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Complexity of Counting Problems

Valiant introduced the class #P.
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#P is Powerful

#P is at least as powerful as NP, and in fact subsumes the

entire polynomial time hierarchy ∪iΣ
p
i [Toda].

#P-completeness and #P-hardness: #SAT, #PerfMatch,

Permanent, etc.
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Some Major Advances on Complexity of Counting

Problems

Bulatov proved a sweeping dichotomy theorem for

#CSP(Γ), for any constraint langauge Γ.

The method uses deep structural theory in Universal

Algebra.

Dyer and Richerby gave an alternative proof, and also

proves the decidability of the dichotomy criterion.

Also major advances on Graph Homomorphisms.
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Graph Homomorphisms

Theorem (Hell and Nešetřil)

Dichotomy Theorem for the decision problem of Graph

Homomorphism:

Either in P or NP-complete.

Theorem (Dyer and Greenhill)

Dichotomy Theorem for ZH(G), for all 0-1 H:

Either in P or #P-complete.

Theorem (Bulatov and Grohe)

Dichotomy Theorem for ZH(G), for all non-negative

(algebraic) H.

Theorem (Dyer, Goldberg and Paterson)

Dichotomy Theorem for all directed and acyclic H.
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Symmetric Real Matrices

Theorem (Goldberg, Jerrum, Grohe and Thurley)

There is a complexity dichotomy theorem for ZH(G), for

all symmetric real matrix (algebraic) H.

A complexity dichotomy for partition functions with mixed signs

arXiv:0804.1932v2 [cs.CC]
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Symmetric Complex Matrices

Theorem (C, Chen and Lu)

There is a complexity dichotomy theorem for ZH(G), for

all symmetric complex matrix (algebraic) H.

Graph Homomorphisms with Complex Values: A Dichotomy

Theorem

arXiv:0903.4728v1 [cs.CC]
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Hermitian Matrices

Theorem (Thurley)

There is a complexity dichotomy theorem for ZH(G), for

all Hermit matrix (algebraic) H.

The Complexity of Partition Functions on Hermitian Matrices

arXiv:1004.0992v1 [cs.CC]
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Counting Problems when Cancelations Occur

It seems that there is a major difference when cancelations

can occur in a counting problem.

Additional tractable problems appear, and to carve out

exactly those tractable problems from the intractable ones

presents additional difficulties.

Think of the paradigmic example of Determinant and

Permanent.
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Plan of the Talk

• Holographic Algorithms based on Matchgates.

• Holographic Reductions as hardness proofs.

• Holographic Algorithms based on Fibonacci gates.

• Holant Problems.

• Dichotomy Theorems for Holant Problems.
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Holographic Algorithms based on Matchgates
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Perfect Matching
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Some Surprising Tractability with Matching

The following problems are solvable in P:

• Whether there exists a Perfect Matching in a general

graph (Edmonds).

• Count the number of Perfect Matchings in a planar

graph (Fisher, Temperley, Kasteleyn)

Note that the problem of counting the number of (not

necessarily perfect) matchings in a planar graph is still

#P-complete [Jerrum].
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Valiant’s Matchgates-based Holographic Algorithms

Let us consider the following special case of #3SAT.

We represent a 3SAT instance Φ(x1, x2, . . . , xn) as a

bipartite graph GΦ, where RHS are labeled with variables

xi, LHS are labeled by the Or function.

Suppose each variable xi appears positively, and in exactly

2 clauses—GΦ is a 2-3 regular bipartite graph.

We can write down the truth table for the Or function

x ∨ y ∨ z

(0, 1, 1, 1, 1, 1, 1, 1).
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Restricted #3SAT problem continued

Now instead of thinking the variables xi fanning out truth

values, think equivalently the edges taking on values {0, 1},

subject to the requirement that both incident edges at

each xi take consistent values.

In other words, we assign a binary Equality function (=2)

at each xi.

The truth table for (=2) is

(1, 0, 0, 1).

16



Tensor Products

We have assigned (1, 0, 0, 1) to each xi on RHS, and

(0, 1, 1, 1, 1, 1, 1, 1) to each Or function on LHS.

Now take the tensor product (1, 0, 0, 1)⊗n.

This forms a vector (tensor) of dimension 22n indexed by

the 2n edges in the 2-3 regular bipartite graph GΦ.

Similarly take the tensor product (0, 1, 1, 1, 1, 1, 1, 1)⊗m for

the m clauses. It has dimension 23m.

(Being 2-3 regular, 2n = 3m.)
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Go Slowly . . .

Suppose we have three variables x, y, z.

The tensor product (1, 0, 0, 1)⊗3 has dimension 26.

It is indexed by b1b2b3b4b5b6 ∈ {0, 1}
6, corresponding to a

truth assignment to the 6 edges (two edges from each

variable).

On the clause side, we have two clauses, and the tensor

product (0, 1, 1, 1, 1, 1, 1, 1)⊗2 also has dimension 26 and takes

value one iff both Or evaluates to True.

Then the contraction (inner product) of the two tensors

(1, 0, 0, 1)⊗3 and (0, 1, 1, 1, 1, 1, 1, 1)⊗2 gives the number of

satisfying assignments.
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Basic Idea of Matchgate Computation

Define PerfMatch(G) =
∑

M

∏

(i,j)∈M wij, where the sum is

over all perfect matchings M .

For planar graphs this quantity is computable in

polynomial time.
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Matchgate

A planar matchgate Γ = (G, X) is a weighted graph

G = (V, E, W ) with a planar embedding, having external

nodes, placed on the outer face.

Matchgates with only output nodes are called generators.

Matchgates with only input nodes are called recognizers.
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A Matchgate
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Standard Signatures

A matchgate Γ is assigned a Standard Signature

G = (GS) and R = (RS),

for generators and recognizers respectively.

GS = PerfMatch(G− S).

RS = PerfMatch(G′ − S).

Each entry is indexed by a subset S of external nodes.
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Figure 1: This planar matchgate has standard signature

(2a + 2b, 0, 0,−2a + 2b, 0, 2a − 2b,−2a − 2b, 0, 0,−2a − 2b, 2a −

2b, 0,−2a + 2b, 0, 0, 2a + 2b)T .
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Restricted #3SAT Problem

Now suppose for some miraculous design we have two

graph fragments:

Γ1 has two external nodes. As a generator its Standard

Signature is

GS = PerfMatch(G1 − S) = (1, 0, 0, 1)T,

when S = 00, 01, 10, 11.

Γ2 has three external nodes. As a recognizer its Standard

Signature is

RS = PerfMatch(G2 − S) = (0, 1, 1, 1, 1, 1, 1, 1),

when S = 000, 001, 010, 011, 100, 101, 110, 111.
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An expression of Number of Solutions

Then PerfMatch(Ω) is the number of satisfying assignments,

where Ω is obtained from the 2-3 regular graph replacing

RHS vertices (xi) by Γ1 and LHS vertices (clauses) by Γ2.

Note that this restricted version of #3SAT Problem is still

#P-complete.
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Holographic Algorithm

But things are not so simple.

While

GS = PerfMatch(G1 − S) = (1, 0, 0, 1)T,

is realizable by a matchgate,

RS = PerfMatch(G2 − S) = (0, 1, 1, 1, 1, 1, 1, 1),

is not realizable.

The idea of Holographic Algorithm is to find a basis

change for the tensors, so that they become realizable.
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A Non-Obvious Realizability

Let b denote the standard basis,

b = [e0, e1] =









1

0



 ,





0

1







 .

Consider another basis

β = [n, p] =









n0

n1



 ,





p0

p1







 .

Let β = bT . Denote T = (tij) and T−1 = (t̃ij).

(Upper index is for row and lower index is for column.)
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Contravariant and Covariant Tensors

Each generator Γ is assigned a contravariant tensor

G = (Gα).

Under a basis transformation,

(G′)i′1i′2...i′n =
∑

Gi1i2...in t̃
i′1
i1

t̃
i′2
i2
· · · t̃

i′n
in

(1)

Correspondingly, each recognizer Γ gets a covariant tensor

R = (Rα).

(R′)i′1i′2...i′n
=

∑

Ri1i2...in
ti1i′1

ti2i′2
· · · tin

i′n
(2)

The contraction

Holant = 〈 ⊗R,⊗G〉 =
∑

x∈β⊗|E|







[
∏

j

Rj(x|Rj
)] · [

∏

i

Gi(x|Gi
)]







is invariant under a basis change.
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Realization for the OR gate

So we want the following

(0, 1, 1, 1, 1, 1, 1, 1)

as a (non-standard) signature under some basis.

Let








1 + ω

1− ω



 ,





1

1







 ,

where ω = e2πi/3 is a primitive third root of unity.

29



The Transformation Matrix from R′ to R










1 + ω 1

1− ω 1





−1






⊗3

is 1
8 times

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 −1 −1 1 −1 1 1 −1

−1 + ω 1 + ω 1 − ω −1 − ω 1 − ω −1 − ω −1 + ω 1 + ω

−1 + ω 1 − ω 1 + ω −1 − ω 1 − ω −1 + ω −1 − ω 1 + ω

−3ω −2 − ω −2 − ω ω 3ω 2 + ω 2 + ω −ω

−1 + ω 1 − ω 1 − ω −1 + ω 1 + ω −1 − ω −1 − ω 1 + ω

−3ω −2 − ω 3ω 2 + ω −2 − ω ω 2 + ω −ω

−3ω 3ω −2 − ω 2 + ω −2 − ω 2 + ω ω −ω

3 + 6ω 3 3 −1 − 2ω 3 −1 − 2ω −1 − 2ω −1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

30



Back to Standard Signature

By covariant transformation, (adding the last 7 rows),

(Ri1i2i3) =
1

4
(0, 1, 1, 0, 1, 0, 0, 1).

There indeed exists a matchgate with three external nodes

with the standard signature = 1
4 (0, 1, 1, 0, 1, 0, 0, 1). Thus,

R′
C = (0, 1, 1, 1, 1, 1, 1, 1) =

1

4
(0, 1, 1, 0, 1, 0, 0, 1)









1 + ω 1

1− ω 1









⊗3

.
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Fundamental Questions for a Holographic Algorithm

Can the desired local constraint functions be realized as a

matchgate (standard) signatures?

If not, can they be realized as non-standard signatures by

a basis transformation?

Can the generators and recognizers be simultaneously

realized under some basis transformation?
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A More Systematic Approach

In Holographic algorithms: From art to science with Pinyan Lu

(STOC 2007, Journal version to appear in

Journal of Computer and System Sciences Volume 77,

Issue 1, January 2011, Pages 41-61)

We make some progress on these problems.
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Parity Requirements

Standard signatures (of either generators or recognizers)

are characterized by the following two sets of conditions. i

(1) The parity requirements: either all even weight entries

are 0 or all odd weight entries are 0.

This is due to perfect matchings.
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Matchgate Identities

(2) A set of Matchgate Identities (MGI): Let G be a

standard signature of arity n (Same for R).

A pattern α is an n-bit string, i.e., α ∈ {0, 1}n. A position

vector P = {pi}, i ∈ [l], is a subsequence of {1, 2, . . . , n}, i.e.,

pi ∈ [n] and p1 < p2 < · · · < pl. We also use p to denote the

pattern, whose (p1, p2, . . . , pl)-th bits are 1 and others are 0.

Let ei ∈ {0, 1}
n be the pattern with 1 in the i-th bit and 0

elsewhere.

Let α⊕ β be the pattern obtained from bitwise XOR of the

patterns α and β. Then for any pattern α ∈ {0, 1}n and any

position vector P = {pi}, i ∈ [l], we have the following

identity:
l

∑

i=1

(−1)iGα⊕epi Gα⊕p⊕epi = 0. (3)
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Realizability under a basis change using MGI

A signature is symmetric if the value of an entry only

depends on the Hamming weight of the index bits.

e.g. Boolean Or on 3 bits is

(0, 1, 1, 1, 1, 1, 1, 1)

We denote it as [0, 1, 1, 1].

Using MGI we can give a closed form expression for all

realizable symmetric signatures.
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A characterization Theorem for Symmetric Signatures

Theorem

A symmetric signature [x0, x1, · · · , xn] is realizable on some

basis iff there exist three constants a, b, c (not all zero),

such that for all k, 0 ≤ k ≤ n− 2,

axk + bxk+1 + cxk+2 = 0. (4)
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Basis Manifold M

We will identify the set of 2-dimensional bases








n0

n1



 ,





p0

p1







 with GL2(F). Over the complex field F = C,

it has dimension 4. However, by a simple proposition of

Valiant, the essential underlying structure has only

dimension 2.
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Proposition (Valiant)

If there is a generator (recognizer) with certain signature

for basis {(n0, n1), (p0, p1)} then there is a generator

(recognizer) with the same signature for basis

{(xn0, yn1), (xp0, yp1)} or {(xn1, yn0), (xp1, yp0) for any x, y ∈ F

and xy 6= 0.

In other words, one can multiply any non-zero constants to

each row, and permuting the rows, we get equivalent basis.

M = GL2(F)/ ∼ .
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Simultaneous Realizability

Definition

Let Brec([x0, x1, . . . , xn]) (resp. Bgen([x0, x1, . . . , xn])) be the

set of all possible bases in M for which a symmetric

signature [x0, x1, . . . , xn] for a recognizer (resp. a generator)

is realizable. We also use Brec(R) and Bgen(G) to denote

the realizability subvarieties for general (unsymmetric)

signatures R and G.

A complete and mutually exclusive list of realizable

symmetric signatures for recognizers follows.

Simultaneous realizability is obtained by taking

intersections.
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List of Realizable Symmetric Signatures

Lemma

Brec(λ[an, an−1b, . . . , bn]) =















a

n1



 ,





b

p1







 ∈M

∣

∣

∣

∣

∣

∣

n1, p1 ∈ F







.

Lemma

Brec([x0, x1, x2])

=

{[(

n0

n1

)

,

(

p0

p1

)]

∈M
∣

∣

∣

x0p2
1 − 2x1p1n1 + x2n2

1 = 0, x0p2
0 − 2x1p0n0 + x2n2

0 = 0

or x0p0p1 − x1(n0p1 + n1p0) + x2n0n1 = 0

}

.
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Lemma

Let λ1 6= 0. Let p = char.F. Suppose p = 0, or p ∤ n,

Brec([0, 0, . . . , 0, λ1, λ2]) =















0

nλ1



 ,





1

λ2















.

For p|n and λ2 = 0,

Brec([0, 0, . . . , 0, λ1, 0]) =















0

n1



 ,





1

p1







 ∈M

∣

∣

∣

∣

∣

∣

n1, p1 ∈ F







.

For p|n and λ2 6= 0, the signature [0, 0, . . . , 0, λ1, λ2] is not

realizable.
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Lemma

For AB 6= 0,

Brec([A, Aα, Aα2, . . . , Aαn+B]) =















1

1



 ,





α + ω

α− ω









∣

∣

∣

∣

∣

∣

ωn = ±
B

A







.

Lemma

For AB 6= 0 and α 6= β,

Brec([Aα
i+Bβ

i|i = 0, 1, . . . , n]) =

8

<

:

2

4

0

@

1 + ω

1 − ω

1

A ,

0

@

α + βω

α − βω

1

A

3

5

˛

˛

˛

˛

˛

˛

ω
n = ±

B

A

9

=

;

.
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Lemma

Let p = char.F and let A 6= 0.

Case 1: p = 0 or p ∤ n.

Brec([Aiαi−1 + Bαi|i = 0, 1, . . . , n]) =















1

B



 ,





α

nA + Bα















.

Case 2: p|n and x0 = 0. In this case, the signature has

entries xi = Aiαi−1, with B = 0 in the above form.

Brec([Aiαi−1|i = 0, 1, . . . , n]) =















1

n1



 ,





α

p1







 ∈M

∣

∣

∣

∣

∣

∣

n1, p1 ∈ F







.

Case 3: p|n and x0 6= 0. In this case the signature

[Aiαi−1 + Bαi|i = 0, 1, . . . , n] is not realizable.
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Simultaneous Realizability

Definition

The Simultaneous Realizability Problem:

Input: A set of symmetric signatures for generators

and/or recognizers.

Output: A common basis of these signatures if any exists;

“NO” if they are not simultaneously realizable.

This can be solved in polynomial time.
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An Example using the Machinery

#7Pl-Rtw-Mon-3CNF

#2k−1Pl-Rtw-Mon-kCNF

Given a planar formula in kCNF form, where each variable

appears positively, and read twice.

(2-k-regular planar bipartite graph.)

Replace each variable by a generator with the signature

[1, 0, 1],

Replace each clause by a recognizer with the signature

[0, 1, 1, · · · , 1] (with k 1’s).
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Holographic Transformation

Then the question boils down to whether there is a basis

in M where [1, 0, 1] for a generator and [0, 1, 1, · · · , 1] (with k

1’s) for a recognizer can be simultaneously realized.

From Lemma, with A = 1, B = −1, α = 1, β = 0, we have

Brec([0, 1, 1, · · · , 1]) =















1 + ω

1− ω



 ,





1

1









∣

∣

∣

∣

∣

∣

ωk = ±1







.

We look for some ωk = ±1, such that








1 + ω

1− ω



 ,





1

1







 ∈ Bgen([1, 0, 1]). According to Lemma, we

want (1 + ω)2 + 1 = (1− ω)2 + 1 = 0 or (1 + ω)(1− ω) + 1 = 0.

The first case is impossible, and in the second case we

require ω2 = 2. Together with the condition ωk = ±1, we
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have 2k − 1 = 0. From this we can already see that for

every prime p|2k − 1, #pPl-Rtw-Mon-kCNF is computable

in polynomial time. In particular this is true for every

Mersenne prime 2q − 1. (Note that ω2 = 2 means that 2 is a

quadratic residue.)
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Holographic Reductions as Hardness Proofs
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Going Beyond Matchgates: Holant Problems

It turns out that Holographic Reduction is also a powerful

tool to prove hardness.

A signature grid Ω = (G,F) is a tuple, where G = (V, E) is a

graph, and each v ∈ V (G) is assigned a function Fv ∈ F .

HolantΩ =
∑

σ

∏

v∈V

Fv(σ |E(v)).

Symmetric signatures: [f0, f1, . . . , fn]
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2-3 Regular Graphs

Consider 2-3 Regular Bipartite Graphs.

G = (U, V, E), deg(u) = 3 ∀u ∈ U, and deg(v) = 2 ∀v ∈ V.

Each v ∈ V is assigned a constraint function Fv.

We aim to prove a Complexity Dichotomy for

Holant(Ω) =
∑

σ

∏

v∈V

Fv(σ |E(v)),

according to the type of functions Fv.
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A Dichotomy Theorem

We use the notation Holant([x0, x1, x2]
∣

∣[y0, y1, y2, y3]).

This includes Vertex Cover Holant([0, 1, 1]
∣

∣[1, 0, 0, 1]).

and Perfect Matching Holant([1, 0, 1]
∣

∣[0, 1, 1, 1]).

Theorem

Every counting problem Holant([x0, x1, x2]
∣

∣[y0, y1, y2, y3]),

where [x0, x1, x2] and [y0, y1, y2, y3] are Boolean signatures, is

either

• in P; or

• #P-complete but solvable in P for planar graphs; or

• #P-complete even for planar graphs.
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Holographic Reductions for Both Directions

We use Holographic Reductions to prove both tractability

as well as hardness.

For Tractability we introduce a new class of Holographic

Algorithms, called Fibonacci Gates.

For hardness proofs, we apply Holographic Reductions

from a known #P-hard problem.
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A Glance at a Dichotomy Theorem
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f2 | g3 [0, 1, 0] [1, 0, 1] [1, 1, 0]

[0, 0, 1, 0] T P T

[0, 0, 1, 1] T H T

[0, 1, 0, 0] T P H

[0, 1, 0, 1] F F H

[0, 1, 1, 0] P P H

[0, 1, 1, 1] H H H

[1, 0, 0, 1] T T H

[1, 0, 1, 0] F F H

[1, 0, 1, 1] H F H

[1, 1, 0, 0] T H H

[1, 1, 0, 1] H F F

[1, 1, 1, 0] H H H
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Non-degeneracy

Definition

For n ≥ 2, a signature [x0, x1, . . . , xn] is called

non-degenerate if

rank





x0 . . . xn−1

x1 . . . xn



 = 2.
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Two Ideas in Hardness Proof

The First Step: Holographic reductions. To show

Holant([x0, x1, x2]
∣

∣[y0, y1, y2, y3]) is #P-Complete, we use

holographic reductions to reduce either

[0, 1, 1]
∣

∣[1, 0, 0, 1]

or

[1, 0, 1]
∣

∣[1, 1, 0, 0]

to

[z0, z1, z2]
∣

∣[y0, y1, y2, y3]

for some z0, z1 and z2.

The first is Vertex Cover, the second is Matching.
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Holographic Reductions

For every non-degenerate signature [y0, y1, y2, y3], there exists

a symmetric signature [z0, z1, z2] of arity two, such that

under a suitable holographic reduction,

#[z0, z1, z2]
∣

∣

∣
[y0, y1, y2, y3] ≡ A known #P-Complete problem.

Thus,

#[z0, z1, z2]
∣

∣

∣
[y0, y1, y2, y3] is #P-Complete.

Note that now z0, z1, z2 may take complex values.
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Second Step

Second, to show that Holant([x0, x1, x2]
∣

∣[y0, y1, y2, y3]) is

#P-Complete, we show how the pair

[x0, x1, x2]
∣

∣[y0, y1, y2, y3]

can “simulate” (or “interpolate”)

[z0, z1, z2]
∣

∣[y0, y1, y2, y3]

In fact, we show how to “simulate” [x, y, z]
∣

∣[y0, y1, y2, y3] for

all [x, y, z].
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Interpolation Method

The second idea is also due to Valiant: Interpolation.

This has been further developed by

• Vadhan

• Dyer

• Greenhill

• Bulatov

• Dalmau

• Grohe

• Creignou

• Hermann

• Goldberg
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• Jerrum

• Xia-Zhang-Zhao

• Goldberg-Grohe-Jerrum-Thurley, . . .
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Interpolation Method

Given Ω = (G, [x, y, z]
∣

∣[y0, y1, y2, y3]). Let

f = [x, y, z].

f(00) = x, f(01) = f(10) = y and f(11) = z.

Vf = the subset of V assigned f in Ω.

|Vf | = n.
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An Expression for Holant

Holant(Ω) =
∑

i+j+k=n

ci,j,kxiyjzk,

ci,j,k = is the sum over all edge assignments σ, of products

of evaluations at all v ∈ V (G)− Vf , where σ satisfies the

property that the number of vertices in Vf having exactly

0 or 1 or 2 incident edges assigned 1 is i or j or k,

respectively.
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HolantΩs

Let {fs} = {[xs, ys, zs]}, for s = 0, 1, . . ..

Replace f by fs in Ω

HolantΩs
=

∑

i+j+k=n

ci,j,kxi
sy

j
sz

k
s . (5)

Note that the same set of values ci,j,k occur.

ci,j,k is independent of s.

Now consider (5) as a linear system in the unknowns ci,j,k.
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Recursive Construction

A sequence of gadgets Ns will be recursively constructed,

producing fs = [xs, ys, zs].









xs

ys

zs









=









a11 a12 a13

a21 a22 a23

a31 a32 a33

















xs−1

ys−1

zs−1









. (6)
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An example

1
i

N


i
N


Figure 2: Gadget 1.
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Interpolation Theorem

Theorem

Suppose the recurrence matrix A of the construction Ns

satisfies

1. det(A) 6= 0,

2. The initial signature [x0, y0, z0] is not orthogonal to any

row eigenvector of A, and

3. For all (i, j, k) ∈ Z3 − {(0, 0, 0)} with i + j + k = 0,

αiβjγk 6= 1.

Then all ci,j,k can be computed in polynomial time.
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An Algebraic Condition via Galois Theory

The key condition is the lattice condition:

For all (i, j, k) ∈ Z3 − {(0, 0, 0)} with i + j + k = 0,

αiβjγk 6= 1.

Lemma

Let f(x) = x3 + c2x
2 + c1x + c0 ∈ Q[x], with roots α, β and γ.

It is decidable in P whether the lattice condition holds.

If f is irreducible, except of the form x3 + c for some c ∈ Q,

the condition holds.
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An example

The counting problem Holant([1, 1, 0]
∣

∣[1, 1, 1, 0]).

A recursive construction gives the following recursive

relation:








ai

bi

ci









=









7191 12618 5535

3816 6723 2961

2025 3582 1584

















ai−1

bi−1

ci−1









.

Characteristic polynomial

χ(x) = x3 − 15498x2 + 419904x− 19683.

=⇒

#P-complete
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Fibonacci Gates
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Definition and Tractability

Let {fk}
n
k=0 be a sequence, satisfying fk+2 = fk+1 + fk for all

k = 0, 1, . . . , n− 2. For any initial values f0 and f1, the

sequence defines a Fibonacci gate [f0, f1, . . . , fn].

Theorem

For any Ω, the holant problem on Ω where all vertex

constraint functions are from Fibonacci Gates F can be

computed in polynomial time.

72



H


1
y


2
y


3
y


4
y


5
y


F
 G


1
y


2
y


3
y


4
y


5
y


z
 z'


Figure 3: First operation.
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Figure 4: Second operation.
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Realizability

Theorem

A set of symmetric generators G1, G2, . . . , Gs and

recognizers R1, R2, . . . , Rt are simultaneously realizable as

Fibonacci gates on some basis of size 1 iff there exist three

constants a, b and c, such that b2 − 4ac 6= 0 and the following

two conditions are satisfied:

1. For any recognizer Ri = [x
(i)
1 , x

(i)
2 , . . . , x

(i)
ni ] and any

k = 0, 1, . . . , ni − 2, ax
(i)
k + bx

(i)
k+1 + cx

(i)
k+2 = 0.

2. For any generator Gj = [y
(j)
1 , y

(j)
2 , . . . , y

(j)
mj ] and any

k = 0, 1, . . . , mj − 2, cy
(j)
k − by

(j)
k+1 + ay

(j)
k+2 = 0.
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Generalized Fibonacci Gates

For any fixed parameter m, we consider any sequence

[f0, f1, . . . , fn], where it satisfies the following recurrence,

for i = 0, . . . , n− 2,

fi+2 = m · fi+1 + fi.

All results on Fibonacci gates can be extended to

generalized Fibonacci gates which also admit polynomial

time algorithms.
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Holant Problems

A signature grid Ω = (G,F , π) consists of a graph G = (V, E),

and a labeling π of each vertex v ∈ V with a function

fv ∈ F . The Holant problem on instance Ω is to compute

HolantΩ =
∑

σ:E→{0,1}

∏

v∈V fv(σ |E(v)).
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A Holant problem is parameterized by a set of signatures.

Definition

Given a set of signatures F , we define a counting problem

Holant(F):

Input: A signature grid Ω = (G,F , π);

Output: HolantΩ.
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Holant∗ Problems

Definition

Let U denote the set of all unary signatures. Then

Holant∗(F) = Holant(F ∪ U).

A degenerate signature is a tensor product of unary

signatures.
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Theorem

Let F be a set of non-degenerate symmetric signatures

over C. Then Holant∗(F) is computable in polynomial time

in the following three Classes. In all other cases, Holant∗(F)

is #P-hard.

1. Every signature in F is of arity no more than two;

2. There exist two constants a and b (not both zero,

depending only on F), such that for all signatures

[x0, x1, . . . , xn] ∈ F one of the two conditions is satisfied:

(1) for every k = 0, 1, . . . , n− 2, we have

axk + bxk+1 − axk+2 = 0; (2) n = 2 and the signature

[x0, x1, x2] is of the form [2aλ, bλ,−2aλ].

3. For every signature [x0, x1, . . . , xn] ∈ F one of the two

conditions is satisfied: (1) For every k = 0, 1, . . . , n− 2,

we have xk + xk+2 = 0; (2) n = 2 and the signature

80



[x0, x1, x2] is of the form [λ, 0, λ].

The dichotomy is still valid even if the inputs are

restricted to planar graphs.
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Orthogonal Transformation

Suppose F is a function set and M is a 2× 2 matrix. We

use M ◦ F to denote the set consisting of all functions in F

transformed by a matrix M ,

M ◦ F = {M⊗rF F |F ∈ F , rF = arity(F )}.

Suppose M = H is orthogonal. Let E be the class of all

Equality gates.

We prove the tractability of Holant∗(H ◦ E).
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We first reformulate it as a bipartite Holant problem

Holant(=2 |H ◦ E).

Here the edges are replaced by the binary Equality

function (=2) = [1, 0, 1]. Now we perform a holographic

reduction by the basis transformation H−1 on the RHS.

This (contravariant) transformation on the RHS is

accompanied by the (covariant) transformation

[1, 0, 1] 7→ [1, 0, 1]H⊗2. One can verify that an orthogonal H

keeps [1, 0, 1] invariant, namely [1, 0, 1]H⊗2 = [1, 0, 1].
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To wit: let H =





a b

c d



, then

[1, 0, 1]H⊗2 =
(

(1, 0)⊗2 + (0, 1)⊗2
)

H⊗2

= ((1, 0)H)⊗2 + ((0, 1)H))⊗2

= (a, b)⊗2 + (c, d)⊗2

= (a2 + c2, ab + cd, ab + cd, b2 + d2)

= (1, 0, 0, 1) = [1, 0, 1]
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The Equality Signature Being Factored

Holographic transformations guide the discovery and

formulation of our dichotomy theorems.

The Equality function =2 can be “factored” by an

orthogonal H, and thus “contributes” an orthogonal H to

the RHS in this holographic transformation:

Holant(=2 |H ◦ F)←→ Holant(=2 |F),
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DisEquality Being Factored

The binary DisEquality function 6=2 can also be

“factored”.

Define

Z1 =

(

1 1

i −i

)

and Z2 =

(

1 1

−i i

)

.
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A Factorization via Z

The DisEquality function 6=2 can be “factored” as

( 6=2) =

(

0 1

1 0

)

∼= ZT

1Z1 =

(

1 i

1 −i

)(

1 1

i −i

)

and thus “contributes” a Z to the RHS in the following

holographic transformation:

Holant(=2 |Z ◦ F)←→ Holant(6=2 |F).
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Holant∗ Dichotomy

Theorem

The following classes of Holant∗ problems are polynomial

time computable.

• Holant∗(〈T 〉)

• Holant∗(〈H ◦ E〉);

• Holant∗(〈Z ◦ E〉); and

• Holant∗(〈Z ◦M〉)

Everything else is #P-hard.
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THANK YOU!
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http://www.cs.wisc.edu/˜jyc
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