined in Equation (3) in time
polynomial in m, because k is a constant.

From the definitions of Cm and F ′, we have F ′(x) ∈ Cm for all x ∈ Dn. As a result,

[number of x such that F(x) = a] =
∑

c∈Cm: |c|=a

[number of x such that F ′(x) = c],

and the right-hand side can be computed efficiently, because the number of such c can
be no more than |Cm| and the term for each c can be evaluated by calling a subroutine
for COUNT(F). This finishes the proof of the lemma.
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2.3. Row Representation

Let M be an m× n complex matrix. It induces the following equivalence relation ∼M
over {� ∈ [m] : M(�, ∗) �= 0}, that is, the set of nonzero rows of M:

� ∼M �′ ⇐⇒ M(�, ∗) and M(�′, ∗) are linearly dependent over C.

We say S = {(S1, v1), . . . , (Sk, vk)}, for some k ≥ 0, is the row representation of M if

(1) S1, . . . , Sk ⊆ [m] are the equivalence classes of the equivalence relation ∼M; and
(2) For each i ∈ [k], vi is a nonzero n-dimensional vector with its first nonzero entry

being 1, and is linearly dependent with M(�, ∗), for all � ∈ Si. (By the definition of
∼M, vi exists and is unique.)

We will refer to vi as the representative row vector for the equivalence class Si.
For example, the row representation of the matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

1 1
1 1

1 2
3 6

3 1
9 3

⎞
⎟⎟⎟⎟⎟⎠ (4)

has S1 = {1, 2}, S2 = {3, 4}, S3 = {5, 6}, and

v1 = (1, 0, 1, 0, 0, 0), v2 = (0, 0, 0, 0, 1, 2), and v3 = (0, 1, 0, 1/3, 0, 0).

From the definition, we have Si is nonempty for all i; the Si ’s are pairwise disjoint;

S1 ∪ · · · ∪ Sk = {� ∈ [m] : M(�, ∗) �= 0};
for all i �= j, vi and v j are linearly independent. Clearly, every matrix has a unique
row representation.

In general, the row representation S of an m× n matrix M may consist of as many
as m pairs. But if it is known that every two rows of M are either linearly dependent
or orthogonal, then the number of pairs in its row representation cannot exceed n, the
number of its columns.

We say that a real, non-negative matrix M is block-rank-1, if its row representation
S = {(S1, v1), . . . , (Sk, vk)} has the property that for all i �= j ∈ [k], vi and v j share no
common positive entry, that is, there exists no index t ∈ [n] such that the tth entries of
vi and v j are both positive.

For example, the 6 × 6 non-negative matrix in Equation (4) is block-rank-1. Given
a block-rank-1 matrix, one can permute its rows and columns (with two different
permutations in general) to get a block-diagonal matrix, where each of its blocks is of
rank 1.

2.4. The Block-Rank-1 Condition

We also extend the notion of row representations to functions. Given F : Dn → C with
n ≥ 2, we have the following equivalence relation ∼F over {x ∈ Dn−1 : F(x, ∗) �= 0}:

x ∼F y ⇐⇒ F(x, ∗) and F(y, ∗) are linearly dependent over C.

Similarly, we say that S = {(S1, v1), . . . , (Sk, vk)}, where Si ⊆ Dn−1 for each i ∈ [k], is
the row representation of F if S is the row representation of the dn−1 × d matrix MF .
(Explicitly, we have S1, . . . , Sk are the equivalence classes of ∼F , and for each i ∈ [k], vi
is a non-zero d-dimensional vector with its first non-zero entry being 1, and is linearly
dependent with F(x, ∗), x ∈ Si.)
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Finally, we call F a block-rank-1 function if the real, non-negative matrix M|F| is a
block-rank-1 matrix. Note that the notion of F being a block-rank-1 function is defined
in terms of the real and nonnegative function |F|. (Explicitly, for all x, y ∈ Dn−1 with
F(x, ∗) and F(y, ∗) being nonzero, the two non-negative vectors |F(x, ∗)| and |F(y, ∗)|
either are linearly dependent or share no common positive entry.)

We introduce block-rank-1 matrices/functions to apply the following sweeping di-
chotomy of Bulatov and Grohe [2005]. Given any symmetric d× d non-negative matrix
A with algebraic entries, we define a counting graph homomorphism problem EVAL(A):
the input is an undirected graph G = (V, E) with V = [n], and the output is

ZA(G) =
∑

x1,...,xn∈[d]

⎛
⎝∏

i j∈E

A(xi, xj)

⎞
⎠ .

In the language of #CSP, EVAL(A) is the same as #CSP(F) with F(i, j) = A(i, j).

THEOREM 2.3 ([BULATOV AND GROHE 2005]). Let A be a symmetric, nonnegative square
matrix with algebraic entries. Then EVAL(A) is solvable in polynomial time if A is
block-rank-1, and is #P-hard otherwise.

We extend the definitions of EVAL(A) and ZA(·) to any square (but not necessarily
symmetric) matrix A over C. The input of EVAL(A) is a directed graph G = (V, E), and

ZA(G) =
∑

x1,...,xn∈[d]

⎛
⎝ ∏

−→
i j ∈E

A(xi, xj)

⎞
⎠

is the desired output. The following lemma will be useful later in the proof:

LEMMA 2.4. Let A be a square (though not necessarily symmetric) matrix with alge-
braic complex entries. If |A| is not block-rank-1, then EVAL(A) is #P-hard.

PROOF. By Lemma 2.2, it suffices to show that EVAL(|A|) is #P-hard.
To this end, we use B to denote the symmetric and non-negative d×d matrix |A||A|T ,

where the (i, j)th entry of B is

B(i, j) =
∑
k∈[d]

|A(i, k)| · |A( j, k)|.

We claim that EVAL(B) ≤T EVAL(|A|). This is because, given an undirected graph G =
(V, E) of EVAL(B), we can construct a new directed graph G′ = (V ′, E′) with

V ′ = {xv, xe : v ∈ V and e ∈ E} and E′ = {−−→xuxe,
−−→xvxe : e = uv ∈ E}.

It is easy to verify that ZB(G) = Z|A|(G′) from which the reduction follows.
On the other hand, if |A| is not block-rank-1 neither is B. To see this, assume that

|A(i, ∗)| and |A( j, ∗)| are not linearly dependent but share at least one positive entry.
The latter implies that B(i, j) = B( j, i) > 0. Given that B(i, i), B( j, j) > 0, B(i, ∗) and
B( j, ∗) share at least two common positive entries. However, given that they are not
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linearly dependent, by Cauchy–Schwarz, we have

B(i, j) · B( j, i) =
⎛
⎝∑

k∈[d]

|A(i, k)| · |A( j, k)|
⎞
⎠

2

(5)

<

⎛
⎝∑

k∈[d]

|A(i, k)|2
⎞
⎠ ·

⎛
⎝∑

k∈[d]

|A( j, k)|2
⎞
⎠ = B(i, i) · B( j, j).

This implies that B(i, ∗), B( j, ∗) cannot be linearly dependent and, thus, B is not block-
rank-1. It follows from Theorem 2.3 that EVAL(B) is #P-hard, and so is EVAL(|A|). This
finishes the proof of the lemma.

Next, we use Theorem 2.3 to prove a useful #P-hardness lemma for #CSP(F) with
a single algebraic complex-valued function F. The idea is similar to the proof of
Lemma 2.4 above. Let D = [d] be a domain.

LEMMA 2.5 (THE BLOCK-RANK-1 CONDITION). Let F : Dr → C be an algebraic complex-
valued function. If r ≥ 2 but F is not a block-rank-1, then #CSP(F) is #P-hard.

PROOF. By Lemma 2.2 it suffices to show that #CSP(|F|) is #P-hard.
To this end, we construct a symmetric and non-negative matrix A from |F|, such

that

EVAL(A) ≤T #CSP(|F|), (6)

and then use Theorem 2.3 to show that EVAL(A) is #P-hard.
The rows and columns of the matrix A are indexed by x ∈ Dr−1, and its entries are

A(x, y) =
∑
i∈D

|F(x, i)| · |F(y, i)|.

It is clear that A is both symmetric and non-negative.
Next, given an undirected graph G = (V, E) as an instance of EVAL(A), we construct

the following instance I of #CSP(|F|). It has (r − 1)|V | + |E| variables

xv,1, . . . , xv,r−1, ye, for each v ∈ V and e ∈ E.

For each edge e = uv ∈ E, we add the following two tuples to I:

(|F|, xu,1, . . . , xu,r−1, ye) and (|F|, xv,1, . . . , xv,r−1, ye).

From the construction of I and the definition of A from |F|, it is easy to check that

ZA(G) = Z(I), where FI is the function that I defines.

This gives us a polynomial-time reduction from EVAL(A) to #CSP(|F|).
Finally, we show that if F is not block-rank-1, then A is not a block-rank-1 matrix,

and by Theorem 2.3, EVAL(A) is #P-hard. As F is not block-rank-1, we know there are
two vectors x, y ∈ Dr−1, such that |F(x, ∗)| and |F(y, ∗)| are not linearly dependent but
share at least one common positive entry. This implies that all the following four entries
are positive: A(x, x), A(x, y) = A(y, x), A(y, x) > 0. By Cauchy–Schwarz (similar to
Equation (5) in the proof of Lemma 2.4), we have A(x, y) · A(y, x) < A(x, x) · A(y, y).
Therefore, A(x, ∗) and A(y, ∗) share at least two positive entries but are not linearly
dependent. Thus, A is not block-rank-1 and this finishes the proof of the lemma.
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2.5. Block Orthogonality

Orthogonality played an important role in previous work on counting graph homomor-
phisms with real [Goldberg et al. 2010] and complex weights [Cai et al. 2013]. Here,
we generalize it and introduce the notion of block orthogonality.

Let x, y ∈ Cd be two nonzero d-dimensional vectors and x′, y′ be two real, non-
negative vectors with x′

i = |xi| and y′
i = |yi| for all i ∈ [d]. Assume that x′ and y′ are

linearly dependent. As a result, these four vectors are nonzero at the same indices and
we use T ⊆ [d] to denote the set of such indices. Let {μ1, . . . , μ�} = {x′

i : i ∈ T }, for some
� ≥ 1, such that μ1 > · · · > μ� > 0. This further partitions T into T1, . . . , T�, where
x′

i = μk for all i ∈ Tk and k ∈ [�]. It is also clear that y′ would yield the same partition,
because it is linearly dependent with x′.

Now, we say x and y are block-orthogonal if for every k ∈ [�] we have∑
i∈Tk

xi · yi = 0. (7)

By definition, we have that x and y are orthogonal if they are block-orthogonal:∑
i∈[d]

xi · yi =
∑
i∈T

xi · yi =
∑
k∈[�]

∑
i∈Tk

xi · yi = 0.

On the other hand, two orthogonal vectors x and y are not block-orthogonal in general
even when x′ and y′ are linearly dependent. For example, the vectors

x = (2, 1, 1, 1, 1) and y = (2,−1,−1,−1,−1)

are orthogonal and satisfy x′ = y′, but they are not block-orthogonal: we have T1 = {1}
and T2 = {2, 3, 4, 5}, but

∑
i∈T1

xi · yi = 4.
The following property holds if two vectors are block-orthogonal:

LEMMA 2.6. If x and y are block-orthogonal and for some integer K ≥ 1, the Kth
power of all nonzero entries of these two vectors are real and positive, then we have∑

i∈D

xi
sK+1 · yrK−1

i = 0, for any integers s ≥ 0 and r ≥ 1.

PROOF. We use the same notation as in the definition of block orthogonality above.
For each i ∈ T , let zi = xi/|xi| and wi = yi/|yi|. By the assumption, both zi and wi are
roots of unity whose orders divide K. Since x′ and y′ are linearly dependent, there are
ν1 > · · · > ν� > 0 such that |yi| = νk for all i ∈ Tk and k ∈ [�]. Now, we can rewrite
Equation (7) as

0 =
∑
i∈Tk

xi · yi = μk · νk

∑
i∈Tk

zi · wi.

Then the lemma follows from∑
i∈D

xsK+1
i · yrK−1

i =
∑
k∈[�]

∑
i∈Tk

xsK+1
i · yrK−1

i =
∑
k∈[�]

μsK+1
k · νrK−1

k

∑
i∈Tk

zsK+1
i · wrK−1

i

=
∑
k∈[�]

μsK+1
k · νrK−1

k

∑
i∈Tk

zi · wi = 0.

The second to the last equation uses the fact that zi, wi are roots of unity whose orders
divide K. This finishes the proof of the lemma.

We are now ready to define block-orthogonal functions:
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Definition 2.7 (Block-Orthogonal Function). Let F : Dn → C be a block-rank-1
function with n ≥ 2. We call it a block-orthogonal function if for all x, y ∈ Dn−1 such
that F(x, ∗), F(y, ∗) �= 0 and x ∼|F| y, the two vectors F(x, ∗) and F(y, ∗) are either
linearly dependent or block-orthogonal.

2.6. Unweighted Counting CSP

We need the following connection between weighted and unweighted #CSP. The latter
is the special case when all the functions in F take values in {0, 1}, for which we adopt
the following notation. Let D = [d] be a domain. An unweighted constraint language
	 over domain D is a finite set of relations {�1, . . . , �h} in which each �i is an ri-ary
relation over Dri , for some ri ≥ 1. D and 	 define the following problem, denoted by
#CSP(	). Let x = (x1, . . . , xn) ∈ Dn be a set of n variables over D. The input is a finite
set I of tuples (�, i1, . . . , ir) in which � is an r-ary relation in 	 and i1, . . . , ir ∈ [n]. The
input I defines the following relation RI over Dn:

x ∈ RI ⇐⇒ (xi1 , . . . , xir ) ∈ � for every tuple (�, i1, . . . , ir) ∈ I.

Given I, the output of the problem is |RI|.
Given F : Dn → C, let �F = Boolean(F) denote the relation over n variables where

x ∈ �F ⇐⇒ F(x) �= 0, for all x ∈ Dn.

The following lemma is a corollary of Lemma 2.1:

LEMMA 2.8. Given a set F = {F1, . . . , Fh} of algebraic complex-valued functions,

#CSP(	) ≤T #CSP(F),

where 	 = {�1, . . . , �h} and �i = Boolean(Fi) for each i ∈ [h].

PROOF. By Lemma 2.1, it suffices to show that #CSP(	) ≤T COUNT(F).
Let I be an input instance of #CSP(	) over n variables, and let R be the relation it

defines. We then construct an instance I′ of #CSP(F) in polynomial time, by replacing
the relation �i in each tuple of I with its corresponding function Fi ∈ F . Let F denote
the function that I′ defines. Then, we have x ∈ R if and only if F(x) �= 0, for all x ∈ Dn.
Thus, |R| = dn − |{x ∈ Dn : F(x) = 0}|. The right-hand side can be obtained by calling a
subroutine for COUNT(F).

2.7. The Purification Lemma

As it will become clear later, it is much easier to work with functions that take complex
values with rational arguments (i.e., arguments that are rational multiples of π ). We
need the following definition:

Definition 2.9 (Pure Functions). We call F : Dn → C a pure complex function if F(x)
is the product of a non-negative rational number and a root of unity, for every x ∈ Dn.
Given a pure function F, we use order(F) to denote the smallest positive integer K such
that (F(x))K is real and positive for all x ∈ Dn with F(x) �= 0.

A useful tool in proving the hardness part of our dichotomy is the following Purifi-
cation Lemma (Lemma 2.12). It was introduced in the study of complex graph homo-
morphisms in Cai et al. [2013] and gives us a connection between pure and general
functions (which can take values with irrational arguments). In Sections 4 and 5, we
will see two instances where the Purification Lemma is used to extend two hardness
lemmas from pure to general functions.

We start with the following definition of generating sets:

Journal of the ACM, Vol. 64, No. 3, Article 19, Publication date: June 2017.



19:14 J.-Y. Cai and X. Chen

Definition 2.10. Let C = {c1, . . . , cn} be a finite set of nonzero algebraic numbers, for
some n ≥ 1. We say a finite set {g1, . . . , gs}, for some s ≥ 0, is a generating set of C if

(1) Every gi is a nonzero algebraic number in Q(C), that is, the extension of the rational
field by adjoining the elements of C;

(2) For all (k1, . . . , ks) ∈ Zs − {0}, gk1
1 · · · gks

s is not a root of unity; and
(3) For every c ∈ C, there exists a unique tuple (k1, . . . , ks) ∈ Zs, such that

c

gk1
1 · · · gks

s
is a root of unity.

Note that s = 0 happens if and only if all the ci ’s in C are roots of unity.

The following lemma was proved in Cai et al. [2013] (Lemma 7.3):

LEMMA 2.11. Every finite set C of nonzero algebraic numbers has a generating set.

We now state and prove the Purification Lemma:

LEMMA 2.12 (PURIFICATION LEMMA). There is a mapping Pure that, given any finite
tuple (F1, . . . , Fh) of algebraic complex-valued functions together with a generating set
{g1, . . . , gs} of Im(F1, . . . , Fh) − {0}, produces a tuple of pure functions(

F ′
1, . . . , F ′

h

) = Pure
(
F1, . . . , Fh; {g1, . . . , gs}

)
(8)

in which each F ′
i has the same arity ri ≥ 1 as Fi, such that

(1) #CSP(F ′
1, . . . , F ′

h) ≡T #CSP(F1, . . . , Fh);
(2) For every i ∈ [h], we have Boolean(F ′

i ) = Boolean(Fi);
(3) For every i ∈ [h] with ri ≥ 2, if F ′

i is block-rank-1 then Fi is block-rank-1; and
(4) If F ′

i is block-rank-1, then for any x, y ∈ Dn−1 such that F ′
i (x, ∗) and F ′

i (y, ∗) share
at least one common nonzero entry, we have
(a) F ′

i (x, ∗) and F ′
i (y, ∗) are linearly dependent if and only if Fi(x, ∗) and Fi(y, ∗) are

linearly dependent;
(b) If F ′

i (x, ∗) and F ′
i (y, ∗) are block-orthogonal, then Fi(x, ∗) and Fi(y, ∗) are also

block-orthogonal.

PROOF. We start with some intuition. Assume for now that h = 1 and

F1 =
(

g2
1 g4

2 e1 g5
2 e2

g3
1 g2

3 e3 g6
4 e4

)
,

where ei ’s are roots of unity. Then Pure replaces each gi by the ith smallest prime and

F ′
1 =

(
22 34 e1 35 e2

23 52 e3 76 e4

)
,

which by definition is a pure function. The equivalence of these two problems follows
from Lemma 2.1, and the following property: For any instance I, let F and F ′ denote
the functions it defines using F1 and F ′

1, respectively. Then F(x) = gk1
1 gk2

2 gk3
3 gk4

4 e for
some integers ki and root of unity e if and only if F ′(x) = 2k1 3k2 5k3 7k4 e.

We now describe formally the mapping Pure and then prove its properties.
We need the following notation. Given any tuple k = (k1, . . . , ks) ∈ Zs, we write gk to

denote gk1
1 · · · gks

s . As {g1, . . . , gs} is a generating set, there is a unique tuple k ∈ Zs for
each c ∈ Im(F1, . . . , Fh) − {0} such that c/gk is a root of unity. Since F1, . . . , Fh are fixed,
all integers in k are constants in the problem COUNT(F1, . . . , Fh).

Journal of the ACM, Vol. 64, No. 3, Article 19, Publication date: June 2017.



Complexity of Counting CSP with Complex Weights 19:15

We define F ′
i from Fi as follows. For each x ∈ Dri , F ′

i (x) = 0 if Fi(x) = 0. If Fi(x) �= 0,
then there exists a unique tuple k ∈ Zs, such that Fi(x)

/
gk is a root of unity, and we

set

F ′
i (x) = pk1

1 · · · pks
s · Fi(x)

gk
, (9)

where pi denotes the ith smallest prime. F ′
i is pure by definition, and property 2 of the

lemma is satisfied. In the rest of the proof, we will use pk to denote pk1
1 · · · pks

s .
Next, we show the equivalence of the two #CSP problems in property 1. By Lemma 2.1

it suffices to show that

COUNT(F1, . . . , Fh) ≡T COUNT(F ′
1, . . . , F ′

h). (10)

We start with the reduction from COUNT(F1, . . . , Fh) to COUNT(F ′
1, . . . , F ′

h).
Given an instance I of #CSP(F1, . . . , Fh) over n variables, we write I′ to denote the

instance of #CSP(F ′
1, . . . , F ′

h) obtained by replacing the Fi in each tuple of I with its
corresponding function F ′

i . Also, let m = |I| = |I′| and let F and F ′ denote the functions
that I and I′ define, respectively. By property 2, we have F(x) �= 0 iff F ′(x) �= 0, and
thus, the number of x such that F(x) = 0 is the same as the number of x such that
F ′(x) = 0. The latter can be obtained by calling a subroutine for COUNT(F ′

1, . . . , F ′
h).

Let {c1, . . . , ct} = Im(F1, . . . , Fh) − {0}, with t being a constant as the set of functions
is fixed. We then compute the following set Cm in time polynomial in m:

Cm = {c�1
1 · · · c�t

t : �1, . . . , �t are non-negative integers and �1 + · · · + �t = m}.
For each c ∈ Cm, we also compute the unique tuple k ∈ Zs such that c/gk is a root of
unity, using the known tuples for {c1, . . . , ct}. By the definition of F ′

i from Fi and by the
assumption that {g1, . . . , gs} is a generating set, we have

F(x) = c ⇐⇒ F ′(x) = pk · c
gk

, for all x ∈ Dn.

As a result, the number of x with F(x) = c can be obtained by calling a sub-
routine for COUNT(F ′

1, . . . , F ′
h). The other direction of reduction can be proved

similarly.
Now, we check property 3. In the rest of the proof, we use F to denote Fi, F ′ to denote

F ′
i , and r to denote ri, the arity of Fi, for convenience. Assume r ≥ 2 and F ′ is block-

rank-1. Let x, y ∈ Dr−1 be two vectors such that F(x, ∗) and F(y, ∗) share at least one
common nonzero entry. From property 2 and the assumption that F ′ is block-rank-1,
we know that |F ′(x, ∗)| and |F ′(y, ∗)| must be nonzero and linearly dependent.

To prove that |F(x, ∗)| and |F(y, ∗)| are linearly dependent, it suffices to show for all
indices i, j ∈ D of nonzero entries of F(x, ∗) (which are also indices of nonzero entries
of F(y, ∗), F ′(x, ∗), F ′(y, ∗)),

|F(x, i)| · |F(y, j)| = |F(y, i)| · |F(x, j)|. (11)

To this end, we let u, v, w, z ∈ Zs denote the four vectors, such that

F ′(x, i)
pu ,

F ′(y, j)
pv ,

F ′(y, i)
pw ,

F ′(x, j)
pz

are all roots of unity. Because |F ′(x, ∗)| and |F ′(y, ∗)| are linearly dependent, we have

pu1+v1
1 · · · pus+vs

s = |F ′(x, i)| · |F ′(y, j)| = |F ′(y, i)| · |F ′(x, j)| = pw1+z1
1 · · · pws+zs

s ,

and thus, uk + vk = wk + zk for all k ∈ [s]. Equation (11) follows from the definition of F ′
from F.
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Next, we prove property 4(a). Assume that F(x, ∗) and F(y, ∗) are linearly dependent.
Then, we use i, j ∈ D to denote two indices of nonzero entries of F ′(x, ∗), which must
be indices of nonzero entries of F ′(y, ∗), F(x, ∗), and F(y, ∗) as well. Similarly, let
u, v, w, z ∈ Zs be the vectors, such that

c1 = F(x, i)
gu , c2 = F(y, j)

gv , c3 = F(y, i)
gw , c4 = F(x, j)

gz ,

and c1, . . . , c4 are all roots of unity. As F(x, ∗) and F(y, ∗) are linearly dependent,

c1 · c2 · gu1+v1
1 · · · gus+vs

s = F(x, i) · F(y, j) = F(y, i) · F(x, j) = c3 · c4 · gw1+z1
1 · · · gws+zs

s .

By the definition of generating sets, we must have c1 · c2 = c3 · c4 and uk + vk = wk + zk
for all k ∈ [s]. On the other hand, by the construction of F ′, we have

F ′(x, i) · F ′(y, j) = c1 · c2 · pu1+v1
1 · · · pus+vs

s = c3 · c4 · pw1+z1
1 · · · pws+zs

s = F ′(y, i) · F ′(x, j).

So, F ′(x, ∗) and F ′(y, ∗) are also linearly dependent. The other direction is similar.
For property 4(b), assume that F ′(x, ∗) and F ′(y, ∗) are block-orthogonal. Note that

when F ′ is block-rank-1, F is also block-rank-1 by property 3. We then use T ⊆ D to
denote the set of indices j ∈ D such that F(x, j) �= 0 (and F(y, j), F ′(x, j), F ′(y, j) �= 0 as
both functions are block-rank-1). We use F ′(x, ∗) to further partition T into T1, . . . , Tt,
for some t ≥ 1: there are positive integers μ1 > · · · > μt > 0, such that |F ′(x, j)| = μk
for all j ∈ Tk and k ∈ [t]. (Here, μi ’s are integers because of the definition of F ′ from
F in Equation (9).) Since F ′ is block-rank-1, we know |F ′(x, ∗)|, |F ′(y, ∗)| are linearly
dependent and, thus, there are positive integers ν1 > · · · > νt > 0, such that (μ1, . . . , μt)
and (ν1, . . . , νt) are linearly dependent and |F ′(y, j)| = νk for all j ∈ Tk and k ∈ [t].

We also use c(x, j) and c(y, j) to denote the roots of unity, such that

F ′(x, j) = μk · c(x, j) and F ′(y, j) = νk · c(y, j).

Because F ′(x, ∗) and F ′(y, ∗) are block-orthogonal, by definition, we have∑
j∈Tk

F ′(x, j) · F ′(y, j) = μk · νk

∑
j∈Tk

c(x, j) · c(y, j) = 0, for all k ∈ [t]. (12)

For each k ∈ [t], we write uk ∈ Zs and vk ∈ Zs to denote the two unique vectors, such
that μk = puk and νk = pvk. Then by the construction of F ′, we have for all j ∈ Tk,

F(x, j) = guk · c(x, j) and |F(x, j)| = |guk|, (13)

F(y, j) = gvk · c(y, j) and |F(y, j)| = |gvk|.
Now, we are ready to show that F(x, ∗) and F(y, ∗) are indeed block-orthogonal. Let

υ = |F(x, j)| > 0 for some j ∈ T and let Sυ ⊆ T denote the set of indices � such that
|F(x, �)| = υ. Then, by Equation (13), Sυ must be the union of some of the Tk’s. Without
loss of generality, let Sυ = T1 ∪ · · · ∪ Tq for some q ≤ t. Then, we have∑

�∈Sυ

F(x, �) · F(y, �) =
∑
k∈[q]

∑
�∈Tk

guk · c(x, �) · gvk · c(y, �)

=
∑
k∈[q]

guk · gvk

∑
�∈Tk

c(x, �) · c(y, �) = 0.

The first equation uses Equation (13) and the last equation uses Equation (12). This
finishes the proof.

We remark that in both property 3 and property 4(b) of the lemma, the statement
only holds in one direction. For example, when Fi is block-rank-1, it is not clear how to
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prove that F ′
i is block-rank-1 as well. However, it turns out that the directions that we

can prove are the ones that we will actually need later in proving the hardness lemmas
for general functions.

Using properties 2, 3, and 4 of the Purification Lemma, we have

COROLLARY 2.13. As defined in Equation (8), if F ′
i is block-orthogonal, then so is Fi.

Moreover, the equivalence relations ∼Fi and ∼F ′
i

defined by Fi and F ′
i , respectively, are

the same.

2.8. Mal’tsev Polymorphisms and Witness Functions

Our dichotomy theorem needs the following concept of Mal’tsev polymorphisms:

Definition 2.14. Let � ⊆ Dn be an n-ary relation and ϕ : D3 → D be a map. If

(ϕ(u1, v1, w1), . . . , ϕ(un, vn, wn)) ∈ �, for all u, v, w ∈ �,

then we say � is closed under ϕ, and call ϕ a ternary polymorphism of �.
Given � ⊆ Dn and ϕ : D3 → D, we use clϕ� to denote the closure of � under ϕ,

that is, the smallest relation in Dn (in terms of set containment) that contains � and
is closed under ϕ.

Definition 2.15 (Mal’tsev Polymorphism). Let � ⊆ Dn be an n-ary relation. Then, we
say ϕ : D3 → D is a Mal’tsev polymorphism of � if ϕ is a polymorphism of � and in
addition satisfies

ϕ(a, b, b) = ϕ(b, b, a) = a, for all a, b ∈ D. (14)

Let 	 = {�1, . . . , �h} be a finite set of relations. We say ϕ is a Mal’tsev polymorphism
of 	 if it is a Mal’tsev polymorphism of �i for all i ∈ [h].

Let 	 = {�1, . . . ,�h} be a finite set of relations. Let I denote an instance of #CSP(	)
and R denote the relation it defines. If 	 has a Mal’tsev polymorphism ϕ, then ϕ is a
Mal’tsev polymorphism of R as well. On the other hand, Bulatov and Dalmau [2007]
gave the following #P-hardness theorem. Also see Dyer and Richerby [2013].

THEOREM 2.16 ([BULATOV AND DALMAU 2007]). Let 	 be a finite set of relations. If 	 does
not have a Mal’tsev polymorphism, then #CSP(	) is #P-complete.

Theorem 2.16 has the following simple corollary.

COROLLARY 2.17. Let � be a collection of (possibly infinitely many) relations. Then
either all relations in � share a common Mal’tsev polymorphism ϕ; or there is a finite
subset 	 ⊂ � such that #CSP(	) is #P-hard.

PROOF. Note that, given d, there are only finitely many maps ϕ : D3 → D. We let P
denote the set of all such maps. Now assume the relations in � do not share a common
Mal’tsev polymorphism, then for any ϕ ∈ P, there is a relation �ϕ ∈ �, which does not
have ϕ as a Mal’tsev polymorphism. Then from Theorem 2.16, we know that #CSP(	)
is #P-hard, where 	 = {�ϕ : ϕ ∈ P} is a finite subset of �.

Let � be an n-ary relation with variables x1, . . . , xn ranging over D. In general, |�|
could be exponentially large in n. But when � is known to have a Mal’tsev polymorphism
and such a polymorphism ϕ is also given, Dyer and Richerby [2013] introduced the
following elegant succinct representation for �. (See Bulatov and Dalmau [2006] for a
similar notion called a “compact representation.”) We start with some notation.

For each i ∈ [n], we define the following relation ∼i on Pri �, the projection of � on
its ith coordinate: a ∼i b if there exist tuples x ∈ Di−1 and ya, yb ∈ Dn−i, such that

x ◦ a ◦ ya ∈ � and x ◦ b ◦ yb ∈ �.
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For the special case when i = 1, we have a ∼1 b for all a, b ∈ Pr1�, because they share
the common empty prefix ε. It was then shown in Dyer and Richerby [2013] that if �
has a Mal’tsev polymorphism, ∼i must be an equivalence relation:

LEMMA 2.18. If � has a Mal’tsev polymorphism, then ∼i is an equivalence relation
for all i ∈ [n].

When � has a Mal’tsev polymorphism, we let Ei,k ⊆ Pri�, where k = 1, 2, . . . , denote
the equivalence classes of ∼i. The following lemma can be found in Dyer and Richerby
[2013]. We include its short proof as an example of the use of a Mal’tsev polymorphism.

LEMMA 2.19. If a ∼i b and x ∈ � with xi = a, then there is a y ∈ � with yi = b and
Pr[i−1]x = Pr[i−1]y.

PROOF. As a ∼i b, by definition there exist z ∈ Di−1 and u1, u2 ∈ Dn−i, such that

z ◦ b ◦ u2 ∈ � and z ◦ a ◦ u1 ∈ �.

By applying a Mal’tsev polymorphism ϕ of � on these two vectors together with x ∈ �,
we get a new vector y ∈ �. It is easy to check that y satisfies both properties, and the
lemma is proven.

Next, we define the succinct representation called witness functions from Dyer and
Richerby [2013].

Definition 2.20 (Witness Function). Let � ⊆ Dn denote a relation that has a Mal’tsev
polymorphism. Then ω : [n] × D → Dn ∪ {⊥} is called a witness function of � if it
satisfies the following conditions:

(1) For any i ∈ [n] and a /∈ Pri �, ω(i, a) = ⊥;
(2) For any i ∈ [n] and a ∈ Pri �, ω(i, a) ∈ � is a witness for (i, a), that is, its ith entry

is a;
(3) For any i ∈ [n] and a, b ∈ Pri � with a ∼i b, we have Pr[i−1] ω(i, a) = Pr[i−1] ω(i, b).

In Dyer and Richerby [2013] a subset of � that contains the image of a witness
function of � is called a frame of �. But in this article, we will only use witness
functions. The following lemma from Dyer and Richerby [2013] is the reason why a
witness function is considered as a succinct (and linear-size) representation of �:

LEMMA 2.21 (MEMBERSHIP). Let � ⊆ Dn be an n-ary relation that has a Mal’tsev
polymorphism. With ω, a witness function of �, and ϕ, a Mal’tsev polymorphism of �,
we can solve the following problem in time polynomial in n: given an x ∈ Dn, decide if
x ∈ � or not.

For completeness, we include the proof of Lemma 2.21 (and those of Lemmas 2.22–
2.24) in the Appendix. Readers may find them helpful in becoming more familiar with
the notions of Mal’tsev polymorphisms and witness functions.

Next, if ϕ is a Mal’tsev polymorphism of � ⊆ Dn, then all three operations on � as
described in Section 2.1, that is, projection, pinning (i.e., �(a, ∗) for some prefix a) and
permutation, would result in a relation of which ϕ remains a Mal’tsev polymorphism.

LEMMA 2.22. Let ϕ be a Mal’tsev polymorphism of � ⊆ Dn, � ∈ [n], a ∈ D�, and π be
a permutation of [n]. Then ϕ is a Mal’tsev polymorphism of Pr[�] �, �(a, ∗) and π (�).

Furthermore, given a witness function ω of �, we can construct witness functions
of Pr[�] �, �(a, ∗), and π (�), respectively, in time polynomial in n. (By “construct a
witness function” or “compute a witness function,” we mean to list the table of values
of the function on the domain [n] × D, that is, a list of nd values.) For pinning and
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projection, the following two lemmas can be found in Dyer and Richerby [2013]. In
Section 7, we will discuss permutation and two other polynomial-time operations on
witness functions, union and splitting. They play a key role in the algorithmic part of
our dichotomy.

LEMMA 2.23 (PROJECTION). Let ϕ be a Mal’tsev polymorphism and ω be a witness
function of � ⊆ Dn. Given an � ∈ [n], we can construct a witness function for Pr[�] � in
time polynomial in n. When � is bounded by a constant, we can use ω to compute the
projection Pr[�] � itself in polynomial time.

Moreover, given any x ∈ Pr[�] � for some � ∈ [n], we can compute a vector y ∈ � with
x = Pr[�] y in polynomial time.

LEMMA 2.24 (PINNING). Let ϕ be a Mal’tsev polymorphism and ω be a witness function
of � ⊆ Dn. Given any a ∈ D� for some � ∈ [n], we can construct a witness function for
�(a, ∗) in time polynomial in n.

Let 	 = {�1, . . . , �h} be an unweighted constraint language over D. It follows from
Theorem 2.16 that #CSP(	) is #P-complete when 	 does not have a Mal’tsev polymor-
phism. Dyer and Richerby [2013] showed that when 	 has a Mal’tsev polymorphism,
then given an instance I of #CSP(	), a witness function for the relation RI defined by
I (which also has ϕ as a Mal’tsev polymorphism) can be computed efficiently.

THEOREM 2.25. Let ϕ be a Mal’tsev polymorphism shared by all the relations in 	.
Then given any input instance I of #CSP(	), one can compute a witness function of RI
in polynomial time.

In addition, Dyer and Richerby [2013] gave a polynomial-time algorithm that, given
a witness function of RI , computes |RI| (though we will not use this algorithm here).

2.9. The Partition Condition

Let S ⊆ Dn be a nonempty set and S1, . . . , Sk be a partition of S, for some k ≥ 1: the
Si ’s are nonempty and pairwise disjoint subsets of S, with S = S1 ∪ · · · ∪ Sk. The pair
(S, (S1, . . . , Sk)) defines the following map type(·): given any � ∈ [n] and x ∈ D�,

type(x) = {
j ∈ [k] : ∃y ∈ Sj such that x = Pr[�] y

} ⊆ [k]. (15)

We also set type(ε) = [k], where ε is the empty tuple. We will refer to type(·) as the type
map of (S, (S1, . . . , Sk)), and type(x) as the type of x (with respect to (S, (S1, . . . , Sk))).
When � = n, type(x) is either ∅ or a singleton. When � = n and type(x) is a singleton,
we refer to the element in type(x) simply as the type of x for convenience.

Definition 2.26. Let type(·) denote the type map of (S, (S1, . . . , Sk)). Then, we say
(S, (S1, . . . , Sk)) satisfies the partition condition if for all � ∈ [n] and x, y ∈ D�, type(x)
and type(y) are either the same or disjoint.

Given (S, (S1, . . . , Sk)), we refer to the (n + 1)-tuple

T = (T0, T1, . . . , Tn), where T� = {
type(x) ⊆ [k] : x ∈ D� and type(x) �= ∅} ⊂ 2[k],

as its list of types. For the special case of � = 0, we have T0 = {[k]}. It is clear from the
definition that all the sets in T� are nonempty, since we are only interested in x ∈ D�

with type(x) �= ∅, and their union must be [k], since Si ’s are nonempty.
The next lemma follows directly from the definition of the partition condition:

LEMMA 2.27. If (S, (S1, . . . , Sk)) satisfies the partition condition, then |T�| ≤ k for all
�. Moreover, for any i, j : 0 ≤ i < j ≤ n and U ∈ Ti, V ∈ T j , either V ⊆ U or U ∩ V = ∅.
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One way to better understand the list T is to consider it as a tree of height n: [k] ∈ T0
is the root, and the sets of T� are nodes at level � of the tree; U ∈ T� and V ∈ T�+1 are
adjacent if V ⊆ U . The tree has the property that the leaves are singletons and every
other node is the union of its children.

3. A COMPLEXITY DICHOTOMY FOR #CSP WITH COMPLEX WEIGHTS

We prove Theorem 1.1 in this section. The rest of the article consists of proofs of lemmas
stated here. We start by describing the necessary conditions for tractability.

Let D = [d] be a domain. Let F be a finite set of algebraic complex functions over D.
Recall the definition of F [t] in Equation (2). We use WF to denote the following set of
infinitely many (though countable) algebraic complex-valued functions:

WF ={
F [t] : F is a function defined by an instance of #CSP(F) and 1 ≤ t ≤ arity of F

}
.

The following lemma concerning WF is easy to prove:

LEMMA 3.1. For any finite subset F ′ ⊂ WF , we have #CSP(F ′) ≤T #CSP(F).

3.1. Hardness Part of the Dichotomy

The hardness part of the dichotomy theorem consists of three necessary conditions on
WF . The violation of any of these conditions implies that #CSP(F) is #P-hard.

First, we impose the following condition:

Block Orthogonality: Let {F1, . . . , Fk} be any finite subset of WF and {g1, . . . , gs}
be any generating set of Im(F1, . . . , Fk) − {0}. Let(

F ′
1, . . . , F ′

k

) = Pure
(
F1, . . . , Fk; {g1, . . . , gs}

)
.

Then, every F ′
i of arity ≥ 2 is block-orthogonal (and in particular, block-rank-1).

We prove the following lemma in Section 4:

LEMMA 3.2. If F does not satisfy the Block Orthogonality condition, then #CSP(F) is
#P-hard.

Remark 3.3. For the special case of languages F of non-negative weights, the Block
Orthogonality condition above trivially implies the condition of weak balance [Cai et al.
2016], which played an important role in their dichotomy for #CSP with non-negative
weights. It remains unclear as to whether it implies the condition of balance as well
[Cai et al. 2016] (see also Bulatov [2013] and Dyer and Richerby [2013] for the condition
of balance in the unweighted case).

Assume F satisfies the Block Orthogonality condition. By Corollary 2.13, every F in
WF with arity ≥ 2 is block-orthogonal (and in particular, block-rank-1). Let n ≥ 2 be
the arity of a function F ∈ WF that is not identically zero, and let{

(S1, v1), . . . , (Sk, vk)
}

(16)

be the row representation of F for some k ≥ 1, where Sj ’s are nonempty and disjoint.
We note that k ≤ d, because F is block-orthogonal. Let �F = S1 ∪ · · · ∪ Sk.

In addition to Block Orthogonality, here is the second condition on WF :

Type Partition: For any function F ∈ WF that has arity n ≥ 2 and is not
identically zero, the pair (�F, (S1, . . . , Sk)) satisfies the partition condition.

It is worth pointing out that the partition condition is trivially satisfied if the arity of
F is 2 and �F ⊆ D. We prove the following hardness lemma in Section 5.
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LEMMA 3.4. If F does not satisfy the Type Partition condition, then #CSP(F) is #P-
hard.

Finally, we need a condition on relations defined from WF . Assume F satisfies the
Block Orthogonality condition. If F has arity n ≥ 2, then we denote its row representa-
tion by Equation (16) and define the following (equivalence) relation F over 2(n − 1)
variables x = (x1, . . . , xn−1) and y = (y1, . . . , yn−1):

(x, y) ∈ F ⇐⇒ x, y ∈ Sj for some j ∈ [k] (17)

⇐⇒ F(x, ∗), F(y, ∗) are nonzero and linearly dependent.

This gives us the following set �F of infinitely many (though countable) relations:

�F = {Boolean(F) : F ∈ WF } ∪ {F : F ∈ WF of arity ≥ 2}. (18)

We now impose the last condition on �F (derived from WF ):

Mal’tsev: All relations in �F share a common Mal’tsev polymorphism ϕ : D3 → D.

To finish the hardness part, we prove the following hardness lemma in Section 6:

LEMMA 3.5. If F does not satisfy the Mal’tsev condition, then #CSP(F) is #P-hard.

Remark 3.6. 3Note that the Mal’tsev condition directly implies that relations in the
unweighted version 	 of F share a common Mal’tsev polymorphism, which is known
to be equivalent to 	 satisfying the condition of strong rectangularity [Bulatov 2013;
Dyer and Richerby 2013] (though we do not need it in our proof here). This equivalence
makes it easy to check (in NP) whether 	 is strongly rectangular. However, checking
whether a language F of complex weights satisfies the Mal’tsev condition above seems
to be much more challenging. While 	 having a Mal’tsev polymorphism implies that
the same holds for any relation defined by an instance of #CSP(	), this is not the case
for our Mal’tsev condition, due to the presence of cancellations in sums behind F[t].

3.2. Algorithmic Part of the Dichotomy

We show that if a finite set F of algebraic complex-valued functions satisfies all three
conditions:

(a) the Block Orthogonality condition,
(b) the Type Partition condition,
(c) the Mal’tsev condition,

then there is a polynomial-time algorithm for #CSP(F). Theorem 1.1 then follows.
First, from the Mal’tsev condition, all the relations in �F share a common Mal’tsev

polymorphism. We may assume that such a polymorphism ϕ is given (since F is con-
sidered as a constant4) and will use it later in the algorithm.

Let I be an instance of #CSP(F), and let F : Dn → C denote the function it defines.
To compute Z(I), we examine functions F = F [n], . . . , F [2]. For each F [t], 2 ≤ t ≤ n, let

S [t] = {(
S[t, j], v[t, j]) : j ∈ [st]

}
(19)

denote the row representation of F [t]. At this moment, we do not know what exactly st
is, though by the Block Orthogonality condition, we know F [t] ∈ WF is block-orthogonal
and, thus, 0 ≤ st ≤ d for all t.

3The reader may feel free to skip the remark, since it is about the decidability of the Mal’tsev condition and
is not related to the proof of the dichotomy theorem.
4Indeed, one can enumerate all possible maps from D3 to D one by one, and there are only constant many,
since |D| is a constant.
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Next, by using the Mal’tsev condition, we know that ϕ is a Mal’tsev polymorphism of
F[t] , a relation over 2(t − 1) variables. The following lemma shows that ϕ must also be
a Mal’tsev polymorphism of the S[t, j]’s when viewed as relations over t − 1 variables:

LEMMA 3.7. If ϕ is a Mal’tsev polymorphism of F[t] , then it is a Mal’tsev polymorphism
of the S[t, j]’s.

PROOF. The claim is trivial if st = 0. Otherwise, let u ∈ Dt−1 be a vector in S[t, j] for
some j ∈ [st]. By the definition of F[t] , we have y ∈ S[t, j] iff (u, y) ∈ F[t] . As a result,
S[t, j] = F[t] (u, ∗), and the lemma follows directly from Lemma 2.22.

It makes sense now to talk about witness functions for S[t, j]’s (though we still do not
know st at this moment). We prove the following key lemma in Sections 7 and 8:

LEMMA 3.8. Suppose F satisfies all three conditions, with ϕ being a Mal’tsev poly-
morphism of �F . Given an input instance I of #CSP(F), letting F : Dn → C denote the
function it defines, we can compute in polynomial time a sequence of n − 1 nonnegative
integers sn, . . . , s2 ≤ d, such that st is the number of pairs in the row representation of
F [t] in Equation (19). Moreover, we can compute in polynomial time st pairs for each
2 ≤ t ≤ n: {(

ω[t, j], v[t, j]) : j ∈ [st]
}
, (20)

where ω[t, j] : [t−1]× D → Dt−1 ∪{⊥} and v[t, j] �= 0 is a d-dimensional vector, such that

(1) {v[t, j] : j ∈ [st]} are exactly the st vectors in the row representation of F [t] in (19);
(2) ω[t, j] is a witness function of S[t, j] ⊆ Dt−1, the set paired with v[t, j] in the row

representation of F [t] in Equation (19).

Once we have obtained st and the pairs in Equation (20), Z(F) can be computed
efficiently:

LEMMA 3.9 (COMPUTATION OF Z(I)). Given st and Equation (20) for each 2 ≤ t ≤ n, Z(F)
can be computed in polynomial time.

PROOF. For each t : 2 ≤ t ≤ n, we use Equation (19) to denote the row representation
of F [t]. By Lemma 3.8, all vectors v[t, j] in Equation (19) have been computed and for
each set S[t, j], we have computed one of its witness functions ω[t, j].

For any a1 ∈ D, we show how to compute F [1](a1) efficiently. The lemma follows as

Z(I) =
∑
a1∈D

F [1](a1).

We start with an informal description of the algorithm.
We first check whether a1 ∈ S[2, j] for some j ∈ [s2]. This can be done efficiently, since

s2 ≤ d is bounded by a constant and for each j ∈ [s2], whether a1 ∈ S[2, j] or not can be
checked efficiently using the witness function ω[2, j] of S[2, j]. By definition, if a1 /∈ S[2, j]

for all j ∈ [s2], we must have F [2](a1, ∗) = 0, and thus,

F [1](a1) =
∑
b∈D

F [2](a1, b) = 0.

Otherwise, we let j ∈ [s2] be the unique index such that a1 ∈ S[2, j] and a2 ∈ D be the
smallest nonzero index of v[2, j]. By the definition of row representations, v

[2, j]
a2 = 1 and

F [2](a1, ∗) is a nonzero vector that is linearly dependent with v[2, j]. Therefore,

F [1](a1) =
∑
b∈D

F [2](a1, b) = F [2](a1, a2) ·
∑
b∈D

v
[2, j]
b .
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Fig. 1. The recursive procedure ComputeF.

This reduces the computation of F [1](a1) to that of F [2](a1, a2). If n = 2, then we
are already done, because F[2](a1, a2) can be evaluated efficiently using the input in-
stance I. Otherwise, we continue and reduce the computation of F[2](a1, a2) to that of
F [3](a1, a2, a3) for some appropriate a3 ∈ D.

As F [2](a1, ∗) is nonzero and is linearly dependent with v[2, j], we have F [2](a1, a2) �= 0,
and thus, (a1, a2) ∈ S[3, j] for some j ∈ [s3]. Using witness functions ω[3, j], we can find
this j ∈ [s3] efficiently. By the definition of row representations, F [3](a1, a2, ∗) is linearly
dependent with v[3, j]. Let a3 denote the smallest nonzero index of v[3, j]. Then,

v[3, j]
a3

= 1 and F [2](a1, a2) =
∑
b∈D

F [3](a1, a2, b) = F [3](a1, a2, a3) ·
∑
b∈D

v
[3, j]
b .

This further reduces the computation of F[1](a1) to that of F [3](a1, a2, a3).
After n − 1 rounds of such reductions, it suffices to compute F[n](a1, . . . , an) for some

appropriate a2, a3, . . . , an ∈ D, to get F [1](a1). This gives an efficient algorithm for
F [1](a1) as F [n] can be evaluated efficiently using the input instance I.

A formal recursive procedure called ComputeF is described in Figure 1. It takes two
inputs: t and a, where t ∈ [n] and a ∈ Dt, and outputs F [t](a). Its correctness can be
easily proved by induction on t, and its running time is polynomial, because the total
number of recursive calls is at most n − 1 and in each call, the only non-trivial part is
line 4, which has an efficient implementation by Lemma 2.21.

4. THE BLOCK ORTHOGONALITY CONDITION

We prove Lemma 3.2 in this section. We start with a hardness lemma for pure functions
and then use the Purification Lemma to extend it to general functions.

LEMMA 4.1. Let F : Dn → C be a pure function with arity n ≥ 2. If F is not block-
orthogonal, then #CSP(F) is #P-hard.

PROOF. As F is pure, we let K denote the constant order(F). Without loss of generality,
we assume that F is block-rank-1; otherwise, #CSP(F) is #P-hard by Lemma 2.5.
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Now suppose F is not block-orthogonal. Then, by definition, there exist x, y ∈ Dn−1

such that the two vectors F(x, ∗) and F(y, ∗) have at least one common non-zero entry
but are neither linearly dependent nor block-orthogonal. As F is block-rank-1, we have
F(x, i) = 0 if and only if F(y, i) = 0. We use T ⊆ D to denote the nonempty set of i ∈ D
such that F(x, i) is non-zero. Since F is pure and block-rank-1, we can partition T into
T1, . . . , T� for some � ≥ 1 and there are real and positive a and b, and μ1 > · · · > μ� > 0,
such that

F(x, i) = a · μ j · c(x, i) and F(y, i) = b · μ j · c(y, i), for all j ∈ [�] and i ∈ Tj ,

where c(x, i) and c(y, i) are all roots of unity whose orders divide K.
To show that #CSP(F) is #P-hard, we write Ar, for each integer r ≥ 1, to denote the

following dn−1 × dn−1 matrix with its rows and columns indexed by Dn−1:

Ar(w, w′) =
∑
i∈D

F(w, i) · (
F(w′, i)

)rK−1
, for all w, w′ ∈ Dn−1.

Note that Ar is not necessarily symmetric. We prove that, for every r ≥ 1,

EVAL(Ar) ≤T #CSP(F).

Given any directed graph G = (V, E) as an input instance of EVAL(Ar), we construct I,
an instance of #CSP(F), with the following set of variables:

zv,1, . . . , zv,n−1, we, for all v ∈ V and e ∈ E,

ranging over D. Then for each edge e = uv ∈ E, we apply

F over (zu,1, . . . , zu,n−1, we) and (rK − 1) copies of F over (zv,1, . . . , zv,n−1, we).

The reduction follows from ZAr (G) = Z(I). Now to prove that #CSP(F) is #P-hard, it
suffices to show that EVAL(Ar) is #P-hard for some integer r ≥ 1.

Focusing on the 2 × 2 sub-matrix of Ar indexed by x and y, we have

Ar(x, x) =
∑
j∈[�]

∑
i∈Tj

(
a · μ j · c(x, i)

)rK = arK
∑
j∈[�]

|Tj | · (μ j)rK,

Ar(y, y) =
∑
j∈[�]

∑
i∈Tj

(
b · μ j · c(y, i)

)rK = brK
∑
j∈[�]

|Tj | · (μ j)rK,

while

Ar(x, y) =
∑
j∈[�]

∑
i∈Tj

aμ j · c(x, i) · (
bμ j · c(y, i)

)rK−1 = abrK−1
∑
j∈[�]

(μ j)rK
∑
i∈Tj

c(x, i)c(y, i),

Ar(y, x) =
∑
j∈[�]

∑
i∈Tj

bμ j · c(y, i) · (
aμ j · c(x, i)

)rK−1 = arK−1b
∑
j∈[�]

(μ j)rK
∑
i∈Tj

c(y, i)c(x, i).

We use Lr to denote ∑
j∈[�]

(μ j)rK
∑
i∈Tj

c(x, i)c(y, i). (21)

Since all the μ j ’s are real and positive, we have

Ar(x, y) · Ar(y, x) = arKbrK · |Lr|2.
We discuss the following three cases. First, if

|Lr| =
∑
j∈[�]

|Tj | · (μ j)rK, for some r ≥ 1,
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then by Cauchy–Schwarz, it must be the case that c(x, ∗) and c(y, ∗), as two |T |-
dimensional vectors, are linearly dependent and thus, F(x, ∗) and F(y, ∗) are linearly
dependent, contradicting the assumption.

Second, if Lr = 0 for all r ≥ 1, then by solving a Vandermonde system in which
Equation (21) is 0 for r from 1 to �, we must have∑

i∈Tj

c(x, i)c(y, i) = 0, for all j ∈ [�].

As a result, these two rows are block-orthogonal, contradicting the assumption again.
Otherwise, we must have

0 < |Lr| <
∑
j∈[�]

|Tj | · (μ j)rK, for some r ≥ 1.

So, all four entries of this sub-matrix of |Ar| are positive but its rank is 2. This implies
that |Ar| is not a block-rank-1 matrix. From Lemma 2.4, we have EVAL(Ar) is #P-hard
and so is #CSP(F). This finishes the proof of the lemma.

Lemma 3.2 now follows from Lemmas 4.1, 3.1, and 2.12.

PROOF LEMMA 3.2 Assume for contradiction that F does not satisfy the Block Or-
thogonality condition. Let {F1, . . . , Fk} ⊂ WF be a finite set that violates the Block
Orthogonality condition with a generating set {g1, . . . , gs} of Im(F1, . . . , Fk) − {0}. Then,
let (F ′

1, . . . , F ′
k

) = Pure
(
F1, . . . , Fk; {g1, . . . , gs}). By Lemma 2.12 and Lemma 3.1,

#CSP(F ′
i ) ≤T #CSP(F ′

1, . . . , F ′
k) ≡T #CSP(F1, . . . , Fk) ≤T #CSP(F).

If F ′
i is not block-orthogonal, by Lemma 4.1 #CSP(F ′

i ) is #P-hard and so is #CSP(F).

5. THE TYPE PARTITION CONDITION

We prove Lemma 3.4 in this section. Again, we start by working on pure functions and
then extend it to general functions. Let F : Dn → C be a pure function of arity n ≥ 2.
Also assume that F is block-orthogonal (and in particular, block-rank-1 as well).

Let S = {(S1, v1), . . . , (Sk, vk)} be the row representation of F, with S1, . . . , Sk being
nonempty and pairwise disjoint subsets of Dn−1. Let � = S1 ∪ · · · ∪ Sk. Given the pair
(�, (S1, . . . , Sk)), recall its type map type(·) as in Equation (15): for any � ∈ [n − 1] and
x ∈ D�,

type(x) = {
j ∈ [k] : ∃ y ∈ Sj such that x = Pr[�]y

}
.

We show that #CSP(F) is #P-hard if (�, (S1, . . . , Sk)) violates the partition condition.

LEMMA 5.1. Let F : Dn → C be a pure and block-orthogonal function with n ≥ 2. Then
#CSP(F) is #P-hard if there exist an � ∈ [n − 1] and x, y ∈ D�, such that

neither type(x) ∩ type(y) = ∅ nor type(x) = type(y). (22)

PROOF. We start with some notation. Let K be the constant order(F).
Because S is the row representation of F, there is a function g : � → C, such that

F(x, ∗) = g(x) · v j, for all j ∈ [k] and x ∈ Sj .

By the definition of row representations, g(x) is the first non-zero entry of F(x, ∗). As F
is pure, g(x) is the product of a positive rational number and a root of unity whose order
divides K, for all x ∈ �. This then implies that all the nonzero entries of v1, . . . , vk are
products of a positive rational number and a root of unity whose order divides K.
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Moreover, we know that for any i �= j ∈ [k], it follows from Lemma 2.6 that∑
a∈D

vi,a · (v j,a)K−1 = 0, (23)

because they are block-orthogonal. For each j ∈ [k], let

c j =
∑
a∈D

v j,a · (v j,a)K−1 =
∑
a∈D

|v j,a|K > 0.

Now, we start the proof. Let � ∈ [n − 1] and let x, y ∈ D� be two vectors that satisfy
Equation (22). Note that when � = n − 1, type(x) is either ∅ or a singleton set. So for
Equation (22) to hold, � must be smaller than n − 1. (Note that this implies that the
hardness condition of the lemma never occurs for binary functions.) Without loss of
generality, let

type(x) = L1 ∪ L2 and type(y) = L1 ∪ L3,

where Li ’s are pairwise disjoint and L1 and at least one of L2, L3 are nonempty.
Let A denote the following d� × d� matrix: for z, w ∈ D�, the (z, w)th entry of A is

A(z, w)=
∑

z′,w′∈Dn−1−�

⎛
⎝∑

p∈D

F(z, z′, p) · (F(w, w′, p))K−1

⎞
⎠

⎛
⎝∑

q∈D

(F(z, z′, q))K−1· F(w, w′, q)

⎞
⎠ .

It is easy to see that A is symmetric. We use the following construction to show that

EVAL(A) ≤T #CSP(F). (24)

Given any undirected graph G = (V, E) as an instance of EVAL(A), we construct I, an
instance of #CSP(F), with the following variables:

v1, . . . , v� for each v ∈ V and pe, qe, se,�+1, . . . , se,n−1, re,�+1, . . . , re,n−1 for each e ∈ E.

For each edge e = uv ∈ E, we apply one copy of F over each of(
u1, . . . , u�, se,�+1, . . . , se,n−1, pe

)
and (v1, . . . , v�, re,�+1, . . . , re,n−1, qe),

and we apply (K − 1) copies of F over each of(
u1, . . . , u�, se,�+1, . . . , se,n−1, qe

)
and

(
v1, . . . , v�, re,�+1, . . . , re,n−1, pe

)
.

(Technically the construction of I above chooses an orientation for each edge, but the
value Z(I) is independent of this choice.) It then follows from the definition of A from
F that ZA(G) = Z(I), and Equation (24) follows.

Now to finish the proof, it suffices to show that EVAL(A) is #P-hard. To this end, we
analyze the four entries of A with z, w ∈ {x, y}.

For each i ∈ type(x) = L1 ∪ L2, we use Ui to denote the nonempty set of vectors x′ ∈
Dn−�−1 such that x ◦ x′ ∈ Si. And we define Vi similarly for y. Then, for i �= j ∈ L1 ∪ L2
and z′ ∈ Ui, w′ ∈ U j , we have∑

p∈D

F(x, z′, p) · (F(x, w′, p))K−1 = 0
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by Equation (23). This can be used to simplify the sum in A(x, x) as follows:

A(x, x) =
∑

i∈L1∪L2

∑
x′,x′′∈Ui

⎛
⎝∑

p∈D

g(x, x′) · vi,p · (
g(x, x′′) · vi,p

)K−1

⎞
⎠

×
⎛
⎝∑

q∈D

(
g(x, x′) · vi,q

)K−1 · g(x, x′′) · vi,q

⎞
⎠

=
∑

i∈L1∪L2

∑
x′,x′′∈Ui

|g(x, x′)|K · |g(x, x′′)|K · (ci)2 =
∑

i∈L1∪L2

⎛
⎝ ∑

x′∈Ui

|g(x, x′)|K · ci

⎞
⎠

2

.

Similarly, we have

A(y, y) =
∑

i∈L1∪L3

∑
y′,y′′∈Vi

|g(y, y′)|K · |g(y, y′′)|K · (ci)2 =
∑

i∈L1∪L3

⎛
⎝ ∑

y′∈Vi

|g(y, y′)|K · ci

⎞
⎠

2

.

On the other hand, by a similar proof, we also have

A(x, y) =
∑
i∈L1

∑
x′∈Ui , y′∈Vi

⎛
⎝∑

p∈D

g(x, x′) · vi,p · (
g(y, y′) · vi,p

)K−1

⎞
⎠

×
⎛
⎝∑

q∈D

(
g(x, x′) · vi,q

)K−1 · g(y, y′) · vi,q

⎞
⎠

=
∑
i∈L1

∑
x′∈Ui , y′∈Vi

|g(x, x′)|K · |g(y, y′)|K · (ci)2

=
∑
i∈L1

⎛
⎝ ∑

x′∈Ui

|g(x, x′)|K · ci

⎞
⎠

⎛
⎝ ∑

y′∈Vi

|g(y, y′)|K · ci

⎞
⎠ ,

and A(y, x) = A(x, y) (as the definition of A is symmetric). Using the same argument,
we can also see that all entries of A are non-negative.

Since L1 is nonempty, we have A(x, y) = A(y, x) > 0. It is now easy to see that
if at least one of the L2, L3 is nonempty, then A(x, x) · A(y, y) > A(x, y) · A(y, x). By
Theorem 2.3, we have that EVAL(A) is #P-hard and so is #CSP(F). This proves the
lemma.

Finally, we use the Purification Lemma to prove Lemma 3.4.

PROOF OF LEMMA 3.4. Without loss of generality, we may assume that F satisfies the
Block Orthogonality condition; otherwise, #CSP(F) is #P-hard by Lemma 3.2.

Let F ∈ WF be a function of arity at least 2 and let F ′ = Pure(F; {g1, . . . , gs}), where
{g1, . . . , gs} is a generating set of Im(F) − {0}. By Lemma 3.1, we have

#CSP(F ′) ≡T #CSP(F) ≤T #CSP(F).

As F satisfies the Block Orthogonality condition, F ′ is block-orthogonal. Using Corol-
lary 2.13 of the Purification Lemma, F and F ′ must induce the same equivalence
relation ∼F and ∼F ′ and therefore, the type maps typeF(·) and typeF ′(·), induced by F
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and F ′, respectively, are the same. If typeF(·) violates the partition condition, then so
does typeF ′(·). By Lemma 5.1, #CSP(F ′) is #P-hard and so is #CSP(F).

6. THE MAL’TSEV CONDITION

We prove Lemma 3.5 in this section. It follows directly from the following lemma:

LEMMA 6.1. If F satisfies the Block Orthogonality condition, then for any finite set
	 ⊂ �F , we have #CSP(	) ≤T #CSP(F).

PROOF OF LEMMA 3.5. If F does not satisfy the Block Orthogonality condition, then
we are done by Lemma 3.2. Assume F satisfies the Block Orthogonality condition but
does not satisfy the Mal’tsev condition.

Recall that �F is a set of relations defined using WF in Equation (18). By Corol-
lary 2.17 there exists a finite set 	 ⊂ �F with #CSP(	) being #P-hard. By Lemma 6.1,
#CSP(F) is also #P-hard, and the lemma is proven.

We prove Lemma 6.1 in the rest of the section.

PROOF OF LEMMA 6.1. Given 	, we can find a finite subset {F1, . . . , Fk} ⊂ WF , such
that 	 ⊆ �, where we use i to denote the relation defined using Fi as in Equation (17),
and

� = {Boolean(Fi) : i ∈ [k]} ∪ {i : i ∈ [k] and the arity of Fi is ≥ 2}.
Let ri denote the arity of Fi. Recall that i is a relation over 2(ri − 1) variables:

(x, y) ∈ i ⇐⇒ Fi(x, ∗) and Fi(y, ∗) are non-zero and linearly dependent.

Using Lemma 3.1, we have

#CSP
(
F1, . . . , Fk

) ≤T #CSP(F), (25)

so it suffices to give a polynomial-time reduction from #CSP(�) to the former.
For this purpose, we first apply the Purification Lemma to get(

F ′
1, . . . , F ′

k

) = Pure
(
F1, . . . , Fk; {g1, . . . , gs}

)
, (26)

using an arbitrary generating set {g1, . . . , gs} of Im{F1, . . . , Fk}−{0}. Now, all k functions
F ′

1, . . . , F ′
k are pure, and we have

#CSP
(
F ′

1, . . . , F ′
k

) ≡T #CSP
(
F1, . . . , Fk

)
. (27)

We use K to denote the least common multiple of the orders of all the pure F ′
i ’s.

The plan of the proof is the following. For each i ∈ [k] with ri ≥ 2, we use a construction
to define, from F ′

i , a 2(ri − 1)-ary function Hi and prove that

#CSP
({

F ′
i : i ∈ [k]

} ∪ {
Hi : i ∈ [k] and ri ≥ 2

}) ≤T #CSP
(
F ′

1, . . . , F ′
k

)
. (28)

We will show that for each i ∈ [k] with ri ≥ 2, i = Boolean(Hi). On the other hand, by
property 2 of the Purification Lemma, we have that

Boolean(Fi) = Boolean(F ′
i ), for all i ∈ [k].

As a result, by Lemma 2.8, we have

#CSP(�) ≤T #CSP
({

F ′
i : i ∈ [k]

} ∪ {
Hi : i ∈ [k] and ri ≥ 2

})
, (29)

and the lemma follows by combining Equations (29), (28), (27), and (25).
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For each i ∈ [k] with ri ≥ 2, we use Hi to denote the following function:

Hi(x, y) =
∑
z∈D

F ′
i (x, z) · (

F ′
i (y, z)

)K−1
, for all x, y ∈ Dri−1.

We use the following construction to show the reduction in Equation (28). Given
an instance I of the first problem in Equation (28), we construct an instance I′ of
the second problem as follows. We start with the same set of variables as I and
add to I′ all the constraints in I whose function is some F ′

i . For each constraint
(Hi, x1, . . . , xri−1, y1, . . . , yri−1) in I, we create a new variable z and add the following
K constraints to I′: (F ′

i , x1, . . . , xri−1, z) and (K−1) copies of (F ′
i , y1, . . . , yri−1, z). We have

Z(I) = Z(I′), and Equation (28) follows.
Finally, we show i = Boolean(Hi). As F satisfies the Block Orthogonality condition,

Equation (26) implies that F ′
i is block-orthogonal. From this, it follows from Lemma 2.6

that

Hi(x, y) �= 0 ⇐⇒ F ′
i (x, ∗) and F ′

i (y, ∗) are nonzero and linearly dependent.

It follows from Corollary 2.13 that the two equivalence relations ∼Fi and ∼F ′
i
, induced

by Fi and F ′
i , respectively, are the same. As a result, F ′

i (x, ∗), F ′
i (y, ∗) are nonzero and

linearly dependent if and only if Fi(x, ∗), Fi(y, ∗) are nonzero and linearly dependent.
This proves i = Boolean(Hi) and finishes the proof of the lemma.

7. POLYNOMIAL-TIME OPERATIONS ON WITNESS FUNCTIONS

In this section, we present three polynomial-time operations on witness functions of re-
lations that share a common Mal’tsev polymorphism. They will be used in Section 8 to
prove Lemma 3.8.

7.1. Variable Permutation of Witness Functions

LEMMA 7.1 (VARIABLE PERMUTATION). Let � ⊆ Dn be an n-ary relation. Let ϕ be a
Mal’tsev polymorphism of � and ω be a witness function of �. Given any permutation
π of [n], we can compute a witness function ω′ for π (�) in time polynomial in n.

PROOF. It suffices to show that given any i ∈ [n − 1], we can compute a new witness
function ω′, that is, to give the full table of its values, for

�′ = {
(a1, . . . , ai−1, ai, ai+1, ai+2, . . . , an) : (a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an) ∈ �

}
.

in time polynomial in n. For each j ∈ [n] let ∼ j and ∼′
j denote the equivalence relations

defined by � and �′, respectively. Clearly, for j /∈ {i, i + 1}, ∼′
j is the same as ∼ j . Thus,

we can set ω′( j, a) to be ω( j, a), after transposing the ith and (i + 1)th coordinates.
Next, we compute ∼′

i. Let b ∈ Pri �
′ = Pri+1 �. Note that the latter can be computed

efficiently from ω. We want to compute the class E of b in ∼′
i and, in addition, a witness

for each b′ ∈ E that shares a common (i − 1)-prefix. We are then done for E by setting
ω′(i, b′) to be this witness for every b′ ∈ E .

To this end, we denote ω(i + 1, b), a witness for (i + 1, b) in �, by

x ◦ a ◦ b ◦ u ∈ �, where x ∈ Di−1, a ∈ D and u ∈ Dn−i−1. (30)

We use Lemma 2.24 to compute a witness function for �(x, ∗) on n−(i−1) variables and
use it to project �(x, ∗) on its second coordinate: Pr2 �(x, ∗). We claim E = Pr2 �(x, ∗).

Clearly every b′ ∈ Pr2 �(x, ∗) satisfies b′ ∼′
i b, since b′ ∈ Pr2 �(x, ∗) implies that there

is a witness for (i + 1, b′) in � with the same prefix x. Now, suppose b′ ∼′
i b. Then, by

the definition of ∼′
i, there exist a y ∈ Di−1 and a1, a2 ∈ D, u1, u2 ∈ Dn−i−1, such that

y ◦ a1 ◦ b′ ◦ u1 ∈ � and y ◦ a2 ◦ b ◦ u2 ∈ �.
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Applying the Mal’tsev polymorphism ϕ on these two vectors and the one in Equa-
tion (30) gives us a witness for (i + 1, b′) in � with x as its prefix. Thus, b′ ∈ Pr2 �(x, ∗).

Now, we have computed E . We can use the witness function of �(x, ∗) to get a witness
for (i + 1, b′) in � with x being its prefix. Transposing the ith and (i + 1)th coordinates
gives a witness for (i, b′) in �′. This finishes the construction of ω′(i, b) for all b.

Finally, we work on ∼′
i+1. Let a ∈ Pri+1 �′ = Pri �. We need to compute the equivalence

class E of a in ∼′
i+1. We denote the vector ω(i, a) by

x ◦ a ◦ b ◦ u ∈ �, where x ∈ Di−1, b ∈ D and u ∈ Dn−i−1. (31)

We use Lemma 2.24 to compute a witness function of �(x, ∗) and then Pr[2] �(x, ∗) by
Lemma 2.23. For each pair in (a′, b′) ∈ Pr[2] �(x, ∗), we also compute a vector in �(x, ∗),
which starts with the 2-prefix (a′, b′). We then collect all the a′ ∈ D such that for some
b′ ∈ D, both (a′, b′), (a, b′) ∈ Pr[2] �(x, ∗), and claim that this is exactly E .

First, it is easy to check that (a′, b′), (a, b′) ∈ Pr[2] �(x, ∗) for some b′ implies a ∼′
i+1 a′.

Conversely, if a ∼′
i+1 a′, then there are y ∈ Di−1, c ∈ D, u1, u2 ∈ Dn−i−1, such that

y ◦ a′ ◦ c ◦ u2 ∈ � and y ◦ a ◦ c ◦ u1 ∈ �.

Applying the Mal’tsev polymorphism ϕ on these two vectors together with the
one in Equation (31) gives a vector in � with prefix x ◦ a′ ◦ b. This implies that
(a′, b) ∈ Pr[2] �(x, ∗).

We have computed the class E of a in ∼′
i+1. Now, for each a′ ∈ E with (a′, b′), (a, b′) ∈

Pr[2] �(x, ∗), we can compute two vectors in � with prefixes x ◦ a′ ◦ b′ and x ◦ a ◦ b′. By
applying the Mal’tsev polymorphism ϕ on these two vectors together with the one in
Equation (31) gives a vector in � with prefix x ◦ a′ ◦ b. As a result, we obtain a witness
of (i +1, a′) in �′, for every a′ ∈ E , which shares the same prefix x ◦b. We set ω′(i +1, a′)
to be this witness for each a′ ∈ E . This finishes the construction of ω′.

7.2. Union of Witness Functions

Let �1, . . . , �s ⊆ Dn be s pairwise disjoint relations over n variables x1, . . . , xn ∈ D for
some s ≥ 1. Assume that they share a Mal’tsev polymorphism ϕ. Let � = �1 ∪ · · · ∪ �s.

In general ϕ might not be a Mal’tsev polymorphism of �. The following lemma shows
that, if it is guaranteed that ϕ is a Mal’tsev polymorphism of � as well, then we can
efficiently construct a witness function of � from witness functions of the �k’s.

LEMMA 7.2. Let �1, . . . , �s be s pairwise disjoint and nonempty subsets of Dn, and let
� = �1 ∪· · ·∪�s. Also assume that ϕ is a Mal’tsev polymorphism of both � and the �k’s.
Given a witness function ωk of �k for each k ∈ [s], we can construct a witness function ω
of � in polynomial time (in s and n).

PROOF. Pick any pair (i, a) ∈ [n] × D. We first decide whether there is a vector x ∈ �
such that xi = a. Since � is the union of the �k’s, it suffices to check if ωk(i, a) �= ⊥ for
some k ∈ [s]. If ωk(i, a) = ⊥ for every k ∈ [s], then we simply set ω(i, a) = ⊥; otherwise,
we have found a tuple z ∈ � such that zi = a.

Next, for each i ∈ [n], we compute the equivalence relation ∼i of � as follows. Pick
any a �= b ∈ D for which we have already found witnesses x, y in �, with xi = a and
yi = b. By Lemma 2.19, we have

a ∼i b ⇐⇒ ∃ z ∈ � such that Pr[i]z = (x1, . . . , xi−1, b).

As � is the union of the �k’s, this happens if there exists such a z ∈ �k for some k ∈ [s].
To check whether �k has such a z, by Lemma 2.24, we can use ωk and ϕ to construct a
witness function for �k(x1, . . . , xi−1, b, ∗). Then, �k has a z with Pr[i]z = (x1, . . . , xi−1, b)
if and only if the witness function we get is nonempty.

It is clear that the computation of ∼i, i ∈ [n] gives us a witness function ω for �.
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7.3. Splitting a Witness Function

Here, we describe the inverse of the union operation described above. The setting is the
following. Let � ⊆ Dn be a nonempty relation over n variables, and let �1, . . . , �s be
an s-way partition of �, for some s ∈ [d]: the �i ’s are nonempty, pairwise disjoint, and
satisfy � = �1 ∪ · · · ∪ �s. Assume that ϕ is a Mal’tsev polymorphism of � and the �i ’s.

At the beginning, we have no information about the �i ’s. Even the number s of sets
is not given, though we do know that s ∈ [d]. In addition to the Mal’tsev polymorphism
ϕ, the only resources we have are a witness function ω for � as well as a black box to
query: We can send any x ∈ � to the black box and it returns the unique k ∈ [s] such
that x ∈ �k. The question is: Can we use ω and the black box to compute the value of s
and a witness function ωk for each �k in polynomial time and only using polynomially
many queries?

In general, we do not know how to solve this problem efficiently. But if the following
condition holds then there is an efficient algorithm. Given any permutation π of [n],
we use typeπ to denote the type map of (π (�), (π (�1), . . . , π (�s))). Recall that

typeπ (x) = {
k ∈ [s] : ∃ y ∈ π (�k) such that Pr[�]y = x

}
, for all x ∈ D� with � ∈ [n].

We also have typeπ (ε) = [s], where ε denotes the empty tuple. Our main lemma of
this subsection shows that if (π (�), (π (�1), . . . , π (�s))) satisfies the partition condition
for all π , then there is an efficient algorithm to compute the value of s and a witness
function for each set �k.

LEMMA 7.3. Let (�1, . . . , �s) denote an s-way partition of � ⊆ Dn, for some s ∈ [d].
Assume ϕ is a Mal’tsev polymorphism of � and the �k’s, and (π (�), (π (�1), . . . , π (�s)))
satisfies the partition condition for all permutations π of [n]. Given ϕ, a witness function
ω of �, and a black box specified above, we can compute the value of s and a witness
function ωk of each �k in polynomial time and using polynomially many queries in n.

We start with some notation and definitions. We use type(·) to denote the type map
of (�, (�1, . . . , �s)) and use

T = (T0, T1, . . . , Tn), where T j =
{
type(x) ⊆ [s] : x ∈ Pr[ j]�

}
,

to denote its list of types. As (�, (�1, . . . , �s)) satisfies the partition condition, we have
|T j | ≤ s ≤ d for all j. It is clear that T j ’s are nonempty as � is nonempty; every set in
T j is nonempty, because we are only interested in x ∈ Pr[ j]� in the definition of T j .

We need the following definition in the algorithm:

Definition 7.4. We say S = (S0,S1, . . . ,Sn) is a partial list of T if S j ⊆ T j for all
0 ≤ j ≤ n. Given U ∈ T� for some 0 ≤ � ≤ n, we say S is closedwith respect to U at level
� if U ∈ S� and for every j > �, we have V ∈ S j for every V ∈ T j with V ⊆ U . Finally,
we say S is closed if it is closed with respect to every U ∈ S j at level j, for all 0 ≤ j ≤ n.

In particular, S is closed if S j = ∅ for all j. The next lemma follows from the definition
of closed partial lists of T.

LEMMA 7.5. If S is a closed partial list of T and S0 has the set [s], then S = T.

PROOF. By definition S is closed with respect to [s] at level 0. For each V ∈ T j with
j ≥ 1, we have V ∈ S j , since V ⊆ [s]. It follows that T j ⊆ S j for each j and thus, S = T,
since S is a partial list of T.

We present a recursive procedure ComputeType for computing s and the list of types
T, using the witness function ω of � and the black box. The procedure is presented in
Figure 2. It takes two inputs:
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Fig. 2. The recursive procedure ComputeType.

(i) a vector x ∈ Pr[�]�, where 0 ≤ � ≤ n (and x = ε when � = 0); and
(ii) a closed partial list S = (S0,S1, . . . ,Sn) of T.

The output of ComputeType is a pair (U,S′) in which U ⊆ [s] and S′ is a closed partial
list of T. We first prove a lemma concerning the output of ComputeType and analyze its
running time later in the proof of Lemma 7.3.

LEMMA 7.6. Let x ∈ Pr[�]� for some � : 0 ≤ � ≤ n and let S = (S0,S1, . . . ,Sn) be a
closed partial list of T. Then ComputeType(x,S) outputs (U,S′) such that U = type(x)
and S′ = (S ′

0,S ′
1, . . . ,S ′

n) is a closed partial list of T that satisfies

type(x) ∈ S ′
� and S j ⊆ S ′

j, for all j : 0 ≤ j ≤ n. (32)

PROOF. We prove the lemma by induction on � = n, n − 1, . . . , 1, 0.
The base case when � = n is trivial. This is because, if S is closed at the beginning,

then S∗ is also a closed partial list of T after adding a singleton set {k} ∈ Tn to S∗
n.

Now assume that the lemma holds for all calls to ComputeType with an x of length
at least � + 1 and any closed partial list S. We show that if x ∈ Pr[�]� and S is a closed
partial list of T, then ComputeType(x,S) outputs (U,S′), where type(x) = U and S′ is
a closed partial list of T that satisfies Equation (32).
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There are two cases to discuss. First, if the algorithm reaches line 9 then we clearly
have type(x) = U as (�, (�1, . . . , �s)) satisfies the partition condition and S is assumed
to be a partial list of T. Properties about S′ hold, because S′ = S in this case.

Otherwise the algorithm uses a for-loop to get Ua for each a ∈ Pr1�
′. By the inductive

hypothesis, we know at the end of each iteration of lines 12–20, S∗ remains a closed
partial list of T and satisfies S j ⊆ S∗

j for all j. After the for-loop, we have Ua = type(x ◦ a)
and S∗ is a closed partial list with type(x ◦ a) ∈ S∗

�+1 for all a ∈ Pr1�
′ and S j ⊆ S∗

j for
all j.

Let (U,S′) denote the output of ComputeType(x,S). By line 18 and line 21, we have

U =
⋃

a∈Pr1�′
Ua =

⋃
a∈Pr1�′

type(x ◦ a) = type(x).

It is easy to show that S′ is a partial list of T that satisfies Equation (32) (since U ∈ S∗
�

by line 22). To see that S′ is closed, note that by the inductive hypothesis S∗ in the
procedure remains closed before line 22 and we have type(x ◦a) ∈ S∗

�+1 for all a ∈ Pr1�
′.

Therefore before and after line 22, S∗ is closed with respect to type(x ◦ a) at level � + 1,
for all such a. Note that these are all the subsets of type(x) in T�+1. It follows that S∗
remains closed after line 22, since it is closed with respect to type(x) at level �.

This finishes the induction and the proof of the lemma.

PROOF OF LEMMA 7.3. Using Lemma 7.6, we can call ComputeType(ε,S) = (U,S′),
with S j = ∅ in S for all j, to get the number s ∈ [d] of �k’s, since U = type(ε) = [s]. By
Lemma 7.6, we also have type(ε) ∈ S ′

0 and S′ remains a closed partial list of T. It then
follows from Lemma 7.5 that S′ = T.

Next, we show that ComputeType(ε,S) runs in polynomial time, and only uses poly-
nomially many queries to the black box. Notice that the running time and number of
queries used in each call to ComputeType, excluding those spent in the recursive calls
in line 18, are bounded by a polynomial in n.

We now prove the following claim: at the end of each recursive call to ComputeType
in line 18, at least one new set is added to S∗

�+1 in S∗. This is because each recursive call
to ComputeType in line 18 has the following property: the index k obtained in line 14
belongs to type(x ◦ a) by the choice of z in line 13 and the definition of k in line 14. The
fact that we reach line 18 means that the condition in line 15 fails and thus, k is not in
any set in S∗

�+1 before the execution of ComputeType. After the recursive call, type(x◦a),
which contains k, is in the updated S∗

�+1 by Lemma 7.6. The claim follows.
As a result, each recursive call of ComputeType in line 18 strictly increases the

cardinality of S∗
� in S∗ if its first input is a tuple of length �. But we also have

n∑
i=0

∣∣Ti
∣∣ ≤ 1 + dn = O(n),

since |Ti| ≤ d for every i ∈ [n] and |T0| = 1. Hence, there can be at most O(n) recursive
calls in every execution of ComputeType(x,S). We conclude that the running time as
well as the number of queries to the black box used by ComputeType(ε,S), where S j in
S is ∅ for all j, are both polynomial in n.

We have computed s ∈ [d] and T. Given T, we can compute type(x) for any x ∈ Pr[�]� in
polynomial time. The algorithm is presented in Figure 3. As (�, (�1, . . . , �s)) satisfies
the partition condition, by the definition of T, we know, in line 3, there is a unique
U ∈ T� such that k ∈ U , and we have type(x) = U . Furthermore, given any x ∈ Pr[�]�
and k ∈ type(x), we can find recursively a y such that x ◦ y ∈ �k in polynomial time.
The algorithm is described in Figure 4.
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Fig. 3. Computation of type(x) using T.

Fig. 4. Finding a y such that x ◦ y ∈ �k, where k ∈ type(x).

Let π be any permutation of [n]. We use typeπ (·) to denote the type map of the pair
(π (�), (π (�1), . . . , π (�s))), which also satisfies the partition condition. We note that all
the algorithms in Figures 2, 3, and 4 still work after we replace type(·) by typeπ (·) and
replace the witness function ω of � by a witness function ωπ of π (�). Also note that ωπ

can be computed from ω efficiently using Lemma 7.1.
Now, for any k ∈ [s], we show how to compute a witness function ωk for �k as follows.

Pick a pair (i, a) with i ∈ [n] and a ∈ D. Let π denote a permutation of [n] with π (i) = 1.
Using algorithms in Figures 2 and 3, we can compute typeπ (a). We then use typeπ (a) to
decide if a ∈ Pri �k as follows. If k ∈ typeπ (a), then a ∈ Pri �k, and we use the algorithm
in Figure 4 to find a witness in �k for (i, a); otherwise, we know no such witness exists
in �k and set ωk(i, a) = ⊥.

To derive the equivalence relation ∼i,k defined by �k for the ith coordinate, we pick
a, b ∈ Pri�k and then use x, y ∈ �k to denote the witnesses in �k that we have found
for (i, a) and (i, b). We follow the algorithm in Figure 3 to check if

k ∈ type
((

Pr[i−1] x
) ◦ b

)
. (33)

We show that a ∼i,k b if and only if Equation (33) holds, and this gives us the relation
∼i,k. Here the “if” part is trivial, and the “only if” part follows from Lemma 2.19.

Finally, for each b ∼i,k a, we can also use the algorithm in Figure 4 to find a vector x′
such that (Pr[i−1]x) ◦ b ◦ x′ ∈ �k. This finishes the construction of ωk and the proof.

8. PROOF OF LEMMA 3.8

We prove Lemma 3.8 in this section.
Recall that I is an input instance of #CSP(F) and F is the n-ary function it defines.

For each � : 2 ≤ � ≤ n, let �� = Boolean(F [�]). We also use{
(S[�, j], v[�, j]) : j ∈ [s�]

}
to denote the row representation of F [�], for some s� ≤ d.

We show how to compute the value of s�, a witness function ω� for ��, and{
(ω[�, j], v[�, j]) : j ∈ [s�]

}
in polynomial time for all 2 ≤ � ≤ n, such that ω[�, j] is a witness function of S[�, j] for all
� and j. Here it makes sense to talk about witness functions for �� and S[�, j], since by
the Mal’tsev condition and Lemma 3.7, they share ϕ as a Mal’tsev polymorphism.
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We use induction on � from n to 2, and we start with the base case when � = n. Let
F = {F1, . . . , Fh} and let ϕ denote a Mal’tsev polymorphism shared by relations in �F
and thus, ϕ is a Mal’tsev polymorphism of {Boolean(F1), . . . , Boolean(Fh)}. Therefore,
by Theorem 2.25, we can construct a witness function ωn in polynomial time for

�n = Boolean(F [n]) = Boolean(F),

since �n = Boolean(F) is the relation defined by an input instance of the unweighted

#CSP(Boolean(F1), . . . , Boolean(Fh))

obtained from I by replacing each Fi by Boolean(Fi).
Given ωn, we use Lemma 2.23 to construct a witness function ω′

n for �n = Pr[n−1]�n.
Using the row representation of F = F[n], we have

�n =
⋃

j∈[sn]

S[n, j].

Hence, S[n,1], . . . , S[n,sn] form an sn-way partition of �n, and they share ϕ as a Mal’tsev
polymorphism. By the Type Partition condition, we have that(

π (�n),
(
π

(
S[n,1]), . . . , π(

S[n,sn])))
satisfies the partition condition for any permutation π of [n− 1]. This follows from the
fact that, given any function in WF , we can arbitrarily permute its variables and the
new function still belongs to WF .

As a result, we can now apply Lemma 7.3 to compute the value of sn and a witness
function ω[n, j] for each S[n, j], j ∈ [sn]. Notice that the black box that Lemma 7.3 needs
to query can be implemented quite trivially here: given any x ∈ Dn−1, we can evaluate
the vector F(x, ∗) efficiently, entry by entry, using the input instance I. The black box
keeps all the linearly independent vectors F(x, ∗) evaluated so far and associates each
of them with a unique label j ∈ [sn]. With ω[n, j] computed, we can next use it to obtain
a vector x ∈ S[n, j] and then evaluate F(x, ∗) to get the representative vector v[n, j].

Assume for induction that for some � : 2 ≤ � < n, we have already computed st ∈ [d],
a witness function of �t, and{(

ω[t, j], v[t, j]) : j ∈ [st]
}
, for all t = � + 1, . . . , n,

such that ω[t, j] is a witness function for S[t, j]. To work on F [�], we first notice that

F [�](x) =
∑
a∈D

F [�+1](x, a).

As a result, we have F [�](x) �= 0 if and only if x ∈ S[�+1, j] for some j ∈ [s�+1] and∑
a∈D

v[�+1, j]
a �= 0.

Let L denote the subset of [s�+1] such that j ∈ L if the sum above is nonzero. Then,

�� = Boolean
(
F [�]) =

⋃
j∈L

S[�+1, j].

Using the Mal’tsev condition and Lemma 3.7, we also know that ϕ is a Mal’tsev poly-
morphism of �� and the S[�+1, j]’s. By using Lemma 7.2 as well as the witness functions
ω[�+1, j] for S[�+1, j], we can compute a witness function ω� of �� efficiently.

Next, we use ω� and Lemma 2.23 to compute a witness function ω′
� for �� = Pr[�−1] ��,

a relation over � − 1 variables. Because{
(S[�, j], v[�, j]) : j ∈ [s�]

}
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is the row representation of F [�], we have

�� =
⋃
j∈[s�]

S[�, j].

Similarly, S[�,1], . . . , S[�,s�] form an s�-way partition of �� and they share ϕ as a Mal’tsev
polymorphism. By the Type Partition condition, we have that(

π (��),
(
π

(
S[�,1]), . . . , π(

S[�,s�]
)))

satisfies the partition condition for any permutation π of [� − 1].
But before we can apply the algorithm of Lemma 7.3 to compute the value of s� and

a witness function ω[�, j] for each S[�, j] in the row representation, we need to first show
how to implement the black box efficiently. To this end, it suffices to give an efficient
algorithm for computing F [�](x) given x ∈ D�.

This can be done by calling ComputeF(�, x), the polynomial-time algorithm described
in the proof of Lemma 3.9 in Figure 1. Note that the execution of ComputeF(�, x) only
uses s�+1, . . . , sn and the pairs{(

ω[t, j], v[t, j]) : � + 1 ≤ t ≤ n and j ∈ [st]
}
,

all of which have already been computed by the inductive hypothesis. Now, we can use
the algorithm in Lemma 7.3 to compute the value of s� and the pairs (ω[�, j], v[�, j]).

This finishes the induction and Lemma 3.8 is proven.

9. CONCLUSIONS

We proved a complexity dichotomy theorem for #CSP with algebraic complex weights.
To this end, we introduced three criteria over the language F : the Block Orthogonal-
ity condition, the Type Partition condition, and the Mal’tsev condition. We show that
#CSP(F) is #P-hard if F violates any of these three conditions and give a polynomial-
time algorithm for #CSP(F) when all three conditions are satisfied. This is the culmi-
nation of a long series of important results by many researchers in the field.

One open question is the decidability of these dichotomy criteria. Note that all the
dichotomies discussed in the introduction are known to be decidable in NP, with many
of them decidable in polynomial time. From the definitions of our dichotomy criterion,
each of the three conditions requires one to check a property over an infinitary object.
While it is often the case that in certain related problems, properties stated for F can be
shown to automatically carry over to its “closure” WF , this does not seem to be the case
for our dichotomy criterion, due to the nature of cancellations in the presence of complex
weights. (For example, �F in general may not satisfy the Mal’tsev condition even if the
unweighted version 	 of F has a Mal’tsev polymorphism, making it siganificantly
different from the unweighted case.) Given a finite language F as the input, can we
decide whether F satisfies our tractability criterion or not in finite time? If so, then can
we further put the decision problem in NP?

APPENDIXES: BASIC OPERATIONS ON WITNESS FUNCTIONS

We include below proofs of Lemma 2.21–2.24 for completeness, which may help readers
get more familiar with notions of Mal’tsev polymorphisms and witness functions.

LEMMA A.1 (MEMBERSHIP). Let � ⊆ Dn be an n-ary relation that has a Mal’tsev
polymorphism. With ω, a witness function of �, and ϕ, a Mal’tsev polymorphism of �,
we can solve the following problem in time polynomial in n: given an x ∈ Dn, decide if
x ∈ � or not.
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PROOF. To decide if x = (x1, . . . , xn) ∈ �, we first check if ω(1, x1) = ⊥. If so, then by the
definition of witness functions, we have x /∈ �; otherwise, we get a vector ω(1, x1) ∈ �
that starts with x1.

Assume for induction that we have found a vector y ∈ � that has the same k-prefix
as x, for some k : 1 ≤ k < n. We show how to use it to either find a vector in � that has
the same (k + 1)-prefix as x or prove that x /∈ �. By repeating the procedure described
below, we can decide if x ∈ � by the end.

For this purpose, we check if yk+1 ∼k+1 xk+1 using ω, that is, check if ω(k+1, yk+1) �= ⊥
and ω(k + 1, xk+1) �= ⊥ share the same k-prefix. If yk+1 �∼k+1 xk+1, then by the definition
of witness functions and y ∈ �, we have x /∈ � and we are done; otherwise, applying
the Mal’tsev polymorphism ϕ on ω(k+ 1, xk+1), ω(k+ 1, yk+1), and y gives us a vector in
� that has the same (k + 1)-prefix as x. This finishes the proof of the lemma, since the
algorithm described above is polynomial-time.

Let S = {ω(i, a) : ω(i, a) �= ⊥, i ∈ [n] and a ∈ D} denote the image of ω. The proof of
Lemma A.1 implies that every x ∈ � is in the closure of S under ϕ, and thus,

COROLLARY A.2. � = clϕ S.

Let I ⊆ [n] denote a set of indices and let PrI denote the projection on coordinates in
I. Then Corollary A.2 implies that

PrI� = PrIclϕ S = clϕPrI S,

which in turns gives us the following useful corollary:

COROLLARY A.3. Let ϕ be a Mal’tsev polymorphism and ω be a witness function of
� ⊆ Dn. Given ϕ, ω and I ⊆ [n], where |I| is bounded by a constant, we can compute the
set PrI� itself as well as a witness for each vector in PrI�, that is, a vector y ∈ � for
each x ∈ PrI� such that x = PrIy, in time polynomial in n.

PROOF. We first use ω to obtain S = {ω(i, a) : ω(i, a) �=⊥, i ∈ [n] and a ∈ D}. We then
enumerate all triples of vectors from S to see if applying the Mal’tsev polymorphism
ϕ on them gives a new vector y ∈ � such that PrIy /∈ PrI S. If so, then add y to S and
repeat. When this process stops, we must have PrI S = PrI� by Corollary A.2, and every
vector in PrI� has a witness in S by the end. As |PrI�| ≤ d|I| is bounded by a constant,
this process takes only a constant number of rounds to stop. This finishes the proof.

LEMMA A.4. Let ϕ be a Mal’tsev polymorphism of � ⊆ Dn. Let � ∈ [n], a ∈ D�, and π
be a permutation of [n]. Then ϕ is a Mal’tsev polymorphism of Pr[�] �, �(a, ∗), and π (�).

PROOF. We start with the projection Pr[�]�. Let u, v, w ∈ Pr[�]�. By definition, there
exist x, y, z ∈ � such that u = Pr[�]x, v = Pr[�]y, and w = Pr[�]z.

Applying the Mal’tsev polymorphism ϕ of � on x, y, and z gives us a vector in �,
with its prefix being the same as what one gets from applying ϕ on u, v, and w. This
shows that ϕ is a Mal’tsev polymorphism of Pr[�]� as well.

Next, for �(a, ∗), let u, v, w ∈ �(a, ∗). By definition, there exist x, y, z ∈ � such that
x = a ◦ u, y = a ◦ v, and z = a ◦ w. Applying the Mal’tsev polymorphism ϕ on x, y and
z gives a vector in � with the same prefix a (since ϕ(a, a, a) = a). This shows that ϕ is
also a Mal’tsev polymorphism of �(a, ∗).

The proof for the permutation operation π (�) is trivial.

LEMMA A.5 (PROJECTION). Let ϕ be a Mal’tsev polymorphism, and ω be a witness
function of � ⊆ Dn. Given an � ∈ [n], we can construct a witness function for Pr[�] � in
time polynomial in n. Moreover, given an x ∈ Pr[�] � for some � ∈ [n], we can compute a
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vector y ∈ � with x = Pr[�] y in polynomial time. When � is bounded by a constant, we
can use ω to compute the projection Pr[�] � itself in polynomial time.

PROOF. Let � ∈ [n]. We set ω′(i, a) =⊥ if ω(i, a) =⊥, and ω′(i, a) = Pr[�] ω(i, a) ∈ D�,
otherwise, for all i ∈ [�] and a ∈ D. It then follows from definition that ω′ is a witness
function of Pr[�]�. When � is bounded by a constant, one can use the algorithm given in
Corollary A.3 to compute the set Pr[�]� itself, by setting I = [�].

Finally, given x ∈ Pr[�]� (which can be verified efficiently using a witness function of
Pr[�]�), we inductively compute a vector in Pr[k]� that has prefix x, for k = �, . . . , n, as
follows. Given y ∈ Pr[k]� with prefix x for some k : � ≤ k < n, we first compute a witness
function ω∗ of Pr[k+1]�. Then for each a ∈ D, we use ω∗ to check if y ◦ a ∈ Pr[k+1]�, by
using Lemma 2.21. Because y ∈ Pr[k]�, there must exist at least one a ∈ D such that
y ◦ a ∈ Pr[k+1]�. This finishes the induction step, and proof of the lemma.

LEMMA A.6 (PINNING). Let ϕ be a Mal’tsev polymorphism and ω be a witness function
of � ⊆ Dn. Given any a ∈ D� for some � ∈ [n], we can construct a witness function for
�(a, ∗) in time polynomial in n.

PROOF. First, it suffices to give an algorithm for computing a witness function ω′ of
�(a, ∗) for a given a ∈ D. To this end, we first decide for each k ∈ [n − 1] and b ∈ D
whether b ∈ Prk�(a, ∗). This can be done by using the algorithm given in Corollary A.3
(setting I = {1, k + 1}). When b ∈ Prk�(a, ∗) the algorithm of Corollary A.3 also finds a
witness vector x ∈ � with x1 = a and xk+1 = b.

Let ∼k and ∼′
k denote the equivalence relations induced by � and �(a, ∗), for the kth

component, respectively. It is easy to show that for any k ∈ [n− 1] and b, c ∈ Prk�(a, ∗),
b ∼′

k c iff b ∼k+1 c. Given b, c ∈ Prk�(a, ∗) with b ∼′
k c and a vector x ∈ � with x1 = a

and xk+1 = b, applying the Mal’tsev polymorphism ϕ on x, ω(k + 1, b) and ω(k + 1, c)
gives us a vector y ∈ � such that y has the same k-prefix as x and yk+1 = c. We can use
this procedure to compute a witness function ω′ of �(a, ∗) using ω.
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GRAPH HOMOMORPHISMS WITH COMPLEX VALUES:
A DICHOTOMY THEOREM∗
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Abstract. Each symmetric matrix A over C defines a graph homomorphism function ZA(·) on
undirected graphs. The function ZA(·) is also called the partition function from statistical physics,
and can encode many interesting graph properties, including counting vertex covers and k-colorings.
We study the computational complexity of ZA(·) for arbitrary symmetric matrices A with algebraic
complex values. Building on work by Dyer and Greenhill [Random Structures and Algorithms, 17
(2000), pp. 260–289], Bulatov and Grohe [Theoretical Computer Science, 348 (2005), pp. 148–186],
and especially the recent beautiful work by Goldberg et al. [SIAM J. Comput., 39 (2010), pp. 3336–
3402], we prove a complete dichotomy theorem for this problem. We show that ZA(·) is either
computable in polynomial-time or #P-hard, depending explicitly on the matrix A. We further prove
that the tractability criterion on A is polynomial-time decidable.

Key words. computational complexity, counting complexity, graph homomorphisms, partition
functions
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1. Introduction. Graph homomorphism has been studied intensely over the
years [28, 23, 13, 18, 4, 12, 21]. Given two graphs G and H , a graph homomorphism
from G to H is a map f from the vertex set V (G) to V (H) such that, whenever
(u, v) is an edge in G, (f(u), f(v)) is an edge in H . The counting problem for graph
homomorphism is to compute the number of homomorphisms from G to H . For a fixed
graph H , this problem is also known as the #H-coloring problem. In 1967, Lovász [28]
proved that H and H ′ are isomorphic iff for all G, the number of homomorphisms from
G to H and from G to H ′ are the same. Graph homomorphisms and the associated
partition function defined below provide us an elegant and wide-ranging notion of
graph properties [23].

In this paper, all graphs considered are undirected. We follow standard defini-
tions: G is allowed to have multiple edges; H can have loops, multiple edges, and,
more generally, edge weights. (The standard definition of graph homomorphism does
not allow self-loops for G. However, our result is stronger: We prove polynomial-time
tractability even for input graphs G with self-loops; at the same time, our hardness
results hold for the more restricted case of G with no self-loops.) Formally, we use A
to denote an m × m symmetric matrix with entries (Ai,j), i, j ∈ [m] = {1, 2, . . . , m}.
Given any undirected graph G = (V, E), we define the graph homomorphism function

∗Received by the editors July 11, 2011; accepted for publication (in revised form) February 21,
2013; published electronically May 21, 2013.

http://www.siam.org/journals/sicomp/42-3/84019.html
†Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI 53706

(jyc@cs.wisc.edu). This work was supported by NSF CCF-0914969.
‡Department of Computer Science, Columbia University, New York, NY 10027 (xichen@

cs.columbia.edu). This work was supported by NSF grants CCF-0832797 and DMS-0635607 when
the author was a postdoc at the Institute for Advanced Study and Princeton University, by a USC
Viterbi School of Engineering startup fund to Shang-Hua Teng, and by CCF-1149257 and a Sloan
research fellowship.
§Microsoft Research Asia, Beijing 100080, China (pinyanl@microsoft.com).

924

D
ow

nl
oa

de
d 

12
/1

2/
13

 to
 1

28
.1

05
.1

4.
12

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 925

(1.1) ZA(G) =
∑

ξ:V→[m]

∏

(u,v)∈E
Aξ(u),ξ(v).

This is also called the partition function from statistical physics. It is clear from the
definition that ZA(G) is exactly the number of homomorphisms from G to H , when
A is the adjacency matrix of H .

Graph homomorphism can express many natural graph properties. For example,
if we take H to be the graph over two vertices {0, 1} with an edge (0, 1) and a loop
at 1, then the set of vertices mapped to 1 in a graph homomorphism from G to
H corresponds to a vertex cover of G, and the counting problem simply counts the
number of vertex covers. As another example, if H is the complete graph over k
vertices (without self-loops), then the problem is exactly the k-coloring problem for
G. Many additional graph invariants can be expressed as ZA(G) for appropriate A.
Consider the Hadamard matrix

(1.2) H =

(
1 1
1 −1

)
.

We index its rows and columns by {0, 1}. In the sum ZH(G), each term is either 1 or
−1 and equals −1 precisely when the induced subgraph of G on ξ−1(1) has an odd
number of edges. Therefore, (2n − ZH(G))/2 is the number of induced subgraphs of
G with an odd number of edges. Also expressible as ZA(·) are S-flows, where S is a
subset of a finite Abelian group closed under inversion [18], and a scaled version of the
Tutte polynomial T̂ (x, y), where (x−1)(y−1) is a positive integer. In [18], Freedman,
Lovász and Schrijver characterized the graph functions that can be expressed as ZA(·).

In this paper, we study the complexity of the partition function ZA(·), where A is
an arbitrary fixed symmetric matrix over the algebraic complex numbers. Throughout
the paper, we let C denote the set of algebraic complex numbers and refer to them
simply as complex numbers when it is clear from the context. More discussion on the
model of computation can be found in section 2.2.

The complexity question of ZA(·) has been intensely studied. Hell and Nešetřil
first studied the H-coloring problem [22, 23] (i.e., given an undirected graph G, decide
whether there exists a graph homomorphism from G to H) and proved that for any
fixed undirected graph H , the problem is either in polynomial time or NP-complete.
Results of this type are called complexity dichotomy theorems. Such theorems state
that every member of the class of problems concerned is either tractable (i.e., solvable
in P) or intractable (i.e., NP-hard or #P-hard depending on whether it is a decision or
a counting problem). This includes the well-known Schaefer’s dichotomy theorem [31].
The famous complexity dichotomy conjecture made by Feder and Vardi [16] on deci-
sion constraint satisfaction problems [11] motivated much of the subsequent work.

In [13], Dyer and Greenhill studied the counting version of the H-coloring prob-
lem. They proved that for any fixed symmetric {0, 1}-matrix A, ZA(·) is either com-
putable in polynomial time or #P-hard. (In this paper, for a function computable
in polynomial time we will simply say “in P.”) Then in [4], Bulatov and Grohe gave
a sweeping generalization of this theorem to all nonnegative symmetric matrices A.
(See Theorem 2.5 for the precise statement.) They obtained an elegant dichotomy
theorem, which basically says that ZA(·) is computable in P if each block of A has rank
at most one, and is #P-hard otherwise. More precisely, decompose A as a direct sum
of Ai which correspond to the connected components Hi of the undirected graph H
defined by the nonzero entries of A. Then, ZA(·) is computable in P if every ZAi(·) is
and is #P-hard otherwise. For each nonbipartite graph Hi, the corresponding ZAi(·)
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is computable in P if Ai has rank at most one and is #P-hard otherwise. For each
bipartite Hi, the corresponding ZAi(·) is in P if Ai has the form

Ai =

(
0 Bi

BT
i 0

)
,

where Bi has rank one, and is #P-hard otherwise.
The result of Bulatov and Grohe is both sweeping and enormously applicable.

It completely solves the problem for all nonnegative symmetric matrices. However,
when we are dealing with nonnegative matrices, there are no cancellations in the
exponential sum ZA(·). These potential cancellations, when A is either a real or
a complex matrix, may in fact be the source of surprisingly efficient algorithms for
computing ZA(·). The occurrence of these cancellations, or the mere possibility of
such occurrence, makes proving any complexity dichotomies more difficult. Such a
proof must identify all polynomial-time decidable problems utilizing the potential
cancellations, such as those found in holographic algorithms [36, 37, 8], and at the
same time carve out exactly what is left. This situation is similar to monotone versus
nonmonotone circuit complexity. It turns out that indeed there are more interesting
tractable cases over the reals, and in particular, the 2×2 Hadamard matrix H in (1.2)
turns out to be one such case. This is the starting point for the next great chapter
on the complexity of ZA(·).

In a paper [21] comprising 67 pages of beautiful proofs of both exceptional depth
and conceptual vision, Goldberg et al. proved a complexity dichotomy theorem for
algebraic real-valued symmetric matrices A. Their result is too intricate to give a
short and accurate summary here. It states that the problem of computing ZA(G)
for any algebraic real A is either in P or #P-hard. Which case it is depends on the
connected components of A. The overall statement remains that ZA(G) is tractable
if every connected component of A is and is #P-hard otherwise. However, the exact
description of tractability for connected A is much more technical and involved. The
Hadamard matrix H and its tensor products H ⊗ · · · ⊗ H play a major role in the
tractable case. If we index rows and columns of H by the finite field Z2, then its
(x, y) entry is (−1)xy. For the nonbipartite case, there is another 4 × 4 symmetric
matrix H4, different from H ⊗ H, where the rows and columns are indexed by (Z2)

2

and the entry at ((x1, x2), (y1, y2)) is (−1)x1y2+x2y1 . These two matrices, and their
arbitrary tensor products, all correspond to new tractable ZA(·). In fact, there are
some more tractable cases, starting with what can be roughly described as certain
rank one modifications on these tensor products.

The proof of [21] proceeds by establishing a long sequence of successively more
stringent properties that a tractable A must satisfy. Ultimately, it arrives at a point
where satisfaction of these properties implies that ZA(G) can be computed as

∑

x1,x2,...,xn∈Z2

(−1)fG(x1,x2,...,xn),

where fG is a quadratic polynomial over Z2. This sum is known to be computable in
polynomial time in n [10] [27, Theorem 6.30], the number of variables. In hindsight,
the case with the simplest Hadamard matrix H which was an obstacle to the Bulatov–
Grohe dichotomy theorem and was left open for some time could have been directly
solved if one had adopted the polynomial viewpoint of [21].

While positive and negative real numbers provide the possibility of cancellations,
there is a significantly richer variety of possible cancellations over the complex do-
main. We independently came to the tractability of ZH(·), with H being the 2 × 2
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Hadamard matrix, from a slightly different angle. In [9], the authors studied a certain
type of constraint satisfaction problem. This is motivated by investigations of a class
of counting problems called Holant problems, and it is connected with the technique
called holographic reductions introduced by Valiant [35, 36]. Let us briefly describe
this framework. A signature grid Ω = (G, F) is a tuple in which G = (V, E) is a graph
and each v ∈ V is attached a function Fv ∈ F . An edge assignment σ for every e ∈ E
gives an evaluation

∏
v∈V Fv(σ |E(v)), where E(v) denotes the set of incident edges of

v. The counting problem on an input instance Ω is to compute

Holant(Ω) =
∑

σ

∏

v∈V
Fv

(
σ |E(v)

)
.

For example, if we take σ : E → {0, 1} and attach the exact-one function at every
vertex v ∈ V , then Holant(Ω) is the number of perfect matchings of G. Incidentally,
Freedman, Lovász, and Schrijver showed [18] that counting perfect matchings cannot
be expressed as ZA(·) for any matrix A over R. However, every function ZA(·) (vertex
assignment) can be simulated by Holant(·) (edge assignment) as follows: A defines a
function of arity 2 for every edge of G. Consider the bipartite vertex-edge incidence
graph G′ = (V (G), E(G), E′) of G, where (v, e) ∈ E′ if e is incident to v in G. Then
attach the equality function at every v ∈ V (G) and the function defined by A at
every e ∈ E(G). This defines a signature grid Ω with the underlying graph G′. Then
ZA(G) = Holant(Ω).

Denote a symmetric function on n boolean variables by [f0, f1, . . . , fn], where fj
is the value on inputs of Hamming weight j. For example, the exact-one function is
[0, 1, 0, . . . , 0] and H is just [1, 1, −1]. The authors of [9] discovered that the three
families of functions (listing the values of a function lexicographically as in a truth
table on k boolean variables)

F1 =
{

λ([1, 0]⊗k + ir[0, 1]⊗k)
∣∣ λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3

}
,

F2 =
{

λ([1, 1]⊗k + ir[1, −1]⊗k)
∣∣ λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3

}
,

F3 = {λ([1, i]⊗k + ir[1, −i]⊗k)
∣∣ λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3

}

all give rise to tractable problems: Holant(Ω) for any Ω = (G, F1 ∪ F2 ∪ F3) can be
solved in P. In particular, by taking r = 1, k = 2, and λ = (1 + i)−1 in F3, we recover
the binary function [1, 1, −1] that corresponds to the Hadamard matrix H in (1.2). If
we take r = 0, λ = 1 in F1, we get the equality function [1, 0, . . . , 0, 1] on k bits. This
shows that ZH(·), as a special case, can be computed in P.

However, more instructive for us is the natural way in which complex numbers
appear in such counting problems, especially when applying holographic reductions.
One can say that the presence of powers of i =

√
−1 in these three families “reveals”

the true nature of H as belonging to a family of tractable counting problems, where
complex numbers are the correct language. In fact, the tractability of Holant(Ω) for
Ω = (G, F1 ∪ F2 ∪ F3) all boils down to an exponential sum of the form

(1.3)
∑

x1,x2,...,xn∈{0,1}
iL1+L2+ ···+Ls ,

where each Lj is an indicator function of an affine form of x1, x2, . . . , xn over Z2 (and
thus, the exponent of i in the equation above is a mod 4 sum of mod 2 sums). From
here it is only natural to investigate the complexity of ZA(·) for symmetric complex
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matrices, since it not only is a natural generalization but also can reveal the inner
unity and some deeper structural properties. Interested readers can find more details
in [9]. Also see Remark 12.10 at the end of section 12.

Our investigation of complex-valued graph homomorphisms is also motivated by
the partition function in quantum physics. In classical statistical physics, the partition
function is always real-valued. But in a generic quantum system, for which complex
numbers are the right language, the partition function is in general complex-valued
[17]. In particular, if the physics model is over a discrete graph and is nonorientable,
then the edge weights are given by a symmetric complex matrix.

Our main result is the following complexity dichotomy theorem, though its crite-
rion is too complicated to explain here.

Theorem 1.1. Let A be a symmetric and algebraic complex matrix. Then ZA(·)
either can be computed in polynomial time or is #P-hard.

Furthermore, under the model of computation described in section 2.2, we show
that the following decision problem is solvable in polynomial time.

Theorem 1.2 (polynomial-time decidability). Given a symmetric and algebraic
complex matrix A, there is a polynomial-time algorithm that decides whether ZA(·) is
in polynomial time or is #P-hard.

Recent developments. In [34], Thurley announced a dichotomy theorem1 for
ZA(·), where A is a complex Hermitian matrix. The tractability result of the present
paper (in section 12) was used in [34]. Cai and Chen proved a dichotomy theorem for
ZA(·) for directed graph homomorphisms, where A is a nonnegative but not neces-
sarily symmetric matrix [5]. A dichotomy theorem is also proved for the more general
counting constraint satisfaction problem when the constraint functions take values in
{0, 1} [1, 2] (with an alternative proof given in [14] that also shows the decidability of
the dichotomy criterion), when the functions take nonnegative and rational values [3],
and when they are nonnegative and algebraic [7]. Finally, built on the methods and
results of [1, 14, 21] and the present paper, Cai and Chen proved a dichotomy theorem
for all algebraic complex-valued counting constraint satisfaction problems [6].

Organization. Due to the complexity of the proof of Theorem 1.1, both in terms
of its overall structure and in terms of technical difficulty, we first give a high-level
description of the proof for the bipartite case in section 3. We prove the first and
second pinning lemmas in section 4. A more detailed outline of the proof for the two
cases, bipartite and nonbipartite, is presented in sections 5 and 6, respectively, with
formal definitions and theorems. We then prove all the lemmas and theorems used
in sections 5 and 6, as well as Theorem 1.2, in the rest of the paper. An index of
conditions and problem definitions is given in Figure 1.1.

2. Preliminaries. In the paper, we let Q denote the set of rational numbers and
let R and C denote the set of algebraic real and algebraic complex numbers, respec-
tively, for convenience (even though many of the supporting lemmas and theorems
actually hold for general real or complex numbers, especially when computation or
polynomial-time reduction is not concerned in the statement).

2.1. Notation. For a positive integer n, we use [n] to denote the set {1, . . . , n}
(when n = 0, [0] = ∅). We use [m : n], where m ≤ n, to denote {m, m+1, . . . , n}. We

1However, the following is a counter example to Claim 3 on p. 50 of [34]: D
[c];1
11 = D

[c];1
22 = 1,

D
[c];2
11 = i (the imaginary unit), and D

[c];2
22 = −i. We believe that this minor deficiency in the proof

probably can be overcome using the techniques in this paper, in particular those from section 8.4.
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(Pinning) p. 938 (U1) – (U4) p. 941 (U5) p. 941

(R1) – (R3) p. 943 (L1) – (L3) p. 944 (D1) – (D4) p. 944

(U ′1) – (U ′4) p. 945 (U ′5) p. 945 (R′1) – (R′3) p. 946

(L′1) – (L′2) p. 947 (D′1) – (D′2) p. 948 (T1) – (T3) p. 952

(S1) p. 954 (S2) – (S3) p. 955 (Shape1) – (Shape5) p. 959

(Shape6) p. 964 (GC) p. 981 (F1) – (F4) p. 1003

(S′1) – (S′2) p. 1013 (Shape′1) – (Shape′6) p. 1015 (F ′1) – (F ′4) p. 1021

ZA(G) and EVAL(A) p. 925 ZC,D(G) and EVAL(C, D) p. 931

Z→C,D(G, u) p. 931 Z←C,D(G, u) p. 931

ZA(G, w, k) and EVALP(A) p. 933 Zq(f) and EVAL(q) p. 933

ZA(G, w, S) and EVAL(A, S) p. 937 ZC,D(G, w, k) and EVALP(C, D) p. 938

ZC,D(G, w, S) and EVAL(C, D, S) p. 938 COUNT(A) p. 949

Fig. 1.1. Index of conditions and problem definitions.

use 1n to denote the all-one vector of dimension n. Sometimes we omit n when the
dimension is clear from the context. For a positive integer N , we let ωN = e2πi/N , a
primitive Nth root of unity.

Let x,y be two vectors in Cn. Then we use 〈x,y〉 to denote their inner product,

〈x,y〉 =

n∑

i=1

xi · yi,

and x ◦ y ∈ Cn to denote their Hadamard product, (x ◦ y)i = xi · yi for all i ∈ [n].
Let A = (Ai,j) be a k × � matrix and B = (Bi,j) be an m × n matrix. We use

Ai,∗, i ∈ [k], to denote the ith row vector and A∗,j , j ∈ [�], to denote the jth column
vector of A. We let C = A ⊗ B denote their tensor product: C is a km × �n matrix
whose rows and columns are indexed by [k] × [m] and [�] × [n], respectively, such that

C(i1,i2),(j1,j2) = Ai1,j1 · Bi2,j2 for all i1 ∈ [k], i2 ∈ [m], j1 ∈ [�], and j2 ∈ [n].

Given an n × n symmetric complex matrix A, we use G = (V, E) to denote the
following undirected graph: V = [n] and ij ∈ E iff Ai,j �= 0. We say A is connected if
G is connected, and we say A has connected components A1, . . . ,As if the connected
components of G are V1, . . . , Vs and Ai is the |Vi| × |Vi| submatrix of A restricted by
Vi ⊆ [n] for all i ∈ [s]. Moreover, we say A is bipartite if G is bipartite; otherwise,
A is nonbipartite. Let Σ and Π be two permutations of [n]. Then we use AΣ,Π to
denote the n × n matrix whose (i, j)th entry is AΣ(i),Π(j), i, j ∈ [n].

We say C is the bipartization of a matrix F if

C =

(
0 F
FT 0

)
.

We usually use Di to denote the (i, i)th entry of a diagonal matrix D.
We say a problem is tractable if it can be solved in polynomial time. Given two

problems P and Q, we say P is polynomial-time reducible to Q, or P ≤ Q, if there
is a polynomial-time algorithm that solves P using an oracle for Q. These reductions
are known as Cook reductions. We also say P is polynomial-time equivalent to Q, or
P ≡ Q, if P ≤ Q and Q ≤ P .
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2.2. Model of computation.2 One technical issue is the model of computation
with algebraic numbers. We adopt a standard model from [26] for computation in an
algebraic number field. We start with some notation.

Let A be a fixed symmetric matrix where every entry Ai,j is an algebraic number.
We let A denote the finite set of algebraic numbers consisting of entries Ai,j of A.
Then it is easy to see that ZA(G), for any undirected graph G, is a number in Q(A ),
the algebraic extension of Q by A . By the primitive element theorem [30], there
exists an algebraic number α ∈ Q(A ) such that Q(A ) = Q(α). (Essentially, Q
has characteristic 0, and therefore the field extension Q(A ) is separable. We can
take the normal closure of Q(A ), which is a finite-dimensional separable and normal
extension of Q, and thus Galois [24]. By Galois correspondence, there are only a finite
number of intermediate fields between Q and this Galois extension field and thus a
fortiori only a finite number of intermediate fields between Q and Q(A ). Then Artin’s
theorem on primitive elements implies that Q(A ) is a simple extension Q(α).) In the
proof of Theorem 1.1 when the complexity of a partition function ZA(·) is concerned,
the matrix A is considered fixed. Thus, we may assume we are given, as part of the
problem description, such a number α, encoded by a minimal polynomial F (x) ∈ Q[x]
of α. In addition to F , we are given a sufficiently good rational approximation α̂ of
α which uniquely determines α as a root of F (x).3

Let d = deg(F ). Then every number c in Q(A ), including the Ai,j ’s and ZA(G)
for any G, has a unique representation as a polynomial of α:

c0 + c1 · α + · · · + cd−1 · αd−1, where every ci is a rational number.

We will refer to this polynomial as the standard representation of c. Given a number
c ∈ Q(A ) in the standard representation, its input size is the sum of the binary
lengths of all the rational coefficients. It is easy to see that all the field operations
over Q(A ) in this representation can be computed in polynomial time in the input
size.

We emphasize that when the complexity of ZA(·) is concerned in the proof of
Theorem 1.1, all the following are considered as constants since they are part of the
problem description and not part of the input: the size of A, the minimal polynomial
F (x) of α, the approximation α̂ of α, as well as the entries Ai,j of A encoded in the
standard representation. Given an undirected graph G, the problem is then to output
ZA(G) ∈ Q(A ) encoded in the standard representation. We remark that the same
model applies to the problem of computing ZC,D(·), to be defined in section 2.3.

However, for most of the proof of Theorem 1.1 this issue of computation model
seems not to be central, because our proof starts with a preprocessing step using the
purification lemma (see section 3 for a high-level description of the proof, and see
section 7 for the purification lemma), after which the matrix concerned becomes a
pure one, meaning that every entry is the product of a nonnegative integer and a
root of unity. So throughout the proof, we let C denote the set of algebraic numbers
and refer to them simply as complex numbers, except in the proof of the purification
lemma in section 7, where we will be more careful about the model of computation.

2For readers who are not particularly concerned with details of the model of computation with
complex numbers, this section can be skipped initially.

3This is a slight modification to the model of [26] and of [34, 33]. It will come in handy later in
one step of the proof in section 7, in which it allows us to avoid certain technical subtleties.
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After the proof of Theorem 1.1, we consider the decidability of the dichotomy
theorem and prove Theorem 1.2. The input of the problem is the full description of
A, including the minimal polynomial F (x) of α, the approximation α̂ of α, as well as
the standard representation of the entries Ai,j of A. We refer to the binary length of
all the components above as the input size of A. To prove Theorem 1.2, we give an
algorithm that runs in polynomial time in the binary length of A and decides whether
the problem of computing ZA(·) is in polynomial time or #P-hard.

2.3. Definitions of EVAL(A) and EVAL(C,D). Let A ∈ Cm×m be a symme-
tric matrix with entries (Ai,j). It defines a graph homomorphism problem EVAL(A)
as follows: Given an undirected graph G = (V, E), compute

ZA(G) =
∑

ξ:V→[m]

wtA(ξ), where wtA(ξ) =
∏

(u,v)∈E
Aξ(u),ξ(v).

We call ξ an assignment to the vertices of G and wtA(ξ) the weight of ξ.
To study the complexity of EVAL(A), we introduce a much larger class of EVAL

problems with not only edge weights but also vertex weights. Moreover, the vertex
weights depend on the degrees of vertices of G, modulo some integer modulus. It is a
generalization of the edge-vertex weight problems introduced in [21]. See also [29].

Definition 2.1. Let C ∈ Cm×m be a symmetric matrix and

D =
(
D[0],D[1], . . . ,D[N−1])

be a sequence of diagonal matrices in Cm×m for some N ≥ 1. We define the following
problem EVAL(C, D): Given an undirected graph G = (V, E), compute

(2.1) ZC,D(G) =
∑

ξ:V→[m]

wtC,D(ξ),

where

wtC,D(ξ) =

( ∏

(u,v)∈E
Cξ(u),ξ(v)

)( ∏

v∈V
D

[deg(v) modN ]
ξ(v)

)

and deg(v) denotes the degree of v in G.
Let G be an undirected graph with connected components G1, . . . , Gs.
Property 2.2. ZC,D(G) = ZC,D(G1) × · · · × ZC,D(Gs).
Property 2.2 implies that whether we need to design an algorithm for EVAL(C, D)

or reduce EVAL(C, D) to another problem EVAL(C′, D′), it suffices to consider con-
nected input graphs. Also note that since EVAL(A) is a special case of EVAL(C, D)
in which every D[i] is an identity matrix, Property 2.2 and the remarks above apply
to EVAL(A) as well.

Next, suppose C is the bipartization of an m × n F, so C is (m + n) × (m + n).
Given a graph G and a vertex u in G, we use Ξ1 to denote the set of ξ : V → [m + n]
with ξ(u) ∈ [m] and Ξ2 to denote the set of ξ with ξ(u) ∈ [m + 1 : m + n]. Then let

Z→C,D(G, u) =
∑

ξ∈Ξ1

wtC,D(ξ) and Z←C,D(G, u) =
∑

ξ∈Ξ2

wtC,D(ξ).

The next property follows from the definitions.
Property 2.3. ZC,D(G) = Z→C,D(G, u) + Z←C,D(G, u).
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We introduce these two new functions because of the following lemma.
Lemma 2.4. For each i ∈ {0, 1, 2}, let F[i] be an mi × ni complex matrix, where

m0 = m1m2 and n0 = n1n2; let C[i] be the bipartization of F[i]; and let

D[i] =
(
D[i,0], . . . ,D[i,N−1])

be a sequence of (mi + ni) × (mi + ni) diagonal matrices for some N ≥ 1, where

D[i,r] =

(
P[i,r]

Q[i,r]

)

and P[i,r], Q[i,r] are mi × mi, ni × ni diagonal matrices, respectively. Assume

F[0] = F[1] ⊗ F[2], P[0,r] = P[1,r] ⊗ P[2,r], and Q[0,r] = Q[1,r] ⊗ Q[2,r]

for all r ∈ [0 : N − 1]. Then for any connected graph G and any vertex u∗ in G,

Z→C[0],D[0](G, u∗) = Z→C[1],D[1](G, u∗) · Z→C[2],D[2](G, u∗) and(2.2)

Z←C[0],D[0](G, u∗) = Z←C[1],D[1](G, u∗) · Z←C[2],D[2](G, u∗).(2.3)

Proof. We only prove (2.2) about Z→. The proof of (2.3) is similar. First, if G is
not bipartite, then Z→

C[i],D[i](G, u∗) = 0 for all i ∈ {0, 1, 2}, and (2.2) holds trivially.

Now assume G = (U ∪ V, E) is a bipartite graph, u∗ ∈ U , and every edge uv ∈ E
has one vertex u from U and one vertex v from V . We let Ξi, i ∈ {0, 1, 2}, denote the
set of assignments ξi from U ∪ V to [mi + ni] such that ξi(u) ∈ [mi] for all u ∈ U and
ξi(v) ∈ [mi + 1 : mi + ni] for all v ∈ V . Since G is connected, we have

Z→C[i],D[i](G, u∗) =
∑

ξi∈Ξi

wtC[i],D[i](ξi) for i ∈ {0, 1, 2}.

We define a map ρ from Ξ1 × Ξ2 to Ξ0 as follows: ρ(ξ1, ξ2) = ξ0, where for every
u ∈ U , ξ0(u) is the row index of F[0] that corresponds to row ξ1(u) of F[1] and row
ξ2(u) of F[2] in the tensor product F[0] = F[1] ⊗ F[2]; and for every v ∈ V , ξ0(v) − m0

is the column index of F[0] that corresponds to column ξ1(v)−m1 of F[1] and column
ξ2(v) − m2 of F[2] in the tensor product. It is clear that ρ is a bijection, and

wtC[0],D[0](ξ0) = wtC[1],D[1](ξ1) · wtC[2],D[2](ξ2),

if ρ(ξ1, ξ2) = ξ0. Equation (2.2) then follows, and the lemma is proved.

2.4. Basic #P-hardness. We state the dichotomy of Bulatov and Grohe.
Theorem 2.5 (Bulatov and Grohe [4]). Let A be a symmetric and connected

matrix with nonnegative algebraic entries. Then EVAL(A) is either in polynomial time
or #P-hard. Moreover, we have the following two cases:

1. If A is bipartite, then EVAL(A) is in polynomial time if the rank of A is 2;
otherwise EVAL(A) is #P-hard.

2. If A is not bipartite, then EVAL(A) is in polynomial time if the rank of A is
at most 1; otherwise EVAL(A) is #P-hard.

Theorem 2.5 gives us the following useful corollary.
Corollary 2.6. Let A be a symmetric and connected matrix with nonnegative

algebraic entries. If A has a 2 × 2 submatrix B such that all four entries of B are
nonzero and det(B) �= 0, then the problem EVAL(A) is #P-hard.
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3. A high-level description of the proof. The first step in the proof of
Theorem 1.1 is to reduce the problem to connected graphs and matrices.

Let A be an m × m symmetric complex matrix. If G has connected components
{Gi}, then ZA(G) =

∏
i ZA(Gi); if G is connected and A has connected components

{Aj}, then ZA(G) =
∑

j ZAj (G). Thus, if every ZAj (·) is computable in polynomial
time, then so is ZA(·). The hardness direction is less obvious. Assume that EVAL(Aj)
is #P-hard for some j; we want to show that EVAL(A) is also #P-hard by giving a
polynomial-time reduction from EVAL(Aj) to EVAL(A).

Now let G be an undirected graph. To compute ZAj (G), it suffices to compute
ZAj (Gi) for all connected components Gi of G. Therefore, we may just assume that
G is connected. Define a pinning version of ZA(·) as follows. For any chosen vertex
w ∈ V (G) and any k ∈ [m], we let

ZA(G, w, k) =
∑

ξ:V→[m], ξ(w)=k

∏

(u,v)∈E
Aξ(u),ξ(v).

Then we can prove a pinning lemma (Lemma 4.1) which states that the problem of
computing ZA(·) is polynomial-time equivalent to computing ZA(·, ·, ·). Note that if
Vj denotes the subset of [m] where Aj is the submatrix of A restricted by Vj , then
for a connected graph G, we have

ZAj (G) =
∑

k∈Vj

ZA(G, w, k),

which gives us the desired polynomial-time reduction from EVAL(Aj) to EVAL(A).
The proof of this pinning lemma (Lemma 4.1) is a standard adaptation to the

complex numbers of the one proved in [21]. For technical reasons we indeed need a
total of three pinning lemmas (Lemmas 4.1, 4.3, and 8.4), and the proofs of the other
two are a bit more involved. We remark that all three pinning lemmas show only
the existence of polynomial-time reductions between ZA(·) and ZA(·, ·, ·) but do not
constructively produce such a reduction, given A. The proof of the pinning lemma in
[21] used a result by Lovász [29] for real matrices. It is possible to use a new result of
Schrijver [32] in the complex case. However, we give direct and self-contained proofs
of our three lemmas without using [29] or [32].

After this preliminary step, we restrict to connected and symmetric A. As indi-
cated, for our work the two most influential predecessor papers are those by Bulatov
and Grohe [4] and Goldberg et al. [21]. In both papers, the polynomial-time algo-
rithms for the tractable cases are relatively straightforward or are previously known.
The difficult part of the proof is to show that, in all other cases, the problem is #P-
hard. Our proof follows a conceptual framework similar to that of Goldberg et al. [21].
However, over the complex numbers, new difficulties arise in both the tractability and
the hardness part of the proof. Therefore, both the overall organization and the
substantive part of the proof have to be done separately.

First, the complex numbers afford a richer variety of cancellations, which could
lead to surprisingly efficient algorithms for EVAL(A) when the complex matrix A
satisfies certain nice conditions. This turns out to be the case, and we obtain addi-
tional nontrivial tractable cases. These boil down to the following class of problems
called EVAL(q). Let q be a fixed prime power. The input of EVAL(q) is a quadratic
polynomial f(x1, x2, . . . , xn) with integer coefficients; the output is

Zq(f) =
∑

x1,x2,...,xn∈Zq

ωf(x1,x2,...,xn)
q .
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We show that for any fixed prime power q, EVAL(q) is in polynomial time. In
the algorithm (see section 12), Gauss sums play a crucial role. The tractability part
of our dichotomy theorem is then done by reducing EVAL(A), assuming A satisfies a
set of nice structural conditions (to be described in the rest of this section) imposed
by the hardness part, to EVAL(q) for some appropriate prime power q. While the
corresponding sums for finite fields (when q is a prime) are known to be in polynomial
time [10, 15], [27, Theorem 6.30] and, in particular, this includes the special case of Z2

used in [21], our algorithm over rings Zq is new and should be of independent interest.
Next we briefly describe the proof structure of the hardness part of the dichotomy

theorem. Let A be a connected and symmetric matrix. The difficulty starts with the
most basic proof technique, called gadget constructions. With a graph gadget, one
can take any input undirected graph G and produce a modified graph G∗ by replacing
each edge of G with the gadget. Moreover, one can define a suitable modified matrix
A∗ from the fixed matrix A and the gadget such that ZA∗(G) = ZA(G∗) for all
undirected graphs G.

A simple example of this maneuver is called thickening, where one replaces each
edge in the input G by t parallel edges to get G∗. It is easy to see that if A∗ is obtained
from A by replacing each entry Ai,j by its tth power (Ai,j)

t, then the equation above
holds and we get a reduction from EVAL(A∗) to EVAL(A). In particular, if A is real
(as in the case of [21]) and t is even, this produces a nonnegative matrix A∗, to which
one may apply the Bulatov–Grohe result:

1. If A∗, as a symmetric and nonnegative matrix, does not satisfy the tractabil-
ity criteria of Bulatov and Grohe as described in Theorem 2.5, then both EVAL(A∗)
and EVAL(A) are #P-hard and we are done.

2. Otherwise, A∗ satisfies the Bulatov–Grohe tractability criteria, from which A
must satisfy certain necessary structural properties since A∗ is derived from A.

The big picture of the proof of the dichotomy theorem is then to design various
graph gadgets to show that, assuming EVAL(A) is not #P-hard, the matrix A must
satisfy a collection of strong necessary conditions over its complex entries Ai,j . (The
exact proof structure, however, is different from this very-high-level description, which
will become clear in the rest of this section.) To finish the proof, we show that for
every A that satisfies all these structural conditions, one can reduce EVAL(A) to
EVAL(q) for some appropriate prime power q (which depends only on A), and thus
EVAL(A) is tractable.

For complex matrices A, we immediately encountered the following difficulty.
Any graph gadget will only produce a matrix A∗ whose entries are obtained from
entries of A by arithmetic operations + and ×. While for real numbers any even
power guarantees a nonnegative quantity, as was done in [21], no obvious arithmetic
operations on the complex numbers have this property. Pointedly, conjugation is not
an arithmetic operation. However, it is clear that for roots of unity, one can produce
conjugation by multiplication.

Thus, our proof starts with a process of replacing an arbitrary complex matrix by
a purified complex matrix with a special form. It turns out that we must separate out
the cases where A is bipartite or nonbipartite. A purified bipartite (and symmetric,
connected) matrix is the bipartization of a matrix B, where

B =

⎛
⎜⎜⎜⎝

μ1

μ2

. . .

μk

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ζ1,1 ζ1,2 . . . ζ1,m−k
ζ2,1 ζ2,2 . . . ζ2,m−k
...

...
. . .

...
ζk,1 ζk,2 . . . ζk,m−k

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μk+1

μk+2

. . .

μm

⎞
⎟⎟⎟⎠D
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for some 1 ≤ k < m, in which every μi is a positive rational number and every ζi,j
is a root of unity. The claim is that for every symmetric, connected, and bipartite
matrix A ∈ Cm×m, either we can already prove the #P-hardness of EVAL(A) or there
exists a purified bipartite matrix A′ ∈ Cm×m such that EVAL(A′) is polynomial-time
equivalent to EVAL(A) (Theorem 5.2). For nonbipartite matrices A, a corresponding
statement holds (Theorem 6.2). For convenience, we only consider the bipartite case
in the discussion below.

Continuing now with a purified bipartite matrix A′, the next step is to further
regularize its entries. In particular we need to combine those rows and columns of the
matrix where they are essentially the same, apart from a multiple of a root of unity.
This process is called cyclotomic reduction. To carry out this process, we need to use
the more general problem EVAL(C, D) defined earlier in section 2.3. We also need to
introduce the following type of matrices, called discrete unitary matrices.

Definition 3.1 (discrete unitary matrix). Let F ∈ Cm×m be a (not necessarily
symmetric) matrix with entries (Fi,j). We call F an M -discrete unitary matrix, for
some positive integer M , if it satisfies the following conditions:

1. Every entry Fi,j of F is a root of unity, and F1,i = Fi,1 = 1 for all i ∈ [m].
2. M is the least common multiple (lcm) of orders of all the entries Fi,j of F.
3. For all i �= j ∈ [m], we have 〈Fi,∗,Fj,∗〉 = 0 and 〈F∗,i,F∗,j〉 = 0.

Some of the simplest examples of discrete unitary matrices are as follows:

(
1 1
1 −1

)
,

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎟⎠ ,

⎛
⎝

1 1 1
1 ω ω2

1 ω2 ω

⎞
⎠ ,

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1
1 ζ ζ−1 ζ2 ζ−2

1 ζ2 ζ−2 ζ−1 ζ
1 ζ−1 ζ ζ−2 ζ2

1 ζ−2 ζ2 ζ ζ−1

⎞
⎟⎟⎟⎟⎠

,

where ω = e2πi/3 and ζ = e2πi/5. Tensor products of discrete unitary matrices are
also discrete unitary matrices. These matrices play a major role in our proof.

Now we come back to the proof outline. We show that EVAL(A′) is either #P-
hard or polynomial-time equivalent to EVAL(C, D) for some matrix C ∈ C2n×2n and
some D of diagonal matrices from C2n×2n, where n ≤ m and C is the bipartization
of a discrete unitary matrix, denoted by F. In addition, there are further stringent
requirements for D; otherwise EVAL(A′) is #P-hard. The detailed statements can
be found in Theorems 5.3 and 5.4, summarized in properties (U1) to (U5). Roughly
speaking, the first matrix D[0] in D must be the identity matrix, and for any matrix
D[r] in D, each entry of D[r] is either zero or a root of unity. We call these conditions,
with some abuse of terminology, the discrete unitary requirements. The proof that
these requirements are necessary is demanding and among the most difficult in the
paper.

Next, assume that we have a problem EVAL(C, D) satisfying the discrete unitary
requirements with C being the bipartization of F. Recall that ωq = e2πi/q.

Definition 3.2. Let q > 1 be a prime power. The following q × q matrix Fq is
called the q-Fourier matrix: The (x, y)th entry of Fq is ωxy

q , x, y ∈ [0 : q − 1].
We show that either EVAL(C, D) is #P-hard or, after a permutation of rows and

columns, F becomes the tensor product of a collection of suitable Fourier matrices:

Fq1 ⊗ Fq2 ⊗ · · · ⊗ Fqd , where d ≥ 1 and every qi is a prime power.

Basically, we show that even with the stringent conditions imposed on the pair (C, D)
by the discrete unitary requirements, most of EVAL(C, D) are still #P-hard, unless
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936 JIN-YI CAI, XI CHEN, AND PINYAN LU

F is the tensor product of Fourier matrices. On the other hand, the tensor product
decomposition into Fourier matrices finally brings in group theory and Gauss sums.
It gives us a canonical way of writing the entries of F in a closed form. More exactly,
we index the rows and columns of F using x = (x1, . . . , xd) ∈ Zq1 × · · · × Zqd so that

Fx,y =
∏

i∈[d]
ωxiyi
qi for any x,y ∈ Zq1 × · · · × Zqd .

Assume q1, . . . , qd are powers of s ≤ d distinct primes p1, . . . , ps. We can also view
the set of indices as Zq1 × · · · × Zqd = G1 × · · · × Gs, where Gi is the finite Abelian
group which is the product of all the groups Zqj with qj being a power of pi.

This canonical tensor product decomposition of F gives us a natural way to index
the rows and columns of C and the diagonal matrices in D using x. More exactly, we
index the first half of the rows and columns of C and every D[r] in D using (0,x) and
index the second half of the rows and columns using (1,x), x ∈ Zq1 × · · · × Zqd .

With this canonical expression of F and C, we further inquire into the structure
of D. Here one more substantial difficulty awaits us. There are two more properties
that we must demand of those diagonal matrices in D. If D does not satisfy these
additional properties, then EVAL(C, D) is #P-hard.

First, for each r, we define Λr and Δr to be the support of D[r], where Λr refers
to the first half of the entries and Δr refers to the second half of the entries (here we
follow the convention of using Di to denote the (i, i)th entry of a diagonal matrix D):

Λr =
{
x : D

[r]
(0,x) �= 0

}
and Δr =

{
x : D

[r]
(1,x) �= 0

}
.

We let S denote the set of subscripts r such that Λr �= ∅ and let T denote the set of
r such that Δr �= ∅. We can prove that for each r ∈ S, Λr =

∏s
i=1 Λr,i must be a

direct product of cosets Λr,i in the Abelian groups Gi, where i = 1, . . . , s correspond
to the constituent prime powers of the group, and for each r ∈ T , Δr =

∏s
i=1 Δr,i

is a direct product of cosets in the same Abelian groups. Otherwise, EVAL(C, D) is
#P-hard.

Second, we show that for each r ∈ S and r ∈ T , respectively, D[r] on its support Λr

for the first half of its entries and on Δr for the second half of its entries, respectively,
possesses a quadratic structure; otherwise ZC,D(·) is #P-hard. We can express the
quadratic structure as a set of exponential difference equations over bases which are
appropriate roots of unity of orders equal to various prime powers. The constructions
used in this part of the proof are the most demanding in the paper.

After all these necessary conditions, we finally show that if C and D satisfy all
these requirements, there is a polynomial-time algorithm for EVAL(C, D) and thus,
EVAL(A) is also in polynomial time. To this end, we reduce EVAL(C, D) to EVAL(q)
for some appropriate prime power q (which depends only on C and D). As noted
earlier, the tractability of EVAL(q) is new and is of independent interest.

4. Pinning lemmas and preliminary reductions. We prove two pinning
lemmas in this section, one for EVAL(A) and one for EVAL(C, D). The proof of the
first lemma is very similar to that of the pinning lemma from [21], but the second one
has some complications. We will prove a third pinning lemma in section 8.1.

4.1. A pinning lemma for EVAL(A). Let A be an m×m symmetric complex
matrix. We define a new problem EVALP(A): The input is a triple (G, w, i), where
G = (V, E) is an undirected graph, w ∈ V is a vertex, and i ∈ [m]; the output is
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ZA(G, w, i) =
∑

ξ:V→[m]
ξ(w)=i

wtA(ξ).

It is easy to see that EVAL(A) ≤ EVALP(A). The other direction also holds.
Lemma 4.1 (first pinning lemma). EVALP(A) ≡ EVAL(A).
Proof. We define an equivalence relation ∼ over [m]: i ∼ j if for any undirected

graph G = (V, E) and w ∈ V , ZA(G, w, i) = ZA(G, w, j). Note that we do not know,
given A, how to compute ∼ efficiently, although this is possible using the new results
of Schrijver [32]. Instead, the lemma only proves, nonconstructively, the existence of
a polynomial-time reduction, which is sufficient for our purposes.

This relation divides the set [m] into s equivalence classes A1, . . . , As for some
positive integer s. For any distinct t, t′ ∈ [s], there exists a pair Pt,t′ = (G, w), where
G is an undirected graph and w is a vertex of G, such that

ZA(G, w, i) = ZA(G, w, j) �= ZA(G, w, i′) = ZA(G, w, j′)

for all i, j ∈ At and i′, j′ ∈ At′ . Again, we do not know how to compute such a pair
efficiently, but it always exists by the definition of the equivalence relation ∼.

Now given any subset S ⊆ [s], we define a problem EVAL(A, S). The input is a
pair (G, w), where G = (V, E) is an undirected graph and w ∈ V ; the output is

ZA(G, w, S) =
∑

ξ:V→[m]
ξ(w)∈⋃t∈S At

wtA(ξ).

When S = [s], EVAL(A, S) is exactly EVAL(A). We make the following claim.
Claim 4.2. If S ⊆ [s] and |S| ≥ 2, then there exists a partition {S1, . . . , Sk} of

S for some k > 1 such that EVAL(A, Sd) ≤ EVAL(A, S) for all d ∈ [k].
We use Claim 4.2 to prove Lemma 4.1. Let (G, w, i) be an input of EVALP(A),

and let i ∈ At for some t ∈ [s]. We will use Claim 4.2 to prove that EVAL(A, {t}) ≤
EVAL(A). If this is the case, then we are done because

ZA(G, w, i) =
1

|At|
· ZA(G, w, {t}).

Finally we show that EVAL(A, {t}) ≤ EVAL(A). It is trivially true when s = 1.
When s ≥ 2, by Claim 4.2 there exists a partition {S1, . . . , Sk} of S for some k > 1,
such that EVAL(A, Sd) ≤ EVAL(A, S) ≡ EVAL(A), for all d ∈ [k]. Without loss
of generality, assume t ∈ S1. If S1 = {t}, then we are done; otherwise, |S1| ≥ 2,
and we just rename S1 to be S and repeat the process above. As |S| is strictly
decreasing after each iteration, this procedure will stop at some time. The lemma is
proved.

Proof of Claim 4.2. Let t, t′ be two distinct integers in S. We let Pt,t′ = (G∗, w∗),
where G∗ = (V ∗, E∗). It defines the following equivalence relation ∼∗ over S: For
a, b ∈ S, a ∼∗ b if ZA(G∗, w∗, i) = ZA(G∗, w∗, j), where i ∈ Aa and j ∈ Ab.

This equivalence relation ∼∗ is well-defined, being independent of our choices of
i ∈ Aa, j ∈ Ab. It gives us equivalence classes {S1, . . . , Sk}, a partition of S. Because
(G∗, w∗) = Pt,t′ , by the definition of ∼∗, t and t′ belong to different classes and thus
k ≥ 2. For each d ∈ [k], we let Xd = ZA(G∗, w∗, i), where i ∈ Aa and a ∈ Sd. This
number Xd is well-defined and is independent of the choices of a ∈ Sd and i ∈ Aa.
Moreover, the definition of ∼∗ implies that Xd �= Xd′ for all d �= d′ ∈ [k].
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Next, let G be an undirected graph and w be a vertex. We show that by querying
EVAL(A, S) as an oracle, one can compute ZA(G, w, Sd) efficiently for all d. To this
end, for each p ∈ [0 : k − 1] we construct a graph G[p] = (V [p], E[p]) as follows. G[p] is
the disjoint union of G and p independent copies of G∗, except that the w in G and
the w∗’s in all copies of G∗ are identified as one single vertex w′ ∈ V [p]. Thus, we
have |V [p]| = |V | + p · |V ∗| − p. In particular, G[0] = G.

From the construction of these graphs, we get the following equations:

ZA(G[p], w′, S) =
∑

d∈[k]
(Xd)

p · ZA(G, w, Sd) for every p ∈ [0 : k − 1].

Since Xd �= Xd′ for all d �= d′, this is a Vandermonde system. We can solve it to get
ZA(G, w, Sd) for all d. As k and the size of G∗ are constants that are independent of
G, we get a polynomial-time reduction from EVAL(A, Sd) to EVAL(A, S).

4.2. A pinning lemma for EVAL(C,D). Let C ∈ C2m×2m be the bipartization
of F ∈ Cm×m. Let D = (D[0], . . . ,D[N−1]) be a sequence of N 2m × 2m diagonal
matrices. We define a problem EVALP(C, D): The input is a triple (G, w, i), where
G = (V, E) is an undirected graph, w ∈ V , and i ∈ [2m]; the output is

ZC,D(G, w, i) =
∑

ξ:V→[2m]
ξ(w)=i

wtC,D(ξ).

Clearly, EVAL(C, D) ≤ EVALP(C, D). However, unlike EVALP(A) and EVAL(A), we
can prove the other direction only when (C, D) satisfies the following condition:

(Pinning) Every entry of F is a power of ωN , where N denotes the number of
matrices in D; F/

√
m is a unitary matrix, and D[0] is the 2m × 2m identity matrix.

Lemma 4.3 (second pinning lemma). If (C, D) satisfies the condition (Pinning)
above, then EVALP(C, D) ≡ EVAL(C, D).

Corollary 4.4. If (C, D) satisfies the condition (Pinning), then the problem of
computing Z→C,D as well as Z←C,D is polynomial-time reducible to EVAL(C, D).

Proof of Lemma 4.3. The proof structure is similar to that of Lemma 4.1. We
start by introducing the following equivalence relation over [2m]: i ∼ j if for any
undirected G = (V, E) and w ∈ V , ZC,D(G, w, i) = ZC,D(G, w, j). It partitions [2m]
into s equivalence classes A1, A2, . . . , As for some s ≥ 1. For any distinct t, t′ ∈ [s],
there exists a pair Pt,t′ = (G, w), where G is an undirected graph and w is a vertex,
such that for all i, j ∈ At and i′, j′ ∈ At′ ,

ZC,D(G, w, i) = ZC,D(G, w, j) �= ZC,D(G, w, i′) = ZC,D(G, w, j′).

Now for any subset S ⊆ [s], we define EVAL(C, D, S). The input is a pair (G, w),
where G = (V, E) is an undirected graph and w is a vertex in G; and the output is

ZC,D(G, w, S) =
∑

ξ:V→[2m]
ξ(w)∈⋃t∈S At

wtC,D(ξ).

When S = [s], EVAL(C, D, S) is exactly EVAL(C, D). We make the following claim.
Claim 4.5. If S ⊆ [s] and |S| ≥ 2, there exists a partition {S1, . . . , Sk} of S for

some k > 1 such that EVAL(C, D, Sd) ≤ EVAL(C, D, S) for all d ∈ [k].
Lemma 4.3 then follows from Claim 4.5. The rest of the proof is exactly the same

as that of Lemma 4.1 using Claim 4.2, so we omit it here.
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GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 939

. . . 
w*

[ 1 ] G * G *

G w

x1

y1 xp

yp

w*
[ p ] 

N -1  edges 

1  edge 

Fig. 4.1. Graph G[p], p ∈ [0 : k − 1].

Proof of Claim 4.5. Let t, t′ be two distinct integers in S (as |S| ≥ 2). Let
Pt,t′ = (G∗, w∗), where G∗ = (V ∗, E∗). It defines the following equivalence relation.
For a, b ∈ S, a ∼∗ b if ZC,D(G∗, w∗, i) = ZC,D(G∗, w∗, j), where i ∈ Aa and j ∈ Ab.

This partitions S into equivalence classes {S1, . . . , Sk}. Because (G∗, w∗) = Pt,t′ ,
t and t′ must belong to different classes and thus we have k ≥ 2. For each d ∈ [k], we
let Yd = ZC,D(G∗, w∗, i), where i ∈ Aa and a ∈ Sd. The definition of the equivalence
relation implies that Yd �= Yd′ for all distinct d, d′ ∈ [k].

Now let G be an undirected graph and w be a vertex. We show that by querying
EVAL(C, D, S) as an oracle, one can compute ZC,D(G, w, Sd) efficiently for all d. To
this end, for each integer p ∈ [0 : k − 1], we construct a graph G[p] = (V [p], E[p]) as
follows: G[p] contains G and p independent copies of G∗. The vertex w in G is then
connected appropriately to the w∗ of each G∗ (see Figure 4.1). More precisely,

V [p] = V ∪ {vi : i ∈ [p] and v ∈ V ∗} ∪ {x1, . . . , xp, y1, . . . , yp},

where x1, . . . , xp, y1, . . . , yp are new vertices, and E[p] contains the following edges:

1. if uv ∈ E, then uv ∈ E[p]; if uv ∈ E∗, then uivi ∈ E[p] for all i ∈ [p];
2. one edge between (w∗i , xi) and (yi, w) for each i ∈ [p]; and
3. N − 1 edges between (xi, w) and (w∗i , yi) for each i ∈ [p].

In particular, we have G[0] = G.

We get the following equations. For p ∈ [0 : k − 1], ZC,D(G[p], w, S) is equal to

∑

i∈⋃a∈S Aa

i1,...,ip∈[2m]

ZC,D(G, w, i)

⎛
⎝

p∏

j=1

ZC,D(G∗, w∗, ij)

⎞
⎠

p∏

j=1

⎛
⎝ ∑

x∈[2m]

Cij ,xCi,x

∑

y∈[2m]

Cij ,yCi,y

⎞
⎠ .

Note that deg(xi) = deg(yi) = N and the changes to the degrees of w and w∗i are all
multiples of N . By (Pinning), there are no new vertex weight contributions from D.

Also by (Pinning),
∑

x∈[2m] Cij ,xCi,x = 〈Fij ,∗,Fi,∗〉 = 0 unless i = ij . Therefore,

ZC,D(G[p], w, S) = m2p ·
∑

i∈∪a∈SAa

ZC,D(G, w, i) ·
(
ZC,D(G∗, w∗, i)

)p

= m2p ·
∑

d∈[k]
(Yd)

p · ZC,D(G, w, Sd).D
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Because Yd �= Yd′ for all d �= d′, this is a Vandermonde system and we can solve it to
get ZC,D(G, w, Sd) for all d. As both k and the size of G∗ are constants independent
of G, this gives a reduction from EVAL(C, D, Sd) to EVAL(C, D, S) for every d.

4.3. Reduction to connected matrices. The following lemma allows us to
focus on the connected components of A.

Lemma 4.6. Let A ∈ Cm×m be a symmetric matrix with components {Ai}.
1. If EVAL(Ai) is #P-hard for some i ∈ [s], then EVAL(A) is #P-hard.
2. If EVAL(Ai) is polynomial-time computable for every i, then so is EVAL(A).

Proof. Lemma 4.6 follows from the first pinning lemma (Lemma 4.1).
The main dichotomy, Theorem 1.1, will be proved by showing that for every

connected A ∈ Cm×m, EVAL(A) is either solvable in polynomial time or #P-hard.

5. Proof outline of the case: A is bipartite. We now give an overview of
the proof of Theorem 1.1 for the case when A is connected and bipartite. The proof
consists of two parts: a hardness part and a tractability part. The hardness part is
further divided into three major steps in which we gradually “simplify” the problem
being considered. In each of the three steps, we consider an EVAL problem passed
down by the previous step (Step 1 starts with EVAL(A) itself) and show that

1. either the problem is #P-hard, or
2. the matrix that defines the problem satisfies certain structural properties, or
3. the problem is polynomial-time equivalent to a new EVAL problem, and the

matrix that defines the new problem satisfies certain structural properties.
One can view these three steps as three filters that remove #P-hard EVAL(A)

using different arguments. Finally, in the tractability part, we show that all the EVAL
problems that survive the three filters are indeed polynomial-time solvable.

5.1. Step 1: Purification of matrix A. We start with EVAL(A), where A ∈
Cm×m is a fixed symmetric, connected, and bipartite matrix with algebraic entries.
It is easy to see that if m = 1, then EVAL(A) is tractable. So in the discussion below,
we always assume m > 1. In this step, we show that EVAL(A) is either #P-hard or
polynomial-time equivalent to EVAL(A′), in which A′ is also an m × m matrix but
has a very nice structure.

Definition 5.1. Let A ∈ Cm×m be a symmetric, connected, and bipartite ma-
trix. We say it is a purified bipartite matrix if there exist positive rational numbers
μ1, . . . , μm and an integer 1 ≤ k < m such that

1. Ai,j = 0 for all i, j ∈ [k]; Ai,j = 0 for all i, j ∈ [k + 1 : m]; and
2. Ai,j/(μiμj) = Aj,i/(μiμj) is a root of unity for all i ∈ [k], j ∈ [k + 1 : m].

In other words, there exists a k × (m − k) matrix B of the form

B =

⎛
⎜⎜⎜⎝

μ1

μ2

. . .

μk

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ζ1,1 ζ1,2 . . . ζ1,m−k
ζ2,1 ζ2,2 . . . ζ2,m−k
...

...
. . .

...
ζk,1 ζk,2 . . . ζk,m−k

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μk+1

μk+2

. . .

μm

⎞
⎟⎟⎟⎠ ,

where every μi is a positive rational number and every ζi,j is a root of unity, and A
is the bipartization of B.

Theorem 5.2. Let A ∈ Cm×m be a symmetric, connected, and bipartite matrix
with algebraic entries. Then either EVAL(A) is #P-hard or there exists an m × m
purified bipartite matrix A′ such that EVAL(A) ≡ EVAL(A′). (By Definition 5.1, A′

is symmetric and thus EVAL(A′) is well-defined.)
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5.2. Step 2: Reduction to discrete unitary matrix. Now let A ∈ Cm×m de-
note a purified bipartite matrix. Note that we renamed the A′ passed down from Step
1 to A for convenience. We show that EVAL(A) is either #P-hard or polynomial-time
equivalent to EVAL(C, D) for some C and D, where the matrix C is the bipartization
of a discrete unitary matrix. (See section 3 for the definition.) Also note that the
tensor product of two discrete unitary matrices is also discrete unitary.

Theorem 5.3. Given a purified bipartite matrix A ∈ Cm×m, either 1. EVAL(A)
is tractable; or 2. EVAL(A) is #P-hard; or 3. there exists a triple ((M, N),C, D) such
that EVAL(A) ≡ EVAL(C, D), and ((M, N),C, D) satisfies the following conditions:

(U1) C ∈ C2n×2n for some n ≥ 1, and

D =
(
D[0],D[1], . . . ,D[N−1])

is a sequence of N 2n × 2n diagonal matrices over C for some even N > 1.
(U2) C is the bipartization of an M -discrete unitary matrix F ∈ Cn×n, where

M ≥ 1 and M |N . (Note that C and F uniquely determine each other.)
(U3) D[0] is the 2n × 2n identity matrix, and for every r ∈ [N − 1] we have

∃ i ∈ [n], D
[r]
i �= 0 =⇒ ∃ i′ ∈ [n], D

[r]
i′ = 1, and

∃ i ∈ [n + 1 : 2n], D
[r]
i �= 0 =⇒ ∃ i′ ∈ [n + 1 : 2n], D

[r]
i′ = 1.

(U4) For all r ∈ [N − 1] and all i ∈ [2n], D
[r]
i ∈ Q(ωN) and |D[r]

i | ∈ {0, 1}.
5.3. Step 3: Canonical form of C, F, and D. After the first two steps, the

original problem EVAL(A) is shown to be either tractable or #P-hard or polynomial-
time equivalent to a new problem EVAL(C, D). There are also positive integers M
and N such that ((M, N),C, D) satisfies conditions (U1)–(U4).

For convenience, we still use 2m to denote the number of rows of C and D[r],
though it should be noted that this new m is indeed the n in Theorem 5.3, which
is different from the m used in the first two steps. We also denote the upper-right
m × m block of C by F.

In this step, we adopt the following convention: Given an n × n matrix, we use
[0 : n − 1], instead of [n], to index its rows and columns. For example, we index the
rows of F using [0 : m − 1] and index the rows of C using [0 : 2m − 1].

We start with the special case when M = 1. As F is M -discrete unitary, we must
have m = 1. It is easy to check that EVAL(C, D) is tractable: C is a 2 × 2 matrix

(
0 1
1 0

)
;

ZC,D(G) is 0 unless G is bipartite; for connected and bipartite G, there are at most
two assignments ξ : V → {0, 1} which could yield nonzero values; finally, for a graph
G with connected components Gi ZC,D(G) is the product of ZC,D(Gi)’s.

For the general case when the parameter M > 1 we further investigate the struc-
ture of F as well as the diagonal matrices in D and derive three necessary conditions
on them for EVAL(C, D) to not be #P-hard. In the tractability part, we prove that
these conditions are actually sufficient for it to be polynomial-time computable.

5.3.1. Step 3.1: Entries of D[r] are either 0 or powers of ωN . In the first
step, we prove the following theorem.

Theorem 5.4. Suppose ((M, N),C, D) satisfies (U1)–(U4) with M > 1. Then ei-
ther EVAL(C, D) is #P-hard or ((M, N),C, D) satisfies the following condition (U5):

(U5) For all r ∈ [N − 1] and i ∈ [0 : 2n − 1], D
[r]
i is either 0 or a power of ωN .
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5.3.2. Step 3.2: Fourier decomposition. Second, we show that either prob-
lem EVAL(C, D) is #P-hard, or we can permute the rows and columns of F, so that
the new F is the tensor product of a collection of Fourier matrices defined below.

Definition 5.5. Let q > 1 be a prime power, and k ≥ 1 be an integer such that
gcd(k, q) = 1. We call the following q × q matrix Fq,k a (q, k)-Fourier matrix: The
(x, y)th entry of Fq,k, where x, y ∈ [0 : q − 1], is

ωkxy
q = e2πi

(
kxy/q

)
.

In particular, when k = 1, we use Fq to denote Fq,1 for short.
Theorem 5.6. Assume ((M, N),C, D) satisfies conditions (U1)–(U5) and M > 1.

Then either EVAL(C, D) is #P-hard or there exist permutations Σ and Π of [0 : m−1]
and a sequence q1, q2, . . . , qd of d prime powers, for some d ≥ 1, such that

(5.1) FΣ,Π =
⊗

i∈[d]
Fqi .

Suppose there do exist permutations Σ, Π and prime powers q1, . . . , qd such that
FΣ,Π satisfies (5.1). Then we let CΣ,Π denote the bipartization of FΣ,Π and let DΣ,Π

denote a sequence of N 2m × 2m diagonal matrices in which the rth matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D
[r]
Σ(0)

. . .

D
[r]
Σ(m−1)

D
[r]
Π(0)+m

. . .

D
[r]
Π(m−1)+m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r ∈ [0 : N − 1].

Since permuting the rows and columns of C and D[r] by the same permutation pair
does not affect the complexity of EVAL(C, D), EVAL(CΣ,Π, DΣ,Π) ≡ EVAL(C, D).
From now on, we let F,C, and D denote FΣ,Π,CΣ,Π, and DΣ,Π, respectively, with

(5.2) F =
⊗

i∈[d]
Fqi .

Before moving forward, we rearrange the prime powers q1, q2, . . . , qd and divide
them into groups according to different primes. We need the following notation. Let
p = (p1, . . . , ps) be a strictly increasing sequence of primes and t = (t1, . . . , ts) be a
sequence of positive integers. Let Q = {qi : i ∈ [s]} be a set of s sequences in which
each qi is a nonincreasing sequence (qi,1, . . . , qi,ti) of powers of pi. We let qi denote
qi,1 for all i ∈ [s], let

Zqi =
∏

j∈[ti]
Zqi,j = Zqi,1 × · · · × Zqi,ti

for all i ∈ [s], and let

ZQ =
∏

i∈[s],j∈[ti]
Zqi,j =

∏

i∈[s]
Zqi = Zq1,1 × · · · × Zq1,t1

× · · · × Zqs,1 × · · · × Zqs,ts
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be the Cartesian products of the respective finite Abelian groups. Both ZQ and Zqi

are finite Abelian groups under componentwise operations. This implies that both
ZQ and Zqi are Z-modules and thus kx is well-defined for all k ∈ Z and x in ZQ or
Zqi . As Z-modules, we can also refer to their members as “vectors.” When we use
x to denote a vector in ZQ, we denote its (i, j)th entry by xi,j ∈ Zqi,j . We use xi

to denote (xi,j : j ∈ [ti]) ∈ Zqi , so x = (x1, . . . ,xs). Given x,y ∈ ZQ, we let x ± y
denote the vector in ZQ whose (i, j)th entry is xi,j ± yi,j (mod qi,j). Similarly, for
each i ∈ [s], we can define x ± y for vectors x,y ∈ Zqi .

From (5.2), there exist p, t, Q such that ((M, N),C, D, (p, t, Q)) satisfies the fol-
lowing three conditions (R1)–(R3), which we refer to combined as (R).

(R1) p = (p1, . . . , ps) is a strictly increasing sequence of primes; t = (t1, . . . , ts)
is a sequence of positive integers; Q = {qi : i ∈ [s]} is a collection of s sequences, in
which each qi = (qi,1, . . . , qi,ti) is a nonincreasing sequence of powers of pi.

(R2) C is the bipartization of F ∈ Cm×m and ((M, N),C, D) satisfies (U1)–(U5).
(R3) There is a bijection ρ : [0 : m − 1] → ZQ (so m =

∏
i,j qi,j) such that

(5.3) Fa,b =
∏

i∈[s],j∈[ti]
ωxi,j yi,j
qi,j for all a, b ∈ [0 : m − 1],

where (xi,j : i ∈ [s], j ∈ [ti]) = x = ρ(a) and (yi,j : i ∈ [s], j ∈ [ti]) = y = ρ(b). Note
that (5.3) also gives us an expression of M using Q. It is the product of the largest
prime powers qi = qi,1 for each distinct prime pi: M = q1q2 · · · qs.

For convenience, from now on we use x ∈ ZQ to index rows and columns of F:

(5.4) Fx,y = Fρ−1(x),ρ−1(y) =
∏

i∈[s],j∈[ti]
ωxi,j yi,j
qi,j for all x,y ∈ ZQ,

whenever we have a tuple ((M, N),C, D, (p, t, Q)) that is known to satisfy condition
(R). We assume that F is indexed by (x,y) ∈ Z2

Q rather than (a, b) ∈ [0 : m−1]2 and
that (R3) refers to (5.4). Correspondingly, we use {0, 1} × ZQ to index the entries of
matrices C and D[r]: (0,x) refers to the (ρ−1(x))th row or column, and (1,x) refers
to the (m + ρ−1(x))th row or column.

5.3.3. Step 3.3: Affine support for D. Now we have a 4-tuple ((M, N),C, D,
(p, t, Q)) that satisfies (R). In this step, we prove for every r ∈ [N − 1] (recall that
D[0] is already known to be the identity matrix), the nonzero entries of the rth matrix
D[r] in D must have a very nice coset structure; otherwise EVAL(C, D) is #P-hard.

For every r ∈ [N − 1], we define Λr ⊆ ZQ and Δr ⊆ ZQ as

Λr =
{
x ∈ ZQ : D

[r]
(0,x) �= 0

}
and Δr =

{
x ∈ ZQ : D

[r]
(1,x) �= 0

}
.

We use S to denote the set of r ∈ [N − 1] such that Λr �= ∅ and T to denote the set of
r ∈ [N − 1] such that Δr �= ∅. We recall the following standard definition of a coset
of a group, specialized to our situation.

Definition 5.7. Let Φ be a nonempty subset of ZQ (or Zqi for some i ∈ [s]). We
say Φ is a coset in ZQ (or Zqi) if there is a vector x0 ∈ Φ such that {x − x0 |x ∈ Φ}
is a subgroup of ZQ (or Zqi). Given a coset Φ (in ZQ or Zqi), we use Φlin to denote
its corresponding subgroup {x − x′ |x,x′ ∈ Φ}.

Theorem 5.8. Let ((M, N),C, D, (p, t, Q)) be a 4-tuple that satisfies (R). Then
either EVAL(C, D) is #P-hard or Λr, Δr ⊆ ZQ satisfy the following condition (L):

(L1) For every r ∈ S, Λr =
∏s

i=1 Λr,i, where Λr,i is a coset in Zqi , i ∈ [s].
(L2) For every r ∈ T , Δr =

∏s
i=1 Δr,i, where Δr,i is a coset in Zqi , i ∈ [s].
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Suppose EVAL(C, D) is not #P-hard. By Theorem 5.8, ((M, N),C, D, (p, t, Q))
satisfies not only (R) but also (L). Actually, by (U3), D also satisfies the following:

(L3) There exists an a[r] ∈ Λr for each r ∈ S, a b[r] ∈ Δr for each r ∈ T such
that

D
[r]

(0,a[r])
= D

[r]

(1,b[r])
= 1.

From now on, when we say condition (L), we mean all three conditions (L1)–(L3).

5.3.4. Step 3.4: Quadratic structure. In this final step within Step 3, we
prove that for every r ∈ [N − 1], the nonzero entries of D[r] must have a quadratic
structure; otherwise EVAL(C, D) is #P-hard. We start with some notation.

Given x in Zqi for some i ∈ [s], we use extr(x) (extension of x for short), where
r ∈ S, to denote the following unique vector:

(
a
[r]
1 , . . . ,a

[r]
i−1,x,a

[r]
i+1, . . . ,a

[r]
s

)
∈ ZQ.

Similarly we let ext′r(x), where r ∈ T , denote the following unique vector:

(
b
[r]
1 , . . . ,b

[r]
i−1,x,b

[r]
i+1, . . . ,b

[r]
s

)
∈ ZQ.

Let a be a vector in Zqi for some i ∈ [s]. Then we use ã to denote the vector b ∈ ZQ
such that bi = a and bj = 0 for all other j �= i. Also recall that qk = qk,1.

Theorem 5.9. Let ((M, N),C, D, (p, t, Q)) be a tuple that satisfies both (R) and
(L). Then either EVAL(C, D) is #P-hard, or D satisfies the following condition (D):

(D1) For all r ∈ S and x ∈ Λr, we have

(5.5) D
[r]
(0,x) = D

[r]
(0,extr(x1))

D
[r]
(0,extr(x2))

· · · D[r]
(0,extr(xs))

.

(D2) For all r ∈ T and x ∈ Δr, we have

(5.6) D
[r]
(1,x) = D

[r]
(1,ext′r(x1))

D
[r]
(1,ext′r(x2))

· · · D[r]
(1,ext′r(xs))

.

(D3) For all r ∈ S, k ∈ [s], and a ∈ Λlin
r,k, there are b ∈ Zqk

and α ∈ ZN such that

(5.7) ωα
N · Fx,b̃ = D

[r]
(0,x+ã) · D[r]

(0,x) for all x ∈ Λr.

(D4) For all r ∈ T , k ∈ [s], and a ∈ Δlin
r,k, there are b ∈ Zqk

and α ∈ ZN such
that

(5.8) ωα
N · Fb̃,x = D

[r]
(1,x+ã) · D[r]

(1,x) for all x ∈ Δr.

Note that in (D3) and (D4), the expressions on the left-hand side do not depend
on all other components of x except the kth component xk, since all other components
of b̃ are 0. The statements in conditions (D3)–(D4) are a technically precise way to
express the idea that there is a quadratic structure on the support of each diagonal
matrix D[r]. We express it in terms of an exponential difference equation.

5.4. Tractability. Now we can state a theorem of tractability.
Theorem 5.10. Suppose that ((M, N),C, D, (p, t, Q)) satisfies (R), (L), and

(D). Then the problem EVAL(C, D) can be solved in polynomial time.
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6. Proof outline of the case: A is not bipartite. Both the definitions and
the theorems of the case when the fixed matrix A is not bipartite are similar to, but
also have significant differences from, those of the bipartite case.

6.1. Step 1: Purification of matrix A. We start with A ∈ Cm×m, a sym-
metric, connected, and nonbipartite matrix with algebraic entries. In the discussion
below, we assume m > 1; EVAL(A) is clearly tractable if m = 1.

Definition 6.1. Let A ∈ Cm×m be a symmetric matrix. We say A is a purified
nonbipartite matrix if there exist positive rational numbers μ1, μ2, . . . , μm such that
Ai,j/(μiμj) is a root of unity for all i, j ∈ [m].

In other words, A has the form

A =

⎛
⎜⎜⎜⎝

μ1

μ2

. . .

μm

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ζ1,1 ζ1,2 . . . ζ1,m
ζ2,1 ζ2,2 . . . ζ2,m
...

...
. . .

...
ζm,1 ζm,2 . . . ζm,m

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μ1

μ2

. . .

μm

⎞
⎟⎟⎟⎠ ,

where ζi,j = ζj,i are all roots of unity. We prove the following theorem.

Theorem 6.2. Let A ∈ Cm×m be a symmetric, connected, and nonbipartite ma-
trix, where m > 1. Then either EVAL(A) is #P-hard or there exists a purified
nonbipartite matrix A′ ∈ Cm×m such that EVAL(A) ≡ EVAL(A′).

6.2. Step 2: Reduction to discrete unitary matrix.

Theorem 6.3. Let A ∈ Cm×m be a purified nonbipartite matrix. Then either (1)
EVAL(A) is tractable or (2) EVAL(A) is #P-hard or (3) there exists a triple ((M, N),
F, D) such that EVAL(A) ≡ EVAL(F, D) and ((M, N),F, D) satisfies (U ′1)–(U ′4):

(U ′1) F ∈ Cn×n for some n ≥ 1, and D = (D[0], . . . ,D[N−1]) is a sequence of N
n × n diagonal matrices for some even N > 1.

(U ′2) F is a symmetric M -discrete unitary matrix, where M ≥ 1 and M |N .
(U ′3) D[0] is the identity matrix. For each r ∈ [N − 1], either D[r] = 0 or D[r]

has an entry equal to 1.

(U ′4) For all r ∈ [N − 1] and i ∈ [n], D
[r]
i ∈ Q(ωN ) and |D[r]

i | ∈ {0, 1}.
6.3. Step 3: Canonical form of F and D. Now suppose we have a tuple

((M, N),F, D) that satisfies (U ′1)–(U ′4). For convenience we still use m to denote the
number of rows and columns of F and each D[r] in D, though it should be noted that
this new m is indeed the n in Theorem 6.3, which is different from the m used in the
first two steps. Similar to the bipartite case, we adopt the following convention in
this step: given an n × n matrix, we use [0 : n − 1], instead of [n], to index its rows
and columns.

We start with the special case when M = 1. Since F is M -discrete unitary, we
must have m = 1 and F = (1). In this case, it is clear that the problem EVAL(C, D)
is tractable. So in the rest of this section, we always assume that M > 1.

6.3.1. Step 3.1: Entries of D[r] are either 0 or powers of ωN .

Theorem 6.4. Suppose ((M, N),F, D) satisfies (U ′1)–(U ′4) and M > 1. Then ei-
ther EVAL(F, D) is #P-hard or ((M, N),F, D) satisfies the following condition (U ′5):

(U ′5) For all r ∈ [N − 1], entries of D[r] are either zero or powers of ωN .

6.3.2. Step 3.2: Fourier decomposition. Let q be a prime power. We say
W is a nondegenerate matrix in Z2×2

q if Wx �= 0 for all x �= 0 ∈ Z2
q . The following

D
ow

nl
oa

de
d 

12
/1

2/
13

 to
 1

28
.1

05
.1

4.
12

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

946 JIN-YI CAI, XI CHEN, AND PINYAN LU

lemma gives some equivalent characterizations of nondegenerate matrices. The proof
is elementary, so we omit it here.

Lemma 6.5. Let q be a prime power and W ∈ Z2×2
q . The following statements

are equivalent: (1) W is nondegenerate; (2) x �→ Wx is a bijection from Z2
q to itself;

and (3) det(W) is invertible in Zq.
Definition 6.6 (generalized Fourier matrix). Let q be a prime power and W =

(Wij) be a symmetric nondegenerate matrix in Z2×2
q . We say a q2 × q2 matrix Fq,W

is a (q,W)-generalized Fourier matrix if there exists a bijection ρ from [0 : q2 − 1] to
[0 : q − 1]2 such that

(Fq,W)i,j = ωW11x1y1+W12x1y2+W21x2y1+W22x2y2
q for all i, j ∈ [0 : q2 − 1],

where x = (x1, x2) = ρ(i) and y = (y1, y2) = ρ(j).
Theorem 6.7. Suppose ((M, N),F, D) satisfies conditions (U ′1)–(U ′5). Then ei-

ther EVAL(F, D) is #P-hard or there exists a permutation Σ of [0 : m − 1] such
that

FΣ,Σ =

(
g⊗

i=1

Fdi,W[i]

)
⊗
(

�⊗

i=1

Fqi,ki

)
,

where d = (d1, . . . , dg) and W = (W[1], . . . ,W[g]) are two sequences, for some g ≥ 0.
(Note that the g here can be 0, in which case d and W are empty.) For each i ∈ [g],
di > 1 is a power of 2 and W[i] is a 2 × 2 symmetric nondegenerate matrix over Zdi ;
q = (q1, . . . , q�) and k = (k1, . . . , k�) are two sequences for some � ≥ 0 (again � can
be 0). For each i ∈ [�], qi is a prime power, ki ∈ Zqi , and gcd(qi, ki) = 1.

Assume there does exist a permutation Σ, together with the four sequences, such
that FΣ,Σ satisfies the equation above; otherwise, EVAL(F, D) is #P-hard. Then we
apply Σ to D[r], r ∈ [0 : N − 1], to get a new sequence DΣ of N diagonal matrices
in which the rth matrix of DΣ is

⎛
⎜⎜⎝

D
[r]
Σ(0)

. . .

D
[r]
Σ(m−1)

⎞
⎟⎟⎠ .

It is clear that EVAL(FΣ,Σ, DΣ) ≡ EVAL(F, D). From now on, we simply let F and D
denote FΣ,Σ and DΣ, respectively. Thus, we have

(6.1) F =

(
g⊗

i=1

Fdi,W[i]

)
⊗
(

�⊗

i=1

Fqi,ki

)
.

Before moving forward to Step 3.3, we rearrange the prime powers in d and q
and divide them into groups according to different primes.

By (6.1), there exist d, W ,p, t, Q, and K such that tuple ((M, N),F, D, (d, W ,p,
t, Q, K)) satisfies the following condition (R′):

(R′1) d = (d1, . . . , dg) is a nonincreasing sequence of powers of 2 for some g ≥ 0;
W = (W[1], . . . ,W[g]) is a sequence of symmetric nondegenerate 2 × 2 matrices over
Zdi (note that d and W can be empty); p = (p1, . . . , ps) is a strictly increasing se-
quence of s primes for some s ≥ 1, starting with p1 = 2; t = (t1, . . . , ts) is a sequence
of integers with t1 ≥ 0 and ti ≥ 1 for all i > 1; Q = {qi : i ∈ [s]} is a collection of
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sequences in which each qi = (qi,1, . . . , qi,ti) is a nonincreasing sequence of powers of
pi (only q1 can be empty as we always fix p1 = 2 even when no powers of 2 occur in
Q); K = {ki : i ∈ [s]} is a collection of sequences in which each ki = (ki,1, . . . , ki,ti)
is a sequence of length ti. Finally, for all i ∈ [s] and j ∈ [ti], ki,j ∈ [0 : qi,j − 1] and
satisfies gcd(ki,j , qi,j) = gcd(ki,j , pi) = 1.

(R′2) ((M, N),F, D) satisfies conditions (U ′1)–(U ′5), and

m =
∏

i∈[g]
(di)

2 ×
∏

i∈[s],j∈[ti]
qi,j .

(R′3) There is a bijection ρ from [0 : m − 1] to Z2
d × ZQ, where

Z2
d =

∏

i∈[g]
(Zdi)

2
and ZQ =

∏

i∈[s],j∈[ti]
Zqi,j ,

such that (for each a ∈ [0 : m − 1], we use
(
x0,i,j : i ∈ [g], j ∈ {1, 2}

)
∈ Z2

d and
(
x1,i,j : i ∈ [s], j ∈ [ti]

)
∈ ZQ

to denote the components of x = ρ(a), where x0,i,j ∈ Zdi and x1,i,j ∈ Zqi,j )

Fa,b =
∏

i∈[g]
ω
(x0,i,1 x0,i,2)·W[i]·(y0,i,1 y0,i,2)

T

di

∏

i∈[s],j∈[ti]
ωki,j ·x1,i,jy1,i,j
qi,j

for all a, b ∈ [0 : m − 1], where ((x0,i,j), (x1,i,j)) = x = ρ(a) and y = ρ(b).
For convenience, from now on we will directly use x ∈ Z2

d × ZQ to index the rows
and columns of F, i.e., Fx,y ≡ Fρ−1(x),ρ−1(y).

6.3.3. Step 3.3: Affine support for D. Now we have a tuple ((M, N),F, D,
(d, W ,p, t, Q, K)) that satisfies (R′). In the next step, we show for every r ∈ [N − 1]
(D[0] is already known to be the identity matrix) the nonzero entries of D[r] (in D)
must have a coset structure; otherwise EVAL(F, D) is #P-hard.

For each r ∈ [N − 1], let Γr ⊆ Z2
d × ZQ denote the set of x such that the entry

of D[r] indexed by x is nonzero. We also use Z to denote the set of r ∈ [N − 1] such
that Γr �= ∅. For convenience, we let Z̃qi , i ∈ [s], denote the following set (or group):

Z̃qi =

{
Zqi if i > 1,

Z2
d × Zq1 if i = 1.

This gives us a new way to denote the components of

x ∈ Z2
d × ZQ = Z̃q1 × Z̃q2 × · · · × Z̃qs ,

i.e., x = (x1, . . . ,xs), where xi ∈ Z̃qi for each i ∈ [s].
Theorem 6.8. Assume that ((M, N),F, D, (d, W ,p, t, Q, K)) satisfies condition

(R′). Then either EVAL(F, D) is #P-hard or D satisfies the following condition:
(L′1) For every r ∈ Z, Γr =

∏s
i=1 Γr,i, where Γr,i is a coset in Z̃qi for all i ∈ [s].

Suppose EVAL(F, D) is not #P-hard. Then by Theorem 6.8, tuple ((M, N),F, D,
(d, W ,p, t, Q, K)) satisfies not only (R′) but also (L′1). By (U ′3), D also satisfies the
following:

(L′2) For every r ∈ Z, there exists an a[r] ∈ Γr ⊆ Z2
d × ZQ such that the entry of

D[r] indexed by a[r] is equal to 1.
From now on, we refer to conditions (L′1) and (L′2) as condition (L′).
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6.3.4. Step 3.4: Quadratic structure. In this final step within Step 3 for the
nonbipartite case, we show that for any index r ∈ [N − 1], the nonzero entries of D[r]

must have a quadratic structure; otherwise EVAL(F, D) is #P-hard.
We need the following notation. Given x in Z̃qi for some i ∈ [s], we let extr(x),

where r ∈ Z, denote the following unique vector:
(
a
[r]
1 , . . . ,a

[r]
i−1,x,a

[r]
i+1, . . . ,a

[r]
s

)
∈
∏

j∈[s]
Z̃qj .

Given a ∈ Z̃qi for some i ∈ [s], we let ã = (ã1, . . . , ãs) ∈ ∏j∈[s] Z̃qj such that ãi = a
and all other components are 0.

Theorem 6.9. Suppose ((M, N),F, D, (d, W ,p, t, Q, K)) satisfies (R′) and (L).
Then either EVAL(F, D) is #P-hard or D satisfies the following condition (D′):

(D′1) For all r ∈ Z and x ∈ Γr, we have

(6.2) D[r]
x = D

[r]
extr(x1)

D
[r]
extr(x2)

· · ·D[r]
extr(xs)

.

(D′2) For all r ∈ Z, k ∈ [s], and a ∈ Γlin
r,k, there are b ∈ Z̃qk

and α ∈ ZN such that

(6.3) ωα
N · Fb̃,x = D

[r]
x+ã · D

[r]
x for all x ∈ Γr.

Note that in (6.3), the expression on the left-hand side does not depend on other
components of x except the kth component xk ∈ Z̃qk

.

6.4. Tractability.
Theorem 6.10. Let ((M, N),F, D, (d, W ,p, t, Q, K)) be a tuple that satisfies all

conditions (R′), (L′), and (D′). Then EVAL(F, D) can be solved in polynomial time.

7. Proofs of Theorems 5.2 and 6.2. In this section, we prove Theorems 5.2
and 6.2. Let A = (Ai.j) denote a connected, symmetric m × m algebraic matrix. (At
this moment, we do not make any assumptions about whether A is bipartite.) We
also let A = {Ai,j : i, j ∈ [m]} denote the finite set of algebraic numbers from the
entries of A. In the first step, we construct a new m × m matrix B from A, which
satisfies the following conditions:

1. B is also connected and symmetric (so that EVAL(B) is well-defined);
2. EVAL(B) ≡ EVAL(A); and
3. each entry of B is the product of a nonnegative integer and a root of unity.

We let B′ be the nonnegative matrix such that B′i,j = |Bi,j |. In the second step,
we show that EVAL(B′) ≤ EVAL(B). Because B′ is a connected, symmetric, and
nonnegative (integer) matrix, we can apply the dichotomy of Bulatov and Grohe [4]
(see Theorem 2.5) to B′ and show that either EVAL(B′) is #P-hard or B is a (bipartite
or nonbipartite, depending on A) purified matrix. When EVAL(B′) is #P-hard, we
have EVAL(B′) ≤ EVAL(B) ≡ EVAL(A) and thus EVAL(A) is #P-hard as well. This
proves both Theorems 5.2 and 6.2.

7.1. Equivalence between EVAL(A) and COUNT(A). Before the construc-
tion of B, we define a class of counting problems closely related to EVAL(A). It has
been used in previous work [21] for establishing polynomial-time reductions between
different EVAL problems.

Let A ∈ Cm×m be any fixed symmetric matrix with algebraic entries. The input
of the problem COUNT(A) is a pair (G, x), where G = (V, E) is an undirected graph
and x ∈ Q(A ). The output is
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#A(G, x) =
∣∣∣
{
assignment ξ : V → [m]

∣∣ wtA(ξ) = x
}∣∣∣,

a nonnegative integer. We prove the following lemma.
Lemma 7.1. EVAL(A) ≡ COUNT(A).
Proof. To prove EVAL(A) ≤ COUNT(A), recall that the matrix A is considered

fixed with m being a constant. Let G = (V, E) and n = |E|. We use X to denote the
following set of complex numbers:

(7.1) X =

⎧
⎨
⎩
∏

i,j∈[m]

A
ki,j

i,j

∣∣∣ integers ki,j ≥ 0 and
∑

i,j∈[m]

ki,j = n

⎫
⎬
⎭ .

It is clear that |X | is polynomial in n, being
(
n+m2−1
m2−1

)
counting multiplicity, and X

can be enumerated in polynomial time (in n). It follows from the expression in the
definition of wtA(ξ) that for any x /∈ X , #A(G, x) = 0. This implies that

ZA(G) =
∑

x∈X
x · #A(G, x)

for any undirected graph G and thus EVAL(A) ≤ COUNT(A).
For the other direction, we construct for any p ∈ [|X |] (recall that |X | is poly-

nomial in n) a new undirected graph G[p] from G by replacing every edge uv of G
with p parallel edges between u and v. It is easy to check that any assignment ξ that
has weight x over G has weight xp over G[p]. This gives us the following collection of
equations: For every p ∈ [|X |],

ZA(G[p]) =
∑

x∈X
xp · #A(G, x).

Note that this is a Vandermonde system. Since we can query EVAL(A) for the values
of ZA(G[p]), we can solve it and get #A(G, x) for every nonzero x ∈ X . We can also
derive #A(G, 0), if 0 ∈ X , using the fact that the #A(G, x)’s sum to m|V |.

7.2. Step 1.1. We now construct the desired matrix B from A. We need the
following notion of a generating set.

Definition 7.2. Let A = {a1, . . . , an} be a set of n nonzero algebraic numbers
for some n ≥ 1. We say {g1, . . . , gd} for some d ≥ 0 is a generating set of A if

1. every gi is a nonzero algebraic number in Q(A ), and
2. for every a ∈ A , there exists a unique tuple (k1, . . . , kd) ∈ Zd such that

a

gk1
1 · · · gkd

d

is a root of unity.

Clearly d = 0 iff the set A consists of roots of unity only. It can also be derived
from the definition that gk1

1 · · · gkd

d of any nonzero (k1, . . . , kd) ∈ Zd cannot be a root
of unity. We prove the following lemma.

Lemma 7.3. Every set A of nonzero algebraic numbers has a generating set.
Lemma 7.3 follows directly from Theorem 17.1. Actually the statement of The-

orem 17.1 is stronger: A generating set {g1, g2, . . . , gd} can be computed from A
in polynomial time. More precisely, following the model of computation discussed
in section 2.2, we let α be a primitive element of Q(A ) so that Q(A ) = Q(α) and
let F (x) be a minimal polynomial of α. Then Theorem 17.1 shows that given the
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standard representation of the aj ’s, one can compute the standard representation of
g1 . . . , gd ∈ Q(α) in polynomial time in the input size of the aj ’s with {g1, . . . , gd}
being a generating set of A . Moreover, for each element a ∈ A one can also compute
in polynomial time the unique tuple of integers (k1, . . . , kd) such that a/(gk1

1 · · · gkd

d )
is a root of unity. In addition, if we are given an approximation α̂ of α that uniquely
determines α as a root of F (x), then we can use it to determine which root of unity it
is in polynomial time. Note that in Lemma 7.3 we only need the existence of a gen-
erating set {g1, . . . , gd}. But later in section 17, the polynomial-time computability
of a generating set will be critical to the proof of Theorem 1.2, the polynomial-time
decidability of the dichotomy criterion.

Now we return to the construction of B. Letting A denote the set of nonzero
entries of A, by Lemma 7.3, A has a generating set G = {g1, . . . , gd}. The matrix
B = (Bi,j) is constructed as follows. Let p1 < · · · < pd denote the d smallest primes.
For every i, j ∈ [m], Bi,j = 0 if Ai,j = 0. Suppose Ai,j �= 0. Since G is a generating
set, we know there exists a unique tuple of integers (k1, . . . , kd) such that

ζi,j =
Ai,j

gk1
1 · · · gkd

d

is a root of unity. Then we set Bi,j = pk1
1 · · · pkd

d · ζi,j .
What we did in constructing B is just replace each gi in G with a prime pi. Bi,j

is well-defined by the uniqueness of (k1, . . . , kd) ∈ Zd; conversely by taking the prime
factorization of |Bi,j | we can recover (k1, . . . , kd) uniquely and recover Ai,j by

Ai,j = gk1
1 · · · gkd

d · Bi,j

pk1
1 · · · pkd

d

.

The next lemma shows that such a replacement does not affect the complexity.
Lemma 7.4. Let A ∈ Cm×m be a symmetric and connected matrix with algebraic

entries and let B be the m×m matrix constructed above. Then EVAL(A) ≡ EVAL(B).
Proof. By Lemma 7.1, it suffices to show that COUNT(A) ≡ COUNT(B). Here we

only prove one of the two directions: COUNT(A) ≤ COUNT(B). The other direction
can be proved similarly.

Let (G, x) be an input pair of COUNT(A), where G = (V, E) and n = |E|. We
use X to denote the set of algebraic numbers defined earlier in (7.1). Recall that |X |
is polynomial in n since m is a constant and can be enumerated in polynomial time.
Furthermore, if x /∈ X , then #A(G, x) must be zero.

Suppose x ∈ X . Then we can find a particular sequence of nonnegative integers
(k∗i,j : i, j ∈ [m]) in polynomial time such that

∑
i,j k∗i,j = n and

(7.2) x =
∏

i,j∈[m]

A
k∗
i,j

i,j .

Note that (k∗i,j) is in general not unique for the given x. Using (k∗i,j), we define y by

(7.3) y =
∏

i,j∈[m]

B
k∗
i,j

i,j .

It is clear that x = 0 iff y = 0. This happens precisely when some k∗i,j > 0 for some
entry Ai,j = 0.
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The reduction COUNT(A) ≤ COUNT(B) then follows from the following claim:

(7.4) #A(G, x) = #B(G, y).

To prove this claim, it suffices to show that for any assignment ξ : V → [m], wtA(ξ) =
x iff wtB(ξ) = y. Here we only show that wtA(ξ) = x implies wtB(ξ) = y. The other
direction can be proved similarly.

Let ξ : V → [m] denote an assignment. For every i, j ∈ [m], we use ki,j to denote
the number of edges uv ∈ E such that (ξ(u), ξ(v)) = (i, j) or (j, i). Then

(7.5) wtA(ξ) =
∏

i,j∈[m]

A
ki,j

i,j and wtB(ξ) =
∏

i,j∈[m]

B
ki,j

i,j .

For x = 0, we note that the weight wtA(ξ) is 0 iff for some zero entry Ai,j = 0
we have ki,j > 0. By the construction of B, Ai,j = 0 iff Bi,j = 0, so wtB(ξ) = 0.

In the following, we assume both x, y �= 0. We only consider assignments ξ such
that its ki,j = 0 for any Ai,j = 0 (equivalently ki,j = 0 for any Bi,j = 0). Thus we
may consider the products in (7.5) are over nonzero entries Ai,j and Bi,j , respectively.

Now we use the generating set G = {g1, . . . , gd} chosen for A . There are integer
exponents e1,i,j , e2,i,j, . . . , ed,i,j and roots of unity ζi,j such that for all Ai,j �= 0,

Ai,j =

d∏

�=1

g
e�,i,j
� · ζi,j and Bi,j =

d∏

�=1

p
e�,i,j
� · ζi,j .

The expression of Bi,j here follows from the construction of B. By (7.2) and (7.5),

wtA(ξ) = x =⇒
d∏

�=1

g
∑

i,j(ki,j−k∗
i,j)e�,i,j

� = a root of unity.

The sum in the exponent is over i, j ∈ [m] where the corresponding Ai,j is nonzero.
This last equation is equivalent to (since G is a generating set)

(7.6)
∑

i,j

(ki,j − k∗i,j) · e�,i,j = 0 for all � ∈ [d],

which in turn implies that

(7.7)
∏

i,j

(
ζi,j
)ki,j

=
∏

i,j

(
ζi,j
)k∗

i,j .

It then follows from (7.3), (7.5), (7.6), and (7.7) that wtB(ξ) = y.

7.3. Step 1.2. The following lemma holds for any symmetric B ∈ Cm×m.
Lemma 7.5. If B′i,j = |Bi,j | for all i, j ∈ [m], then EVAL(B′) ≤ EVAL(B).
Proof. From Lemma 7.1, it suffices to show that COUNT(B′) ≤ COUNT(B). Let

(G, x) be an input of COUNT(B′). As B′ is nonnegative, we have #B′(G, x) = 0 if x
is not real or x < 0. Now suppose x ≥ 0, G = (V, E), and n = |E|. We let

Y =

⎧
⎨
⎩
∏

i,j∈[m]

B
ki,j

i,j

∣∣∣ integers ki,j ≥ 0 and
∑

i,j∈[m]

ki,j = n

⎫
⎬
⎭ .
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We know that |Y | is polynomial in n, and Y can be enumerated in polynomial time
in n. Let Yx denote the set of elements of Y whose complex norm is x.

The lemma then follows directly from the equation

#B′(G, x) =
∑

y∈Yx

#B(G, y),

because for every assignment ξ : V → [m], wtB′(ξ) = x iff |wtB(ξ)| = x. This gives us
a polynomial reduction since Yx ⊆ Y , |Yx| is polynomially bounded in n, and Yx can
be enumerated in polynomial time.

Finally we prove Theorems 5.2 and 6.2.
Proof of Theorem 5.2. Let A ∈ Cm×m be a symmetric, connected, and bipartite

matrix. We construct matrices B and B′ as above. Since we assumed A to be
connected and bipartite, both matrices B and B′ are connected and bipartite. Thus,
we know there is a permutation Π of [m] such that BΠ,Π is the bipartization of a
k × (m−k) matrix F for some k ∈ [m− 1], and B′Π,Π is the bipartization of F′, where
F ′i,j = |Fi,j | for all i ∈ [k] and j ∈ [m − k]. Since permuting the rows and columns of
B does not affect the complexity of EVAL(B), we have

(7.8) EVAL(B′Π,Π) ≤ EVAL(BΠ,Π) ≡ EVAL(B) ≡ EVAL(A).

As B′Π,Π is nonnegative, by Bulatov and Grohe we have the following cases:
1. If EVAL(B′Π,Π) is #P-hard, then by (7.8), EVAL(A) is also #P-hard.
2. If EVAL(B′Π,Π) is not #P-hard, then the rank of F′ must be 1. (It cannot be

0 since A is assumed to be connected and bipartite.) Thus, there exist nonnegative
rational numbers μ1, . . . , μm such that F ′i,j = μiμj+k for all i ∈ [k] and j ∈ [m − k].
Moreover, μi �= 0 for all i ∈ [m] since otherwise B′Π,Π is not connected.

As every entry of BΠ,Π is the product of the corresponding entry of B′Π,Π and
some root of unity, BΠ,Π is a purified bipartite matrix. The theorem is proved.

Proof of Theorem 6.2. Let A ∈ Cm×m be a symmetric, connected, and nonbipar-
tite matrix. We construct B and B′ as above. Since A is connected and non-bipartite,
B and B′ are connected and nonbipartite. Also, B′ is nonnegative. Consider the fol-
lowing cases. If B′ is #P-hard, then EVAL(B′) ≤ EVAL(B) ≡ EVAL(A) implies
that EVAL(A) must also be #P-hard. If B′ is not #P-hard, then by Bulatov and
Grohe, the rank of B is 1. (It cannot be 0 as we assumed m > 1, and B is con-
nected.) Because B is symmetric, it is a purified nonbipartite matrix. The theorem
follows.

8. Proof of Theorem 5.3. We start the section by introducing a technique for
establishing reductions between problems EVAL(A) and EVAL(C, D). It was inspired
by the twin reduction lemma proved in [21].

8.1. Cyclotomic reduction and inverse cyclotomic reduction. Let A be
an m × m symmetric (but not necessarily bipartite) complex matrix, and let (C, D)
be a pair that satisfies the following condition (T ):

(T1) C is an n × n symmetric complex matrix.
(T2) D = (D[0], . . . ,D[N−1]) is a sequence of N n × n diagonal complex matrices

for some N ≥ 1.
(T3) Every diagonal entry in D[0] is a positive integer. Moreover, for each a ∈ [n],

there exist nonnegative integers αa,0, . . . , αa,N−1 such that

D[0]
a =

N−1∑

b=0

αa,b and D[r]
a =

N−1∑

b=0

αa,b · ωbr
N for all r ∈ [N − 1].
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In particular, we say that the tuple (αa,0, . . . , αa,N−1) generates the ath entries
of D.

We need the following definition.
Definition 8.1. Let R = {Ra,b : a ∈ [n], b ∈ [0 : N − 1]} be a partition of [m]

(note that any Ra,b here may be empty) such that for every a ∈ [n],

N−1⋃

b=0

Ra,b �= ∅.

We say A can be generated by C using R if for all i, j ∈ [m],

(8.1) Ai,j = Ca,a′ · ωb+b′

N , where i ∈ Ra,b and j ∈ Ra′,b′ .

Given any pair (C, D) that satisfies (T ), we prove the following lemma.
Lemma 8.2 (cyclotomic reduction lemma). Assume that (C, D) satisfies (T )

with nonnegative integers αa,b. Let R = {Ra,b} be a partition of [m] satisfying

|Ra,b| = αa,b and m =
n∑

a=1

N−1∑

b=0

αa,b ≥ n,

and let A denote the matrix generated by C using R. Then EVAL(A) ≡ EVAL(C, D).
Proof. It suffices to prove for any undirected graph G = (V, E),

ZA(G) =
∑

ξ:V→[m]

wtA(ξ) and ZC,D(G) =
∑

η:V→[n]

wtC,D(η)

are exactly the same. To this end, we define a surjective map ρ from {ξ}, the set of
all assignments from V to [m], to {η}, the set of all assignments from V to [n]. Then
we show that for every η : V → [n],

(8.2) wtC,D(η) =
∑

ξ:ρ(ξ)=η

wtA(ξ).

We define ρ(ξ) as follows. As R is a partition of [m], for each v ∈ V there exists a
unique pair (a(v), b(v)) such that ξ(v) ∈ Ra(v),b(v). Let η(v) = a(v) for each v, and let
ρ(ξ) = η. It is easy to check that ρ is surjective. To prove (8.2), we write wtA(ξ) as

wtA(ξ) =
∏

uv∈E
Aξ(u),ξ(v) =

∏

uv∈E
Cη(u),η(v) × ω

ξ2(u)+ξ2(v)
N .

It follows that
∑

ξ:ρ(ξ)=η

wtA(ξ) =
∏

uv∈E
Cη(u),η(v) ×

∑

ξ:ρ(ξ)=η

∏

v∈V
ω
ξ2(v)·deg(v)
N

=
∏

uv∈E
Cη(u),η(v) ×

∏

v∈V

(
N−1∑

b=0

∣∣Rη(v),b

∣∣ · ωb·deg(v)
N

)

=
∏

uv∈E
Cη(u),η(v) ×

∏

v∈V
D

[deg(v) mod N ]
η(v) = wtC,D(η),

and the lemma follows.
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By combining Lemmas 8.2 and 7.5, as well as the dichotomy theorem of Bulatov
and Grohe, we have the following handy corollary for dealing with EVAL(C, D).

Corollary 8.3 (inverse cyclotomic reduction lemma). Let (C, D) be a pair that
satisfies condition (T ). If C has a 2 × 2 submatrix

(
Ci,k Ci,�

Cj,k Cj,�

)

such that all four entries are nonzero and |Ci,kCj,�| �= |Ci,�Cj,k|, then EVAL(C, D) is
#P-hard.

Proof. By the cyclotomic reduction lemma, there is a symmetric m × m matrix
A for some positive integer m and a partition R of [m], where

(8.3) R =
{
Ra,b

∣∣ a ∈ [n], b ∈ [0 : N − 1]
}

and

N−1⋃

b=0

Ra,b �= ∅ for all a ∈ [n],

such that EVAL(A) ≡ EVAL(C, D). Moreover, A and C satisfy (8.1).
Now suppose there exist i �= j, k �= � ∈ [n] such that Ci,k, Ci,�, Cj,k, and Cj,� are

nonzero and |Ci,kCj,�| �= |Ci,�Cj,k|. We arbitrarily pick an i′ from ∪bRi,b (known to
be nonempty), a j′ from ∪bRj,b, a k′ from ∪bRk,b, and an �′ from ∪bR�,b. Then from
(8.1), we have |Ai′,k′ | = |Ci,k|, |Ai′,�′ | = |Ci,�|, |Aj′,k′ | = |Cj,k|, |Aj′,�′ | = |Cj,�|, and

|Ai′,k′Aj′,�′ | �= |Ai′,�′Aj′,k′ |.

Let A′ = (|Ai,j |) for all i, j ∈ [m]. Then A′ has a 2 × 2 submatrix of rank 2 and all
its four entries are nonzero. By the dichotomy of Bulatov and Grohe (Corollary 2.6),
EVAL(A′) is #P-hard. It follows that EVAL(C, D) is #P-hard, since EVAL(C, D) ≡
EVAL(A) and by Lemma 7.5, EVAL(A′) ≤ EVAL(A).

Combining Lemma 8.2, (8.2), and the first pinning lemma (Lemma 4.1), we get
the following.

Corollary 8.4 (third pinning lemma). Let (C, D) be a pair that satisfies (T ).
Then we have EVALP(C, D) ≡ EVAL(C, D). In particular, the problem of computing
Z→C,D (or Z←C,D) is polynomial-time reducible to EVAL(C, D).

Proof. It suffices to show that EVALP(C, D) ≤ EVAL(C, D). By the cyclotomic
reduction lemma, there exist a symmetric m × m matrix A for some m ≥ 1 and a
partition R of [m] such that R satisfies (8.3) and EVAL(A) ≡ EVAL(C, D). A,C, and
R also satisfy (8.1). By the first pinning lemma, we have EVALP(A) ≡ EVAL(A) ≡
EVAL(C, D). So we only need to reduce EVALP(C, D) to EVALP(A).

Now let (G, w, i) be an input of EVALP(C, D), where G is an undirected graph,
w is a vertex in G, and i ∈ [n]. By (8.2), we have

ZC,D(G, w, i) =
∑

η:η(w)=i

wtC,D(η) =
∑

ξ:ξ1(w)=i

wtA(ξ) =
∑

j∈∪bRi,b

ZA(G, w, j).

This gives us a polynomial-time reduction from EVALP(C, D) to EVALP(A).
Note that compared to the second pinning lemma, the third pinning lemma does

not require C to be the bipartization of a unitary matrix. It only requires (T ).

8.2. Step 2.1. Let A be a purified bipartite matrix. After collecting its entries
of equal norm in decreasing order by permuting its rows and columns, there exist a
positive integer N and four sequences μ, ν, m, and n such that (A, (N,μ,ν,m,n))
satisfies the following condition:

D
ow

nl
oa

de
d 

12
/1

2/
13

 to
 1

28
.1

05
.1

4.
12

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 955

(S1) A is the bipartization of an m×n matrix B, so A is (m+n)× (m+n). μ =
(μ1, . . . , μs) and ν = (ν1, . . . , νt) are two strictly decreasing sequences of positive
rational numbers where s ≥ 1 and t ≥ 1. m = (m1, . . . , ms) and n = (n1, . . . , nt) are
two sequences of positive integers such that m =

∑
mi and n =

∑
ni. The rows of

B are indexed by x = (x1, x2), where x1 ∈ [s] and x2 ∈ [mx1 ]; the columns of B are
indexed by y = (y1, y2), where y1 ∈ [t] and y2 ∈ [ny1 ]. We have, for all x,y,

Bx,y = B(x1,x2),(y1,y2) = μx1νy1Sx,y,

where S = {Sx,y} is an m × n matrix in which every entry is a power of ωN :

B =

⎛
⎜⎜⎜⎝

μ1Im1

μ2Im2

. . .

μsIms

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

S(1,∗),(1,∗) S(1,∗),(2,∗) . . . S(1,∗),(t,∗)
S(2,∗),(1,∗) S(2,∗),(2,∗) . . . S(2,∗),(t,∗)

...
...

. . .
...

S(s,∗),(1,∗) S(s,∗),(2,∗) . . . S(s,∗),(t,∗)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ν1In1

ν2In2

. . .

νtInt

⎞
⎟⎟⎟⎠,

where Ik denotes the k × k identity matrix.
We let

I =
⋃

i∈[s]

{
(i, j) : j ∈ [mi]

}
and J =

⋃

i∈[t]

{
(i, j) : j ∈ [ni]

}
,

respectively. We use {0}× I to index the first m rows (or columns) of A and {1}× J
to index the last n rows (or columns) of A. Given x ∈ I and j ∈ [t], we let

Sx,(j,∗) =
(
Sx,(j,1), . . . , Sx,(j,nj)

)
∈ Cnj

denote the jth block of the xth row vector of S. Similarly, given y ∈ J and i ∈ [s],

S(i,∗),y =
(
S(i,1),y, . . . , S(i,mi),y

)
∈ Cmi

denotes the ith block of the yth column vector of S.
Lemma 8.5. Suppose (A, (N,μ,ν,m,n)) satisfies (S1). Then either EVAL(A) is

#P-hard, or (A, (N,μ, ν,m,n)) satisfies the following two conditions:
(S2) For all x,x′ ∈ I, either there exists an integer k such that Sx,∗ = ωk

N · Sx′,∗
or for every j ∈ [t], 〈Sx,(j,∗),Sx′,(j,∗)〉 = 0.

(S3) For all y,y′ ∈ J , either there exists an integer k such that S∗,y = ωk
N · S∗,y′

or for every i ∈ [s], 〈S(i,∗),y,S(i,∗),y′〉 = 0.
Proof. Assume EVAL(A) is not #P-hard. We prove (S2) here. (S3) is similar.
Let G = (V, E) be an undirected graph. We construct a new graph G[p] for each

p ≥ 1 by replacing every edge uv in E with a gadget shown in Figure 8.1. Formally
we define graph G[p] = (V [p], E[p]) as

V [p] = V ∪
{
ae, be : e ∈ E

}
,

and E[p] contains the following edges: For each e = uv ∈ E, add

 v u

pN-1  edges 

1  edge be

a e

Fig. 8.1. Gadget for constructing graph G[p], p ≥ 1.
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1. one edge (u, ae) and (be, v) and
2. (pN − 1) parallel edges (ae, v) and (u, be).

The construction of G[p] gives us an (m + n) × (m + n) matrix A[p] such that

ZA[p](G) = ZA(G[p]) for all undirected graphs G.

Thus, we have EVAL(A[p]) ≤ EVAL(A), and EVAL(A[p]) is also not #P-hard.
The entries of A[p] are as follows. First,

A
[p]
(0,u),(1,v) = A

[p]
(1,v),(0,u) = 0 for all u ∈ I and v ∈ J .

So A[p] is a block diagonal matrix with two blocks of m × m and n × n, respectively.
The entries in the upper-left m × m block are

A
[p]
(0,u),(0,v) =

(∑

a∈J
A(0,u),(1,a)(A(0,v),(1,a))

pN−1
)(∑

b∈J
(A(0,u),(1,b))

pN−1A(0,v),(1,b)

)

=

(∑

a∈J
Bu,a(Bv,a)

pN−1
)(∑

b∈J
(Bu,b)pN−1Bv,b

)

for all u,v ∈ I. The first factor of the last expression is
∑

a∈J
μu1νa1Su,a(μv1νa1)

pN−1Sv,a = μu1μ
pN−1
v1

∑

i∈[t]
νpN
i 〈Su,(i,∗),Sv,(i,∗)〉.

Similarly, we have for the second factor
∑

b∈J
(Bu,b)pN−1Bv,b = μpN−1

u1
μv1

∑

i∈[t]
νpN
i 〈Su,(i,∗),Sv,(i,∗)〉.

As a result, we have

A
[p]
(0,u),(0,v) = (μu1μv1)

pN

∣∣∣∣∣∣
∑

i∈[t]
νpN
i 〈Su,(i,∗),Sv,(i,∗)〉

∣∣∣∣∣∣

2

.

It is clear that the upper-left m × m block of A[p] is nonnegative. This holds for its
lower-right n × n block as well, so A[p] is a nonnegative matrix.

Now let u �= v be two indices in I (if |I| = 1, (S2) is trivially true); then we have

A
[p]
(0,u),(0,u)A

[p]
(0,v),(0,v) = (μu1μv1)

2pN

⎛
⎝∑

i∈[t]
ni · νpN

i

⎞
⎠

4

,

which is positive, and

A
[p]
(0,u),(0,v)A

[p]
(0,v),(0,u) = (μu1μv1)

2pN

∣∣∣∣∣∣
∑

i∈[t]
νpN
i 〈Su,(i,∗),Sv,(i,∗)〉

∣∣∣∣∣∣

4

.

Since EVAL(A[p]) is not #P-hard, by Bulatov and Grohe (Corollary 2.6),

(8.4)

∣∣∣∣∣∣
∑

i∈[t]
νpN
i 〈Su,(i,∗),Sv,(i,∗)〉

∣∣∣∣∣∣
∈

⎧
⎨
⎩0,

∑

i∈[t]
ni · νpN

i

⎫
⎬
⎭ .
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On the other hand, the following inequality always holds: For any p ≥ 1,

(8.5)

∣∣∣∣∣∣
∑

i∈[t]
νpN
i · 〈Su,(i,∗),Sv,(i,∗)〉

∣∣∣∣∣∣
≤
∑

i∈[t]
ni · νpN

i .

For the equality of (8.5) to hold, S must satisfy |〈Su,(i,∗),Sv,(i,∗)〉| = ni for all i ∈ [t]

and thus Su,(i,∗) = (ωN )ki · Sv,(i,∗) for some ki ∈ [0 : N − 1]. Furthermore, these ki’s
must be the same. As a result, Su,∗ and Sv,∗ are linearly dependent, which contradicts
our assumption. It then follows from (8.4) that

∑

i∈[t]
νpN
i 〈Su,(i,∗),Sv,(i,∗)〉 = 0 for all p ≥ 1.

As ν1, . . . , νt is strictly decreasing, these equations form a Vandermonde system. It
follows that 〈Su,(i,∗),Sv,(i,∗)〉 = 0 for all i ∈ [t]. This finishes the proof of (S2).

We have the following corollary.
Corollary 8.6. For all i ∈ [s] and j ∈ [t], the rank of the (i, j)th block matrix

S(i,∗),(j,∗) of S has the same rank as S.
Proof. Without loss of generality, we prove rank(S(1,∗),(1,∗)) = rank(S).
First, we use Lemma 8.5 to show that

rank

⎛
⎜⎝

S(1,∗),(1,∗)
...

S(s,∗),(1,∗)

⎞
⎟⎠ = rank(S).

To see this, we take any h = rank(S) rows of S which are linearly independent. Since
any two of them Sx,(∗,∗) and Sy,(∗,∗) are linearly independent, by condition (S2), the
two subvectors Sx,(1,∗) and Sy,(1,∗) are orthogonal. Therefore, the corresponding h
rows of the matrix on the left-hand side are pairwise orthogonal, and the left-hand
side is at least h. Of course it cannot be larger than h, so it is equal to h.

By using condition (S3), we can similarly show that

rank(S(1,∗),(1,∗)) = rank

⎛
⎜⎝

S(1,∗),(1,∗)
...

S(s,∗),(1,∗)

⎞
⎟⎠ .

As a result, we have rank(S(1,∗),(1,∗)) = rank(S).
Now suppose h = rank(S). Then by Corollary 8.6, there must exist indices

1 ≤ i1 < · · · < ih ≤ m1 and 1 ≤ j1 < · · · < jh ≤ n1 such that the {(1, i1), . . . , (1, ih)}×
{(1, j1), . . . , (1, jh)} submatrix of S has full rank h. Without loss of generality (if this
is not true, we can apply an appropriate permutation Π to the rows and columns of
A so that the new S has this property) we assume ik = k and jk = k for all k ∈ [h].
We use H to denote this h × h matrix: Hi,j = S(1,i),(1,j).

By Corollary 8.6 and Lemma 8.5, for every index x ∈ I, there exists a unique
pair of integers j ∈ [h] and k ∈ [0 : N − 1] such that

(8.6) Sx,∗ = ωk
N · S(1,j),∗.

This gives us a partition of index set {0} × I:

R0 =
{
R(0,i,j),k : i ∈ [s], j ∈ [h], k ∈ [0 : N − 1]

}
.
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For every x ∈ I, (0,x) ∈ R(0,i,j),k if i = x1 and x, j, k satisfy (8.6). By Corollary 8.6,

⋃

k∈[0:N−1]
R(0,i,j),k �= ∅ for all i ∈ [s] and j ∈ [h].

Similarly, for every index y ∈ J there exists a unique pair of integers j ∈ [h] and
k ∈ [0 : N − 1] such that

(8.7) S∗,y = ωk
N · S∗,(1,j),

and we partition {1} × J into

R1 =
{
R(1,i,j),k : i ∈ [t], j ∈ [h], k ∈ [0 : N − 1]

}
.

For every y ∈ J , (1,y) ∈ R(1,i,j),k if i = y1 and y, j, k satisfy (8.7). By Corollary 8.6,

⋃

k∈[0:N−1]
R(1,i,j),k �= ∅ for all i ∈ [t] and j ∈ [h].

Now we define (C, D) and use the cyclotomic reduction lemma (Lemma 8.2) to
show that EVAL(C, D) ≡ EVAL(A). First, C is an (s + t)h × (s + t)h matrix which is
the bipartization of an sh × th matrix F. We use the set I ′ ≡ [s] × [h] to index the
rows of F and J ′ ≡ [t] × [h] to index the columns of F. We have

Fx,y = μx1νy1Hx2,y2 = μx1νy1S(1,x2),(1,y2) for all x ∈ I ′, y ∈ J ′,

or equivalently,

F =

⎛
⎜⎜⎜⎝

μ1I
μ2I

. . .

μsI

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

H H . . . H
H H . . . H
...

...
. . .

...
H H . . . H

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ν1I
ν2I

. . .

νtI

⎞
⎟⎟⎟⎠ ,

where I is the h × h identity matrix. We use ({0}× I ′) ∪ ({1}× J ′) to index the rows
and columns of C.

Second, D = (D[0], . . . ,D[N−1]) is a sequence of N diagonal matrices of the same
size as C. We use {0}×I ′ to index the first sh entries and {1}×J ′ to index the last th
entries. The (0,x)th entries of D are generated by (|R(0,x1,x2),0|, . . . , |R(0,x1,x2),N−1|),
and the (1,y)th entries of D are generated by (|R(1,y1,y2),0|, . . . , |R(1,y1,y2),N−1|):

D
[r]
(0,x) =

N−1∑

k=0

∣∣R(0,x1,x2),k

∣∣ · ωkr
N and D

[r]
(1,y) =

N−1∑

k=0

∣∣R(1,y1,y2),k

∣∣ · ωkr
N

for all r ∈ [0 : N − 1],x = (x1, x2) ∈ I ′, and y = (y1, y2) ∈ J ′.
This finishes the construction of (C, D), and we prove the following lemma.
Lemma 8.7. EVAL(A) ≡ EVAL(C, D).
Proof. First we show that A can be generated from C using R0 ∪ R1.
Let x,x′ ∈ I, (0,x) ∈ R(0,x1,j),k, and (0,x′) ∈ R(0,x′

1,j
′),k′ . Then we have

A(0,x),(0,x′) = C(0,x1,j),(0,x′
1,j

′) = 0,
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since A and C are the bipartizations of B and F, respectively. Therefore,

A(0,x),(0,x′) = C(0,x1,j),(0,x′
1,j

′) · ωk+k′

N

holds trivially. Clearly, this also holds for the lower-right n × n block of A.
Let x ∈ I, (0,x) ∈ R(0,x1,j),k, y ∈ J , and (1,y) ∈ R(1,y1,j′),k′ for some j, k, j′, k′.

By (8.6) and (8.7), we have

A(0,x),(1,y) = μx1νy1Sx,y = μx1νy1S(1,j),y · ωk
N

= μx1νy1S(1,j),(1,j′) · ωk+k′

N = C(0,x1,j),(1,y1,j′) · ωk+k′

N .

A similar equation also holds for the lower-left block. Thus, A can be generated from
C using R0 ∪ R1. Moreover, the construction of D implies that D can be generated
from the partition R0 ∪ R1. The lemma then follows directly from the cyclotomic
reduction lemma.

Before moving forward to the next step, we summarize our progress so far. We
showed that EVAL(A) is either #P-hard or equivalent to EVAL(C, D), where the pair
(C, D) satisfies the following conditions (Shape1)–(Shape3):

(Shape1) C ∈ Cm×m (note that the m here is different from the m used at the
beginning of Step 2.1) is the bipartization of an sh × th matrix F (so m = (s + t)h).
F is an s × t block matrix. We use I = [s] × [h] and J = [t] × [h] to index the rows
and columns of F, respectively.

(Shape2) There are two strictly decreasing sequences μ = (μ1, . . . , μs) and ν =
(ν1, . . . , νt) of positive rational numbers. There is also an h × h full-rank matrix H
whose entries are all powers of ωN for some positive integer N . Entries of F can be
expressed using μ,ν, and H explicitly as follows:

Fx,y = μx1νy1Hx2,y2 for all x ∈ I and y ∈ J .

(Shape3) D = (D[0], . . . ,D[N−1]) is a sequence of m × m diagonal matrices. We
use ({0} × I) ∪ ({1} × J) to index the rows and columns of matrices C and D[r]. D
satisfies (T3), so for all r ∈ [N − 1], x ∈ [s] × [h], and y ∈ [t] × [h],

D
[r]
(0,x) = D

[N−r]
(0,x) and D

[r]
(1,y) = D

[N−r]
(1,y) .

8.3. Step 2.2. In Step 2.2, we prove the following lemma.
Lemma 8.8. Either EVAL(C, D) is #P-hard or H and D[0] satisfy the following

two conditions:
(Shape4) (1/

√
h) · H is a unitary matrix, i.e.,

〈Hi,∗,Hj,∗〉 = 〈H∗,i,H∗,j〉 = 0 for all i �= j ∈ [h].

(Shape5) D[0] satisfies, for all x ∈ I and for all y ∈ J ,

D
[0]
(0,x) = D

[0]
(0,(x1,1))

and D
[0]
(1,y) = D

[0]
(1,(y1,1))

.

Proof. We rearrange the entries of D[0] indexed by {1} × J into a t × h matrix

Xi,j = D
[0]
(1,(i,j)) for all i ∈ [t] and j ∈ [h]

and rearrange its entries indexed by {0} × I into an s × h matrix

Yi,j = D
[0]
(0,(i,j)) for all i ∈ [s] and j ∈ [h].
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Note that by condition (T3), all entries of X and Y are positive integers.
The proof has two stages. First, we show in Lemma 8.9 that either EVAL(C, D)

is #P-hard or H,X, and Y must satisfy

〈Hi,∗ ◦ Hj,∗,Xk,∗〉 = 0 for all k ∈ [t] and i �= j ∈ [h] and(8.8)

〈H∗,i ◦ H∗,j,Yk,∗〉 = 0 for all k ∈ [s] and i �= j ∈ [h].(8.9)

We use U to denote the set of h-dimensional vectors that are orthogonal to

H1,∗ ◦ H2,∗, H1,∗ ◦ H3,∗, . . . , H1,∗ ◦ Hh,∗.

The above set of h − 1 vectors is linearly independent. This is because

h∑

i=2

ai

(
H1,∗ ◦ Hi,∗

)
= H1,∗ ◦

(
h∑

i=2

aiHi,∗

)
,

and if
∑h

i=2 ai(H1,∗ ◦ Hi,∗) = 0, then
∑h

i=2 aiHi,∗ = 0 since all entries of H1,∗ are
nonzero. Because H has full rank, we have ai = 0, i = 2, . . . , h. As a result, U is a
linear space of dimension 1 over C.

Second, we show in Lemma 8.10 that, assuming (8.8) and (8.9), either

〈Hi,∗ ◦ Hj,∗, (Xk,∗)
2〉 = 0 for all k ∈ [t] and i �= j ∈ [h] and(8.10)

〈H∗,i ◦ H∗,j, (Yk,∗)
2〉 = 0 for all k ∈ [s] and i �= j ∈ [h],(8.11)

or EVAL(C, D) is #P-hard. Here we use (Xk,∗)2 to denote Xk,∗ ◦ Xk,∗.
Equations (8.8) and (8.10) then imply that both Xk,∗ and (Xk,∗)2 are in U and

thus they are linearly dependent (since the dimension of U is 1). On the other hand,
by (T3), every entry in Xk,∗ is a positive integer. Therefore, Xk,∗ must have the form
u · 1 for some positive integer u. The same argument works for Yk,∗ and the latter
must also have the form u′ · 1. By (8.8) and (8.9), this further implies that

〈Hi,∗,Hj,∗〉 = 0 and 〈H∗,i,H∗,j〉 = 0 for all i �= j ∈ [h].

This finishes the proof of Lemma 8.8.
Now we proceed to the two stages of the proof. In the first stage, we prove the

following.
Lemma 8.9. Either H,X,Y satisfy (8.8) and (8.9), or EVAL(C, D) is #P-hard.
Proof. Suppose EVAL(C, D) is not #P-hard; otherwise we are done.
We let D∗ = (D[0], . . . ,D[0]), a sequence of N m × m diagonal matrices in which

every matrix is a copy of D[0] (as in D). It is easy to check that D∗ satisfies condition
(T3). Let G = (V, E) be an undirected graph. For each p ≥ 1, we build a new graph
G[p] = (V [p], E[p]) in the same way as we did in the proof of Lemma 8.5. This gives us
an m × m matrix C[p] such that ZC[p],D∗(G) = ZC,D(G[p]) for all undirected graphs

G. Thus, EVAL(C[p], D∗) ≤ EVAL(C, D), and EVAL(C[p], D∗) is also not #P-hard.
Matrix C[p] is a block matrix with the same block structure as C. The upper-right

and lower-left blocks of C[p] are zero matrices. For x,y ∈ I, we have

C
[p]
(0,x),(0,y) =

(∑

a∈J
Fx,a(Fy,a)

pN−1Xa1,a2

)(∑

b∈J
(Fx,b)pN−1Fy,bXb1,b2

)
.
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From (Shape2) and the fact that all entries of X are positive integers, we can rewrite
the first factor as

μx1(μy1)
pN−1∑

a∈J
(νa1)

pNHx2,a2Hy2,a2Xa1,a2

= μx1(μy1)
pN−1 ∑

a∈[t]
(νa)

pN 〈Hx2,∗ ◦ Hy2,∗,Xa,∗〉.

Similarly, we can rewrite the second factor as

(μx1)
pN−1μy1

∑

a∈[t]
(νa)

pN 〈Hx2,∗ ◦ Hy2,∗,Xa,∗〉.

Since νa > 0 for all a, we have

(8.12) C
[p]
(0,x),(0,y) = (μx1μy1)

pN

∣∣∣∣∣
∑

a∈[t]
(νa)

pN 〈Hx2,∗ ◦ Hy2,∗,Xa,∗〉
∣∣∣∣∣

2

,

so the upper-left block of C[p] is nonnegative. Similarly one can show that the same
holds for its lower-right block. Thus, C[p] is a nonnegative matrix.

Now for any x ∈ I, we have

C
[p]
(0,x),(0,x) = (μx1)

2pN

⎛
⎝∑

a∈[t]
(νa)

pN
∑

b∈[h]
Xa,b

⎞
⎠

2

,

which is positive, and for any x �= y ∈ I, we have

C
[p]
(0,x),(0,x)C

[p]
(0,y),(0,y) = (μx1μy1)

2pN

⎛
⎝∑

a∈[t]
(νa)

pN
∑

b∈[h]
Xa,b

⎞
⎠

4

> 0.

Since EVAL(C[p], D∗) is not #P-hard and (C[p], D∗) satisfies (T ), by the inverse
cyclotomic reduction lemma (Corollary 8.3), we have either

(8.13)
(
C

[p]
(0,x),(0,y)

)2
= C

[p]
(0,x),(0,x)C

[p]
(0,y),(0,y) or C

[p]
(0,x),(0,y) = 0.

We claim that if the former is true, then x2 = y2. This is because, in this case,
∣∣∣∣∣∣
∑

a∈[t]
(νa)

pN 〈Hx2,∗ ◦ Hy2,∗,Xa,∗〉

∣∣∣∣∣∣
=
∑

a∈[t]
(νa)

pN
∑

b∈[h]
Xa,b,

and the norm of 〈Hx2,∗ ◦ Hy2,∗,Xa,∗〉 must be
∑

b∈[h] Xa,b. The inner product, how-

ever, is a sum of Xa,b’s weighted by roots of unity, so the entries of Hx2,∗ ◦Hy2,∗ must
be the same root of unity. Thus, Hx2,∗ and Hy2,∗ are linearly dependent. Since H is
a matrix of full rank, we conclude that x2 = y2. Together with (8.13), we have

∑

a∈[t]
(νa)

pN 〈Hx2,∗ ◦ Hy2,∗,Xa,∗〉 = 0 for all p ≥ 1 and all x2 �= y2,

since the argument is independent of the value of p. These equations form a Van-
dermonde system, and we conclude that 〈Hx2,∗ ◦ Hy2,∗,Xa,∗〉 = 0 for all a ∈ [t]
and all x2 �= y2. This finishes the proof of (8.8). Equation (8.9) can be proved
similarly.
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In the second stage, we prove the following lemma.
Lemma 8.10. Suppose matrices H, X, and Y satisfy both (8.8) and (8.9). Then

either they also satisfy (8.10) and (8.11) or EVAL(C, D) is #P-hard.
Proof. We will only prove (8.11). Equation (8.10) can be proved similarly.
Again, we let D∗ denote a sequence of N m × m diagonal matrices in which each

matrix is a copy of D[0] (so D∗ satisfies (T3)). Note that the matrix C[1] we used in
the proof of Lemma 8.9 satisfies the following property: When x2 = y2, by (8.12),

C
[1]
(0,x),(0,y) = (μx1μy1)

N

⎛
⎝∑

a∈[t]
(νa)

N
∑

b∈[h]
Xa,b

⎞
⎠

2

,

and this is equal to 0 when x2 �= y2. Let L denote the second factor on the right-hand
side, which is independent of x and y, so the right-hand side becomes (μx1μy1)

NL.
Additionally, because of (8.9), we have that Yk,∗ and Y1,∗ are linearly dependent

for every k. Thus, for every k ∈ [s], there exists a positive, rational λk such that

(8.14) Yk,∗ = λk · Y1,∗.

Because of this, we only need to prove (8.11) for the case when k = 1.
Now we start the proof of (8.11). Suppose EVAL(C, D) is not #P-hard. We use

G = (V, E) to denote an undirected graph; then for each p ≥ 1, we build a new graph
G(p) = (V (p), E(p)) by replacing every edge e = uv ∈ E with a gadget that is shown
in Figure 8.2. More exactly, we define G(p) = (V (p), E(p)) as

V (p) = V ∪
{
ae, be, ce, de, a

′
e, b
′
e, c
′
e, d
′
e : e ∈ E

}
,

and E(p) contains exactly the following edges: For every edge e = uv ∈ E, add
1. one edge (u, ae), (a

′
e, v), (ce, be), (de, ae), (c

′
e, b
′
e), and (d′e, a

′
e);

2. pN − 1 parallel edges between (ae, v) and (u, a′e);
3. N − 1 parallel edges between (ae, ce), (be, de), (a

′
e, c
′
e), and (b′e, d

′
e).

It is easy to check that the degree of every vertex in G(p) is a multiple of N .
Moreover, the construction of G(p) gives us a new m × m matrix R(p), which

is symmetric since the gadget is symmetric, such that ZR(p),D∗(G) = ZC,D(G(p)) for

all G. Thus, EVAL(R(p), D∗) ≤ EVAL(C, D), and EVAL(R(p), D∗) is also not #P-hard.

 v u

p N - 1  e d g e s 

1   e d g e 

a ' 

a e

ce d e

be

e

b ' e

c ' e d ' e

  N - 1  e d g e s  

Fig. 8.2. Gadget for constructing G(p), p ≥ 1.
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Moreover, R(p) is a block matrix which has the same block structure as C. The
upper-right and lower-left blocks of R(p) are zero matrices. The entries in its lower-
right block are as follows: For x,y ∈ J ,

R
(p)
(1,x),(1,y) =

( ∑

a,b∈I
Fa,x(Fa,y)pN−1C [1]

(0,a),(0,b)Ya1,a2Yb1,b2

)

×
( ∑

a,b∈I
(Fa,x)pN−1Fa,yC

[1]
(0,a),(0,b)Ya1,a2Yb1,b2

)
.

Recall that C
[1]
(0,a),(0,b) = 0 when a2 �= b2. From (8.14), Ya1,a2Yb1,b2 = λa1λb1Y1,a2Y1,b2 .

As a result, we can simplify the first factor to be

νx1(νy1)
pN−1L

∑

a,b∈I,a2=b2

(μa1)
pNHa2,x2Ha2,y2(μa1μb1)

Nλa1λb1Y1,a2Y1,b2

= νx1(νy1)
pN−1L

∑

a1,b1∈[s]
(μa1)

(p+1)N (μb1)
Nλa1λb1

∑

a2∈[h]
Ha2,x2Ha2,y2(Y1,a2)

2

= νx1(νy1)
pN−1L′ · 〈H∗,x2 ◦ H∗,y2 , (Y1,∗)

2〉,

where

L′ = L
∑

a1,b1∈[s]
(μa1)

(p+1)N (μb1)
Nλa1λb1

is positive and is independent of x,y. Similarly, the second factor becomes

(νx1)
pN−1νy1L

′ · 〈H∗,x2 ◦ H∗,y2, (Y1,∗)2〉.

As a result, we have

R
(p)
(1,x),(1,y) = (L′)2 · (νx1νy1)

pN ·
∣∣∣〈H∗,x2 ◦ H∗,y2 , (Y1,∗)

2〉
∣∣∣
2

.

Thus the lower-right block of R(p) is nonnegative. Similarly, one can prove that the
same holds for its upper-left block, so R(p) is nonnegative.

We apply Corollary 8.3 to (R(p), D∗). As EVAL(R(p), D∗) is not #P-hard, either

(
R

(p)
(1,x),(1,y)

)2
= R

(p)
(1,x),(1,x)R

(p)
(1,y),(1,y) or R

(p)
(1,x),(1,y) = 0 for any x �= y ∈ J .

We claim that if the former is true, then x2 = y2. This is because, in this case,
∣∣∣〈H∗,x2 ◦ H∗,y2 , (Y1,∗)

2〉
∣∣∣ =

∑

i∈[h]
Y 2
1,i.

However, the left-hand side is a sum of (Y1,i)
2, which are positive integers, weighted

by roots of unity. To sum to a number of norm
∑

i∈[h] Y
2
1,i the entries of H∗,x2 ◦H∗,y2

must be the same root of unity. As a result, H∗,x2 and H∗,y2 are linearly dependent.
Since H is of full rank, we conclude that x2 = y2. In other words, we have shown that

〈H∗,x2 ◦ H∗,y2 , (Y1,∗)
2〉 = 0 for all x2 �= y2.

By combining it with (8.14), we have finished the proof of (8.11).
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8.4. Step 2.3. Now we get a pair (C, D) that satisfies (Shape1)–(Shape5) since
otherwise, by Lemma 8.8, EVAL(C, D) is #P-hard and we are done.

In particular, by using (Shape5), we define two diagonal matrices K[0] and L[0]

as follows. K[0] is an (s + t) × (s + t) diagonal matrix. We use (0, i), i ∈ [s], to index
its first s rows and (1, j), j ∈ [t], to index its last t rows. Its diagonal entries are

K
[0]
(0,i) = D

[0]
(0,(i,1)) and K

[0]
(1,j) = D

[0]
(1,(j,1)) for all i ∈ [s] and j ∈ [t].

L[0] is the 2h × 2h identity matrix. We use (0, i), i ∈ [h], to index its first h rows and
(1, j), j ∈ [h], to index its last h rows. By (Shape5), we have

(8.15) D
[0]
(0,x) = K

[0]
(0,x1)

· L
[0]
(0,x2)

and D
[0]
(1,y) = K

[0]
(1,y1)

· L[0]
(1,y2)

for all x ∈ I and y ∈ J , or equivalently,

(8.16) D[0] =

(
D

[0]
(0,∗)

D
[0]
(1,∗)

)
=

(
K

[0]
(0,∗) ⊗ L

[0]
(0,∗)

K
[0]
(1,∗) ⊗ L

[0]
(1,∗)

)
.

The goal of Step 2.3 is to prove a similar statement for D[r], r ∈ [N − 1], and these
equations will allow us in Step 2.4 to decompose EVAL(C, D) into two subproblems.

In the proof of Lemma 8.8, we crucially used the property (from (T3)) that all the
diagonal entries of D[0] are positive integers. However, for r ≥ 1, (T3) only gives us
some very weak properties about D[r]. For example, the entries are not guaranteed
to be real numbers. So the proof that we are going to present here is more difficult.
We prove the following lemma.

Lemma 8.11. Let (C, D) be a pair that satisfies (Shape1)–(Shape5). Then either
EVAL(C, D) is #P-hard or it satisfies the following additional condition:

(Shape6) There exist diagonal matrices K[0] and L[0] such that D[0],K[0], and
L[0] satisfy (8.16). Every entry of K[0] is a positive integer, and L[0] is the 2h × 2h
identity matrix. For each r ∈ [N −1], there exist two diagonal matrices K[r] and L[r].
K[r] is an (s + t) × (s + t) matrix, and L[r] is a 2h × 2h matrix. We index K[r] and
L[r] in the same way we index K[0] and L[0], respectively. Then

D[r] =

(
D

[r]
(0,∗)

D
[r]
(1,∗)

)
=

(
K

[r]
(0,∗) ⊗ L

[r]
(0,∗)

K
[r]
(1,∗) ⊗ L

[r]
(1,∗)

)
.

Moreover, the norm of every entry in L[r] is either 0 or 1, and for any r ∈ [N − 1],

K
[r]
(0,∗) = 0 ⇐⇒ L

[r]
(0,∗) = 0 and K

[r]
(1,∗) = 0 ⇐⇒ L

[r]
(1,∗) = 0;

L
[r]
(0,∗) �= 0 =⇒ ∃ i ∈ [h], L

[r]
(0,i) = 1 and L

[r]
(1,∗) �= 0 =⇒ ∃ i ∈ [h], L

[r]
(1,i) = 1.

We now present the proof of Lemma 8.11. Fix an r ∈ [N − 1] to be any index.
We use the following notation. Consider the diagonal matrix D[r]. It has two parts:

D
[r]
(0,∗) ∈ Csh×sh and D

[r]
(1,∗) ∈ Cth×th.

The first part has s blocks, where each block is a diagonal matrix with h entries. We
will rearrange the entries indexed by (0, ∗) into another s×h matrix, which we denote
as D (just as we did with D[0] in the proof of Lemma 8.8), where

Di,j = D
[r]
(0,(i,j)) for all i ∈ [s] and j ∈ [h].

We prove the following lemma in section 8.4.2.
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Lemma 8.12. Either problem EVAL(C, D) is #P-hard, or we have (1) rank(D) ≤
1 and (2) for each i ∈ [s], all nonzero entries of Di,∗ have the same norm.

Proof of Lemma 8.11. We start with the first half, that is,

(8.17) D
[r]
(0,∗) = K

[r]
(0,∗) ⊗ L

[r]
(0,∗).

Assume D
[r]
(0,∗) is nonzero; otherwise the lemma is true by setting K

[r]
(0,∗) = L

[r]
(0,∗) = 0.

As a result, we know that D �= 0.
Let Da,b be a nonzero entry of D, where a ∈ [s] and b ∈ [h]. From Lemma 8.12,

the rank of D is 1, so Di,∗ = (Di,b/Da,b) · Da,∗ for any i ∈ [s]. By setting

K
[r]
(0,i) = Di,b and L

[r]
(0,j) =

Da,j

Da,b
,

we have

D
[r]
(0,(i,j)) = Di,j = K

[r]
(0,i) · L[r]

(0,j) for all i ∈ [s] and j ∈ [h],

and (8.17) follows. The second half can be proved similarly.
One can also check that K[r] and L[r] satisfy all the properties stated in (Shape6).

This finishes the proof of Lemma 8.11 (assuming Lemma 8.12).

8.4.1. The vanishing lemma. We need the following lemma in the proof of
Lemma 8.12.

Lemma 8.13 (vanishing lemma). Let k be a positive integer and let (xi,n)n≥1, for
1 ≤ i ≤ k, be k infinite sequences of nonzero real numbers. For notational uniformity
we also denote by (x0,n)n≥1 the sequence where x0,n = 1 for all n ≥ 1. Suppose

lim
n→∞

xi+1,n

xi,n
= 0 for 0 ≤ i < k.

Part A. Let ai and bi ∈ C for 0 ≤ i ≤ k. Suppose for some � ∈ [k], ai = bi for all
0 ≤ i < �; a0 = b0 = 1; and Im(a�) = Im(b�). If for infinitely many n,

∣∣∣∣∣
k∑

i=0

aixi,n

∣∣∣∣∣ =
∣∣∣∣∣

k∑

i=0

bixi,n

∣∣∣∣∣ ,

then we have a� = b�.
Part B. Let ai ∈ C for 0 ≤ i ≤ k. If for infinitely many n,

∣∣∣∣∣
k∑

i=0

aixi,n

∣∣∣∣∣ = 0,

then we have ai = 0 for all 0 ≤ i ≤ k.
Proof. We first prove Part B, which is simpler. Taking n → ∞ (technically

we take a subsequence of n approaching ∞ where the equality holds, and the same
below), we get a0 = 0. Since x1,n �= 0, we can divide out |x1,n| and get for infinitely
many n,

∣∣∣∣∣
k∑

i=1

aixi,n

/
x1,n

∣∣∣∣∣ = 0.

Now the result follows by induction.
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Next we prove Part A. Multiplying by its conjugate, we get

(
k∑

i=0

aixi,n

)⎛
⎝

k∑

j=0

ajxj,n

⎞
⎠ =

(
k∑

i=0

bixi,n

)⎛
⎝

k∑

j=0

bjxj,n

⎞
⎠ .

Every term involves a product xi,nxj,n. If max{i, j} < �, then the terms

aiajxi,nxj,n = bibjxi,nxj,n

and they cancel (since ai = bi and aj = bj). If max{i, j} > �, then both aiajxi,nxj,n

and bibjxi,nxj,n are o(|x�,n|) as n → ∞. This is also true when max{i, j} = � and
min{i, j} > 0. The remaining terms correspond to max{i, j} = � and min{i, j} = 0.
After canceling out identical terms, we get

(a� + a�)x�,n + o(|x�,n|) = (b� + b�)x�,n + o(|x�,n|)

as n → ∞. Dividing out x�,n and then taking limit n → ∞, we get Re(a�) = Re(b�).
It follows that a� = b� since Im(a�) = Im(b�).

We also remark that Part A of the vanishing lemma above cannot be extended
to arbitrary sequences {ai} and {bi} without the condition that Im(a�) = Im(b�), as
shown by the following example: Let

a1 = 3 +
√

3i, a2 = 3

(
1

2
+

√
3

2
i

)
, and b1 = b2 = 3.

Then |1+a1x+a2x
2| = |1+b1x+b2x

2| is an identity for all real values x. In particular
this holds when x → 0. We note that a1 �= b1.

8.4.2. Proof of Lemma 8.12. Without loss of generality, we assume 1 = μ1 >
· · · > μs > 0 and 1 = ν1 > · · · > νt > 0. (Otherwise, we can multiply C by an
appropriate scalar so that the new C has this property. This operation clearly does
not affect the complexity of EVAL(C, D).) We assume EVAL(C, D) is not #P-hard.

Again we let D∗ denote a sequence of N m ×m diagonal matrices in which every
matrix is a copy of the matrix D[0] in D (so D∗ satisfies (T3). Recall that r is a fixed
index in [N − 1], and recall the definition of the s × h matrix D from D[r].

Let G = (V, E) be an undirected graph. For each n ≥ 1, we build a new graph
G[n] by replacing each edge uv ∈ E with a gadget shown in Figure 8.3. More exactly,
we define G[n] as follows. Let pn = n2N + 1 and qn = nN − 1. (When n → ∞, qn
will be arbitrarily large, and for a given qn, pn will be arbitrarily larger.) Then

V [n] = V ∪
{
ae, xe,i, ye,i, be, ce, a

′
e, x
′
e,i, y

′
e,i, b

′
e, c
′
e : e ∈ E, i ∈ [r]

}
,

and E[n] contains exactly the following edges: For every edge e = uv ∈ E, add
1. one edge (u, ae), (v, a′e), (ae, ye,i), and (a′e, y

′
e,i) for all i ∈ [r];

2. N − 1 parallel edges (v, ae), (u, a′e), (ae, xe,i), and (a′e, x
′
e,i) for all i ∈ [r];

3. pn parallel edges (be, xe,i) and (b′e, x
′
e,i) for all i ∈ [r];

4. qn parallel edges (ce, ye,i) and (c′e, y
′
e,i) for all i ∈ [r].

It is easy to check that the degree of every vertex in G[n] is a multiple of N except for
be and b′e, which have degree r mod N , and ce and c′e, which have degree N −r mod N .

Since the gadget is symmetric with respect to vertices u and v, the construction
of G[n] gives us a symmetric m × m matrix R[n] (recall that m = (s + t)h) such that
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 v u

  N - 1 e d g e s 

1           e d g e 

a ' 

a

x1

b

x ' 1

p n e d g e s

xr y1 yr

c

b ' c ' 

y ' r
x ' r y ' 1

    q n e d g e s 

. . . . . . 

. . . . . . 

Fig. 8.3. Gadget for constructing G[n], n ≥ 1. (Note that the subscript e is suppressed.)

ZR[n],D∗(G) = ZC,D(G[n]) for all G. As a result, EVAL(R[n], D∗) ≤ EVAL(C, D), and

we know that EVAL(R[n], D∗) is also not #P-hard.
The entries of R[n] are as follows: For u ∈ I and v ∈ J , the ((0,u), (1,v))th and

((1,u), (0,v))th entries of R[n] are zero. For u,v ∈ J , R
[n]
(1,u),(1,v) is the product of

∑

a,b,c∈I

(∑

x∈J
FN−1
a,x F pn

b,xD
[0]
(1,x)

)r
⎛
⎝∑

y∈J
Fa,yF qn

c,yD
[0]
(1,y)

⎞
⎠

r

Fa,uFN−1
a,v D

[0]
(0,a)D

[r]
(0,b)D

[N−r]
(0,c)

and

∑

a,b,c∈I

(∑

x∈J
FN−1
a,x F pn

b,xD
[0]
(1,x)

)r
⎛
⎝∑

y∈J
Fa,yF qn

c,yD
[0]
(1,y)

⎞
⎠

r

FN−1
a,u Fa,vD

[0]
(0,a)D

[r]
(0,b)D

[N−r]
(0,c) .

We simplify the first sum. By using (Shape2) and (Shape5), we have
∑

x∈J
FN−1
a,x F pn

b,xD
[0]
(1,x) = μN−1

a1
μpn

b1

∑

x∈J
(νx1)

N−1+pnHa2,x2Hb2,x2D
[0]
(1,(x1,1))

= μN−1
a1

μpn

b1

∑

x1∈[t]
(νx1)

N−1+pnD
[0]
(1,(x1,1))

〈Hb2,∗,Ha2,∗〉.(8.18)

Let L denote the following positive number that is independent of u,v, a,b, and c:

L = h ·
∑

x1∈[t]
(νx1)

N−1+pn · D
[0]
(1,(x1,1))

.

By (Shape4), (8.18) is equal to L · μN−1
a1

μpn

b1
if a2 = b2 and 0 otherwise. Similarly,

∑

y∈J
Fa,yF qn

c,yD
[0]
(1,y) = L′ · μa1μ

qn
c1 if a2 = c2

and 0 otherwise, where L′ is a positive number independent of u,v, a,b, and c.
By (Shape3), we have

D
[N−r]
(0,c) = D

[r]
(0,c) = Dc1,c2 .

D
ow

nl
oa

de
d 

12
/1

2/
13

 to
 1

28
.1

05
.1

4.
12

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

968 JIN-YI CAI, XI CHEN, AND PINYAN LU

Combining these equations, the first factor of R
[n]
(1,u),(1,v) becomes

νu1ν
N−1
v1

∑

a∈I,b,c∈[s]

(
L ·μN−1

a1
μpn

b

)r(
L′ ·μa1μ

qn
c

)r
μN
a1

Ha2,u2Ha2,v2D
[0]
(0,(a1,1))

Db,a2Dc,a2 .

Let Z denote the following positive number that is independent of u and v:

Z =
∑

a1∈[s]

(
L · μN−1

a1

)r(
L′ · μa1

)r
μN
a1

D
[0]
(0,(a1,1))

.

Let Pn = rpn and Qn = rqn; then the first factor becomes

Z · νu1ν
N−1
v1

∑

b,c∈[s]
μPn

b μQn
c

∑

a∈[h]
Db,aDc,aHa,u2Ha,v2 .

We can also simplify the second factor so that

R
[n]
(1,u),(1,v) = Z2(νu1νv1)

N

⎛
⎝ ∑

b,c∈[s]
μPn

b μQn
c

∑

a∈[h]
Db,aDc,aHa,u2Ha,v2

⎞
⎠

×

⎛
⎝ ∑

b′,c′∈[s]
μPn

b′ μQn

c′

∑

a∈[h]
Db′,aDc′,aHa,u2Ha,v2

⎞
⎠ .

As EVAL(R[n], D∗) is not #P-hard and (R[n], D∗) satisfies (T ) for all n ≥ 1, the
necessary condition of the inverse cyclotomic reduction lemma (Corollary 8.3) applies
to R[n].

In the proof below, for notational convenience we suppress the index n ≥ 1 and use
P, Q, and R to represent sequences {Pn}, {Qn}, and {R[n]}, respectively. Whenever
we state or prove a property about R, we mean R[n] has this property for any large
enough n (sometimes it holds for all n ≥ 1). Moreover, since we only use the entries
of R[n] indexed by ((1,u), (1,v)) with u1 = v1 = 1, we let Ru,v ≡ R(1,(1,u)),(1,(1,v)) for
all u, v ∈ [h]. As a result, we have (note that ν1 = 1)
(8.19)

Ru,v =Z2

⎛
⎝ ∑

b,c∈[s]
μP
b μQ

c

∑

a∈[h]
Db,aDc,aHa,uHa,v

⎞
⎠
⎛
⎝ ∑

b′,c′∈[s]
μP
b′μ

Q
c′

∑

a∈[h]
Db′,aDc′,aHa,uHa,v

⎞
⎠ .

We will consider the above expression for Ru,v stratified according to the order

of magnitude of μP
b μQ

c μP
b′μ

Q
c′ = (μbμb′)

P (μcμc′)
Q. Because P = Θ(n2) and Q = Θ(n),

when n → ∞, Q is arbitrarily and sufficiently large, and P is further arbitrarily and
sufficiently large compared to Q. Thus, terms are ordered strictly first by μbμb′ and
then by μcμc′ . Inspired by this, we define the following total order ≤μ over

T =
{(

b c
b′ c′

)
: b, b′, c, c′ ∈ [s]

}
.

For T1 and T2 in T , where

T1 =

(
b1 c1
b′1 c′1

)
and T2 =

(
b2 c2
b′2 c′2

)
,
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we have T1 ≤μ T2 if either μb1μb′1
< μb2μb′2

, or μb1μb′1
= μb2μb′2

and μc1μc′1
≤ μc2μc′2

.
For convenience, we denote the entries of a 2 × 2 matrix Ti or T in T by

(
bi ci
b′i c′i

)
or

(
b c
b′ c′

)
,

respectively. Using ≤μ, we divide T into classes T1, T2, . . . , Td ordered from the largest
to the smallest, for some d ≥ 1, such that the following hold:

1. If T1, T2 ∈ Ti, for some i ∈ [d], then μb1μb′1 = μb2μb′2 and μc1μc′1 = μc2μc′2 .
Note that this is an equivalence relation which we denote by ≡μ.

2. If T1 ∈ Ti, T2 ∈ Tj and i < j, then either μb1μb′1 > μb2μb′2 or μb1μb′1 = μb2μb′2
and μc1μc′1 > μc2μc′2 .

For each i ∈ [d], we arbitrarily pick a T ∈ Ti and use Ui to denote μbμb′ and Wi

to denote μcμc′ . (Note that Ui and Wi are independent of the choice of T .) It is clear
that there is exactly one matrix,

(
1 1
1 1

)
, in T1.

Now we can rewrite (8.19) as follows:

(8.20) Ru,v = Z2
∑

i∈[d]
UP
i WQ

i

∑

T∈Ti
Xu,v,T ,

where

Xu,v,T =

⎛
⎝∑

a∈[h]
Db,aDc,aHa,uHa,v

⎞
⎠
⎛
⎝∑

a∈[h]
Db′,aDc′,aHa,uHa,v

⎞
⎠ for T =

(
b c
b′ c′

)
.

Clearly the term with the maximum possible order in the sum (8.20) corresponds
to the choice of T =

(
1 1
1 1

)
∈ T1, since μ1 is strictly maximum among all μ1, . . . , μs.

This is true for every (u, v), and it will be the actual leading term of the sum, provided

the coefficient of UP
1 WQ

1 = μ2P+2Q
1 is nonzero.

Consider the diagonal entries where u = v. First notice that from (8.19), we have

Ru,u = R1,1 for all u ∈ [h]; second, the coefficient of the leading term UP
1 WQ

1 is

Xu,u,(1 1
1 1)

=

⎛
⎝∑

a∈[h]
|D1,a|2

⎞
⎠

2

= ‖D1,∗‖4,

which is, again, independent of u. Without loss of generality, we may assume D1,∗ �= 0;
otherwise, we can remove all terms involving μ1 in (8.19) and μ2 will take its place,
and the proof is completed by induction. (If all Di,∗ = 0, then the statement that D
has rank at most one is trivial.)

Assuming that D1,∗ �= 0, we have Ru,u = R1,1 �= 0 for all u ∈ [h] (and sufficiently
large n). This is because, ignoring the positive factor Z2, the coefficient ‖D1,∗‖4 of

the leading term UP
1 WQ

1 is positive. By using Corollary 8.3, we have the following.
Property 8.14. For all sufficiently large n, |R1,1| > 0 and |Ru,v| ∈ {0, |R1,1|}

for all u, v ∈ [h].
From now on, we focus on u = 1 and let H∗,v = H∗,1 ◦ H∗,v. {H∗,v}v∈[h] forms

an orthogonal basis with each ‖H∗,v‖2 = h. We also denote X1,v,T by Xv,T , so

(8.21) Xv,T =

⎛
⎝∑

a∈[h]
Db,aDc,aHa,v

⎞
⎠
⎛
⎝∑

a∈[h]
Db′,aDc′,aHa,v

⎞
⎠ for T =

(
b c
b′ c′

)
.
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We make three more definitions. Let K = {i ∈ [h] : D1,i �= 0}. By our assumption
K �= ∅. Let A = {v ∈ [h] : for all i, j ∈ K, Hi,v = Hj,v} and B = [h] − A. If |K| = 1,
then A = [h]. The converse is also true, which follows from the fact that {H∗,v}v∈[h]
forms an orthogonal basis. Also since H∗,1 is the all-one vector, 1 ∈ A and A is
nonempty. Moreover, if K = [h], then A = {1}. This again follows from the fact that
{H∗,v} forms an orthogonal basis.

Now we consider the coefficient Xv,T of UP
1 WQ

1 in R1,v, where T =
(
1 1
1 1

)
. For

every v ∈ A, it has norm ‖D1,∗‖4 > 0. Then from Property 8.14 and Part B of the
vanishing lemma the next property follows.

Property 8.15. For any v ∈ A and sufficiently large n, |R1,v| = |R1,1|.
If B �= ∅, then for any v ∈ B, the coefficient of T =

(
1 1
1 1

)
in R1,v is

Xv,T =

(∑

a∈K
|D1,a|2Ha,v

)(∑

a∈K
|D1,a|2Ha,v

)
=

∣∣∣∣∣
∑

a∈K
|D1,a|2Ha,v

∣∣∣∣∣

2

∈ R.

Since we assumed v ∈ B,
∑

a∈K |D1,a|2Ha,v is a sum of positive terms |D1,a|2 weighted
by nonconstant Ha,v, for a ∈ K, each with complex norm 1. Thus its absolute value
must be strictly less than ‖D1,∗‖2, which is only achieved when all Ha,v, for a ∈ K,
are equal to a constant. It follows that Xv,T < ‖D1,∗‖4. Therefore, for v ∈ B (and n
sufficiently large), we have |R1,v| < |R1,1|. By using Property 8.14 and Part B of the
vanishing lemma, we have the following property.

Property 8.16. If v ∈ B, then for all sufficiently large n, R1,v = 0 and thus,
∑

T∈Ti
Xv,T = 0 for all i ∈ [d].

In particular, by applying Property 8.16 to T1 = {
(
1 1
1 1

)
}, we have

∑

a∈K
|D1,a|2Ha,v =

∑

a∈K
|D1,a|2Ha,v = 〈|D1,∗|2, H∗,v〉 = 0 for every v ∈ B,

because |D1,a| is real. Here we use |D1,∗|2 to denote the vector (|D1,1|2, |D1,2|2, . . .).
Furthermore, because {H∗,v} forms an orthogonal basis, |D1,∗|2 must be expressible
as a linear combination of {H∗,v : v ∈ A} over C. From such an expression, we have
|D1,i|2 = |D1,j |2 for all i, j ∈ K, by the definition of K. Since D1,∗ is only nonzero on
K, |D1,i| is a constant on K and D1,i = 0 for any i ∈ [h] − K. (The above proof does
not actually assume B �= ∅; if B = ∅, then A = [h] and by {H∗,v} being an orthogonal
basis, |K| = 1. Then the above statement about D1,∗ is still valid, namely, D1,∗ has
a unique nonzero entry and is zero elsewhere.) We summarize as follows.

Property 8.17. |D1,∗|2 ⊥ H∗,v for all v ∈ B. |D1,∗|2 is constant on K and 0
elsewhere. In particular, the vector χK , which is 1 on K and 0 elsewhere, is in the
span of {H∗,v : v ∈ A} and is orthogonal to all {H∗,v : v ∈ B}.

Our next goal is to show that on K, D2,∗ is a constant multiple of D1,∗. Clearly
if B = ∅, then we have |K| = 1 as noted above and thus it is trivially true that D2,∗
is a constant multiple of D1,∗ on K. So we assume B �= ∅. We now consider

T1 =

(
2 1
1 2

)
and T2 =

(
1 2
2 1

)
.

T1 and T2 belong to the same Tg for some g ∈ [d]. By Property 8.16,
∑

T∈Tg Xv,T = 0

for every v ∈ B. So we focus on terms Xv,T , where T ∈ Tg (i.e., T ≡μ T1). Suppose
T ≡μ T1; then μbμb′ = μ1μ2 and μcμc′ = μ1μ2. Thus, {b, b′} = {c, c′} = {1, 2}, so
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Tg =

{
T1, T2, T3 =

(
1 1
2 2

)
, T4 =

(
2 2
1 1

)}
.

However, due to the presence of a row (1 1), the sum

h∑

a=1

|D1,a|2Ha,v =

h∑

a=1

|D1,a|2Ha,v = 0

for any v ∈ B as shown above. Therefore, the coefficients Xv,T3 , Xv,T4 corresponding
to T3 and T4 are both 0.

We need one more definition: T is of a conjugate-pair form if it is of the form

T =

(
b c
c b

)
.

For a matrix T in conjugate-pair form, the corresponding coefficient

Xv,T =

∣∣∣∣∣
h∑

a=1

Db,aDc,aHa,v

∣∣∣∣∣

2

≥ 0.

The remaining two matrices T1 and T2 in Tg both have this form, so both Xv,T1

and Xv,T2 are nonnegative. Since Xv,T1 + Xv,T2 = 0, Xv,T1 = Xv,T2 = 0. This gives

∑

a∈[h]
D1,aD2,aHa,v = 0 for all v ∈ B.

Hence D1,∗ ◦ D2,∗ ⊥ H∗,v for all v ∈ B. It follows that D1,∗ ◦ D2,∗ can be expressed
as a linear combination of H∗,v over v ∈ A. By the definition of A, this expression
has a constant value on entries indexed by a ∈ K, where |D1,a| is a positive constant.
Therefore, over K, D2,∗ is a constant multiple of D1,∗. This accomplishes our goal
stated above, which we summarize as follows.

Property 8.18. There exists some complex number λ, such that D2,a = λD1,a,
for all a ∈ K.

Let K2 = {i ∈ [h] : D2,i �= 0}. Note that the λ above could be 0, so it is possible
that K �⊂ K2. Our next goal is to show that for every v ∈ A, H∗,v takes a constant
value on K2. This means that for all v ∈ A, Hi,v = Hj,v, for all i, j ∈ K2. Without
loss of generality, we assume D2,∗ �= 0 since otherwise K2 = ∅ and everything below
regarding D2,∗ and regarding H∗,v on K2 is trivially true.

To this end, we consider the matrices in Tg and their corresponding coefficients
Xv,Ti for any v ∈ A. We will apply the more delicate Part A of the vanishing lemma
on R1,v and R1,1 for an arbitrary v ∈ A. Our target is to show that

(8.22)
∑

T∈Tg
Xv,T =

∑

T∈Tg
X1,T for any v ∈ A.

By Property 8.15, |R1,v| = |R1,1| for any sufficiently large n. To apply the vanishing
lemma, we first show that terms that have a higher order of magnitude satisfy

(8.23)
∑

T∈Tg′
Xv,T =

∑

T∈Tg′
X1,T for all 1 ≤ g′ < g and v ∈ A.
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We also need to show that

(8.24) Im

⎛
⎝∑

T∈Tg
Xv,T

⎞
⎠ = Im

⎛
⎝∑

T∈Tg
X1,T

⎞
⎠ .

By definition, every T ≥μ T1 satisfies μbμb′ ≥ μ1μ2. Thus, the first column of T
is either (1 1)T, (1 2)T, or (2 1)T.

First, consider those matrices T ≥μ T1 where each row of T has at least one 1.
For every v ∈ A, the two inner product factors in (8.21), namely,

h∑

a=1

Db,aDc,aHa,v and

h∑

a=1

Db′,aDc′,a Ha,v

must be actually a sum over a ∈ K, since D1,∗ is zero elsewhere. But for a ∈ K, Ha,v

is just a constant αv of norm 1 (a root of unity), independent of a ∈ K. Thus

h∑

a=1

Db,aDc,aHa,v = αv

∑

a∈K
Db,aDc,a and

h∑

a=1

Db′,aDc′,a Ha,v = αv

∑

a∈K
Db′,aDc′,a.

Since αvαv = |αv|2 = 1, it follows that their product is
(

h∑

a=1

Db,aDc,aHa,v

)(
h∑

a=1

Db′,aDc′,aHa,v

)
=

(∑

a∈K
Db,aDc,a

)(∑

a∈K
Db′,aDc′,a

)
,

which is the same as the coefficient X1,T corresponding to T for v0 = 1 ∈ A. So for
all such T , their contributions to R1,v and to R1,1 are the same for any v ∈ A.

Such T ≥μ T1 with at least one 1 in each row include any matrix of the form
(

1 c
1 c′

)
,

(
1 1
2 1

)
, or

(
2 1
1 1

)
.

These exhaust all T >μ T1, and (8.23) follows.
Such T ≥μ T1 also include T1 and T2 in Tg. So Xv,T1 = X1,T1 and Xv,T2 = X1,T2

for any v ∈ A. Now we deal with matrices T3 and T4. We note that the sum of Xv,T3

and Xv,T4 , at any v, is

(8.25)(∑

a∈K
|D1,a|2Ha,v

)(
h∑

a=1

|D2,a|2Ha,v

)
+

(
h∑

a=1

|D2,a|2Ha,v

)(∑

a∈K
|D1,a|2Ha,v

)
,

which is a real number. Equation (8.24) then follows.
Now we can apply Part A of the vanishing lemma, which gives us (8.22). Since

Xv,T1 = X1,T1 and Xv,T2 = X1,T2 , we have

Xv,T3 + Xv,T4 = X1,T3 + X1,T4 = 2 · ‖D1,∗‖2‖D2,∗‖2.
However, this is clearly the maximum possible value of (8.25). (By our assumption,
‖D1,∗‖2‖D2,∗‖2 > 0.) The only way the sum in (8.25) can achieve this maximum
at v ∈ A is for Ha,v to take a constant value βv for all a ∈ K2, and Ha,v to take
a constant value αv for all a ∈ K, for some pair of complex numbers αv and βv of
norm 1. Moreover, by (8.25) we have αvβv + αvβv = 2. It follows that αv = βv.
Therefore, Ha,v is constant on a ∈ K ∪ K2 for each v ∈ A. We summarize it as
follows.
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Property 8.19. For every v ∈ A, there exists a complex number αv of norm 1
such that Ha,v = αv for all a in K ∪ K2.

We eventually want to prove K2 = K. Our next goal is to prove that |D2,∗|2 ⊥
H∗,v for all v ∈ B. Of course if B = ∅, then this is vacuously true. We assume B �= ∅.

For this purpose we will examine

T ∗ =

(
2 2
2 2

)

and the class Tg it belongs to. By Property 8.16, we have

∑

T∈Tg
Xv,T = 0 for any v ∈ B.

Thus we will examine T ∈ Tg, namely, μbμb′ = μcμc′ = μ2
2.

Now there might be some other pair (b, b′) �= (2, 2) such that μbμb′ = μ2
2. If such a

pair exists, it is essentially unique and is of the form (1, s) or (s, 1), where s > 2. Then
Tg consists of precisely the following matrices, namely, each column must be either
(2 2)T, (s 1)T, or (1 s)T. Let’s examine such a matrix T in more detail. Suppose
T ∈ Tg has a row that is either (1 1) or (1 2) or (2 1). Then,

Xv,T =

(
h∑

a=1

Db,aDc,aHa,v

)(
h∑

a=1

Db′,aDc′,a Ha,v

)
= 0 for any v ∈ B.

This is because of the following: The presence of D1,∗ restricts the sum to a ∈ K.
By Property 8.17, we know that for every v ∈ B, |D1,∗|2 ⊥ H∗,v. Moreover, on set
K, we know from Property 8.18 that both vectors D1,∗ ◦D2,∗ and D1,∗ ◦D2,∗ can be
replaced by a constant multiple of the vector |D1,∗|2 (the constant could be 0) and
thus also perpendicular to H∗,v (and to H∗,v).

Now suppose T is a matrix in Tg, and yet it does not have a row which is either
(1 1) or (1 2) or (2 1). It is easy to check that the only cases are

T ∗ =

(
2 2
2 2

)
, T1 =

(
1 s
s 1

)
, and T2 =

(
s 1
1 s

)
.

Thus, Xv,T∗ + Xv,T1 + Xv,T2 = 0 for all v ∈ B. However, as noted above, all three
matrices T ∗, T1, and T2 have the conjugate-pair form, so their contributions

∣∣∣∣∣
h∑

a=1

D2,aD2,aHa,v

∣∣∣∣∣

2

,

∣∣∣∣∣
h∑

a=1

D1,aDs,aHa,v

∣∣∣∣∣

2

, and

∣∣∣∣∣
h∑

a=1

Ds,aD1,aHa,v

∣∣∣∣∣

2

are all nonnegative. It follows that all three sums are zero. In particular, from Xv,T∗

we get |D2,∗|2 ⊥ H∗,v for all v ∈ B.
It follows that the vector |D2,∗|2 is in the span of {H∗,v : v ∈ A}. This linear

combination produces a constant value at any entry |D2,a|2 for a ∈ K ∪ K2. This is
because each vector H∗,v for v ∈ A has this property by Property 8.19.

As we assumed D2,∗ �= 0, and D2,∗ is 0 outside of K2 (by the definition of K2),
this constant value produced at each entry |D2,a|2 for a ∈ K ∪ K2 must be nonzero.
In particular, D2,a �= 0 at a ∈ K. It follows that K ⊆ K2. It also implies that the
vector, which is 1 on K ∪ K2 = K2 and 0 elsewhere, is in the span of {H∗,v : v ∈ A}.
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Next we prove that K = K2, by showing that |K| = |K2| (since we already know
K ⊆ K2). Let χK denote the h-dimensional characteristic vector for K, which is 1
for any index a ∈ K and 0 elsewhere. Similarly, we denote by χK2 the characteristic
vector for K2. Both vectors χK and χK2 are in the linear span of {H∗,v : v ∈ A}.
Write χK =

∑
v∈A xvH∗,v, where xv ∈ C; then

xv‖H∗,v‖2 = 〈χK , H∗,v〉 =

h∑

a=1

χK(a)Ha,v =
∑

a∈K
Ha,v = |K|αv

by Property 8.19. It follows that |xv|h = |K| for each v ∈ A. Thus

|K| = ‖χK‖2 =
∑

v∈A
|xv|2 · ‖H∗,v‖2 = |A|

( |K|
h

)2

h =
|A||K|2

h
,

and it follows that |K| = h/|A|. Exactly the same argument gives |K2| = h/|A|.
Hence |K| = |K2| and K = K2. At this point the statement in Property 8.18 can be
strengthened to the following.

Property 8.20. There exists some complex number λ such that D2,∗ = λD1,∗.
Our final goal is to generalize this proof to all D�,∗ for � = 1, 2, . . . , s. We prove

this by induction.
Inductive hypothesis: For some � ≥ 2, the (� − 1) rows D1,∗, . . . ,D�−1,∗
satisfy that Di,∗ = λi · D1,∗ for some λi and 1 ≤ i < �.

The proof mainly follow that of the case � = 2 above, except for one crucial argument
at the end. We presented the special case � = 2 alone for ease of understanding.

We prove that D�,∗ = λ� · D1,∗ for some λ�. Clearly we may assume D�,∗ �= 0,
for otherwise the inductive step is trivial. To start, consider the matrices

T1 =

(
� 1
1 �

)
and T2 =

(
1 �
� 1

)

and the corresponding class Tg they belong to. By Property 8.16, we have for every
v ∈ B,

∑
T∈Tg Xv,T = 0. We only need to examine those T ∈ Tg with exactly the

same order as that of T1, T2: μbμb′ = μcμc′ = μ1μ�. To satisfy this condition, both
columns of T must have entries {1, �} or have both entries < �. No entry in {b, b′, c, c′}
can be > �. There are two cases now: Case 1—There is a row (b c) or (b′ c′) (or both)
which has both entries < �; Case 2—Both rows have an entry = �.

In Case 1, at least one of the inner product sums in the product

Xv,T =

(
h∑

a=1

Db,aDc,aHa,v

)(
h∑

a=1

Db′,aDc′,a Ha,v

)

takes place over a ∈ K. This follows from the inductive hypothesis. In fact that inner
product is a constant multiple of

∑
a∈K |D1,a|2Ha,v or its conjugate

∑
a∈K |D1,a|2Ha,v

which are 0 according to Property 8.17 for all v ∈ B.
In Case 2, it is easy to check that to have the same order μ1μ�, T can only be T1

or T2. Now observe that both T1 and T2 have the conjugate-pair form. Thus, their
contributions Xv,T1 and Xv,T2 are both nonnegative. Since Xv,T1 + Xv,T2 = 0, both
of them have to vanish:

∑

a∈[h]
D1,aD�,aHa,v = 0 and

∑

a∈[h]
D1,aD�,a Ha,v = 0 for all v ∈ B.
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Hence D1,∗ ◦D�,∗ ⊥ H∗,v for all v ∈ B. It follows that the vector D1,∗ ◦D�,∗ belongs
to the linear span of {H∗,v : v ∈ A}. From the definition of A, this expression has
a constant value on entries indexed by a ∈ K. Therefore, on K, D�,∗ is a constant
multiple of D1,∗. We summarize this as follows.

Property 8.21. There exists some complex number λ� such that D�,a = λ�D1,a

for all a ∈ K.
Let K� = {i ∈ [r] : D�,i �= 0}. Next, we prove that for every v ∈ A, H∗,v takes

a constant value on K�, i.e., Hi,v = Hj,v, for all indices i, j ∈ K�. We had assumed
D�,∗ �= 0, since otherwise the induction is completed for �. Then K� �= ∅.

To show that H∗,v is a constant on K�, we consider

T3 =

(
� �
1 1

)
and T4 =

(
1 1
� �

)

and the class Tg they belong to. We want to apply Part A of the vanishing lemma to
show that

(8.26)
∑

T∈Tg
Xv,T =

∑

T∈Tg
X1,T for any v ∈ A.

For this purpose, we need to compare the respective terms of the sum (8.20) for an
arbitrary v ∈ A and for the particular v0 = 1 ∈ A. More exactly, we will show that

(8.27)
∑

T∈Tg′
Xv,T =

∑

T∈Tg′
X1,T and Im

⎛
⎝∑

T∈Tg
Xv,T

⎞
⎠ = Im

⎛
⎝∑

T∈Tg
X1,T

⎞
⎠

for all v ∈ A and g′ < g. Then (8.26) follows from Part A of the vanishing lemma.
To this end, we first consider matrices T that have an order of magnitude strictly

larger than that of T3 and T4. We have either μbμb′ > μ1μ� or μbμb′ = μ1μ� and
μcμc′ > μ1μ�. The first alternative implies b, b′ < �. The second implies c, c′ < �.

In both cases, each row of T has at least one entry < �. By the inductive hypoth-
esis, both inner products in (8.21), namely,

h∑

a=1

Db,aDc,aHa,v and

h∑

a=1

Db′,aDc′,a Ha,v

must be a sum over K since D1,∗ is zero elsewhere. However, for any a ∈ K, Ha,v is
a constant αv of norm 1 (a root of unity), independent of a ∈ K. Thus

∑

a∈[h]
Db,aDc,aHa,v = αv

∑

a∈K
Db,aDc,a and

∑

a∈[h]
Db′,aDc′,a Ha,v = αv

∑

a∈K
Db′,aDc′,a.

Since αvαv = |αv|2 = 1, it follows that their product is

Xv,T =

(∑

a∈K
Db,aDc,a

)(∑

a∈K
Db′,aDc′,a

)
,

which is exactly the same as the coefficient X1,T for v0 = 1 ∈ A. Thus for any T ,
where each row has at least one entry < �, Xv,T = X1,T , for any v ∈ A. This includes
all matrices T >μ T3 (as well as some matrices T ≡μ T3 ∈ Tg), and the first part of
(8.27) follows.
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Now we consider any matrix T ∈ Tg. If each row of T has at least one entry < �,
then by the proof above, we know Xv,T = X1,T for any v ∈ A. Suppose T ∈ Tg does
not have this property. Then each column of such a matrix must consist of {1, �}.
We have four such matrices: T1, T2, T3, and T4. But the former two matrices already
belong to the case covered above. So we have

∑

T∈Tg
Xv,T −

∑

T∈Tg
X1,T = Xv,T3 + Xv,T4 − (X1,T3 + X1,T4) for any v ∈ A.

Now to the matrices T3, T4 themselves. We note that the sum of their coefficients
Xv,T3 + Xv,T4 , at any v ∈ A, is

(8.28)(∑

a∈K
|D1,a|2Ha,v

)(
h∑

a=1

|D�,a|2Ha,v

)
+

(
h∑

a=1

|D�,a|2Ha,v

)(∑

a∈K
|D1,a|2Ha,v

)
.

This is a real number, and the second part of (8.27) follows.
Now we can apply Part A of the vanishing lemma to conclude that

Xv,T3 + Xv,T4 = X1,T3 + X1,T4 = 2 · ‖D1,∗‖2‖D�,∗‖2 for any v ∈ A.

This is the maximum possible value of (8.28). By assumption, ‖D1,∗‖2‖D�,∗‖2 > 0.
The only way the sum in (8.28) achieves this maximum at v ∈ A is for Ha,v to take
a constant value γv for all a ∈ K� (and we already know that Ha,v takes a constant
value αv for all a ∈ K), where αv and γv are of norm 1. Moreover, by (8.28), we have
αvγv +αvγv = 2. It follows that αv = γv. Thus H∗,v is a constant on K ∪K� for each
v ∈ A. We summarize it as the next property.

Property 8.22. For every v ∈ A, there exists a complex number αv of norm 1
such that Hv,a = αv for all a ∈ K ∪ K�.

Our next goal is to prove that |D�,∗|2 ⊥ H∗,v for all v ∈ B. Of course, if B = ∅,
then this is trivially true. We assume B �= ∅. For this purpose, we examine T ∗, the
matrix with all four entries being �, and the class Tg it belongs to. By Property 8.16,
we have

∑
T∈Tg Xv,T = 0 for any v ∈ B, and our target is to show that Xv,T∗ = 0.

To prove this, we need to examine terms Xv,T for all T ≡μ T ∗ ∈ Tg.
It is now possible to have a number of pairs, (a1, b1), (a2, b2), . . . , (ak, bk), for

some k ≥ 0, such that μaiμbi = μ2
� for 1 ≤ i ≤ k. (When � = 2, such a pair, if it

exists, is essentially unique, but for � > 2 there could be many such pairs. This is a
complication for � > 2.) Every matrix T ∈ Tg must have each column chosen from
either (� �)T or one of the pairs (ai bi)

T or (bi ai)
T. Note that if such pairs do not

exist, i.e., k = 0, then Tg = {T ∗} and we have

Xv,T∗ =

(
h∑

a=1

|D�,a|2Ha,v

)(
h∑

a=1

|D�,a|2Ha,v

)
= 0 at any v ∈ B.

The following proof is to show that even when such pairs exist (k ≥ 1), we still have
Xv,T∗ = 0. For this purpose, we show that

∑
T∈Tg ,T �=T∗ Xv,T ≥ 0.

Suppose k ≥ 1. We may assume ai < � < bi for all i ∈ [k]. We examine all the
T ∈ Tg other than T ∗. If T has at least one row, say, (b c), with max{b, c} ≤ � and
min{b, c} < �, then by the inductive hypothesis and Property 8.21, the corresponding
inner product actually takes place over K. In fact, the inner product is a constant
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multiple of the projection of |D1,∗|2 on either H∗,v or H∗,v. But we already know
that this projection is zero for all v ∈ B.

For the remaining T where both rows satisfy [max{b, c} > � or min{b, c} ≥ � ], if
T is not T ∗, then one of its two columns is not (� �)T, and one entry of this column
is ai < � for some i ∈ [k]. It follows that the other entry in the same row as ai must
be bj > � for some j ∈ [k]. As a result, the only matrices remaining are of two types:

(
ai bj
bi aj

)
or

(
bi aj

ai bj

)
for some 1 ≤ i, j ≤ k.

We consider the first type. The total contribution of these matrices is

k∑

i,j=1

(
h∑

a=1

Dai,aDbj ,aHa,v

)(
h∑

a′=1

Dbi,a′Daj,a′ Ha′,v

)

=

k∑

i,j=1

(
h∑

a=1

λaiD1,aDbj ,aHa,v

)(
h∑

a′=1

Dbi,a′λaj D1,a′ Ha′,v

)

=
k∑

i,j=1

h∑

a,a′=1

λajD1,aDbj ,aHa,v · λaiDbi,a′D1,a′ Ha′,v

=

[
h∑

a=1

D1,aHa,v

(
k∑

j=1

λaj Dbj ,a

)]
·
[

h∑

a′=1

D1,a′ Ha′,v

(
k∑

i=1

λaiDbi,a′

)]

=

∣∣∣∣∣∣

h∑

a=1

D1,aHa,v

⎛
⎝

k∑

j=1

λaj Dbj ,a

⎞
⎠
∣∣∣∣∣∣

2

≥ 0.

Here in the first equality we used the inductive hypothesis for ai, aj < �.
The argument for the second type of matrices is symmetric. Note also that T ∗

has the conjugate-pair form, and therefore its contribution Xv,T∗ at any v ∈ B is
nonnegative. It follows from

∑
T∈Tg Xv,T = 0 (Property 8.16) that Xv,T∗ = 0 and

∣∣∣∣∣
h∑

a=1

|D�,a|2Ha,v

∣∣∣∣∣

2

= 0 for all v ∈ B.

This means that |D�,∗|2 ⊥ H∗,v for all v ∈ B and thus |D�,∗|2 is in the linear span of
{H∗,v : v ∈ A}. Then by the same argument used for � = 2, we obtain K = K�, and
summarize as follows.

Property 8.23. There exists a complex number λ� such that D�,∗ = λ�D1,∗.
This completes the proof by induction that D has rank at most one.

8.5. Step 2.4. After Step 2.3, we obtain a pair (C, D) that satisfies conditions
(Shape1)–(Shape6). By (Shape2), we have

C =

(
0 F
FT 0

)
=

(
0 M ⊗ H

(M ⊗ H)T 0

)
,

where M is an s × t matrix of rank 1, Mi,j = μiνj , and H is the h × h matrix defined
in (Shape2). By (Shape5) and (Shape6), we have for every r ∈ [0 : N − 1]

D[r] =

(
D

[r]
(0,∗)

D
[r]
(1,∗)

)
=

(
K

[r]
(0,∗) ⊗ L

[r]
(0,∗)

K
[r]
(1,∗) ⊗ L

[r]
(1,∗)

)
.
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Every entry in L[r] either is 0 or has norm 1 and L[0] is the 2h × 2h identity
matrix.

Using these matrices, we define two new pairs (C′, K) and (C′′, L), which give rise
to two problems, EVAL(C′, K) and EVAL(C′′, L). First, C′ is the bipartization of M,
so it is (s + t) × (s + t), and K is a sequence of N diagonal matrices also of this size:
(K[0], . . . ,K[N−1]). Second, C′′ is the bipartization of H, and it is 2h × 2h, and L is
the sequence of N diagonal matrices: (L[0], . . . ,L[N−1]). The following lemma shows
that EVAL(C, D) has the same complexity as EVAL(C′′, L).

Lemma 8.24. EVAL(C, D) ≡ EVAL(C′′, L).
Proof. Let G be a connected undirected graph and let u∗ be one of its vertices.

Then by Lemmas 2.3 and 2.4, we have

ZC,D(G) = Z→C,D(G, u∗) + Z←C,D(G, u∗),

Z→C,D(G, u∗) = Z→C′,K(G, u∗) · Z→C′′,L(G, u∗), and

Z←C,D(G, u∗) = Z←C′,K(G, u∗) · Z←C′′,L(G, u∗).

As M is of rank 1, both Z→C′,K and Z←C′,K can be computed in polynomial time. We
only prove for Z→C′,K here. If G is not bipartite, Z→C′,K(G, u∗) is trivially 0; otherwise
let U ∪ V be the vertex set of G, u∗ ∈ U , and every edge uv ∈ E has one vertex u
from U and one vertex v from V . Let Ξ denote the set of assignments ξ which map U
to [s] and V to [t]. Then (note that we use K[r] to denote K[r mod N ] for any r ≥ N)

Z→C′,K(G, u∗) =
∑

ξ∈Ξ

( ∏

uv∈E
μξ(u) · νξ(v)

)(∏

u∈U
K

[deg(u)]
(0,ξ(u))

)(∏

v∈V
K

[deg(v)]
(1,ξ(v))

)

=
∏

u∈U

⎛
⎝∑

i∈[s]
(μi)

deg(u) · K [deg(u)]
(0,i)

⎞
⎠×

∏

v∈V

⎛
⎝∑

j∈[t]
(νj)

deg(v) · K [deg(v)]
(1,j)

⎞
⎠ ,

which can be computed in polynomial time.
Moreover, since (C′′, L) satisfies (Pinning), by the second pinning lemma (Lemma

4.3), the problem of computing Z→C′′,L and Z←C′′,L is reducible to EVAL(C′′, L). It then
follows that EVAL(C, D) ≤ EVAL(C′′, L).

We next prove the reverse direction. First note that by the third pinning lemma
(Corollary 8.4), computing Z→C,D and Z←C,D is reducible to EVAL(C, D). However, this
does not finish the proof because Z→C′,K (or Z←C′,K) could be 0 at (G, u∗). To deal with
this case, we prove the following claim.

Claim 8.25. Given a connected, bipartite G = (U ∪ V, E) and vertex u∗ ∈ U ,
either we can construct a new connected, bipartite G′ = (U ′ ∪ V ′, E′) in polynomial
time such that u∗ ∈ U ⊂ U ′,

(8.29) Z→C′′,L(G′, u∗) = h|U∪V | · Z→C′′,L(G, u∗),

and Z→C′,K(G′, u∗) �= 0, or we can show that Z→C′′,L(G, u∗) = 0.
Claim 8.25 gives us a polynomial-time reduction from Z→C′′,L to Z→C,D. A similar

claim can be proved for Z←, and Lemma 8.24 follows. We now prove Claim 8.25.
For each u ∈ U (and v ∈ V ), we use ru (and rv) to denote its degree in G. To

get G′, we need an �u ∈ [s] for each u ∈ U and an �v ∈ [t] for each v ∈ V such that

(8.30)
∑

i∈[s]
μ�uN+ru
i · K

[ru]
(0,i) �= 0 and

∑

i∈[t]
ν�vN+rv
i · K [rv]

(1,i) �= 0.
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Assume there exists a u ∈ U such that no �u ∈ [s] satisfies (8.30). In this case, note
that the s equations for �u = 1, . . . , s form a Vandermonde system since μ1 > · · · >
μs > 0. Therefore, the (0, ∗)-block of K[ru] is 0 and thus the (0, ∗)-block of L[ru] is
also 0 by (Shape6). It follows that Z→C′′,L(G, u∗) = 0, and we are done. Similarly, we
have Z→C′′,L(G, u∗) = 0 if there exists a v ∈ V such that no �v ∈ [t] satisfies (8.30).

Otherwise, suppose there do exist an �u ∈ [s] for each u ∈ U and an �v ∈ [t] for
each v ∈ V , which satisfy (8.30). We construct a bipartite G′ = (U ′ ∪ V ′, E′). First,

U ′ = U ∪ V̂ and V ′ = V ∪ Û , where V̂ = {v̂ : v ∈ V } and Û = {û : u ∈ U}. Edge set
E′ contains E over U ∪ V and the following edges: �uN parallel edges between u and
û, for every u ∈ U , and �vN parallel edges between v and v̂, for every v ∈ V .

Clearly, G′ is a connected and bipartite graph. The degree of u ∈ U (or v ∈ V )
is ru + �uN (or rv + �vN), and the degree of û (or v̂) is �uN (or �vN). We now use
G′ to prove Claim 8.25.

First, we have (the sum is over all ξ that map U ′ to [s], V ′ to [t])

Z→C′,K(G′, u∗) =
∑

ξ

( ∏

uv∈E
Mξ(u),ξ(v)

∏

u∈U
M �uN

ξ(u),ξ(û)

∏

v∈V
M �vN

ξ(v̂),ξ(v)

)

×
(∏

u∈U
K

[ru]
(0,ξ(u))K

[0]
(1,ξ(û))

)(∏

v∈V
K

[rv]
(1,ξ(v))K

[0]
(0,ξ(v̂))

)

=
∏

u∈U

⎛
⎝∑

i∈[s]
μ�uN+ru
i · K [ru]

(0,i)

⎞
⎠ ∏

v∈V

⎛
⎝∑

i∈[t]
ν�vN+rv
i · K [rv]

(1,i)

⎞
⎠

×
∏

û∈Û

⎛
⎝∑

i∈[t]
ν�uN
i · K

[0]
(1,i)

⎞
⎠ ∏

v̂∈V̂

⎛
⎝∑

i∈[s]
μ�vN
i · K

[0]
(0,i)

⎞
⎠ .

It is nonzero: The first two factors are nonzero because of the way we pick �u and �v;
the latter two factors are nonzero because μi, νi > 0, and by (Shape6), every entry of
K[0] is a positive integer.

It now suffices to prove (8.29). Let η be an assignment that maps U to [s] and V
to [t]. Given η, let Ξ denote the set of assignments ξ over U ′ ∪ V ′ that map U ′ to [s]
and V ′ to [t] and that satisfy ξ(u) = η(u), ξ(v) = η(v) for all u ∈ U and v ∈ V . We
have

∑

ξ∈Ξ
wtC′′,L(ξ) =

∑

ξ∈Ξ

( ∏

uv∈E
Hη(u),η(v)

∏

u∈U
(Hη(u),ξ(û))

�uN
∏

v∈V
(Hξ(v̂),η(v))

�vN

)

×
(∏

u∈U
L
[ru]
(0,η(u))L

[0]
(1,ξ(û))

)(∏

v∈V
L
[rv]
(1,η(v))L

[0]
(0,ξ(v̂))

)

=
∑

ξ∈Ξ
wtC′′,L(η) = h|Û∪V̂ | · wtC′′,L(η).

The second equation uses the fact that entries of H are powers of ωN (thus (Hi,j)
N =

1) and L[0] is the identity matrix. Equation (8.29) then follows.

8.6. Step 2.5. We are almost done with Step 2. The only conditions (Ui) that
are possibly violated by (C′′, L) are (U1) (N might be odd) and (U2) (Hi,1 and H1,j

might not be 1). We deal with (U2) first.
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980 JIN-YI CAI, XI CHEN, AND PINYAN LU

What we will do below is to normalize H (in C′′) so that it becomes a discrete
unitary matrix for some positive integer M that divides N , while not changing the
complexity of EVAL(C′′, L).

First, without loss of generality, we may assume H satisfies H1,1 = 1 since other-
wise we can divide H by H1,1, which does not affect the complexity of EVAL(C′′, L).
Then we construct the following pair: (X, Y). X is the bipartization of an h × h ma-
trix over C, whose (i, j)th entry is Hi,jH1,jHi,1; Y is a sequence (Y[0], . . . ,Y[N−1])
of 2h × 2h diagonal matrices; Y[0] is the identity matrix. Let

S = {r ∈ [0 : N − 1] : L
[r]
(0,∗) �= 0} and T = {r ∈ [0 : N − 1] : L

[r]
(1,∗) �= 0};

then we have

Y
[r]
(0,∗) = 0 for all r /∈ S and Y

[r]
(1,∗) = 0 for all r /∈ T .

For each r ∈ S (or r ∈ T ), by (Shape6) there must be an ar ∈ [h] (or br ∈ [h], resp.)
such that the (0, ar)th entry of L[r] is 1 (or the (1, br)th entry of L[r] is 1, resp.). Set

Y
[r]
(0,i) = L

[r]
(0,i)

(
Hi,1

Har ,1

)r

for all i ∈ [h]; Y
[r]
(1,j) = L

[r]
(1,j)

(
H1,j

H1,br

)r

for all j ∈ [h].

We show that EVAL(C′′, L) ≡ EVAL(X, Y). For EVAL(X, Y) ≤ EVAL(C′′, L), we let
G = (U ∪ V, E) be a connected undirected graph and u∗ be a vertex in U . For every
r ∈ S (and r ∈ T ), we use Ur ⊆ U (and Vr ⊆ V , resp.) to denote the set of vertices
with degree r mod N . It is clear that if Ur �= ∅ for some r /∈ S or if Vr �= ∅ for some
r /∈ T , both Z→C′′,L(G, u∗) and Z→X,Y(G, u∗) are trivially zero. Otherwise, we have

Z→C′′,L(G, u∗) =

(∏

r∈S
(Har ,1)

r|Ur|
)(∏

r∈T
(H1,br )

r|Vr|
)

· Z→X,Y(G, u∗).

So the problem of computing Z→X,Y is reducible to computing Z→C′′,L. By combining
it with the second pinning lemma (Lemma 4.3), we know that computing Z→X,Y is
reducible to EVAL(C′′, L). A similar statement can be proved for Z←X,Y, and it follows
that EVAL(X, Y) ≤ EVAL(C′′, L). The other direction, EVAL(C′′, L) ≤ EVAL(X, Y),
can be proved similarly.

One can verify that (X, Y) satisfies (U1)–(U4), except that N might be odd. In
particular the upper-right h × h block of X is an M -discrete unitary matrix for some
positive integer M | N , and Y satisfies both (U3) and (U4) (which follows from the
fact that every entry of H is a power of ωN ).

If N is even, then we are done with Step 2; otherwise we extend Y to be

Y′ = {Y[0], . . . ,Y[N−1],Y[N ], . . . ,Y[2N−1]},

where Y[r] = Y[r−N ], for all r ∈ [N : 2N − 1]. We have EVAL(X, Y) ≡ EVAL(X, Y′),
since ZX,Y(G) = ZX,Y′(G), for all undirected G, and the new tuple ((M, 2N),X, Y′)
now satisfies conditions (U1)–(U4).

9. Proofs of Theorems 5.4 and 5.6. Let ((M, N),C, D) be a tuple that sat-
isfies (U1)–(U4) and let F ∈ Cm×m be the upper-right block of C. In this section, we
index the rows and columns of an n × n matrix with [0 : n − 1].
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 v u

N - 1     e d g e s 

1           e d g e 

ba

c1

d 1

Fig. 9.1. The gadget for p = 1. (Note that the subscript e is suppressed.)

9.1. The group condition. We first show that either F satisfies the following
condition or EVAL(C, D) is #P-hard.

Lemma 9.1. Let ((M, N),C, D) be a tuple that satisfies (U1)–(U4). Then either F
satisfies the group condition (GC),

(row-GC) for all i, j ∈ [0 : m − 1], ∃ k ∈ [0 : m − 1] such that Fk,∗ = Fi,∗ ◦ Fj,∗;
(column-GC) for all i, j ∈ [0 : m−1], ∃ k ∈ [0 : m−1] such that F∗,k = F∗,i◦F∗,j,

or EVAL(C, D) is #P-hard.
Proof. Suppose EVAL(C, D) is not #P-hard.
Let G = (V, E) be an undirected graph. For every integer p ≥ 1, we construct a

new graph G[p] by replacing every edge uv ∈ E with a gadget. The gadget for p = 1
is shown in Figure 9.1. More exactly, we define G[p] = (V [p], E[p]) as

V [p] = V ∪
{
ae, be, ce,1, . . . , ce,p, de,1, . . . , de,p : e ∈ E

}
,

and E[p] contains the following edges: For every e = uv ∈ E and i ∈ [p], add
1. one edge (u, ce,i), (ce,i, be), (de,i, ae), and (de,i, v);
2. N − 1 parallel edges (ce,i, v), (ce,i, ae), (de,i, be), and (de,i, u).

It is easy to verify that the degree of every vertex in G[p] is a multiple of N . Thus,
we have ZC,D(G[p]) = ZC(G[p]) because D satisfies (U3). On the other hand, the way
we construct G[p] gives us, for each p ≥ 1, a symmetric matrix A[p] ∈ C2m×2m which
only depends on C, such that ZA[p](G) = ZC(G[p]) = ZC,D(G[p]) for all G. It follows
that EVAL(A[p]) ≤ EVAL(C, D) and thus EVAL(A[p]) is not #P-hard for all p ≥ 1.

The (i, j)th entry of A[p], where i, j ∈ [0 : 2m − 1], is

A
[p]
i,j =

2m−1∑

a=0

2m−1∑

b=0

(
2m−1∑

c=0

Ci,cCa,cCb,cCj,c

)p(2m−1∑

d=0

Ci,dCa,dCb,dCj,d

)p

=

2m−1∑

a=0

2m−1∑

b=0

∣∣∣∣∣
2m−1∑

c=0

Ci,cCa,cCb,cCj,c

∣∣∣∣∣

2p

.

For the first equality, we used the fact that M |N and thus, e.g., (Ca,c)
N−1 = Ca,c as

Ca,c is a power of ωM . Note that A[p] is symmetric and nonnegative and satisfies

A
[p]
i,j = A

[p]
j,i = 0 for all i ∈ [0 : m − 1] and j ∈ [m, 2m − 1].
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982 JIN-YI CAI, XI CHEN, AND PINYAN LU

For i, j ∈ [0 : m − 1], we have

A
[p]
i,j =

m−1∑

a=0

m−1∑

b=0

∣∣〈Fi,∗ ◦ Fj,∗,Fa,∗ ◦ Fb,∗〉
∣∣2p and

A
[p]
i+m,j+m =

m−1∑

a=0

m−1∑

b=0

∣∣〈F∗,i ◦ F∗,j ,F∗,a ◦ F∗,b〉
∣∣2p .(9.1)

It is clear that all these entries are positive real numbers (by taking a = i and b = j).
Now let us focus on the upper-left m × m block of A[p]. Since it is a nonnegative
symmetric matrix, we can apply the dichotomy theorem of Bulatov and Grohe.

On the one hand, for the special case when j = i ∈ [0 : m − 1], we have

A
[p]
i,i =

m−1∑

a=0

m−1∑

b=0

∣∣〈1,Fa,∗ ◦ Fb,∗〉
∣∣2p =

m−1∑

a=0

m−1∑

b=0

|〈Fa,∗,Fb,∗〉|2p .

As F is discrete unitary, A
[p]
i,i = m · m2p. On the other hand, assuming EVAL(C, D) is

not #P-hard, by using the Bulatov–Grohe dichotomy theorem (Corollary 2.6),

A
[p]
i,i · A

[p]
j,j = A

[p]
i,j · A[p]

j,i = (A
[p]
i,j)

2 for all i �= j ∈ [0 : m − 1],

and thus A
[p]
i,j = m2p+1 for all i, j ∈ [0 : m − 1].

Now we use this condition to prove that F satisfies (row-GC). We introduce the
following notation. For i, j ∈ [0 : m − 1], let

Xi,j =
{
|〈Fi,∗ ◦ Fj,∗,Fa,∗ ◦ Fb,∗〉|

∣∣∣ a, b ∈ [0 : m − 1]
}
.

Clearly Xi,j is finite for all i, j, with |Xi,j | ≤ m2. Each x ∈ Xi,j satisfies 0 ≤ x ≤ m.
For each x ∈ Xi,j , let si,j(x) denote the number of pairs (a, b) ∈ [0 : m− 1]2 such that

|〈Fi,∗ ◦ Fj,∗,Fa,∗ ◦ Fb,∗〉| = x.

We can now rewrite A
[p]
i,j as the sum

(9.2) A
[p]
i,j =

∑

x∈Xi,j

si,j(x) · x2p,

which is equal to m2p+1 for all p ≥ 1. Note that si,j(x) does not depend on p, and

(9.3)
∑

x∈Xi,j

si,j(x) = m2.

We can view (9.2) and (9.3) as a linear system of equations in the unknowns si,j(x).
Fix i, j; then there are |Xi,j | many variables si,j(x), one for each distinct value x ∈
Xi,j . Equations in (9.2) are indexed by p. If we choose (9.3) and (9.2) for p from 1
up to |Xi,j |− 1, this linear system has an |Xi,j |× |Xi,j | Vandermonde matrix ((x2)p),
with row index p and column index x ∈ Xi,j . It has full rank. Note that by setting
(a, b) = (i, j) and (i′, j), where i′ �= i, respectively, we get m ∈ Xi,j and 0 ∈ Xi,j ,
respectively. Moreover, si,j(0) = m2 − m, si,j(m) = m, and all other si,j(x) = 0 is a
solution to the linear system. Therefore this must be the unique solution.
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GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 983

So Xi,j = {0, m} and thus |〈Fi,∗ ◦ Fj,∗,Fa,∗ ◦ Fb,∗〉| ∈ {0, m} for all i, j, a, b.
Finally, we prove (row-GC). Set j = 0. As F0,∗ = 1, the all-1 vector, we have

|〈Fi,∗ ◦ 1,Fa,∗ ◦ Fb,∗〉| = |〈Fi,∗ ◦ Fb,∗,Fa,∗〉| ∈ {0, m} for all i, a, b ∈ [0 : m − 1].

As {Fa,∗ : a ∈ [0 : m − 1]} is an orthogonal basis with ‖Fa,∗‖2 = m, by Parseval

∑

a

|〈Fi,∗ ◦ Fb,∗,Fa,∗〉|2 = m · ‖Fi,∗ ◦ Fb,∗‖2.

Since every entry of Fi,∗ ◦ Fb,∗ is a root of unity, ‖Fi,∗ ◦ Fb,∗‖2 = m. Hence

∑

a

|〈Fi,∗ ◦ Fb,∗,Fa,∗〉|2 = m2,

and for all i, b ∈ [0 : m − 1], there is a unique a such that |〈Fi,∗ ◦ Fb,∗,Fa,∗〉| = m.
From property (U2), every entry of Fi,∗, Fb,∗, and Fa,∗ is a root of unity. The

inner product 〈Fi,∗ ◦ Fb,∗,Fa,∗〉 is a sum of m terms each of complex norm 1. To
sum to a complex number of norm m, each term must be a complex number of unit
norms with the same argument, i.e., they are the same complex number eiθ. Thus,
Fi,∗ ◦ Fb,∗ = eiθ · Fa,∗. We assert that in fact eiθ = 1, and Fi,∗ ◦ Fb,∗ = Fa,∗.
This is because Fi,1 = Fa,1 = Fb,1 = 1. This proves the group condition (row-GC).
One can prove (column-GC) similarly using (9.1) and the lower-right m × m block
of A[p].

Next we prove a property concerning discrete unitary matrices that satisfy (GC).
Given an n × n matrix A, let AR denote the set of its row vectors {Ai,∗} and AC

denote the set of its column vectors {A∗,j}. For general matrices, it is possible that
|AR|, |AC| < n, since A may have duplicate rows or columns. But if A is M -discrete
unitary, then it is clear that |AR| = |AC| = n.

Property 9.2. If A ∈ Cn×n is an M -discrete unitary matrix that satisfies (GC),
then AR and AC are finite Abelian groups (of order n) under the Hadamard product.

Proof. The Hadamard product ◦ gives a binary operation on AR and AC. The
group condition (GC) states that both sets AR and AC are closed under this operation,
and it is clearly associative and commutative. Being discrete unitary, the all-1 vector
1 belongs to both AR and AC and serves as the identity element. This operation also
satisfies the cancellation law: if x ◦ y = x ◦ z, then y = z. From general group theory,
a finite set with these properties already forms a group. But here we can be more
specific about the inverse of an element. For each Ai,∗, the inverse should clearly be
Ai,∗. By (GC), there exists a k ∈ [0 : m− 1] such that Ak,∗ = (Ai,∗)M−1 = Ai,∗. The
second equation is because Ai,j , for all j, is a power of ωM .

9.2. Proof of Theorem 5.4. In this section, we prove Theorem 5.4 by showing
that (U1)–(U4) indeed imply (U5).

Suppose EVAL(C, D) is not #P-hard; otherwise we are already done. By Lemma
9.1, ((M, N),C, D) satisfies (GC). Fixing r to be any index in [N − 1], we will prove
(U5) for the (i, i)th entries of D[r], where i ∈ [m : 2m − 1]. The proof for the first half
of D[r] is similar. For simplicity, let D be the m-dimensional vector such that

Di = D
[r]
m+i for all i ∈ [0 : m − 1].

Also let K = {i ∈ [0 : m − 1] : Di �= 0}. If |K| = 0, then there is nothing to prove; if
|K| = 1, then by (U3), the only nonzero entry in D must be 1. So we assume |K| ≥ 2.
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We start with a useful lemma. It implies that to prove Theorem 5.4, i.e., (U5), it
suffices to prove that Di is a root of unity for every i ∈ K.

Lemma 9.3. If D ∈ Q(ωN) is a root of unity, then D must be a power of ωN .
Proof. Assume D = ωk

M for some positive integers k and M with gcd(k, M) = 1.
Since D ∈ Q(ωN ), we have ωk

M ∈ Q(ωN ). By gcd(k, M) = 1, ωM ∈ Q(ωN) and

Q(ωN ) = Q(ωN , ωM ) = Q(ωlcm(M,N)).

The degree of the field extension is [Q(ωN ) : Q] = φ(N), the Euler function [25].
When N | N ′ and φ(N) = φ(N ′), by expanding according to the prime factoriza-

tion for N , we can get (and actually this is all there is to be had) that if N is even,
then N ′ = N ; if N is odd, then N ′ = N or N ′ = 2N . As by (U1) N is even, we have
lcm(M, N) = N , M | N , and D is a power of ωN .

Next we show that every Di, i ∈ K, is a root of unity. Suppose for a contradiction
that this is not true. We show the following lemma about Z = (Z0, . . . , Zm−1), where
Zi = (Di)

N .
Lemma 9.4. Suppose there is a k ∈ K such that Zk is not a root of unity.

Then there exists an infinite integer sequence {Pn} such that when n → ∞, the vector
sequence ((Zk)

Pn : k ∈ K) approaches, but never reaches, the all-one vector 1|K|.
Proof. As Zk has norm 1, Zk = e2πiθk for some real number θk ∈ [0, 1). We will

treat θk as a number in the Z-module R mod 1, i.e., real numbers modulo 1. By the
assumption, we know that at least one of the θk’s, k ∈ K, is irrational.

This lemma follows from the well-known Dirichlet’s box principle. For complete-
ness, we include a proof here. First, for any positive integer P , ((Zk)

P : k ∈ K) �= 1;
otherwise, every θk is rational, contradicting the assumption.

Let n∗ = n|K| + 1 for some integer n > 1. We consider (L · θk : k ∈ K) for all
L ∈ [n∗]. We divide the unit cube [0, 1)|K| into n∗− 1 subcubes of the following form:

[
a1

n
,
a1 + 1

n

)
× · · · ×

[
a|K|
n

,
a|K| + 1

n

)
,

where ak ∈ {0, . . . , n − 1} for all k. By cardinality, there are L �= L′ ∈ [n∗] such that

(
L · θk mod 1 : k ∈ K

)
and

(
L′ · θk mod 1 : k ∈ K

)

fall in the same subcube. Assume L > L′; by setting Pn = L − L′ ≥ 1, we have

∣∣Pn · θk mod 1
∣∣ = |(L − L′) · θk mod 1| < 1/n for all k ∈ K.

Repeating the procedure for every n, we get an infinite sequence {Pn} such that

(
(Zk)

Pn = e2πi(Pn·θk) : k ∈ K
)

approaches, but never reaches, the all-one vector of dimension |K|.
Let G = (V, E) be an undirected graph. Then for each p ≥ 1, we build a graph

G[p] by replacing every edge e = uv ∈ E with a gadget that is shown in Figure 9.2.
Recall that r ∈ [N − 1] is fixed. More exactly, we define G[p] = (V [p], E[p]) as follows:

V [p] = V ∪
{
ae, be,i, ce,i,j , a

′
e, b
′
e,i, c

′
e,i,j : e ∈ E, i ∈ [pN ], j ∈ [r]

}
,

and E[p] contains the following edges: For each edge e = uv ∈ E, add
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 v u
  N - 1 e d g e s 

1           e d g e 
a ' 

a

c1 , 1 

b1

c ' 1 , 1 

c1 , r cp N , 1 cp N , r 

bp N 

b ' b ' 

c ' p N , r 
c ' 1 , r c ' p N , 1 

. . . . . . 

. . . . . . 

. . . 

. . . 

. . . 

. . . 

1 p N 

Fig. 9.2. The gadget for p = 1. (Note that the subscript e is suppressed.)

1. one edge (u, ae) and (v, a′e);
2. N − 1 parallel edges (ae, v) and (u, a′e);
3. one edge (ce,i,j , be,i) and (c′e,i,j , b

′
e,i) for all i ∈ [pN ] and j ∈ [r];

4. N − 1 parallel edges (ae, ce,i,j) and (a′e, c
′
e,i,j) for all i ∈ [pN ] and j ∈ [r].

It is easy to verify that the degree of every vertex in G[p] is a multiple of N , except
be,i and b′e,i, which have degree r mod N .

As the gadget is symmetric, the construction gives a symmetric 2m × 2m matrix
A[p] such that ZA[p](G) = ZC,D(G[p]) for all G and thus EVAL(A[p]) ≤ EVAL(C, D),
and EVAL(A[p]) is also not #P-hard.

The entries of A[p] are as follows. First, for all u, v ∈ [0 : m − 1], the (u, m + v)th
and (m + u, v)th entries of A[p] are zero. The entries in the upper-left block are

A[p]
u,v =

⎛
⎜⎝

∑

a∈[0:m−1]
Fu,aFv,a

⎛
⎝ ∑

b∈[0:m−1]
D

[r]
m+b

⎛
⎝ ∑

c∈[0:m−1]
Fc,bFc,a

⎞
⎠

r⎞
⎠

pN
⎞
⎟⎠

×

⎛
⎜⎝

∑

a∈[0:m−1]
Fu,aFv,a

⎛
⎝ ∑

b∈[0:m−1]
D

[r]
m+b

⎛
⎝ ∑

c∈[0:m−1]
Fc,bFc,a

⎞
⎠

r⎞
⎠

pN
⎞
⎟⎠

for all u, v ∈ [0 : m − 1]. Since F is discrete unitary,

∑

c∈[0:m−1]
Fc,bFc,a = 〈F∗,b,F∗,a〉 = 0,

unless a = b. As a result, the equation can be simplified to

A[p]
u,v = Lp ·

(∑

k∈K

(
Dk

)pN
Fu,kFv,k

)(∑

k∈K

(
Dk

)pN
Fu,kFv,k

)

for u, v ∈ [0 : m − 1], where Lp is a positive constant that is independent of u and v.
Assume for a contradiction that some Dk, k ∈ K, is not a root of unity. Then

by Lemma 9.4 we know there exists a sequence {Pn} such that ((Dk)
NPn : k ∈ K)
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approaches, but never equals, the all-one vector, when n → ∞. Also by (U3) we know
there exists an i ∈ K such that Di = 1. Now consider G[Pn] with parameter p = Pn

from this sequence. We have

A[Pn]
u,u = LPn ·

(∑

k∈K
(Dk)

NPn

)2

for any u ∈ [0 : m − 1].

We let Tn denote the second factor on the right-hand side; then |Tn| could be arbi-
trarily close to |K|2 if we choose n large enough. By using the dichotomy theorem of
Bulatov and Grohe and Lemma 7.5 together with the assumption that EVAL(A[Pn])
is not #P-hard, we know the norm of every entry of A[Pn] in its upper-left block is
either 0 or LPn |Tn|.

Now we focus on the first row by fixing u = 0. Since F0,∗ = 1, we have

A
[Pn]
0,v = LPn ·

(∑

k∈K
(Dk)

NPnFv,k

)(∑

k∈K
(Dk)

NPnFv,k

)
for any v ∈ [0 : m − 1].

By Property 9.2, FR = {Fv,∗} is a group under the Hadamard product. We let

S = {v ∈ [0 : m − 1] : for all i, j ∈ K, Fv,i = Fv,j}

and denote {Fv,∗ : v ∈ S} by FS . FS is a subgroup of FR, and 0 ∈ S as F0,∗ = 1.
For any v /∈ S, when n is sufficiently large, we have

∣∣∣A[Pn]
0,v

∣∣∣ <
∣∣∣A[Pn]

0,0

∣∣∣.

This is because when n → ∞, Tn → |K|2 but

(∑

k∈K
(Dk)

NPnFv,k

)(∑

k∈K
(Dk)

NPnFv,k

)
→
(∑

k∈K
Fv,k

)(∑

k∈K
Fv,k

)
,

which has norm < |K|2 since v /∈ S. So when n is sufficiently large, A
[Pn]
0,v = 0 for all

v /∈ S. Denote ((Dk)
NPn : k ∈ [0 : m − 1]) by Dn; for v /∈ S and sufficiently large n,

(9.4) either 〈Dn,Fv,∗〉 = 0 or 〈Dn,Fv,∗〉 = 0.

Next, we focus on the characteristic vector χ (of dimension m) of K: χk = 1 if
k ∈ K and χk = 0 elsewhere. By (9.4) and the definition of S, we have

(9.5) 〈χ,Fv,∗〉 = 0 for all v /∈ S and |〈χ,Fv,∗〉| = |K| for all v ∈ S.

To prove the first equation, note that by (9.4), either there is an infinite subsequence
(Dn) that satisfies 〈Dn,Fv,∗〉 = 0 or there is an infinite subsequence that satisfies
〈Dn,Fv,∗〉 = 0. Since Dn → χ when n → ∞, either 〈χ,Fv,∗〉 = 0 or 〈χ,Fv,∗〉 = 0.
The second case still gives us 〈χ,Fv,∗〉 = 0 since χ is real. The second equation in
(9.5) follows directly from the definition of S. As a result, we have

χ =
1

m

∑

v∈S
〈χ,Fv,∗〉 · Fv,∗.
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Now we assume the expression of Dn, under the orthogonal basis {Fv,∗}, is

Dn =

m−1∑

i=0

xi,nFi,∗, where xi,n =
1

m
〈Dn,Fi,∗〉.

If for some n we have xi,n = 0 for all i /∈ S, then we are done, because by the definition
of S, every Fi,∗, i ∈ S, is a constant over K and thus the vector Dn is a constant over
K. Since we know there exists an i ∈ K such that Di = 1, every Dj , j ∈ K, must be
a root of unity.

Assume this is not the case. Then (here consider those sufficiently large n so that
(9.4) holds),

χ = Dn ◦ Dn =

(∑

i

xi,nFi,∗

)
◦

⎛
⎝∑

j

xj,nFj,∗

⎞
⎠ =

∑

v

yv,nFv,∗,

where

yv,n =
∑

Fi,∗◦Fj,∗=Fv,∗

xi,nxj,n.

The last equation uses the fact that FR is a group under the Hadamard product (so
for any i, j there exists a unique v such that Fv,∗ = Fi,∗ ◦ Fj,∗).

Since the Fourier expansion of χ under {Fv,∗} is unique, we must have yv,n = 0
for any v �∈ S. Because Dn → χ, by (9.5), we know that when n → ∞, xi,n, for any
i /∈ S can be arbitrarily close to 0, while |xi,n| can be arbitrarily close to |K|/m for
any i ∈ S. So there exists a sufficiently large n such that

|xi,n| <
4|K||S|

5m2
for all i /∈ S and |xi,n| >

4|K|
5m

for all i ∈ S.

We pick such an n and will use it to reach a contradiction. Since we assumed that for
any n (which is of course also true for this particular n we picked here), there exists at
least one index i /∈ S such that xi,n �= 0, and we can choose a w /∈ S that maximizes
|xi,n| among all i /∈ S. Clearly, |xw,n| is positive.

We consider the expression of yw,n using xi,n. We divide the summation into two
parts: the main terms xi,nxj,n, in which either i ∈ S or j ∈ S, and the remaining
terms, in which i, j /∈ S. (Note that if Fw,∗ = Fi,∗ ◦ Fj,∗, then i and j cannot both
be in S; otherwise, since FS is a subgroup, we have w ∈ S, which contradicts the
assumption that w �∈ S.) The main terms of yw,n are given by

1

m2

∑

j∈S
〈Dn,Fw,∗ ◦ Fj,∗〉〈Dn,Fj,∗〉 +

1

m2

∑

i∈S
〈Dn,Fi,∗〉〈Dn,Fi,∗ ◦ Fw,∗〉.

Note that x0,n = 〈Dn,F0,∗〉/m and F0,∗ = 1. Also note that (by the definition
of S) when j ∈ S, Fj,k = αj for all k ∈ K, for some complex number αj of norm 1.
Since Dn is only nonzero on K, we have

〈Dn,Fw,∗ ◦ Fj,∗〉〈Dn,Fj,∗〉 = 〈Dn, αjFw,∗〉〈Dn, αj1〉 = mx0,n · 〈Dn,Fw,∗〉.

Similarly, we can simplify the other sum so that the main terms of yw,n are given by

|S|
m

·
(
x0,n〈Dn,Fw,∗〉 + x0,n〈Dn,Fw,∗〉

)
.
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By (9.4) we have either 〈Dn,Fw,∗〉 or 〈Dn,Fw,∗〉 is 0. Since we assumed that xw,n =
〈Dn,Fw,∗〉/m �= 0, the latter has to be 0. Therefore, the sum of the main terms of
yw,n is equal to x0,nxw,n|S|. As 0 ∈ S, we have

∣∣∣x0,nxw,n|S|
∣∣∣ ≥ 4|K||S|

5m
|xw,n|.

Consider the remaining terms. Below we prove that the sum of all these terms
cannot have a norm as large as |x0,nxw,n|S|| and thus yw,n is nonzero and we get a
contradiction. To see this, it is easy to check that the number of remaining terms is
at most m, and the norm of each of them is

|xi,nxj,n| ≤ |xw,n|2 <
4|K||S|

5m2
|xw,n|

since i, j /∈ S. So the norm of their sum is < |x0,nxw,n|S||. Theorem 5.4 is proved.

9.3. Decomposing F into Fourier matrices. Suppose ((M, N),C, D) satis-
fies (U1)–(U5) and (GC); otherwise EVAL(C, D) is #P-hard. We prove Theorem 5.6.
To decompose F into Fourier matrices (recall that F is the upper-right m × m block
matrix of C), we first show that if M = pq and gcd(p, q) = 1, then up to a permu-
tation of rows and columns, F is the tensor product of two smaller matrices, both of
which are discrete unitary and satisfy (GC). Note that p and q here are not necessarily
primes or prime powers.

Lemma 9.5. Let F ∈ Cm×m be an M -discrete unitary matrix that satisfies (GC),
where M = pq, p, q > 1, and gcd(p, q) = 1. Then there exist two permutations Π and
Σ over [0 : m − 1] such that FΠ,Σ = F′ ⊗ F′′, where F′ is a p-discrete unitary matrix,
F′′ is a q-discrete unitary matrix, and both of them satisfy (GC).

Proof. Using Property 9.2, both FR and FC are finite Abelian groups. Since F
is M -discrete unitary, the order of any vector in FR or FC is a divisor of M .

By the fundamental theorem of Abelian groups, there is a group isomorphism

ρ : FR → Zg1 × · · · × Zgh ≡ Zg,

where g1, . . . , gh are prime powers, and gi |M for all i. As gcd(p, q) = 1, without loss
of generality, we may assume there exists an integer h′ such that gi |p for all i ∈ [h′]
and gi | q for all other i. We use ρ−1 to define the following two subsets of FR:

Sp = {ρ−1(x) : x ∈ Zg, xi = 0 for all i > h′} and

Sq = {ρ−1(x) : x ∈ Zg, xi = 0 for all i ≤ h′}.

It is easy to show the following four properties: Letting m′ = |Sp| and m′′ = |Sq|,
1. both Sp and Sq are subgroups of FR;
2. Sp = {u ∈ FR : (u)p = 1} and Sq = {v ∈ FR : (v)q = 1};
3. m = m′ · m′′, gcd(m′, q) = 1, gcd(m′′, p) = 1, gcd(m′, m′′) = 1;
4. (u,v) �→ u ◦ v is a group isomorphism from Sp × Sq onto FR.

Let Sp = {u0 = 1,u1, . . . ,um′−1} and Sq = {v0 = 1,v1, . . . ,vm′′−1}. By 4, there is
a bijection f : i �→ (f1(i), f2(i)) from [0 : m − 1] to [0 : m′− 1] × [0 : m′′− 1] such that

(9.6) Fi,∗ = uf1(i) ◦ vf2(i) for all i ∈ [0 : m − 1].

Next we apply the fundamental theorem to FC. We use the group isomorphism in
the same way to define two subgroups T p and T q with four corresponding properties:
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1. Both T p and T q are subgroups of FC;
2. T p = {w ∈ FC : (w)p = 1} and T q = {r ∈ FC : (r)q = 1};
3. m = |T p| · |T q|, gcd(|T p|, q) = 1, gcd(|T q|, p) = 1, and gcd(|T p|, |T q|) = 1;
4. (w, r) �→ w ◦ r is a group isomorphism from T p × T q onto FC.

By comparing item 3 in both lists, we have |T p| = |Sp| = m′ and |T q| = |Sq| = m′′.
Let T p = {w0 = 1,w1, . . . ,wm′−1} and T q = {r0 = 1, r1, . . . , rm′′−1}. Then by

item 4, we have a bijection g from [0 : m − 1] to [0 : m′ − 1] × [0 : m′′ − 1] and

(9.7) F∗,j = wg1(j) ◦ rg2(j) for all j ∈ [0 : m − 1].

Now we are ready to permute the rows and columns of F to get a new matrix G
that is the tensor product of two smaller matrices. We use (x1, x2), where x1 ∈ [0 :
m′ − 1], x2 ∈ [0 : m′′ − 1], to index the rows and columns of G. We use Π(x1, x2) =
f−1(x1, x2), from [0 : m′ − 1] × [0 : m′′ − 1] to [0 : m − 1], to permute the rows of F
and Σ(y1, y2) = g−1(y1, y2) to permute the columns of F. We get G = FΠ,Σ, where

G(x1,x2),(y1,y2) = FΠ(x1,x2),Σ(y1,y2) for all x1, y1 ∈ [0 : m′ − 1], x2, y2 ∈ [0 : m′′ − 1].

By (9.6), and using the fact that u0 = 1 and v0 = 1, we have

G(x1,x2),∗ = G(x1,0),∗ ◦ G(0,x2),∗.

Similarly by (9.7) and w0 = 1 and r0 = 1, we have

G∗,(y1,y2) = G∗,(y1,0) ◦ G∗,(0,y2).

Therefore, applying both relations, we have

G(x1,x2),(y1,y2) = G(x1,0),(y1,0) · G(x1,0),(0,y2) · G(0,x2),(y1,0) · G(0,x2),(0,y2).

We claim

(9.8) G(x1,0),(0,y2) = 1 and G(0,x2),(y1,0) = 1.

Then we have

(9.9) G(x1,x2),(y1,y2) = G(x1,0),(y1,0) · G(0,x2),(0,y2).

To prove the first equation in (9.8), we realize that it appears as an entry in both
ux1 and ry2 . Then, by item 2 for Sp and T q, both its pth and qth powers are 1. Thus
it has to be 1. The other equation in (9.8) can be proved the same way.

As a result, we have obtained our tensor product decomposition G = F′ ⊗ F′′:

F′ =
(
F ′x,y ≡ G(x,0),(y,0)

)
and F′′ =

(
F ′′x,y ≡ G(0,x),(0,y)

)
.

The only thing left is to show that F′,F′′ are both discrete unitary and satisfy
(GC). Here we only prove it for F′. The proof for F′′ is the same. For all x �= y,

0 = 〈G(x,0),∗,G(y,0),∗〉 =
∑

z1,z2

G(x,0),(z1,z2)G(y,0),(z1,z2)

=
∑

z1,z2

G(x,0),(z1,0)G(0,0),(0,z2)G(y,0),(z1,0)G(0,0),(0,z2) = m′′ · 〈F′x,∗,F′y,∗〉.D
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Here we used the factorization (9.9) and u0 = 1 and v0 = 1. Similarly, we can prove
that F′∗,x and F′∗,y are orthogonal for all x �= y. F′ also satisfies (GC) because both
Sp and T p are groups and thus closed under the Hadamard product. Finally, F′ is
exactly p-discrete unitary. First, by the definition of M and (9.9), we have

pq = M = lcm
{
order of G(x1,0),(y1,0) · G(x2,0),(y2,0) : x,y

}
.

Second, the order of G(x1,0),(y1,0) divides p and the order of G(x2,0),(y2,0) divides q. As a
result, p is the least common multiple of orders of entries of F′ and thus F′ is p-discrete
unitary.

Next we prove Lemma 9.7, which deals with the case when M is a prime power.
Property 9.6. Let A be an M -discrete unitary matrix that satisfies the group

condition (GC). If M is a prime power, then one of its entries is equal to ωM .
Proof. Since M is a prime power, some entry of A has order exactly M as a

root of unity. Hence it has the form ωk
M for some k relatively prime to M . Then

by the group condition (GC) all powers of ωk
M appear as entries of A, in particular

ωM .
Lemma 9.7. Let F ∈ Cm×m be an M -discrete unitary matrix that satisfies (GC).

Moreover, M = pk is a prime power for some k ≥ 1. Then there exist two permuta-
tions Π and Σ such that FΠ,Σ = FM ⊗ F′, where F′ is an M ′-discrete unitary matrix,

M ′ = pk
′
for some k′ ≤ k, and F′ satisfies (GC).

Proof. By Property 9.6, there exist a and b such that Fa,b = ωM . Thus, both the
order of Fa,∗ (in FR) and the order of F∗,b (in FC) are M . Let

S1 =
{
1,Fa,∗, (Fa,∗)

2, . . . , (Fa,∗)
M−1}

denote the subgroup of FR generated by Fa,∗. As the order of Fa,∗ is M , |S1| = M .
Let S2 denote the subset of FR such that u ∈ S2 iff ub = 1. Then it is clear that

S2 is a subgroup of FR. Moreover, (w1,w2) �→ w1 ◦ w2 is a group isomorphism from
S1 × S2 onto FR. As a result, |S2| = m/M , which we denote by n.

Let S2 = {u0 = 1,u1, . . . ,un−1}. Then there exists a bijection f from [0 : m − 1]
to [0 : M − 1] × [0 : n − 1], where i �→ f(i) = (f1(i), f2(i)), such that

(9.10) Fi,∗ = (Fa,∗)
f1(i) ◦ uf2(i) for all i ∈ [0 : m − 1].

In particular, we have f(a) = (1, 0).
Similarly, we use T1 to denote the subgroup of FC generated by F∗,b (|T1| = M)

and T2 to denote the subgroup of FC that contains all the v ∈ FC such that va = 1.
(w1,w2) �→ w1 ◦ w2 is an isomorphism from T1 × T2 onto FC, so |T2| = m/M = n

Let T2 = {v0 = 1,v1, . . . ,vn−1}. Then there exists a bijection g from [0 : m − 1]
to [0 : M − 1] × [0 : n − 1], where j �→ g(j) = (g1(j), g2(j)), such that

(9.11) F∗,j = (F∗,b)
g1(j) ◦ vg2(j) for all j ∈ [0 : m − 1].

In particular, we have g(b) = (1, 0).
We are ready to permute the rows and columns of F to get a new m × m matrix

G. We use (x1, x2), where x1 ∈ [0 : M − 1] and x2 ∈ [0 : n− 1], to index the rows and
columns of matrix G. We use Π(x1, x2) = f−1(x1, x2), from [0 : M −1]× [0 : n−1] to
[0 : m − 1], to permute the rows and Σ(y1, y2) = g−1(y1, y2) to permute the columns
of F, respectively. As a result, we get G = FΠ,Σ.

By (9.10) and (9.11), and u0 = 1 and v0 = 1, we have

G(x1,x2),∗ = (G(1,0),∗)
x1 ◦ G(0,x2),∗ and G∗,(y1,y2) = (G∗,(1,0))

y1 ◦ G∗,(0,y2).
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Applying them in succession, we get

G(x1,x2),(y1,y2) = (G(1,0),(y1,y2))
x1G(0,x2),(y1,y2)

= (G(1,0),(1,0))
x1y1(G(1,0),(0,y2))

x1(G(0,x2),(1,0))
y1G(0,x2),(0,y2).

By f(a) = (1, 0) and g(b) = (1, 0), we have

G(1,0),(1,0) = FΠ(1,0),Σ(1,0) = Ff−1(1,0),g−1(1,0) = Fa,b = ωM .

By (9.11), and similar reasoning, we have

G(1,0),(0,y2) = Fa,g−1(0,y2) = (Fa,b)
0 · vy2,a = vy2,a = 1,

where vy2,a denotes the ath entry of vy2 , which is 1 by the definition of T2. By (9.10),

G(0,x2),(1,0) = Ff−1(0,x2),b = (Fa,b)
0 · ux2,b = ux2,b = 1,

where ux2,b denotes the bth entry of ux2 , which is 1 by the definition of S2.
Combining all these equations, we have

(9.12) G(x1,x2),(y1,y2) = ωx1y1

M · G(0,x2),(0,y2).

As a result, G = FM ⊗ F′, where F′ = (F ′x,y ≡ G(0,x),(0,y)) is an n × n matrix.
To see F′ is discrete unitary, by (9.12), we have

0 = 〈G(0,x),∗,G(0,y),∗〉 = M · 〈F′x,∗,F′y,∗〉 for any x �= y ∈ [0 : n − 1].

Similarly we can prove that F′∗,x and F′∗,y are orthogonal for x �= y. F′ also satisfies
the group condition because both S2 and T2 are groups and thus closed under the
Hadamard product. More precisely, for (row-GC), suppose F′x,∗ and F′y,∗ are two rows
of F′. The corresponding rows G(0,x),∗ and G(0,y),∗ in G are permuted versions of ux

and uy, respectively. We have, by (9.6),

F ′x,z = Ff−1(0,x),g−1(0,z) = ux,g−1(0,z) and F ′y,z = Ff−1(0,y),g−1(0,z) = uy,g−1(0,z).

Since S2 is a group, we have some w ∈ [0 : n − 1] such that ux ◦ uy = uw and thus

F ′x,z · F ′y,z = uw,g−1(0,z) = F ′w,z.

The proof of (column-GC) is similar. F′ is also pk
′
-discrete unitary for some k′

≤ k.
Theorem 5.6 then follows from Lemmas 9.5 and 9.7.

10. Proof of Theorem 5.8. Let ((M, N),C, D, (q, t, Q)) be a 4-tuple that sat-
isfies condition (R). Also assume that EVAL(C, D) is not #P-hard; otherwise, we are
done. For every r in T (recall that T is the set of r ∈ [N − 1] such that Δr �= ∅), we
show that Δr must be a coset in ZQ. Condition (L2) then follows from the following
lemma. Condition (L1) about Λr can be proved similarly.

Lemma 10.1. Let Φ be a coset in G1 × G2, where G1 and G2 are finite Abelian
groups such that gcd(|G1|, |G2|) = 1. Then for both i = 1, 2, there exists a coset Φi in
Gi such that Φ = Φ1 × Φ2.

Proof. First, we show that if u = (u1, u2),v = (v1, v2) ∈ Φ, where ui, vi ∈ Gi,
then (u1, v2) ∈ Φ.
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c 2
b1

 v u
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c 1

b ' 
N

b2
bN c N

b ' c ' 
1

c ' 
N

. . . 

. . . 1

. . . 

. . . 
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d1 d2 dN

d ' 
N
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b ' 2 c ' 2
N - 1 e d g e s 

1 e d g e 

r e d g e s 

N - r e d g e s 

Fig. 10.1. The gadget for constructing graph G′. (Note that the subscript e is suppressed.)

Since gcd(|G1|, |G2|) = 1, we can pick an integer k such that |G1|
∣∣k and k ≡ 1

(mod |G2|). As Φ is a coset, we have u + k(v − u) ∈ Φ. From u1 + k(v1 − u1) = u1

and u2 + k(v2 − u2) = v2, we conclude that (u1, v2) ∈ Φ.
This implies the existence of Φ1 ⊆ G1 and Φ2 ⊆ G2 such that Φ = Φ1 × Φ2: Let

Φ1 =
{
x ∈ G1 : ∃y ∈ G2, (x, y) ∈ Φ

}
and Φ2 =

{
y ∈ G2 : ∃x ∈ G1, (x, y) ∈ Φ

}
.

Then both Φ1 and Φ2 are cosets (in G1 and G2, respectively), and Φ = Φ1 ×
Φ2.

To prove Theorem 5.8, we need the following construction. Given an undirected
graph G = (V, E), we build a new graph G′ by replacing every edge e = uv ∈ E with
the gadget shown in Figure 10.1. More exactly, we define G′ = (V ′, E′) as

V ′ = V ∪
{
ae, be,i, ce,i, de,i, a

′
e, b
′
e,i, c

′
e,i, d

′
e,i : e ∈ E and i ∈ [N ]

}

and E′ contains exactly the following edges: For each e = uv ∈ E, add
1. one edge (u, de,1), (v, d′e,1), (u, d′e,i) and (v, de,i) for all i ∈ [2 : N ];
2. one edge (ae, be,i) and N − 1 parallel edges (be,i, de,i) for all i ∈ [N ];
3. N − r parallel edges (ae, ce,i) and r parallel edges (ce,i, de,i) for all i ∈ [N ];
4. one edge (a′e, b

′
e,i) and N − 1 parallel edges (b′e,i, d

′
e,i) for all i ∈ [N ];

5. N − r parallel edges (a′e, c
′
e,i) and r parallel edges (c′e,i, d

′
e,i) for all i ∈ [N ].

The degree of de,i and d′e,i for all e ∈ E, i ∈ [N ], is r (mod N). All other vertices in
V ′ have degree 0 (mod N). It is also noted that the graph fragment that defines the
gadget is bipartite, with u, v, be,i, ce,i, b

′
e,i, c

′
e,i on one side and ae, a

′
e, de,i, d

′
e,i on the

other side. The way we construct G′ gives us a 2m × 2m matrix A such that ZA(G)
= ZC,D(G′) for all G, and thus EVAL(A) ≤ EVAL(C, D), and EVAL(A) is also not
#P-hard. We use {0, 1} × ZQ to index the rows and columns of A. Then for all u,v
in ZQ, A(0,u),(1,v) = A(1,u),(0,v) = 0, which follows from the gadget being bipartite.

We now analyze the upper-left m × m block of A. For u,v ∈ ZQ, A(0,u),(0,v) is
the product of the following two sums:
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∑

a,d1,...,dN∈ZQ

Fu,d1

N∏

i=2

Fv,di

⎛
⎝

N∏

i=1

⎛
⎝ ∑

bi∈ZQ

Fbi,aFbi,di

⎞
⎠
⎛
⎝ ∑

ci∈ZQ

FN−r
ci,a F r

ci,di

⎞
⎠
⎞
⎠

N∏

i=1

D
[r]
(1,di)

and

∑

a,d1,...,dN∈ZQ

Fv,d1

N∏

i=2

Fu,di

⎛
⎝

N∏

i=1

⎛
⎝ ∑

bi∈ZQ

Fbi,aFbi,di

⎞
⎠
⎛
⎝ ∑

ci∈ZQ

FN−r
ci,a F r

ci,di

⎞
⎠
⎞
⎠

N∏

i=1

D
[r]
(1,di)

.

Note that in deriving these sums, we used the fact that M |N and entries of F are all
powers of ωM . Next, since F is discrete unitary,

∑

bi∈ZQ

Fbi,aFbi,di = 〈F∗,a,F∗,di〉

is m when di = a and is 0 otherwise. The same thing can be said about those sums
over ci. Assuming di = a for all i, by (U5), we have that

∏

i∈[N ]

D
[r]
(1,di)

=
(
D

[r]
(1,a)

)N

is 1 when a ∈ Δr and 0 otherwise. As a result, we have
(10.1)

A(0,u),(0,v) =

(∑

a∈Δr

Fu,aFv,am
2N

)(∑

a∈Δr

Fv,aFu,am
2N

)
= m4N

∣∣∣∣∣
∑

a∈Δr

Fu,aFv,a

∣∣∣∣∣

2

.

By using condition (R3), we can further simplify (10.1) to be

(10.2) A(0,u),(0,v) = m4N

∣∣∣∣∣
∑

a∈Δr

Fu−v,a

∣∣∣∣∣

2

= m4N
∣∣∣〈χ,Fu−v,∗〉

∣∣∣
2

,

where χ is a 0-1 characteristic vector such that χa = 0 if a /∈ Δr and χa = 1 if a ∈ Δr,
for all a ∈ ZQ. Since F is discrete unitary, it is easy to show that

0 ≤ A(0,u),(0,v) ≤ m4N |Δr|2 and A(0,u),(0,u) = m4N |Δr|2 for all u,v ∈ ZQ.

As r ∈ T , we have |Δr| ≥ 1, and let n denote |Δr|. Using the dichotomy of Bulatov
and Grohe (Corollary 11.1) and the assumption that EVAL(A) is not #P-hard,

A(0,u),(0,v) ∈
{
0, m4Nn2

}
for all u,v ∈ ZQ.

As a result, we have for all u ∈ ZQ,

(10.3)
∣∣∣〈χ,Fu,∗〉

∣∣∣ ∈ {0, n}.

The inner product 〈χ,Fu,∗〉 is a sum of n terms, each term a power of ωM . To sum to
a complex number of norm n, each term must have exactly the same argument; any
misalignment will result in a complex number of norm < n, which is the maximum
possible. This implies that

(10.4) 〈χ,Fu,∗〉 ∈
{
0, n, nωM , nω2

M , . . . , nωM−1
M

}
.
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Next, let a denote a vector in Δr. We use Φ to denote a + 〈Δr − a〉, where

Δr − a ≡
{
x − a

∣∣x ∈ Δr

}

and 〈Δr −a〉 is the subgroup generated by Δr −a. Clearly Δr ⊆ Φ. We want to prove
that Δr = Φ, which by definition is a coset in ZQ. This, combined with Lemma 10.1,
will finish the proof of Theorem 5.8.

To this end, we use κ to denote the characteristic vector of Φ: κx = 0 if x /∈ Φ
and κx = 1 if x ∈ Φ. We will show that for every u ∈ ZQ,

(10.5) 〈κ,Fu,∗〉 =
|Φ|
|Δr|

〈χ,Fu,∗〉.

Since F is discrete unitary, {Fu,∗ : u ∈ ZQ} is an orthogonal basis. From (10.5),

κ =
|Φ|
|Δr|

χ,

which implies κ = χ (since both are 0-1 vectors) and thus, Δr = Φ is a coset in ZQ.
We now prove (10.5). We make the following observations: (1) If |〈χ,Fu,∗〉| = n,

then there is an α ∈ ZM such that Fu,x = ωα
M for all x ∈ Δr. (2) Otherwise (which is

equivalent to 〈χ,Fu,∗〉 = 0 from (10.3)), there exist y and z in Δr such that Fu,y �=
Fu,z. Observation (1) has already been noted when we proved (10.4). Observation
(2) is obvious since if Fu,y = Fu,z for all y, z ∈ Δr, then clearly 〈χ,Fu,∗〉 �= 0.

Equation (10.5) then follows from the following two lemmas.
Lemma 10.2. If there exists an α such that Fu,x = ωα

M for all x ∈ Δr, then we
have Fu,x = ωα

M for all x ∈ Φ.
Proof. Let x be a vector in Φ; then there exist x1, . . . ,xk ∈ Δr and h1, . . . , hk ∈

{±1} for some k ≥ 0 such that x = a+
∑k

i=1 hi(xi −a). By using (R3) together with
the assumption that Fu,a = Fu,xi = ωα

M , we have

Fu,x = Fu,a+
∑

i hi(xi−a) = Fu,a

∏

i

Fu,hi(xi−a) = Fu,a

∏

i

(
Fu,xiFu,a

)hi
= ωα

M ,

and the lemma is proved.
Lemma 10.3. If there exist y, z ∈ Φ such that Fu,y �= Fu,z, then

∑
x∈Φ Fu,x = 0.

Proof. Let � be the smallest positive integer such that �(y − z) = 0; then � exists
because ZQ is a finite group and � > 1 because y �= z. We use c to denote Fu,yFu,z.
By (R3) together with the assumption, we have c� = Fu,�(y−z) = 1 but c �= 1.

We define the following equivalence relation ∼ over Φ. For x,x′ ∈ Φ, x ∼ x′ iff
there exists an integer k such that x − x′ = k(y − z). For each x ∈ Φ, its equivalence
class contains the following � vectors: x, x + (y − z), . . . , x + (l − 1)(y − z), as Φ is
a coset in ZQ. We conclude that

∑
x∈Φ Fu,x = 0 since for every class, by using (R3),

l−1∑

i=0

Fu,x+i(y−z) = Fu,x

l−1∑

i=0

ci = Fu,x
1 − cl

1 − c
= 0,

and the lemma is proved.
Now (10.5) can be proved as follows. If |〈χ,Fu,∗〉| = n (= |Δr|), then by observa-

tion (1) and Lemma 10.2, |〈κ,Fu,∗〉| = |Φ|. If |〈χ,Fu,∗〉| �= n, then 〈χ,Fu,∗〉 = 0. By
observation (2) and Δr ⊆ Φ, Lemma 10.3 implies 〈κ,Fu,∗〉 = 0. Therefore, Δr is a
coset in ZQ. To get the decomposition (L2) for Δr =

∏s
i=1 Δr,i, we use Lemma 10.1.
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10.1. A Corollary of Theorem 5.8. Now that we have proved Theorem 5.8,
we know that unless the problem is #P-hard, we may assume that (L) holds. Thus,
Λr and Δr are cosets.

Corollary 10.4. Let H be the m×|Δr| submatrix obtained from F by restricting
to the columns indexed by Δr. Then for any two rows Hu,∗ and Hv,∗, where u,v ∈
ZQ, either there exists some α ∈ ZM such that Hu,∗ = ωα

M ·Hv,∗ or 〈Hu,∗,Hv,∗〉 = 0.
Similarly we denote by G the |Λr|×m submatrix obtained from F by restricting to

the rows indexed by Λr. Then for any two columns G∗,u and G∗,v, where u,v ∈ ZQ,
either there exists an α ∈ ZM such that G∗,u = ωα

M · G∗,v or 〈G∗,u,G∗,v〉 = 0.
Proof. The rows of H are restrictions of F. Any two rows Hu,∗,Hv,∗ satisfy

Hu,∗ ◦ Hv,∗ = Fu−v,∗ |Δr= Hu−v,∗,

which is a row in H. If this Hu−v,∗ is a constant, namely, ωα
M for some α ∈ ZM , then

Hu,∗ = ωα
M Hv,∗; otherwise, Lemma 10.3 says that 〈Hu,∗,Hv,∗〉 = 0.

The proof for G is exactly the same.
As part of a discrete unitary matrix F, all columns {H∗,u |u ∈ Δr} of H must

be orthogonal and thus rank(H) = |Δr|. We denote by n the cardinality |Δr|. There
must be n linearly independent rows in H. We may start with b0 = 0 and assume the
n vectors b0 = 0,b1, . . . ,bn−1 ∈ ZQ are the indices of a set of linearly independent
rows. By Corollary 10.4, these must be orthogonal as row vectors (over C). Since the
rank of the matrix H is exactly n, it is clear that all other rows must be a multiple of
these rows, since the only alternative is to be orthogonal to them all, by Corollary 10.4
again, which is absurd. A symmetric statement for G also holds.

11. Proof of Theorem 5.9. Let ((M, N),C, D, (p, t, Q)) be a tuple that sat-
isfies (R) and (L) including (L3). We also assume that EVAL(C, D) is not #P-hard.
By (L), we have Λr =

∏s
i=1 Λr,i for every r ∈ S and Δr =

∏s
i=1 Δr,i for every r ∈ T ,

where both Λr,i and Δr,i are cosets in Zqi .
Let r be an integer in S. Below we prove (D1) and (D3) for Λr. The other parts

of the theorem, that is, (D2) and (D4), can be proved similarly.
Let G denote the |Λr| × m submatrix of F whose row set is Λr ⊆ ZQ. We start

with the following simple lemma about G. In this section, we let n = |Λr| ≥ 1. A
symmetric statement also holds for the m × |Δr| submatrix of F whose column set is
Δr, where we replace n = |Λr| by |Δr|, which could be different.

Lemma 11.1. There exist vectors b0 = 0,b1, . . . ,bn−1 ∈ ZQ such that
1. {G∗,bi : i ∈ [0 : n − 1]} forms an orthogonal basis;
2. for all b ∈ ZQ, ∃ i ∈ [0 : n − 1] and α ∈ ZM such that G∗,b = ωα

M · G∗,bi ;
3. let Ai be the set of b ∈ ZQ s.t. G∗,b is linearly dependent on G∗,bi ; then

|A0| = |A1| = · · · = |An−1| = m/n.

Proof. By Corollary 10.4, and the discussion following Corollary 10.4 (the sym-
metric statements regarding Λr and G), there exist vectors b0 = 0,b1, . . . ,bn−1 ∈ ZQ
such that properties 1 and 2 hold. We now prove property 3.

By (R3), fixing bi for any i, there is a bijection between Ai and A0 by b �→ b−bi.
This is clear from Gb−bi,∗ = Gb,∗ ◦ Gbi,∗. Hence we have A0 = {b − bi | b ∈ Ai} for
all sets Ai. It then follows that |A0| = |A1| = · · · = |An−1| = m/n.

Now let G = (V, E) be an undirected graph. For each positive integer p we build
a new graph G[p] from G by replacing every edge e = uv ∈ E with a gadget. We need
G[2] in the proof but it is more convenient to describe G[1] first and illustrate it only
with the case p = 1. (The picture for G[2] will be too cumbersome to draw.)
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. . .

. . .

. . .

. . .

x y vu 

w z 

w ' z ' 

d 1 d 2 d 3 d r + 1 

ba 1 c1 a 2 c2 a N - 1 cN - 1 

d ' d ' d ' d ' 1  1 + r 3 2

ba 1 c1 a 2 c2 a N - 1 cN - 1 ' ' ' ' ' ' '

N - 1     e d g e s 

1           e d g e 

Fig. 11.1. The gadget for constructing G[1]. (Note that the subscript e is suppressed.)

The gadget for G[1] is shown in Figure 11.1. Here G[1] = (V [1], E[1]), where

V [1] =V ∪
{
xe, ye, ae,i, a

′
e,i, be, b

′
e, ce,i, c

′
e,i, de,j , d

′
e,j ,

we, w
′
e, ze, z

′
e : e ∈ E, i ∈ [N − 1], j ∈ [r + 1]

}
,

and E[1] contains exactly the following edges: For every edge e = uv ∈ E, add
1. one edge (u, de,j) for all j ∈ [r + 1] − {2};
2. N − 1 parallel edges (v, de,j) for all j ∈ [r + 1] − {1};
3. one edge (de,1, we), (de,2, ze), (we, ye), and (ze, xe);
4. N − 1 parallel edges (de,1, ze), (de,2, we), (we, xe), and (ze, ye);
5. one edge (ae,i, de,j) for all i ∈ [N − 1] and j ∈ [r + 1] − {2};
6. one edge (be, de,j) for all j ∈ [r + 1] − {1};
7. N − 1 parallel edges (ce,N−1, ae,1) and (ce,i, ae,i+1) for all i ∈ [N − 2];
8. one edge (ae,i, ce,i) for all i ∈ [N − 1];
9. N − 1 parallel edges (u, d′e,j) for all j ∈ [r + 1] − {2};

10. one edge (v, d′e,j) for all j ∈ [r + 1] − {1};
11. one edge (d′e,1, z

′
e), (d′e,2, w

′
e), (w′e, xe), and (z′e, ye);

12. N − 1 parallel edges (d′e,1, w
′
e), (d′e,2, z

′
e), (w′e, ye), and (z′e, xe);

13. one edge (a′e,i, d
′
e,j) for all i ∈ [N − 1] and j ∈ [r + 1] − {1};

14. one edges (b′e, d
′
e,j) for all j ∈ [r + 1] − {2};
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15. N − 1 parallel edges (c′e,N−1, a
′
e,1) and (c′e,i, a

′
e,i+1) for all i ∈ [N − 2];

16. one edge (a′e,i, c
′
e,i) for all i ∈ [N − 1].

As indicated earlier, the graph we really need in the proof is G[2]. The gadget for
G[2] consists of two disjoint copies of the gadget for G[1], with the respective copies
of the vertices u, v, x, and y in the two copies identified. Given G = (V, E), we use
this new gadget to build G[2] by replacing each e = uv ∈ E with this gadget. The
degree of every vertex in G[2] is a 0 (mod N) except both copies of ae,i, a

′
e,i, be, and

b′e whose degree is r (mod N).
The construction gives us a 2m × 2m matrix A such that ZA(G) = ZC,D(G[2])

for all G and thus EVAL(A) (≤ EVAL(C, D)) (right now it is not clear whether A is
a symmetric matrix, which we will prove later) is not #P-hard. We index the rows
and columns of A in the same way as we do for C: The first m rows and columns are
indexed by {0}×ZQ and the last m rows and columns are indexed by {1}×ZQ. Since
C is the bipartization of F, we have A(0,u),(1,v) = A(1,u),(0,v) = 0 for all u,v ∈ ZQ.

Next we analyze the upper-left m × m block of A. Given u,v ∈ ZQ, let Au,v,x,y

denote the following sum:

∑

a1,...,aN−1,b∈Λr

d1,d2∈ZQ

D
[r]
(0,b)

N−1∏

i=1

D
[r]
(0,ai)

⎛
⎝ ∑

w∈ZQ

Fw,d1Fw,yFw,d2Fw,x

⎞
⎠
⎛
⎝∑

z∈ZQ

Fz,d2Fz,xFz,d1Fz,y

⎞
⎠

×

⎛
⎝

N−2∏

i=1

∑

ci∈ZQ

Fai,ciFai+1,ci

⎞
⎠
⎛
⎝ ∑

cN−1∈ZQ

FaN−1,cN−1Fa1,cN−1

⎞
⎠

×

⎛
⎝

r+1∏

i=3

∑

di∈ZQ

Fu,diFb,diFv,di

N−1∏

j=1

Faj ,di

⎞
⎠Fu,d1

⎛
⎝

N−1∏

j=1

Faj ,d1

⎞
⎠Fv,d2Fb,d2 ;

let Bu,v,x,y denote the following sum:

∑

a1,...,aN−1,b∈Λr,
d1,d2∈ZQ

D
[r]
(0,b)

N−1∏

i=1

D
[r]
(0,ai)

⎛
⎝ ∑

w∈ZQ

Fw,d2Fw,xFw,d1Fw,y

⎞
⎠
⎛
⎝∑

z∈ZQ

Fz,d1Fz,yFz,d2Fz,x

⎞
⎠

×

⎛
⎝

N−2∏

i=1

∑

ci∈ZQ

Fai,ciFai+1,ci

⎞
⎠
⎛
⎝ ∑

cN−1∈ZQ

FaN−1,cN−1Fa1,cN−1

⎞
⎠

×

⎛
⎝

r+1∏

i=3

∑

di∈ZQ

Fv,diFb,diFu,di

N−1∏

j=1

Faj ,di

⎞
⎠Fv,d2

⎛
⎝

N−1∏

j=1

Faj ,d2

⎞
⎠Fu,d1Fb,d1 .

Then we have

A(0,u),(0,v) =
∑

x,y∈ZQ

A2
u,v,x,yB2

u,v,x,y.

We simplify Au,v,x,y first. Since F is discrete unitary and satisfies (R3), we have

∑

w∈ZQ

Fw,d1Fw,yFw,d2Fw,x = 〈F∗,d1+y,F∗,d2+x〉 =

{
m if d1 − d2 = x − y,

0 otherwise.
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Also when d1 − d2 = x − y, we have
∑

z∈ZQ
Fz,d2Fz,xFz,d1Fz,y = m. Similarly,

∑

ci∈ZQ

Fai,ciFai+1,ci = 〈Fai,∗,Fai+1,∗〉

is zero unless ai = ai+1 for i = 1, . . . , N − 2, and
∑

cN−1∈ZQ

FaN−1,cN−1Fa1,cN−1 = 〈FaN−1,∗,Fa1,∗〉

is zero unless aN−1 = a1. When a1 = · · · = aN−1, all these inner products are equal
to m. So now we may assume that d1 − d2 = x − y and all ai’s are equal, call it a,
in the sum for Au,v,x,y. Let x − y = s. Then Au,v,x,y is equal to
(11.1)

mN+1
∑

a,b∈Λr

d2∈ZQ

D
[r]
(0,b)D

[r]
(0,a)

⎛
⎝

r+1∏

i=3

∑

di∈ZQ

Fu,diFb,diFv,diFa,di

⎞
⎠Fu,d2+sFb,d2Fv,d2Fa,d2+s.

Again we have

∑

di∈ZQ

Fu,diFb,diFv,diFa,di = 〈Fu+b,∗,Fv+a,∗〉 =

{
m if u + b = v + a,

0 otherwise.

If v − u /∈ Λlin
r ≡ {x − x′ : x,x′ ∈ Λr}, then Au,v,x,y = 0 as a,b ∈ Λr, b − a ∈ Λlin

r .
For every h ∈ Λlin

r (e.g., h = v − u), we define a |Λr|-dimensional vector T[h]:

T [h]
x = D

[r]
(0,x+h)D

[r]
(0,x) for all x ∈ Λr.

By (L), Λr is a coset in ZQ. So for any x ∈ Λr, we also have x + h ∈ Λr. Therefore,
every entry of T[h] is nonzero and is a power of ωN .

Now we use T[v−u] to express Au,v,x,y. Suppose v − u ∈ Λlin
r ; then

Au,v,x,y = mN+r
∑

a∈Λr,d2∈ZQ
b=a+v−u

D
[r]
(0,b)D

[r]
(0,a)Fu,d2+sFb,d2Fv,d2Fa,d2+s

= mN+r+1
∑

a∈Λr

D
[r]
(0,a+v−u)D

[r]
(0,a)Fu,sFa,s

= mN+r+1 · Fu,x−y〈T[v−u],G∗,x−y〉.

Here we used (R3) in the second equality, and we recall the definition of s = x − y.
Similarly, when v − u /∈ Λlin

r , we have Bu,v,x,y = 0, and when v − u ∈ Λlin
r ,

Bu,v,x,y = mN+r
∑

b∈Λr,d2∈ZQ
a=b+v−u

D
[r]
(0,b)D

[r]
(0,a)Fv,d2Fb,d2+x−yFa,d2Fu,d2+x−y

= mN+r+1 · Fu,x−y〈T[v−u],G∗,x−y〉.

To summarize, when v − u /∈ Λlin
r , A(0,u),(0,v) = 0, and when v − u ∈ Λlin

r ,

(11.2)

A(0,u),(0,v) = m4(N+r+1)
∑

x,y∈ZQ

∣∣∣〈T[v−u],G∗,x−y〉
∣∣∣
4

= m4N+4r+5
∑

b∈ZQ

∣∣∣〈T[v−u],G∗,b〉
∣∣∣
4

.
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GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 999

We now show that A is symmetric. Let a = v − u ∈ Λlin
r . By (R3), for b ∈ ZQ,

∣∣∣〈T[−a],G∗,−b〉
∣∣∣ =
∣∣∣∣∣
∑

x∈Λr

D
[r]
(0,x−a)D

[r]
(0,x)Gx,−b

∣∣∣∣∣ =
∣∣∣∣∣
∑

x∈Λr

D
[r]
(0,x)D

[r]
(0,x−a)Gx,b

∣∣∣∣∣

=

∣∣∣∣∣∣
∑

y∈Λr

D
[r]
(0,y+a)D

[r]
(0,y)Gy,bFa,b

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

y∈Λr

D
[r]
(0,y+a)D

[r]
(0,y)Gy,b

∣∣∣∣∣∣
=
∣∣∣〈T[a],G∗,b〉

∣∣∣ ,

where the second equality is by conjugation, the third equality is by the substitution
x = y+a, and the fourth equality is because Fa,b is a root of unity. Thus, A(0,u),(0,v) =
A(0,v),(0,u). The lower-right block can be proved similarly. Hence A is symmetric.

Next, we further simplify (11.2) using Lemma 11.1:

(11.3) A(0,u),(0,v) =
m4N+4r+6

n
·
n−1∑

i=0

∣∣∣〈T[v−u],G∗,bi〉
∣∣∣
4

.

For the special case of u = v, since T[0] = 1 = G∗,b0 and {G∗,b0 , . . . ,G∗,bn−1} is an
orthogonal basis by Lemma 11.1, we have

n−1∑

i=0

∣∣∣〈T[0],G∗,bi〉
∣∣∣
4

= n4 and A(0,u),(0,u) = L · n4, where L ≡ m4N+4r+6/n.

Our next goal is to prove for all a ∈ Λlin
r that there exist b ∈ ZQ, α ∈ ZN such

that

(11.4) T[a] = ωα
N · G∗,b.

If |Λlin
r | = 1, then (11.4) is trivially true. Thus below we assume |Λlin

r | > 1. Because
A is symmetric and nonnegative, we can apply the dichotomy theorem of Bulatov and
Grohe. For any pair u �= v such that u − v ∈ Λlin

r , we consider the 2 × 2 submatrix
(

A(0,u),(0,u) A(0,u),(0,v)

A(0,v),(0,u) A(0,v),(0,v)

)

of A. Since EVAL(A) is assumed to be not #P-hard, by Corollary 2.6, we have

A(0,u),(0,v) = A(0,v),(0,u) ∈
{
0, L · n4

}
,

and thus from (11.3) we get

(11.5)

n−1∑

i=0

∣∣∣〈T[v−u],G∗,bi〉
∣∣∣
4

∈
{
0, n4

}
for all u,v such that u − v ∈ Λlin

r .

However, the sum in (11.5) cannot be zero, because by Lemma 11.1, {G∗,bi : i ∈
[0 : n − 1]} is an orthogonal basis with each ‖G∗,bi‖2 = n. Then by Parseval,

n−1∑

i=0

∣∣∣∣
〈
T[v−u],

G∗,bi

‖G∗,bi‖
〉∣∣∣∣

2

= ‖T[v−u]‖2 = n,

as each entry of T[v−u] is a root of unity. Hence
∑n−1

i=0 |〈T[v−u],G∗,bi〉|2 = n2. This
shows that for some 0 ≤ i < n, |〈T[v−u],G∗,bi〉| �= 0, and therefore the sum in (11.5)
is nonzero, and thus in fact
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1000 JIN-YI CAI, XI CHEN, AND PINYAN LU

n−1∑

i=0

∣∣∣〈T[v−u],G∗,bi〉
∣∣∣
4

= n4 for all u,v such that u − v ∈ Λlin
r .

If we temporarily denote xi = |〈T[v−u],G∗,bi〉| for 0 ≤ i < n, then each xi ≥ 0.

We have both
∑n−1

i=0 x2
i = n2 and

∑n−1
i=0 x4

i = n4. By taking the square, we have

n4 =

(
n−1∑

i=0

x2
i

)2

=

n−1∑

i=0

x4
i + nonnegative cross terms.

It follows that all cross terms must be zero. Thus, there exists a unique term xi �= 0.
Moreover, this xi must equal to n, while all other xj = 0. We conclude that for all u
and v ∈ ZQ such that u − v ∈ Λlin

r , there exists a unique i ∈ [0 : n − 1] such that

∣∣∣〈T[v−u],G∗,bi〉
∣∣∣ = n.

Applying again the argument that 〈T[v−u],G∗,bi〉 is a sum of n terms, each of which
is a root of unity, (11.4) follows.

Below we use (11.4) to prove (D3). Note that if s = 1, then (D3) follows directly
from (11.4). Thus below we assume s > 1. First, (11.4) implies the following lemma.

Lemma 11.2. Let a ∈ Λlin
r,k for some k ∈ [s]. Then for any � �= k and c ∈ Λlin

r,�,

T
[ã]
x+c̃

/
T [ã]
x

is a power of ωq� for all x ∈ Λr.
Recall that q� = q�,1. Also note that for every x ∈ Λr, the translated point x + c̃

is in Λr, so T[ã] is defined at both x and x + c̃. Since they are roots of unity, we can
divide one by the other.

Proof. By (11.4), there exists a vector b ∈ ZQ such that

T
[ã]
x+c̃

/
T [ã]
x = Gx+c̃,b

/
Gx,b = Fc̃,b,

which, by (R3), must be a power of ωq� .

Let a ∈ Λlin
r,k and c ∈ Λlin

r,�, � �= k ∈ [s]. By the definition of T
[h]
x in terms of D

[r]
∗ ,

T
[c̃]
x+ã · T [ã]

x = T [ã+c̃]
x = T

[ã]
x+c̃ · T [c̃]

x ,

and thus

T
[c̃]
x+ã

/
T [c̃]
x = T

[ã]
x+c̃

/
T [ã]
x .

By Lemma 11.2, the left-hand side of the equation is a power of ωqk , while the right-
hand side of the equation is a power of ωq� . Since k �= �, gcd(qk, q�) = 1, so

(11.6) T
[ã]
x+c̃

/
T [ã]
x = 1 for all c ∈ Λlin

r,� such that � �= k.

This implies that T
[ã]
x , as a function of x, only depends on xk ∈ Λr,k. By (11.4),

T [ã]
x = T

[ã]
extr(xk)

= ωα
N · Gextr(xk),b = ωα+β

N · F
x̃k,b̃k

= ωα+β
N · F

x,b̃k
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for any x ∈ Λr and for some constants α, β ∈ ZN , and bk ∈ Zqk
that are independent

of x. This proves condition (D3).
Finally we prove (D1) from (D3). Let a[r] = (a1, a2, . . . , as) ∈ Λr. Then

D
[r]
(0,x) = D

[r]
(0,(x1,x2,...,xs))

D
[r]
(0,(a1,a2,...,as))

=
(
D

[r]
(0,(x1,x2,...,xs−1,xs))

D
[r]
(0,(x1,x2,...,xs−1,as))

)

×
(
D

[r]
(0,(x1,x2,...,xs−1,as))

D
[r]
(0,(x1,...,xs−2,as−1,as))

)
· · ·

×
(
D

[r]
(0,(x1,a2,...,as))

D
[r]
(0,(a1,a2,...,as))

)
for any x ∈ Λr.

We consider the kth factor

(11.7) D
[r]
(0,(x1,...,xk−1,xk,ak+1,...,as))

D
[r]
(0,(x1,...,xk−1,ak,ak+1,...,as))

.

From (11.6) this factor is independent of all other components in the starting point
(x1, . . . ,xk−1, ak, ak+1, . . . , as) except the kth component ak. In particular, we can
replace all other components, as long as we stay within Λr. We choose to replace the
first k − 1 components xi by ai. Then (11.7) becomes

D
[r]
(0,(a1,...,ak−1,xk,ak+1,...,as))

D
[r]
(0,(a1,...,ak−1,ak,ak+1,...,as))

= D
[r]
(0,extr(xk))

D
[r]

(0,a[r])
= D

[r]
(0,extr(xk))

,

and (D1) is now proved.

12. Tractability: Proof of Theorem 5.10. Let ((M, N),C, D, (p, t, Q)) be a
tuple that satisfies (R), (L), (D). In this section, we finally show that EVAL(C, D) is
tractable by reducing it to the following problem. Let q = pk be a prime power for
some prime p and positive integer k. The input of EVAL(q) is a quadratic polynomial
f(x1, x2, . . . , xn) =

∑
i,j∈[n] ai,jxixj , where ai,j ∈ Zq for all i, j, and the output is

Zq(f) =
∑

x1,...,xn∈Zq

ωf(x1,...,xn)
q .

We postpone the proof of the following theorem to the end of this section.
Theorem 12.1. Let q be a prime power. Then EVAL(q) can be solved in polyno-

mial time (in n, the number of variables).
The reduction goes as follows. First, we use conditions (R), (L), and (D) to show

that EVAL(C, D) can be decomposed into s smaller problems, where s is the number
of primes in the sequence p: EVAL(C[1], D[1]), . . . ,EVAL(C[s], D[s]). If each of these s
problems is tractable, then so is EVAL(C, D). Second, we reduce each EVAL(C[i], D[i])
to EVAL(q) for some appropriate prime power q that will become clear later. It follows
from Theorem 12.1 that all EVAL(C[i], D[i])’s can be solved in polynomial time.

12.1. Step 1. For each integer i ∈ [s], we define a 2mi × 2mi matrix C[i] where
mi = |Zqi |: C[i] is the bipartization of the following mi × mi matrix F[i], where

(12.1) F [i]
x,y =

∏

j∈[ti]
ωxjyj
qi,j for all x = (x1, . . . , xti),y = (y1, . . . , yti) ∈ Zqi .
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We index the rows and columns of F[i] by x ∈ Zqi and index the rows and columns
of C[i] by {0, 1}× Zqi. We let xj , j ∈ [ti], denote the jth entry of x ∈ Zqi,j . By (R3),

(12.2) Fx,y = F [1]
x1,y1

· F [2]
x2,y2

· · · F [s]
xs,ys

for all x,y ∈ ZQ.

For each integer i ∈ [s], we define a sequence of N 2mi × 2mi diagonal matrices

D[i] =
(
D[i,0], . . . ,D[i,N−1]).

D[i,0] is the 2mi × 2mi identity matrix; for every r ∈ [N − 1], we set

D
[i,r]
(0,∗) = 0 if r /∈ S and D

[i,r]
(0,x) = D

[r]
(0,extr(x))

for all x ∈ Zqi if r ∈ S;

D
[i,r]
(1,∗) = 0 if r /∈ T and D

[i,r]
(1,x) = D

[r]
(1,ext′r(x))

for all x ∈ Zqi if r ∈ T .

By conditions (D1) and (D2), we have

(12.3) D
[r]
(b,x) = D

[1,r]
(b,x1)

· · ·D[s,r]
(b,xs)

for all b ∈ {0, 1} and x ∈ ZQ.

Equation (12.3) is valid for all x ∈ ZQ. For example, for b = 0 and x ∈ ZQ − Λr, the
left-hand side is 0 because x /∈ Λr. The right-hand side is also 0, because there exists
an index i ∈ [s] such that xi /∈ Λr,i and thus extr(xi) /∈ Λr. It then follows from
(12.1), (12.3), and the following lemma that if EVAL(C[i], D[i]) is in polynomial time
for all i ∈ [s], then EVAL(C, D) is also in polynomial time.

Lemma 12.2. Suppose we have the following matrices: for each i ∈ {0, 1, 2}, C[i]

is the bipartization of an mi ×mi complex matrix F[i]; D[i] = (D[i,0], . . . , D[i,N−1]) is
a sequence of N 2mi × 2mi diagonal matrices for some N ≥ 1, where

D[i,r] =

(
P[i,r]

Q[i,r]

)

and P[i,r] and Q[i,r] are mi × mi diagonal matrices; (C[i], D[i]) satisfies (Pinning);

F[0] = F[1] ⊗ F[2], P[0,r] = P[1,r] ⊗ P[2,r] and Q[0,r] = Q[1,r] ⊗ Q[2,r]

for all r ∈ [0 : N − 1] (so m0 = m1m2). If EVAL(C[1], D[1]) and EVAL(C[2], D[2]) are
tractable, then EVAL(C[0], D[0]) is also tractable.

Proof. By the second pinning lemma (Lemma 4.3), both functions Z→ and Z←

of (C[i], D[i]), for both i = 1 and 2, can be computed in polynomial time. The lemma
then follows from Lemma 2.4.

We now use condition (D4) to prove the following lemma.
Lemma 12.3. Given r ∈ T , i ∈ [s], and a ∈ Δlin

r,i, there exist b ∈ Zqi and α ∈ ZN

such that the following equation holds for all x ∈ Δr,i:

D
[i,r]
(1,x+a) · D

[i,r]
(1,x) = ωα

N · F [i]
b,x.

Proof. By the definition of D[i,r], we have

D
[i,r]
(1,x+a) · D[i,r]

(1,x) = D
[r]
(1,ext′r(x+a)) · D

[r]
(1,ext′r(x))

= D
[r]
(1,ext′r(x)+ã) · D[r]

(1,ext′r(x))
.

Recall that ã is the vector in ZQ such that ãi = a and ãj = 0 for all other j �= i.
Then by condition (D4), we know there exist b ∈ Zqi and α ∈ ZN such that

D
[i,r]
(1,x+a) · D

[i,r]
(1,x) = ωα

N · Fb̃,ext′r(x)
= ωα

N · F [i]
b,x for all x ∈ Δr,i,

and the lemma is proved.
One can also prove a similar lemma for the other block of D[i,r], using (D3).
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12.2. Step 2. For convenience, in this step we abuse the notation slightly and
use EVAL(C, D) to denote one of the subproblems EVAL(C[i], D[i]), i ∈ [s], defined
in the last step. Then by using conditions (R), (L), and (D), we summarize the
properties of this new pair (C, D) that we need in the reduction as follows:

(F1) There is a prime p and a nonincreasing sequence π = (π1, . . . , πh) of powers
of the same p. F is an m × m complex matrix, where m = π1π2 · · · πh, and C is the
bipartization of F. We let π denote π1. We also use Zπ ≡ Zπ1 × · · · × Zπh

to index
the rows and columns of F. Then F satisfies

Fx,y =
∏

i∈[h]
ωxiyi
πi

for all x = (x1, . . . , xh) and y = (y1, . . . , yh) ∈ Zπ,

where we use xi ∈ Zπi to denote the ith entry of x, i ∈ [h].
(F2) D = (D[0], . . . ,D[N−1]) is a sequence of N 2m × 2m diagonal matrices for

some N ≥ 1 with π | N . D[0] is the identity matrix, and every diagonal entry of D[r],
r ∈ [N − 1], is either 0 or a power of ωN . We use {0, 1} × Zπ to index the rows and
columns of matrices C and D[r]. (The condition π |N is from the condition M |N in
(U1) and the expression of M in terms of the prime powers, stated after (R3). The π
here is one of the qi = qi,1 there.)

(F3) For each r ∈ [0 : N − 1], we use Λr and Δr to denote

Λr = {x ∈ Zπ

∣∣D[r]
(0,x) �= 0} and Δr = {x ∈ Zπ

∣∣D[r]
(1,x) �= 0}.

We use S to denote the set of r such that Λr �= ∅ and T to denote the set of r such
that Δr �= ∅. Then for every r ∈ S, Λr is a coset in Zπ; for every r ∈ T , Δr is a coset
in Zπ. For each r ∈ S (and r ∈ T ), there is an a[r] ∈ Λr (b[r] ∈ Δr, resp.) such that

D
[r]

(0,a[r])
= 1

(
and D

[r]

(1,b[r])
= 1, resp.

)
.

(F4) For all r ∈ S and a ∈ Λlin
r , there exist b ∈ Zπ and α ∈ ZN such that

D
[r]
(0,x+a)D

[r]
(0,x) = ωα

N · Fx,b for all x ∈ Λr;

for all r ∈ T and a ∈ Δlin
r , there exist b ∈ Zπ and α ∈ ZN such that

D
[r]
(1,x+a)D

[r]
(1,x) = ωα

N · Fb,x for all x ∈ Δr.

Now let G be a connected graph. Below we reduce the computation of ZC,D(G)
to EVAL(π̂), where π̂ = π if p �= 2 and π̂ = 2π if p = 2.

Given a ∈ Zπi for some i ∈ [h], let â denote an element in Zπ̂ such that â ≡ a
(mod πi). As πi | π1 = π | π̂, this lifting of a is certainly feasible. For definiteness, we
can choose a itself if we consider a to be an integer between 0 and πi − 1.

First, if G is not bipartite, then ZC,D(G) is trivially 0. From now on we assume
G = (U ∪ V, E) to be bipartite: every edge has one vertex in U and one vertex in V .

Let u∗ be a vertex in U . Then we can decompose ZC,D(G) into

ZC,D(G) = Z→C,D(G, u∗) + Z←C,D(G, u∗).

We will reduce Z→C,D(G, u∗) to EVAL(π̂). The Z← part can be dealt with similarly.
We use Ur, where r ∈ [0 : N −1], to denote the set of vertices in U whose degree is

r (mod N) and use Vρ to denote the set of vertices in V whose degree is ρ (mod N).
We decompose E into

⋃
i,j Ei,j , where Ei,j contains the edges between Ui and Vj .
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If Ur �= ∅ for some r /∈ S or if Vρ �= ∅ for some ρ /∈ T , then Z→C,D(G) = 0. Thus,
we assume that Ur = ∅ for all r �∈ S and Vρ = ∅ for all ρ �∈ T . In this case, we have
(12.4)

Z→C,D(G, u∗) =
∑

(f,g)

⎡
⎣∏

r∈S

( ∏

u∈Ur

D
[r]
(0,xu)

)∏

ρ∈T

⎛
⎝∏

v∈Vρ

D
[r]
(1,yv)

⎞
⎠
⎤
⎦
⎡
⎣ ∏

(r,ρ)∈S×T

∏

uv∈Er,ρ

Fxu,yv

⎤
⎦.

Here the sum ranges over all pairs (f, g), where

f = (fr; r ∈ S) ∈
∏

r∈S
(Ur → Λr) and g = (gρ; ρ ∈ T ) ∈

∏

ρ∈T
(Vρ → Δρ)

such that f(u) = xu and g(v) = yv.
The following lemma gives us a convenient way to do summation over a coset.
Lemma 12.4. Let Φ be a coset in Zπ and c = (c1, . . . , ch) be a vector in Φ. Then

there exist a positive integer s and an s × h matrix A over Zπ̂ such that the map
τ : (Zπ̂)s → Zπ1 × · · · × Zπh

, where τ(x) = (τ1(x), . . . , τh(x)) and

(12.5) τj(x) =
(
xA∗,j + ĉj (mod πj)

)
∈ Zπj for all j ∈ [h],

is a uniform map from (Zπ̂)s onto Φ. This uniformity means that for all b,b′ ∈ Φ, the
number of x ∈ (Zπ̂)s with τ(x) = b is the same as the number of x with τ(x) = b′.

Proof. Using the fundamental theorem of finite Abelian groups, there is a group
isomorphism f from Zg onto Φlin, where g = (g1, . . . , gs) is a sequence of powers of
p and satisfies π̂ ≥ π = π1 ≥ g1 ≥ · · · ≥ gs for some s ≥ 1. Zg ≡ Zg1 × · · · × Zgs

is a Zπ̂-module. This is clear, since as a Z-module, any multiple of π̂ annihilates Zg.
Thus f is also a Zπ̂-module isomorphism.

Let ai = f(ei) ∈ Φlin for each i ∈ [s], where ei ∈ Zg is the vector whose ith entry
is 1 and all other entries are 0. Let ai = (ai,1, . . . , ai,h) ∈ Zπ, where ai,j ∈ Zπj , i ∈ [s],
j ∈ [h]. Let âi = (âi,1, . . . , âi,h) ∈ (Zπ̂)h be a lifting of ai componentwise. Similarly
let ĉ be a lifting of c componentwise. Then we claim that A = (âi,j) and ĉ together
give us the required uniform map τ from (Zπ̂)s to Φ.

To show that τ is uniform, we consider the linear part of τ ′ : (Zπ̂)s → Φlin,

τ ′(x) = (τ ′1(x), . . . , τ ′h(x)), where τ ′j(x) =
(
xA∗,j (mod πj)

)
∈ Zπj

for all j ∈ [h]. Clearly we only need to show that τ ′ is a uniform map.
Let σ be the natural projection from Zs

π̂ to Zg:

x = (x1, . . . , xs) �→
(
x1 (mod g1), . . . , xs (mod gs)

)
.

σ is certainly a uniform map, being a surjective homomorphism. Thus, every vector
b ∈ Zg has | kerσ| = π̂s/(g1 · · · gs) many preimages. We show that the map τ ′ factors
through σ and f , i.e., τ ′ = f ◦ σ. Because f is an isomorphism, this implies that τ ′ is
also a uniform map.

As giei = 0 in Zg, the following is a valid expression in the Zπ̂-module for σ(x):

(
x1 (mod g1), . . . , xs (mod gs)

)
=

s∑

i=1

xiei.

Apply f as a Zπ̂-module homomorphism f(σ(x)) =
∑s

i=1 xif(ei) with its jth entry
being

∑s
i=1 xiai,j . This is an expression in the Zπ̂-module Zπj , which is the same as
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s∑

i=1

(
xi (mod πj)

)
· ai,j =

s∑

i=1

xiâi,j (mod πj) = τ ′j(x).

The lemma is proved.
Applying Lemma 12.4 to Λr, for every r ∈ S, there exist a positive integer sr and

an sr × h matrix A[r] over Zπ̂ which give us a uniform map λ[r](x) from Zsr
π̂ to Λr:

(12.6) λ
[r]
i (x) =

(
xA

[r]
∗,i + â

[r]
i (mod πi)

)
for all i ∈ [h] and x ∈ Zsr

π̂ .

Similarly, for every r ∈ T , there exist a positive integer tr and an tr × h matrix B[r]

over Zπ̂ which give us a uniform map δ[r] from Ztr
π̂ to Δr:

(12.7) δ
[r]
i (y) =

(
yB

[r]
∗,i + b̂

[r]
i (mod πi)

)
for all i ∈ [h] and y ∈ Ztr

π̂ .

Using (F3), we have

(12.8) D
[r]

(0,λ[r](0))
= 1 when r ∈ S and D

[r]

(1,δ[r](0))
= 1 when r ∈ T .

Because both λ[r] and δ[r] are uniform, and we know the multiplicity of each map (the
cardinality of inverse images), to compute (12.4) it suffices to compute the following:
(12.9)
∑

(xu),(yv)

∏

r∈S

( ∏

u∈Ur

D
[r]

(0,λ[r](xu))

) ∏

r∈T

(∏

v∈Vr

D
[r]

(1,δ[r](yv))

) ∏

r1∈S,r2∈T
uv∈Er1,r2

Fλ[r1](xu),δ[r2](yv),

where the sum is over pairs of sequences
(
xu; u ∈

⋃

r∈S
Ur

)
∈
∏

r∈S

(
Zsr
π̂

)|Ur |
and

(
yv; v ∈

⋃

r∈T
Vr

)
∈
∏

r∈T

(
Ztr
π̂

)|Vr|
.

If (1) for all r ∈ S, there is a quadratic polynomial f [r] over Zπ̂ such that

(12.10) D
[r]

(0,λ[r](x))
= ω

f [r](x)
π̂ for all x ∈ Zsr

π̂ ;

(2) for all r ∈ T , there is a quadratic polynomial g[r] over Zπ̂ such that

(12.11) D
[r]

(1,δ[r](y))
= ω

g[r](y)
π̂ for all y ∈ Ztr

π̂ ;

(3) for all r1 ∈ S, r2 ∈ T , there is a quadratic polynomial f [r1,r2] over Zπ̂ such that

(12.12) Fλ[r1](x),δ[r2](y) = ω
f [r1,r2](x,y)
π̂ for all x ∈ Zsr1

π̂ and y ∈ Ztr2
π̂ ,

then we can reduce the computation of the summation in (12.9) to EVAL(π̂).
We start with (3). By (F1), the following map f [r1,r2] satisfies (12.12):

f [r1,r2](x,y) =
∑

i∈[h]

π̂

πi
· λ[r1]

i (x) · δ
[r2]
i (y) =

∑

i∈[h]

π̂

πi

(
xA

[r1]
∗,i + â

[r1]
i

)(
yB

[r2]
∗,i + b̂

[r2]
i

)
.

Note that the presence of the integer π̂/πi is crucial to be able to substitute the mod
πi expressions in (12.6) and in (12.7), respectively, as if they were mod π̂ expressions.
It is also clear that f [r1,r2] is indeed a quadratic polynomial over Zπ̂ .
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Next we prove (1), which is a little more complicated. The proof of (2) is similar.
Let r ∈ S. Let ei denote the vector in Zsr

π̂ whose ith entry is 1 and all other entries
are 0. Using (F4), for each i ∈ [sr], there exist αi ∈ ZN and bi = (bi,1, . . . , bi,h) ∈ Zπ,
where bi,j ∈ Zπj , such that

(12.13) D
[r]

(0,λ[r](x+ei))
D

[r]

(0,λ[r](x))
= ωαi

N

∏

j∈[h]
ω
bi,j ·λ[r]

j (x)
πj for all x ∈ Zsr

π̂ .

We have this equation because λ[r](x + ei) − λ[r](x) is indeed a vector in Zπ that is
independent of x. To see this, observe that the jth entry in λ[r](x + ei) − λ[r](x) is

eiA
[r]
∗,j = A

[r]
i,j (mod πj),

and thus the displacement vector λ[r](x + ei) − λ[r](x) is independent of x and is in
Λlin
r by definition. This is the a ∈ Λlin

r in the statement of (F4) which we applied.
Before moving forward, we show that ωαi

N must be a power of ωπ̂. This is because
(12.14)

1 =
π̂−1∏

j=0

D
[r]

(0,λ[r]((j+1)ei))
D

[r]

(0,λ[r](jei))
= (ωαi

N )π̂
∏

k∈[h]
ω
bi,k[λ

[r]
k (0ei)+···+λ

[r]
k ((π̂−1)ei)]

πk .

For each k ∈ [h], the exponent of ωπk
is bi,kQk ∈ Zπk

, where Qk is the following sum:
(12.15)
π̂−1∑

j=0

λ
[r]
k (jei) =

π̂−1∑

j=0

(
(jei)A

[r]
∗,k + â

[r]
k (mod πk)

)
=

⎛
⎝

π̂−1∑

j=1

jei

⎞
⎠A

[r]
∗,k (mod πk) = 0.

The last equality comes from J ≡ ∑π̂−1
j=1 j = 0 (mod πk), and this is due to our def-

inition of π̂. When p is odd, J is a multiple of π̂ and πk | π̂, and when p = 2, J is a
multiple of π̂/2. However, in this case, we have π̂/2 = π1 and πk | π1.

As a result, (ωαi

N )π̂ = 1. So there exists βi ∈ Zπ̂ for each i ∈ [sr] such that

(12.16) D
[r]

(0,λ[r](x+ei))
D

[r]

(0,λ[r](x))
= ωβi

π̂

∏

j∈[h]
ω
bi,j ·λ[r]

j (x)
πj for all x ∈ Zsr

π̂ .

It follows that every nonzero entry of D[r] is a power of ωπ̂. This uses (F3), that the
(0,a[r])th entry of D[r] is 1, and the fact that λ[r] is surjective to Λr: any point in Λr is
connected to the normalizing point a[r] by a sequence of moves λ[r](x) → λ[r](x + ei)
for i ∈ [sr]. Now we know there is a function f [r] : Zsr

π̂ → Zπ̂ which satisfies (12.10).
We want to show that it is indeed a quadratic polynomial. To see this, by (12.16),
(12.17)

f [r](x + ei) − f [r](x) = βi +
∑

j∈[h]

π̂

πj
· bi,j · λ[r]

j (x) = βi +
∑

j∈[h]

π̂

πj
· b̂i,j ·

(
xA

[r]
∗,j + â

[r]
j

)

for every i ∈ [sr]. We should remark that originally bi,j is in Zπj ; however, with the
integer multiplier (π̂/πj), the quantity (π̂/πj) ·bi,j is now considered in Zπ̂. Moreover,

b̂i,j ≡ bi,j (mod πj) =⇒
(

π̂

πj

)
b̂i,j ≡

(
π̂

πj

)
bi,j (mod π̂).
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Thus the expression in (12.17) is evaluated in Zπ̂, which means that for any i ∈ [sr],
there exist ci,0, . . . , ci,sr ∈ Zπ̂ such that

(12.18) f [r](x + ei) − f [r](x) = ci,0 +
∑

j∈[sr ]
ci,jxj .

Since f [r](0) = 0, the case when p is odd follows from the lemma below.
Lemma 12.5. Let π be a power of an odd prime, and let f be a map from Zs

π to
Zπ for some s ≥ 1. Suppose for every i ∈ [s], there exist ci,0, . . . , ci,s ∈ Zπ such that

(12.19) f(x + ei) − f(x) = ci,0 +
∑

j∈[s]
ci,jxj for all x ∈ Zs

π

and f(0) = 0. Then there exist ai,j , ai ∈ Zπ such that

(12.20) f(x) =
∑

i≤j∈[s]
ai,jxixj +

∑

i∈[s]
aixi for all x ∈ Zs

π.

Proof. First note that f is uniquely determined by the conditions on f(x + ei) −
f(x) and f(0). Second, we show that ci,j = cj,i for all i, j ∈ [s]; otherwise f does not
exist, contradicting the assumption. On the one hand, we have

f(ei + ej) = f(ei + ej) − f(ej) + f(ej) − f(0) = ci,0 + ci,j + cj,0.

On the other hand, we have

f(ei + ej) = f(ei + ej) − f(ei) + f(ei) − f(0) = cj,0 + cj,i + ci,0.

It follows that ci,j = cj,i.
Finally, we set ai,j = ci,j for all i < j ∈ [s]; ai,i = ci,i

/
2 for all i ∈ [s] (here ci,i/2

is well defined because π is odd); and ai = ci,0 −ai,i for all i ∈ [s]. We now claim that

g(x) =
∑

i≤j∈[s]
ai,jxixj +

∑

i∈[s]
aixi

satisfies both conditions and thus f = g. To see this, we check the case when i = 1:

g(x + e1) − g(x) = 2a1,1x1 +
∑

j>1

a1,jxj + (a1,1 + a1) = c1,1x1 +
∑

j>1

c1,jxj + c1,0.

Other cases are similar, and the lemma is proved.
When p = 2, we first claim that the constants ci,i in (12.18) must be even, since

0 = f [r](π̂ei)−f [r]((π̂ −1)ei)+ · · ·+f [r](ei)−f [r](0) = π̂ci,0 + ci,i(π̂−1+ · · ·+1+0).

This equality happens in Zπ̂ , so ci,i(π̂(π̂ − 1)/2) = 0 (mod π̂). When π̂ − 1 is odd we
have 2 | ci,i. It follows from the lemma below that f [r] is a quadratic polynomial.

Lemma 12.6. Let π be a power of 2 and let f be a map from Zs
π to Zπ satisfying

f(0) = 0. Suppose for every i ∈ [s] there exist ci,0, . . . , ci,s ∈ Zπ, where 2 | ci,i, such
that (12.19) holds. Then there are ai,j , ai ∈ Zπ such that f has the form of (12.20).

Proof. The proof of Lemma 12.6 is essentially the same as that of Lemma 12.5.
Because 2 | ci,i, ai,i = ci,i/2 is well-defined (in particular, when ci,i = 0, we set
ai,i = 0).
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12.3. Proof of Theorem 12.1. Finally we turn to the proof of Theorem 12.1,
i.e., EVAL(q) is tractable for any fixed prime power q.

Actually, there is a well-known polynomial-time algorithm for EVAL(q) when q is
a prime [10, 15], [27, Theorem 6.30]. (The algorithm works for any finite field.) Here
we present a polynomial-time algorithm that works for any prime power q. We start
with the easier case when q is odd.

Lemma 12.7. Let p be an odd prime and let q = pk for some positive integer k.
Let f ∈ Zq[x1, . . . , xn] be a quadratic polynomial over n variables x1, . . . , xn. Then

Zq(f) =
∑

x1,...,xn∈Zq

ωf(x1,...,xn)
q

can be evaluated in polynomial time (in n).
Proof. We assume that f(x1, . . . , xn) has the following form:

(12.21) f(x1, . . . , xn) =
∑

i≤j∈[n]
ci,jxixj +

∑

i∈[n]
cixi + c0,

where all the ci,j and ci are elements in Zq.
First, as a warm up, we give an algorithm and prove its correctness for the case

k = 1, i.e., q = p is an odd prime. Note that if f is affine, then the evaluation can be
trivially done in polynomial time. In fact, it decouples into a product of n sums,

∑

x1,...,xn∈Zq

ωf(x1,...,xn)
q =

∑

x1,...,xn∈Zq

ω
∑n

i=1 cixi+c0
q = ωc0

q ×
n∏

i=1

∑

xi∈Zq

ωcixi
q .

This sum is equal to 0 if any ci ∈ Zq is nonzero and is equal to qnωc0
q otherwise.

Now assume f(x1, . . . , xn) is not affine linear. Then in each round (which we will
describe below), the algorithm will decrease the number of variables by at least one,
in polynomial time. Assume f contains some quadratic terms. There are two cases:
f has at least one square term or f does not have any square terms.

In the first case, without loss of generality, we assume that c1,1 �= 0. There exist
an affine function g ∈ Zq[x2, . . . , xn] and a quadratic polynomial f ′ ∈ Zq[x2, . . . , xn],
both over n − 1 variables x2, x3, . . . , xn, such that

f(x1, x2, . . . , xn) = c1,1
(
x1 + g(x2, x3, . . . , xn)

)2
+ f ′(x2, x3, . . . , xn).

Here we used the fact that both 2 and c1,1 ∈ Zq are invertible in the field Zq. (Recall
we assumed that q = p is an odd prime.) Thus, we can factor out a coefficient 2c1,1
from the cross term x1xi for every i > 1, and from the linear term x1, to obtain the
expression c1,1(x1 + g(x2, . . . , xn))2.

For any fixed x2, . . . , xn, when x1 ranges over Zq, x1 + g ranges over Zq. Thus,

∑

x1,x2,...,xn∈Zq

ωf(x1,x2,...,xn)
q =

∑

x2,...,xn∈Zq

ωf ′
q

∑

x1∈Zq

ωc1,1(x1+g)2

q =
∑

x∈Zq

ωc1,1x
2

q · Zq(f
′).

The first factor can be evaluated in constant time (which is independent of n), and
the computation of Zq(f) is reduced to the computation of Zq(f

′) in which f ′ has at
most n − 1 variables.

Remark 12.8. The claim of
∑

x ωcx2

q being “computable in constant time” here
is a trivial statement, since we consider q = p to be a fixed constant. However, for a
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general prime p, we remark that the sum is the famous Gauss quadratic sum and has
the following closed formula: If c �= 0,

∑

x∈Zp

ωcx2

p =

(
c

p

)
G, where G =

∑

x∈Zp

(
x

p

)
ωx
p .

Here ( c
p ) is the Legendre symbol. It can be computed in polynomial time in the binary

length of c and p. G has the closed form G = +
√

p if p ≡ 1 mod 4 and G = +i
√

p if
p ≡ 3 mod 4.4

The second case is that all the quadratic terms in f are cross terms (in particular
this implies that n ≥ 2). In this case we assume, without loss of generality, that c1,2
is nonzero. We apply the following transformation: x1 = x′1 + x′2 and x2 = x′1 − x′2.
As 2 is invertible in Zq, when x′1 and x′2 go over Z2

q, x1 and x2 also go over Z2
q . Thus,

∑

x1,x2,...,xn∈Zq

ωf(x1,x2,...,xn)
q =

∑

x′
1,x

′
2,,...,xn∈Zq

ω
f(x′

1+x′
2,x

′
1−x′

2,...,xn)
q .

Viewing f(x′1 +x′2, x
′
1 −x′2, . . . , xn) as a new quadratic polynomial f ′ of x′1, x

′
2, . . . , xn

its coefficient of x′21 is exactly c1,2 �= 0. Thus f ′ contains at least one square term.
This reduces our problem back to the first case. We can use the method described
earlier to reduce the number of variables.

Repeating this process we get a polynomial-time algorithm for computing Zq(f)
when q = p is an odd prime. Now we consider the case when q = pk.

We can write any nonzero a ∈ Zq as a = pta′, where t is a unique nonnegative
integer, such that p � a′. We call t the order of a (with respect to p). If f is an affine
linear function, Zq(f) is easy to compute, as the sum factors into n sums as before.
Now we assume f has nonzero quadratic terms. Let t0 be the smallest order of all the
nonzero quadratic coefficients ci,j of f . We consider the following two cases: there
exists at least one square term with coefficient of order t0 or not.

For the first case, without loss of generality, assume c1,1 = pt0c and p � c (so c
is invertible in Zq). By the minimality of t0, every nonzero coefficient of a quadratic
term has a factor pt0 . Now we factor out c1,1 from every quadratic term involving x1,
namely, from x2

1, x1x2, . . . , x1xn. (Clearly it does not matter if the coefficient of a term
x1xi, i �= 1, is 0.) We can write f(x1, x2, . . . , xn) = c1,1(x1 + g(x2, . . . , xn))2 + c1x1 +
a quadratic polynomial in (x2, . . . , xn), where g is a linear function over x2, . . . , xn.
By adding and then subtracting c1g(x2, . . . , xn), we get

f(x1, x2, . . . , xn) = c1,1
(
x1 +g(x2, . . . , xn)

)2
+ c1

(
x1 +g(x2, . . . , xn)

)
+f ′(x2, . . . , xn),

where f ′(x2, . . . , xn) ∈ Zq[x2, . . . , xn] is a quadratic polynomial over x2, . . . xn.
For any fixed x2, . . . , xn, when x1 ranges over Zq, x1 + g also ranges over Zq. So

∑

x1,...,xn∈Zq

ωf
q =

⎛
⎝∑

x∈Zq

ωc1,1x
2+c1x

q

⎞
⎠
⎛
⎝ ∑

x2,...,xn∈Zq

ωf ′
q

⎞
⎠ =

∑

x∈Zq

ωc1,1x
2+c1x

q · Zq(f
′).

4It had been known to Gauss since 1801 that G = ±√
p if p ≡ 1 (mod 4) and G = ±i

√
p if p ≡ 3

(mod 4). The fact that G always takes the plus sign was conjectured by Gauss in his diary in May
1801. He wrote to his friend W. Olbers on September 3, 1805, that seldom had a week passed for
four years that he had not tried in vain to prove this very elegant conjecture. Finally, he wrote, “Wie
der Blitz einschlägt, hat sich das Räthsel gelöst” (as lightning strikes was the puzzle solved).
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The first term can be evaluated in constant time and the problem is reduced to Zq(f
′)

in which f ′ has at most n − 1 variables.
For the second case, all square terms of f either are 0 or have orders larger than

t0. We assume, without loss of generality, that c1,2 = pt0c and p � c. We apply the
following transformation: x1 = x′1 + x′2 and x2 = x′1 − x′2. Since 2 is invertible in Zq,
when x′1 and x′2 go over Z2

q , x1 and x2 also go over Z2
q . After the transformation, we

get a new quadratic polynomial over x′1, x
′
2, x3, . . . , xn such that Zq(f

′) = Zq(f), and
t0 is still the smallest order of all the quadratic terms of f ′: The terms x2

1 and x2
2 (in

f) produce terms with coefficients divisible by pt0+1, the term x1x2 (in f) produces
terms (x′1)

2 and (x′2)
2 with coefficients of order exactly t0, and terms x1xi or x2xi for

i �= 1, 2 produce terms x′1xi and x′2xi with coefficients divisible by pt0 . In particular,
the coefficient of (x′1)

2 in f ′ has order t0, so we reduce the problem to the first case.
To sum up, we have a polynomial-time algorithm for every q = pk, when

p �= 2.
Now we deal with the more difficult case when q = 2k, for some k ≥ 1. We note

that the property of an element c ∈ Z2k being even or odd is well-defined.
Lemma 12.9. Let q = 2k for some k ≥ 1. Let f ∈ Zq[x1, . . . , xn] be a quadratic

polynomial over x1, . . . , xn. Then Zq(f) can be evaluated in polynomial time (in n).
Proof. When k = 1, Zq(f) is computable in polynomial time according to [10],

[27, Theorem 6.30] so we assume k > 1. We also assume f has the form as in (12.21).
The algorithm goes as follows: For each round, we can, in polynomial time, either
1. output the correct value of Zq(f), or
2. build a new quadratic g ∈ Zq/2[x1, . . . , xn] and reduce Zq(f) to Zq/2(g), or
3. build a new quadratic g ∈ Zq[x1, . . . , xn−1] and reduce Zq(f) to Zq(g).

This gives a polynomial-time algorithm for EVAL(q), because both base cases, when
k = 1 or n = 1, can be solved efficiently.

Suppose we have a quadratic polynomial f ∈ Zq[x1, . . . , xn]. Our first step is to
transform f so that all the coefficients of its cross terms (ci,j , where i �= j) and linear
terms (ci) are divisible by 2. Assume f does not yet have this property. Let t be the
smallest index in [n] such that one of {ct, ct,j : j > t} is not divisible by 2. Separating
out the terms involving xt, we rewrite f as follows:

(12.22) f = ct,t · x2
t + xt · f1(x1, . . . , x̂t, . . . , xn) + f2(x1, . . . , x̂t, . . . , xn),

where f1 is an affine linear function and f2 is a quadratic polynomial. Both f1 and f2
are over variables {x1, . . . , xn} − {xt}. Here the notation x̂t means that xt does not
appear in the polynomial. Moreover,

(12.23) f1(x1, . . . , x̂t, . . . , xn) =
∑

i<t

ci,txi +
∑

j>t

ct,jxj + ct.

From the minimality of t, ci,t is even for all i < t, and at least one of {ct,j , ct : j > t}
is odd. We claim that

(12.24) Zq(f) =
∑

x1,...,xn∈Zq

ωf(x1,...,xn)
q =

∑

x1,...,xn∈Zq

f1(x1,...,x̂t,...,xn)≡0 mod 2

ωf(x1,...,xn)
q .

This is because
∑

x1,...,xn∈Zq

f1≡1 mod 2

ωf(x1,...,xn)
q =

∑

x1,...,x̂t,...,xn∈Zq

f1≡1 mod 2

∑

xt∈Zq

ω
ct,tx

2
t+xtf1+f2

2k
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However, for any fixed x1, . . . , x̂t, . . . , xn, we have

∑

xt∈Zq

ω
ct,tx

2
t+xtf1+f2

2k
= ωf2

2k

∑

xt∈[0:2k−1−1]
ω
ct,tx

2
t+xtf1

2k
+ ω

ct,t(xt+2k−1)2+(xt+2k−1)f1
2k

= ωf2
2k

(
1 + (−1)f1

) ∑

xt∈[0:2k−1−1]
ω
ct,tx

2
t+xtf1

2k
= 0,

since f1 ≡ 1 mod 2. We used (x + 2k−1)2 ≡ x2 (mod 2k) in the first equality.
Recall that f1 (see (12.23)) is an affine form of {x1, . . . , x̂t, . . . , xn}, that ci,t is

even for all i < t, and that one of {ct,j, ct : j > t} is odd. We consider two cases.
In the first case, ct,j is even for all j > t and ct is odd. Then for any assignment

(x1, . . . , x̂t, . . . , xn) in Zn−1
q , f1 is odd. As a result, by (12.24), Zq(f) is trivially zero.

In the second case, there exists at least one j > t such that ct,j is odd. We let
� > t be the smallest of such j. Then we substitute the variable x� in f with a new
variable x′� over Zq, where (since ct,� is odd, ct,� is invertible in Zq)

(12.25) x� = c−1t,�

⎛
⎝2x′� −

⎛
⎝∑

i<t

ci,txi +
∑

j>t,j �=�

ct,jxj + ct

⎞
⎠
⎞
⎠ .

Let f ′ denote the new quadratic polynomial in Zq[x1, . . . , x
′
�, . . . , xn]. We claim that

Zq(f
′) = 2 · Zq(f) = 2 ·

∑

x1,...,xn∈Zq

f1≡0 mod 2

ωf(x1,...,xn)
q .

To see it, we define a map from Zn
q to Zn

q : (x1, . . . , x
′
�, . . . , xn) �→ (x1, . . . , x�, . . . , xn),

where x� satisfies (12.25). The range of the map is the set of (x1, . . . , x�, . . . , xn) ∈ Zn
q

such that f1 is even and every such tuple has two preimages in Zn
q . The claim follows.

So to compute Zq(f), we only need to compute Zq(f
′), and the advantage of f ′

∈ Zq[x1, . . . , x
′
�, . . . , xn] over f is the following property that we are going to prove:

(Even) Every cross term and linear term that involves x1, . . . , xt has an even
coefficient in f ′.
To show this, we partition the terms of f ′ that we are interested in into three groups:
cross and linear terms that involve xt; linear terms xs, s < t; and cross terms of the
form xsxs′ , where s < s′, s < t.

First, we consider the expression (12.22) of f after the substitution. The first
term ct,tx

2
t remains the same; the second term xtf1 becomes 2xtx

′
� by (12.25); xt does

not appear in the third term, even after the substitution. So (Even) holds for xt.
Second, we consider the coefficient c′s of the linear term xs in f ′, where s < t.

Only the following terms in f can possibly contribute to c′s:

csxs, c�,�x
2
� , cs,�xsx�, and c�x�.

By the minimality of t, both cs and cs,� are even. For c�,�x
2
� and c�x�, although we do

not know whether c�,� and c� are even or odd, we know that the coefficient −c−1t,� cs,t
of xs in (12.25) is even since cs,t is even. So, every term in the list above makes an
even contribution to c′s and thus c′s is even.

Finally, we consider the coefficient c′s,s′ of the term xsxs′ in f ′, where s < s′ and
s < t. Similarly, only the following terms in f can possibly contribute to c′s,s′ (here
we consider the general case when s′ �= �; the special case when s′ = � is easier):

cs,s′xsxs′ , c�,�x
2
� , cs,�xsx�, and c�,s′x�xs′ (or cs′,�xs′x�).
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By the minimality of t, cs,s′ and cs,� are even. Moreover, the coefficient −c−1t,� cs,t of xs

in (12.25) is even. As a result, every term in the list above makes an even contribution
to c′s,s′ and thus c′s,s′ is even.

To summarize, after substituting x� with x′� using (12.25) we get a new quadratic
polynomial f ′ such that Zq(f

′) = 2Zq(f), and every cross term and linear term that
involves x1, . . . , xt has an even coefficient in f ′. We can then repeat this substitution
procedure on f ′: We either show that Zq(f

′) = 0 or get a quadratic polynomial f ′′

such that Zq(f
′′) = 2Zq(f

′) and the parameter t increases by at least one. So given
a quadratic polynomial f , we can, in polynomial time, either show that Zq(f) = 0 or
get a new quadratic g ∈ Zq[x1, . . . , xn] such that Zq(f) = 2r · Zq(g) for some known
integer r ∈ [0 : n], and every cross term and linear term has an even coefficient in g.

Now it suffices to compute Zq(g). We show that given such a polynomial g in n
variables, we can reduce it to either EVAL(2k−1) = EVAL(q/2) or to the computation
of Zq(g

′), in which g′ is a quadratic polynomial in n − 1 variables. Let

g =
∑

i≤j∈[n]
ai,jxixj +

∑

i∈[n]
aixi + a.

We consider two cases: ai,i is even for all i ∈ [n], or at least one of the ai,i’s is odd. In
the first case, ai,j and ai are even for all i ≤ j ∈ [n]. Let a′i,j and a′i denote integers

in [0 : 2k−1 − 1] that satisfy ai,j ≡ 2a′i,j, ai ≡ 2a′i(mod q), respectively. Then,

Zq(g) = ωa
q ·

∑

x1,...,xn∈Zq

ω
2
(∑

i≤j∈[n] a
′
i,jxixj+

∑
i∈[n] a

′
ixi

)
q = 2n · ωa

q · Z2k−1(g′),

where g′ is the quadratic polynomial over Zq/2 = Z2k−1 in the exponent. This reduces
the computation of Zq(g) to Zq/2(g

′).
In the second case, without loss of generality, we assume a1,1 is odd. Then

f = a1,1(x
2
1 + 2x1g1) + g2 = a1,1(x1 + g1)

2 + g′,

where g1 is an affine form and g2, g′ are quadratic polynomials, all of which are over
x2, . . . , xn. We are able to do this because a1,j and a1, j ≥ 2, are even. Now

Zq(g) =
∑

x2,...,xn∈Zq

ωg′
q ·

∑

x1∈Zq

ωa1,1(x1+g1)
2

q = Zq(g
′)
∑

x∈Zq

ωa1,1x
2

q .

The last equation is because the sum over x1 ∈ Zq is independent of the value of g1.
This reduces Zq(g) to Zq(g

′) in which g′ is a quadratic polynomial in n − 1 variables.
To sum up, given any quadratic polynomial f , we can, in polynomial time, either

output the correct value of Zq(f) or reduce one of the two parameters, k or n, by at
least one. This gives us a polynomial time algorithm to evaluate Zq(f).

This concludes the proof of Theorem 1.1 for the bipartite case.
Remark 12.10. Back in section 1, we mentioned that Holant(Ω) for Ω = (G, F1

∪F2 ∪ F3) are all tractable, and the tractability boils down to the exponential sum

(12.26)
∑

x1,x2,...,xn∈{0,1}
iL1+L2+ ···+Ls

being computable in polynomial time. This can also be derived from Theorem 12.1.
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First, each mod 2 sum Lj in (12.26) can be replaced by its square (Lj)
2, because

Lj = 0, 1 (mod 2) iff (Lj)
2 = 0, 1 (mod 4), respectively. So, (12.26) can be expressed

as a sum of the form iQ(x1,x2,...,xn), where Q is an ordinary sum of squares of affine
forms with integer coefficients and, in particular, a quadratic polynomial with integer
coefficients. For a sum of squares of affine forms Q, if we evaluate each xi ∈ {0, 1, 2, 3},
we may take xi mod 2, and this reduces (12.26) to EVAL(4):

∑

x1,x2,...,xn∈Z4

iQ(x1,x2...,xn) = 2n
∑

x1,x2,...,xn∈{0,1}
iQ(x1,x2,...,xn).

13. Proof of Theorem 6.3. Let A be a symmetric, nonbipartite, and purified
matrix. After collecting its entries of equal norm in decreasing order (by permuting
the rows and columns of A), there exist a positive integer N and two sequences κ
and m such that (A, (N,κ,m)) satisfies the following condition:

(S ′1) A is an m × m symmetric matrix. κ = (κ1, . . . , κs) is a strictly decreasing
sequence of positive rational numbers, where s ≥ 1. m = (m1, . . . , ms) is a sequence
of positive integers such that m =

∑
mi. The rows and columns of A are indexed by

x = (x1, x2), where x1 ∈ [s] and x2 ∈ [mx1 ]. For all x,y, A satisfies

Ax,y = A(x1,x2),(y1,y2) = κx1κy1Sx,y,

where S = {Sx,y} is a symmetric matrix in which every entry is a power of ωN :

A =

⎛
⎜⎜⎜⎝

κ1Im1

κ2Im2

. . .

κsIms

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

S(1,∗),(1,∗) S(1,∗),(2,∗) . . . S(1,∗),(s,∗)
S(2,∗),(1,∗) S(2,∗),(2,∗) . . . S(2,∗),(s,∗)

...
...

. . .
...

S(s,∗),(1,∗) S(s,∗),(2,∗) . . . S(s,∗),(s,∗)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

κ1Im1

κ2Im2

. . .

κsIms

⎞
⎟⎟⎟⎠ ,

where Imi is the mi × mi identity matrix. We let I = {(i, j) : i ∈ [s], j ∈ [mi]}.

The proof of Theorem 6.3, just like the one of Theorem 5.3, consists of five steps.
All the proofs use the following strategy. We construct from the m × m matrix A its
bipartization A′, a 2m × 2m symmetric matrix. Then we just apply the lemmas for
the bipartite case to A′ and show that A′ is either #P-hard or has certain properties.
Finally, we use these properties of A′ to derive properties of A.

To this end, we need the following lemma.

Lemma 13.1. Let A be a symmetric matrix, and let A′ be its bipartization. Then
EVAL(A′) ≤ EVAL(A).

Proof. Suppose A is an m × m matrix. Let G be a connected undirected graph.
If G is not bipartite, then ZA′(G) is trivially 0, because A′ is the bipartization of A.
Otherwise, assume that G = (U ∪ V, E) is bipartite and connected; let u∗ ∈ U . Then

ZA(G, u∗, i) = ZA′(G, u∗, i) = ZA′(G, u∗, m + i) for any i ∈ [m].

It then follows that ZA′(G) = 2ZA(G) and EVAL(A′) ≤ EVAL(A).

13.1. Step 2.1.

Lemma 13.2. Suppose that (A, (N,κ,m)) satisfies (S ′1). Then either EVAL(A)
is #P-hard or (A, (N,κ,m)) satisfies the following condition:

(S ′2) For all x,x′ ∈ I, either there exists an integer k such that Sx,∗ = ωk
N · Sx′,∗,

or for every j ∈ [s], 〈Sx,(j,∗),Sx′,(j,∗)〉 = 0.
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Proof. Let A′ be the bipartization of A. Suppose that EVAL(A) is not #P-hard.
From Lemma 13.1, EVAL(A′) ≤ EVAL(A) and thus EVAL(A′) is not #P-hard. Note
that the S matrix in Lemma 8.5 is exactly the same S here. Also (A′, (N,κ,κ,m,m))
satisfies condition (S1), so by Lemma 8.5 together with the assumption that A′ is not
#P-hard, S satisfies (S2) which is exactly the same as (S ′2) here. (For Lemma 8.5,
S also needs to satisfy (S3), but since S is symmetric here, (S3) is the same as
(S2).)

We have the following corollary. The proof is the same as that of Corollary 8.6.
Corollary 13.3. For all i, j ∈ [s], S(i,∗),(j,∗) has the same rank as S.
Next we build a pair (F, D) and apply the cyclotomic reduction lemma on A.
Let h = rank(S). By Corollary 13.3, there exist 1 ≤ i1 < · · · < ih ≤ m1 such that

the {(1, i1), . . . , (1, ih)} × {(1, i1), . . . , (1, ih)} submatrix of S has full rank h (using
the fact that S is symmetric). Without loss of generality (if this is not the case, we
can apply an appropriate permutation Π to the rows and columns of A so that the
new S has this property), assume ik = k for all k ∈ [h]. Let H denote this h × h
symmetric matrix: Hi,j = S(1,i),(1,j). From Corollary 13.3 and Lemma 13.2, for every
index x ∈ I, there exist two unique integers j ∈ [h] and k ∈ [0 : N − 1] such that

(13.1) Sx,∗ = ωk
N · S(1,j),∗ and S∗,x = ωk

N · S∗,(1,j).

This gives us a partition of the index set I

R =
{
R(i,j),k : i ∈ [s], j ∈ [h], k ∈ [0 : N − 1]

}
.

For every x ∈ I, x ∈ R(i,j),k iff i = x1 and x, j, k satisfy (13.1). By Corollary 13.3,

⋃

k∈[0:N−1]
R(i,j),k �= ∅ for all i ∈ [s] and j ∈ [h].

Now we define (F, D) and use the cyclotomic reduction lemma and R to show
that EVAL(F, D) ≡ EVAL(A). First, F is an sh × sh matrix. We use I ′ = [s] × [h] to
index the rows and columns of F. Then

Fx,y = κx1κy1Hx2,y2 = κx1κy1S(1,x2),(1,y2) for all x,y ∈ I ′,

or equivalently,

F =

⎛
⎜⎜⎜⎝

κ1I
κ2I

. . .

κsI

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

H H . . . H
H H . . . H
...

...
. . .

...
H H . . . H

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

κ1I
κ2I

. . .

κsI

⎞
⎟⎟⎟⎠ ,

where I is the h × h identity matrix.
Second, D = (D[0], . . . ,D[N−1]) is a sequence of N diagonal matrices of the same

size as F. We use I ′ to index its diagonal entries. The xth entries are

D[r]
x =

N−1∑

k=0

∣∣R(x1,x2),k

∣∣ · ωkr
N for all r ∈ [0 : N − 1],x ∈ I ′.

We use the cyclotomic reduction lemma (Lemma 8.2) to prove the next lemma.
Lemma 13.4. EVAL(A) ≡ EVAL(F, D).
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Proof. Let x,y ∈ I, x ∈ R(x1,j),k and y ∈ R(y1,j′),k′ for some j, k, j′, k′. By (13.1),

Ax,y = κx1κy1Sx,y = κx1κy1S(1,j),(1,j′) · ωk+k′

N = F(x1,j),(y1,j′) · ωk+k′

N .

So A can be generated from F using R. The construction of D implies that D can
be generated from R. The lemma follows from the cyclotomic reduction lemma.

13.2. Steps 2.2 and 2.3. Now we have a pair (F, D) that satisfies the following
condition (Shape′):

(Shape′1) F ∈ Cm×m is a symmetric s × s block matrix. (The m here is different
from the m used in Step 2.1.) We use I = [s] × [h] to index its rows and columns.

(Shape′2) There are a strictly decreasing sequence κ = (κ1, . . . , κs) of positive
rational numbers together with an h × h matrix H of full rank, whose entries are all
powers of ωN , for some N ≥ 1. We have

Fx,y = κx1κy1Hx2,y2 for all x,y ∈ I.

(Shape′3) D = (D[0], . . . ,D[N−1]) is a sequence of N m×m diagonal matrices. D
satisfies (T3), so for all r ∈ [N − 1] and x ∈ I, we have

D[r]
x = D

[N−r]
x .

Now suppose EVAL(F, D) is not #P-hard.

We define (C, D′): C is the bipartization of F; D′ is a sequence of N copies of

(
D[r]

D[r]

)
.

The proof of the following lemma is the same as that of Lemma 13.1.

Lemma 13.5. EVAL(C, D′) ≤ EVAL(F, D).

By Lemma 13.5, EVAL(C, D′) ≤ EVAL(F, D) and thus EVAL(C, D′) is not #P-
hard. By (Shape′1)–(Shape′3), (C, D′) also satisfies (Shape1)–(Shape3). It then follows
from Lemmas 8.8 and 8.11 that (C, D′) also satisfies (Shape4)–(Shape6). Since (C, D′)
is built from (F, D), the latter must satisfy the following conditions:

(Shape′4) H/
√

h is unitary: 〈Hi,∗,Hj,∗〉 = 〈H∗,i,H∗,j〉 = 0 for all i �= j ∈ [h].
(Shape′5) For all x ∈ I,

D[0]
x = D

[0]
(x1,1)

.

(Shape′6) For each r ∈ [N − 1], there are diagonal matrices K[r] ∈ Cs×s,L[r] ∈
Ch×h. The norm of every diagonal entry in L[r] is either 0 or 1. We have

D[r] = K[r] ⊗ L[r] for all r ∈ [N − 1].

For all r ∈ [N − 1], K[r] = 0 implies L[r] = 0; L[r] �= 0 implies one of its entries is 1.

In particular, (Shape′5) means that by setting

K
[0]
i = D

[0]
(i,1) and L

[0]
j = 1 for all i ∈ [s] and j ∈ [h],

we have D[0] = K[0] ⊗ L[0]. By (T3) in (Shape′3), entries of K[0] are positive integers.
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13.3. Step 2.4. Suppose (F, D) satisfies (Shape′1)–(Shape′6). From (Shape′2) we
have F = M ⊗H, where M is an s × s matrix of rank 1: Mi,j = κiκj for all i, j ∈ [s].

We reduce EVAL(F, D) to two problems EVAL(M, K) and EVAL(H, L), where

K =
(
K[0], . . . ,K[N−1]) and L =

(
L[0], . . . ,L[N−1]).

The proof of the following lemma is essentially the same as that of Lemma 8.24.
Lemma 13.6. EVAL(F, D) ≡ EVAL(H, L).

13.4. Step 2.5. Finally we normalize the matrix H in the same way we did for
the bipartite case and obtain a new pair that (1) satisfies conditions (U ′1)–(U ′4) and
(2) is polynomial-time equivalent to EVAL(H, L).

14. Proofs of Theorems 6.4 and 6.7. Suppose ((M, N),F, D) satisfies (U ′1)–
(U ′4). We prove Theorems 6.4 and 6.7 in this section. We first prove that if F does
not satisfy the group condition (GC), then EVAL(F, D) is #P-hard. This is done by
applying Lemma 9.1 (for the bipartite case) to the bipartization C of F.

Lemma 14.1. Suppose ((M, N),F, D) satisfies conditions (U ′1)–(U ′4). Then either
the matrix F satisfies the group condition (GC) or EVAL(F, D) is #P-hard.

Proof. Assume EVAL(F, D) is not #P-hard. Let C and E = (E[0], . . . ,E[N−1]) be

C =

(
0 F
F 0

)
and E[r] =

(
D[r] 0
0 D[r]

)
for all r ∈ [0 : N − 1].

By (U ′1)–(U ′4), ((M, N),C, E) satisfies (U1)–(U4). Furthermore, using Lemma 13.5, we
have EVAL(C, E) ≤ EVAL(F, D) and thus EVAL(C, E) is also not #P-hard. It follows
from Lemma 9.1 that F satisfies the group condition (GC).

14.1. Proof of Theorem 6.4. We prove Theorem 6.4 again, using C and E
again.

Suppose EVAL(F, D) is not #P-hard. On the one hand, EVAL(C, E) ≤ EVAL(F, D)
and EVAL(C, E) is also not #P-hard. On the other hand, ((M, N),C, E) satisfies con-
ditions (U1)–(U4). Thus, using Theorem 5.4, E must satisfy (U5): Every entry of E[r],
r ∈ [N − 1], is either 0 or a power of ωN . It then follows directly that every entry of
D[r], r ∈ [N − 1], is either 0 or a power of ωN .

14.2. Proof of Theorem 6.7. In this section we prove Theorem 6.7. However,
we cannot simply reduce it, using (C, E), to the bipartite case (Theorem 5.6), because
in Theorem 6.7, we are only allowed to permute the rows and columns symmetrically,
while in Theorem 5.6, one can use two different permutations to permute the rows
and columns. But as we will see below, for most of the lemmas we need here, their
proofs are exactly the same as those for the bipartite case. The only exception is
the counterpart of Lemma 9.7, in which we have to bring in the generalized Fourier
matrices (see Definitions 5.5 and 6.6).

Suppose F satisfies (GC). Let FR denote the set of row vectors {Fi,∗} of F and FC

denote the set of column vectors {F∗,j} of F. Since F satisfies (GC), by Property 9.2,
both FR and FC are finite Abelian groups of order m, under the Hadamard product.

We start by proving a symmetric version of Lemma 9.5, stating that when M =
pq and gcd(p, q) = 1 (note that p and q are not necessarily primes), a permutation of
F is the tensor product of two smaller discrete unitary matrices, both of which satisfy
the group condition.

Lemma 14.2. Suppose F ∈ Cm×m is symmetric and M -discrete unitary and
satisfies (GC). Moreover, M = pq, p, q > 1, and gcd(p, q) = 1. Then there is a
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permutation Π of [0 : m − 1] such that FΠ,Π = F′ ⊗ F′′, where F′ is a symmetric
p-discrete unitary matrix, F′′ is a symmetric q-discrete unitary matrix, and both of
them satisfy (GC).

Proof. The proof is almost the same as that of Lemma 9.5. Since F is symmetric
the two bijections f, g that we defined in the proof of Lemma 9.5, from [0 : m − 1] to
[0 : m′ − 1] × [0 : m′′ − 1], are exactly the same.

As a result, we only need to deal with the case when M = pβ is a prime power.
Lemma 14.3. Suppose F ∈ Cm×m is symmetric and M -discrete unitary and

satisfies (GC). Moreover, M = pβ is a prime power, p �= 2, and β ≥ 1. Then there
must exist an integer k ∈ [0 : m − 1] such that p � αk,k, where Fk,k = ω

αk,k

M .
Proof. For i, j ∈ [0 : m − 1], we let αi,j denote the integer in [0 : M − 1] such that

Fi,j = ω
αi,j

M . Assume the lemma is not true, that is, p | αk,k for all k. Then because F
is M -discrete unitary, there must exist i �= j ∈ [0 : m − 1] such that p � αi,j . Without
loss of generality, we assume p � α2,1 = α1,2.

By (GC), there exists a k ∈ [0 : m − 1] such that Fk,∗ = F1,∗ ◦ F2,∗. However,

ω
αk,k

M = Fk,k = F1,kF2,k = Fk,1Fk,2 = F1,1F2,1F1,2F2,2 = ω
α1,1+α2,2+2α1,2

M ,

and αk,k ≡ α1,1 +α2,2 +2α1,2 (mod M) implies that 0 ≡ 0+0+2α1,2 (mod p). Since
p �= 2 and p � α1,2, we get a contradiction.

The next lemma is the symmetric version of Lemma 9.7 showing that when there
exists a diagonal entry Fk,k such that p � αk,k, F is the tensor product of a Fourier
matrix and a discrete unitary matrix. Note that this lemma also applies to the case
when p = 2. So the only case left is when p = 2 but 2 | αi,i for all i ∈ [0 : m − 1].

Lemma 14.4. Suppose F ∈ Cm×m is symmetric and M -discrete unitary and
satisfies (GC). Moreover, M = pβ is a prime power. If there exists a k ∈ [0 : m − 1]
such that Fk,k = ωα

M and p � α, then there exists a permutation Π such that FΠ,Π =
FM,α ⊗ F′, where F′ is a symmetric and M ′-discrete unitary matrix that satisfies
condition (GC) with M ′ | M .

Proof. The proof is the same as the one of Lemma 9.7 by setting a = b = k. The
only thing to notice is that since F is symmetric, the two bijections f and g that we
defined in the proof of Lemma 9.7 are the same. Thus, the row permutation and the
column permutation applied on F are the same. Since Fk,k = ωα

M , (9.12) becomes

G(x1,x2),(y1,y2) = ωαx1y1

M · G(0,x2),(0,y2).

This explains why we need to use the Fourier matrix FM,α here.
Finally, we deal with the case when p = 2 and 2 | αi,i for all i ∈ [0 : m − 1].
Lemma 14.5. Suppose F ∈ Cm×m is symmetric and M -discrete unitary and

satisfies (GC) with M = 2β and 2 | αi,i for all i ∈ [0 : m − 1]. Then there exist a
permutation Π and a 2 × 2 symmetric nondegenerate matrix W over ZM (see sec-
tion 6.3.2 and Definition 6.6), such that FΠ,Π = FM,W⊗F′, where F′ is a symmetric,
M ′-discrete unitary matrix that satisfies (GC) with M ′ | M .

Proof. By Property 9.6, there are two integers a �= b such that Fa,b = Fb,a = ωM .
Let Fa,a = ωαa and Fb,b = ωαb . The assumption of the lemma implies that 2 | αa, αb.

We let Sa,b denote the following subset of FR:

Sa,b = {u ∈ FR : ua = ub = 1}.

Clearly Sa,b is a subgroup of FR. On the other hand, let Sa denote the subgroup of
FR that is generated by Fa,∗, and let Sb denote the subgroup generated by Fb,∗:

Sa = {(Fa,∗)
0, (Fa,∗)

1, . . . , (Fa,∗)
M−1} and Sb = {(Fb,∗)

0, (Fb,∗)
1, . . . , (Fb,∗)

M−1}.
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We have |Sa| = |Sb| = M since Fa,b = ωM . It is clear that (u1,u2,u3) �→ u1 ◦u2 ◦u3

is a group homomorphism from Sa × Sb × Sa,b to FR. We show that it is surjective.
Toward this end, we first note that

W =

(
αa 1
1 αb

)

is nondegenerate. This follows from Lemma 6.5, since det(W) = αaαb − 1 is odd.
First, we show that (u1,u2,u3) �→ u1 ◦ u2 ◦ u3 is surjective. This is because for

any u ∈ FR, there exist integers k1 and k2 such that (since W is nondegenerate, by
Lemma 6.5, x �→ Wx is a bijection)

ua = F k1
a,a · F k2

b,a = ωαak1+k2

M and ub = F k1

a,b · F k2

b,b = ωk1+αbk2

M .

Thus, u ◦ Fk1
a,∗ ◦ Fk2

b,∗ ∈ Sa,b. It follows that u = Fk1
a,∗ ◦ Fk2

b,∗ ◦ u3 for some u3 ∈ Sa,b.
Second, we show that it is also injective. Assume this is not the case. Then there

exist k1, k2, k
′
1, k
′
2 ∈ ZM , and u,u′ ∈ Sa,b such that (k1, k2,u) �= (k′1, k

′
2,u
′) but

(Fa,∗)
k1 ◦ (Fb,∗)

k2 ◦ u = (Fa,∗)
k′
1 ◦ (Fb,∗)

k′
2 ◦ u′.

If k1 = k′1 and k2 = k′2, then u = u′, contradiction. Therefore, we may assume that

� = (�1, �2)
T = (k1 − k′1, k2 − k′2)

T �= 0.

By restricting on the ath and bth entries, we get W� = 0. This contradicts the fact
that W is nondegenerate.

Since (u1,u2,u3) �→ u1 ◦u2 ◦u3 is a group isomorphism, we have |Sa,b| = m/M2,
which we denote by n. Let Sa,b = {v0 = 1,v1, . . . ,vn−1}. There is a bijection f from
[0 : m − 1] to [0 : M − 1] × [0 : M − 1] × [0 : n − 1], f(i) = (f1(i), f2(i), f3(i)), with

(14.1) Fi,∗ = (Fa,∗)
f1(i) ◦ (Fb,∗)

f2(i) ◦ vf3(i) for all i ∈ [0 : m − 1].

Since F is symmetric, this also implies that

(14.2) F∗,j = (F∗,a)
f1(j) ◦ (F∗,b)

f2(j) ◦ vf3(j) for all j ∈ [0 : m − 1].

Note that f(a) = (1, 0, 0) and f(b) = (0, 1, 0).
Next we permute F to get a new matrix G. For convenience, we use (x1, x2, x3),

where x1, x2 ∈ [0 : M − 1] and x3 ∈ [0 : n − 1], to index the rows and columns of G.
We permute F using Π(x1, x2, x3) = f−1(x1, x2, x3):

(14.3) G(x1,x2,x3),(y1,y2,y3) = FΠ(x1,x2,x3),Π(y1,y2,y3).

Then by (14.1) and (14.2),

G(x1,x2,x3),∗ = (G(1,0,0),∗)
x1 ◦ (G(0,1,0),∗)

x2 ◦ G(0,0,x3),∗ and

G∗,(y1,y2,y3) = (G∗,(1,0,0))
y1 ◦ (G∗,(0,1,0))

y2 ◦ G∗,(0,0,y3).

As a result,

G(x1,x2,x3),(y1,y2,y3) = (G(1,0,0),(y1,y2,y3))
x1(G(0,1,0),(y1,y2,y3))

x2 G(0,0,x3),(y1,y2,y3).
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We analyze the three factors. First, we have

G(1,0,0),(y1,y2,y3) = F y1
a,a · F y2

a,b · vy3,a = ωαay1+y2

M ,

where vy3,a is the ath entry of vy3 . Similarly, G(0,1,0),(y1,y2,y3) = ωy1+αby2

M . Second,

G(0,0,x3),(y1,y2,y3) = (G(0,0,x3),(1,0,0))
y1(G(0,0,x3),(0,1,0))

y2 G(0,0,x3),(0,0,y3).

By (14.3) and (14.2) we have

G(0,0,x),(1,0,0) = FΠ(0,0,x),Π(1,0,0) = FΠ(0,0,x),a .

Then by (14.1), FΠ(0,0,x),a = vx,a = 1. Similarly, G(0,0,x),(0,1,0) = vx,b = 1. Therefore,

G(x1,x2,x3),(y1,y2,y3) = ωαax1y1+x1y2+x2y1+αbx2y2

M · G(0,0,x3),(0,0,y3).

So G = FM,W ⊗ F′; F′ ≡ (F ′i,j = G(0,0,i),(0,0,j)) is symmetric; W is nondegenerate.
The only thing left is to show F′ is discrete unitary and satisfies (GC). F′ satisfies

(GC) because Sa,b is a group and thus is closed under the Hadamard product. To see
that F′ is discrete unitary, we have

0 = 〈G(0,0,i),∗,G(0,0,j),∗〉 = M2 · 〈F′i,∗,F′j,∗〉 for any i �= j ∈ [0 : n − 1].

Since F′ is symmetric, columns F′∗,i and F′∗,j are also orthogonal.
Theorem 6.7 then follows from Lemmas 14.3, 14.4, and 14.5.

15. Proofs of Theorems 6.8 and 6.9. Suppose ((M, N),F, D,(d, W ,p, t,Q,K))
satisfies condition (R′). We prove Theorem 6.8: either EVAL(F, D) is #P-hard or D
satisfies conditions (L′1) and (L′2).

Suppose EVAL(F, D) is not #P-hard. We use (C, E) to denote the bipartization
of (F, D). The plan is to show that (C, E) with appropriate p′, t′, and Q′ satisfies (R).

To see this, we permute C and E using the following permutation Σ. We index
the rows and columns of C and E[r] using {0, 1}×Z2

d×ZQ. We set Σ(1,y) = (1,y) for
all y ∈ Z2

d × ZQ, that is, Σ fixes pointwise the second half of the rows and columns,
and Σ(0,x) = (0,x′), where x′ satisfies

x0,i,1 = W
[i]
1,1x′0,i,1 + W

[i]
2,1x′0,i,2, x0,i,2 = W

[i]
1,2x′0,i,1 + W

[i]
2,2x′0,i,2 for all i ∈ [g],

and x1,i,j = ki,j · x′1,i,j for all i ∈ [s], j ∈ [ti]. See (R′) for the definitions of these
symbols.

Before proving properties of CΣ,Σ and EΣ, we need to verify that Σ is indeed a
permutation. This follows from the fact that W[i], for every i ∈ [g], is nondegenerate
over Zdi , and ki,j for all i ∈ [s] and j ∈ [ti] satisfies gcd(ki,j , qi,j) = 1 (so x′ above is
unique). We use Σ0 to denote the (0, ∗)-part of Σ and I to denote the identity map:

Σ(0,x) = (0, Σ0(x)) = (0,x′) for all x ∈ Z2
d × ZQ.

Now we can write CΣ,Σ and EΣ = (E
[0]
Σ , . . . ,E

[N−1]
Σ ) as

(15.1) CΣ,Σ =

(
0 FΣ0,I

FI,Σ0 0

)
and E

[r]
Σ =

(
D

[r]
Σ0

0

0 D[r]

)
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for all r ∈ [0 : N − 1]. We make the following two observations: Observation 1:
EVAL(CΣ,Σ, EΣ) ≡ EVAL(C, E) ≤ EVAL(F, D) and thus EVAL(CΣ,Σ, EΣ) is not #P-
hard. Observation 2: FΣ0,I satisfies

(
FΣ0,I

)
x,y

= Fx′,y =
∏

i∈[g]
ω
(x′

0,i,1 x′
0,i,2)·W[i]·(y0,i,1 y0,i,2)

T

di

∏

i∈[s],j∈[ti]
ω
ki,j ·x′

1,i,jy1,i,j

qi,j

=
∏

i∈[g]
ω
x0,i,1y0,i,1+x0,i,2y0,i,2

di

∏

i∈[s],j∈[ti]
ωx1,i,jy1,i,j
qi,j .

By Observation 2, it is easy to show that CΣ,Σ and EΣ (together with appropriate
q′, t′, Q′) satisfy condition (R). Since EVAL(CΣ,Σ, EΣ) by Observation 1 is not #P-
hard, it follows from Theorem 5.8 and (15.1) that D[r] satisfy (L2) and (L3). This
proves Theorem 6.8 since (L′1) and (L′2) follow from (L2) and (L3), respectively.

We continue to prove Theorem 6.9. Suppose EVAL(F, D) is not #P-hard. Then
the argument above shows that (CΣ,Σ, EΣ) (with appropriate p′, t′, Q′) satisfies both
(R) and (L). Since by Observation 1, EVAL(CΣ,Σ, EΣ) is not #P-hard, by Theorem
5.9 and (15.1), D[r] satisfies (D2) and (D4) for all r ∈ Z. (D′1) follows from (D2).

To prove (D′2), let F′ = FΣ0,I . By (D4), for any r ∈ Z, k ∈ [s] and a ∈ Γlin
r,k, there

exist b ∈ Z̃qk
and α ∈ ZN such that

ωα
N · F ′

b̃,x
= D

[r]
x+ã · D[r]

x for all x ∈ Γr, where F′
b̃,∗ = FΣ0(b̃),∗.

Since Σ0 works within each prime factor, there exists a b′ ∈ Z̃qk
such that Σ0(b̃) = b̃′

and (D′2) follows.

16. Tractability: Proof of Theorem 6.10. The proof of Theorem 6.10 is si-
milar to that of Theorem 5.10 for the bipartite case presented in section 12.

Let ((M, N),F, D, (d, W ,p, t, Q, K)) be a tuple that satisfies (R′), (L′), and (D′).
The proof has two steps. First we use (R′), (L′), (D′) to decompose EVAL(F, D) into
s subproblems (recall s is the length of the sequence p), denoted by EVAL(F[i], D[i]),
i ∈ [s], such that if every EVAL(F[i], D[i]) is tractable, then so is EVAL(F, D). Second,
we reduce each EVAL(F[i], D[i]) to EVAL(π) for some prime power π.

By Theorem 12.1, EVAL(π) can be solved in polynomial time for any fixed prime
power π. Thus, EVAL(F[i], D[i]) is tractable for all i ∈ [s], and so is EVAL(F, D).

16.1. Step 1. Fix i to be any index in [s]. We start by defining F[i] and D[i].
Recall the definition of Z̃qi from section 6.3.3. For any x ∈ Z̃qi , we use x̃ ∈ ∏s

j=1 Z̃qj

to denote the vector such that (x̃)i = x and (x̃)j = 0 for all j �= i.
F[i] is an mi × mi symmetric matrix, where mi = |Z̃qi |. We use Z̃qi to index the

rows and columns of F[i]. Then

F [i]
x,y = Fx̃,ỹ for all x,y ∈ Z̃qi .

By condition (R′3), it is easy to see that

(16.1) F = F[1] ⊗ . . . ⊗ F[s].

D[i] = (D[i,0], . . . ,D[i,N−1]) is a sequence of mi × mi diagonal matrices: D[i,0] is
the mi × mi identity matrix; for every r ∈ [N − 1], the xth entry of D[i,r] is

D[i,r]
x = D

[r]
extr(x)

for all x ∈ Z̃qi .
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By condition (D′1), we have

(16.2) D[r] = D[1,r] ⊗ . . . ⊗ D[s,r] for all r ∈ [0 : N − 1].

It then follows from (16.1) and (16.2) that

ZF,D(G) = ZF[1],D[1](G) × . . . × ZF[s],D[s](G)

for all graphs G. As a result, we have the following lemma.
Lemma 16.1. If EVAL(F[i], D[i]) is tractable for all i ∈ [s], then EVAL(F, D) is

also tractable.
Recall that Z is the set of r ∈ [N −1] such that D[r] �= 0; Γr,i is a coset in Z̃qi for

each i ∈ [s] such that Γr = Γr,1 × · · · × Γr,s. We use (D′2) to prove the next lemma.

Lemma 16.2. Given r ∈ Z, i ∈ [s], a ∈ Γlin
r,i, there are b ∈ Z̃qi , α ∈ ZN such that

D
[i,r]
x+a · D[i,r]

x = ωα
N · F [i]

b,x for all x ∈ Γr,i.

Proof. By the definition of D[i,r], we have

D
[i,r]
x+a · D

[i,r]
x = D

[r]
extr(x+a) · D

[r]
extr(x)

= D
[r]
extr(x)+ã · D

[r]
extr(x)

.

Then by condition (D′2), we know there exist b ∈ Z̃qi and α ∈ ZN such that

D
[i,r]
x+a · D

[i,r]
x = ωα

N · Fb̃,extr(x)
= ωα

N · F [i]
b,x for all x ∈ Γr,i,

and the lemma is proved.

16.2. Step 2. For convenience, we let EVAL(F, D) denote one of the problems
EVAL(F[i], D[i]) we defined in the last step. By conditions (R′), (L′), (D′) and Lemma
16.2, we summarize the properties of (F, D) as follows. We will use these properties
to show that EVAL(F, D) is tractable.

(F ′1) There is a prime p and a nonincreasing sequence π = (π1, . . . , πh) of powers
of p. F is an m × m symmetric matrix, where m = π1 . . . πh. We let π denote π1 and
use Zπ ≡ Zπ1 × · · · × Zπh

to index the rows and columns of F. We also let T denote
the set of pairs (i, j) ∈ [h] × [h] such that πi = πj . Then there exist ci,j ∈ Zπi = Zπj ,
for all (i, j) ∈ T , such that ci,j = cj,i and

Fx,y =
∏

(i,j)∈T
ωci,jxiyj
πi

for all x = (x1, . . . , xh), y = (y1, . . . , yh) ∈ Zπ,

where xi ∈ Zπi denotes the ith entry of x. We express F in this very general form to
unify the proofs for the two slightly different cases: (F[1], D[1]) and (F[i], D[i]), i ≥ 2.

(F ′2) D = (D[0], . . . ,D[N−1]) is a sequence of N m × m diagonal matrices, where
N ≥ 1 and π | N . D[0] is the identity matrix; every diagonal entry of D[r], r ∈ [N − 1]
is either 0 or a power of ωN . We also use Zπ to index the diagonal entries of D[r].

(F ′3) For every r ∈ [0 : N − 1], let Γr denote the set of x ∈ Zπ such that the xth
entry of D[r] is nonzero, and let Z denote the set of r such that Γr �= ∅. For every
r ∈ Z, Γr is a coset in Zπ. Moreover, for every r ∈ Z, there is a vector a[r] ∈ Γr such
that the (a[r])th entry of D[r] is 1.

(F ′4) For all r ∈ Z and a ∈ Γlin
r , there exist b ∈ Zπ and α ∈ ZN such that

D
[r]
x+a · D[r]

x = ωα
N · Fb,x for all x ∈ Γr.
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Let G be an undirected graph. Below we reduce the computation of ZF,D(G) to
EVAL(π̂), where π̂ = π if p �= 2 and π̂ = 2π if p = 2. Given a ∈ Zπi for some i ∈ [h],
we use â to denote an element in Zπ̂ such that â ≡ a (mod πi). For definiteness we
can choose a itself if we consider a to be an integer between 0 and πi − 1.

Let G = (V, E). We let Vr, r ∈ [0 : N − 1], denote the set of vertices in V
whose degree is r mod N . We decompose E into Ei,j , i ≤ j ∈ [0 : N − 1], where Ei,j

contains the set of edges between Vi and Vj . Clearly, if Vr �= ∅ for some r /∈ Z, then
ZF,D(G) is trivially 0. Thus, we assume Vr = ∅ for all r /∈ Z. In this case, we have

ZF,D(G) =
∑

ξ

[∏

r∈Z

∏

v∈Vr

D[r]
xv

]⎡
⎣ ∏

r≤r′∈Z

∏

uv∈Er,r′

Fxu,xv

⎤
⎦ ,

where the sum ranges over all assignments ξ = (ξr : Vr → Γr | r ∈ Z) with ξ(v) = xv.
By Lemma 12.4, we know that for every r ∈ Z, there exist a positive integer sr

and an sr × h matrix A[r] over Zπ̂ that give us a uniform map γ[r] (see Lemma 12.4
for the definition) from Zsr

π̂ to Γr:

γ
[r]
i (x) =

(
xA

[r]
∗,i + â

[r]
i (mod πi)

)
for all i ∈ [h].

For every r ∈ Z, we have γ[r](0) = a[r] ∈ Γr. Since γ[r] is uniform and we know the
multiplicity of this map, in order to compute ZF,D(G) it suffices to compute

∑

(xv)

[∏

r∈Z

∏

v∈Vr

D
[r]

γ[r](xv)

]⎡
⎣ ∏

r≤r′∈Z

∏

uv∈Er,r′

Fγ[r](xu),γ[r′](xv)

⎤
⎦ ,

where the sum is over
(
xv ∈ Zsr

π̂ : v ∈ Vr, r ∈ Z
)

=
∏

r∈Z
(Zsr

π̂ )|Vr |.

If for every r ∈ Z, there is a quadratic polynomial f [r] over Zπ̂ such that

(16.3) D
[r]

γ[r](x)
= ω

f [r](x)
π̂ for all x ∈ Zsr

π̂ ,

and for all r, r′ : r ≤ r′ ∈ Z, there is a quadratic polynomial f [r,r′] over Zπ̂ such that

(16.4) Fγ[r](x),γ[r′](y) = ω
f [r,r′](x,y)
π̂ for all x ∈ Zsr

π̂ and y ∈ Zsr′
π̂ ,

then we can reduce the computation of ZF,D(G) to EVAL(π̂) and finish the proof.
First, we deal with (16.4). By (F ′1), the following function satisfies (16.4):

f [r,r′](x,y) =
∑

(i,j)∈T
ci,j

π̂

πi
γ
[r]
i (x)γ

[r′]
j (y) =

∑

(i,j)∈T
ĉi,j

π̂

πi

(
xA

[r]
∗,i + â

[r]
i

)(
yA

[r′]
∗,j + â

[r′]
j

)
.

Note that (i, j) ∈ T implies that πi = πj and thus

γ
[r]
i (x), γ

[r′]
j (y) ∈ Zπi = Zπj .

To be able to substitute the (mod πi) expressions for γ
[r]
i (x) and γ

[r′]
j (y), the presence

of π̂/πi is crucial. It is also clear that this is a quadratic polynomial over Zπ̂.
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Next we prove the existence of the quadratic polynomial f [r]. Let us fix r to be
an index in Z. We use ei for each i ∈ [sr] to denote the unit vector in Zsr

π̂ whose ith
entry is 1 and whose other entries are 0. Using (F ′4), we know that for every i ∈ [sr],
there exist αi ∈ ZN and bi = (bi,1, . . . , bi,h) ∈ Zπ, where bi,j ∈ Zπj , such that

D
[r]

γ[r](x+ei)
· D[r]

γ[r](x)
= ωαi

N ·
∏

j∈[h]
ω
bi,j ·γ[r]

j (x)
πj for all x ∈ Zsr

π̂ ,

because γ[r](x + ei) − γ[r](x) is a vector in Zπ that is independent of x.
With the same argument used in the proof of Theorem 5.10 ((12.14) and (12.15)),

ωαi

N must be a power of ωπ̂ for all i ∈ [sr]. As a result, there exists βi ∈ Zπ̂ such that

(16.5) D
[r]

γ[r](x+ei)
· D

[r]

γ[r](x)
= ωβi

π̂ ·
∏

j∈[h]
ω
bi,j ·γ[r]

j (x)
πj for all x ∈ Zsr

π̂ .

By the argument used in the proof of Theorem 5.10, every nonzero entry of D[r]

is a power of ωπ̂. As a result, there exists a function f [r] from Zsr
π̂ to Zπ̂ that satisfies

(16.3). To see that f [r] is indeed a quadratic polynomial, by (16.5), we have

f [r](x + ei) − f [r](x) = βi +
∑

j∈[h]

(
b̂i,j

π̂

πj

(
xA

[r]
∗,j + â

[r]
j

))
for all i ∈ [sr],x ∈ Zsr

π̂ ,

which is an affine linear form of x with all coefficients from Zπ̂ .
By using Lemmas 12.5 and 12.6, we know that f [r] is a quadratic polynomial over

Zπ̂, and this finishes the reduction from EVAL(F, D) to EVAL(π̂).

17. Decidability in polynomial time: Proof of Theorem 1.2. Finally, we
prove Theorem 1.2, i.e., the following decision problem is computable in polynomial
time: Given a symmetric A ∈ Cm×m in which every entry Ai,j is algebraic, decide if
EVAL(A) is tractable or is #P-hard.

We follow the model of computation discussed in section 2.2. Let

A = {Ai,j : i, j ∈ [m]} = {aj : j ∈ [n]}

for some n ≥ 1 and let α be a primitive element of Q(A ). Thus, Q(A ) = Q(α).
The input of the problem consists of the following three parts:

1. a minimal polynomial F (x) ∈ Q[x] of α;
2. a rational approximation α̂ that uniquely determines α as a root of F (x);
3. the standard representation of Ai,j with respect to α and F (x), i, j ∈ [m].

The input size of the decision problem is then the length of the binary string needed
to describe all these three parts.

Given A, we follow the proof of Theorem 1.1 as follows. First by Lemma 4.6, we
can assume without loss of generality that A is connected. Then we follow the proof
sketch described in sections 5 and 6, depending on whether the matrix A is bipartite
or nonbipartite. We assume that A is connected and bipartite below. The proof for
the nonbipartite case is similar.

17.1. Step 1. We show that either EVAL(A) is #P-hard or we can construct a
purified matrix A′ such that EVAL(A) ≡ EVAL(A′) and then pass A′ down to Step
2. We follow the proof of Theorem 5.2. First, we prove that given A , a generating
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set G ⊂ Q(A ) of A can be computed in polynomial time. Recall the definition of a
generating set from Definition 7.2. We denote the input size as m̂. Thus, m̂ ≥ m.

Theorem 17.1. Given a finite set of nonzero algebraic numbers A (under the
model of computation described in section 2.2), one can in polynomial time (in m̂)
find (1) a generating set G = {g1, . . . , gd} of A and (2) for every number a ∈ A the
unique tuple (k1, . . . , kd) ∈ Zd such that a/(gk1

1 · · · gkd

d ) is a root of unity.
We start the proof with the following lemma.
Lemma 17.2. Let

L =
{(

x1, . . . , xn

)
∈ Zn

∣∣∣ ax1
1 · · · axn

n = 1
}
.

Let S be the Q-span of L, and let L′ = Zn ∩ S. Then

(17.1) L′ =
{(

x1, . . . , xn

)
∈ Zn

∣∣∣ ax1
1 · · ·axn

n is a root of unity
}
.

Proof. Clearly L is a lattice, being a discrete subgroup of Zn. Also L′ is a lattice,
and L ⊆ L′. Suppose (x1, . . . , xn) ∈ Zn is in the lattice in (17.1). Then there exists a
nonzero integer � such that (ax1

1 · · · axn
n )� = 1. As a result, �(x1, . . . , xn) ∈ L and thus

(x1, . . . , xn) ∈ S, the Q-span of L.
Conversely, if dim(L) = 0, then L = {(0, . . . , 0)} = S = L′. Suppose dim(L) > 0,

and we let b1, . . . ,bt be a basis for L, where t ∈ [n]. Let (x1, . . . , xn) ∈ Zn ∩ S; then
there exist rational numbers r1, . . . , rt such that (x1, . . . , xn) =

∑t
i=1 ribi. We have

ax1
1 · · · axn

n =
n∏

j=1

a
∑t

i=1 ribi,j
j .

Let N be a positive integer such that Nri is an integer for i ∈ [t]. Then

(
ax1
1 · · · axn

n

)N
=

t∏

i=1

⎛
⎝

n∏

j=1

a
bi,j
j

⎞
⎠

Nri

= 1.

Thus ax1
1 · · · axn

n is a root of unity and (x1, . . . , xn) is in the lattice in (17.1).
To prove Theorem 17.1, we will also need the following theorem by Ge [19, 20].
Theorem 17.3 (see [19, 20]). Given a finite set of nonzero algebraic numbers

A = {a1, . . . , an} (under the model of computation described in section 2.2), one can
in polynomial time find a lattice basis for the lattice L given by

L =
{
x =

(
x1, . . . , xn

)
∈ Zn

∣∣∣ ax1
1 · · · axn

n = 1
}
.

Proof of Theorem 17.1. Conceptually this is what we will do: We first use Ge’s
algorithm to compute a basis for L. Then we show how to compute a basis for L′

efficiently. Finally, we compute a basis for Zn/L′. This basis for Zn/L′ will define
our generating set for A .

More precisely, given the set A = {a1, . . . , an}, we let κ = {k1, . . . ,kt} denote
the lattice basis for L found by Ge’s algorithm [19, 20], where 0 ≤ t ≤ n. This basis
has polynomially many bits in each integer entry ki,j . Here are two easy cases:

1. If t = 0, then we can take gi = ai as the generators, 1 ≤ i ≤ n. There is no
nontrivial relation ak1

1 · · · akn
n = a root of unity for any (k1, . . . , kn) ∈ Zn other than

0; otherwise a suitable nonzero integer power gives a nontrivial lattice point in L.
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2. If t = n, then S = Qn and L′ = Zn; hence every ai is a root of unity. In this
case, the empty set is a generating set for A .

Assume 0 < t < n. We will compute from the basis κ a basis β for L′ = Zn ∩ S,
where S is the Q-span of L; then we compute a basis γ for the quotient lattice Zn/L′.
Both lattice bases γ and β will have polynomially many bits in each integer entry.

Before showing how to compute β and γ, it is clear that dim L′ = dim L = t and
dim(Zn/L′) = n − t. Let

γ =
{
x1, . . . ,xn−t

}
and β =

{
y1, . . . ,yt

}
.

We define the following set {g1, . . . , gn−t} from γ as follows:

gj = a
xj,1

1 a
xj,2

2 · · · axj,n
n , where xj = (xj,1, xj,2, . . . , xj,n).

We check that {g1, . . . , gn−t} is a generating set of A . Clearly, being exponentials, all
gj �= 0. Suppose for some (c1, . . . , cn−t) ∈ Zn−t, gc11 · · · gcn−t

n−t is a root of unity. Since

gc11 gc22 · · · gcn−t

n−t = a
∑n−t

j=1 cjxj,1

1 a
∑n−t

j=1 cjxj,2

2 · · ·a
∑n−t

j=1 cjxj,n

n ,

we have
⎛
⎝

n−t∑

j=1

cjxj,1,

n−t∑

j=1

cjxj,2, . . . ,

n−t∑

j=1

cjxj,n

⎞
⎠ =

n−t∑

j=1

cjxj ∈ L′.

It follows that cj = 0 for all j ∈ [n − t].
On the other hand, by the definition of Zn/L′, for every (k1, . . . , kn) ∈ Zn, there

exists a unique sequence of integers c1, . . . , cn−t ∈ Z such that

(k1, . . . , kn) −
n−t∑

j=1

cjxj ∈ L′.

In particular, for ei = (0, . . . , 1, . . . , 0), where there is a single 1 in the ith position,
there exist integers ci,j , i ∈ [n] and j ∈ [n − t], such that

ei −
n−t∑

j=1

ci,jxj ∈ L′.

As a result, we have

ai

a
∑n−t

j=1 ci,jxj,1

1 a
∑n−t

j=1 ci,jxj,2

2 · · ·a
∑n−t

j=1 ci,jxj,n

n

=
ai

g
ci,1
1 · · · gci,n−t

n−t

is a root of unity. This completes the construction of a generating set G for A . In
the following, we compute the bases γ and β in polynomial time, given κ.

First, we may change the first vector k1 = (k1,1, . . . , k1,n) in κ to be a primitive
vector, meaning that gcd(k1,1, . . . , k1,n) = 1, by factoring out the gcd. If the gcd is
greater than 1, then this changes the lattice L, but it does not change the Q-span S
and thus there is no change to L′.

In addition, there exists a unimodular matrix M1 such that

(
k1,1, . . . , k1,n

)
M1 =

(
1, 0, . . . , 0

)
∈ Zn.
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This is just the extended Euclidean algorithm. (An integer matrix M1 is unimodular
iff its determinant is ±1 or, equivalently, it has an integral inverse matrix.)

Now consider the t × n matrix

⎛
⎜⎝

u1,1 . . . u1,n

...
. . .

...
ut,1 . . . ut,n

⎞
⎟⎠ =

⎛
⎜⎝

k1,1 . . . k1,n
...

. . .
...

kt,1 . . . kt,n

⎞
⎟⎠M1.

This is also an integral matrix as M1 is integral. Moreover its first row is (1, 0, . . . , 0).
We may perform row transformations to make u2,1 = 0, . . . , ut,1 = 0. Performing the
same transformations on the right-hand side replaces the basis κ by another basis for
the same lattice, and L′ is unchanged. We still use κ = {k1, . . . ,kt} to denote this
new basis.

Next, consider the entries u2,2, . . . , u2,n. If gcd(u2,2, . . . , u2,n) > 1 we may divide
out this gcd. Since the second row satisfies

(
k2,1, k2,2, . . . , k2,n

)
=
(
0, u2,2, . . . , u2,n

)
M−1

1 ,

this gcd must also divide k2,1, k2,2, . . . , k2,n. (In fact, this is also the gcd of (k2,1, k2,2,
. . . , k2,n).) This division updates the basis κ by another basis, which changes the
lattice L, but still it does not change the Q-span S and thus the lattice L′ remains
unchanged. We continue to use the same κ to denote this updated basis.

For the same reason, there exists an (n − 1) × (n − 1) unimodular M′ such that

(
u2,2, . . . , u2,n

)
M′ =

(
1, 0, . . . , 0

)
∈ Zn−1.

Append a 1 at the (1, 1) position. This defines a second n×n unimodular matrix M2

such that we may update the matrix equation as follows:

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 1 0 . . . 0
0 u3,2 u3,3 . . . u3,n

...
...

...
. . .

...
0 ut,2 ut,3 . . . ut,n

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝

k1,1 . . . k1,n
...

. . .
...

kt,1 . . . kt,n

⎞
⎟⎠M1M2.

Now we may kill off the entries u3,2, . . . , ut,2, accomplished by row transformations
which do not change L or L′. It follows that we can finally find a unimodular matrix
M∗ such that the updated κ satisfies

(17.2)

⎛
⎜⎝

k1,1 . . . k1,n
...

. . .
...

kt,1 . . . kt,n

⎞
⎟⎠M∗ =

⎛
⎜⎜⎜⎝

1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0

⎞
⎟⎟⎟⎠ .

The right-hand side is the t × t identity matrix It with an all-zero t × (n − t) matrix
appended. The updated κ here is a lattice basis for a lattice L̂ which has the same
Q-span S as L. It is also a full-dimensional sublattice of (the unchanged) L′.

We claim this updated κ = {k1, . . . ,kt} is actually a lattice basis for L′ and thus
L̂ = L′. Assume for some rational numbers r1, . . . , rt the vector

∑t
i=1 riki ∈ Zn.

Then multiplying (r1, . . . , rt) to the left in (17.2) implies that r1, . . . , rt are integers.
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This completes the computation of a basis for L′. As the only operations we perform
are Gaussian eliminations and gcd computations, this is in polynomial time, and the
number of bits in every entry is always polynomially bounded.

Finally we describe the computation of a basis for the quotient lattice Zn/L′.
We start with a basis κ for L′ as computed above and extend it to a basis for

Zn. The extended part will then be a basis for Zn/L′. Suppose that we are given the
basis κ for L′ together with a unimodular matrix M∗ satisfying (17.2). Then consider
the n × n matrix (M∗)−1. Since (M∗)−1 = In(M∗)−1, the first t rows of (M∗)−1 are
precisely the κ matrix. We define the basis for Zn/L′ to be the last n − t row vectors
of (M∗)−1. It can be easily verified that this is a lattice basis for Zn/L′.

With Theorem 17.1, we can now follow the proof of Theorem 5.2. By using the
generating set, we construct the matrix B as in section 7.2. Every entry of B is the
product of a nonnegative integer and a root of unity with EVAL(A) ≡ EVAL(B).

We then check whether B′, where B′i,j = |Bi,j | for all i, j, satisfies the conditions
imposed by the dichotomy theorem of Bulatov and Grohe. (Note that every entry of
B′ is a nonnegative integer.) If B′ does not satisfy, then EVAL(B′) is #P-hard, and
so is EVAL(A) by Lemma 7.5. Otherwise, B must be a purified matrix, and we pass
it down to the next step.

17.2. Step 2. We follow the proof of Theorem 5.3. After rearranging the rows
and columns of the purified matrix B, we check the orthogonality condition imposed
by Lemma 8.5. If B satisfies the orthogonality condition, we can use the cyclotomic
reduction to construct efficiently a pair (C, D) from B, which satisfies the conditions
(Shape1), (Shape2), (Shape3) and satisfies EVAL(B) ≡ EVAL(C, D).

Next, we check whether the pair (C, D) satisfies (Shape4) and (Shape5). If either
of these two conditions is not satisfied, EVAL(C, D) is #P-hard, and so is EVAL(B).
Finally we check the rank-1 condition, which implies (Shape6), as imposed by Lemma
8.12 on (C, D). With (Shape1)–(Shape6), we follow section 8.6 to construct a tuple
((M, 2N),X, Y′) that satisfies (U1)–(U4), and EVAL(C, D) ≡ EVAL(X, Y′). We then
pass the tuple ((M, 2N),X, Y′) down to Step 3.

17.3. Step 3. We follow Theorems 5.4, 5.6, 5.8, and 5.9. First, (U5) in Theorem
5.4 can be verified efficiently. In Theorem 5.6, we need to check if the matrix F has
a Fourier decomposition, after an appropriate permutation of its rows and columns.
This decomposition, if F has one, can be computed efficiently by first checking the
group condition in Lemma 9.1 and then following the proofs of both Lemma 9.5 and
Lemma 9.7. Finally, it is easy to see that all the conditions imposed by Theorems 5.8
and 5.9 can be checked in polynomial time.

If A and other matrices, pairs, or tuples derived from A satisfy all the conditions
in these three steps, then by the tractability part of the dichotomy theorem, EVAL(A)
is solvable in polynomial time. From this, we obtain the polynomial-time decidability
of the complexity dichotomy, and Theorem 1.2 is proved.
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Endre Szemerédi, Shang-Hua Teng, Joe Traub, Osamu Watanabe, Avi Wigderson,
and Mihalis Yannakakis for their interest and many comments. We thank especially
Martin Dyer, Leslie Goldberg, Mark Jerrum, Marc Thurley, Leslie Valiant, and Mingji
Xia for in-depth discussions. We are truly grateful to the reviewers for their dedication

D
ow

nl
oa

de
d 

12
/1

2/
13

 to
 1

28
.1

05
.1

4.
12

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1028 JIN-YI CAI, XI CHEN, AND PINYAN LU

in carefully reading through this long paper; they offered many valuable critiques and
suggestions for improvements. We have greatly benefited from their comments.

REFERENCES

[1] A. Bulatov, The complexity of the counting constraint satisfaction problem, in Proceedings
of the 35th International Colloquium on Automata, Languages and Programming, 2008,
pp. 646–661.

[2] A. Bulatov, The Complexity of the Counting Constraint Satisfaction Problem, Electronic
Colloquium on Computational Complexity, 2009.

[3] A. Bulatov, M. E. Dyer, L. A. Goldberg, M. Jalsenius, M. R Jerrum, and D. M.
Richerby, The complexity of weighted and unweighted #CSP, J. Comput. System Sci., 78
(2012), pp. 681–688.

[4] A. Bulatov and M. Grohe, The complexity of partition functions, Theoret. Comput. Sci.,
348 (2005), pp. 148–186.

[5] J.-Y. Cai and X. Chen, A decidable dichotomy theorem on directed graph homomorphisms with
nonnegative weights, in Proceedings of the 51st Annual IEEE Symposium on Foundations
of Computer Science, 2010, pp. 437–446.

[6] J.-Y. Cai and X. Chen, Complexity of counting CSP with complex weights, in Proceedings of
the 44th Symposium on Theory of Computing, 2012, pp. 909–920.

[7] J.-Y. Cai, X. Chen, and P. Lu, Non-negatively weighted #CSPs: An effective complexity
dichotomy, in Proceedings of the 26th Annual IEEE Conference on Computational Com-
plexity, 2011.

[8] J.-Y. Cai and P. Lu, Holographic algorithms: From art to science, in Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, 2007, pp. 401–410.

[9] J.-Y. Cai, P. Lu, and M. Xia, Holant problems and counting CSP, in Proceedings of the 41st
ACM Symposium on Theory of Computing, 2009, pp. 715–724.

[10] L. Carlitz, Kloosterman sums and finite field extensions, Acta Arithmetica, 16 (1969),
pp. 179–193.

[11] N. Creignou, S. Khanna, and M. Sudan, Complexity Classifications of Boolean Constraint
Satisfaction Problems, SIAM Monogr. Discrete Math. Appl., SIAM, Philadelphia, 2001.

[12] M. E. Dyer, L. A. Goldberg, and M. Paterson, On counting homomorphisms to directed
acyclic graphs, J. ACM, 54 (2007).

[13] M. E. Dyer and C. Greenhill, The complexity of counting graph homomorphisms, Random
Structures Algorithms, 17 (2000), pp. 260–289.

[14] M. E. Dyer and D. M. Richerby, On the complexity of #CSP, in Proceedings of the 42nd
ACM Symposium on Theory of Computing, 2010, pp. 725–734.

[15] A. Ehrenfeucht and M. Karpinski, The Computational Complexity of (XOR, AND)-
Counting Problems, Tech. report TR-8543, Universität Bonn, 1990.

[16] T. Feder and M. Vardi, The computational structure of monotone monadic SNP and con-
straint satisfaction: A study through Datalog and group theory, SIAM J. Comput., 28
(1999), pp. 57–104.

[17] R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Addison-
Wesley, Reading, MA, 1970.

[18] M. Freedman, L. Lovász, and A. Schrijver, Reflection positivity, rank connectivity, and
homomorphism of graphs, J. AMS, 20 (2007), pp. 37–51.

[19] G. Ge, Algorithms Related to Multiplicative Representations of Algebraic Numbers, Ph.D.
thesis, University of California–Berkeley, 1993.

[20] G. Ge, Testing equalities of multiplicative representations in polynomial time, in Proceed-
ings of the 34th Annual IEEE Symposium on Foundations of Computer Science, 1993,
pp. 422–426.

[21] L. A. Goldberg, M. Grohe, M. Jerrum, and M. Thurley, A complexity dichotomy for
partition functions with mixed signs, SIAM J. Comput., 39 (2010), pp. 3336–3402.
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[23] P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford University Press, New York,
2004.

[24] N. Jacobson, Basic Algebra I, W.H. Freeman, New York, 1985.
[25] S. Lang, Algebra, 3rd ed., Springer-Verlag, New York, 2002.
[26] H. W. Lenstra, Algorithms in algebraic number theory, Bull. Amer. Math. Soc., 26 (1992),

pp. 211–244.

D
ow

nl
oa

de
d 

12
/1

2/
13

 to
 1

28
.1

05
.1

4.
12

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 1029

[27] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., Cambridge University
Press, Cambridge, UK, 1997.

[28] L. Lovász, Operations with structures, Acta Math. Hungar., 18 (1967), pp. 321–328.
[29] L. Lovász, The rank of connection matrices and the dimension of graph algebras, European

J. Combin., 27 (2006), pp. 962–970.
[30] P. Morandi, Field and Galois Theory, Grad. Texts in Math. 167, Springer, New York, 1996.
[31] T.J. Schaefer, The complexity of satisfiability problems, in Proceedings of the 10th Annual

ACM Symposium on Theory of Computing, 1978, pp. 216–226.
[32] A. Schrijver, Graph invariants in the spin model, J. Combin. Theory Ser. B, 99 (2009),

pp. 502–511.
[33] M. Thurley, The Complexity of Partition Functions, Ph.D. thesis, Humboldt Universität zu

Berlin, 2009.
[34] M. Thurley, The Complexity of Partition Functions on Hermitian Matrices, arXiv:1004.0992,

2010.
[35] L. G. Valiant, Holographic algorithms (extended abstract), in Proceedings of the 45th Annual

IEEE Symposium on Foundations of Computer Science, 2004, pp. 306–315.
[36] L. G. Valiant, Accidental algorthims, in Proceedings of the 47th Annual IEEE Symposium on

Foundations of Computer Science, 2006, pp. 509–517.
[37] L. G. Valiant, Holographic algorithms, SIAM J. Comput., 37 (2008), pp. 1565–1594.

D
ow

nl
oa

de
d 

12
/1

2/
13

 to
 1

28
.1

05
.1

4.
12

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Paper 7



comput. complex. 19 (2010), 37–56
1016-3328/10/010037-20, published online 24 February 2010
DOI 10.1007/s00037-009-0284-2
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QUADRATIC LOWER BOUND FOR

PERMANENT VS. DETERMINANT

IN ANY CHARACTERISTIC

Jin-Yi Cai, Xi Chen, and Dong Li

Abstract. In Valiant’s theory of arithmetic complexity, the classes VP
and VNP are analogs of P and NP. A fundamental problem concerning
these classes is the Permanent and Determinant Problem: Given a field F
of characteristic �= 2, and an integer n, what is the minimum m such
that the permanent of an n × n matrix X = (xij) can be expressed as a
determinant of an m × m matrix, where the entries of the determinant
matrix are affine linear functions of xij ’s, and the equality is in F[X].
Mignon and Ressayre (2004) proved a quadratic lower bound m = Ω(n2)
for fields of characteristic 0. We extend the Mignon–Ressayre quadratic
lower bound to all fields of characteristic �= 2.

Keywords. Arithmetic complexity; determinant; permanent; finite
field.

Subject classification. 68Q17.

1. Introduction

Given a set of n2 indeterminates X = (xi,j)i,j=1,...,n over a field F, we can define

det(X) =
∑

π∈Sn

sign(π)
n∏

i=1

xi,π(i) and per(X) =
∑

π∈Sn

n∏

i=1

xi,π(i) .

The determinant function (det) is certainly one of the most well-studied func-
tions in mathematics. The permanent function (per) is also well-studied, es-
pecially in combinatorics (Minc 1978). For example, if A is a 0-1 matrix then
per(A) counts the number of perfect matchings in a bipartite graph with ad-
jacency matrix A.

These well-known functions took on important new meanings when viewed
from the computational complexity perspective. It is well known that the deter-
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minant can be computed in polynomial time. In fact it can be computed in the
complexity class NC2. By contrast, Valiant (1979a,b) showed that computing
the permanent is #P-complete.

In fact Valiant has developed a substantial theory (see also Bürgisser (2000)
and Bürgisser, Clausen & Shokrollahi (1997)). The two complexity classes VPF
and VNPF are the analogs of P and NP in this theory of arithmetic complexity,
and the two functions, det and per, are the central objects in the two classes,
respectively. It was shown that the complexity of computing the permanent
characterizes the class VNPF and the complexity of computing the determinant
(almost) characterizes the class VPF.

More precisely, a family of polynomials {fn} is in VPF if deg(fn) = nO(1) and
there is a family of arithmetic circuits of size nO(1) computing {fn}. A family
of polynomials {gn} is in VNPF if deg(gn) = nO(1), and there exists a family of
polynomials {fn} ∈ VPF such that

gn(x1, . . . , xn) =
∑

y1,...,ym∈{0,1}
fn+m(x1, . . . , xn, y1, . . . , ym) ,

where m = nO(1). We say that {fn} is a projection of {gm} if there are some
α1, . . . , αm ∈ F ∪ {x1, . . . , xn}, such that fn(x1, . . . , xn) = gm(α1, . . . , αm). It is
a p-projection if m = nO(1). A projection is a particularly simple reduction. It
is a special case of an affine linear reduction, where each αi is an affine linear
function of xi’s. Valiant proved that

Theorem 1.1 (Valiant). For any field F, per ∈ VNPF. Moreover, for any F
with char F �= 2, any {fn} ∈ VNPF is a p-projection of per.

It is also known that det is in VPF (e.g., see Borodin, von zur Gathen
& Hopcroft (1982)). More exact characterizations of det were given in terms
of polynomial-sized arithmetic branching programs (Damm 1991; Toda 1991;
Vinay 1991).

Theorem 1.2 (Valiant). Any polynomial fn is a projection of detm of an m×
m matrix, where m is linear in the formula size of fn. In particular, if {fn}
has polynomial formula size, then {fn} is a p-projection of det. Also if {fn} ∈
VPF, then fn is the projection of detm for some m = nO(log n).

By Ryser’s formula (Minc 1978), pern has formula size O(n22n). Thus by
Valiant’s theorem it is the projection of detm, where m = O(n22n). Further-
more, if we view Ryser’s formula as on the truncated linear row sums directly
(instead of on the variables), then Valiant’s theorem implies that
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Theorem 1.3. For any n, there exists a collection A of affine linear functions
Ak,l(X) over n2 variables, where 1 ≤ k, l ≤ m = O(2n), such that

pern(X) = detm

(
A(X)

)
.

It is remarkable that this is the best general upper bound known for this.

Definition 1.4. The determinantal complexity dc of f is the minimum inte-
ger m such that there exist affine linear functions Ak,l(X), 1 ≤ k, l ≤ m, which
satisfy f(X) = detm(A(X)).

The question addressed in this paper is about dc(per). Valiant’s analog of
P �= NP will follow if one can show a lower bound

dc(pern) = nω(log n) .

Actually in some sense, this question has a longer history. Pólya (1913) was
the first to ask a question on when one can express a permanent as a modified
determinant. He noticed that

per

(
a b
c d

)
= det

(
a −b
c d

)
,

and asked if there are any similar equations, by affixing ±1 to the n2 variables
for n ≥ 3. This was answered in the negative by Szegö (1913). This line of
inquiry culminated in

Theorem 1.5 (Marcus & Minc 1961). If char F = 0 and n ≥ 3, then there are
no homogeneous linear functions fk,� in the indeterminates xi,j, 1 ≤ i, j, k, � ≤
n, such that

pern(xi,j) = detn(fk,�) .

In terms of dc(pern), this celebrated theorem is equivalent to

dc(pern) ≥ n + 1 ,

over any field of char F = 0 (Note that if the permanental matrix is also n × n
then clearly constant terms in affine linear equations do not help, as seen by
the homogeneous part.).

The first non-trivial lower bound for dc(pern) is by von zur Gathen (1985),
who showed that dc(pern) ≥

√
8/7n. This was proved for p-projections. Von

zur Gathen’s result was then improved independently by Babai and Seress as
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reported in (von zur Gathen 1987), by Cai (1990), and by Meshulam (1989).
Their results were (ignoring lower order terms)

dc(pern) ≥
√

2n .

This rather weak lower bound stood as the best bound until 2004, when
Mignon and Ressayre proved that

dc(pern) ≥ n2/2,

over any field of char 0. Over a field of char F �= 2, the best bound is a recent
unpublished result by Valiant (2007), which is Ω(n5/4) for projections.

More important than the lower bound
√

8/7n, von zur Gathen (1985) in-
troduced a method of taking derivatives and then comparing appropriate di-
mensions/ranks. The follow-up improvements to

√
2n all use this approach.

The Mignon–Ressayre breakthrough (2004) uses a new idea: Take second-
order derivatives.

The key step in their proof is to lower bound the rank of the second-order
derivative matrix H of the permanent at a certain matrix X0. However, their
proof encounters a major difficulty when char F �= 0. The matrix H at X0

has various non-zero entries, which is a necessary condition to being of high
rank. However, these non-zero entries are all divisible by large factorials. Thus
when char F = p �= 0, a constant, these entries are all zero, and the matrix H
becomes 0. In this paper, we overcome this difficulty by considering another
explicit construction of X0.

We mention some other related results. Jerrum & Snir (1982) showed that
any monotone arithmetic circuit family that computes permanent must have
exponential size. For depth-three arithmetic circuits over fields of char F = 0,
Shpilka & Wigderson (2001) proved that the permanent and determinant re-
quire circuit size Ω(n2). For depth-three arithmetic circuits over finite charac-
teristic, Grigoriev & Razborov (2000) showed an exponential lower bound for
both determinant and permanent. Raz (2004; 2009) proved a lower bound of
nΩ(log n) on the size of families of multilinear formulas computing permanent
and determinant. For syntactically multilinear arithmetic circuits, Raz, Sh-
pilka & Yehudayoff (2007) proved a Ω(n4/3/ log2 n) lower bound for an explicit
multilinear function. A survey of some work on this Permanent and Deter-
minant Problem can be found in Agrawal (2006), where it also discusses an
algebraic geometry approach by Mulmulay & Sohoni (2002) and connections
to the pseudorandom generator used in the AKS proof for primality (Agrawal
2005; Agrawal, Kayal & Saxena 2004).
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The paper is organized as follows. In Section 2, we discuss the general app-
roach by Mignon and Ressayre (2004) and state our main result. In Section 3,
we prove an Ω(n2) lower bound that is valid for all fields of characteristic �= 2.
Finally, in Section 4, we indicate how to improve the leading constant in our
Ω(n2) lower bound to match the Mignon–Ressayre bound.

2. The approach and the theorem

2.1. The proof by Mignon and Ressayre. Given an n × n matrix X =
(xi,j)i,j=1,2,...,n over a field F, it is clear that both det(X) and per(X) are poly-
nomials of degree n over n2 variables. Their partial derivatives of all orders are
defined formally.

We let H(X) = (Hij,kl)i,j,k,l=1,2,...,n denote the Hessian matrix of per(X):

Hij,kl =
∂2per(X)

∂xi,j ∂xk,l

∈ F[X] , for all 1 ≤ i, j, k, l ≤ n .

Similarly, we can define the Hessian of det(X), and denote it by Hdet(X).
Now suppose there exists a collection A of m2 affine linear functions, where

A =
{
Ak,l(x1,1, x1,2, . . . , xn,n), where k, l : 1 ≤ k, l ≤ m

}
,

such that in the polynomial ring F[X],

(2.1) pern(X) = detm

((
Ak,l(X)

)
1≤k,l≤m

)
.

The first step in the proof by Mignon & Ressayre (2004) is to transform A
to a normal form. Consider a fixed matrix X0 ∈ Fn×n such that per(X0) = 0.
We expand the affine linear functions Ak,l(X) at X0, and write

(
Ak,l(X)

)
=

(
Lk,l(X − X0)

)
+ Y0

for some homogeneous linear functions Lk,l and some matrix Y0 ∈ Fm×m. It
then follows from (2.1) that det(Y0) = per(X0) = 0. Now let C and D be two
non-singular matrices such that CY0D is a diagonal matrix

(
0 0
0 Is

)
, where s < m .

It follows from previous work (Cai 1990; von zur Gathen 1987; Meshulam 1989)
that if (2.1) holds, then this s must be m − 1. (But it will also follow easily
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from the Mignon–Ressayre proof.) Since the first row and column of CY0D
are both zero, we may multiply diagonal matrices diag(det(C)−1, 1, . . . , 1) and
diag(det(D)−1, 1, . . . , 1) to the left and right, so we may just assume det(C) =
det(D) = 1. It follows that, by (multiplying matrices C and D to the left and
right, and) renaming Lk,l and Y0, we may assume (2.1) takes the form

per(X) = det
((

Lk,l (X − X0)
)

+ Y0

)
,

where Y0 = diag(0, 1, . . . , 1).
Now we can take second-order derivatives, and evaluate them at X0. By

the chain rule, we have

H(X0) = L · Hdet(Y0) · LT ,

where L is an n2 × m2 matrix over F. It immediately follows that

rank
(
H(X0)

)
≤ rank

(
Hdet(Y0)

)
.

It is relatively easy to derive a O(m) upper bound for the rank of Hdet(Y0).
Notice that when one takes a partial derivative ∂/∂xij on the determinant (as
well as on the permanent), one simply gets the minor after striking out row i
and column j. Second order derivative ∂2/∂xij∂xkl simply strikes out rows
{i, k} and columns {j, l}. By the form of Y0, to get a non-zero value for an
entry (ij, kl) in Hdet(Y0), it must be that 1 ∈ {i, k} and 1 ∈ {j, l}. In fact the
only non-zero entries are

(ij, kl) = (11, tt), (tt, 11), (1t, t1) or (t1, 1t) ,

for all t > 1. This immediately gives a 2m upper bound for rank(Hdet(Y0)).
(If we did not assume s = m − 1, then it would have been even more difficult
to get a non-zero entry in Hdet(Y0). If s = m− 2, there could be at most O(1)
many non-zero entries. If s < m − 2, there are no non-zero entries.)

The real work of their proof is to find an explicit X0 such that per(X0) = 0
and yet rank(H(X0)) is high. For the case when char F = 0, they constructed
an infinite sequence of n×n matrices X0 such that pern(X0) = 0 and the rank
of the n2 × n2 matrix H(X0) is full. This gives their quadratic lower bound
m = Ω(n2).

Theorem 2.2 (Mignon and Ressayre). For any field of characteristic 0,

dc(pern) ≥ n2/2 .
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However, their matrices X0 do not work for fields F with small character-
istics, e.g., 3. All entries of H(X0) are divisible by large factorials, and thus,
divisible by char F. As a result, H(X0) becomes the zero matrix of rank 0. In a
way, to get non-zero values for entries in H(X0), which are permanental minors
of X0, and yet to be able to analyze the rank, the most natural approach is to
assign pretty uniform values for X0. This is what was done. But these entries
are non-zero by virtue of the fact that they are sums of constant terms with
a large factorial number of terms. Thus the appearance of large factorials in
H(X0) is not surprising. To avoid these factorials, we have to be more judicious
in our choice of X0. We need it to be not terribly uniform, and yet sufficiently
structured so that we can still calculate the rank for H(X0).

2.2. Our main result. Our main result is a new construction of matrices
X0 such that H(X0) has almost full rank over any field of char F �= 2. More
exactly, we will prove the following theorem in Section 4:

Theorem 2.3. Let p > 2 be a prime, then

(i) If p �= 23, then for every n > 2 that satisfies p
∣∣(n + 1), there exists an

(n + 1) × (n + 1) matrix X0 over finite field Fp such that

per(X0) ≡ 0 (mod p) and rank
(
H(X0)

)
≥ (n − 2)(n − 3) ;

(ii) If p �= 3, 5, then for every n > 1 that satisfies p
∣∣(n + 2), there exists an

(n + 1) × (n + 1) matrix X0 over finite field Fp such that

per(X0) ≡ 0 (mod p) and rank
(
H(X0)

)
≥ (n − 2)(n − 3) .

This implies a quadratic lower bound for dc(per) over field Fp. We remark
that a lower bound for Fp is also valid over Q.

Corollary 2.4. For every prime p �= 2, there exist infinitely many positive
integers n such that dc(pern) ≥ (n − 2)(n − 3)/2 over a field of char F = p.

To prove the theorem, we introduce, for all v ∈ Fp and n ≥ 1, the following
(n + 1) × (n + 1) matrix Mn

v = (Mi,j): M(n+1),(n+1) = v and Mi,i = M(n+1),i =
Mi,(n+1) = 1 for all i : 1 ≤ i ≤ n, and Mi,j = 0 otherwise. For example,

M3
2 =

⎛
⎜⎜⎝

1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 2

⎞
⎟⎟⎠ .
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In Section 4, we will prove the two cases of Theorem 2.3 using Mn
1 and Mn

2 ,
respectively. Given v ∈ Fp and n ≥ 1, the following lemma essentially defines
the Hessian matrix H(Mn

v ) of Mn
v .

Lemma 2.5. Let H(Mn
v ) = (Hij,kl). Then for all i, j : 1 ≤ i �= j ≤ n and

k, l : 1 ≤ k �= l ≤ n, we have

Hij,kl ≡

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

v + n − 2 if k = j and l = i ;

1 if k = j and l �= i, j ;

1 if l = i and k �= i, j ;

0 otherwise .

For i, j : 1 ≤ i �= j ≤ n, we let Hij denote the (n2 − n)-dimensional vector
truncated from the (ij)th row of H(Mn

v ), where we only keep its (kl)th entry if
1 ≤ k �= l ≤ n. For all i, j, k, l satisfying 1 ≤ i �= j ≤ n and 1 ≤ k �= l ≤ n, the
following lemma shows the possible values of the inner product Hij · Hkl.

Lemma 2.6. Assume i and j satisfy 1 ≤ i �= j ≤ n, then we have

1. Hij · Hij = (v + n − 2)2 + 2(n − 2);

2. Hij · Hji = 0;

3. for 1 ≤ k ≤ n and k �= i, j, Hij · Hik = Hij · Hkj = 2(v + n − 2) + n − 3;

4. for 1 ≤ k ≤ n and k �= i, j, Hij · Hki = Hij · Hjk = 1; and

5. for 1 ≤ k �= l ≤ n and {k, l} ∩ {i, j} = ∅, Hij · Hkl = 2.

Proof. We only prove the first and third cases here. The other cases can
be proved similarly.

For the first case, we run all possibilities (kl), where k, l : 1 ≤ k �= l ≤ n,
and the only non-zero entries in Hij · Hij are (v + n − 2)2 for the index (ji),
and 1 for indices (jt) and (ti), where 1 ≤ t ≤ n and t �= i, j. As a result,
Hij ·Hij = (v +n− 2)2 +2(n− 2). For the third case, the only non-zero entries
in Hij ·Hik are (v +n−2) for indices (ji) and (ki), and 1 for indices (ti) where
1 ≤ t ≤ n and t �= i, j, k. As a result, Hij · Hik = 2(v + n − 2) + n − 3. �
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We also need the following lemma concerning the determinant of matrices
of a specific form.

Lemma 2.7. Let A = (Ai,j)i,j=1,...,n be an n×n matrix over Fp, which satisfies
Ai,i = α for all 1 ≤ i ≤ n and Ai,j = β otherwise. Then we have

det(A) =
(
α + (n − 1)β

)
(α − β)n−1 .

Proof. First, we add the ith row of A to the first row for all i : 1 < i ≤ n.
As a result, we have

det(A) = det

⎛
⎜⎜⎜⎝

γ γ · · · γ
β α · · · β
...

...
. . .

...
β β · · · α

⎞
⎟⎟⎟⎠ = γ · det(B) , where B =

⎛
⎜⎜⎜⎝

1 1 · · · 1
β α · · · β
...

...
. . .

...
β β · · · α

⎞
⎟⎟⎟⎠

and γ = α + (n − 1)β. Second, for each i : 1 < i ≤ n, we subtract (β, β, . . . , β)
from the ith row of B:

det(B) = det

⎛
⎜⎜⎜⎝

1 1 1 1
0 α − β · · · 0
...

...
. . .

...
0 0 · · · α − β

⎞
⎟⎟⎟⎠ = (α − β)n−1 .

The lemma then follows. �

3. A weaker theorem

In this section, we prove the following weaker version of Theorem 2.3.

Lemma 3.1. Let p > 2 be a prime, then for any sufficiently large n satisfying
p |(n + 1), we have per(Mn

1 ) ≡ 0 (mod p) and rank(H(Mn
1 )) = Ω(n2).

Proof. In the proof, we denote matrix Mn
1 by M. Clearly,

per(M) = n + 1 ≡ 0 (mod p) ,

so we only need to prove the second part.
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Let S be a maximal subset of integers {i : 1 ≤ i < n/2} with |S| ≡ 2
(mod p), and T be a maximal subset of {j : n/2 ≤ j ≤ n} with |T | ≡ 2
(mod p). Both |S| and |T | are Ω(n).

Next, we will show that there exists a sub-matrix R of H(M) with |S| · |T |
rows, such that, det(RRT ) is non-zero. As a result, we have

rank
(
H(M)

)
≥ rank(R) ≥ rank(RRT ) = |S| · |T | = Ω(n2) ,

and the lemma follows.

To get the matrix R, we choose the following subset of rows and columns
of H(M): rows (ij), where i ∈ S and j ∈ T ; and columns (kl), where 1 ≤ k �=
l ≤ n. So R is an (|S| · |T |) × (n2 − n) matrix. Let S = {i1, i2, . . . , i|S|} and
T = {j1, j2, . . . , j|T |}, then we can write R as

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Hi1j1

Hi1j2
...

Hi1j|T |
Hi2j1

...
Hi|S|j|T |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Hij is the (n2 − n)-dimensional vector truncated from the (ij)th row of
H(M). Consider the inner products of arbitrary two rows of R. By Lemma 2.6
we have for i ∈ S and j ∈ T ,

1. Hij · Hij = (v + n − 2)2 + 2(n − 2) ≡ −2 (mod p), since v = 1, n ≡ −1
(mod p) by the assumption;

2. when j′ �= j and j′ ∈ T , Hij · Hij′ = 2(v + n − 2) + (n − 3) ≡ −8 �≡ 0
(mod p);

3. when i′ �= i and i′ ∈ S, Hij · Hi′j ≡ −8 �≡ 0 (mod p);

4. when i′ �= i, j′ �= j, i′ ∈ S and j′ ∈ T , Hij · Hi′j′ ≡ 2 (mod p).
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Now we can write RRT as an |S| × |S| block matrix:

RRT =

⎛
⎜⎜⎜⎜⎝

A B B · · · B
B A B · · · B
B B A · · · B
...

...
...

. . .
...

B B B · · · A

⎞
⎟⎟⎟⎟⎠

, where

A =

⎛
⎜⎜⎜⎜⎝

a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

. . .
...

b b b · · · a

⎞
⎟⎟⎟⎟⎠

and B =

⎛
⎜⎜⎜⎜⎝

b c c · · · c
c b c · · · c
c c b · · · c
...

...
...

. . .
...

c c c · · · b

⎞
⎟⎟⎟⎟⎠

,

are both |T | × |T | matrices with a = −2, b = −8, and c = 2.

We apply the following operations to RRT : subtract the second last column
from the last column of RRT (Here what we mean by “a column” is a whole
block column of RRT ). Then subtract the third last column from the second
last column . . . till subtract the first column from the second column. We end
up with

⎛
⎜⎜⎜⎜⎜⎜⎝

A B − A 0 · · · 0
B A − B B − A · · · 0
B 0 A − B · · · 0
...

...
...

. . .
...

B 0 0 · · · B − A
B 0 0 · · · A − B

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then we add the first row to the second row. Add the second row to the third
row, etc. Finally, we get

⎛
⎜⎜⎜⎜⎜⎜⎝

A B − A 0 0 · · · 0
A + B 0 B − A 0 · · · 0
A + 2B 0 0 B − A · · · 0

...
...

...
...

. . .
...

A + (|S| − 2)B 0 0 0 · · · B − A
A + (|S| − 1)B 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Clearly all these operations do not change its determinant. By Lemma 2.7, we
have (Here we use s and t to denote |S| − 1 and |T | − 1, respectively)

det(RRT ) = ± det(A + sB) ·
(
det(B − A)

)s

= ±
(
a + sb + t(b + sc)

)(
a + sb − (b + sc)

)t

((
b − a + t(c − b)

)(
b − a − (c − b)

)t
)s

≡ ±(−16)(−4)t
(
(4)(−16)t

)s �≡ 0 (mod p) ,

since p > 2 is a prime. As a result, we have rank(RRT ) = |S| · |T |, and the
lemma is proven. �

4. Proof of the main theorem

In this section, we prove Theorem 2.3. As already mentioned in Section 2.2, we
will use Mn

1 and Mn
2 to prove the two cases, respectively. The idea behind the

proof is similar to the previous one. However, the sub-matrix R we pick this
time is a square matrix with n2 − n rows. By showing that the rank of RRT

is almost full, the theorem follows.

Proof of Theorem 2.3. Let v = 1 in the first case and v = 2 in the
second case. Note that in both cases, we have n ≡ −v (mod p).

Let S = {(i, j) : 1 ≤ i �= j ≤ n}. Then we use Rv to denote the following
sub-matrix of H(Mn

v ): Row (or column) (ij) of H(Mn
v ) is selected if and only

if (i, j) ∈ S. Thus, Rv is an (n2 − n) × (n2 − n) matrix. Again, we write Rv as

Rv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H12

H13
...

H1n

H21

H23
...

Hn(n−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Hij is the (n2 − n)-dimensional vector truncated from the (ij)th row of
the original matrix H(Mn

v ). Again, by using Lemma 2.6 we have the following
cases (under the assumption that n ≡ −v (mod p)): For (i, j) ∈ S,
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1. Hij ·Hij = (v +n− 2)2 +2(n− 2) ≡ −2v (mod p). We denote −2v by a.

2. Hij · Hji = 0.

3. when 1 ≤ k ≤ n and k �= i, j, Hij ·Hik = Hij ·Hkj = 2(v+n−2)+(n−3)
≡ −(v + 7) (mod p). We denote −(v + 7) by b.

4. when 1 ≤ k ≤ n and k �= i, j, Hij · Hki = Hij · Hjk = 1.

5. when 1 ≤ k �= l ≤ n and {k, l} ∩ {i, j} = ∅, Hij · Hkl = 2.

Therefore, RvR
T
v is an n × n-block matrix in which each block is an (n − 1) ×

(n − 1) matrix. An example, when n = 6, is shown in Figure 4.1.
In Figure 4.1, notice that the (1, 2)th block can be transformed into the

(1, 6)th block with the following operations: Move the 1st row to the 5th row
and then move the 2nd-5th rows up by one row. One can also transform the
(1, 6)th block into the (5, 6)th block by simply moving the 1st column to the
5th column and moving the 2nd-5th columns one column left. Let A and B be
the following (n − 1) × (n − 1) matrices,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a b b b · · · b
b a b b · · · b
b b a b · · · b
b b b a · · · b
...

...
...

...
. . .

...
b b b b · · · a

⎞
⎟⎟⎟⎟⎟⎟⎠

and B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 · · · 1
1 b 2 2 · · · 2
1 2 b 2 · · · 2
1 2 2 b · · · 2
...

...
...

...
. . .

...
1 2 2 2 · · · b

⎞
⎟⎟⎟⎟⎟⎟⎠

,

then we formally state the property observed above in the following lemma.

Lemma 4.1. The (1, 2)th block of RvR
T
v is B. For any i : 1 ≤ i ≤ n − 1, let

Ci denote the following (n − 1) × (n − 1) matrix:

Ci =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0...

...
...

. . .
...

...
0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

i×i

In−1−i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then for all i, j : 1 ≤ i < j ≤ n, the (i, j)th block of RvR
T
v is CT

j−1BCi.
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12 13 14 15 16 21 23 24 25 26 31 32 34 35 36 41 42 43 45 46 51 52 53 54 56 61 62 63 64 65

12 a b b b b 0 1 1 1 1 1 b 2 2 2 1 b 2 2 2 1 b 2 2 2 1 b 2 2 2
13 b a b b b 1 b 2 2 2 0 1 1 1 1 1 2 b 2 2 1 2 b 2 2 1 2 b 2 2
14 b b a b b 1 2 b 2 2 1 2 b 2 2 0 1 1 1 1 1 2 2 b 2 1 2 2 b 2
15 b b b a b 1 2 2 b 2 1 2 2 b 2 1 2 2 b 2 0 1 1 1 1 1 2 2 2 b
16 b b b b a 1 2 2 2 b 1 2 2 2 b 1 2 2 2 b 1 2 2 2 b 0 1 1 1 1

21 0 1 1 1 1 a b b b b b 1 2 2 2 b 1 2 2 2 b 1 2 2 2 b 1 2 2 2
23 1 b 2 2 2 b a b b b 1 0 1 1 1 2 1 b 2 2 2 1 b 2 2 2 1 b 2 2
24 1 2 b 2 2 b b a b b 2 1 b 2 2 1 0 1 1 1 2 1 2 b 2 2 1 2 b 2
25 1 2 2 b 2 b b b a b 2 1 2 b 2 2 1 2 b 2 1 0 1 1 1 2 1 2 2 b
26 1 2 2 2 b b b b b a 2 1 2 2 b 2 1 2 2 b 2 1 2 2 b 1 0 1 1 1

31 1 0 1 1 1 b 1 2 2 2 a b b b b b 2 1 2 2 b 2 1 2 2 b 2 1 2 2
32 b 1 2 2 2 1 0 1 1 1 b a b b b 2 b 1 2 2 2 b 1 2 2 2 b 1 2 2
34 2 1 b 2 2 2 1 b 2 2 b b a b b 1 1 0 1 1 2 2 1 b 2 2 2 1 b 2
35 2 1 2 b 2 2 1 2 b 2 b b b a b 2 2 1 b 2 1 1 0 1 1 2 2 1 2 b
36 2 1 2 2 b 2 1 2 2 b b b b b a 2 2 1 2 b 2 2 1 2 b 1 1 0 1 1

41 1 1 0 1 1 b 2 1 2 2 b 2 1 2 2 a b b b b b 2 2 1 2 b 2 2 1 2
42 b 2 1 2 2 1 1 0 1 1 2 b 1 2 2 b a b b b 2 b 2 1 2 2 b 2 1 2
43 2 b 1 2 2 2 b 1 2 2 1 1 0 1 1 b b a b b 2 2 b 1 2 2 2 b 1 2
45 2 2 1 b 2 2 2 1 b 2 2 2 1 b 2 b b b a b 1 1 1 0 1 2 2 2 1 b
46 2 2 1 2 b 2 2 1 2 b 2 2 1 2 b b b b b a 2 2 2 1 b 1 1 1 0 1

51 1 1 1 0 1 b 2 2 1 2 b 2 2 1 2 b 2 2 1 2 a b b b b b 2 2 2 1
52 b 2 2 1 2 1 1 1 0 1 2 b 2 1 2 2 b 2 1 2 b a b b b 2 b 2 2 1
53 2 b 2 1 2 2 b 2 1 2 1 1 1 0 1 2 2 b 1 2 b b a b b 2 2 b 2 1
54 2 2 b 1 2 2 2 b 1 2 2 2 b 1 2 1 1 1 0 1 b b b a b 2 2 2 b 1
56 2 2 2 1 b 2 2 2 1 b 2 2 2 1 b 2 2 2 1 b b b b b a 1 1 1 1 0

61 1 1 1 1 0 b 2 2 2 1 b 2 2 2 1 b 2 2 2 1 b 2 2 2 1 a b b b b
62 b 2 2 2 1 1 1 1 1 0 2 b 2 2 1 2 b 2 2 1 2 b 2 2 1 b a b b b
63 2 b 2 2 1 2 b 2 2 1 1 1 1 1 0 2 2 b 2 1 2 2 b 2 1 b b a b b
64 2 2 b 2 1 2 2 b 2 1 2 2 b 2 1 1 1 1 1 0 2 2 2 b 1 b b b a b
65 2 2 2 b 1 2 2 2 b 1 2 2 2 b 1 2 2 2 b 1 1 1 1 1 0 b b b b a

Figure 4.1: An example of matrix RvR
T
v when n = 6.
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Proof. To prove the lemma, it suffices to show that, for all i, j : 1 ≤ i <
j < n, the (i, j +1)th block of RvR

T
v can be obtained from its (i, j)th block by

exchanging the (j − 1)th and jth rows; and for all i, j : 1 ≤ i < j − 1 < n, the
(i+1, j)th block of RvR

T
v can be obtained from its (i, j)th block by exchanging

the ith and (i+1)th columns. We only prove the first statement here. Assume
i and j satisfy 1 ≤ i < j < n. We define the following mappings:

γ(l) =

⎧
⎪⎨
⎪⎩

l l �= j, j + 1 ;

j + 1 l = j ;

j l = j + 1 ,

and σr(l) =

{
l l ≤ r − 1 ;

l + 1 l ≥ r ,

for all r ∈ Z. One can easily check that for any l ∈ Z, γ(σj(l)) = σj+1(l).
First, our analysis of Hij · Hkl implies that

Hij · Hkl = Hγ(i)γ(j) · Hγ(k)γ(l) .

This is because the value of Hij · Hkl only depends on the equality relations
between indices i, j and k, l (e.g., whether i is equal to k or not). As a result,
exchanging j and j + 1 does not change the inner product.

Second, for all k, k′ : 1 ≤ k, k′ ≤ n − 1, we observe that the (k, k′)th entry
of the (i, j)th block of RvR

T
v is Hi,σi(k) ·Hj,σj(k′), while the (k, k′)th entry of its

(i, j + 1)th block is Hi,σi(k) · Hj+1,σj+1(k′). To compare the two blocks, we need
to consider the following cases about k:

1. k < j − 1. Then σi(k) ≤ k + 1 < j, and γ(σi(k)) = σi(k). As a result,

Hi,σi(k) · Hj,σj(k′) = Hγ(i),γ(σi(k)) · Hγ(j),γ(σj(k′)) = Hi,σi(k) · Hj+1,σj+1(k′) .

2. k > j. Similarly, we have Hi,σi(k) · Hj,σj(k′) = Hi,σi(k) · Hj+1,σj+1(k′).

3. k = j − 1, then γ(σi(k)) = j + 1 = σi(j). Therefore,

Hi,σi(k) · Hj,σj(k′) = Hγ(i),γ(σi(k)) · Hγ(j),γ(σj(k′)) = Hi,σi(j) · Hj+1,σj+1(k′) .

4. k = j, then γ(σi(k)) = j = σi(j − 1). Similarly,

Hi,σi(k) · Hj,σj(k′) = Hγ(i),γ(σi(k)) · Hγ(j),γ(σj(k′)) = Hi,σi(j−1) · Hj+1,σj+1(k′) .

The lemma then follows. �
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Now we know RvR
T
v has the following form (We let ∗ denote the blocks we

don’t care, although we know exactly what they are since RvR
T
v is symmetric):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A CT
1 BC1 CT

2 BC1 · · · CT
n−2BC1 CT

n−1BC1

∗ A CT
2 BC2 · · · CT

n−2BC2 CT
n−1BC2

∗ ∗ A · · · CT
n−2BC3 CT

n−1BC3
...

...
...

. . .
...

...

∗ ∗ ∗ · · · A CT
n−1BCn−1

∗ ∗ ∗ · · · ∗ A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Again, we will apply matrix operations to RvR
T
v . But before that, we need

to prove the following key property about the block matrices in RvR
T
v : The

difference between the (i+1, j +1)th and (i+1, j)th blocks of RvR
T
v is exactly

the same as the difference between the (i, j + 1)th and (i, j)th blocks.

Lemma 4.2. For all 1 ≤ i < j ≤ n such that i + 1 < j and j + 1 ≤ n, we have

(CT
j − CT

j−1)BCi+1 = (CT
j − CT

j−1)BCi .

Proof. For k : 1 ≤ k ≤ n − 1, we use Bk to denote the kth row vector of B.
We also use B′ to denote (CT

j − CT
j−1)B, and B′

k to denote the kth row of B′.
It is not hard to check that B′

j−1 = Bj − B1, B′
j = B1 − Bj , and B′

k = 0 for
all k �= j − 1, j.

On the other hand, all the entries of vector Bj − B1 are equal to 1 except
the jth entry which is equal to b − 1. As we assumed that i + 1 < j, we have
B′Ci+1 = B′Ci = B′, and the lemma is proven. �

We apply the following operations to RvR
T
v : subtract the second last col-

umn from the last column of RvR
T
v , then subtract the third last column from

the second last column . . . till subtract the first column from the second col-
umn. Let P denote the upper right sub-matrix, after the operations, of RvR

T
v

containing (n − 1) × (n − 1) blocks:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

CT
1 (B − A)C1 (CT

2 − CT
1 )BC1 (CT

3 − CT
2 )BC1 · · · (CT

n−1 − CT
n−2)BC1

∗ CT
2 (B − A)C2 (CT

3 − CT
2 )BC2 · · · (CT

n−1 − CT
n−2)BC2

∗ ∗ CT
3 (B − A)C3 · · · (CT

n−1 − CT
n−2)BC3

...
...

...
. . .

...

∗ ∗ ∗ · · · CT
n−1(B − A)Cn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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Next, we transform P as follows: Subtract the second last row from the last
row, then subtract the third last row from the second last row . . . till subtract
the first row from the second row. We only need to focus on the lower right
part of P containing (n−2)×(n−2) blocks, which we denote by P∗. It directly
follows from Lemma 4.2 that P∗ is a lower triangular block matrix, and the
block matrices along the diagonal are:

(
CT

i (B − A)Ci − (CT
i − CT

i−1)BCi−1

)
, i = 2, 3, . . . , n − 1 .

On the other hand, as implied by the proof of Lemma 4.2, the rank of matrix
(CT

i − CT
i−1)BCi−1 is exactly 1, so

rank(RvR
T
v ) ≥

n−1∑

i=2

(
rank

(
CT

i (B − A)Ci

)
− 1

)
= (n − 2)

(
rank(B − A) − 1

)
.

Finally, by Lemma 2.7, the determinant of the lower right (n − 2) × (n − 2)
sub-matrix of B − A is (by setting α = b − a and β = 2 − b)

(
(b − a) + (n − 3)(2 − b)

)(
(b − a) − (2 − b)

)n−3

≡
{

(−46)(−16)n−3 (mod p) when v = 1 ; and

(−60)(−16)n−3 (mod p) when v = 2 .

As a result, we have

rank
(
H(Mn

1 )
)

≥ rank(R1R
T
1 ) ≥ (n − 2)(n − 3) , when p �= 23 ; and

rank
(
H(Mn

2 )
)

≥ rank(R2R
T
2 ) ≥ (n − 2)(n − 3) , when p �= 3, 5 . �

A natural question is what makes this sequence of matrices work for the
proof. We can only offer our take on this. We believe that probably most
matrices X, where per(X) = 0, will work, i.e., its Hessian will have a quadratic
rank. The problem is rather how to prove this. Over characteristic 0, Mignon
and Ressayre gave a construction which is essentially the all 1 matrix (except
the (1, 1) entry to make per(X) = 0). This makes most second derivatives in
the Hessian of the permanent a constant (but involving a large factorial). The
key to our matrix is to choose it sufficiently uniform so that we can still prove
its rank analytically, but not that uniform so as to involve large factorials.
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We develop the theory of holographic algorithms initiated by Leslie Valiant. First we
define a basis manifold. Then we characterize algebraic varieties of realizable symmetric
generators and recognizers on the basis manifold, and give a polynomial time decision
algorithm for the simultaneous realizability problem. These results enable one to decide
whether suitable signatures for a holographic algorithm are realizable, and if so, to
find a suitable linear basis to realize these signatures by an efficient algorithm. Using
the general machinery we are able to give unexpected holographic algorithms for some
counting problems, modulo certain Mersenne type integers. These counting problems
are #P-complete without the moduli. Going beyond symmetric signatures, we define
d-admissibility and d-realizability for general signatures, and give a characterization of
2-admissibility and some general constructions of admissible and realizable families.
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1. Introduction

It is a testament to the enormous impact of NP-completeness theory [2,18] that the conjecture P �= NP has become a
leading hypothesis in all computer science and mathematics. We consider it a great honor and privilege to dedicate this
paper to the 2009 Kyoto Prize Laureate Prof. Richard M. Karp, a founder of this theory.

The NP-completeness theory is so well established that most computer scientists consider it a proof of computational
intractability in terms of worst-case complexity if a problem is proved to be NP-complete. Expressed in terms of complexity
classes, it has become more or less an article of faith among theoretical computer scientists that the conjecture P �= NP
holds. The theory of holographic algorithms, however, provides a cautionary coda, that our understanding of the ultimate
capability of polynomial time algorithms is far from well understood.

Certainly there are good reasons to believe the conjecture P �= NP, not the least of which is the fact that the usual algo-
rithmic paradigms seem unable to handle any of the NP-hard problems. Such statements are made credible by decades of
in-depth study of these methodologies. On the other hand, there are some “surprising” polynomial time algorithms for prob-
lems which, on appearance, would seem to require exponential time. One such example is to count the number of perfect
matchings in a planar graph (the FKT method) [19,20,25]. In [27,29] L. Valiant introduced an algorithmic design technique of
breathtaking originality, called holographic algorithms. Computation in these algorithms is expressed and interpreted through
a choice of linear basis vectors in an exponential “holographic” mix, and then it is carried out by the FKT method via the
Holant Theorem. This methodology has produced polynomial time algorithms for a variety of problems ranging from re-

✩ A preliminary version of this paper appeared in the 39th ACM Symposium on Theory of Computing (STOC 2007) (J.-Y. Cai and P. Lu (2007) [7]).
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strictive versions of satisfiability, vertex cover, to other graph problems such as edge orientation and node/edge deletion. No
polynomial time algorithms were known for any of these problems, and some minor variations are known to be NP-hard.

These holographic algorithms are quite unusual compared to other kinds of algorithms (except perhaps quantum algo-
rithms). At the heart of the computation is a process of introducing and then canceling exponentially many computational
fragments. Invariably the success of this methodology on a particular problem boils down to finding a certain “exotic” object
represented by a signature.

For example, Valiant showed [30] that the restrictive SAT problem #7Pl-Rtw-Mon-3CNF (counting the number of sat-
isfying assignments of a planar read-twice monotone 3CNF formula, modulo 7) is solvable in P. The same problem
#Pl-Rtw-Mon-3CNF without mod 7 is known to be #P-complete, a result due to Xia et al. [31]; the problem mod 2, #2Pl-
Rtw-Mon-3CNF, is known to be ⊕P-complete (thus NP-hard), a result due to Valiant [30]. The surprising tractability mod 7
is due to the unexpected existence of suitable generators and recognizers over Z7.

These signatures are specified by families of algebraic equations. These families of equations are typically exponential in
size. Searching for their solutions is what Valiant called “the enumeration” of “freak objects” in his “Accidental algorithm”
paper [30].3 Dealing with such algebraic equations can be difficult due to the exponential size. So far the successes have
been an expression of artistic inspiration.

To sustain a belief in P �= NP, we must develop a systematic understanding of the capabilities of holographic algorithms.
One might take the view that the problems such as #7Pl-Rtw-Mon-3CNF that have been solved in this framework are a little
contrived. But the point is that when we surveyed potential algorithmic approaches with P vs. NP in mind, these algorithms
were not part of the repertoire. Presumably the same “intuition” for P �= NP would have applied equally to #7Pl-Rtw-Mon-
3CNF and to #2Pl-Rtw-Mon-3CNF. Thus, Valiant suggested in [29], “any proof of P �= NP may need to explain, and not only
to imply, the unsolvability” of NP-hard problems using this approach.

While finding “exotic” solutions such as the signature for #7Pl-Rtw-Mon-3CNF is inspired artistry, the situation with
ever more complicated algebraic constraints on such signatures (for other problems) can quickly overwhelm such an artistic
approach (as well as a computer search). At any rate, failure to find such solutions to a particular algebraic system yields
no proof that such solutions do not exist, and it generally does not give us any insight as to why. We need a more scientific
understanding. The aim of this paper is to build toward such an understanding.

In this paper we have achieved a complete account for all realizable symmetric signatures. Using this we can show why
the modulus 7 happens to be the modulus that works for #7Pl-Rtw-Mon-3CNF. Underlying this is the fact that 7 is 23 − 1,
and for any odd prime p, any prime factor q of the Mersenne number 2p − 1 has q ≡ ±1 mod 8, and therefore 2 is a
quadratic residue in Zq . Generalizing this, we show that #2k−1Pl-Rtw-Mon-kCNF is in P for all k � 3 (the problem is trivial
for k � 2). Furthermore, no suitable signatures exist for any modulus other than factors of 2k − 1 for this problem.

When designing a holographic algorithm for any particular problem, the essential step is to decide whether there is
a linear basis for which certain signatures of both generators and recognizers can be simultaneously realized (we give a
quick review of terminologies in Section 2. See [29,27,4,5] for more details). Frequently these signatures are symmetric
signatures. Our understanding of symmetric signatures has advanced to the point where it is possible to give a polynomial
time algorithm to decide the simultaneous realizability problem. If a matchgate has arity n, the signature has size 2n .
However for symmetric signatures we have a compact form, and the running time of the decision algorithm is polynomial
in n. With this structural understanding we can give (i) a complete account of all the previous successes of holographic
algorithms using symmetric signatures [29,5,30]; (ii) generalizations such as #2k−1Pl-Rtw-Mon-kCNF and a similar problem
for vertex cover, when this is possible; and (iii) a proof when this is not possible. We think this is an important step in our
understanding of holographic algorithms, from art to science.

In order to investigate realizability of signatures, we found it useful to introduce a basis manifold M, which is defined
to be the set of all possible bases modulo an equivalence relation. This is a useful language for the discussion of symmetric
signatures; it becomes essential for the general signatures. We define the notions of d-admissibility and d-realizability. To
be d-admissible is to have a d-dimensional solution subvariety in M, satisfying all the parity requirements. This is a part
of the requirements in order to be realizable. To be d-realizable is to have a d-dimensional solution subvariety in M for
all realizability requirements, which include the parity requirements as well as the useful Grassmann–Plücker identities [5,28],
called the matchgate identities. To have 0-realizability is a necessary condition. But to get holographic algorithms one needs
simultaneous realizability of both generators and recognizers. This is accomplished by having a non-empty intersection
of the respective subvarieties for the realizability of generators and recognizers. And this tends to be accomplished by
having d-realizability (which implies d-admissibility), for d � 1, on at least one side. Therefore it is important to investigate
d-realizability and d-admissibility for d � 1. We give a complete characterization of 2-admissibility. We also give some
non-trivial 1-admissible families, and 1- or 2-realizable families.

This paper is organized as follows. In Section 2 we give a review of terminologies. In Section 3 we define the basis
manifold M which will be used to express our results throughout. In Section 4 we describe our results on simultaneous
realizability of recognizers and generators, culminating in the polynomial time decision procedure. In Section 5 we describe

3 From [30]: “The objects enumerated are sets of polynomial systems such that the solvability of any one member would give a polynomial time algorithm
for a specific problem. . . . the situation with the P = NP question is not dissimilar to that of other unresolved enumerative conjectures in mathematics. The
possibility that accidental or freak objects in the enumeration exist cannot be discounted, if the objects in the enumeration have not been systematically
studied previously.”
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our results on #2k−1Pl-Rtw-Mon-kCNF and on vertex cover. Further illustrations of the power of the general machinery are
given in Section 6. In Section 7 we go beyond symmetric signatures, and give some general results regarding d-admissibility
and d-realizability.

2. Some background

In this section, for the convenience of readers, we review some definitions and results. More details can be found in
[27,29,28,5,4,3].

Let G = (V , E, W ) and G ′ = (V ′, E ′, W ′) be weighted undirected planar graphs, where V and V ′ are vertices, E and E ′
are edges, and W and W ′ are edge weights. A generator matchgate Γ is a tuple (G, X) where X ⊆ V is a set of external
output nodes. A recognizer matchgate Γ ′ is a tuple (G ′, Y ) where Y ⊆ V ′ is a set of external input nodes. The external nodes
are ordered counter-clock wise on the external face. Γ is called an odd (resp. even) matchgate if it has an odd (resp. even)
number of nodes.

Each matchgate is assigned a signature tensor. A generator Γ with m output nodes is assigned a contravariant tensor
G ∈ V m

0 of type
(m

0

)
, where V m

0 is the tensor space spanned by the m-fold tensor products of the standard basis b =
[b0,b1] = [( 1

0

)
,
( 0

1

)]
. The tensor G under the standard basis b has the form∑

Gi1 i2...im bi1 ⊗ bi2 ⊗ · · · ⊗ bim ,

where

Gi1i2...im = PerfMatch(G − Z),

where PerfMatch(G − Z) = ∑
M

∏
(i, j)∈M wij , is a sum over all perfect matchings M in G − Z , wij is the weight of the edge

(i, j), and where Z is the subset of the output nodes of Γ having the characteristic sequence χZ = i1i2 . . . im . Similarly a
recognizer Γ ′ with m input nodes is assigned a covariant tensor R ∈ V 0

m of type
(0

m

)
. This tensor under the standard (dual)

basis b∗ has the form∑
Ri1 i2...im bi1 ⊗ bi2 ⊗ · · · ⊗ bim ,

where

Ri1i2...im = PerfMatch
(
G ′ − Z

)
,

where Z is the subset of the input nodes of Γ ′ having the characteristic sequence χZ = i1i2 . . . im .
In particular, G transforms as a contravariant tensor under a basis transformation β j = ∑

i biti
j ,(

G ′) j1 j2... jm =
∑

Gi1 i2...im t̃ j1
i1

t̃ j2
i2

. . . t̃ jm
im

,

where (t̃ j
i ) is the inverse matrix of (ti

j). Similarly, R transforms as a covariant tensor, namely(
R ′)

j1 j2... jm
=

∑
Ri1i2...im ti1

j1
ti2

j2
. . . tim

jm
.

A signature is symmetric if each entry only depends on the Hamming weight of the index i1i2 . . . im . This notion is
invariant under a basis transformation. A symmetric signature is denoted by [σ0, σ1, . . . , σm], where σi denotes the value of
a signature entry whose Hamming weight of its index is i.

A matchgrid Ω = (A, B, C) is a weighted planar graph consisting of a disjoint union of: a set of g generators A =
(A1, . . . , Ag), a set of r recognizers B = (B1, . . . , Br), and a set of f connecting edges C = (C1, . . . , C f ), where each Ci edge
has weight 1 and joins an output node of a generator with an input node of a recognizer, so that every input and output
node in every constituent matchgate has exactly one such incident connecting edge.

Let G = ⊗g
i=1 G(Ai) be the tensor product of all the generator signatures, and let R = ⊗r

j=1 R(B j) be the tensor product
of all the recognizer signatures. Then Holant(Ω) is defined to be the contraction of the two product tensors, under some
basis β , where the corresponding indices match up according to the f connecting edges Ck:

Holant(Ω) = 〈R,G〉 =
∑

x∈β⊗ f

{[ ∏
1�i�g

G(Ai, x|Ai )

]
·
[ ∏

1� j�r

R
(

B j, x∗∣∣
B j

)]}
.

(If we write the tensor product for the covariant tensor R as a row vector of dimension 2 f , and write the contravariant
tensor G as a column vector of dimension 2 f , then Holant(Ω) is just the inner product of these two vectors.)
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Valiant’s beautiful Holant Theorem is

Theorem 2.1 (Valiant). For any matchgrid Ω over any basis β , let G be its underlying weighted graph, then

Holant(Ω) = PerfMatch(G).

The FKT algorithm can compute the perfect matching polynomial PerfMatch(G) for a planar graph in polynomial time.
This algorithm gives an orientation of the edges of the planar graph, which assigns a ±1 factor to each edge weight. It then
evaluates the Pfaffian of the skew-symmetric matrix of the graph.

Pfaffians satisfy the Grassmann–Plücker identities [24].

Theorem 2.2. For any n × n skew-symmetric matrix M, and any I = {i1, . . . , iK } ⊆ [n] and J = { j1, . . . , jL} ⊆ [n],
L∑

l=1

(−1)lPf( jl, i1, . . . , iK )Pf( j1, . . . , ĵl, . . . , jL) +
K∑

k=1

(−1)kPf(i1, . . . , îk, . . . , iK )Pf(ik, j1, . . . , jL) = 0,

where the notation î indicates that the entry i is omitted.

A set of the so-called useful Grassmann–Plücker identities have been proved to characterize planar matchgate signatures
[28,3,5]. These are called matchgate identities.

We state some theorems from [6], which will be used.

Theorem 2.3. A symmetric signature [x0, x1, . . . , xn] for a recognizer is realizable under the basis β = [n, p] = [( n0
n1

)
,
( p0

p1

)]
iff it takes

one of the following forms:

• Form 1: there exist (arbitrary) constants λ, s, t and ε where ε = ±1, such that for all i, 0 � i � n,

xi = λ
[
(sn0 + tn1)

n−i(sp0 + tp1)
i + ε(sn0 − tn1)

n−i(sp0 − tp1)
i]. (1)

• Form 2: there exists an (arbitrary) constant λ, such that for all i, 0 � i � n,

xi = λ
[
(n − i)n0(p1)

i(n1)
n−1−i + ip0(p1)

i−1(n1)
n−i]. (2)

• Form 3: there exists an (arbitrary) constant λ, such that for all i, 0 � i � n,

xi = λ
[
(n − i)n1(p0)

i(n0)
n−1−i + ip1(p0)

i−1(n0)
n−i]. (3)

We take the convention that α0 = 1 and 0 · α0−1 = 0.

Theorem 2.4. A symmetric signature [x0, x1, . . . , xn] for a generator is realizable under the basis β = [n, p] = [( n0
n1

)
,
( p0

p1

)]
(more

precisely in the dual basis) iff it takes one of the following forms:

• Form 1: there exist (arbitrary) constants λ, s, t and ε where ε = ±1, such that for all i, 0 � i � n,

xi = λ
[
(sp1 − tp0)

n−i(−sn1 + tn0)
i + ε(sp1 + tp0)

n−i(−sn1 − tn0)
i]. (4)

• Form 2: there exists an (arbitrary) constant λ, such that for all i, 0 � i � n,

xi = λ
[
(n − i)p1(n0)

i(−p0)
n−1−i − in1(n0)

i−1(−p0)
n−i]. (5)

• Form 3: there exists an (arbitrary) constant λ, such that for all i, 0 � i � n,

xi = λ
[−(n − i)p0(−n1)

i(p1)
n−1−i + in0(−n1)

i−1(p1)
n−i]. (6)

Theorem 2.5. A symmetric signature [x0, x1, . . . , xn] is realizable on some basis iff there exist three constants a, b, c (not all zero), such
that for all k, 0 � k � n − 2,

axk + bxk+1 + cxk+2 = 0. (7)

The following two simple lemmas are used in the proof of Lemmas 4.5 and 4.6.
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Lemma 2.1. Suppose a sequence (xi)i=0,1,...,n, where n � 3, has the following form: xi = Aαi + Bβ i (AB �= 0, α �= β), then the
representation is unique. That is, if xi = A′(α′)i + B ′(β ′)i (i = 0,1, . . . ,n, n � 3), then A′ = A, B ′ = B, α′ = α, β ′ = β or A′ = B,
B ′ = A, α′ = β , β ′ = α.

Lemma 2.2. Suppose a sequence (xi)i=0,1,...,n, where n � 3, has the following form: xi = Aiαi−1 + Bαi (A �= 0), then the representa-
tion is unique. That is, if xi = A′i(α′)i−1 + B ′(α′)i (i = 0,1, . . . ,n, n � 3), then A′ = A, B ′ = B, α′ = α.

These follow from the fact that second order homogeneous linear recurrence sequence has a unique representation.

3. The basis manifold M

In holographic algorithms, computations are expressed in terms of a set of linear basis vectors of dimension 2k , where k
is called the size of the basis. In almost all cases [29,3], the successful design of a holographic algorithm was accomplished
by a basis of size 1. In [30], initially Valiant used a basis of size 2 to show #7Pl-Rtw-Mon-3CNF ∈ P. Then it was pointed out
in [6] that even in that case the same can be done with a basis of size 1. In [8] and [9], we show that this is generally true,
i.e., higher dimensional bases do not extend the reach of holographic algorithms. Therefore, in this paper we will develop
our theory exclusively with bases of size 1; but our results are universally applicable.

We will identify the set of 2-dimensional bases
[( n0

n1

)
,
( p0

p1

)]
with GL2(F). Over the complex field F = C, it has dimen-

sion 4. However, the following simple proposition (Proposition 4.3 of [29]) shows that the essential underlying structure has
only dimension 2.

Proposition 3.1 (Valiant). (See [29].) If there is a generator (recognizer) with certain signature for size one basis {(n0,n1), (p0, p1)}
then there is a generator (recognizer) with the same signature for size one basis {(xn0, yn1), (xp0, yp1)} or {(xn1, yn0), (xp1, yp0)}
for any x, y ∈ F and xy �= 0.

This leads to the following definition of an equivalence relation:

Definition 3.1. Two bases β = [n, p] = [( n0
n1

)
,
( p0

p1

)]
and β ′ = [n′, p′] = [( n′

0

n′
1

)
,
( p′

0

p′
1

)]
are equivalent, denoted by β ∼ β ′ , iff

there exist x, y ∈ F∗ , the non-zero elements in F, such that n′
0 = xn0, p′

0 = xp0, n′
1 = yn1, p′

1 = yp1 or n′
0 = xn1, p′

0 = xp1,
n′

1 = yn0, p′
1 = yp0.

In other words, to obtain β ′ from β , viewed as a 2 × 2 matrix, we can multiply each row by a non-zero constant, or
exchange the two rows.

Theorem 3.1. GL2(F)/∼ is a 2-dimensional manifold ( for F = C or R).

We call this the basis manifold M. For F = R, it can be shown that topologically M is a Möbius strip. From now on we
identify a basis β with its equivalence class containing it. When it is permissible, we use the dehomogenized coordinates( 1 x

1 y

)
to represent a point (i.e., a basis class) in M. We will assume char.F �= 2.

4. Simultaneous realizability of symmetric signatures

In [6], we gave a complete characterization of all the realizable symmetric signatures (Theorems 2.3–2.5). These tell
us exactly what signatures can be realized over some bases. However, to construct a holographic algorithm, one needs to
realize some generators and recognizers simultaneously. In terms of M, a given generator (recognizer) defines a (possibly
empty) subvariety which consists of all the bases over which it is realizable. The simultaneous realizability is equivalent to
a non-empty intersection of these subvarieties. Thus we have to go beyond Theorems 2.3–2.5. For every signature which is
realizable according to Theorem 2.5, we need to determine the subvariety where it is realizable.

Definition 4.1. Let Brec([x0, x1, . . . , xn]) (resp. Bgen([x0, x1, . . . , xn])) be the set of all possible bases in M for which a sym-
metric signature [x0, x1, . . . , xn] for a recognizer (resp. a generator) is realizable. We also use Brec(R) and Bgen(G) to denote
the realizability subvarieties for general (unsymmetric) signatures R and G .

Since the identically zero signature is realizable in every basis, we will assume the signature is not identically zero in
the following discussion.
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4.1. Realizability of recognizers

The following lemmas give a complete and mutually exclusive list of realizable symmetric signatures for recognizers.

Lemma 4.1.

Brec
(
λ
[
an,an−1b, . . . ,bn]) =

{[(
a

n1

)
,

(
b
p1

)]
∈ M

∣∣∣ n1, p1 ∈ F
}
.

Remark. Every signature with arity 1 is trivially of this form. We will omit the scalar factor λ below as it is trivial. Since
we will exclude the identically 0 signature, a and b are not both 0.

Proof of Lemma 4.1. If n = 1, the standard signature can and can only be (λ,0) or (0, λ) (where λ is arbitrary). One entry
of the signature must be zero due to the parity requirement, as matchgates are defined in terms of perfect matchings. So
the signature over the basis

[( n0
n1

)
,
( p0

p1

)]
is (λn0, λp0) or (λn1, λp1). Since we require the signature to be (a,b), all possible

bases as expressed in M are
[( a

n1

)
,
( b

p1

)]
, taking into account the equivalence relation ∼, where n1, p1 are arbitrary, except

ap1 − bn1 �= 0.
Now we assume n > 1. First suppose this signature is expressed as Form 1 of Theorem 2.3.
In Form 1, denote by u0 = sn0 + tn1, u1 = sp0 + tp1, v0 = sn0 − tn1, and v1 = sp0 − tp1. Then up to a constant factor λ,

for each 0 � i � n, we have un−i
0 ui

1 + εvn−i
0 vi

1 = an−ibi .
We first assume u0 v0 �= 0. Then by multiplying the equations for i = 0 and i = 2, and multiplying the equation for i = 1

by itself, we get an equation on u0, u1, v0 and v1. After some simplifications we get u1/u0 = v1/v0. Denote this common
ratio by ρ .

We claim in this case a �= 0, and ρ = b/a. Assume for a contradiction that a = 0, then all entries of the signature are
0 for i = 0, . . . ,n − 1. However the entry at i = n is obtained from the entry at i = n − 1 by multiplying with the ratio ρ ,
and thus it is also 0. Then it follows that b = 0 as well, contrary to assumption. Therefore a �= 0 and b/a is defined. Now
consider the signature entry at i = 0 and i = 1. The entry at i = 0 is an �= 0, and the entry at i = 1 is obtained by multiplying
the non-zero entry at i = 0 by the ratio b/a, as well as by the common ratio ρ . It follows that ρ = b/a.

Hence bu0 = au1 and bv0 = av1. Then by the definitions of ui and v j , it follows that bsn0 = asp0 and btn1 = atp1.
Because at least one of a, b is non-zero, we claim that this implies either s = 0 or t = 0. Otherwise, st �= 0, we have
n0 p1 − n1 p0 = 0. This is impossible. So we must have s = 0 or t = 0 (and not both zero since otherwise the signature is
identically zero). Now in either cases, it is easy to verify that all the possible bases are

[( a
n1

)
,
( b

p1

)] ∈ M, taking into account
the equivalence relation ∼, where n1, p1 are arbitrary, except ap1 − bn1 �= 0.

The same conclusion holds if we assume u1 v1 �= 0. To complete the proof, assume both u0 v0 = 0 and u1 v1 = 0. By
symmetry, suppose u0 = 0 (the other cases are symmetric). In this case if u1 = 0 as well, then s = t = 0 since the deter-
minant n0 p1 − n1 p0 �= 0. Then v0 = v1 = 0 and the signature is identically zero. Hence u1 �= 0. Then v1 = 0. It follows that
the signature has the form λ[εvn

0,0, . . . ,0, un
1], where there are a non-empty segment of zeros corresponding to 0 < i < n.

These are of the form an−ibi , and thus ab = 0. But then the signature entry is zero at either i = 0 or at i = n. Since u1 �= 0,
we get v0 = 0. The statement of the lemma clearly holds when u0 = v0 = 0.

Now suppose the signature is expressed as Form 2 of Theorem 2.3. (The case with Form 3 is symmetric, exchanging
subscript 0 for 1 in the basis.)

In that expression, if n1 = 0, then a = 0 since x0 = an = nn0nn−1
1 = 0. At i = n − 1, xn−1 = n0 pn−1

1 = an−1b = 0. This gives
n0 = 0 or p1 = 0, together with n1 = 0, we get a singular basis.

So we have n1 �= 0. Then we claim a �= 0. Otherwise at i = 0, x0 = nn0nn−1
1 = an = 0, which implies that n0 = 0. At i = 1,

x1 = p0nn−1
1 = an−1b = 0, we get p0 = 0. This gives a singular basis. So a �= 0, and from the above we also get n0 �= 0. Then

up to a scalar factor an = 1, an−1b = c + ρ , and an−2b2 = 2cρ + ρ2, for c = (n1 p0 − n0 p1)n1/nn0 and ρ = p1/n1. It follows
that 2cρ +ρ2 = (c +ρ)2, which implies that c = 0. As the determinant n1 p0 −n0 p1 �= 0, and n1 �= 0, we get a contradiction.

This completes the proof. �
Definition 4.2. A symmetric signature [x0, x1, . . . , xn], where n � 2, is called non-degenerate iff rank

[ x0 ... xn−1
x1 ... xn

] = 2. Otherwise
it is degenerate.

The signature is identically 0 iff rank
[ x0 ... xn−1

x1 ... xn

] = 0. It has rank 1 iff it can be expressed as λ[an,an−1b, . . . ,bn], for λ �= 0,
and a,b not both 0. In the following we assume the signature is non-degenerate. We directly handle the case for arity n = 2
next.

Lemma 4.2.

Brec
([x0, x1, x2]

) =
{[(

n0
n1

)
,

(
p0
p1

)]
∈ M

∣∣∣ x0 p2
1 − 2x1 p1n1 + x2n2

1 = 0, x0 p2
0 − 2x1 p0n0 + x2n2

0 = 0
or x0 p0 p1 − x1(n0 p1 + n1 p0) + x2n0n1 = 0

}
.
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Proof. Under the equivalence relation, we can assume n0 p1 − n1 p0 = 1.

Then
[( n0

n1

)
,
( p0

p1

)]−1 = [( p1
−n1

)
,
( −p0

n0

)]
. So the standard signature of [x0, x1, x2] is[

x0 p2
1 − 2x1 p1n1 + x2n2

1, x0 p0 p1 − x1(n0 p1 + n1 p0) + x2n0n1, x0 p2
0 − 2x1 p0n0 + x2n2

0

]
.

The fact that the only constraint of a standard signature of arity 2 is the parity constraint completes the proof. �
In the following we assume the signature has arity n � 3, and non-degenerate. In this case, we note that the constants

a, b, c in Theorem 2.5 are unique up to a scalar factor. In fact if there are two linearly independent triples (a,b, c), then the
following matrix[ x0 x1 . . . xn−2

x1 x2 . . . xn−1
x2 x3 . . . xn

]
has rank � 1. The first row and the last row are not both zero, otherwise the signature is identically zero (by n � 3). It
follows that the matrix[

x0 x1 . . . xn−1
x1 x2 . . . xn

]
also has rank 1, hence the signature is degenerate.

Lemma 4.3. Let λ1 �= 0. Let p = char.F. Suppose p = 0, or p � n,

Brec
([0,0, . . . ,0, λ1, λ2]

) =
{[(

0
nλ1

)
,

(
1
λ2

)]}
.

For p | n and λ2 = 0, Brec([0,0, . . . ,0, λ1,0]) = {[( 0
n1

)
,
( 1

p1

)] ∈ M | n1, p1 ∈ F
}

. For p | n and λ2 �= 0, the signature [0,0, . . . ,

0, λ1, λ2] is not realizable.

Proof. Its reversal signature [λ2, λ1,0, . . . ,0] is a special case of Lemma 4.6 (with α = 0). �
Lemma 4.4. For AB �= 0,

Brec
([

A, Aα, Aα2, . . . , Aαn + B
]) =

{[(
1
1

)
,

(
α + ω
α − ω

)] ∣∣∣ ωn = ± B

A

}
.

Proof. Its reversal signature [Aαn + B, Aαn−1, . . . , Aα, A] is a spacial case of Lemma 4.5. (This proof assumes α �= 0. For
α = 0, it can be directly verified.) �

In the following we use the fact that the triple (a,b, c) in the statement of Theorem 2.5 is unique up to a scalar factor.
Also in the remaining cases we may assume c �= 0. So we have a unique characteristic equation cx2 + bx + a = 0, which has
two roots α and β . In particular Forms 1, 2 and 3 from Theorem 2.3 are mutually exclusive. If α �= β , we have the following
lemma:

Lemma 4.5. For AB �= 0 and α �= β ,

Brec
([

Aαi + Bβ i
∣∣ i = 0,1, . . . ,n

]) =
{[(

1 + ω
1 − ω

)
,

(
α + βω
α − βω

)] ∣∣∣ ωn = ± B

A

}
.

Remark. We denote 00 = 1.

Proof of Lemma 4.5. From A + B = x0, Aα + Bβ = x1, we can solve uniquely for A, B . We have AB �= 0; otherwise {xi}
has the form {an−ibi}, which has been dealt with in Lemma 4.1. Having two distinct eigenvalues α �= β , this signature
must be expressed as Form 1 of Theorem 2.3. Let u0 = sn0 + tn1, u1 = sp0 + tp1, v0 = sn0 − tn1, and v1 = sp0 − tp1. Then
Aαi + Bβ i = un−i

0 ui
1 + εvn−i

0 vi
1.

We claim u0 �= 0. Otherwise, for i = 0,1, . . . ,n − 1, the signature entry at i is εvn−i
0 vi

1. It follows that (A + B)(Aα2 +
Bβ2) = (Aα + Bβ)2, and since AB �= 0, we get α = β , a contradiction. Similarly we have v0 �= 0.

Hence we have two expressions

xi = Aαi + Bβ i = un
0

(
u1

u0

)i

+ εvn
0

(
v1

v0

)i

.
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From Lemma 2.1, we know that the representation is unique. So un
0 = A, εvn

0 = B , u1
u0

= α and v1
v0

= β (exchanging notations

A with B , and α with β if necessary). It follows that
[( 2sn0

2tn1

)
,
( 2sp0

2tp1

)] = [( u0+v0
u0−v0

)
,
( u1+v1

u1−v1

)]
. Since α �= β , we can show st �= 0,

by the same proof showing u0 �= 0 and v0 �= 0. Now let ω = v0/u0, then ωn = ±B/A, and[(
n0
n1

)
,

(
p0
p1

)]
∼

[(
2sn0
2tn1

)
,

(
2sp0
2tp1

)]
∼

[(
1 + ω
1 − ω

)
,

(
α + βω
α − βω

)]
.

This completes the proof. �
If the characteristic roots α = β , we have the following lemma:

Lemma 4.6. Let p = char.F and let A �= 0.

Case 1: p = 0 or p � n.

Brec
([

Aiαi−1 + Bαi
∣∣ i = 0,1, . . . ,n

]) =
{[(

1
B

)
,

(
α

nA + Bα

)]}
.

Case 2: p | n and x0 = 0. In this case, the signature has entries xi = Aiαi−1 , with B = 0 in the above form.

Brec
([

Aiαi−1
∣∣ i = 0,1, . . . ,n

]) =
{[(

1
n1

)
,

(
α
p1

)]
∈ M

∣∣∣ n1, p1 ∈ F
}
.

Case 3: p | n and x0 �= 0. In this case the signature [Aiαi−1 + Bαi | i = 0,1, . . . ,n] is not realizable.

Remark. If α = 0, and i = 0, we take the convention that iαi−1 = 0, and also αi = 1.

Proof of Lemma 4.6. In Case 1, from B = x0, A + Bα = x1, we can solve uniquely for A, B . We have A �= 0, so Lemma 2.2
applies. From Lemma 2.2, we know that the representation is unique. From Form 2 of Theorem 2.3 we claim n1 �= 0.
Otherwise, all signature entries xi = 0 for i = 0, . . . ,n − 2. Since n � 3, we have x0 = x1 = 0, which implies that A = 0,
contrary to assumption. In the following we assume Form 2 of Theorem 2.3, Form 3 will give an equivalent basis. Then
we have xi = i(n1 p0 − n0 p1)nn

1(
p1
n1

)i−1 + nn0nn−1
1 (

p1
n1

)i . So by uniqueness (n1 p0 − n0 p1)nn
1 = A, p1

n1
= α, nn0nn−1

1 = B . Since

n1 �= 0, under the equivalence relation, we can let n1 = 1, then we have the unique solution n0 = B/n, p1 = α, p0 = A + Bα
n .

We omit the proofs for Cases 2 and 3. �
The above list of realizable symmetric signatures for recognizers is complete and mutually exclusive. To see that, by

Theorem 2.5, we have a recurrence relation for any realizable signature. The case for any degenerate signature, including the
case n = 1, is handled in Lemma 4.1. Now assume the signature is non-degenerate. The case n = 2 is handled in Lemma 4.2.
Next we assume the signature is non-degenerate and arity n � 3. Then Theorem 2.5 provides a tuple (a,b, c) �= 0, unique up
to a non-zero constant multiple. If c �= 0 this defines a unique second order recurrence relation. If a �= 0 this defines a unique
second order recurrence relation for the reversal. (If both a = 0 and c = 0, this defines the signature [A,0, . . . ,0, B] where
AB �= 0, due to non-degeneracy. This is included in Lemma 4.4, with α = 0.) Assume c �= 0 then the recurrence relation
is second order and has eigenvalues α and β . Depending on whether it has a pair of distinct eigenvalues or a double
eigenvalue, we have Lemmas 4.5 and 4.6. The case when the recurrence relation is for the reversal signature results in the
same expression, except in the case when one of the eigenvalue is 0. And these special cases are handled in Lemmas 4.4
and 4.3 respectively.

4.2. Realizability of generators

The following lemmas give a complete and mutually exclusive list of realizable symmetric signatures for generators. They
can be proved similarly.

Lemma 4.7.

Bgen
(
λ
[
an,an−1b, . . . ,bn]) =

{[(
n0
−b

)
,

(
p0
a

)] ∣∣∣ n0, p0 ∈ F
}
.

Lemma 4.8.

Bgen
([x0, x1, x2]

) =
{[(

n0
n1

)
,

(
p0
p1

)]
∈ M

∣∣∣ x0n2
0 + 2x1n0 p0 + x2 p2

0 = 0, x0n2
1 + 2x1n1 p1 + x2 p2

1 = 0
or x0n0n1 + x1(n0 p1 + n1 p0) + x2 p0 p1 = 0

}
.
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Lemma 4.9. Let λ1 �= 0. Let p = char.F. Suppose p = 0, or p � n,

Bgen
([0,0, . . . ,0, λ1, λ2]

) =
{[(−λ2

1

)
,

(
nλ1

0

)]}
.

For p | n and λ2 = 0, Bgen([0,0, . . . ,0, λ1,0]) = {[( 1
n1

)
,
( 0

p1

)] ∈ M | n1, p1 ∈ F
}

. For p | n and λ2 �= 0, then [0,0, . . . ,0, λ1, λ2] is

not realizable.

Lemma 4.10. For AB �= 0,

Bgen
([

A, Aα, Aα2, . . . , Aαn + B
]) =

{[(
ω − α

−α − ω

)
,

(
1
1

)] ∣∣∣ ωn = ± B

A

}
.

Lemma 4.11. For AB �= 0 and α �= β ,

Bgen
({

Aαi + Bβ i
∣∣ i = 0,1, . . . ,n

}) =
{[(

βω − α
−α − βω

)
,

(
1 − ω
1 + ω

)] ∣∣∣ ωn = ± B

A

}
.

Lemma 4.12. Let p = char.F and let A �= 0.

Case 1: p = 0 or p � n.

Bgen
({

Aiαi−1 + Bαi
∣∣ i = 0,1, . . . ,n

}) =
{[(

nA + Bα
−α

)
,

(−B
1

)]}
.

Case 2: p | n and x0 = 0. In this case, the signature has entries xi = Aiαi−1 , with B = 0 in the above form:

Bgen
([

Aiαi−1
∣∣ i = 0,1, . . . ,n

]) =
{[(−α

n1

)
,

(
1
p1

)]
∈ M

∣∣∣ n1, p1 ∈ F
}
.

Case 3: p | n and x0 �= 0. In this case the signature [Aiαi−1 + Bαi | i = 0,1, . . . ,n] is not realizable.

4.3. Simultaneous realizability

Definition 4.3. The Simultaneous Realizability Problem (SRP):
Input: A set of symmetric signatures for generators and/or recognizers.
Output: A common basis of these signatures if any exists; “NO” if they are not simultaneously realizable.

Algorithm.

For every signature [x0, x1, . . . xn], check if it satisfies Theorem 2.5.
If not, output “NO” and halt.
Otherwise find Bgen([x0, x1, . . . xn]) or Brec([x0, x1, . . . xn]) according to one of the lemmas.
Check if these subvarieties have a non-empty intersection.

Theorem 4.1. This is a polynomial time algorithm for SRP. (If p = char.F is a large prime and is considered part of the input, i.e., input
size includes log p, then the problem is in RP.)

Proof. Checking whether every input signature satisfies Theorem 2.5 can obviously be done in polynomial time. To find the
right form and then the right lemma for a signature which satisfies Theorem 2.5 can also be done in polynomial time as
they are mutually exclusive.

Every subvariety of bases from Lemmas 4.1 to 4.6 and from Lemmas 4.7 to 4.12 is of one of three kinds: a finite set
of points (of linear size), a line or a quadratic curve. More precisely, consider recognizers; the situation for generators is
similar. Expressing things in terms of the manifold M shows that: For Lemma 4.1 we get a line with x = const. (in the
notation defining M). For Lemma 4.2 we get a union of two sets. The first is finite, where both x and y satisfy a quadratic
polynomial (and by projective closure). Therefore there are at most 4 points in M. The second set is defined by an equation
of the form Axy + B(x + y) + C = 0 (and by projective closure), where A, B , C are known constants. Note that if we had
two sets of this type (from Lemma 4.2 and/or Lemma 4.8) we can eliminate A and get a linear equation. (Solving quadratic
equations over large finite field may require randomized polynomial time.)

For Lemma 4.3 we have either a single point for p | n or a line “at infinity”. Lemma 4.6 is similar, where we have either
a point or a line x = const. For Lemma 4.4, we get at most n points from the equation ωn = const. If we are in C (more
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precisely in Q or an algebraic extension field of Q) then the computation is clearly in P. For fields of finite characteristic,
since n is given in unary, the computation is in P, provided p is fixed (or at most O (log n)). For large p (the field size is
exponential in n), this can be done in RP (i.e., in randomized polynomial time). We need to be able to solve equations such
as Xn = const. These can be done in randomized polynomial time; see [1] for more details. �
5. Some not-so-accidental algorithms

In [30], Valiant gave polynomial time algorithms for #7Pl-Rtw-Mon-3CNF and #7Pl-3/2Bip-VC, and he called them
“accidental algorithms”. In this section, we show how such algorithms can be developed almost “mechanically”. This ap-
proach has the advantage that one gains more understanding of what can or cannot be accomplished. With this machinery
we are able to generalize his result to Pl-Rtw-Mon-kCNF and Pl-k/2Bip-VC, for a general k. We show that there is a unique
modulus 2k − 1 for which we can design such a holographic algorithm which counts the number of solutions. In the case
of k = 3, this shows why 7 is special.

5.1. #2k−1Pl-Rtw-Mon-kCNF

For #Pl-Rtw-Mon-kCNF, we are given a planar formula [16] in kCNF form, where each variable appears positively, and
each appears in exactly 2 clauses. The problem is to count the number of satisfying assignments. As noted earlier, this
counting problem is #P-complete already for k = 3.

To solve the problem by a holographic algorithm, we wish to replace each variable by a generator with the signature
[1,0,1], and each clause by a recognizer with the signature [0,1,1, . . . ,1] (with k 1’s). The symmetric signature [1,0,1]
corresponds to a consistent truth assignment on two edges leading to clauses (i.e. the equality function =2 on two Boolean
inputs), and [0,1,1, . . . ,1] corresponds to a Boolean OR function for the clause. If we connect the generators and recognizers
in a natural way, by the Holant Theorem [29] this would solve #Pl-Rtw-Mon-kCNF in polynomial time (if the signatures are
realizable over Q).

Then the question boils down to whether there is a basis in M where [1,0,1] for a generator and [0,1,1, . . . ,1]
(with k 1’s) for a recognizer can be simultaneously realized. For this, we use our machinery.

From Lemma 4.5, with A = 1, B = −1, α = 1, β = 0, we have

Brec
([0,1,1, . . . ,1]) =

{[(
1 + ω
1 − ω

)
,

(
1
1

)] ∣∣∣ ωk = ±1

}
.

We look for some ωk = ±1, such that
[( 1+ω

1−ω

)
,
( 1

1

)] ∈ Bgen([1,0,1]).

According to Lemma 4.8, we want (1 + ω)2 + 1 = (1 − ω)2 + 1 = 0 or (1 + ω)(1 − ω) + 1 = 0.
The first case is impossible, and in the second case we require ω2 = 2. Together with the condition ωk = ±1, we have

2k − 1 = 0. From this we can already see that for every prime p | 2k − 1, #pPl-Rtw-Mon-kCNF is computable in polynomial
time. In particular this is true for every Mersenne prime 2q − 1. (Note that ω2 = 2 means that 2 is a quadratic residue.)
More generally we have:

Theorem 5.1. There is a polynomial time algorithm for #2k−1Pl-Rtw-Mon-kCNF. Furthermore, any modulus m for which the appropri-

ate signatures exist must be a divisor of 2k − 1.

Proof. Our discussion above already shows that the modulus 2k − 1 is the best we can do. (Formally speaking we should
present a generalization of the Holant Theorem [29] over a ring such as Z2k−1, which we will omit here.) We now give the
polynomial algorithms in two cases:

Case 1. k is even.

Over the complex numbers C, from Lemmas 4.8 and 4.4, we can see that a generator for [1,0,1] and a recognizer for

[1 + ε2k/2,1,1, . . . ,1] (where there are k 1’s, and ε = ±1) are simultaneously realizable in the basis β = [( 1+√
2

1−√
2

)
,
( 1

1

)]
.

Setting ε = 1 and replacing each variable by a generator and each clause by a recognizer with the corresponding signa-
tures, we obtain a matchgrid Ω with the underlying weighted planar graph G . Then the Holant Theorem [29] tells us

Holant(Ω) = PerfMatch(G). (8)

We will denote this value by X .
From the left-hand side of (8) we know that X is an integer because every entry in the signatures of generators and

recognizers is an integer. Furthermore we have

X ≡ #Pl-Rtw-Mon-kCNF
(
mod 1 + 2k/2).
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From the right-hand side of (8) we know that X can be computed in polynomial time using the FKT algorithm for perfect
matchings of a planar graph. The planar graph has weights from the subfield Q(

√
2) ⊂ C, which poses no problem to the

Pfaffian evaluation of FKT in polynomial time.
Therefore #2k/2+1Pl-Rtw-Mon-kCNF can be computed in polynomial time. Similarly, setting ε = −1, we can compute

#2k/2−1Pl-Rtw-Mon-kCNF in polynomial time.
Since (2k/2 + 1,2k/2 − 1) = 1 and 2k − 1 = (2k/2 + 1)(2k/2 − 1), we can apply Chinese remaindering to get a polynomial

time algorithm for #2k−1Pl-Rtw-Mon-kCNF.

Case 2. k is odd.

Consider the ring Z2k−1. (Formally we could develop the theory over such a ring, and consider invertible elements
and matrices for the basis manifold. But we will omit this formality; everything we need can be easily done by a slight
modification of the proofs given before.) Let r = 2(k+1)/2 ∈ Z2k−1. Then r satisfies r2 = 2 in Z2k−1. We denote this r by

√
2.

Then 1 − (
√

2)k = 1 − (2k)(k+1)/2 = 0 in Z2k−1.

Therefore over this ring Z2k−1 and with the basis β = [( 1+√
2

1−√
2

)
,
( 1

1

)] = [( 1+2(k+1)/2

1−2(k+1)/2

)
,
( 1

1

)]
, we have a generator for [1,0,1]

and a recognizer for [0,1,1, . . . ,1] (with k 1’s) according to Lemmas 4.8 and 4.4. As a result, we have a polynomial time
algorithm for #2k−1Pl-Rtw-Mon-kCNF. (It is in this case where k is odd, we need 2 as a quadratic residue in Zp for primes
p | 2k − 1, as discussed in Section 1.) �
5.2. #2k−1Pl-k/2Bip-VC

In this problem, we are given a planar bipartite graph with left degree k and right degree 2. These are called regular
(k,2)-bipartite graphs. We wish to count the number of vertex covers mod 2k − 1. The counting problem for this class of
graphs mod 2 is ⊕P-complete and thus NP-hard [30]. Consider an arbitrary subset S of vertices from the right. Every vertex
v on the left either has all its k adjacent vertices in S , in which case there are exactly two choices to extend at v to a
vertex cover, or has some of its k adjacent vertices not in S , in which case there is exactly one choice to extend at v to a
vertex cover. Thus, following the general recipe for holographic algorithms, we want to construct a generator with signature
[1,0,1] and a recognizer with signature [2,1,1, . . . ,1] (with k 1’s), to be simultaneously realized over some basis.

From Lemma 4.5, where A = 1, B = 1, α = 1, β = 0, we have:

Brec
([2,1,1, . . . ,1]) =

{[(
1 + ω
1 − ω

)
,

(
1
1

)] ∣∣∣ ωk = ±1

}
.

We realize that this set is exactly the same as Brec([0,1,1, . . . ,1]). Then the proof in Section 5.1 gives us:

Theorem 5.2. There is a polynomial time algorithm for #2k−1Pl-k/2Bip-VC. Furthermore, any modulus m for which the appropriate

signatures exist must be a divisor of 2k − 1.

Our general machinery not only can find the required signatures when they exist, but also can prove certain desired
signatures do not exist or cannot be simultaneously realized. As an example, one may wish to extend the previous two
problems to allow more than Read-twice as in #Pl-Rl-Mon-kCNF, where l > 2. This calls for a simultaneous realizability of
[1,0,0, . . . ,0,1] (where there are (l − 1) 0’s) and [0,1,1, . . . ,1] (where there are k 1’s). This can be shown to result in an
empty intersection on M.

5.3. An edge-vertex cover problem

Another way to think of a regular (k,2)-bipartite graph is to identify every degree 2 vertex on the right together with
its two incident edges as a new edge. Then we obtain precisely the class of k-regular graphs. We say a subset of edges and
vertices is an edge-vertex cover if every vertex is either in the subset or all of its k incident edges are in the subset. We
consider the following edge-vertex cover problem #2k−1Pl-k-Reg-EVC: Given a planar k-regular graph G , count the number
of edge-vertex covers of G mod 2k − 1.

It is clear that this problem is really the same problem as the one in Section 5.2 and thus the same algorithm also gives
a polynomial time algorithm for this problem.

Theorem 5.3. There is a polynomial time algorithm for #2k−1Pl-k-Reg-EVC. Furthermore, any modulus m for which the appropriate

signatures exist must be a divisor of 2k − 1.
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5.4. A problem from neural networks

Consider the following planar two-level neural network N: The input nodes are Boolean variables x1, . . . , xn . Each xi has
fan-out 2. The intermediate level nodes v all have fan-in k from the xi ’s. The output of v feeds into the top node and can
have c + 1 different values 0,1, . . . , c. If all k inputs of v are 0 then the output of v is 0 (unexcited state). Otherwise, the
output of v can be any of the c + 1 values (excited state). The problem is to count the total number of output (firing)
patterns as received at the top node. (In the following, for simplicity we state the result for an odd c. We have a parallel
set of results for c even, but the statement has some number theoretic complications.)

#2k−c2 NNk/c-Firing-Pattern.
Input: A two-level neural network with parameters k and c as above.
Output: The number mod (2k − c2) of all possible firing patterns.

First we suppose k is even. Then we do it over C by taking ω = √
2. We can use the same basis in Section 5.1 to realize

the signature [1 + 2k/2,1,1, . . . ,1] (with k 1’s) for a recognizer and the signature [1,0,1] for a generator simultaneously.
This is verified by ω2 = 2 and ωk = 2k/2.

Let X be the value of the Holant. With mod 2k/2 − c, the recognizer signature is the same as [1 + c,1,1, . . . ,1]. Thus

X ≡ #NNk/c-Firing-Pattern
(
mod 2k/2 − c

)
.

Similarly we can also achieve the signature [1 − 2k/2,1,1, . . . ,1] (with k 1’s) for a recognizer and the signature [1,0,1]
for a generator simultaneously. This is verified by ω2 = 2 and ωk = −(−2k/2). This recognizer signature is congruent to
[1 + c,1,1, . . . ,1] mod 2k/2 + c. Thus we can compute in polynomial time some value X ′ for a Holant, where

X ′ ≡ #NNk/c-Firing-Pattern
(
mod 2k/2 + c

)
.

Then by Chinese remaindering, we can compute the value #NNk/c-Firing-Pattern modulo the l.c.m. of 2k/2 − c and 2k/2 + c.
Since c is odd, this is 2k − c2.

Now we suppose k is odd. As c is relatively prime to N = 2k − c2, there exists a c′ such that cc′ ≡ 1 mod N . Take
ω = 2(k+1)/2c′ . Then ω2 = 2k+1c′2 ≡ 2 mod N . Also ωk = (2k)(k+1)/2c′k ≡ ck+1c′k ≡ c mod N . Thus we can construct [1 +
c,1,1, . . . ,1] (with k 1’s) for a recognizer and the signature [1,0,1] for a generator simultaneously in the ring ZN directly.

6. Some more examples

In [29] Valiant gave a list of combinatorial problems all of which can be solved by holographic algorithms. In each case,
a “magic” design of matchgates and signatures were presented to derive the algorithm. With our machinery, we can show
all these problems can be systematically derived. In particular, we will see how the two mysterious bases b1 and b2 show
up naturally. The framework here can handle all the problems from [29]. (But for PL-FO-2-COLOR, which uses a basis of
three vectors, it is more naturally dealt with in the context of more general bases.)

6.1. Not-All-Equal gate

In [29], four problems employ the NAE (Not-All-Equal) gate [0,1,1,0]. They are #PL-3-NAE-SAT, #PL-3-NAE-ICE, #PL-3-
(1,1)-CYCLECHAIN and PL-NODE-BIPARTITION (this last one uses a generator with signature [x,1,1, x]).

Notice that they have a common restriction of “maximum degree 3”. This is necessary because if k > 3, then
[0,1,1, . . . ,1,0] ((k − 1) 1’s) is not realizable. This is a result of [5], but it’s easy to see now.

For the case of degree 3, by Lemma 4.5, taking α, β to be the two roots of x2 − x + 1 = 0 and A/B = −1, we have
Brec([0,1,1,0]) = {[( 1+ω

1−ω

)
,
( α+βω

α−βω

)] | ω3 = ±1
}

.

Noticing that α3 = −1 and αβ = 1, letting ω = α, we have (using ∼ on M)[(
1 + ω
1 − ω

)
,

(
α + βω
α − βω

)]
=

[(
1 + α
1 − α

)
,

(
α + βα
α − βα

)]
=

[(
1
1

)
,

(
1

−1

)]
.

This is b2 in [29]. Actually for each of the four problems, in order to intersect with the subvarieties of other generators
and recognizers, this is the only choice. We omit the details.

6.2. #k+12/k-X-Matchings

Input: A planar bipartite graph G = (V 1, V 2, E). Nodes in V 1 and V 2 have degrees 2 and k respectively.
Output: The number mod (k + 1) of all (not necessarily perfect) matchings.
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This problem is a slight variation on #X-Matchings from [29], which has general weights on edges and uses an unsym-
metric signature. (We will discuss unsymmetric signatures in Section 7.) The case k = 4 was explicitly stated in [29], but the
proof there clearly also handles general k. Jerrum [17] showed that counting matchings for planar graphs is #P-complete.
Vadhan [26] showed that this remains #P-complete for planar bipartite graphs of degree 6.

For this problem we are looking for a generator with signature [1,1,0] and a recognizer with signature [1,1,0, . . . ,0]
((k − 1) 0’s) simultaneously. From Lemma 4.6, with A = B = 1, α = 0, we have: Brec([1,1,0, . . . ,0]) = {[( 1

1

)
,
( 0

k

)]}
. We hope

that
[( 1

1

)
,
( 0

k

)] ∈ Bgen([1,1,0]).
From Lemma 4.8, we must have k + 1 = 0. So we can only work inside the ring Zk+1.

Remark. In Zk+1, this basis
[( 1

1

)
,
( 0

k

)]
in M under the equivalence relation ∼ is exactly b1 in [29].

Theorem 6.1. There is a polynomial time algorithms for #k+12/k-X-Matchings. Any modulus m for which the appropriate signatures
exist must be a divisor of k + 1.

6.3. ⊕PL-EVEN-LIN2

In this problem, we wish to construct generators for [1, x,1], [x,1, x], [1,0,1], [0,1,0], [1,0,0, . . . ,0,1] and recognizers
for [1,0,−1,0,1], [0,1,0,−1,0], [1,0,1], [0,1,0].

By Lemma 4.5, for A = B = 1/2, α = i, β = −i (here i = √−1), we have

Brec
([1,0,−1,0,1]) =

{[(
1 + ω
1 − ω

)
,

(
i − iω
i + iω

)] ∣∣∣ ω4 = ±1

}
.

We hope that
[( 1+ω

1−ω

)
,
( i−iω

i+iω

)]
is also a basis for the recognizer [0,1,0].

By Lemma 4.2, we require that (1 + ω)(i + iω) + (1 − ω)(i − iω) = 0. That is, ω = i, and[(
1 + ω
1 − ω

)
,

(
i − iω
i + iω

)]
=

[(
1 + i
1 − i

)
,

(
i + 1
i − 1

)]
=

[(
1
1

)
,

(
1

−1

)]
.

We can easily verify that this is also a basis for the other recognizers and generators and we remark that this basis is
precisely b2 in [29]. One can also prove 2 is the only modulus for this problem.

7. Beyond symmetric signatures

The theory of symmetric signatures has been satisfactorily developed. Symmetric signatures are particularly useful be-
cause they have clear combinatorial meanings. However general (i.e. unsymmetric) signatures have also been used before.
To understand completely the power of holographic algorithms, we must study unsymmetric signatures as well. (In the
following, we discuss generators only; the situation for recognizers is similar.)

Following the framework in [4], a generator is a contravariant tensor of the form G = (gi1 i2...in ) where the index
i1i2 . . . in ∈ {0,1}n . We also denote G = (g S) where S ⊆ [n], and g S = gχS (1)χS (2)...χS (n) . A generator signature G is realiz-
able on a basis β iff the standard signature G ′ = β⊗nG can be realized by some planar matchgate. There are two conditions
for a standard signature (g′S) to be realizable:

Parity constraints: Either g′S = 0 for all |S| even, or g′S = 0 for all |S| odd.
Matchgate identities: G ′ satisfies all the useful Grassmann–Plücker identities.

Definition 7.1. A tensor G is admissible as a generator on a basis β iff G ′ = β⊗nG satisfies the parity constraints. Let B p
gen(G)

denote the subset of M for which G is admissible as a generator.

By definition we have Bgen(G) ⊆ B p
gen(G) for all G .

For symmetric signatures, we already observed that there are some different levels of realizability. Some signatures are
realizable on isolated points, while others are realizable on lines or curves. Any success of getting a holographic algorithm
typically results from either a generator or a recognizer having more than isolated points of realizability. In terms of M,
this refers to the dimension of the subvariety Bgen(G) (and the corresponding subvarieties for recognizers). More precisely,

Definition 7.2. A generator G is called d-realizable (resp. d-admissible) for an integer d � 0 iff Bgen(G) ⊆ M (resp. B p
gen(G) ⊆

M) is a (non-empty) algebraic subset of dimension at least d.

By definition, if a generator G is d-realizable, then it is d-admissible.
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Remark. Since M has dimension two, 2-realizability is universal realizability which means that G is realizable on any basis.
This is because the conditions defining realizability are polynomial equations (with coefficients from (g S), and variables
on M). If there is at least one polynomial which is not identically 0, the algebraic set has dimension � 1. Using any
2-realizable signature is a freebie in the design of holographic algorithms; it places no restriction on the rest of the design.
Therefore they are particularly desirable.

7.1. Characterization of 2-admissibility

The following theorem is a complete characterization of 2-admissibility over fields of characteristic 0. It uses rank esti-
mates related to the Kneser Graph KG2k+1,k [21–23,12–15].

Theorem 7.1. G is 2-admissible iff (1) n = 2k is even; (2) all g S = 0 except for |S| = k; and (3) for all T ⊆ [n] with |T | = k + 1,∑
S⊂T , |S|=k

g S = 0. (9)

The solution space is a linear subspace of dimension 1
k+1

(2k
k

)
(the Catalan number).

Consider all subsets of [n] of a certain cardinality. Let 0 � k � � � n, and let Ak,�,n denote the
(n

k

) × (n
�

)
Boolean matrix

indexed by (A, B), where A, B ⊆ [n] and |A| = k, |B| = �, and the entry at (A, B) is χ[A⊆B] , i.e., it is 1 if A ⊆ B and 0
otherwise. It is known that over the rationals Q , the rank rk(Ak,�,n) = min{(n

k

)
,
(n
�

)} [12–15]. We will not deal with finite
characteristics here. The situation with finite characteristic p is interesting and is more involved. For example, Linial and
Rothschild [15] proved exact rank formula for characteristic 2 and 3. The rank “defect” compared to the characteristic 0 case
provides more admissible signatures. This will be discussed in future work.

We restate the definition of d-admissibility in more detail.

Definition 7.3. G = (g S)S⊆[n] is called d-admissible if the following algebraic variety V has dimension at least d, where
V = V 0 ∪ V 1 ⊆ M, and V 0 (resp. V 1) is defined by the set of all parity requirements for the generator signature of an odd
(resp. even) matchgate.

More precisely, consider V 0. We take a point (in dehomogenized coordinates)
( 1 x

1 y

) ∈ M. We also denote x0 = x, x1 = y.
Let T ⊆ [n] with |T | even. Then we require〈

n⊗
σ=1

[1, x[σ∈T ]], G

〉
= 0.

Note that the left-hand side is precise the entry of the standard signature indexed at T , under the (contravariant) basis
transformation. Similarly we define V 1, where the equations are over all T with an odd cardinality.

We note that〈
n⊗

σ=1

[1, x[σ∈T ]], G

〉
=

∑
0�i�n−|T |

0� j�|T |

xi y j
∑

A⊆T c , |A|=i
B⊆T , |B|= j

g A∪B . (10)

If dim(V ) = 2, then either dim(V 0) = 2 or dim(V 1) = 2. For dim(V 0) = 2, we have the following: For all T ⊆ [n] with |T |
even, and for all 0 � i � n − |T | and 0 � j � |T |,∑

A⊆T c , B⊆T , |A|=i, |B|= j

g A∪B = 0. (11)

(If there is one equation not satisfied, then there is at least one non-trivial polynomial among the parity requirements,
which implies dim(V 0) � 1.) For dim(V 1) = 2, the above holds for all |T | odd. Continuing with dim(V 0) = 2, by taking i = 0,
we get for all T ⊆ [n] with |T | even, and j � |T |,∑

S⊆T ,|S|= j

g S = 0. (12)

Also by taking j = 0, we get for all i � n − |T |,∑
S⊆T c, |S|=i

g S = 0.
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If S ⊆ [n] with |S| even, then we may take T = S and j = |T |, and it follows that

g S = 0.

If n is odd, then T is even and T c is odd, and together they range over all possible subsets of [n]. It follows that

g S = 0,

for all S ⊆ [n]. That is, G is trivial.
An identical argument also shows that for n odd and dim(V 1) = 2, the trivial G ≡ 0 is the only possibility.
Now we assume n = 2k is even, and continuing with dim(V 0) = 2. Both T and T c are even. Pick any T even and

i = n − |T |, we get∑
A⊆T c , B⊆T , |A|=i, |B|= j

g A∪B =
∑

S⊇T c, |S|=i+ j

g S = 0,

i.e. for all even T ′ ⊆ [n] and all i � |T ′|,∑
S⊇T ′, |S|=i

g S = 0. (13)

If |S| = i < k, we form the following system of equations from (12),∑
S⊆T , |S|=i

g S = 0,

where T ranges over all subsets of [n] with |T | = t , and t = i or i + 1, whichever is even. This linear system has rank
(n

i

)
. It

follows that g S = 0 for all |S| < k.
Similarly if |S| = i > k, we can use (13) with |T | = i or i − 1, whichever is even, and summing over all subsets S

containing T . This linear system also has rank
(n

i

)
. It follows that g S = 0 for all |S| > k.

Therefore the only non-zero entries of G are among g S with half weight |S| = k. Also with dim(V 0) = 2, we may assume
k is odd. Otherwise, we already know g S = 0 for all |S| even.

A similar argument for V 1 shows that, in order for dim(V 1) = 2, we must have n = 2k even, all g S = 0 except for |S| = k
and k is even.

Summarizing, we have

Lemma 7.1. If G is 2-admissible, then n = 2k is even, all g S = 0 except for |S| = k. If k is odd (resp. even) then the only possibility is
dim(V 0) = 2 (resp. dim(V 1) = 2). Moreover, for all T ⊆ [n] with |T | = k + 1,∑

S⊆T , |S|=k

g S = 0. (14)

Next we prove that the conditions in Lemma 7.1 are also sufficient for G being 2-admissible, i.e., we prove (11), thus all
the polynomials in (10) are identically zero.

Suppose k odd. We prove dim(V 0) = 2. A similar argument does for k even and dim(V 1) = 2. We only need to verify
(11) for all i + j = k, namely for all T ⊆ [n] with |T | even, and for all 0 � i � n − |T |, and 0 � j = k − i � |T |,∑

A⊆T c , B⊆T , |A|=i, |B|=k−i

g A∪B = 0. (15)

Denote by t = |T | and s = n − |T |. By exchanging T and T c (both being even subsets of [n]) we may assume s � t . Since k
is odd, we have the strict s < t , for otherwise s = t = k would be odd.

We prove (15) by induction on i � 0. The base case is i = 0 and j = k. Let’s consider all U ⊆ T with |U | = k + 1. Note
that as t � k + 1, this is not vacuous. By (14) we have∑

S⊆U , |S|=k

g S = 0.

Summing over all such U , and consider how many times each S ⊆ [n] with |S| = k appears in the sum, we get∑
A⊆T c , |A|=0
B⊆T , |B|=k

g A∪B =
∑

S⊆T , |S|=k

g S = 1(t−k
1

) ∑
U⊆T

|U |=k+1

∑
S⊆U ,|S|=k

g S = 0. (16)
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Inductively we assume (15) has been proved for i − 1, for some i � 1. Consider i and j = k − i. We may assume i � s;
otherwise we are done. Also k − i + 1 � k + 1 � t . Consider all subsets U = U1 ∪ U2 ⊆ [n], where U1 ⊆ T c , U2 ⊆ T , with
|U1| = i and |U2| = k − i + 1. Note that |U | = k + 1. We have

0 =
∑

S⊆U , |S|=k

g S =
∑

A⊆U1, |A|=i−1

g A∪U2 +
∑

B⊆U2, |B|=k−i

gU1∪B ,

as all sets S ⊆ U with |S| = k are classified into two classes according to whether |S ∩ U1| = i − 1 or i. Then summing over
all such U ,

0 =
∑

U

∑
S⊆U ,|S|=k

g S =
(

s − (i − 1)

1

) ∑
A⊆T c , |A|=i−1

B⊆T , |B|=k−i+1

g A∪B +
(

t − (k − i)

1

) ∑
A⊆T c , |A|=i

B⊆T , |B|=k−i

g A∪B ,

by considering how many times each S of the two classes appears in the sum
∑

U

∑
S . Since the first sum is 0 by inductive

hypothesis, and t − k + i � 1, the second sum is also zero. Thus∑
A⊆T c , B⊆T , |A|=i, |B|=k−i

g A∪B = 0.

This proves Theorem 7.1.
We can further prove:

Theorem 7.2. If G is 2-admissible with arity 2k, then ∀β = ( n0 p0
n1 p1

) ∈ M, β⊗2kG = (n0 p1 − n1 p0)
kG.

In order to prove this theorem, we first prove the following lemma:

Lemma 7.2. Let G be 2-admissible with arity 2k, S ⊆ [2k] with |S| = k, and A ⊆ Sc . Then∑
B⊆S and |B|=k−|A|

g A∪B = (−1)|A| g S .

Proof. We prove it by induction on |A| � 0.
The case |A| = 0 is obvious.
Inductively we assume the lemma has been proved for all |A| � i − 1, for some i � 1. Letting |A| = i > 0 and letting G

be 2-admissible, it follows from Lemma 7.1 that we have∑
C⊆A∪S and |C |=k

gC = 0.

Then

0 =
∑

C⊆A∪S and |C |=k

gC

=
∑

B⊆S and |B|=k−|A|
g A∪B +

|A|−1∑
t=0

∑
A1⊆A, |A1|=t

∑
B⊆S, |B|=k−|A1|

g A1∪B ,

according to t = |A ∩ C | = 0,1, . . . , |A|. Since |A1| = t � |A| − 1, by induction we have:∑
B⊆S, |B|=k−|A1|

g A1∪B = (−1)|A1|g S = (−1)t g S .

So

0 =
∑

B⊆S and |B|=k−|A|
g A∪B + g S

|A|−1∑
t=0

(−1)t
(|A|

t

)
=

∑
B⊆S and |B|=k−|A|

g A∪B − (−1)|A| g S .

From the last equation, we have∑
B⊆S and |B|=k−|A|

g A∪B = (−1)|A|g S .

This completes the proof. �
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Corollary 7.1. If G is any 2-admissible signature, then ∀S ⊆ [2k], g S = (−1)k g Sc
.

Now we can prove Theorem 7.2.

Proof. To simplify notations, we use the dehomogenized coordinates β = ( 1 x
1 y

) = ( 1 x0
1 x1

)
. Some exceptional cases can be

proved directly.
First it is obvious that β⊗2kG is also 2-admissible. So for any S ⊆ [2k] and |S| �= k,〈

n⊗
σ=1

[1, x[σ∈S]], G

〉
≡ 0.

Now let S ⊆ [2k] and |S| = k,〈
n⊗

σ=1

[1, x[σ∈S]], G

〉
=

∑
0�i�k

xi yk−i
∑

A⊆Sc, |A|=i

∑
B⊆S, |B|=k−i

g A∪B .

By Lemma 7.2 and for A ⊆ Sc , |A| = i, we have∑
B⊆S, |B|=k−i

g A∪B = (−1)i g S .

So 〈
n⊗

σ=1

[1, x[σ∈S]], G

〉
=

∑
0�i�k

xi yk−i
∑

A⊆Sc, |A|=i

(−1)i g S = g S
∑

0�i�k

xi yk−i(−1)i
(

k

i

)
= (y − x)k g S .

This completes the proof. �
Since a scaling preserves realizability, the theorem gives:

Corollary 7.2. If a 2-admissible G is realizable on some basis (e.g., on the standard basis), then it is realizable on any basis, which
means it is 2-realizable.

For n = 6, all 2-admissible G ’s form a 5-dimensional linear space. Applying the matchgate identities, we find that there
are 5 different 2-realizable signatures (up to scaling). Let G1 and G2 be the following

gα
1 =

{1, α ∈ {000111,011001,101010,110100},
−1, α ∈ {111000,100110,010101,001011},
0, otherwise,

gα
2 =

{1, α ∈ {010101,011010,100110,101001},
−1, α ∈ {101010,100101,011001,010110},
0, otherwise.

Then all the 2-realizable signatures are obtained by cyclically rotating the indices of G1 or G2. (Rotating 3 bits on G1 is G1
itself up to a scaling factor −1; rotating 2 bits on G2 gives G2 back. So there are 3 different 2-realizable signatures from
rotating G1 and 2 different ones from rotating G2. See Figs. 1 and 2.)

It turns out that all of these can be obtained from the planar tensor product operation which we define next.

Definition 7.4. Let Rotr(G) be the tensor obtained by circularly rotating clockwise the coordinates of G by r bits. Let G ⊗ G ′
be the tensor product with all indices of G before all indices of G ′ . A planar tensor product is a finite sequence of operations
of Rotr(G) and G ⊗ G ′ .

By direct constructions and matchgate identities, we can prove the following theorem.

Theorem 7.3. Bgen(Rotr(G)) = Bgen(G) and Bgen(G1 ⊗ G2) = Bgen(G1) ∩ Bgen(G2). Thus a planar tensor product preserves Bgen.

Theorem 7.4. Each of the five 2-realizable signatures for n = 6 is obtainable as a planar tensor product from (0,1,−1,0).

Valiant [30] already noted that (0,1,−1,0) is realizable under all bases, i.e., 2-realizable in our terminology. From
(0,1,−1,0), we can construct a family of 2-realizable signatures for any arity 2k by planar tensor product. It is an open
question if this family (up to scaling) captures all the 2-realizable signatures. This is true for n � 6.
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Fig. 1. One planar tensor product for arity 6.

Fig. 2. Another planar tensor product for arity 6.

Definition 7.5. A signature G is called prime iff it cannot be decomposed as a planar tensor product of two signatures of
positive arity.

In particular (0,1,−1,0) is a prime 2-realizable signature. The above open problem is essentially whether (0,1,−1,0)

is the unique prime 2-realizable signature (up to scaling).

7.2. 1-admissibility and 1-realizability

1-admissibility (resp. 1-realizability) is strictly weaker than 2-admissibility (resp. 2-realizability). In this section, we give
some constructions of 1-admissible and 1-realizable families which are not in general 2-admissible or 2-realizable. These
are in fact prime signatures. Planar tensor product can be applied to construct more 1-realizable families.

First we give a family of 1-admissible generators.

Theorem 7.5. Letting n = 2k be even, we have all g S = 0 except for those |S| = k. Finally for all S ⊂ [n] with |S| = k, g S = g Sc
. Then

G is 1-admissible.

Proof. We prove this by showing that ∀x,
( 1 x

1 −x

) ∈ V 1, where V 1 is defined in Definition 7.3. Let T ⊂ [n] with |T | odd. Then
we require the following polynomial to be identically zero:〈

n⊗
σ=1

[1, x[σ∈T ]], G

〉
≡ 0,
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where x0 = x and x1 = −x. In the above setting, we have〈
n⊗

σ=1

[1, x[σ∈T ]], G

〉
= xk

∑
max{0,|T |−k}�i�min{k,|T |}

(−1)i
∑

A⊆T c , |A|=k−i
B⊆T , |B|=i

g A∪B .

We assume that k � |T | (the case k < |T | is similar). Then the outer sum is
∑|T |

i=0. Since |T | is odd, the first and the last
term of the outer sum cancel out. Similarly the second and the second last term cancel out, and so on. There are altogether
an even number |T | + 1 of terms of this outer sum over i, and the term indexed by i and by |T | − i cancel out. It follows
that this summation is identically 0. This completes the proof. �

For n = 4, in order to be 1-realizable, the matchgate identities further require g0011 g1001 = 0. This gives the following
two 1-realizable signatures (they are prime for a2 �= b2):

gα =
{a, α ∈ {0101,1010},

b, α ∈ {0011,1100},
0, otherwise

and

gα =
{a, α ∈ {0101,1010},

b, α ∈ {1001,0110},
0, otherwise.

This family of 1-realizable signatures has been used in a subsequent paper [10] to obtain some surprising holographic
algorithms.

Next, we present another family of 1-realizable signatures, which are not subsumed by any of the above. It also has
some generalized symmetry. It can be viewed as a generalization of Case 2 in Lemma 4.12.

Theorem 7.6. For any g1, g2, . . . , gn,α ∈ F, where g1 + g2 + · · · + gn = 0, let G = (g S)S⊆[n] be defined as follows

g S = α|S|−1
∑
i∈S

gi .

Then G is 1-realizable and

Bgen(G) =
{[(−α

n1

)
,

(
1
p1

)]
∈ M

∣∣∣ n1, p1 ∈ F
}
.

Proof. For simplicity, we use the dehomogenized coordinates
( 1 x

1 y

)
where x = −1/α. Some exceptional cases such as α = 0

can be proved directly (we use the convention that α0 = 1 and 0 · α0−1 = 0 even when α = 0).
Let T ⊆ [n]. If |T | = 0 or |T | = n, by (10) and the definition of G , it follows easily that〈

n⊗
σ=1

[1, x[σ∈T ]], G

〉
= 0.

Otherwise we have〈
n⊗

σ=1

[1, x[σ∈T ]], G

〉
=

∑
0�i�n−|T |

0� j�|T |

xi y j
∑

A⊆T c , |A|=i
B⊆T , |B|= j

g A∪B

=
∑

0�i�n−|T |
0� j�|T |

xi y j
∑

A⊆T c , |A|=i
B⊆T , |B|= j

α|A∪B|−1
∑

k∈A∪B

gk

=
∑

0�i�n−|T |
0� j�|T |

xi y jαi+ j−1
∑

A⊆T c , |A|=i
B⊆T , |B|= j

(∑
k∈A

gk +
∑
l∈B

gl

)

=
∑

0�i�n−|T |
0� j�|T |

xi y jαi+ j−1
((|T |

j

)(|T c| − 1

i − 1

) ∑
k∈T c

gk +
(|T c|

i

)(|T | − 1

j − 1

)∑
l∈T

gl

)
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Fig. 3. 1-realizability.

=
∑
k∈T c

gk

( ∑
0�i�n−|T |

0� j�|T |

xi y jαi+ j−1
(|T |

j

)(
n − |T | − 1

i − 1

)
−

∑
0�i�n−|T |

0� j�|T |

xi y jαi+ j−1
(

n − |T |
i

)(|T | − 1

j − 1

))

=
∑
k∈T c

gk
(
x(1 + αx)n−|T |−1(1 + αy)|T | − y(1 + αx)n−|T |(1 + αy)|T |−1).

If |T | < n − 1, the above equation is identically 0 when x = −1/α.
For |T | = n − 1, suppose T = [n] − {t}, then at x = −1/α, the value of the above equation is λgt where λ = −(1 +

αy)n−1/α. This standard signature is realizable by the star (see Fig. 3). �
Remark. When n = 2, this generator is the 2-realizable signature (0,1,−1,0).

Addendum. In this paper we could only prove a characterization of 2-admissibility, some results on 2-realizability and
constructed some families of 1-admissible and 1-realizable signatures. In a subsequent paper [11], we have proved a com-
plete characterization of 2-realizability, which confirms the conjecture here. And the characterization of 2-admissibility in
this paper serves as a good start point of that result. In [11], we also give some characterizations of 1-admissibility and
1-realizability.
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Abstract

We show that the class Sp
2 is contained in ZPPNP. The proof uses universal hashing, approximate counting and witness sampling.

As a consequence, a collapse first noticed by Samik Sengupta that the assumption NP has small circuits collapses PH to Sp
2 becomes

the strongest version to date of the Karp–Lipton Theorem. We also discuss the problem of finding irrefutable proofs for Sp
2 in

ZPPNP.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The class Sp

2 was introduced independently by Canetti [10] and Russell and Sundaram [24] in the mid 1990’s.
Suppose there are two competing all powerful provers Y and Z. A string x is given, Y wishes to convince us that
x ∈ L, and Z wishes to convince us the opposite x /∈ L. We—the verifier—have only deterministic polynomial time
computing power. A language L is in Sp

2 iff there is a P-time predicate P such that the following holds:

If x ∈ L then there exists a y, such that for all z, P(x, y, z) holds;
If x /∈ L then there exists a z, such that for all y, ¬P(x, y, z) holds, where both y and z are polynomially bounded
in the length of x.

In other words, if x ∈ L then Y has irrefutable proof y which can withstand any challenge z from Z; and if x /∈ L

then Z has irrefutable proof z which can withstand any challenge y from Y .
The motivation by both Canetti [10] and Russell and Sundaram [24] was to provide a refinement of the Sipser–

Lautemann Theorem (with contribution by Gacs) that BPP ⊆ Σ
p

2 ∩ Π
p

2 [21,26,27]. Indeed, Canetti [10] extended
Lautemann’s proof to show that BPP ⊆ Sp

2 , whereas Russell and Sundaram [24] showed further that MA ⊆ Sp

2 . Note
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2001 [Jin-Yi Cai, Sp

2 ⊆ ZPPNP, in: Proc. 42nd IEEE Symposium on Foundations of Computer Science (FOCS), 2001, pp. 620–628].
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that BPP ⊆ MA is direct from definition (the two-sided error version) of MA [4,5,11,12], thus BPP ⊆ MA ⊆ Sp

2 . Also
it is known that PNP ⊆ Sp

2 [24].
As to upper bound of Sp

2 , the only known containment is by definition Sp

2 ⊆ Σ
p

2 ∩ Π
p

2 (see Section 2). Goldreich
and Zuckerman [13] surveyed a number of interesting classes between P and the second level of the Polynomial-time
Hierarchy Σ

p

2 and Π
p

2 . These classes include ZPP, RP, BPP, NP, PNP, MA, AM, ZPPNP and Sp

2 . They called the
classes listed here up to PNP “Traditional classes—classes of the 1970’s,” the class Arthur–Merlin “a class of the
1980’s,” and the class Sp

2 “a class of the 1990’s,” underscoring that not much is yet known about this class Sp

2 . In
their paper [13] Goldreich and Zuckerman gave a number of elegant proofs of known results with the strikingly sharp
amplification technique due to Zuckerman [30]. They also prove an interesting result MA ⊆ ZPPNP. This last result
was new in 1997 when [13] appeared; it was independently obtained by Arvind and Köbler [1–3]. In summarizing the
known facts about all these classes between P and Σ

p

2 and Π
p

2 it was observed that both Sp

2 and ZPPNP appear to share
all the known containment properties both below and above [13]. How these two classes are related was unknown.

The main result of this paper is

Theorem 1. Sp

2 ⊆ ZPPNP.

The proof uses universal hashing, approximate counting and witness sampling. We also discuss the problem of
finding irrefutable proofs in ZPPNP.

There is an interesting consequence of this result with respect to the well-known Karp–Lipton Theorem concerning
sparse sets (with contribution by Sipser) [18]. This theorem says, if NP is Cook-reducible (�p

T ) to sparse sets, or
equivalently, if SAT has polynomial size circuits, then the Polynomial-time Hierarchy collapses to its second level:
PH = Σ

p

2 ∩ Π
p

2 . Many researchers have since tried to improve on this signature theorem—to simplify the proof and
to strengthen the collapse. On the one hand, there emerged what I consider to be the “book” proof (as Erdös would
say) of the theorem (as far as I know John Hopcroft [16] was the first to give essentially this proof):

To simulate Π
p

2 by Σ
p

2 , guess a poly-size circuit C for SAT, modify C via self-reducibility so that whenever
C(φ) = 1 it also produces a satisfying assignment to φ, then check all universal paths of the Π

p

2 computation lead
to a satisfiable formula.

Samik Sengupta [25] first noticed that this “book” proof actually gave the collapse to Sp

2 . (See Section 6.)
While the proof of Karp–Lipton Theorem becomes extremely transparent, more research effort went into trying

to extend this beautiful result. Much work was done on the general theme (we mention some in Section 6). Over the
years there have been steady improvements on the exact level of collapse of PH, assuming SAT has small circuits. In
this regard, the best result so far is due to Bshouty et al. [7] and Köbler and Watanabe [20]. Their result states that
if NP has polynomial size circuits, then the Polynomial-time Hierarchy collapses to ZPPNP. Admittedly the proofs
of the theorem of Bshouty et al. and Köbler–Watanabe are more involved than the “book” proof of the basic version
of the Karp–Lipton Theorem and depend on previous interesting results by Jerrum, Valiant and V. Vazirani [17] and
others [8].

By the new theorem Sp

2 ⊆ ZPPNP (unconditionally), the (currently) strongest Karp–Lipton Theorem becomes the
following Theorem 2. (See Section 6.)

Theorem 2 (Sengupta). If SAT has polynomial size circuits, then the Polynomial-time Hierarchy collapses to Sp

2 .

Theorem 1 also subsumes the result MA ⊆ ZPPNP by Goldreich–Zuckerman [13] and Arvind–Köbler [1], as we
know from Russell and Sundaram [24] that MA ⊆ Sp

2 .

2. Preliminaries

The class Sp

2 was defined by Russell and Sundaram [24] as follows: L ∈ Sp

2 iff there is a P-time computable 0-1
function P on three arguments, such that

x ∈ L �⇒ (∃py
) (∀pz

) [
P(x, y, z) = 1

]
, (1)

x /∈ L �⇒ (∃pz
) (∀py

) [
P(x, y, z) = 0

]
, (2)
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where as usual “∃py” stands for “∃y ∈ {0,1}p1(|x|)” for some polynomial p1(·). Similarly “∀pz” stands for “∀z ∈
{0,1}p2(|x|)” for some polynomial p2(·). By padding we can suitably extend the length of both y and z, and henceforth
we can assume they both vary over the same length n which is a power of 2, and n is polynomially bounded in the
length of x.

Given x, for convenience, for a pair (y, z) we say y beats z if P(x, y, z) = 1, and z beats y if P(x, y, z) = 0.
It is immediately clear that both implications “⇒” can be replaced by the if and only if relation “⇔” without

changing the class Sp

2 . For instance, suppose (∃py) (∀pz) [P(x, y, z) = 1], let y0 be such a y. Then certainly x ∈ L,
else we would have a z0 such that (∀py) [P(x, y, z0) = 0], which is clearly a contradiction to P(x, y0, z0) = 1.
Similarly (∃pz) (∀py) [P(x, y, z) = 0] implies x /∈ L. Thus

x ∈ L ⇐⇒ (∃py
) (∀pz

) [
P(x, y, z) = 1

]
,

x /∈ L ⇐⇒ (∃pz
) (∀py

) [
P(x, y, z) = 0

]
.

It follows from this if and only if condition that Sp

2 ⊆ Σ
p

2 ∩ Π
p

2 . In fact Sp

2 consists of precisely those languages in
Σ

p

2 ∩ Π
p

2 where membership in both Σ
p

2 and Π
p

2 is demonstrated by the same predicate P .
Canetti [10] defined the class Sp

2 as follows: L ∈ Sp

2 iff there is a P-time computable 0-1 function P on three
arguments, such that for all x,(∃py

) (∀pz
) [

P(x, y, z) = χL(x)
]

and (∃pz
) (∀py

) [
P(x, y, z) = χL(x)

]
,

where χL is the characteristic function of L.
Clearly the Canetti definition implies the Russell–Sundaram definition. The reverse implication also holds. For

completeness we sketch a simple proof (see [10,24] for more details). Suppose a predicate P is given in the Russell–
Sundaram definition. We define an extended predicate P̂ to satisfy the Canetti definition. For x, suppose y and z vary
over {0,1}n. Then P̂ is defined over {0,1}|x| × {0,1}n+1 × {0,1}n+1:

P̂ (x,1y,1z) = 1,

P̂ (x,1y,0z) = P(x, y, z),

P̂ (x,0y,1z) = P(x, z, y),

P̂ (x,0y,0z) = 0.

This can be rephrased in the language of boolean matrices. Thus, for the Russell–Sundaram definition, the predi-
cate P , for a given x, corresponds to a boolean matrix M whose rows and columns are indexed by y and z ∈ {0,1}n,
respectively. When x ∈ L, there exists an all-1 row; and when x /∈ L, there exists an all-0 column. In this language,
the Canetti definition requires that, when x ∈ L, there exist both an all-1 row as well as an all-1 column; and when
x /∈ L, there exist both an all-0 row as well as an all-0 column.

To go from the Russell–Sundaram definition to the Canetti definition, we simply take the matrix M from the
Russell–Sundaram definition, and form the new matrix(

0 MT

M J

)
,

where J denotes the all-1 matrix, and MT denotes the transpose of M .

ZPP denotes zero-error probabilistic polynomial time. ZPPNP is the class accepted by zero-error probabilistic
polynomial time oracle Turing machines using an NP oracle. By Cook’s Theorem, we can assume without loss of
generality that this oracle is the set of satisfiable boolean formulae SAT.

3. Main theorem

To prove the main Theorem 1, we proceed as follows. Let x be given. Let {0,1}n be the witness sets for both
provers Y and Z. Here n is polynomially bounded by |x|, and is a power of 2.
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We will grow a list Yk ⊂ {0,1}n of y’s, where |Yk| = k, and k = 1,2, . . . , nO(1); initially Y1 can be arbitrarily given,
for example Y1 = {0n}. In the kth stage, with Yk in hand, we ask the SAT oracle whether there exists a z ∈ {0,1}n such
that P(x, y, z) = 0 for every y ∈ Yk , i.e., a z that beats every y ∈ Yk . Let

Z(Yk) = {
z ∈ {0,1}n ∣∣ (∀y ∈ Yk)

[
P(x, y, z) = 0

]}
.

Then the question we ask the SAT oracle is whether Z(Yk) �= ∅.
Since |Yk| = k is polynomially bounded, this is clearly a SAT query by Cook’s Theorem. If the answer is No,

i.e., Z(Yk) = ∅, then we can already conclude that x ∈ L and halt. This is because if it were the case that x /∈ L, by
definition it is guaranteed that some z0 exists beats all y, which certainly include all y ∈ Yk . Note that in this case we
concluded x ∈ L, even though we may not have found a witness y0 which beats every z as promised in the definition.

Hence let us assume the answer to the SAT query is Yes, i.e., Z(Yk) �= ∅.
Next we would like to append Yk to Yk+1. Our goal is, either to find conclusively that x /∈ L, or to find a new y∗ to

be appended to the list Yk so that the corresponding Z(Yk+1) is shrunk significantly.
More precisely, we would like either to find conclusively x /∈ L, or to find with high probability a new y∗ such that

|Z(Yk+1)| � |Z(Yk)|/2, where Yk+1 = Yk ∪{y∗}. If so, we would guarantee that the size |Z(Yk)| shrinks geometrically
every step by a constant fraction with high probability, and thus in polynomial time with high probability we either
find out x /∈ L, or we end up in the case with Z(Yk) = ∅, in which case we can conclude that x ∈ L as discussed
earlier.

Lemma 1. For every set S in P, there is a probabilistic sampling procedure A using a SAT oracle, such that for
every n, and for every 0 < ε < 1, A(n, ε) samples at most O(n/ε) elements S′ ⊆ S=n = S ∩ {0,1}n in such a way
that, for every subset T ⊆ S=n, with |T | > ε|S=n|,

Pr[S′ ∩ T = ∅] � 1

22n
.

The algorithm runs in time (n/ε)O(1).

We will discuss Lemma 1 in the next section. For now we assume Lemma 1.
For any witness y′ ∈ {0,1}n, consider the set

Ty′ := Z
(
Yk ∪ {y′}) = {

z ∈ Z(Yk)
∣∣ P(x, y′, z) = 0

}
.

We say that a y′ ∈ {0,1}n is a “bad witness” with respect to Z(Yk) if∣∣Ty′
∣∣ = ∣∣{z ∈ Z(Yk)

∣∣ P(x, y′, z) = 0
}∣∣ >

|Z(Yk)|
2

.

That is, y′ is a “bad witness” iff more than 1/2 of Z(Yk) beat this y′. Thus for any fixed bad witness y′, by Lemma 1
with ε = 1/2, we can sample a polynomial number of z ∈ Z(Yk), call the set Z′, such that the probability

Pr[Z′ ∩ Ty′ = ∅] � 1

22n
.

Since there are at most 2n bad witnesses,

Pr
[(∃ a bad witness y′ ∈ {0,1}n) [Z′ ∩ Ty′ = ∅]] � 1

2n
.

Suppose now for every bad witness y′ ∈ {0,1}n, the sample set Z′ has a non-empty intersection with Ty′ = Z(Yk ∪
{y′}). That means that for every bad witness y′, y′ cannot beat all of Z′. With the polynomial sized set Z′ in hand,
we ask the SAT oracle once again whether there is a y which beats all these z ∈ Z′. Again this is a SAT query by
Cook’s Theorem. If the answer is No, then we know x /∈ L since otherwise there is a y which beats all z ∈ {0,1}n, and
certainly y beats all these z ∈ Z′. So we reject x and halt.

If the answer is Yes, we use self-reducibility of the SAT oracle to obtain one such y∗. Notice that by now there is
no bad witness y′ which can beat all of Z′. Thus this y∗ is not a bad witness. This is true with probability � 1 − 1/2n.
We then define Yk+1 = Yk ∪ {y∗}. Then with high probability we have∣∣Z(Yk+1)

∣∣ � |Z(Yk)|
2

.

As remarked earlier this gives our ZPPNP algorithm.
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4. A sampling lemma

The Sampling Lemma 1 follows from the work of Jerrum, Valiant and V. Vazirani [17]. However Lemma 1 has a
relatively simple proof based on universal hashing. We give a self-contained account in this section using the notion
of isolation of Sipser [26] (see also [28]).

Consider a family of hash functions:{
hs : {0,1}n → {0,1}k}

s∈S .

Recall that a family of hash functions is 2-universal if for every pair of distinct x �= y in {0,1}n, and for every
α,β ∈ {0,1}k , Prs∈S [hs(x) = α ∧ hs(y) = β] = 1/22k , i.e., hs(x) and hs(y) are pair-wise independent and uniformly
distributed when s ∈R S . It is well known such a family of 2-universal hash functions exists and can be easily con-
structed with small sample space, e.g., ha,b(x) = ax + b and then truncate to k bits, where a, b and x range over a
finite field GF[2n].

Here is an outline of the proof of Lemma 1. First we will use hash functions and the SAT oracle to get an approxi-
mate count of the subset S=n. We will use the notion of isolation of Sipser [26] for this. Using the SAT oracle we can
decide if S=n = ∅. If so then Lemma 1 is vacuously true (no subset T exists with |T | > ε|S=n|). Suppose S=n �= ∅.
Then we will devise a simple sampling strategy based on an estimate of the number of points with unique inverse
images from S=n under a random hash function. The details follow.

Given x �= y, we say x collides with y under hs if hs(x) = hs(y). For a subset E ⊆ {0,1}n, we say that hs isolates
x ∈ E iff x does not collide under hs with any other element of E. The following lemma of Sipser is well known and
follows from a simple probability estimate [26].

Lemma 2. Let E ⊆ {0,1}n, and let {hs : {0,1}n → {0,1}k}s∈S be a family of 2-universal hash functions of cardinality
22n with 1 � k � n. Then for all m � k,

(1) if |E| � 2k−1 then

Prs1,...,sm∈RS [∀x ∈ E some hsi isolates x] � 1 − 1

2m−k+1
;

(2) if |E| > m2k then

Prs1,...,sm∈RS [∀x ∈ E some hsi isolates x] = 0.

For our set E = S=n, there is some ke, where 1 � ke � n, such that 2ke−1 � |E| � 2ke . If we take every k in
the range 1 � k � n + 1, and randomly pick m = 4n hash functions hs1 , . . . , hsm : {0,1}n → {0,1}k , with probability
� 1 − 1

23n , at least for k = ke + 1, we would get isolation. For each k we ask the SAT oracle, whether the chosen
set of hs1 , . . . , hsm has the property that “∀x ∈ E, one of hi isolates x.” Since there are only m = 4n hash functions
this is a SAT query. We pick the least k0 such that the oracle confirms isolation. We abort if for no k the chosen hash
functions achieve isolation. With probability � 1 − 1

23n we do not abort, and we get k0 � ke + 1. Also by the second

part of Lemma 2, we know definitely |E| � 4n2k0 .
Denote by U = 4n2k0 . This is defined with probability � 1 − 1

23n . Whenever k0 is defined, U is an upper bound

of |E|. Also, with probability � 1 − 1
23n , U is defined and it is not too far from a lower bound of |E|,

U

16n
� |E| � U.

Let r = 2�log2 1/ε�, so that 1/ε � r < 2/ε. Also r � 2 as ε < 1. Let R = {0,1}k0+log2 n+�log2 1/ε�+4. Then |R| = 4rU .
The sampling procedure can be summarized as follows: First we get an estimate U as described above. Then, for

each 1 � i � 3n, uniformly and independently choose a hash function hi : {0,1}n → R. Now repeat the following
210r2n2 times for each hi : Uniformly and independently pick a target α ∈ R. Ask the SAT oracle whether it has an
inverse image from the set E = S=n. Since S is in P, this is a SAT query. If α ∈ hi(E), we use self-reducibility to get
one inverse image. This inverse image is a sample point. We exit the “repeat” loop as soon as we obtain 4rn samples.
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1. Get estimate U = 4n2k0

2. For i = 1, . . . ,3n

3. Randomly pick hsi : {0,1}n → R with |R| = 4rU

4. Repeat 210r2n2 times steps 5 and 6
5. Randomly pick α ∈ R

6. Try to find an x ∈ E s.t. hsi (x) = α using SAT
7. if found 4rn points, Goto 3 with i := i + 1.

Consider 3n hash functions h1, h2, . . . , h3n uniformly and independently chosen. For any such h, define the random
variable C to be the number of colliding pairs,

C =
∑

{x,y}⊆E,x �=y

χ[h(x)=h(y)].

The expectation of C is

E[C] =
∑

{x,y}⊆E,x �=y

Pr
[
h(x) = h(y)

] =
(|E|

2

)
1

|R| <
|E|
8r

.

Hence by Markov’s inequality

Pr
[
C � ε|E|/4

]
� 1

2
. (3)

We say a point α ∈ R is a unique image if there is a unique x ∈ E such that h(x) = α. Suppose C � ε|E|/4,
then there can be at most ε|E|/2 many x ∈ E involved in a collision, i.e., such that there exists some y �= x, y ∈ E,
h(x) = h(y). At least (1 − ε/2)|E| � |E|/2 elements of E are mapped to a unique image. Also by assumption
|T | > ε|E|, at least ε|E|/2 many elements from T are mapped to a unique image.

For each hi , the sampling procedure will produce O(n/ε) points in time (n/ε)O(1). The probability that the proce-
dure fails to produce any point from T is bounded by the sum of probabilities of the following events:

(E1) One did not get a good estimate U ; or else,
(E2) ∀1 � i � 3n, the collision set for hi is large: |Ci | � ε|E|/4; or else,
(E3) the first i for which the Ci is small, yet less than 4rn points from hi(E) are picked; or else,
(E4) for this i the first 4rn points from hi(E) all do not produce points from T .

We have seen Pr[E1] � 2−3n. Also, Pr[E2] � 2−3n by (3).
For (E3), we use the following version of Chernoff Bound:

Chernoff Bound. For any 0 < p < 1 and 0 < δ � p(1 − p), if Xi, i = 1, . . . , 
 are i.i.d Bernoulli 0-1 variables with
Pr[Xi = 1] = p, then

Pr

[∣∣∣∣∣

∑

i=1

Xi − p


∣∣∣∣∣ � δ


]
� 2e

− δ2

2p(1−p) . (4)

If |Ci | � ε|E|/4, then |hi(E)| � |E|/2 � U/32n, thus a target α belongs to hi(E) has probability at least
|hi(E)|/|R| � 1

27rn
. Thus in our case, p � 1

27rn
, 
 = 210r2n2, and let δ = p/2. Then a simple calculation gives

Pr[E3] � 2e−rn � 2e−2n.

Finally for (E4), for this hi , ε|E|/2 many elements from T are mapped to unique images, thus each time a random
α ∈ hi(E) is picked, it has probability at least ε|E|/(2|hi(E)|) � ε/2 � 1/2r to give a sample point from T . (If
α ∈ hi(T ) is a unique image, then the self-reducibility procedure with SAT will produce a pre-image from T .) It
follows that Pr[E4] � (1 − 1/2r)4rn < e−2n.
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Adding up all the error probabilities, we get

Pr[S′ ∩ T = ∅] � 1

22n
.

The procedure as stated will produce O(n2/ε) points. (This is sufficient for our Theorem 1.) However, for each
hash function hi one can check whether the collision set Ci is approximately small probabilistically using SAT, and
proceed to produce 4rn samples only for the first hi for which the Ci is found small. The modified procedure produces
only O(n/ε) points in (n/ε)O(1) time. This completes the proof of Lemma 1.

5. In search of irrefutable proofs

Let L ∈ Sp

2 be defined as in (1), (2). If x ∈ L, then there exists y that beats all z. We call such a y an irrefutable
proof w.r.t. P . Similarly if x /∈ L there are irrefutable proofs w.r.t. P , namely any z which beats all y. We have shown
that membership x ∈ L is decidable in ZPPNP. However in neither case have we produced, in general, an irrefutable
proof.

Say x ∈ L, then one simple case is already problematic when we have a polynomial number of yi ’s and according
to SAT there are no z that beat all these yi ’s. While this is sufficient to conclude that x ∈ L (and hence an irrefutable
proof y exists), it does not help in locating one such. Moreover, suppose it happens to be that most y ∈ {0,1}n beats
most but not all z ∈ {0,1}n w.r.t. P , then our proof of Theorem 1 in fact will not find an irrefutable proof with high
probability.

However, for any L ∈ Sp

2 , we can find an irrefutable proof w.r.t. some predicate also defining L.

Theorem 3. For every L ∈ Sp

2 , there is a P-time predicate Q defining L, such that irrefutable proof w.r.t. Q can be
found in ZPPNP.1

Given L defined via P , define Q as follows:

Q(x;y1, . . . , ym; z1, . . . , zm) = 1 ⇐⇒ ∣∣{(i, j)
∣∣ 1 � i, j � m, P (x, yi, zj ) = 1

}∣∣ >
m2

2
,

where x is the input to L, yi, zj ∈ {0,1}n, the length n = |x|O(1) is determined by P , and m = 7n or 7n+1, whichever
is odd.

It is clear that Q is defined symmetrically. Also Q defines L: if x ∈ L, one can take all yi to be an irrefutable proof
y w.r.t. P . The case x /∈ L is symmetric.

We claim that in ZPPNP we can find an irrefutable proof w.r.t. Q in the following strong sense: Suppose x ∈ L, it
will find a sequence y1, . . . , ym such that ∀z ∈ {0,1}n,∣∣{i ∣∣ P(x, yi, z) = 1, 1 � i � m

}∣∣ > m/2, (5)

and symmetrically if x /∈ L.
By symmetry, we assume x ∈ L, and have found out this is so in ZPPNP. The sequence y1, . . . , ym is defined

inductively. y1, . . . , yk defines {Zk}k�0, a sequence of partitions of Z = {0,1}n. Zk = {Zk0,Zk1, . . . ,Zkk} consists of
k + 1 disjoint subsets of Z, where Zk,i consists of those z for which exactly i of y1, . . . , yk beat it. Formally, for Z0,
let Z00 = Z. For k � 1, Zk is defined as: ∀z ∈ Z, let

ck(z) = cy1,...,yk
(z) = ∣∣{j ∣∣ P(x, yj , z) = 1, 1 � j � k

}∣∣;
then for 0 � i � k,

Zk,i = {
z ∈ Z

∣∣ ck(z) = i
}
.

Suppose Zk and y1, . . . , yk have been defined. For any y, it divides Zk,i into two parts, Zε
k,i = {z ∈ Zk,i |

P(x, y, z) = ε}, for ε = 0,1. We want to choose y = yk+1, so that |Z1
k,i | � 3

4 |Zk,i |, for all 0 � i � k. Our yk+1

1 Technically ZPPNP is a language class, and thus not for search problems. However the slight abuse of notation is harmless here. The theorem
says that a probabilistic P-time algorithm using SAT can find some irrefutable proof w.h.p. and it never produces a non-irrefutable proof.
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will be chosen probabilistically, and we will argue that it satisfies this condition w.h.p. In other words, let pk,i = |Z1
k,i |

|Zk,i |
(if |Zk,i | = 0, we let pk,i = 1), then we require that

pk,i � 3/4 (6)

for all k � 0 and 0 � i � k. Note that Zk+1,i+1 = Z1
k,i ∪ Z0

k,i+1, if y = yk+1.

Lemma 3. Let {Zk}k�0 be any sequence of partitions of Z, where each Zk,i is divided into a disjoint union Zk,i =
Z0

k,i ∪ Z1
k,i and Zk+1,i+1 = Z1

k,i ∪ Z0
k,i+1. Suppose pk,i as defined above satisfy (6), then

Zm,0 = Zm,1 = · · · = Zm,� m
2 � = ∅,

where m = 7n or 7n + 1, whichever is odd.

We will prove Lemma 3 after we complete the proof of Theorem 3 assuming the lemma.
With Zk defined and y1, . . . , yk ∈ {0,1}n in hand, we can apply Lemma 1 (with ε = 3/4) to each Zk,i , 0 � i � k,

and probabilistically produce samples Z′
k,i ⊆ Zk,i , where each |Z′

k,i | is polynomially bounded, and such that

Pr

[(∃y ∈ {0,1}n)y beats all Z′
k,i , 0 � i � k, yet ∃i, y beats at most

3

4
of Zk,i

]
� 2n · (k + 1) · 1

22n
.

For polynomially bounded k, this is exponentially small.
Assume such y does not exist, then we can ask our SAT oracle to find a yk+1, via self-reducibility, that beats all

Z′
k,i , 0 � i � k. Such yk+1 certainly exists since x ∈ L, and, since all such y beat at least 3/4 of Zk,i , (6) is satisfied

with this yk+1 for all 0 � i � k. Now it follows from Lemma 3 that the sequence y1, . . . , ym is an irrefutable proof
w.r.t. Q in the strong sense of (5). Thus except with exponentially small probability O(n2/2n) we find an irrefutable
proof w.r.t. Q. One more query to SAT confirms this.

This completes the proof of Theorem 3 modulo Lemma 3, to which we turn next. Our proof of Lemma 3 will be
probabilistic in nature. It should be pointed out that this use of probability has nothing to do with the probabilistic
construction of Zk in the proof of Theorem 3. The statement of Lemma 3 is completely deterministic.

We define an ensemble of r.v. {c̃k(z): z ∈ Z}k�0 where for each k � 0, the family {c̃k(z): z ∈ Z} is i.i.d. and
defined as follows: ∀z ∈ Z, c̃0(z) = 0, and if c̃k(z) = i then c̃k+1(z) = i + 1 or i with probability pk,i and 1 − pk,i ,
respectively. Let Z̃k = {Z̃k0, Z̃k1, . . . , Z̃kk} be defined as follows: For 0 � i � k,

Z̃k,i = {
z ∈ Z

∣∣ c̃k(z) = i
}
.

We can show that

Claim. The expectation E|Z̃k,i | = |Zk,i |, for all k � 0 and 0 � i � k.

To prove this claim, we induct on k, the case k = 0 being trivial. Suppose the claim holds for k and for all 0 � i � k.
Consider k + 1 and 1 � i � k + 1. The case E|Z̃k+1,0| = |Zk+1,0| follows from the rest, and the fact that the total
cardinality is 2n.

Denote by E�k the expectation taken w.r.t. stages up to k. Since |Z̃k+1,i | = ∑
z∈Z χ[z∈Z̃k+1,i ], it follows that, for

1 � i � k + 1,

E|Z̃k+1,i | =
∑
z∈Z

E[χ[z∈Z̃k+1,i ]] =
∑
z∈Z

E[χ[z∈Z̃k,i ] · χ[z∈Z̃k+1,i ] + χ[z∈Z̃k,i−1] · χ[z∈Z̃k+1,i ]]

=
∑
z∈Z

{
E�k[χ[z∈Z̃k,i ]] · (1 − pk,i) + E�k[χ[z∈Z̃k,i−1]] · (pk,i−1)

}

= (1 − pk,i)E�k|Z̃k,i | + pk,i−1E�k|Z̃k,i−1| = (1 − pk,i)|Zk,i | + pk,i−1|Zk,i−1| = |Zk+1,i |.
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We next define a second ensemble of r.v. {ck(z): z ∈ Z}k�0, where again, for fixed k � 0, the family {ck(z): z ∈ Z}
is i.i.d. and defined simply as the sum of k Bernoulli independent 0-1 variables with p = 3/4. More formally, ck(z) =∑k

j=1 Ij (z), where Ij (z) are i.i.d. 0-1 variables with Pr[Ij (z) = 1] = 3/4. Then Zk = {Zk0, . . . ,Zkk} is defined:

Zk,i = {
z ∈ Z

∣∣ ck(z) = i
}
.

We can “realize” Z̃k via Zk by a “nibbling” process. Note that c0(z) = 0, and ck+1(z) = ck(z) + Ik(z). Define a
third ensemble {c∗

k (z): z ∈ Z}k�0 via ck(z) as follows: c∗
0(z) = 0, and c∗

k+1(z) = c∗
k (z)+Ik(z)+Δ, where the “nibble”

Δ is a 0-1 r.v. dependent on c∗
k (z) and Ik(z): If Ik(z) = 1 then Δ = 0, if Ik(z) = 0, and i = c∗

k (z), then Δ = 1 with
probability 4pk,i − 3, and Δ = 0 with probability 4(1 −pk,i). Note that 0 � 4pk,i − 3 � 1. Given c∗

k (z), the combined
effect of Ik(z) + Δ is a Bernoulli 0-1 variable taking value 1 with probability exactly pk,i , independent for every z.

Thus c∗
k (z) has exactly the same distribution as c̃k(z). While c̃k(z) is independent from ck(z), c∗

k (z) is highly
correlated with ck(z): ∀z,∀k,

ck(z) � c∗
k (z).

Thus, ∀z, k, 
,

Pr
[
c̃k(z) � 


] = Pr
[
c∗
k (z) � 


]
� Pr

[
ck(z) � 


]
.

For ck(z), the Chernoff Bound (4) applies directly. Thus if m � 7n and odd, we take p = 3/4 and δ = 1/4 then a short
calculation gives,

(∀z) Pr

[
cm(z) �

⌊
m

2

⌋]
� 2e− 7

6 n.

Thus,

� m
2 �∑

i=0

|Zm,i | =
� m

2 �∑
i=0

E|Z̃m,i | =
∑
z∈Z

� m
2 �∑

i=0

Pr[z ∈ Z̃m,i] =
∑
z∈Z

Pr

[
c̃m(z) �

⌊
m

2

⌋]
� 2n+1e− 7

6 n < 1.

But the cardinalities of the sets Zm,i are all non-negative integers, we must conclude that

Zm,0 = Zm,1 = · · · = Zm,� m
2 � = ∅.

6. An implication for Karp–Lipton

There has been a lot of work on the general theme inspired by the Karp–Lipton Theorem. For example, Ma-
haney [23] showed that if the sparse oracle is itself in NP (i.e., NP has �p

T -complete, not just �p
T -hard sparse set)

then PH collapses to Δ
p

2 . Long [22] extended this to co-sparse oracles. Arvind et al. [6] showed that under the same
assumption as in Karp–Lipton that SAT has small circuits then MA = AM. (See [15] for a survey.)

Suppose NP has polynomial size circuits. The Karp–Lipton Theorem says that the Polynomial-time Hierarchy
collapses to Σ

p

2 ∩ Π
p

2 . Sengupta [25] pointed out that the same proof collapses the Polynomial-time Hierarchy to Sp

2 .
To see this we recount the “book” proof, but this time phrase it in terms of provers Y and Z. We only need to show
that Π

p

2 ⊆ Sp

2 , then it follows that Π
p

2 ⊆ Sp

2 ⊆ Σ
p

2 and hence they are all equal.
Let L be any language in Π

p

2 . There is a normal form L = {x | (∀py) (∃pz) [P(x, y, z)]}, where P is a P-time
predicate. By Cook’s Theorem, without loss of generality we can assume that it takes the form

L = {
x

∣∣ (∀ps
) [φx,s ∈ SAT]},

where φx,s is a boolean formula computable in P-time from x and s. Let the size of φx,s be bounded by p(|x|) for
some polynomial p(·).

Now to show membership in Sp

2 we receive two strings y and z, from provers Y and Z, respectively. We expect
the string y to be a poly-size circuit for formulae of size up to p(|x|). For a pair (y, z) we accept if and only if the
circuit y says the boolean formula φx,z is satisfiable and by self-reducibility produced a satisfying assignment which
satisfied it.

We note that there exists a relativized world where the Karp–Lipton Theorem cannot be improved to PNP [14,29].
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If one substitutes the predicate P in the definition (1), (2) of Sp

2 by a predicate computable in NP∩co-NP, we get the
class S2[NP ∩ co-NP], and we can still prove the inclusion S2[NP ∩ co-NP] ⊆ ZPPNP. Clearly Sp

2 ⊆ S2[NP ∩ co-NP].
It is open whether any of the following containments

Sp

2 ⊆ S2[NP ∩ co-NP] ⊆ ZPPNP

is a proper containment. We note that under suitable hardness assumptions one can prove PNP = BPPNP (see [19]) and
thus under these assumptions the above classes all collapse to PNP.
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Building on a recent breakthrough by Ogihara, we resolve a conjecture
made by Hartmanis in 1978 regarding the (non)existence of sparse sets com-
plete for P under logspace many�one reductions. We show that if there exists
a sparse hard set for P under logspace many�one reductions, then
P=LOGSPACE. We further prove that if P has a sparse hard set under
many�one reductions computable in NC1, then P collapses to NC1. � 1999
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1. INTRODUCTION

A set S is called sparse if there are at most a polynomial number of strings in S
up to each length n. Sparse sets have been the subject of study in complexity theory
for the past 20 years, as they reveal the inherent structure and limitations of com-
putation. Intuitively, a sparse set can be thought of as an encoding of a small
amount of information. With this view in mind, the most central questions in the
study of sparse sets have been the following:

What does it mean computationally for a complexity class C to have
a sparse hard set? Can sparse sets be hard or complete for interesting
complexity classes such as P, NP, etc?

There are two primary motivations for studying the existence of sparse hard (or
sparse complete) sets. The first motivation stems from the connection to non-
uniform and Boolean circuit complexity. By a result attributed to A. Meyer (cf.
[BH77]), the class of languages that are polynomial time Turing reducible (i.e., by
Cook reductions) to a sparse set is precisely the class of languages with polynomial
size circuits. Pippenger [Pip79] showed that this is the same as the class P�poly of
languages that can be accepted with a polynomial amount of ``nonuniform advice.''
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Thus sparse sets serve as a link between uniform complexity theory, which is based
on the Turing machine model, and nonuniform complexity theory, which is based
on the Boolean circuit model.

Another major motivation for the study of sparse sets, and various reducibilities
to them, is concerned with the isomorphism conjectures by Berman and Hartmanis.
In 1976, they proved that all the natural NP-complete problems (such as those
found in [GJ79]) are isomorphic under polynomial time computable functions
[BH77]. Based on this evidence they conjectured that all NP-complete problems
under polynomial time many�one reducibility (i.e., Karp reductions) are iso-
morphic under polynomial time computable bijections. Noting that the densities of
any two polynomial time isomorphic sets are polynomially related and that all
known NP-complete sets are exponentially dense, they also conjectured that there
are no sparse complete sets for NP.

The Berman�Hartmanis isomorphism conjecture has generated a lot of research
in this field. Building on earlier work by Fortune [For79], Mahaney [Mah82]
showed that if NP has a sparse hard set under polynomial time many�one
reducibility, then P=NP. This is the definitive result concerning the nonexistence
of sparse complete sets for NP under Karp reductions. Note that if P = NP, then
both conjectures concerning isomorphism and the nonexistence of sparse complete
sets for NP are false. Regarding Cook reductions and the connection to circuit
complexity, the famous result by Karp and Lipton [KL82], with a contribution by
Sipser, showed that if NP has a sparse hard set under Cook reductions, or equiv-
alently, if NP has polynomial size circuits then the polynomial hierarchy collapses
to its second level 7 p

2 =6 p
2 . In the subsequent years, considerable research effort

has been devoted to studying variations of this problem; we especially mention the
results by Ogihara and Watanabe concerning bounded truth table reductions of NP
to sparse sets [OW91]; see [HOW92] or [You92a, You92b] for a survey.

The role of sparse hard sets in complexity theory goes further than the connec-
tion to NP. In 1978, Hartmanis [Har78] studied the isomorphism question for sets
complete for P under logspace many�one reducibility. He observed that all the
known P-complete problems were isomorphic under logspace computable bijec-
tions and conjectured that all P-complete problems were isomorphic under logspace
computable bijections. Similarly, he conjectured that there are no sparse complete
sets for P under logspace many�one reductions [Har78]. It is this conjecture that
we address in this paper.

The connection between reducibility to sparse sets and polynomial circuit com-
plexity also carries over in an interesting way to the low-level setting. Cook
[Coo85] has defined a notion of uniform NC1 reducibility as a useful notion in
studying completeness for complexity classes such as NL and L. This is the
analogue of Turing reducibility in low-level complexity. Using Buss' theorem
[Bus87, BCG+92] that the boolean formula value problem is in uniform NC1, it
can be shown that a language has a (nonuniform) circuit family of polynomial size
and logarithmic depth, that is, the language is in nonuniform NC1, if and only if
it is reducible to a sparse set under uniform NC1 reductions. This provides another
incentive to the study of sparse hard sets for low-level complexity classes. For
example, P� nonuniform NC1 if and only if there is a sparse hard set for P under
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uniform NC1 reductions. Notice that it is not even known if PSPACE is contained
in nonuniform NC1.

1.1. Main Result

The current paper resolves the 1978 conjecture of Hartmanis in the sense of
Mahaney; namely we show that there are no sparse complete sets for P under
logspace many�one reductions if P{LOGSPACE. Unlike the NP case, very little
progress had been made on this conjecture until very recently. The only known
related result until last year is due to Hemachandra, Ogihara, and Toda [HOT94].
They showed that if P has polylogarithmically sparse hard sets, then P = SC,
the class of languages recognizable in simultaneous polynomial time and poly-
logarithmic space. Because of the assumption of polylogarithmic sparsity, the result
leaves an exponential gap. Very recently, Ogihara [Ogi95] made substantial
progress toward resolving the conjecture of Hartmanis. He showed that if there is
a sparse set S that is hard for P under logspace many�one reductions, then P�
DSPACE[log2 n]. Our work builds on the work of Ogihara.

The main result of this paper is the following: if there is a sparse set S that is
hard for P under logspace many�one reductions, then P=LOGSPACE. In fact,
we prove the stronger statement: if there is a sparse set S that is hard for P under
many�one reductions, then the P-complete circuit-value problem can be solved by
a logspace-uniform family of polynomial size, logarithmic depth circuits that make
polynomially many parallel calls to the reduction. Consequently, if P has a sparse
hard set under many�one reductions computable in logspace-uniform NC1, then P
equals logspace-uniform NC1.

An interesting aspect of our work is that the techniques we employ are
probabilistic and algebraic in nature and are influenced by the recent developments
in derandomization techniques, especially constructions of small sample spaces, and
the theory of finite fields. The proof of our first theorem begins with a crucial obser-
vation due to Ogihara. The main ingredient in the resulting simulation is the solu-
tion of a system of linear equations over a finite field. We first prove a probabilistic
lemma of general interest. Under the assumption of the existence of a sparse set
hard for P, we obtain an RNC2 simulation of P. Using a ``small-bias sample space''
construction ([NN90, AGHP90]), we derandomize this algorithm to obtain an
NC2 simulation. Finally, exploiting additional algebraic properties of a closely
related construction, we arrive at a Vandermonde system. We then solve the system
using closed formulae involving the elementary symmetric polynomials over a
certain field and discrete Fourier transforms. The final result is a collapse of P to
logspace uniform NC1. In fact, modulo the complexity of the reduction, the
resulting simulation can be done in TC0.

1.2. Further Extensions

The basic techniques involving derandomization and algebraic computation are
rather powerful. There are already a number of extensions and many additional
results. Those results are primarily concerned with various other reducibilities and
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complexity classes. In [CS95], we combine techniques from this paper with the
famous result of Immerman and Szelepcse� nyi [Imm88, Sze87], to resolve a similar
conjecture made by Hartmanis concerning sparse hard sets for nondeterministic
logspace. In joint work with A. Naik [CNS95], we use a number of additional
techniques and extend the results to the case of truth-table and randomized reduc-
tions. For truth-table reductions, we exploit error-correcting properties of the small
sample space construction and show, e.g., that if there exists a sparse hard set for
P under bounded truth-table reductions, then P=NC2. For randomized reduc-
tions, we use an algorithm of Goldreich and Levin [GL89] that recovers a linear
function over GF(2) by querying an erroneous oracle and show that if there exists
a sparse hard set for P under randomized reductions with a two-sided error, then
P�RNC1. To handle superpolynomially sparse sets, we generalize Mulmuley's
NC2 algorithm [Mul87], combined with an idea of Chistov [Chi85], to compute
the rank of a matrix over a finite field. As an indication of the effectiveness of our
derandomization and algebraic techniques, we note that it took the research com-
munity 10 years to take the similar step from many�one reducibility in Mathaney's
result for NP to bounded truth-table reducibility in Ogihara and Watanabe's
theorem. Very recently, Van Melkebeek [Mel96] has extended the ideas of
Section 5 to the case of truth-table reductions, and has shown that if there exists a
sparse set hard for P under logspace bounded truth-table reductions, then P=
LOGSPACE.

2. PRELIMINARIES

All our notations and definitions are standard. We denote by P the class of all
languages recognizable in polynomial time by deterministic Turing machines; NP
denotes the class of nondeterministic polynomial time languages. The class of all
languages recognizable by deterministic Turing machines that use space no more
than O(log n) is denoted LOGSPACE or L; the corresponding nondeterministic
class is denoted by NL. In general, DSPACE[s(n)] denotes the class of languages
accepted by deterministic Turing machines, which, on inputs of length n, use space
no more than O(s(n)).

For circuit and parallel complexity, we use the notation SIZE-DEPTH[s(n),
d(n)] to denote the class of languages accepted by a uniform family [Cn]�

n=0 of
bounded fan-in circuits of size s(n) and depth d(n) for inputs of length n. The
criterion for uniformity of the circuit family is usually taken to mean that there is
a deterministic space (log s(n))-bounded transducer that, on input 0n, outputs an
encoding of the circuit Cn . The class NCk is defined as SIZE-DEPTH[nO(1),
logk n], and NC=�k NCk. (Our NC1 is logspace-uniform NC1.) The randomized
version of NCk is denoted by RNCk. The class AC0 is defined to be the class of
languages that are accepted by families of unbounded fan-in Boolean circuits of
polynomial size and constant depth. The class AC0[ � ] is defined to be the class
of languages that are accepted by families of unbounded fan-in Boolean circuits of
polynomial size and constant depth that are allowed to use PARITY gates in addi-
tion to AND, OR, and NOT gates. A PARITY gate, on inputs y1 , y2 , ..., yk ,
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outputs 1 iff the number of yi 's that are 1 is odd. The class TC0 is defined to be
the class of languages that are accepted by families of unbounded fan-in Boolean
circuits of polynomial size and constant depth that are allowed to use MAJORITY
gates in addition to AND, OR, and NOT gates. A MAJORITY gate, on inputs
y1 , y2 , ..., yk , outputs 1 iff the number of yi 's that are 1 is at least Wk�2X . The same
notion of logspace uniformity applies to the classes AC0, AC0[�], and TC0.

For any language A, let cA(n).&[x # A| |x|�n]& denote the census function for A.
A is called (polynomially) sparse if cA(n) is bounded by a polynomial in n.

A Boolean circuit C is a directed acyclic graph with l input nodes labeled 1, ..., l,
and one output node. The interior nodes, called gates, are labeled from the set
[c, 7 , 6 ], and are respectively called NOT, AND, and OR gates. On any input
x # [0, 1]n, the output of each gate is defined in the natural way, including the gate
that is the output of the circuit. The circuit-value problem, abbreviated CVP, of
determining whether a Boolean circuit C outputs 1 on input x was shown by
Ladner [Lad75] to be complete for P under logspace computable many�one reduc-
tions. Cook [Coo85] defined the notion of NC1 reducibility, and notes that this
problem is complete for P under NC1 reductions. This reducibility is somewhat
subtle technically, so we refer the reader to [Coo85] for details. However, we
remark that a consequence of the completeness of CVP is that if CVP # NC1, then
P=NC1.

All logarithms in this paper are to the base 2.

3. AN RNC2 SIMULATION

In this section, we consider the hypothesis that there is a polynomially sparse set
S hard for P under logspace (or even NC2) many�one reductions. Note that the
sparse set S need not belong to P itself. (Thus our assumption is even weaker than
P-completeness as stated in Hartmanis' conjecture.) The framework and basic ideas
introduced here are used in all our results.

Following Ogihara [Ogi95], we define the set A of tuples (C, x, I, b) , where C
is a boolean circuit, x is an input to C, I is a subset of the gates, and b is a bit
(0 or 1), such that the sum mod 2 of the values of the gates chosen in I from C
on input x equals b, i.e.,

�
i # I

gi (x)=b.

Clearly, A # P and hence A� L
m S. Let f be a logspace computable function such

that for all x, x # A � f (x) # S. It is clear that CVP� L
m A; we will show how to

solve CVP in RNC2 using the reduction f from A to S.
We note that for any C, x, I, exactly one of the bits b=0, 1 satisfies the equation,

and thus exactly one of f ((C, x, I, 0) ) and f ((C, x, I, 1) ) is a string in S.
Moreover, suppose for two distinct subsets I and J and some pair of bits
b, b$, f ((C, x, I, b) )= f ((C, x, J, b$) ) (we are not assuming that the image is in
S). In this case, regardless of whether �i # I gi (x)=b and � i # J gi (x)=b$ are true
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or not, they hold or fail simultaneously. Thus we have an equation mod 2 on the
values of the gates of C on input x, namely

�
i # I 2 J

g i (x)=b�b$,

and I q J{<.
Fix any C and x, let n denote the number of nodes in C (including the inputs,

output, and the interior gates). Let N denote the largest value of | f ((C, x, I, b) )|
(over all I and b). Clearly N is polynomially bounded in n. Let p(n) be a polyno-
mial function that bounds cS(N). For notational simplicity we assume p(n) is a
power of 2; in particular, we will assume that log2 p(n) is always an integer. Since
there are only polynomially many strings in S, some string w # S must be mapped
on by at least 2n�p(n) many subsets I. More precisely: for I # [0, 1]n, let
bI=�i # I gi (x) denote the ``correct value'' of the parity of the gate values chosen
by I, and for w # S, define Tw=[I # [0, 1]n | f ((C, x, I, bI) )=w]. Then there is at
least one w # S such that |Tw |�2n�p(n). We will call such w's popular.

As described above, any two I and J that that map to the same w give rise to
an equation mod 2 on the values of the gates of C on input x. The idea now is to
choose polynomially many random subsets I # [0, 1]n and compute f ((C, x, I, 0) )
and f ((C, x, I, 1) ), collecting an equation whenever a ``collision'' takes place. We
remind the reader once again that whenever f ((C, x, I, b) ) and f ((C, x, J, b$) )
collide for I{J, irrespective of whether or not b=bI and b$=bJ are true, equiv-
alently, irrespective of whether the image is a member of S or not, the equation
produced is valid.

The next question is: does the system of equations thus produced have sufficiently
high rank, so that we may solve them to infer the gi 's? The following lemma
ensures that this process gives us a system of linear equations of rank n&O(log n),
even if we restrict attention to collisions that take place on a single popular w. Of
course, we don't know which strings produced by the reduction are in S, but we do
know that there must be at least one popular w # S. Similarly, we don't know
exactly what Tw is, but we know that it is large (by the popularity of w). Thus when
the I 's are picked at random, we can expect a nontrivial fraction of them to belong
to Tw , and therefore, produce a significant number of collisions. The next lemma
shows that as a consequence of the existence of a large Tw , the system of equations
produced will have sufficiently large rank, with high probability.

3.1. A Probabilistic Lemma

Let B=[0, 1]n denote the n-dimensional binary cube. With respect to the finite
field of two elements GF(2)=Z2 , B is a vector space of dimension n. Let T�B be
an arbitrary subset of the cube. We ask the following question: If we uniformly and
independently pick a sequence of m points in B, what can we say about the prob-
ability distribution of the dimension of the affine span of those points picked from
T as a function of m, n, and |T |?
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Lemma 1. Let k be a power of 2. Suppose |T |�2n�k, where k=nO(1), then for
m=2kn2+n+1=nO(1), if we uniformly and independently pick a sequence of m
points in B, the probability that the dimension of the affine span of the points from
T is less than n&log2 k is at most e&n2+O(n log n).

Proof. Consider any sequence of points of B being picked by the above process.
Let us mark any such sequence I1 , I2 , ..., Im by a 0�1 sequence of the same length
m, according to the following rule: Suppose the subsequence Ii1

, Ii2
, ..., Iil

is the
intersection of the sequence [Ii] with the set T. Ii1

is marked 0. For j>1, precisely
those points Iij

are marked 1 if the dimension of the affine span of Ii1
, Ii2

, ..., Iij
is

greater than that of Ii1
, Ii2

, ..., Iij&1
. All other points in [Ii] are marked 0. This

defines a 0�1 sequence _ of length m. We wish to estimate the probability that the
number of 1's in _ is small.

The process of uniformly and independently picking a sequence of m points in B
induces a probability distribution over the set of 0�1 sequences _ of length m
defined as above. Suppose we have picked a sequence I1 , I2 , ..., Ii&1 which intersects
with T in a set whose affine span has dimension <n&log2 k. Then there are at
least |T |&2n&log 2 k&1 points of T, which, if picked next, would increase the dimen-
sion of the affine span of the intersection. This cardinality is �2n�k&2n�(2k)=
2n�(2k). Hence, for i>1 the conditional probability

Pr[_i=1 | the number of 1's in _1 , ..., _ i&1<n&log2 k]�1�(2k).

For any sequence _ with strictly fewer than n&log2 k many 1's,

Pr[_]�\1&
1

2k+
m&(n&log2 k)&1

,

which is bounded above by e&n2
if m=2kn2+n+1. Therefore,

Pr[dim(affine span of [Ii]m
i=1 & T)<n&log2 k]� :

j<n&log2 k \
m
j + e&n2

<e&n2+O(n log n).

K

Now we apply the above lemma with T=Tw for some popular w # S. It is clear
that we obtain one new equation for each I that gives rise to a ``1'' in the sequence
_ defined in the proof of the lemma. The lemma guarantees that if we try (in
parallel) polynomially many uniformly and independently chosen I, with high prob-
ability we will obtain a system of linear equations with rank deficiency at most
log2 p(n). We now describe how we can use these to determine in NC2 the outputs
of all the gates of C on input x.

Without loss of generality, let the rank of the system be n&log2 p(n), and let
m(=nO(1)) denote the number of equations we have. Denote the equations by
E1 , ..., Em , and for i�1 call an equation Ei useful if the rank rk(E1 , ..., Ei)>
rk(E1 , ..., Ei&1). Clearly the number of useful equations is at least n&log2 p(n);
without loss of generality, we will assume that we have exactly n&log2 p(n) useful
equations. Mulmuley [Mul87] gives an algorithm to compute the rank of an l_n
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matrix, which, for l=nO(1), can be implemented by a circuit of depth O(log2 n) and
size nO(1). For 1�i�m we compute in parallel rk(E1 , ..., Ei) and identify all the
useful equations. Now we have n&log2 p(n) equations in n variables with rank
n&log2 p(n). We apply the same process to the columns and identify the
(n&log2 p(n))-many useful columns. We rename the variables so that the first
n&log2 p(n) columns are all useful. For each of the p(n) possible assignments to
the last log2 p(n) variables, we create in parallel a system of n&log2 p(n) equations
as an (n&log2 p(n))_(n&log2 p(n)) matrix. Each one of these can be solved in
log2 n depth and nO(1) size using the algorithm due to Borodin et al. [BvzGH82].
For each potential solution we get for the gates of the circuit C on input x, we can
check its validity using the local information about the circuit C and input x, such
as xi=0, or xi=1, or gj (x)= gk(x) 7 gl(x). There will be a unique solution that
passes all such tests and we will find the output of C(x) in particular. We have
proved

Theorem 2. If there is a sparse set that is hard for P under logspace or NC2

many�one reductions, then P�RNC2.

4. DETERMINISTIC CONSTRUCTION

In this section, we use a small sample space construction due to Alon et al.
[AGHP90], and generalize their result concerning the construction. We apply the
generalization to derandomize the probabilistic simulation of Section 3. Under the
hypothesis about sparse hard sets, this yields a collapse of P to NC2.

As before we have B=[0, 1]n=Zn
2 considered as an n-dimensional vector space

over the finite field Z2 . For each I # B, let bI=�i # I g i (x) be the ``right value.''
Then the string w= f ((C, x, I, bI) ) # S and this w is called the color of I. The
presumed reduction to the sparse set S gives a coloring of B with at most p(n)
colors. Let D�B be a subset of B of cardinality bounded by a certain polynomial
in n. The coloring of B induces a coloring of D, thus D is the union of at most p(n)
many color classes:

D=C1 _ C2 _ } } } _ Cp(n) .

Let the affine span of Ci be denoted by Li+di , where Li is a linear subspace, and
di is a displacement vector. Let L=L1+L2+ } } } +Lp(n) be the sum of the linear
subspaces. We call L the span of the color classes. Li is spanned by differences of
vectors in Ci . For some spanning set of vectors of Li , each vector in the set gives
us an equation mod 2 of the values of the gates of C with the given input. If we
collect a generating set of vectors for each Li , together they span L. Thus, if we can
construct a set D with polynomial size and with dim L�n&O(log n) (irrespective
of the coloring), we would have succeeded in derandomizing the construction of the
last section. That is, by sampling exhaustively in D, we would have obtained a
system of linear equations of rank �n&O(log n).

We claim that the above task can be accomplished as follows: given p(n), con-
struct a polynomial sized set D such that for any linear subspace M of B with
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dim M<n&log2 p(n), and any p(n) displacement vectors b1 , ..., bp(n) # B, the union
of the p(n) affine subspaces � p(n)

i=1 (M+bi) does not cover the set D. For if so, then
no matter what the induced coloring on D is, the span of the color classes L must
be of dimension �n&log2 p(n), simply because the union of at most p(n) affine
subspaces � p(n)

i=1 (L+d i) does cover D:

.
p(n)

i=1

(L+di)$ .
p(n)

i=1

(Li+di)$D.

Let k=1+log2 p(n)=O(log n). Without loss of generality, we may assume such
a linear subspace M has dimension exactly =n&k. Any such M can be specified
as the null space of a system of linear equations

ai1x1+ai2x2+ } } } +ainxn=0,

where i=1, ..., k, and the k vectors [(ai1 , a i2 , ..., ain) | i=1, ..., k] are linearly inde-
pendent vectors in B over Z2 .

Let m=2k+log2 n+1=2 log2 p(n)+log2 n+3=O(log n). The Galois field F=
GF(2m) has a vector space structure over GF(2) of dimension m. Choose any basis
[e1 , ..., em]; then for u=�m

i=1 uiei and v=�m
i=1 viei in F, we can define an inner

product by letting

(u, v) = :
m

i=1

uivi

and doing all arithmetic over Z2 .
The (multi)set D is a ``small-bias sample space'' [AGHP90], defined as

D=[((1, v) , (u, v) , ..., (un&1, v) ) | u, v # F].

Note that |D|=22m=nO(1). Now consider any nonzero vector a=(a0 , a1 , ...,
an&1) # B and any b # Z2 . We wish to estimate the size of the intersection of D with
the affine hyperplane �n&1

i=0 aix i=b. Since the inner product ( } , } ) is bilinear over
Z2 we have

:
n&1

i=0

a i(ui, v) =� :
n&1

i=0

a iu i, v�.

Let qa(X) denote the polynomial �n&1
i=0 ai X i # F[X]. If u is a root of the polyno-

mial qa(X), then clearly the inner product (�n&1
i=0 aiui, v)=0. Now suppose u # F

is not a root of qa(X); then �n&1
i=0 aiui=qa(u) is a nonzero element in F. It is easy

to see that for any nonzero w # F,

Pr
v # F

[(w, v)=0]=1�2.
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Thus,

Pr
u, v # F _ :

n&1

i=0

ai(ui, v)=0&
= Pr

u # F
[u is a root of qa(X)]+ Pr

u # F
[u is not a root of qa(X)] } 1�2.

But qa(X) is a nonzero polynomial of degree at most n&1; thus,

Pr
u # F

[u is a root of qa(X)]�
n&1

2m .

Collecting terms, we have

1
2

� Pr
u, v # F _ :

n&1

i=0

ai(ui, v) =0&�
1
2

+
n&1
2m+1 .

In particular, if m>log2 n, both affine hyperplanes �n&1
i=0 aix i=0, 1 must intersect

our set D. The bound above was shown in [AGHP90]; we strengthen it to handle
O(log n) linearly independent equations.

In general, consider any k linearly independent equations �n&1
j=0 aijx j=bi , where

aij , bi # Z2 and i=1, ..., k. Denote this affine space by 6. Denote the point in D
specified by u, v as D(u, v). We wish to estimate the probability Pru, v # F[D(u, v) # 6].

Let Q denote the following set of polynomials: [�k
i=1 ;i[�n&1

j=0 aijX j] | ;i # Z2 ,
but not all 0]. We claim that the cardinality of Q is exactly 2k&1, and none of the
polynomials in Q is the zero polynomial. This follows from the fact that the vectors
(ai0 , ..., ai, n&1) are independent over Z2 . Let u # F be such that no polynomial in Q
has u as a root. For such a u,

:
n&1

j=0

aij(ui, v) =� :
n&1

i=0

aiju i, v�=bi ,

i=1, ..., k, is a linear equation system on (the m bits of) v with linearly independent
coefficient vectors over Z2 . (For otherwise, a nonzero linear combination of the
coefficient vectors of v will be zero, which is precisely the same as u being a root
of one of the polynomials in Q.) Thus, the conditional probability for v to satisfy
this linear equation system is precisely 1�2k. However, since |Q|=2k&1, and each
polynomial in Q is nonzero and of degree at most n&1,

Pr
u # F

[u is a root of some polynomial in Q]�(2k&1)(n&1)�2m.

Letting E(u) denote the event ``u is a root of some polynomial in Q,'' and letting
\ denote (2k&1)(n&1)�2m, we obtain
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Pr
u, v # F

[D(u, v) # 6]

= Pr
v # F

[D(u, v) # 6 | E(u)] } Pr
u # F

[E(u)]

+ Pr
v # F

[D(u, v) # 6 | cE(u)] } Pr
u # F

[cE(u)]

�1 } \+
1
2k } 1=

1
2k+\.

Similarly, we have

Pr
u, v # F

[D(u, v) # 6]

= Pr
v # F

[D(u, v) # 6 | E(u)] } Pr
u # F

[E(u)]

+ Pr
v # F

[D(u, v) # 6 | cE(u)] } Pr
u # F

[cE(u)]

�0 } \+
1
2k (1&\)=

1
2k&

\
2k .

Therefore,

} Pr
u, v # F

[D(u, v) # 6]&
1
2k}

�max[\�2k, \]

=
(2k&1)(n&1)

2m

<
n

2m&k ,

which by our choice of m and k is bounded above by 1�2k+1. Thus, in particular,

Pr
u, v # F

[D(u, v) # 6]>0.

Other than linear independence, the coefficient vectors and the right-hand side
vector b1 , ..., bk in the definition of 6 are arbitrary; the total number of the b vec-
tors is 2k=2p(n)>p(n), and it follows that no linear subspace M of dimension
<n&log2 p(n) can cover the set D with some p(n) displacements.

Theorem 3. If there is a sparse set S which is hard for P under NC2 many�one
reductions, then P=NC2.
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5. THE FINALE: NC1 SIMULATION

The collapse of P = NC2 under the assumption about sparse sets does not suf-
fice for our ultimate goal of settling the conjecture of Hartmanis. The bottleneck in
the randomized and deterministic NC2 algorithms of the previous sections is the
solution of a system of linear equations over GF(2). Whereas solving arbitrary
systems of linear equations over finite fields seems to require NC2, the deterministic
construction used in the previous section is highly structured and is suggestive of
Vandermonde matrices. In this section, we exploit this structure, together with an
appropriate choice of the finite field, to obtain an optimal simulation via closed
formulae. We show that if there is a sparse set S that is hard for P under many�one
reductions computable in logspace, then P=LOGSPACE. In fact, we prove the
stronger statement

Theorem 4. If a sparse set S is hard for P under many�one reductions, then the
P-complete circuit-value problem can be solved by a logspace-uniform family of poly-
nomial size, logarithmic depth circuits that make polynomially many parallel calls to
the reduction.

That is, modulo the complexity of the reduction to the sparse set, the resulting
algorithm can be implemented by a uniform circuit of polynomial size and loga-
rithmic depth. It follows that if the reduction is computable in logspace-uniform
NC1, then P equals logspace-uniform NC1.

Proof. It is known that the polynomial X2 } 3l

+X3l

+1 # Z2[X] is an irreducible
polynomial over Z2 for all l�0 [vL91]. In the following, by a finite field GF(2m),
where m=2 } 3l, we refer explicitly to the field Z2[X]�(X2 } 3l

+X3l

+1).
Let S be a sparse set hard for P under logspace-computable many�one reduc-

tions. As before, we will consider a refinement of the circuit-value problem. Define

L={(C, x, 1m, u, v) | m=2 } 3l, u, v # GF(2m), :
n&1

i=0

uig i=v= ,

where C is a boolean circuit and x is an input to C and where g0 , ..., gn&1 are 0�1
variables that denote the values of the gates of C on input x. Here exponentiation
and summation are carried out in the finite field GF(2m). It is easy to see that L # P,
since all the required field arithmetic involved in checking � uigi=v can be performed
in polynomial time.

Clearly |(C, x, 1m, u, v) | is bounded polynomially in n and m. If f is a logspace-
computable function that reduces L to S, the bound on the length of queries made
by f on inputs of length |(C, x, 1m, u, v) | is some polynomial q(n, m). Let p(n, m)
be a polynomial that bounds the number of strings in S of length at most q(n, m).
We will choose the smallest m of the form 2 } 3l such that 2m�p(n, m)�n. It is clear
that m=O(log n). Let F denote the finite extension GF(2m) of GF(2).

Facts. We first collect some facts about implementing the basic operations of F.
The complexity of these operations is important in determining the size, depth, and
the uniformity of the circuits that we build.
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(1) Adding two elements :, ; # F is just the bitwise exclusive-or of the
representations of : and ;, and can be done in depth O(1). Adding nO(1)-many
elements can be done by a circuit of size nO(1) and depth O(log n), using the
obvious recursive doubling strategy. The circuitry to perform these additions are
clearly logspace-uniform.

(2) Multiplying two elements :, ; # F can be done using O(log m)=
O(log log n) space, or by a circuit of depth O(log m)=O(log log n) and size
mO(1)=(log n)O(1), as follows: For # # F, let P# # Z2[X] denote the polynomial
whose coefficients are given by the bits of #. Clearly, : } ;=(P: } P;) mod(Xm+
Xm�2+1). Each of the 2m&1 coefficients of P: } P; is the sum (in Z2) of at most
m bits, and can be evaluated in O(log m) space, or by a circuit of size O(m2) and
depth O(log m). Finally, implementing the ``mod(Xm+xm�2+1)'' operation on
P: } P; can be done easily in O(log m) space, or by a circuit of size O(m) and depth
O( log m).

(3) Finding a primitive element | that generates the multiplicative group F*
of F can be done in logspace by exhaustive search. An element | # F generates F*
iff the condition ``(\: # F*)(_i<2m)[|i=:]'' holds. The latter condition can be
tested using O(m)=O(log n) space by maintaining two counters, one that runs
through all elements : of F* and another for the exponent i, and doing the multi-
plications as described in Fact (2). Note that finding a primitive element is part of
the precomputation and does not have to be implemented in NC1.

(4) Raising the generator | to any power i<2m, or computing the discrete
logarithm of any element with respect to |, can be done by table look-up in depth
O(log n). The tables themselves can be precomputed using O(log n) space.

(5) The following fact is less obvious and will be important: multiplying
k=nO(1) elements of F can be done in O(log n) depth. Given elements :1 , :2 , ..., :k ,
first the discrete logarithms l1 , l2 , ..., lk of the k elements are computed with
respect to the generator |. By Fact (4), this can be done simultaneously in O(log n)
depth and size nO(1). The next task is to add the k O(log n)-bit integers l1 , l2 , ..., lk ,
and reduce the sum modulo 2m&1. The addition can be done in O(log n) depth
using the folklore 3-to-2 trick, in the following manner. Divide the k integers into
Wk�3X groups of three integers each. By computing the ``sum'' and the ``carry'' parts
of the addition separately, the three integers li , li+1 , li+2 in the ith group can be
converted into two integers l$i and l"i , such that li+li+1+li+2=l$i+l"i .
Moreover, this can be accomplished in depth O(1) simultaneously for all groups of
three elements, thus producing a list of 2k�3 elements whose sum equals the sum of
the k elements l1 , l2 , ..., lk . By recursively applying this idea, the sum of the k
integers can be computed in depth O(log3�2 k)=O(log n). Since the sum of the k
integers is at most k2m=nO(1), reducing the sum modulo 2m&1 can be easily
accomplished by a table look-up in depth O(log n). It is also clear that the look-up
table can be precomputed in space O(log n). Finally, converting the discrete
logarithm into the corresponding field element can be done by table look-up in
depth O(log n).

Remarks. (1) Alternatively, we can take F to be the finite field Z�(a) for some
prime number a that satisfies a�p(n, Wlog2 aX)�n. Our results are valid with either
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choice of F. The important point is that it should be possible to implement the
above list of operations in NC1. We prefer to retain GF(2m) because it is a natural
outgrowth of the ideas from the previous section and because it simplifies exposi-
tion of the Boolean complexity of the operations.

(2) The operations listed in Facts (1), (2), and (4) can, in fact, be imple-
mented in AC0[�]�TC0. Multiplying nO(1) elements, as described in Fact (5), can
also be implemented in TC0 [CSV84]. Since the proof of Theorem 4 only requires
these operations, our proof shows that if there is a sparse P-hard set under
many�one reductions computable in logspace-uniform TC0, then P=logspace-
uniform TC0.

Our parallel algorithm for CVP begins by computing f ((C, x, 1m, u, v) ) for
all u, v # F. For every u # F, there is a unique element vu # F such that
(C, x, 1m, u, vu) # L, and therefore, f ((C, x, 1m, u, vu) ) # S. Since 2m�p(n, m)�n,
there is at least one string w # S such that the number of u satisfying
f ((C, x, 1m, u, vu) )=w is at least n. Of course, there could be many such w (not
necessarily in S), and we do not know which w is a string in S. To handle this, we
will assume that every w that has �n preimages is a string in S and attempt to
solve for the gi 's. As long as there is at least one w # S that has �n preimages, one
of the assumptions must be correct, and we will have the correct solution. Since we
know the details of the circuit C, the solutions can be verified and the incorrect
ones weeded out.

Assume, therefore, without loss of generality, that w # S has �n preimages. Let
u1 , u2 , ..., un denote n of them, and let v1 , v2 , ..., vn denote the corresponding vu 's.
The equations

1g0+ujg1+u2
j g2+ } } } +un&1

j gn&1=vj

for j=1, 2, ..., n form an inhomogeneous system of linear equations, where the coef-
ficients (u i

j) form a Vandermonde matrix which we will denote by U. Since the uj 's
are distinct elements of the field F, the system Ug=v has full rank. It remains to
show how to solve this system of equations in logspace-uniform NC1. Thus the
proof of Theorem 4 is complete, modulo the following lemma, which is of general
interest. K

Lemma 5. Let F=GF(2m), where m=O(log n) and m is of the form 2 } 3l for
some integer l�0. Solving a system Ug=v of n equations in n unknowns over the
field F where U is a Vandermonde matrix of full rank over F, can be done by an
O(log n)-space uniform circuit of size nO(1) and depth O(log n).

Proof. Observe that an equation of the form �n&1
j=0 gju j=v can be viewed as

specifying the value of the polynomial G(u).�n&1
j=0 gju j at the point u # F. With

this viewpoint, our task is to infer the polynomial G, that is, to find the coefficients
gj of G. Clearly if we can evaluate G(u) at n distinct points u1 , ..., un # F, then we
can recover the coefficients gj by Lagrange interpolation as

G(u)= :
n

i=1

G(ui) Qi= :
n

i=1

vi Qi ,
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where

Qi=
(u&u1) } } } (u&ui&1)(u&ui+1) } } } (u&un)

(ui&u1) } } } (ui&ui&1)(ui&u i+1) } } } (ui&un)
= `

k{i

(u&uk)
(ui&uk)

.

For 0� j<n, gj is the coefficient of u j in G(u). Collecting the terms corresponding
to u j, we have

gj= :
n

i=1

(&1) i+1 vi

>k{i (uk&ui)
Pn& j&1(u1 , ..., ûi , ..., un).

Here ûi denotes that ui is missing from the list u1 , ..., un , and Pk denotes the kth
elementary symmetric polynomial, defined as

P0( y1 , ..., yl)=1, Pk(u1 , ..., yl)= :

|I |=k
I�[l]

`
i # I

yi , k>0.

By Facts (2), (4), and (5), computing vi �(>k{i (uk&ui)) in NC1 is fairly
straightforward. Hence it suffices to show how to compute the polynomials
Pk(u1 , ..., ûi , ..., un), in logspace-uniform NC1. A folklore theorem indicates that this
can be done in nonuniform NC1. For our application, however, the uniformity is
crucial.

It is easy to see that for y1 , ..., yl # F, Pk( y1 , ..., yl) equals Pk( y1 , y2 , ..., yl ,
0, 0, ..., 0) for any number of extra zeroes. Let r=|F*|, the number of elements
in the multiplicative group of F. We will give an NC1 algorithm to compute the
elementary symmetric polynomial of r elements, not necessarily distinct, from
the finite field F. By appending r&l zeros, we can then compute Pk( y1 , y2 , ..., yl).

For 0<k�r, the value of the elementary symmetric polynomial Pk( y1 , y2 , ..., yr)
is the coefficient of X r&k in h(X).> r

i=1(X+ y i). Note that, given any : # F, h(:)
can be evaluated in NC1, by Facts (1) and (5).

If we write h(X) as �r&1
i=0 ai X i, the coefficient ai=Pr&i ( y1 , ..., yr) for 0�i<r.

The idea now is to choose :'s carefully from F, compute h(:), and compute the
coefficients ai by interpolation. If we choose | to be a primitive element of order
r in F*, the powers of |, namely 1=|0, |1, |2, ..., |r&1, run through the elements
of F*. For 0�i<r, let bi=h(|i). The relationship between the pointwise values
(bi 's) and the coefficients (ai 's) of h(X) can be written as

\
b0

b1

b
br&1

+=\
1
1
b
1

|0

|1

b
|r&1

|0 } 2

|1 } 2

b
|(r&1) } 2

} } }
} } }

} } }

|0 } (r&1)

|1 } (r&1)

b
|(r&1) } (r&1)+\

a0

a1

b
ar&1

+ .

The above matrix, which we will denote by 0, is the discrete Fourier transform
matrix and a Vandermonde matrix. Since the powers of | are all distinct, 0
is invertible, and one can compute the coefficients ai by (a0 , ..., ar&1)T=
0&1(b0 , ..., br&1)T. The crucial advantage over the earlier Vandermonde system is
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that with this particular choice of 0, the matrix 0&1 has a simple explicit form: the
(i, j)th entry of 0&1 is just |&(i&1)( j&1). Computing the coefficients of h(X) is now
simply a matrix�vector multiplication. This completes the proof of the lemma. K

Corollary 6. If there is a sparse set S that is hard for P under logspace-com-
putable many�one reductions, then P=LOGSPACE.

Corollary 7. If there is a sparse set S that is hard for P under many�one reduc-
tions computable in logspace-uniform NC1, then P equals logspace-uniform NC1.

Corollary 8. If there is a set S with census function bounded by 2(log n)a that is
hard for P under many�one reductions computable in space (log n)b, then P�
DSPACE[(log n)ab].
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In this paper we show that ~(n) variables are needed for. first-order logic with counting to 
identify graphs on n vertices. The k-variable language with counting is equivalent to the ( k - 1 ) -  
dimensional Weisfeiler Lehman method. We thus settle a long-standing open problem. Previously 
it was an open question whether or not 4 variables suffice. Our lower bound remains true over a 
set of graphs of color class size 4. This contrasts sharply with the fact that 3 variables suffice to 
identify all graphs of color class size 3, and 2 variables suffice to identify almost all graphs. Our 
lower bound is optimal up to multiplication by a constant because n variables obviously suffice to 
identify graphs on n vertices. 

1. I n t r o d u c t i o n  

In this paper we show that ~(n) variables are needed for first-order logic with 
counting to distinguish a sequence of pairs of graphs Gn and Ha. These graphs have 
O(n) vertices each, have color class size 4, and admit a linear time canonical labeling 
Mgorithm. This contrasts sharply with results in [10,27] where it is shown that two 
variables suffice to identify all trees and almost all graphs, and that three variables 
suffice to identify all graphs of color class size 3. 

Another way to interpret our results is with stable colorings of k-tuples of 
vertices. The work of Weisfeiler and Lehman [40,39] on combinatorial and group 
theoretic properties of colored graphs, has inspired the idea of separating the orbits 
of the automorphism group of a graph by coloring k-tuples of vertices. Sometimes, 
this approach is called, the k-dimensional Weisfeiler-Lehman method (k-dim W 
L). In the late seventies and early eighties, this method was developed by many 
researchers, including Farad2ev, Zemlyachenko, Babai, and Mathon. With k =  1, this 
method gives a linear-time graph isomorphism algorithm that works for almost all 
graphs [10]. Furthermore, the fastest known general graph isomorphism algorithms 
make use of this method with k = O(v~)  [11]. It had been conjectured that this 
method would provide a polynomial time graph isomorphism test at least for graphs 
of bounded valence. (Valence is a synonym for degree.) Our result disposes of such 
conjectures. 
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Up until now, most lower bounds in this area were proved using random graphs. 
This method does not work when counting is included in the language because as 
mentioned above, almost all graphs can be identified using only two variables with 
counting. In our construction we choose graphs Tn, (n= 1,2,. . .)  with O(n) vertices 
and separator size n (Definition 6.3). Then we deterministically modify Tn producing 
a pair of non-isomorphic graphs On,Ha, which agree on all properties expressible 
with n variables. Our lower bound is linear in the separator size of the graphs Tn. 
This linear lower bound, combined with a straightforward upper bound (Proposition 
7.3) allows us to precisely determine how many variables are needed to identify many 
classes of graphs in first-order logic, with or without counting. 

This paper is organized as follows: In Section 2 we recount some of the history of 
the Weisfeiler-Lehman method. In Section 3 we give some background in descriptive 
complexity and explain the significance of this problem from the logical point of view. 
In Section 4 we introduce some combinatorial games and prove that they characterize 
logical equivalence in the languages we are considering. In Section 5 we prove the 
equivalence of the ( k -  1)-dimensional Weisfeiler-Lehman method and the k-variable 
language with counting. In Section 6 we use the above combinatorial game to prove 
the linear lower bound. Section 7 describes some corollaries and extensions of this 
work. 

2. H i s t o r y  o f  t h e  W e i s f e i l e r - L e h m a n  M e t h o d  

An old basic idea in graph isomorphism testing and canonical labeling is the 
naive vertex classification algorithm as described in Read and Corneil [37]. First, 
the vertices are labeled or colored with their valences. During the iteration, all labels 
are extended by the multiset ("set" with possibly multiple elements) of the labels of 
their neighbors. Between rounds, the labels are replaced by their order numbers in 
the lexicographic order of all the occurring labels. This always keeps the labels short. 
The algorithm stops when the set of labels stabilizes, meaning that no new differences 
between vertices are discovered. A labeling algorithm identifies a class of graphs, if 
all vertex properties which are invariant under isomorphisms are discovered. In other 
words, the sets of vertices with the same labels are the orbits of the automorphism 
group. 

The naive vertex classification algorithm, which we want to call the one dimen- 
sional Weisfeiler-Lehman method (1-dim W-L),  does not solve the worst cases of the 
graph isomorphism problem. Nevertheless, it is usually a good start, and in fact it 
succeeds most of the time. Babai, ErdSs and Selkow [8] have shown that the 1-dim 
W-L algorithm already produces normal forms for all but an n -1/7 fraction of the n- 
vertex graphs. This has been improved to a e -n l~176176 fraction [10] producing 
an average linear time canonical labeling algorithm by handling the few exceptions 
with a slow algorithm. 

Vertex classification is probably the basis of every practical implementation of a 
graph isomorphism test. For example, this is the case for the "nauty" package [35], 
which is said to be the fastest practical graph isomorphism package. It should be 
mentioned, however, that in addition to vertex refinement, "nauty" makes extensive 
use of partial automorphism information in its backtrack process; and it is not clear 
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whether or not our examples may lead to graphs on which "nauty" requires excessive 
time. In general, it is quite difficult to construct "hard cases" for graph isomorphism. 

There is a class of graphs for which the vertex classification algorithm alone 
is obviously useless, because the algorithm cannot even get started. These are the 
regular graphs, which have the same degree in each vertex. Here it seems quite 
natural to go beyond vertex classification to the 2-dim W-L or edge classification 
algorithm. Initially every ordered pair (u, v) is labeled or colored with one of three 
possible colors, depending on whether u = v and whether there is an edge {u,v}. 
Then information about the multiset of pairs of colors assigned to paths of length 
2 from u to v is repeatedly added to the color of (u, v). The algorithm stops when 
no color class is split any more. A modification of this algorithm has been shown to 
produce normal forms for all regular graphs in linear average time [29]. 

The k-tuple coloring algorithm (named k-dim W-L by Babai [13]) classifies k- 
tuples of vertices. It might color vertices and edges implicitly by using k-tuples with 
repetition of components. It could start with some encoding of the graph into the 
labels assigned to the k-tuples. For example, the initial label or color of every k- 
tuple could be the number of its distinct components except when this number is 
two. Then two colors could be used to encode the presence or absence of an edge 
between the two vertices. We prefer to get a quicker start by initially coloring each 
k-tuple with its isomorphism type. Repeatedly, the color of (Ul , . . . ,uk)  is refined 
by the n element multiset (containing one element for each vertex v) of k-tuples of 
colors previously assigned to 

(V, t t 2 , . . .  , uk )  , ( u l , v , u 3 , . . .  ,?~k), " '" , ( U l , ' " , U k - I , V )  

We only need to consider k-tuples of distinct elements, if we finally color the vertices 
by the multiset of colors of incident k-tuples. A more formal description of the k-dim 
W-L method is given in Section 5. 

Possibly weaker algorithms have been considered. We might call them special k- 
dim W-L algorithms. In Weisfeiler's book [39] only such a method is mentioned 
and called deep stabilization. It consists of individualization followed by a low 
dimensional (1-dim or 2-dim) W-L algorithm. For every distinguished (i.e., initially 
colored with unique colors) (k-1)- tuple  or (k-2)- tuple,  a 1-dim W - L  or a 2-dim W -  
L respectively is performed to detect invariant properties of vertices or edges. These 
methods seem to be weaker than the standard k-dim W-L method. 

Two of the current authors have independently reinvented the k-dim W-L algo- 
rithm in the early eighties and conjectured its capability of identifying the graphs of 
bounded valence (with k being a suitable function of the valence). Later, we have 
learned that such conjectures have been around before in the Soviet Union, where the 
k-dim W-L algorithm (or maybe sometimes a special k-dim W L algorithm) has been 
investigated for two decades. Significant results have been obtained by Farad~ev's 
group, which contributed many papers to Weisfeiler's book [39]. The Russians have 
built a huge algebraic theory with extensive applications around the notion of stable 
colorings of pairs. The key notion is that of a cellular algebra (see [39,30]), which 
has been discovered in another context and called coherent configuration by Higman 
[21]. 

Weisfeiler and Lehman have asked whether the special k-dim W-L method with 
a slowly growing value of k would be sufficient to solve the graph isomorphism 
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problem. There was actually good reason to conjecture k = O(logn) or even O(1) to 
be sufficient. 

The second hope was partly based on the following result of Cameron [14], 
obtained independently by Gol'fand (cf. [19,31]). Let us call a graph k-regular, if the 
number of common neighbors of a k element subset of vertices only depends on the 
isomorphism type of the subgraph induced by the k vertices. (1-regular and 2-regular 
graphs are well known as regular and strongly regular graphs respectively.) Cameron 
and Gol'fand have shown that apart from the pentagon and the line graph of K(3,3), 
only the trivial examples of 5-regular graphs exist, namely the disjoint unions of 
complete graphs of equal size, and their~complements (complete multipartite graphs). 
These graphs are homogeneous, i.e., all isomorphisms of their subgraphs extend to 
automorphisms. Therefore, they are immune to k-dim W-L refinements for any k: 
No refinement beyond the isomorphism type of k-tuptes will follow. However, for any 
other graph, the Cameron-Gol'fand result assures us that the 5-dim W-L method 
will give at least some nontrivial partitioning of the 5-tuples. 

Lipton [32] has proved that a special k-dim W-L method with a fixed k is 
sufficient for canonical labeling of trivalent (degree 3) graphs with arc-transitive 
automorphism groups. (An arc is an ordered pair of adjacent vertices.) 

Support for the k = O(logn) conjecture has been provided by Gary Miller 
[36]. He has shown that for certain classes of strongly regular graphs and other 
combinatorial objects such as Latin squares k = logn is sufficient. Previously, such 
graphs have been considered to be difficult examples for isomorphism testing, because 
of their high degree of regularity and symmetry. The importance of symmetries for 
graph isomorphism testing has been pointed out by Babai and by Mathon [34] who 
showed that the graph isomorphism problem is equivalent to computing the order of 
automorphism groups of graphs. 

Individualization followed by a low (1 or 2) dimensional refinement (i.e., the 
special W L method) has produced pioneer results in the areas of bounded valence 
as well as general graph isomorphism and canonical labeling. Babai's technical 
report [3] started to use group theoretical algorithms to obtain provable upper 
bounds for isomorphism problems. Not only did he get his well known probabilistic 
polynomial time isomorphism test for graphs of bounded color class size, he also 
started the work on bounded valence graphs. Individualization of k = v/-r~(logn) c 
vertices splits a bounded valence graph into color classes of size at most v ~ resulting 
in an exp(v/-n(logn) c) isomorphism test. Subsequently Luks [33] proved, using group 
theory to greater depth, that isomorphism for graphs of bounded valence is in 
polynomial time. Finally the canonical labeling problem for graphs of bounded 
valence has been solved in polynomial time by [11] and [18] independently. 

Individualization followed by naive refinement has also been the tool used by 
Babai to handle strongly regular graphs [4] and primitive coherent configurations 
[6]. He used individualization of k = 2 v ~ l o g n  vertices. Strongly regular graphs and 
more generally, coherent configurations are stable under 2-dim W L. While strongly 
regular graphs are just undirected graphs, coherent configurations are edge-colored 
complete directed graphs. A coherent configuration is primitive if the diagonal has 
one color and all other colors define connected graphs. If a transitive automorphism 
group is primitive, then 2-dim W-L produces necessarily a primitive coherent con- 
figuration. For tournaments, the isomorphism problems of primitive and arbitrary 
coherent configurations are polynomial time equivalent [11]. 



AN O P T I M A L  L O W E R  BOUND 393 

The general graph isomorphism problem has been attacked by Zemlyachenko. 
The method is described in [5] and [41]. By individualization of O(v/-~) vertices 
and canonical edge-switching, he has been able to reduce the valence to O(v/-n). 
Combining this with the method of Luks [33], Zemlyachenko obtained the first 
interesting upper bound for general graph isomorphism [41] (cf. [5]). His bound 
is exp(n 1-c) for some positive constant c. This has subsequently been improved by 
Babai and Luks [11] to exp(nl/2+~ 

Instead of measuring the reduction in the valence, one could ask about the effect 
of these methods on the cojor class size. Bahai [7] has investigated this splitting 
power of Zemlyachenko's method combined with 2-dim W L. The result is that 
individualizing k = O(n 2/3 logn) vertices, and applying Zemlyachenko's method and 
the 2-dim W-L method, he obtains color classes which have _< k vertices in each 
connected component of the resulting graph. 

3. Logica l  B a c k g r o u n d  

In [23, 24, 25] one of us has pursued an alternate view of complexity theory in 
which the complexity of a problem is characterized in terms of the complexity of 
the simplest first-order sentences expressing the problem. For example, it is shown 
in [23] that the polynomial-time properties are exactly the properties expressible by 
first-order sentences iterated I polynomially many times: 

Fact 3.1. [23] 
oO 

P = U FO(-<)[nk] 
k=l 

The notation FO(<)[nk] denotes the set of properties describable by a very 
uniform sequence of sentences {~n} such that  each sentence ~n has length O(n I~) 
and has a bounded number of variables independent of n. 2 The symbol < is included 
to emphasize the presence of a total ordering on the universe of the input structures. 
In [24] and in [38] it is also shown that this uniform sequence of formulas can be 
represented by a least fixed point operator (LFP) applied to a single formula. Thus, 

P = FO(_<) + LFP = U FO(-<)[nk]" 
k=l 

Fact 3.1 gives a natural language expressing exactly the polynomial-time prop- 
erties of ordered graphs. Let a graph property be an order independent property of 
ordered graphs. One can ask the question, 

Question 3.2. Is there a natural language for the polynomial-time graph properties? 
Since the notion of "natural" is not well defined, some readers may prefer the 

more precise question: 

1 More precisely, the sentence expressing the property for structures of size n consists of a fixed 
block of restricted quantifiers written p(n) times, followed by a fixed formula. 

2 In [23] the notation Var&Sz[O(1),n k] instead of FO[n k] was used. 
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Question 3.3. Is there a recursively enumerable listing of a set of Turing machines 
that accept exactly all the polynomial-time graph properties? 

These questions were first asked with respect to database query languages [15]. 
See [28] for a discussion of the role of ordering in the database context. 

We remark that should it be the case that graph canonization (i.e. given a graph 
return a canonical form such that  two graphs are isomorphic iff their canonical forms 
are equal) is in polynomial time, then the answer to Question 3.3 is, "Yes." Thus a 
negative answer would imply that P is not equal to NP. 

Previous to this paper, the only polynomial-time graph properties known not 
to be expressible in FO + LFP (without ordering) were "counting problems". For 
example, that a graph has an even number of edges is not expressible in FO + LFP. 
In [24] a language which we now call "FO + LFP + COUNT" was proposed as an 
answer to Question 3.2. This language describes two-sorted structures consisting of 
an unordered domain of vertices together with an edge predicate, plus an ordered 
domain of numbers. The domains are joined via counting quantifiers as in Section 
3.2. We show in Corollary 7.1 that  this language fails badly on certain linear time 
properties of graphs. 

In [27] and [26] the exact number of variables needed to identify various classes 
of trees with and without counting, respectively, is determined. (Without counting 
this number increases linearly with the arity of the trees; with counting two variables 
suffice.) The question of how many variables are needed to identify various classes 
of graphs is interesting in its own right, and also has applications to temporal logic 
[26]. 

In the remainder of this section we explain the logical background we need. Some 
of this material is described in more detail in [27]. 

3.1. First-Order Logic 

For our purposes, a graph will be defined as a finite first-order structure, G---- 
(VG,EG). V G is the universe, (the vertices). E G is a binary relation on VG, (the 
edges). 

1-- 3 -2  

�9 4 ~ 0  
Fig. 1. An Undirected Graph 

As an example, the undirected graph, G1 = (V1,E1), pictured in Figure 1 has 
vertex set V 1 = {0,1,2, 3, 4}, and edge relation 

El = {(0, 3), (0,4), (1,21, (1,3),..., (4, 0), (4, 3)} 

consisting of 12 pairs corresponding to the six undirected edges. By convention, we 
will assume that all structures referred to in this paper have universe {0, I,..., n-i} 
for some natural number n. 
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The first-order language of graph theory is built up in the usual way from the 
variables x l ,  x2, . . . ,  the relation symbols E and =, the logical connectives A, V,--,-% 
and the quantifiers V and 3. The quantifiers range over the vertices of the graph in 
question. For example consider the following first-order sentence: 

-- VxVy[E(x, y) --* E(y, x) A x ~ y] 

says that G is undirected and loop free. We will only consider graphs that satisfy 
~, in symbols: G ~ ~. 

It is useful to consider a slightly more general set of structures. The first-order 
language of colored graphs results from the addition of a countable set of unary 
relations {C1, C2,...} to the first-order language of graphs. 3 Define a colored graph 
to be a graph that interprets these new unary relations so that all but finitely many 
of the predicates are false at each vertex. These unary relations may be thought of 
as colorings of the vertices. 

Definition 3.4. For a given language ~ we say that the graphs G and H are ~-  
equivalent ( G - z  H) iff for all sentences ~ E.~, 

We say that ~ identifies the graph G iff for all graphs H, if G=-2H then G and 
H are isomorphic..~ identifies a set of graphs S if it identifies every element of S. 

Note: For the languages :ek,$ k which we consider in this paper, and any graph G, 
the set of sentences in the language that are true about G has a polynomial size 
description which may be computed in polynomial-time [27]. Thus any set of graphs 
identified by *~k or Sk has a polynomial-time canonization algorithm. 

Of course the First-Order Language of Colored Graphs identifies all colored 
graphs. From a computational viewpoint it is interesting to consider weaker lan- 
guages admitting much faster equivalence testing algorithms. 

3.2. The Languages ~k and ~k 

Define -~k to be the set of first-order formulas ~, such that the variables in 
are a subset of Xl, x2, . . . ,  xk. Note that variables in first-order formulas are similar 
to variables in programs: they can be reused (i.e. requantified). 

For example, consider the following sentence in-~2. 

r ~ VXl3X2(E(Xl,X2) A 3Xl[-~S(xl,x2)]) 

The sentence, r says that every vertex is adjacent to some vertex which is itself not 
adjacent to every vertex. As an example, the graph from Figure 1 satisfies r Note 
that the outermost quantifier, VXl refers only to the free occurrence of x 1 within its 
scope. 

Define a color class to be the set of vertices which Satisfy a particular set of color 
relations. The color class size of a graph is the cardinality of its largest color class. 
In [27] it is shown that Z3 identifies the set of graphs of color class size 3. 

3 Coloring relations are a clean tool for restricting the automorphisms of graphs. However, all the 
coloring relations in this paper could be replaced by simple gadgets in the graphs, without changing 
any of the results. 



396 JIN-YI CAI, MARTIN FURER, NEIL IMMERMAN 

As noted above, the languages ag k are too weak to count, or even to express t-he 
parity of the number of }dges. It is thus natural to strengthen these languages by 
adding counting quantifiers to the languages agk, thus obtaining the new languages 
~k. For each positive integer i, we include the quantifier (3ix). The meaning of 
"(317xl)qO(Xl)", for example, is that  there exist at least 17 vertices such that  qo. It  
is sometimes convenient to use the following abbreviation (3!i x), meaning that  there 
exists exactly i x's: 

(3 ! i . )~ (x )  -- (3i x)~(~) A ~(3i  + 1 . ) v ( x )  

As an example, the following sentence in ~2 says that  there exist exactly 17 
vertices of degree 5, 

(2!17 xl)(3!5 x2)E(xl, x2) 
As an even worse example, the following sentence in g2 identifies the graph in Figure 
1. It  salts that  the whole graph contains exactly 5 vertices and that  one vertex is 
adjacent to four vertices each of which has degree 2. 

[ (3 !5X1) (X 1 = Xl )  ] A [ ( 2 ! 1 X l ) ( 3 4 x 2 ) ( E ( X l , X 2 ) A  (~!2Xl)E(x2,xl))] 

Note that  every sentence in gk is equivalent to an ordinary first-order sentence 
with perhaps many more variables and quantifiers. In Section 5 it is shown that  
testing ~gk equivalence corresponds to the ( k -  1)-dimensional Weisfeiler-Lehman 
Method. It  thus follows that  the language g2 identifies all trees and almost all graphs. 
In [27], TIME(nklogn) algorithms for testing ~k  o r  ~ k  equivalence of graphs on n 
vertices are presented. 

4. P e b b l i n g  G a m e s  

We next describe two pebbling games that  are equivalent to testing ~k  and ~gk 
equivalence, respectively. These games are variants of the games of Ehrenfeucht and 
Fraiss~, [16,17]. The results in this section concerning the ag k game and the ~k game 
originally appeared in [23] and [27], respectively. 

Let G and H be two graphs, and let m and k be natural  numbers. Define the m- 
move Zk game on G and H as follows. There are two players, and for each variable 
xi, i= 1,... ,k there is a pair of xi pebbles. 

On each move, Player I picks up the pair of xi pebbles, for some i E {1,... ,k}, 
and he places one of them on a vertex in one of the graphs. 4 Player II  must then 
place the other xi pebble on a vertex of the other graph. 

Define a k-configuration on a pair of graphs G,H to be a pair (u,v) of partial 
functions, 

~:  { x l , . . . , , k )  -~ va; ~: { x l , . . . ,  xk} -~ vH 
such that  the domains of u and v are equal. We will use the notation Du to denote 
the domain of the partial function u. Thus a k-configuration on G, H is a valid 
position of the ~k game on G,H. Here u(xi) = g means that  an xi pebble is on 

4 To make the  play of the games easier to follow we will use masculine pronouns for Player I and 
feminine pronouns for Player II. 
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g E VG. If xi ~ Du = Dv this means that  the xi pebbles are not currently placed on 
the board. 

Let (Ur,Vr) be the configuration of the game after move number r. Then we say 
Player I wins the game after move r if the map that  takes ur(xi) to vr(xi), i cDur ,  
is not an isomorphism of the subgraphs induced by these vertices. (Note that  if the 
graphs are colored then an isomorphism must preserve colors as well as edges.) We 
say that  Player I wins the m-move game if for some r E {0,1,2, . . . ,  m}, Player I wins 
the game after move r. Player II  wins iff Player I does not win. Finally, we say that  
Player I I  has a winning strategy for the ~k game on G and H,  iff for all m, Player 
II  has a winning strategy for the m-move game on G and H.  

Thus Player I I  has a winning strategy for the ~k game just if she can always 
find matching vertices to preserve the isomorphism. 5 Player I is trying to point out 
a difference between the two graphs and Player I I  is trying to keep them looking the 
same. 

The number of moves in the ~k game corresponds to the depth of nesting of 
quantifiers of the sentences in ~fk needed to distinguish the graphs G and H. Define 
the language ~k,m to be the restriction of ~k to formulas of quantifier depth m. 
The relationship between the ~k game and the language ~k is given in Theorem 4.2. 
Before we state it, we need the following definition. 

Definition 4.1. Let G,H be a pair of graphs and let (u,v) be a k-configuration on 
G,H. We will say that G,u is ~k,m-equivalent to H,v, in symbols, G,n=_~k,m H,v 
iff for all formulas ~ E~fk,m whose free variables are a subset of Du, 

G , u ~  ~ H , v ~  

We omit u and v if they denote the nowhere defined partial function. Similarly we 
will say that  G is ~k-equivalent to H,  in symbols, G--Zk H iff for all m, G=--fk, m H. 

G H 

Y b 

Fi 9. 2. The :g2 Game 

Theorem 4.2. [23] Player I115as a winning strategy for the m-move ~k game on G, H 
if  and only if  G =--~k,m H. Thus, Player H has a winning strategy for the ~gk game on 
G,H iff G-sek H. 

5 By definition, the strategy can depend on the given number  m of moves, but as G and H are 
finite, there is actually one strategy winning for all m. 
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Before we prove Theorem 4.2, we will give a few examples of the game. 

Example 4.3. Consider the -~2 game on the graphs G and H shown in Figure 2. 
Suppose that Player I's first move is to place an x 1 pebble on a red vertex in G. 

Player II may answer by putting the other xl pebble on either of the red vertices in 
H. Now suppose Player I puts x2 on an adjacent yellow vertex in H. Player II  has 
a response because in G, every red vertex has an adjacent yellow vertex. The reader 
should convince himself or herself that in fact Player II has a winning strategy for 
the Z2 game on the given G and H. It follows from Theorem 4.2 that G and H agree 
on all sentences from Z2. 

On the other hand, clearly Player I has a win in the 3-move, ~3 game on G and 
H. He can simply put his pebbles on three points in one of the triangles in G. Since 
H has no triangle, Player II will lose. Notice that in this case Player I is playing the 
following sentence from ~3,3 which is true of G and false of H: 

(3Xl)(3x2)(3x3)[E(x1, x2) A E(x2, x3) A E(x3, Xl)] 

Finally, a more interesting example of an ~3 game would be with H p consisting 
of a hexagon like H, but without the colors and G l consisting of a disjoint union of 
two copies of the hexagon H p. Here Player II has a winning strategy for the 3-move 
~3 game, but Player I has a winning strategy for the 4-move ~3 g ame.6 His strategy 
is to play the following sentence true of H ~ but not of G r saying that every pair of 
vertices is joined by a path of length at most three: 

(Vx)(Vy)(3z)[(E(x, z) v = z) A (3x) (E(z ,  x) A y))] 

In order to prove Theorem 4.2 we need the following 

Lemma 4.4. For any relational language with finitely many relation symbols, and any 
k and m there are only finitely many formulas up to equivalence in ~s Furthermore 
if we include a finite set of additional quantifiers, e.g. counting quantifiers, then the 
expanded language still only has finitely many formulas up to equivalence. 

Proof. This is easy to see by induction on m. When m - - 0 ,  there are only finitely 
many variables and only finitely many relation symbols, so only finitely many sets of 
possible facts about these variables. Assume that there are a total of f different kinds 
of quantifiers. Inductively, assume there are Sm inequivalent formulas of quantifier 

depth m. Then there are no more than 2 2/ksm inequivalent formulas of quantifier 
depth m + 1. | 

Proof of Theorem 4.2. We prove by induction on m, that for all k-configurations 
(u,v) on G, H the following statements are equivalent: 

1. Player II  has a winning strategy for the m-move Zk game on G, H starting from 
the initial configuration (u,v). 

2. G , u - ~ , m H ~ v  

6 The reason we removed the colors is that with the colors there is a sentence from "~3,3 
distinguishing the two graphs, namely in H every pair of vertices of different color is joined by 
a path of length at most two. 
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The base of the induction is immediate because the map from u(Du) to v(Du) is 
an isomorphism of the induced subgraphs iff G, u and H, v agree on all quantifier-free 
formulas ."  

Assume the equivalence of (1) and (2) for all m-move games, and let (u,v) be 
the initial configuration of an (m + 1)-move game. Assume condition (2) is false and 
let ~ E~k,m+ 1 be a formula on which G,u and H,v disagree. If ~ is a disjunction, 
conjunction, or negation of smaller formulas then G, u and H, v must disagree on one 
of these smaller formulas, so we may assume that  ~ begins with a quantifier. We may 
assume by symmetry that  ~= (3xi) r and G,u ~ ,  but H,v ~ ~ .  Player I should 
then place one of the x i pebbles on a vertex g such that  r holds in G,u(xi/g). 
No mat ter  what vertex h Player I I  answers with, we know that  -~r will hold in 
H, v(xi/h). Letting (Ul, Vl)=  (u(xi/g),v(xi/h)) be the configuration after this move 
we have that  G,ul ~k,ra H, vl. Thus by induction Player I has a winning strategy 
for the remaining m-move game and thus for the original m +  1-move game. 

Conversely, assume that  condition (2) is true and let Player I 's  first move be to 
place one of the xi pebbles on some vertex g from G. Let Ul =u(xi/g) be the result 
of this move. Note that  there are only finitely many color predicates that  any vertex 
in G or H satisfies. Thus, Lemma 4.4 applies and there is only a finite set Fk, m of 
inequivalent formulas of interest in "~k,m" Define S to be the set of formulas in Fk, m 
that  are satisfied by G, Ul and let a be the conjunction of the finitely many formulas 
in S. Thus we have that  

G, u ~ (~xi)~ 
It  follows that  H,v ~ (Sxi)(x. Let Player I I  place the other xi pebble on a witness h, 
for a in H,  and let vl =v(xi/h)  be the result of this move. By the definition of a it 
follows that  

G, Ul ---~k,m H, Vl 

Thus it follows by induction that  Player II  has a winning strategy for the remaining 
m-move game and thus also for the original m + 1-move game. | 

4.1. The ~k Game 

A modification of the :s game provides a combinatorial tool for analyzing the 
expressive power of Sk. Given a pair of graphs define the Sk game on G and H as 
follows: Just as in the -~k game, we have two players and k pairs of pebbles. The 
difference is that  each move now has two parts. 

1. Player I picks up the xi pebble pair for some i. He then chooses a set A of 
vertices from one of the graphs. Now Player I I  answers with a set B of vertices 
from the other graph. B must have the same cardinality as A. 

2. Player I places one of the xi pebbles on some vertex b E B. Player I I  answers by 
placing the other x i t)ebble on some a E A. 
The definition for winning is as before. What  is going on in the two part  move 

is that  Player I asserts that  there exist [A[ vertices in G with a certain proper ty~ 
Player I I  answers with the same number of such vertices in H.  Player I challenges 

7 We axe presenting the proof here for the language with no constant or function symbols. The 
proof goes through when function symbols are present, under the additional assumption that the 
cardinality of any finitely generated set is finite [26]. 
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one of the vertices in B and Player II  replies with an equivalent vertex from A. This 
game captures expressibility in ~k: 

Theorem 4.5. [27] Player H has a winning strategy for the ~k game on G, H if and 
only if G--$k H. 

Theorem 4.5 follows from Theorem 5.2, which we prove in the next section. 

5. ~ k - E q u i v a l e n c e  E q u a l s  (k - 1 ) -d im W - L  

In this section we describe the k-dimensional Weisfeiler-Lehman method (k-dim 
W-L).  We then prove that  a pair of k-tuples of vertices from a graph agree on all 
formulas in ~k+l  iff they are in the same equivalence class arising from the k-dim 
W-L.  

The l-dim W - L  is also called vertex refinement. Let G = (V,E, C1,...,Cr} be 
a colored graph in which every vertex satisfies exactly one color relation. Let W 0 : 
V - * { 1 . . . n }  be given by WO(v)=i iff vECi. We then define W r+l ,  the refinement 
of W r as follows: The new color of each vertex g is defined to be the following tuple: 

(Wr(g) ,Yl ,n l , . . . ,yr ,nr}  

where Yi is the number of vertices of color i that  g is adjacent to, and ni is the 
number of vertices of color i that  g is not adjacent to. In practice, we sort these new 
colors lexicographically and assign w r + l ( g )  to be the number of the new color class 
that  g inhabits. However, we retain a table decoding the "meaning" of each of the 
colors. Thus two vertices are in the same new color class precisely if they were in the 
same old color class, and they were adjacent to the same number of vertices of each 
color. We keep refining the coloring until at some level W r : W  r+l. We let W = W  r 
and call W the stable refinement of W 0. 

We will see in Theorem 5.2 that  stable coloring provides exactly the same 
information as ~2 equivalence. 

Next define the k-dim W - L  for k > 1 as follows. Let G be a colored graph 
.,Xk} to V G. Define the initial color W (u) and let u be a (total) map from {Xl,.. 0 

according to the isomorphism type of u. That  is, W~ = W~ iff the map from 
(U(Xl),... ,U(Xk) ) to (V(Xl),... ,v(xk) ) is an isomorphism. 

For each g E V G, define the operation 

sift(f,  u, g) = (f(u(xl/g)), f (u(x2/g)) , . . . ,  f(u(xk/g))) 

Thus sift(W r, u, g) is the k-tuple of Wr-colors arising from substituting g in turn for 
each of the k positions in u. 

We define the r + l s t  color of u from the r th  color by considering the r th  color of 
u together with the number of vertices g such that  sift(W r, u, g)=t  for each possible 
k-tuple of colors t. More explicitly, form the new color of u as the tuple: 

(Wr(u), SORT {sift(Wr,u,g) I g e G}) 

As in the one dimensional case, we sort these new colors lexicographically, and 
assign W r+l according to the ordering that  ensues. However, we do retain a table 
decoding the meaning of each color. Thus for a pair of configurations u,v from 
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different graphs, w r + l ( u ) =  w r + l ( v )  iff the numbers of the colors assigned are the 
same, and the decoding tables for the two graphs are identical. Thus wrq-l(u): 
wr+l(v )  just if W r ( u ) = W r ( v )  and for each k-tuple of colors ~, 

(5.1) I{g I sift(W r, u, g) -- t}l = I{g l sift( Wr,  v, g) = t}l 

(Note that the difference between the case k -- 1 and the case k > 1 is that  in 
the former case we have to explicitly consider which of the g's are adjacent to U(Xl) 
in the above definition of new color; whereas, for k > 1, this adjacency is part of the 
information in the initial color of the tuples u(xj /g)  for j ~ 1.) 

Let W(u)  denote the stable color of u. Note that  there can be at most n k color 
classes for a graph with n vertices and thus the algorithm stops after at most n k 
iterations. 

Theorem 5.2. Let G, H be a pair of colored graphs and let (u, v) be a k-configuration 
on G, H, where k >_ 1. Then the following are equivalent: 

i .  
2. G, u =-~k+l H, v 
3. Player H has a winning strategy for the ~k+l game on (G,H), whose initial 

configuration is (u, v). 

Proof. By induction on r we show that  the following are equivalent: 
1. Wr(u)  = WT(V) 
2. G,u-Ek+l,rH,  v 

3. Player II has a winning strategy for the r-move Ek+l game on (G,H) whose 
initial configuration is (u, v). 
The base case is by definition. W 0 (u )=  W 0 (v) if[ the map from U(Xl),. . . ,  u(xk) 

to v(xl) , . . . ,V(Xk) is an isomorphism. This is true iff G,u and H,v satisfy all the 
same quantifier-free formulas; and it is also the definition of Player II winning the 
zero move game. 

Assume that the equivalence holds for all (u,v) and for all r < m .  

(-~1 =~ --2) : Suppose that Win(u) # Win(v). There are two cases. If w m - l ( u )  # 
w m - l ( v )  then by the inductive assumption there is a formula ~ E ~k+l,m-1 on 
which G,u  and H,v  differ. Otherwise it must be that  for some h-tuple of colors, 

= ( t l , . . . , t k )  , Equation (5.1) fails. Let N be the cardinality of the larger set in 
Equation (5.1). 

By induction, two k-tuples of vertices are in the same f(m-1)  color class iff they 
agree on all formulas from ~k+l,m-1. By Lemma 4.4 there are only finitely many 
inequivalent ~k+l,m-1 formulas, when we restrict our attention to graphs with the 
same finite number of vertices as G. (If G and H have different numbers of vertices, 
then for r > 1, all the above conditions are false.) Let r be the conjunction of the 
finitely many ~k+l,m-1 formulas characterizing the m - 1  color class i. Thus, for w 
a k-configuration on F 6  {G,H}  

wm-l( ) = i 
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It  follows that  G, u and H, v differ on the following formula f r o m  ~k_t_l,m .8 

(3NXk+l)(r 1 (Xl/Xk+l) A ' "  A r 

(-~2 =~ -13) : Suppose that  G,u ~ ~o but H,v ~ -~o, for some ~o E ~k+l,m" If ~o is a 
conjunction then G,u and H,v must differ on at least one of the conjuncts, so we 
may assume that  ~o is of the form (3Nxi) r We may assume that  xi is the currently 
unassigned variable Xk+ 1. On the first move of the game Player I picks up the pair 
of Xk+l pebbles and chooses a set of N vertices g, such that  G,u(xk+l/g ) ~ r 
Whatever  Player I I  chooses as B there will be at least one vertex h E B such that  
H,V(Xk+l/h ) ~-~r  Player I puts his pebble on this h. Player I I  must respond with 
some g C A. Now G,u(Xk+l/g ) and H,v(xk+l/h ) differ on r E ~k+l ,m-1.  Thus by 
induction Player II  loses the remaini~ig m - 1  move game. 

(1 ~ 3) : Suppose that  Wm(u) = Wm(v). It  follows that  Equation (5.1) holds for 
each k-tuple of colors t. Clearly Player I 's  strongest move involves the presently 
unused pair of Xk+ 1 pebbles. Suppose he picks them up and chooses a set A of N 
vertices from G. For each t, let N~ be the number of vertices g E A such that  t -- 
si f t (wm-l ,u,g) .  It  follows from Equation (5.1) that  Player I I  can put N~ vertices h 
into B such t=si f t (wm-l ,v lh) .9  

In the second part  of the move Player I will put Xk+ 1 o n  some h E B. P layer  II  
should then answer with a g E A such that  

sift(W m - l ,  u, g) = sift(W m - l ,  v, h) = 

Consider the remaining game on configuration (U(Xk+l/g),v(Xk+l/h)). Note 
tha t  Player II  has not yet lost. At the beginning of the next move, Player I will 
choose some pair of pebbles xi and pick them up. Now we know that  the remaining 
configurations have the same W m-1 color. It follows by induction that  Player I I  
wins the remaining ( m -  1)-move game. I 

The following observation will be useful in the proof of our main theorem. 

Observation 5.3. If Player I has a winning strategy for the m-move ~k game on 
G, H,  then he has a winning strategy in which throughout the game he only chooses 
monochromatic sets A. 
Proof. We saw in the above proof that  whenever Player I chooses a set A, this set 
may be parti t ioned according to the k-tuple of color classes induced. Player I I  then 
answers separately for each k-tuple of colors. If Player I I  does not have the right 
number of elements in one of these classes then she will lose, and Player I need only 
have selected his elements from that  class. Each of these classes is monochromatic. I 

I t  is not hard to see using standard coloring algorithms, cf. [1, w that  

Fact 5.4. [27] The stable colorings of k-tuples may be computed in O(k2nk+llogn) 
steps on a RAM. 

8 For the case k ---- 1 we must explicitly consider adjacency and so the formula is 
(3N x2) ( E(Xl,X2) A ttl  (Xl /X2) ). 

9 In the case k---1, Player II must choose h's that are adjacent to V(Xl) iff the corresponding g~s 
are adjacent to U(Xl). 
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It then follows from Theorem 5.2 that  graphs that  are identified by the language 
Sk+l have a canonization algorithm that  runs in time O(k2n k+l logn). 

Remark 5.5. It is interesting to note that  the language ~k+l  enjoys a relationship 
similar to that  of Theorem 5.2 with a variant of the k-dim W-L algorithm with the 
same time bound. The only difference is that  the computation of the new color treats 
the following as a set instead of a multiset: 

{s i f t (wm-l ,u ,g)  I g �9 VG) 

That is, after sorting the collection of k-tuples, we eliminate duplicates. 

6. C o n s t r u c t i o n  

We construct our counterexample graphs by starting with low degree graphs 
having only linear size separators. We replace each vertex v of degree k in such a 
graph by the graph Xk, defined as follows: X k = (Vk,Ek), where 

V k = A  k U B  k U M  kwhereA  k-~{ai  I 1 < i < k ) ,  
Bk = {bi I 1 < ' i  < k), and 
Mk ---- {ms I S C { 1 , . . . , k ) ,  ISI is even ) 

Ek = {(ms,  a~) J / �9 S} U {(ms,  b~) I / r S} 

Fig. 3. The Graph X 3 
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Thus X k consists of a set of 2 k-1 vertices in the middle each connected to one 
vertex from each of the pairs {ai,bi}, 1 < i < k. Furthermore, each of the middle 
vertices is connected to an even number of ai's. (We will assume that the middle 
vertices (~4k) of X k have a different color, say magenta, from the others (A k U Bk). 
Furthermore, the pairs ai and bi should be able to recognize their mates. If necessary, 
add vertices ci colored chartreuse, with edges to ai andb/.) See Figure 3 for a diagram 
of X 3. 

The following lemma describes the relevant property of the graph X k. The proof 
is immediate. 

Lemma 6.1. Suppose that we color the vertices ai and bi of graph X k with the color 
i. (Thus all automorphisms of X k must fix the sets {al ,bl} , . . . ,  {ak,bk}.) Then 
there are exactly 2 k-1 automorphisms of Xk. Each is determined by interchanging 
ai and bi for each i in some subset S of {1, . . . ,  k) of even cardinality. 

Let G be a finite, connected, undirected graph such that every vertex of G has 
degree at least two. Define the graph X(G) ("X of G") as follows. For each vertex 
v of G, we replace v by a copy of Xk, call it X(v),  where k is the degree of v. To 
each edge (v,w) of v we associate one of the pairs {ai,bi} from X(v),  call this pair 
a(v,w) and b(v,w). Finally, we connect the a vertices and the b vertices at each end 
of each edge, that is we draw the edges (a(u,v),a(v,u)) and (b(u,v),b(v,u)). If G 
is a colored graph, then each vertex in X(v)  should inherit the color of v. Next, 
define the graph X(G) ("X twist of G") as follows: In the above construction of 
X(G) arbitrarily choose one edge (v,w) and twist it, that  is reverse the connections, 
drawing edges (a(u,v),b(v,u)) and (b(u,v),a(v,u)). In the next lemma we show some 
relevant properties of X(G) and X(G),  including the fact that ) ( (G) is well defined. 

Lemma 6.2. Let G be any finite, connected graph such that every vertex of G has 
degree at least two. Let X(G) and ~f(G) be as above. Let X(G)  be constructed like 
X(G),  but with exactly t of its edges twisted. Then X(G) is isomorphic to X(G)  iff 
t is even, and J~(G) is isomorphic to X(G)  l i f t  is odd. 

Proof. First observe the following fact about ~/(G). Let v be any vertex of G, and 
let (x,v), (y,v) be any two edges incident at v. If in _~(G) we twist both (x,v) and 
(y,v), then the resulting graph is isomorphic to J((G). (This is immediate from 
Lemma 6.1.) 

Now suppose that the number of twists in t is greater than or equal to two. The 
above observation lets us move the twists towards each other until they overlap and 
cancel each other out. Thus if t is even then X(G)  is isomorphic to X(G),  otherwise 
it is isomorphic to X(G).  

It remains to show that X(G) is not isomorphic to X(G).  Assume for the sake 
of a contradiction that  ~ is an isomorphism from X(G) to ~:(G). Consider the 
action of ~ on any pair (a(v,w),b(v,w)} C X(v) ,  for (v,w) an edge of G. Because 
of the colorings in the definition of Xk, ~ must map the pair {a(v,w),b(v,w)} 
to some {a(v',w'),b(vl, wl)} in X(G),  and thus ~ also maps (a(w,v),b(w,v)} to 
(a(wl,vl),b(wl,vl)}. Define @~ to be the sum rood 2 over all such pairs in X(G) 
of the number of times ~p maps an a to a b. Clearly if we consider the two pairs 
corresponding to every edge (x, y) in G, the number of such switches is either zero 
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or two, except for the unique edge chosen in the construction of X(G), where the 
number is one. Hence @~ is one mod 2. Now let's consider the mod 2 sum in another 
way, namely in terms of each copy of X k in X(G). By Lemma 6.1, it is immediate 
that  G~ is zero mod 2. This contradiction proves the lemma. | 

Definition 6.3. A separator of a graph G = (V, E)  is a subset S C V such that  the 
induced subgraph on V -  S has no connected component with more than IV[~2 
vertices. 

We now prove our main theorem: 

Theorem 6.4. Let T be a graph such that every separator of T has at least s + 1 
vertices. Then 

X(T) --V~ X(T). 

Proof. By Theorem 5.2, it suffices to give a winning strategy for Player II  in the ~s 
game on X(T) and f ( (T) .  We will assume that  the original graph T has color class 
size one. The graphs X(T) and X ( T )  inherit these colors and so have color class size 
2 k-1 , where k is the maximum degree of any vertex in T. This only makes life more 
difficult for Player II. 

We know by Lemma 6.2 that  if we add a twist to any edge of X(T), then the 
resulting graph is isomorphic to ) ( (T) .  After the r th  move of the game, let Qr be 
the largest connected component in T -  Pr where Pr is the set of vertices g E T such 
that  just after the r th  move there is a pebble on a vertex of X(g) in X(T). Since T 
has no s separator, we know that  Qr contains over half the vertices of T. Player I I ' s  
winning strategy will be to maintain the following property: 
(*) For each vertex g e Qr, let Xg(T) be X(T) with an edge adjacent to g twisted. 

Then there exists an isomorphism O~r,g from Xg(T) to f ( (T) ,  such that  for all 
i < s, O~r,g maps the vertex under pebble xi in X(T) to the vertex under pebble 
xi in X(T) .  

The difference between X(T) and _Y((T) is that  the latter graph has one twisted 
edge. An intuitive explanation of Player I I ' s  winning strategy is that  she keeps this 
twisted edge inside of Qr. With only s pebbles, Player I cannot break apart  Qr to 
expose the twist. 

Clearly if Player I I  can maintain (*), then the map from the pebbled points 
in X(T) to the corresponding pebbled points in .K(T) is an isomorphism, and she 
wins. We show by induction on r, that  Player II  can maintain (,).  First let us 
make a remark about Player I 's moves. By Observation 5.3, it always suffices for 
Player I to restrict himself to choosing a set of monochromatic points at each move. 
Notice that,  if Player I chooses a vertex in M(h) ,  the middle of an X(h), then all the 
other vertices in that  X(h) are determined. Furthermore, since one point in M(h) 
determines all of M(h) ,  it suffices for Player I to choose only a single point at a time. 
(Thus counting does not help at all in distinguishing X(T) from X(T)!)  

Player I I ' s  inductive strategy can now be stated. Assume (,)  holds, and suppose 
that  on move r + 1 Player I picks up pebble xi and puts it down on a vertex in 
M(w). Note that  a new largest component Qr+ l  is determined. Let g be a vertex 
in Qr f-)Qr+l. Player I I ' s  response is to answer Player I 's  move according to the 
isomorphism O~r,g. To maintain (,) ,  let O~r+l,g : Otr,g. Since there is a pebble-free 
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path  from g to every other vertex in Qr+l ,  the proof of Lemma 6.2 shows us how to 
define all the other isomorphisms, ~ r  + l ,h , h E Q r + l . | 

Corollary 6.5. There ex/sts a sequence of pairs of graphs {Gn, Hn}, n E N admit- 
ting a linear time canonical labeling algorithm and having the following additional 
properties: 

1. Gn and Hn have O(n) vertices. 
2. Gn and Hn have degree three and color class size four. 
3. Gn=~ Hn. 
4. Gn is not isomorphic to Hn. 

Proof. This follows immediately from Theorem 6.4 when we let Gn = X(Tn) and 
Hn =)((Tn) where the Tn's are a sequence of degree three graphs of separator size n, 
with each vertex of Tn colored a unique color. Such graphs are well known to exist, 
see for example [2]. | 

7. C o r o l l a r i e s  

A long time ago, one of us showed that  there is a polynomial-time property of 

graphs that  requires f~(2 ~ quantifiers to be expressed in first-order logic without 
ordering. Tha t  proof also used the graphs X(Dn)  and X(Dn),  for a certain sequence 
of degree three graphs {Dn) [22, Theorem 7]. Now, Corollary 6.5 improves that  
lower bound to ~2(n) variables. 1~ It  also shows graphically that  if we exclude the 
ordering relation from inductive first-order logic, then the addition of counting does 
not suffice to express all polynomial-time graph properties. In particular, we have 
the following: 

Corollary 7.1. Let F be the set of all graphs of the form X(G),  or If(G), for all 
graphs G of degree.at most  three and color class size one. Then the isomorphism 
problems for graphs in F is expressible in first-order logic with ordering and sum 
mod 2, but it is not expressible by any sequence of first-order sentences f r o m  ~r(n) 
(without ordering), where r(n) = o(n). 

RemArk 7.2. In particular, inductive logic with counting, but without ordering does 
not contain all the polynomial-time computable graph properties. In fact, it does 
not even contain all such properties computable by a uniform sequence of bounded- 
depth, polynomiai-size Boolean circuits that  include pari ty gates, cf. [12]. 
Proof. We have seen in Corollary 6.5 that  the graphs X(Tn) and )f(Tn) are indis- 
tinguishable in ~en for some constant e > 0. Suppose for the sake of a contradiction 
that  there were a sentence a E ( F O + L F P + C O U N T )  that  expresses the isomorphism 
property for graphs from F. That  is for graphs G, H E F, 

(G,H) ~ a r G-~ H 

10 This is a major improvement because n is much bigger than 2 l~ and because a sentence 
with ~ quantifiers can make use of at most q variables, but a sentence with v variables can make use 
of 2 n quantifiers. 
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Let k be the number of distinct variables occurring in a. For graphs of size n, 
let an be the unwinding of a as follows. Rewrite any least fixed points of arity a, 
(LFP~) as ~(ha) (0). Next replace any quantified number variable 3i (respectively, 

n - 1  n - 1  

Vi) by a disjunction V (respectively, by a conjunction A )" "Note that an e $k and 
i=O i=O 

is equivalent to a for structures of size at most n. 
Thus we have that  an distinguishes the pair P =  (X(Tn),X(Tn)) from the pair 

Q -- (X(Tn),X(Tn)). It follows that Player I wins the V k game on these two pairs. 
Note that Player II can match any vertex in the first X(Tn) from P with the same 
vertex in the first X(Tn) from Q. Thus, Player I must have a winning strategy for 
the Sk game on X(Tn) and X(Tn). This contradiction shows that isomorphism for 
graphs from F is not expressible in (FO + LFP + COUNT). 

We next show that  we can distinguish X ( G ) f r o m  X(G) in first-order logic with 
ordering and sum mod 2. This is easy. The ordering gives us a way to mark each 
of the pairs a(g, h) and b(g, h) in the graphs. Let a(g, h) be the first of the pair, 
and b(g,h) the second. (Note that  since the vertices in M(g) and M(h) inherit 
unique colors from g and h, we are given as part of the input which pair of vertices 
is a(g,h),b(g,h).) Now, given this assignment of a's and b's, a simple first-order 
sentence asserts that X(g) is straight (i.e. isomorphic to X3) or twisted (i.e. each 
vertex in M(g) is adjacent to an odd number of a's). Now, the graph is isomorphic 
to X(G) iff the sum mod 2 of the number of twisted vertices and edges is 0, and it's 
isomorphic to X(G) iff the sum mod 2 is 1. 

Of course, if G ~ H ,  then since these graphs have color class size one, X(G) and 
X(H)  can be distinguished by a sentence in -~2. Thus isomorphism for graphs from 
F is expressible in AC 0 plus parity gates, as claimed. | 

The next result proves a straightforward upper bound that  nearly matches our 
lower bound on the number of variables needed to identify a class A of graphs as a 
function of the separator size of members of A. 

Proposition 7.3. Let A be a set of graphs closed under induced subgraphs, such that 
every graph G E A has a separator of size at most s(n), where n is the number of 
vertices of G. Then A is identified by $Y(n) where 

[log nJ 

v(n) = 3 + Z s([n2-iJ) 
i=O 

(In particular, V(n) < s(n) logn, and if  s(n) = n ~, then Y(n) = O(s(n) ).) 

Proof. We use induction on n, the number of vertices of G. Given G, we can first 
say that there exist vertices Xl,...,Xs(n) such that  every connected component of 
G - { x i [ 1  _< i < s(n)} has size at most [n/2J. This is expressible in s(n)+ 3 variables. 
Next we assert how many connected components of each isomorphism type there 
are. This requires V(Ln/2]) variables, in addition to the s(n) that  we leave on 
Xl, �9 �9 �9 xs(n ). | 
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8. Conc lus ions  a n d  O p e n  Questions 

1. We redirect the reader's attention to Questions 3.2 and 3.3. We have shown 
in Corollary 6.5 that first-order logic plus counting and least fixed point, but 
without ordering, fails badly. The question, "What besides counting must be 
added to FO + LFP to get all polynomial-time graph problems?" is worthy of 
much study, cf. [27,20]. 

2. Planar graphs have separators of size O(v/-n), and thus by Proposition 7.3 they 
can be identified in Sv~" However, Theorem 6.4 does not give a matching lower 
bound because even if G is planar, the graph X ( G )  need not be. We would like 
to know if ~t(yrn) variables are necessary to identify planar graphs. 

Acknowledgements: Thanks to Sandeep Bhatt  who improved our results by pointing 
out that  the essential property of the counterexample graphs we were using was that  
their separators are large. Thanks to Laci Babai for informing us about the status 
of the research on the W-L method in the Soviet Union. 
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We consider how much error a fixed depth Boolean circuit must make in computing the 
parity function. We show that with an exponential bound of the form exp(n”) on the size of 
the circuits, they make a 50% error on all possible inputs, asymptotically and uniformly. As a 
consequence, we show that a random oracle set A separates PSPACE from the entire 
polynomial-time hierarchy with probability one. 0 1989 Academic PRESS, IUC. 

1. INTRoD~JCTI~N 

The relationship between time and space, as complexity measures, has been one 
of the primary concerns in complexity theory research. It is well known that the 
entire polynomial-time hierarchy *PH is contained in PSPACE . However, despite 
convincing heuristic evidence and persistent effort, no proof is yet available for 
separating the polynomial-time hierachy from polynomial space. 

A proof that PH # PSPACE would be an extremely strong separation of time 
and space. In this paper, we show that PH is properly contained in PSPACE in 
almost all relativized worlds. 

THEOREM 1.1. With probability one, a random oracle separates PSPACE from 
the entire polynomial-time hierarchy. 

The present work is a continuation of the work pioneered by Furst, Saxe, Sipser, 
and Yao. For the definitions of some basic notions we refer the reader to Refs. 
[F&584; Sip83; Yao85J 

In 1978 Furst, Saxe, and Sipser showed that the Boolean function Parity (see the 
definition below) cannot be computed in a Iixed depth polynomial size Boolean 
circuit. They also observed that an exponential poly-logarithmic lower bound (i.e., 
bounded below by exp((log)k) for all k) would establish the existence of an oracle 
separating PSPACE from the polynomial hierarchy. Later Sipser extended this 
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work in [Sip83]. Finally, in 1985, a breakthrough came with the following theorem 
by Yao, which influenced our research immensely. 

THEOREM 1.2 (Yao). There exists an oracle A such that 

PA # NPA # ZTA # . . . # PHA # PSPACEA. 

Our strong separation result is obtained by looking at how much error is present 
in the supposed circuit computation (instead of the existence of a single error). This 
question is interesting in its own right in the theory of circuit computation. As a 
nice byproduct of the proof of this strong separation we have the following 
corollary. 

COROLLARY 1.3. Fixed depth Boolean circuits with a bound of the form exp(n”) 
on the size, for some 1, make a 50% error, aymptotically and uniformly, when they 
compute the Boolean function Parity. 

The proof in this paper is organized as follows: 

1. Use the alternating Turning machine model [CKS81] to reduce the 
problem to a Boolean circuit computation problem. 

2. Employ certain probabilistic and game theoretic techniques to crack a 
shallow circuit. 

3. Inductively prove a theorem in the general case and then adapt it to 
resolve the problem on circuit computation in step 1. 

2. INITIAL REDUCTIONS AND TECHNIQUES 

We proceed with some definitions. Let X be the set of n Boolean variables 
{ Xl 7 x2, ***9 x,}. A Z,,n-formula (circuit) is the constant 0, and a Z7,,n-formula (cir- 
cuit) is the constant 1. A Z,,“-formula (circuit) is a sum of the form Ck q + Ck xjk, 
where Xi,, X~~E X. Without loss of generality, we assume that the variables are 
distinct. The number of literals is its size. A 17,,n-formula (circuit) is the negation of 
a Z,,n-formula, with the same size, i.e., a product of the form nk q. nk xjk. 

For k > 1, a Z;,,n-formula (circuit) H is a sum of Z7k- ,,n-formulae, xi G,, with 
size(H) =Ci size(G,). A lir,,m-formula is the negation of a Z,,-formula, with the 
same size. Inductively, a subcircuit of H is H or any of the subcircuits of the G,‘s. 
The depth of a Z,,n-formula (circuit) or a IZ,,n -formula is k. The bottom fan-in (bfi) 
of a Boolean circuit is the maximum size of the depth one subcircuits. 

For any Z7,,+-formula G, G = #= 1 Ci, where 

Ci=q+q+ “’ +~+Xi,+l+Xi,+2+ .” +Xis+, and s, t 2 0. 

We let Ji_ =(i,,i2 ,..,, is} Ji+ = {iS+l,iS+2 ,..., is+,}, and Ji=Ji-uJi+. 
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A (partial) assignment of X is an n-tuple cr = (CJ~ , rs2, . . . . a,) E (0, 1, * ),‘I. If 
G E { 0, 1 }“, then cr is a total assignement. Let F be a Boolean function on X; then 
F 1~ denotes the Boolean function after the assignment 6, i.e., assign x, = 0, 1, or 
unassigned, if ci = 0, 1, or *. 

To generalize a bit, we also consider random assignments of X. For 0 6 p 6 1, let 
gP denote the probability space (0, 1, *}I0 with a product measure v, where 
(independently) for each coordinate i, 16 i< co, ~((a,, . . . . aj, . ..) 1 ui= a} = 
( 1 -p)/2, if CI = 0 or 1; and p if o! = *. That such a product measure exists is a well 
known result of probability theory. A random assignement is simply a point in the 
measure space gP. We will write it as A = (a,, . . . . ai, . ..). 

If F is a Boolean function on free variables {xi,, . . . . xi,} E X, then a random 
assignment A taken from ~?4!~ (denoted as A E 9&) assigns the variables xi, to 0, 1, or 
leaves it unassigned, according to aj of A. 

We denote by F 11 A the Boolean function that resulted from the assignement. 
Similarly we define one-sided random assignements. A random B taken from 93; 

(denoted as BE !J?~ ) assigns independently to each xii in F to 1 with probability p, 
and leaves it unassigned with probability 1 -p, respectively. $3; is defined in the 
same way with 0 substituting for 1. Note that all random assignments affect only 
free variables, when they are applied to a formula. 

Consider a sequence of random assignements R, , . . . . R,. F /) R ,,,,,, R, is defined to be 
(F (I R ,,,,,, R,_,) II R,. For instance, let R and S be two random assignements, 
R = (a,, . . . . ai, . . . ), S = (b, , . . . . b,, . ..). Let a,, , aj2, . . . be those aj in R which are equal 
to *. As before let F be a Boolean function on free variables {x,,, . . . . xi,>. Then in 
F I/ RS, x. is assigned aj if aj is not a *. Otherwise, suppose aj is ajk, the k th * in R; 
then xi, ?s assigned b,, provided b, is not a *. Finally if 6, is a *, then xi, is left 
unassigned. The successive random assignments act only on the variables left 
untouched by previous assignments. In what follows, when we make a statement 
such as “take two random assignements R and S from probability spaces 93 and 9, 
respectively, with probability p, event E occurs,” we assert the product measure of 
the set {(R, S) ( E occurs} E 93 x Y is p. We also denote R, . . R, as 
A = (a,, . ..) ai, . . . ), where a, = 0, 1, or *, depending on whether RI ... R, assigns the 
jth variable to 0, 1, or unassigned, respectively. 

Note, however, that a partial assignement D is applicable to F I\ R,,..,, R, iff CJ assigns 
0 or 1 to only those variables that are *-valued by R, . . . R,. In this case, we denote 
the resulting function by (F I/ R,,.,,,R,) I b. 

Fix an alphabet (0, 1 } and an integer n. Define the parity function Parity,, : 

Parity,(x,, x2, . . . . x,) = i xi (mod 2). 
r=l 

We will consider circuit computation in relation to the parity function Parity,. 
The parity function is chosen for the following property: the value of Parity, is 
vitally dependent on each variable xi. 
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For A c_ (0, 1 } *, define the parity language 

ParityA = { 1” 1 there are odd number of strings of length II in A}. 

Clearly, we have PurityA E PSPACEA, for all A. 
We study separation of the polynomial-time hierarchy from PSPACE in almost 

all the relativized world. Intuitively, a random oracle set A is generated as follows. 
For each string x E { 0, 1 } *, we flip a fair coin, and depending on the outcome, we 
put x in A or not. Formally, we may represent each A by its characteristic function, 
and then map to a real number in the binary expansion E[O, 11. Now we define the 
probability measure p on the oracle space to be the Lebesgue measure on [0, 11. 
The readers may easily verify that the formal definition represents our intuitive 
notion of a random set as described above. 

We aim to prove that p{A 1 ParityA $ PHA} = 1. Surely this implies that a 
(random) oracle separates PSPACE from the entire polynomial-time hierarchy, 
with probability one. 

There are only countably many levels CcA in PHA. Each level Zf has a recursive 
enumeration as the class of languages accepted by polynomial time alternating 
machines at that level [CKMl]. Let M,, M,, . . . be an enumeration of Cf alter- 
nating machines; then it is sufficient to show that 

Vi, [p{A ) ParityA # L(Mf)} = 11. 

According to a theorem by Bennet and Gill [3], we only need to show that for 
each level k, 

3~~ > 0, Vi, [p{A: ParityA # L(Mf)} > ~~1. 

Now we reduce alternating machines to Boolean circuits. This reduction is from 
Furst, Saxe, and Sipser in [FSS84]. 

For a fixed alternating machine with oracle M: at level Cf, consider its com- 
putation on 1”. We claim that it is always possible to postpone the queries of 
strings. The trick is to guess the answers and verify them at a later stage. For exam- 
ple, at an existential stage, whenever a query is needed, we instead guess the answer 
and proceed until the succeeding universal stage. At the beginning of this universal 
stage we verify with the orable the guesses at the previous existential stage. If any of 
the guesses is wrong, we abort this path; otherwise we proceed. Similarly we may 
delay the queries of a universal stage and verify them at the suceeding existential 
stage. This time if any guess is wrong we simply accept. It is easily shown that this 
transformation preserves the notion of acceptance by the alternating Turing 
machine. By adding one more level of the alternation using the same method, we 
may obtain an equivalent polynomial-time bounded alternating machine that 
queries only at the bottom level and queries only once on every computation path. 
Thus, the computation tree structure is independent of the oracle and, therefore, can 
be frozen to yield a Ck+ ,-circuit, G. 
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The set of input Boolean variables of G corresponds to those strings that are 
queried by the modified alternating machine, on 1”. (A queried string is in A iff the 
corresponding Boolean variable is set to be true.) Empirically, there should be 
precisely 2” input variables, corresponding to 2” strings of length m. This is 
because whether l* E ParityA is independent of any string of length unequal to m; 
furthermore, for any string x of length m, whether 1 m E Parity A depends on whether 
or not x E A. Does the machine have to query precisely those strings of length m, no 
more and no less? We show that this is indeed the case, without loss of generality, 
in the sense that one can always replace the machine with one that does. (Strictly 
speaking, we only replace the machine with a nonuniform circuit family. Thus there 
is no uniformity concern.) 

Suppose then for some x, 1x1= m, and x is never queried. Then clearly the 
machine errs with probability l/2 (under p) at length m. That is enough. 

Now suppose all x’s with 1x1 = m are queried, but so are y,, . . . . y, of length 
unequal to m. 

Consider all 2’ many possible assignements cr for the y,‘s. For any such cr, 
consider the L’, + ,,,,,,-circuit G 1~. Pick the best eO, in the sense that G lgO makes the 
least error for parity. Clearly the original G makes no less error than that made by 
G I 00, percentage-wise. Formally speaking, 

,u{ A I ParityA( 1”) # M:( l”)} 3 error rate of G I ,,0 for parity 

~ I(TE (0, 1)“: G lo,, lr#Parity, I,>1 
2” 9 

where n = 2”. 
A remark on the size: Since Mi( 1”) runs at most p(m) steps, for some polynomial 

p( .), the size of the circuit is bounded by an exponential polylog in n, 
exp(O(p(log(n)))), where n is the input size to the circuit. 

We have shown that in order to prove Theorem 1.1, the following theorem on 
Boolean circuit computation would suffice. 

THEOREM 2.1. For all k 3 2, there is a sequence a,, where a,, + f as n + co, such 
that all depth k Boolean circuits with n inputs and size bounded by exp(n1’4’k+ “) err 
on more than a,. 2” of the 2” many inputs when computing Parity,. 

We now define a notion that is central to our exposition. 
A Boolean function G is given. Consider the following class of two-man games, 

played between a master and a player: the general mode of the game is a cycle; the 
master gives a Boolean variable (unassigned so far) and asks the player to assign it. 
The player may assign it either 0 or 1. The master may repeat the cycle zero or 
more times, until he declares the end of the game. The rule dictates that when the 
master declares the end of the game, the assignment made by the player so far 
makes G a constant. 
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A Boolean function G is k-monochromatic iff there is a two-man game of the 
defined class, in which the master has a winning strategy in the following sense: the 
master can declare the end of the game after no more than rkl many variables are 
assigned. 

To put it differently, it is guaranteed that, no matter how the player plays, the 
master can force the function G to be constant, after at most rkl variables are 
assigned. 

Here we emphasize two points: 

1. The k variables are not given out in a batch; rather the master makes up 
his mind as to which variable to give next, depending on how the player has 
assigned the variables so far. 

2. Even in play following a winning strategy, the master is (technically) not 
required to declare the end of the game at the earliest possible moment. 

We finish the section with the following lemma, which essentially states that 
under a monochromaticity condition, a conjunction of a disjunction and a disjunction 
of a conjunction are interchangeable. 

LEMMA 2.2. If G is k-monochromatic, then G is equivalent to a zz,-circuit (as 
well as a Z7,,,-circuit) with bf < k. (Zt is a constant if bf = 0.) 

Proof: The proof is by induction on k. The case k = 0 is trivial. Suppose k > 0, 
and the lemma is true for all values less than k. Let G be k-monochromatic, but not 
(k - 1)-monochromatic. Let us play the game; suppose xi is the first variable the 
master puts out when following the strategy given by k-monochromaticity. Then 
G = [x, A G 1 x, = T J v [q A G lx, = F], where T stands for true and F stands for false. 
Now both G lxi= T and G 1 x,= F are (k - 1 )-monochromatic; we apply the inductive 
hypothesis once more, and the result follows. Q.E.D. 

3. DEPTH Two CIRCUITS 

We wish to prove a theorem concerning depth two Boolean circuits. 

THEOREM 3.1. Fix O<&<f. Then there exists a constant C, such that, for any 
G E lI,,n with bfi 6 n’, and for any q with 0 < q < n -‘.“‘, and a random Q, E W, y 
and a random Q, E&‘:-,, the probability that G IIQIP2 is n&-monochromatic is 1 -E,, 
where E, 6 Ce -“‘. 

The idea of the proof is as follows: We will define a two-man game associated 
with the circuit G I(o,02, for which we claim that the master most probably has a 
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winning strategy (cf. Section 2). The game is designed so that each play creates a 
record of how the game was played. In the rare case in which G IIalez is not 
n”-monochromatic, the record will be “large.” Now we define another procedure, 
Recording ( Ql Q2, record), which will reproduce the game play. On the other hand, 
given a “large” record, the event that a random assignment R will survive the 
procedure Recording (R, record) is so unlikely that even if the probability is 
summed over all “large” records, it is still of measure near 0. 

3.1. The Game and the Recording 

We denote an assignment Q, Qz as A = (a,, . . . . ai, . ..). as in Section 2. Suppose 
G=C, A ... A C,. Let N=(l)..., rn&l}, X={(Z,S) 1 ZcN, ~E{O, l}l”lj. 
Define II (Z, s)ll = IZI, the cardinality of Z. A record Y is a finite sequence 
(X, 7 . . . . X,), where Xi~5?“. Define the norm llYl1 =cf=, IIXill. 

Intuitively, when a record element Xi = (Z, s) is generated in a certain round of 
the game, Z codes the variables to be assigned and s codes the assignment made by 
the player, in that round. 

The coding scheme in Z is an indirect addressing. Specifically, if J = {i, , i,, . . . . i,}, 
and Z= {z,,zz, . . . . zP}, where a,flaO, l<i,< . . . <i,, l<z,< ... <zg, then Z 
codes the subset of J: 

{i =,,..., ir6}, if zg<cr. 

We denote this set as JJ, Z. If Z = a, then JJ Z = a. If zB > ct, JJ Z is undefined. 
Conversely for A = { iz,, . . . . i,,} c J, we denote 

Jt A = {z,, . . . . zs}. 

Note that Jt 0 = 0. Clearly for A E J, J-1 (Jt A) = A. 
Our game is played in rounds. The master executes the program, and in certain 

rounds, he asks the player to assign a few Boolean variables. Then the master 
continues, until the program halts. When the program halts, it halts in “result” or 
in “abort.” 

The procedure Recording is similar; for technical reasons, we first present Recor- 
ding. A record Y = (X, , . . . . X,) is given. There are four essential variables 0, Y+, 
Y*, and N*, respectively, representing our knowledge about the assignement A at 
any given point in the execution (more accurately, our knowledge about A which 
we can be forced to acknowledge). Here are some intuitive ideas behind the 
procedure (they should be taken as such only). The variable Yf will collect indices 
which correspond to variables that are assigned to be true by the given assignment 
Ql Q2. Similarly, Y* and N* will correspond to variables that are assigned to * by 
the given assignment but assigned to be true and false, respectively, by the player 
recorded in Y. And 8 will collect subsets of indices which contain variables that are 
assigned to be false by the given assignment. Our goal is to show that an authentic 
large record that was produced by a game play rarely occurs. 
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Procedure Recording( A, y) 
0 8, Y+, Y*, N* := 0; t := 0; List := [C,, . . . . C,]; 

Repeat 

75 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 

13 

if List = 0 then case 1: t < 1* “abort”; 
case 2: t > I * “result” 

ii 
let Ci be on the top of List 
if (3~ E Ji-, a, = 0) then 0 := 0 u (J;- }, delete Ci from List 
else [critical round] 

t:=t+l 
F:=Ji-(Y+ u Y*uN*) 
get X, = (Z, s) from y, “abort” if nonexistent 
D := F 1 Z, “abort” if undefined 
if(D#(jEFIaj=*})then“abort” 
else Y+:=Y+u{uEFI~,=~) 

0 :=Qu {{u} 1 UEF,U~=O} 
Y* := Y*u {ueD 1 sassignsqto l} 
N*:=N*u{u~DIsassignsx,toO} 

Ii 
if(D=@)then 

if (Vu E Ji+ - N*, a, = 0) then “abort” Ii 
fi 
Delete any Ck from List with 

Jk_nN*#@orJk+n(YfvY*)#@ 
ii 

End [Repeat ] 

Some properties of Recdrding are easily verified. Define List,,, to be the set ofj 
such that Cj has been deleted from List. (In the following, c.r. is shorthand for 
“critical round”). We have 

LEMMA 3.2. (1) 0, Y+, Y*, N*, and List,,t are monotonically non-decreasing. 

Every time the Repeat loop is entered, the following are true: 

(2) VKEQ, 3uEK,au=0. 

(3) VUE y+, a,=l. 
(4) h~Y*uN*,a,=*. 
(5) t = # of c.r. completed so far. 
(6) VjeList, Jj_nN*=O or Jj+n(YCuY*)=@. 
(7) Vj15 List,,,, Jj_~80rJj-nN*# orJj+n(Y+uY*)#O. 
(8) Y* n N* = 0. 

Proof. A straightforward check. Q.E.D. 
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Next we define our Game. The Game is very much like Recording, except that 
the record P’ is produced as we go along, one slot per critical round. Spicilically, 

l In the initialization part (line 0), add Y := 0. 
l Change line 1 to: if List = 0 then “result” S. 
l Change lines 7 and 8 to: 

Create X, as follows: 
Z:=Ff (jEF1 a,i=*}; 
D:=FJZ(=(jEFI a,=*}); 
for jE D do let the player assign xj, and record the assignment in Y with a 

binary string s of length (Dj (in the obvious way). X, := (Z, s). 

Let p be the assignment made by the player: pd= 0, 1, or *; if do N*, Y*, or 
otherwise. 

We wish to prove the following: 

LEMMA 3.3. The Game will eventually halt. When the Game halts, G IIA IQ = 1 (at 
line l), or ~0 (at line 12). Furthermore, let Y be the record it created; then 
Recording(A, 9’) will run in precisely the same way as Game(A, Y), until halting. 

Proof. We claim that every completed round of the Game either deletes a clause 
or assigns a variable. The only nontrivial case is in a cr. with D = 0. If D = 0 and 
the round is completed, the condition at line 12 must be false. Thus 3 E Ji+ - N*, 
a, = 1 (there is no * in F), where i is the index of the current clause Ci. But then Cj 
must be deleted at line 13. 

Therefore the Game will eventually halt. Let y0 be the record created when the 
Game halts. 

We prove by induction that Recording (A, 9,) will reproduce this play of the 
game. Suppose they both enter a new round with all the variables having the same 
value. (This is certainly true initially.) Also assume t = the length of Sp, constructed 
so far in the game. 

If List = 0, then the game halts as a “result.” Since t = 1, the length of yO, 
Recording(A, yO) will also halt as a “result.” 

Suppose List # 0. Then they get the same Ci and the same condition at line 3 
(same A!). If the condition is satisfied, then the induction is completed. Suppose 
not. They come to line 7. The Game creates the next X,. Since X, is never altered 
later in the Game, it is what Recording obtains from 9,. From the way X, is 
created in the Game, Recording will not halt at lines 7, 8, and 9. Now for the rest of 
this round they have the same code. The induction is completed. 

We have proved that Recording will reproduce the play of the game, and hence 
Lemma 3.2 applies to the procedure Game. In fact we proved something more, 
namely, that the Game can halt only at line 1 or line 12. 
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It follows from Lemma 3.2(4), 8) that p is a valid assignment to G [iA. If the 
Game halts at line 1, then G IIA Ip = 1, by Lemma 3.2(2), 3), 7). If the Game halts at 
line 12, then we claim that Ci II A I p = 0, hence G II A jp = 0. 

By (6) of Lemma 3.2, F= [Ji- -(Y+ u Y*)] u [Ji+ -N*], at line 6. Since 
D = a, Y* and N* are unchanged at line 10. Clearly the only way to satisfy Ci is in 
F. But if tEJi- - Y*, a,= 1, by lines 3,9, and 11; and if tEJi+ -N*, a,=O, by 
line 12. So Ci II A I p = 0. Q.E.D. 

Let d= {A: G IIA is not n&-monochromatic}. For a record Y, let 
&[Y] = {A: Recording(A, 9) “results”}. 

If AE&, then for any game in particular for our Game, the master has no 
winning strategy. Hence there is a play in which the player assigned l-n’] many 
variables and still the circuit.is not constant. 

Because the circuit is not constantly 0, there is a satisfying assignment Q. Now for 
the rest of the Game, the player adopts the following strategy: assign any new 
variable according to 0. Since this strategy keeps the circuit satisfiable and the 
Game eventually halts, the Game must halt with the circuit equal to constant 1. 
Hence, the Game “results” with some Y, where [(YJI > [n&l. Therefore, 

where the union is over all 9, with l[Yll > [n&l. 

3.2. A Probability Analysis 

In this section, we will focus on Recording (A, g). For. a fixed Y with 
IlyII > [n&l, we consider the probability that Recording(A, Y) results, where 
A = Q,Q,, Q, •8;~~~ and Q2~BT-,. 

Define dmy = {A: Recording(A, 9) will come to its mth c.r. with 
(8, y+, y*,N*)=y}, P=(y:d”Y#125}, dm=Uyepdmy. 

We first derive a condition for A E dmy. 

LEMMA 3.4. For any y = (ye, y +, y ‘, yN) E I”“, there exists i,, such that 
A E dmy o A satisfies the folIowing conditions: 

(I) VKey@, 3UEK, a,=o. 
(II) v(Ulzy+, a,= 1. 

(III) VuEyYuyN,a,=*. 
(IV) VuEJ+, a,#O. 

Let us prove the following lemma first: Pick any A”~&‘my. 

LEMMA 3.5. A satisfies conditions (I), (II), and (III) S- Recording for A0 and A 
will run precisely the same (with all the variables 8, Y+, Y*, N*, List, and t the same 
at corresponding moments) up to line 1 of the mth c.r. ofA’. 
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Proof: By induction. Suppose they are at line 1 of the m,th round of A” 
(including m’ c.r. and m’ < m), and so far they are all the same (trivially true for the 
base case m, = 1). 

If this is the mth c.r. for A’, then the induction is completed. Suppose it is not. 
Hence A0 will complete this round without halting. Thus List # @ and they pick 
the same C,. 

If A0 satisfies the condition at line 3, then J,- E y@, since the mth c.r. of A0 is yet 
to come. By (I), A satisfies the same condition at line 3. 

If A0 fails the condition at line 3, this is a c.r. of A’, but not the mth yet. A0 will 
successfully record all ueJi-. u Ji+ in (0, Y+, Y*, N*), which will later become y. 
In particular, Vu E Jip, u E y + u y ’ u yN. By (II) and (III), A must also fail the 
condition at line 3. 

Hence either A0 and A both finish the current round at line 3, in which case the 
induction is completed; or they both advance to line 4. Suppose then that this is a 
c.r. for both. They must find (the same) D well defined. As we noted, A0 will record 
all UE.J- u.li+ which will appear in y. 

In particular, by (I), (II), and (III), A must also find D to be precisely the set of 
*‘s in F, and thus update Y* and N* in exactly the same way. Similarly, A must 
update 0 and Y+ in the same way that A0 does, by (I) and (II). 

Now if D # (ZI, we are done. If D = 121, then A0 will find the condition at line 12 
to be false; i.e., 3t, E Ji+ -N*, ay0 # 0. But D = 0 = a:, = 1. Hence to E Y+, which is 
the same for both A and A,. Hence Q,,= 1 as well. Therefore A will not halt there. 
The induction is completed. Q.E.D. 

Proof of Lemma 3.4. Pick A’E SC”” and run Recording(A’, 9’); let C, be the 
clause under consideration in its m th c.r. 

3 Since AEsT?, A satisfies (I), (II), and (III). By Lemma 3.5, A and A0 will 
reach line 1 of the mth c.r. of A,, with all the variables the same. Since A0 comes to 
line 4, List # (21, which is the same as for A; so they both pick up Ciy. Since this is 
the mth c.r. for A’, A0 will fail the condition at line 3, and enter its cr. with 0 
unchanged. Thus y@ is the common value for 0 when A and A0 entered the current 
round at line 1. 

If A were to satisfy the condition at line 3, then this is not a c.r. for A, and its 
mth c.r. is yet to come. Since J,_ is now added to 0 by A, J,- eye. In other 
words, J,,- E 0 when they entered at line 1. But then A0 must have satisfied the 
condition’ at line 3. A contradiction. Therefore A satisfies (IV). 

t Again by Lemma 3.5, we can assume they arrive at line 1 of the mth cr. of 
A’, with exactly the same history. 

A0 E dmy + List # @ and A picks up C,. Then (IV) says that this is also a c.r. for 
A. Since this is the mth c.r. for A’, A”~dmv, and so far they are the same; this is 
also the mth c.r. for A, with (0, Y+, Y*, N*) = y. Hence A E dmy. Q.E.D. 

Now we are ready to estimate the probability Pr(&[9]). Let E” denote the 
event that Recording(A, 9’) completes its mth c.r. without halting: 
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Pr(~[~])~Pr(d’).17,.,,,Pr(AEd”+’ I AEdm).Pr(E’I AES@) 

G C~l<rn<l Pr( Em 1 A E #‘)I . Pr(E’ I A E d’) 

=H lGmGIWEm I AE~‘?. 

We show the following: 

LEMMA 3.6. V~EP’, 

Pr( E” 1 A E dmy) G q”xm” if IW,ll zo 
<q-n” otherwise. 

Clearly, Lemma 3.6 implies the same bound for Pr(E” I A E&“), since it can be 
estimated as 

1 Pr(E” I AE&mr).Pr(AEdmy 1 AEd”‘), 
YSr” 

and 

1 Pr(AEd”? I Ae.dm)= 1. 
YEP” 

Hence, 

COROLLARY 3.7. Pr(d[Y]) <qllyll. (qn”)r, where I’= # of Xi in Y with 
llxill = O. 

We use Lemma 3.4 to prove Lemma 3.6. 

Proof of Lemma 3.6. Assume IlX,ll # 0. Consider a random assignment taken 
from W1_,, followed by one from a:- 4, on the variables in F= J, - 
(y ’ u y ‘Y yN). We refer to the procedure Recording. In order to survive the &th 
critical round, we must have D = FL X,,, = {j E F I aj = * }. Clearly the conditions on 
the random assignment of Lemma 3.4 can be strengthened so that all variables in F 
are assigned * by the first round B?cpg (since in order to remain * after two sweeps, 
it must remain * after the first.) Note that originally the conditions from Lemma 3.4 
on F were with WC-, only, For %‘:-q, a given u E F is assigned * only with 
probability q. Thus we have the upper bound q”xm”. 

In the case IlX,ll = 0, we estimate 

Pr(D = @ is all the *‘s in F A 3t E J,,+ - yN, a, # 0 I A E AmY) 

< Pr(3t EJ;.,+ - yN, a, = 1 I A E: d”“). 

We consider two sweeps from WC- 4 followed by one from %?c- y, on J,, - yN. 
Conditions (II), (III), and (IV) are irrelevant now (using independence). And con- 

571/38/l-6 
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dition (I) would only reduce the probability for a given u E Jt7+ - 7,’ to be assigned 
1. Unconditionally, a given u is assigned * by 9?c-y with probability q, hence the 
upper bound qn’, where nE comes from the bfi condition IJ, 1 < N”. Q.E.D. 

Now we can finally estimate Pr(d). It is bounded above by 

1 M&W 1, 
11.54 > rrll 

which is bounded by 

where N runs through possible values of the norm of records, I= # of nonempty A’, 
in Y, and I’= # of empty Xi in Y. 

Recall that 9 6 n - ‘.05’. For a fixed E, 3N,, such that Vn > N,, 16n-‘.05” < 1/(2e). 
We get, for n > N,, 

Pr(&) < C 2N- r(2rnq)N qN f 
N > rc /=I 

2’ 1 2/‘(qn”)[ 
rt0 

~2 1 2N(2rqy qN2N 
N > rn‘l 

62 1 (16~~.~~“)~ 
N P rdl 

< e - n’. 

Hence Pr(&) < Ce-“‘, Vn, where C only depends on E. Theorem 3.1 is proven. 

4. DEPTH k CIRCUITS 

Theorem 3.1 is proved under a “skewed” probabilistic assignment. We first 
“unskew” it: 

THEOREM 4.1. Fix 0 <E < f. Then there exists a constant C, such that for any 
circuit GE II,,, (or C,,) with bfi < nE and any p with 0 <p < nA2.2E, and Q E 9& G II e 
is nE-monochromatic, with probability 1 - E,, where E, d Ce-““. 

Proof: Clearly we only need to prove the lZz,n case. For 0 <p < n -=.*‘, let 

pL,-l- (1 -P)’ 
2 1 - (p(2 -p))“2’ 

q = (PO -P)Y” -P 
l-p . 
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It is easy to verify that 0 <p’z t< 1, 0 <q= O(p”*) < n-‘.05Eq Take random 
RE 9;) Q, •a;-~, and Q2 ~a:-,. It is straightforward to show that RQlQ2 has 
the same distribution as Q E 5$. 

Now we apply Theorem 3.1 to each G II R and the result follows. Q.E.D. 

THEOREM 4.2. Let k 3 2, 1 <j < k - 1. Let p = n-Ilk, and let 

o< 1 1 
k=tk--l 

be equally spaced. 
For any G E IIj+l,, (or Cj+ ,,n) with bfi < n’/3k and size(G) < e”““, and random 

A I, . . . . Aj from BP, GII ’ A ,..... A, ls n”3k-monochromatic with probability 
1 - O(exp( - nq)). 

Note. The constant in the O-notation depends only on k. 

Proof Fixing k > 2, we prove the theorem by induction on j. Base case j = 1. 
G E n2,n 3 with bfi < n1’3k. Taking E = 1/3k < f, p = n -Ilk < n-*.*’ in Theorem 4.1, we 
have G 11 A, is n1’3k- monochromatic with probability 1 - O(exp( -n1’3k)). The proof 
is similar for G E C2,n. 

Now suppose j> 1, and the theorem is true for j- 1. We prove the theorem for 
the G E Zj+ l,n case. The fl,, i,” case is dual. 

Let G = Zi=, Ki, where Ki E LIj,,. Since G has bfi < n1’3k, and size(G) < e”“4k, 
l< en’i4k, and every Ki inherits the condition on bfi and size. Let Bj = Ki II A,,..,,A,-, ; 
then G II A,,...,+, = Z= 1 Bi. 

By our inductive hypothesis, for any i fixed, we have Bi is n”3k-monochromatic, 
with probability 1 - O(exp( -&I)), where the constant is independent of Bi. 
Hence, with probability 1 - O(exp( -n@-I+‘~)‘*)) all Bi are simultaneously n”3k- 
monochromatic. Again, the constant here depends only on k. 

By Lemma 2.2, all Bi are equivalent to Z,,, -formulae, and thus with probability 
1 - O(exp(-n(+1+q)‘2)), G IIA,,,.,,A,_l is equivalent to a Z:,-formula with bji < n1/3k. 
Applying Theorem 4.1 once more, we get that G II A,,.,.,A, is n’i3k-monochromatic 
with probability 1 - O(exp( -nq)). Q.E.D. 

Taking j = k - 1 in Theorem 4.2, we obtain: 

COROLLARY 4.3. Let kB 2, p =n-(k-l)‘k. For any GEII~,” (or z,,) with 
b@ < n1’3k and size(G) < efl”4k, and a random R E S$,, G II R is n’i3k-monochromatic with 
probability 1 - o( 1 ), uniformly. 

We note that the restriction on bf is only technical; one may always extend one 
more level of alternation to have bfi < 1. 
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5. CIRCUITS vs PARITY 

In this section we complete the proof of Theorem 2.1. By the remark at the end of 
last section, we need only prove: 

THEOREM 5.1. Let k > 2. There exists a sequence {a,}, ~1, + 4, such that all depth 
k Boolean circuits, with n inputs, size 6 exp(n”4k), and bfi < n113k, when computing 
Parity,, make errors on > a,, of all 2” possible inputs. 

The strategy to prove Theorem 5.1 is the following: Fix k > 2. Consider any 
depth k circuit G satisfying the conditions. Randomly take a total assignement g 
(all 2” many assignements from { 0, 1 }” are equally likely). We wish to prove that 
G l,+Pariv, Ivy with probability 4 - o( 1 ), where o( 1) may depend on k, but it is 
independent of G. 

Now we pick 0 in two stages: First, randomly pick a “single *” (T*, so that all 
cr* E A * E (0 E { 0, 1, * 1” ( 3 a unique d, ad = * } are equally likely. Then assign the 
unique * in a* to 0 or 1 with equal probability, to obtain our radom a. 

Theorem 5.1 will be proved if we can show that G 1 o* 3 constant, with probability 
1 - o( 1 ), since for any a*, the conditional probability for failure is 

Pr( G 1~ # Parity,, 1~ I G ( 6’L = constant) = 50%. 

Now our strategy to generate a random a* CA* is the following: Let 
p=n -(k-1)/k and q = n - 1f2.5k. For a nonempty finite set of variables S, an 
“A*-uniform assignement” on S is a random assignment that randomly picks one 
variable in S as * and uniformly assigns the others to 0 or 1. 

Procedure Generate 1 (a*) 
Take a random A E 9$ 
if (A leaves < nllzk variables in X unassigned) 
then take a random a* 
else take a random BE 9$ 

if (A B assigned every variable in X) 
then take a random a* 
else let S= {x,EX( ABassignsxito *}, 

A *-uniformly assign S, 
let a* be the result. 

fi 
fi Return (a*) 

Clearly Generate 1 does generate every a* E A * equally likely. Now we “realize” 
Generate 1 by the following procedure, which will complete our proof: 
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Procedure Generate 2 (o*, tug) 
Take a random A E &Tp 
if (A leaves 6 n “*’ variables in X unassigned) 
then tag := failure, take a random U* 
else if (G 11 A is not n”3k-monochromatic) 

then tug := failure, take a random BE 9S’q 
if (AB assigned every variable in X) 
then take a random O* 
else let S = {xi E X ( AB assigns xi to * }, 

A*-uniformly assign S, 
let (T* be the result. 

ti 
else play the game (as the player), 

assign any given variable with distribution 9Q, 
if (the master ever gets a *) 
then stop the game, tug := failure, 

run through ~9~ for the remaining variables, 
let S = (xi E X 1 xi is unassigned so far}, 
A*-uniformly assign S, 
Let O* be the result. 

else when the game is finished, run through 9$ for the rest, 
if (no variable is assigned *) 
then tug := failure, take a random c* 
else tug := success, 

let S = {xi E X 1 AB assigns xi to * >, 
A*-uniformly assign S, 
Let (r* be the result. 

fi 
fi 

Ii 
fi Return (o*, tug) 

Clearly if we ignore the tug, Generate 2 is the same as Generate 1. If Generate 2 
returns (a*, success), then G lgt = constant. Let F denote the event that Generate 2 
returns with lug=failure. We claim: 

Pr( F) = O( 1). 

We only need to verify: 

1. Pr(AE5$, leaves <n’lzk variables in X unassigned) = u( 1). This follows 
from Chebechev’s inequality. 

2. Pr(G 11 A is not n”3k -monochromatic) = u( 1). This is Corollary 4.3. 
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3. Pr(the master gets a * under &%q ) G II,,, is n”‘k-monochromatic) = o( 1). 
This is because n’/3k . n - 1i2.5k + 0. 

4. Pr(AB leaves no * in X 1 A leaves Z n1’2k variables unassigned in X) = o( 1). 
This is trivial. 

6. FINAL REMARKS 

The result concerning circuit and parity is of interest independently of 
relativization. After all, one cannot do worse than 50% error for parity. 

The following corollary is evident. 

COROLLARY 6.1 (Yao). There is a recursive oracle A separating PSPACE from 
the polynomial-time hierarchy. 

The proof is simple. Observe that with probability one the parity language 
ParityA is not in PHA. Hence for those A, LA(Mi) differs from ParityA infinitely 
often for any PH machine Mi. By the definition of measure p, any initial segment of 
A corresponds to a small interval of [0, 11. Now suppose we are given an initial 
segment of A, the oracle constructed so far, and we want to diagonalize over Mi. 
What we do is simply look for an extension that kicks Mj out. The “brute force” 
method must succeed due to our probability one separation. 

Shortly after this work, Hastad [9] obtained a simplification of Yao’s proof, 
improving the bound on the circuit size from !2(e”liu) to Q(e’@). Later Babai 
[Bab86] obtained the result in Theorem 1.1 by a short proof, assuming Yao’s 
theorem and a result by Ajtai [Ajt83]. 

The following question is still open: 

l Is it true that with probability one, a random oracle separates the 
polynomial-time hierachy PH into an infinite hierarchy? 
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