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Abstract. Each symmetric matrix A over C defines a graph homomorphism function ZA(·) on
undirected graphs. The function ZA(·) is also called the partition function from statistical physics,
and can encode many interesting graph properties, including counting vertex covers and k-colorings.
We study the computational complexity of ZA(·) for arbitrary symmetric matrices A with algebraic
complex values. Building on work by Dyer and Greenhill [Random Structures and Algorithms, 17
(2000), pp. 260–289], Bulatov and Grohe [Theoretical Computer Science, 348 (2005), pp. 148–186],
and especially the recent beautiful work by Goldberg et al. [SIAM J. Comput., 39 (2010), pp. 3336–
3402], we prove a complete dichotomy theorem for this problem. We show that ZA(·) is either
computable in polynomial-time or #P-hard, depending explicitly on the matrix A. We further prove
that the tractability criterion on A is polynomial-time decidable.
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1. Introduction. Graph homomorphism has been studied intensely over the
years [28, 23, 13, 18, 4, 12, 21]. Given two graphs G and H , a graph homomorphism
from G to H is a map f from the vertex set V (G) to V (H) such that, whenever
(u, v) is an edge in G, (f(u), f(v)) is an edge in H . The counting problem for graph
homomorphism is to compute the number of homomorphisms fromG toH . For a fixed
graphH , this problem is also known as the #H-coloring problem. In 1967, Lovász [28]
proved thatH andH ′ are isomorphic iff for all G, the number of homomorphisms from
G to H and from G to H ′ are the same. Graph homomorphisms and the associated
partition function defined below provide us an elegant and wide-ranging notion of
graph properties [23].

In this paper, all graphs considered are undirected. We follow standard defini-
tions: G is allowed to have multiple edges; H can have loops, multiple edges, and,
more generally, edge weights. (The standard definition of graph homomorphism does
not allow self-loops for G. However, our result is stronger: We prove polynomial-time
tractability even for input graphs G with self-loops; at the same time, our hardness
results hold for the more restricted case of G with no self-loops.) Formally, we use A
to denote an m×m symmetric matrix with entries (Ai,j), i, j ∈ [m] = {1, 2, . . . ,m}.
Given any undirected graph G = (V,E), we define the graph homomorphism function
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GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 925

(1.1) ZA(G) =
∑

ξ:V→[m]

∏
(u,v)∈E

Aξ(u),ξ(v).

This is also called the partition function from statistical physics. It is clear from the
definition that ZA(G) is exactly the number of homomorphisms from G to H , when
A is the adjacency matrix of H .

Graph homomorphism can express many natural graph properties. For example,
if we take H to be the graph over two vertices {0, 1} with an edge (0, 1) and a loop
at 1, then the set of vertices mapped to 1 in a graph homomorphism from G to
H corresponds to a vertex cover of G, and the counting problem simply counts the
number of vertex covers. As another example, if H is the complete graph over k
vertices (without self-loops), then the problem is exactly the k-coloring problem for
G. Many additional graph invariants can be expressed as ZA(G) for appropriate A.
Consider the Hadamard matrix

(1.2) H =

(
1 1
1 −1

)
.

We index its rows and columns by {0, 1}. In the sum ZH(G), each term is either 1 or
−1 and equals −1 precisely when the induced subgraph of G on ξ−1(1) has an odd
number of edges. Therefore, (2n − ZH(G))/2 is the number of induced subgraphs of
G with an odd number of edges. Also expressible as ZA(·) are S-flows, where S is a
subset of a finite Abelian group closed under inversion [18], and a scaled version of the
Tutte polynomial T̂ (x, y), where (x−1)(y−1) is a positive integer. In [18], Freedman,
Lovász and Schrijver characterized the graph functions that can be expressed as ZA(·).

In this paper, we study the complexity of the partition function ZA(·), where A is
an arbitrary fixed symmetric matrix over the algebraic complex numbers. Throughout
the paper, we let C denote the set of algebraic complex numbers and refer to them
simply as complex numbers when it is clear from the context. More discussion on the
model of computation can be found in section 2.2.

The complexity question of ZA(·) has been intensely studied. Hell and Nešetřil
first studied the H-coloring problem [22, 23] (i.e., given an undirected graph G, decide
whether there exists a graph homomorphism from G to H) and proved that for any
fixed undirected graph H , the problem is either in polynomial time or NP-complete.
Results of this type are called complexity dichotomy theorems. Such theorems state
that every member of the class of problems concerned is either tractable (i.e., solvable
in P) or intractable (i.e., NP-hard or #P-hard depending on whether it is a decision or
a counting problem). This includes the well-known Schaefer’s dichotomy theorem [31].
The famous complexity dichotomy conjecture made by Feder and Vardi [16] on deci-
sion constraint satisfaction problems [11] motivated much of the subsequent work.

In [13], Dyer and Greenhill studied the counting version of the H-coloring prob-
lem. They proved that for any fixed symmetric {0, 1}-matrix A, ZA(·) is either com-
putable in polynomial time or #P-hard. (In this paper, for a function computable
in polynomial time we will simply say “in P.”) Then in [4], Bulatov and Grohe gave
a sweeping generalization of this theorem to all nonnegative symmetric matrices A.
(See Theorem 2.5 for the precise statement.) They obtained an elegant dichotomy
theorem, which basically says that ZA(·) is computable in P if each block ofA has rank
at most one, and is #P-hard otherwise. More precisely, decompose A as a direct sum
of Ai which correspond to the connected components Hi of the undirected graph H
defined by the nonzero entries of A. Then, ZA(·) is computable in P if every ZAi(·) is
and is #P-hard otherwise. For each nonbipartite graph Hi, the corresponding ZAi(·)
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926 JIN-YI CAI, XI CHEN, AND PINYAN LU

is computable in P if Ai has rank at most one and is #P-hard otherwise. For each
bipartite Hi, the corresponding ZAi(·) is in P if Ai has the form

Ai =

(
0 Bi

BT
i 0

)
,

where Bi has rank one, and is #P-hard otherwise.
The result of Bulatov and Grohe is both sweeping and enormously applicable.

It completely solves the problem for all nonnegative symmetric matrices. However,
when we are dealing with nonnegative matrices, there are no cancellations in the
exponential sum ZA(·). These potential cancellations, when A is either a real or
a complex matrix, may in fact be the source of surprisingly efficient algorithms for
computing ZA(·). The occurrence of these cancellations, or the mere possibility of
such occurrence, makes proving any complexity dichotomies more difficult. Such a
proof must identify all polynomial-time decidable problems utilizing the potential
cancellations, such as those found in holographic algorithms [36, 37, 8], and at the
same time carve out exactly what is left. This situation is similar to monotone versus
nonmonotone circuit complexity. It turns out that indeed there are more interesting
tractable cases over the reals, and in particular, the 2×2 Hadamard matrix H in (1.2)
turns out to be one such case. This is the starting point for the next great chapter
on the complexity of ZA(·).

In a paper [21] comprising 67 pages of beautiful proofs of both exceptional depth
and conceptual vision, Goldberg et al. proved a complexity dichotomy theorem for
algebraic real-valued symmetric matrices A. Their result is too intricate to give a
short and accurate summary here. It states that the problem of computing ZA(G)
for any algebraic real A is either in P or #P-hard. Which case it is depends on the
connected components of A. The overall statement remains that ZA(G) is tractable
if every connected component of A is and is #P-hard otherwise. However, the exact
description of tractability for connected A is much more technical and involved. The
Hadamard matrix H and its tensor products H ⊗ · · · ⊗ H play a major role in the
tractable case. If we index rows and columns of H by the finite field Z2, then its
(x, y) entry is (−1)xy. For the nonbipartite case, there is another 4 × 4 symmetric
matrix H4, different from H⊗H, where the rows and columns are indexed by (Z2)

2

and the entry at ((x1, x2), (y1, y2)) is (−1)x1y2+x2y1 . These two matrices, and their
arbitrary tensor products, all correspond to new tractable ZA(·). In fact, there are
some more tractable cases, starting with what can be roughly described as certain
rank one modifications on these tensor products.

The proof of [21] proceeds by establishing a long sequence of successively more
stringent properties that a tractable A must satisfy. Ultimately, it arrives at a point
where satisfaction of these properties implies that ZA(G) can be computed as∑

x1,x2,...,xn∈Z2

(−1)fG(x1,x2,...,xn),

where fG is a quadratic polynomial over Z2. This sum is known to be computable in
polynomial time in n [10] [27, Theorem 6.30], the number of variables. In hindsight,
the case with the simplest Hadamard matrix H which was an obstacle to the Bulatov–
Grohe dichotomy theorem and was left open for some time could have been directly
solved if one had adopted the polynomial viewpoint of [21].

While positive and negative real numbers provide the possibility of cancellations,
there is a significantly richer variety of possible cancellations over the complex do-
main. We independently came to the tractability of ZH(·), with H being the 2 × 2
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GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 927

Hadamard matrix, from a slightly different angle. In [9], the authors studied a certain
type of constraint satisfaction problem. This is motivated by investigations of a class
of counting problems called Holant problems, and it is connected with the technique
called holographic reductions introduced by Valiant [35, 36]. Let us briefly describe
this framework. A signature grid Ω = (G,F) is a tuple in which G = (V,E) is a graph
and each v ∈ V is attached a function Fv ∈ F . An edge assignment σ for every e ∈ E
gives an evaluation

∏
v∈V Fv(σ |E(v)), where E(v) denotes the set of incident edges of

v. The counting problem on an input instance Ω is to compute

Holant(Ω) =
∑
σ

∏
v∈V

Fv

(
σ |E(v)

)
.

For example, if we take σ : E → {0, 1} and attach the exact-one function at every
vertex v ∈ V , then Holant(Ω) is the number of perfect matchings of G. Incidentally,
Freedman, Lovász, and Schrijver showed [18] that counting perfect matchings cannot
be expressed as ZA(·) for any matrixA over R. However, every function ZA(·) (vertex
assignment) can be simulated by Holant(·) (edge assignment) as follows: A defines a
function of arity 2 for every edge of G. Consider the bipartite vertex-edge incidence
graph G′ = (V (G), E(G), E′) of G, where (v, e) ∈ E′ if e is incident to v in G. Then
attach the equality function at every v ∈ V (G) and the function defined by A at
every e ∈ E(G). This defines a signature grid Ω with the underlying graph G′. Then
ZA(G) = Holant(Ω).

Denote a symmetric function on n boolean variables by [f0, f1, . . . , fn], where fj
is the value on inputs of Hamming weight j. For example, the exact-one function is
[0, 1, 0, . . . , 0] and H is just [1, 1,−1]. The authors of [9] discovered that the three
families of functions (listing the values of a function lexicographically as in a truth
table on k boolean variables)

F1 =
{
λ([1, 0]⊗k + ir[0, 1]⊗k)

∣∣ λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3
}
,

F2 =
{
λ([1, 1]⊗k + ir[1,−1]⊗k)

∣∣ λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3
}
,

F3 = {λ([1, i]⊗k + ir[1, −i]⊗k)
∣∣ λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3

}
all give rise to tractable problems: Holant(Ω) for any Ω = (G,F1 ∪ F2 ∪ F3) can be
solved in P. In particular, by taking r = 1, k = 2, and λ = (1+ i)−1 in F3, we recover
the binary function [1, 1,−1] that corresponds to the Hadamard matrix H in (1.2). If
we take r = 0, λ = 1 in F1, we get the equality function [1, 0, . . . , 0, 1] on k bits. This
shows that ZH(·), as a special case, can be computed in P.

However, more instructive for us is the natural way in which complex numbers
appear in such counting problems, especially when applying holographic reductions.
One can say that the presence of powers of i =

√
−1 in these three families “reveals”

the true nature of H as belonging to a family of tractable counting problems, where
complex numbers are the correct language. In fact, the tractability of Holant(Ω) for
Ω = (G,F1 ∪ F2 ∪ F3) all boils down to an exponential sum of the form

(1.3)
∑

x1,x2,...,xn∈{0,1}
iL1+L2+ ···+Ls ,

where each Lj is an indicator function of an affine form of x1, x2, . . . , xn over Z2 (and
thus, the exponent of i in the equation above is a mod 4 sum of mod 2 sums). From
here it is only natural to investigate the complexity of ZA(·) for symmetric complex
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928 JIN-YI CAI, XI CHEN, AND PINYAN LU

matrices, since it not only is a natural generalization but also can reveal the inner
unity and some deeper structural properties. Interested readers can find more details
in [9]. Also see Remark 12.10 at the end of section 12.

Our investigation of complex-valued graph homomorphisms is also motivated by
the partition function in quantum physics. In classical statistical physics, the partition
function is always real-valued. But in a generic quantum system, for which complex
numbers are the right language, the partition function is in general complex-valued
[17]. In particular, if the physics model is over a discrete graph and is nonorientable,
then the edge weights are given by a symmetric complex matrix.

Our main result is the following complexity dichotomy theorem, though its crite-
rion is too complicated to explain here.

Theorem 1.1. Let A be a symmetric and algebraic complex matrix. Then ZA(·)
either can be computed in polynomial time or is #P-hard.

Furthermore, under the model of computation described in section 2.2, we show
that the following decision problem is solvable in polynomial time.

Theorem 1.2 (polynomial-time decidability). Given a symmetric and algebraic
complex matrix A, there is a polynomial-time algorithm that decides whether ZA(·) is
in polynomial time or is #P-hard.

Recent developments. In [34], Thurley announced a dichotomy theorem1 for
ZA(·), where A is a complex Hermitian matrix. The tractability result of the present
paper (in section 12) was used in [34]. Cai and Chen proved a dichotomy theorem for
ZA(·) for directed graph homomorphisms, where A is a nonnegative but not neces-
sarily symmetric matrix [5]. A dichotomy theorem is also proved for the more general
counting constraint satisfaction problem when the constraint functions take values in
{0, 1} [1, 2] (with an alternative proof given in [14] that also shows the decidability of
the dichotomy criterion), when the functions take nonnegative and rational values [3],
and when they are nonnegative and algebraic [7]. Finally, built on the methods and
results of [1, 14, 21] and the present paper, Cai and Chen proved a dichotomy theorem
for all algebraic complex-valued counting constraint satisfaction problems [6].

Organization. Due to the complexity of the proof of Theorem 1.1, both in terms
of its overall structure and in terms of technical difficulty, we first give a high-level
description of the proof for the bipartite case in section 3. We prove the first and
second pinning lemmas in section 4. A more detailed outline of the proof for the two
cases, bipartite and nonbipartite, is presented in sections 5 and 6, respectively, with
formal definitions and theorems. We then prove all the lemmas and theorems used
in sections 5 and 6, as well as Theorem 1.2, in the rest of the paper. An index of
conditions and problem definitions is given in Figure 1.1.

2. Preliminaries. In the paper, we let Q denote the set of rational numbers and
let R and C denote the set of algebraic real and algebraic complex numbers, respec-
tively, for convenience (even though many of the supporting lemmas and theorems
actually hold for general real or complex numbers, especially when computation or
polynomial-time reduction is not concerned in the statement).

2.1. Notation. For a positive integer n, we use [n] to denote the set {1, . . . , n}
(when n = 0, [0] = ∅). We use [m : n], where m ≤ n, to denote {m,m+1, . . . , n}. We

1However, the following is a counter example to Claim 3 on p. 50 of [34]: D
[c];1
11 = D

[c];1
22 = 1,

D
[c];2
11 = i (the imaginary unit), and D

[c];2
22 = −i. We believe that this minor deficiency in the proof

probably can be overcome using the techniques in this paper, in particular those from section 8.4.
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(Pinning) p. 938 (U1) – (U4) p. 941 (U5) p. 941

(R1) – (R3) p. 943 (L1) – (L3) p. 944 (D1) – (D4) p. 944

(U ′1) – (U ′4) p. 945 (U ′5) p. 945 (R′1) – (R′3) p. 946

(L′1) – (L′2) p. 947 (D′1) – (D′2) p. 948 (T1) – (T3) p. 952

(S1) p. 954 (S2) – (S3) p. 955 (Shape1) – (Shape5) p. 959

(Shape6) p. 964 (GC) p. 981 (F1) – (F4) p. 1003

(S′1) – (S′2) p. 1013 (Shape′1) – (Shape
′
6) p. 1015 (F ′1) – (F ′4) p. 1021

ZA(G) and EVAL(A) p. 925 ZC,D(G) and EVAL(C,D) p. 931

Z→C,D(G, u) p. 931 Z←C,D(G, u) p. 931

ZA(G,w, k) and EVALP(A) p. 933 Zq(f) and EVAL(q) p. 933

ZA(G,w, S) and EVAL(A, S) p. 937 ZC,D(G,w, k) and EVALP(C,D) p. 938

ZC,D(G,w, S) and EVAL(C,D, S) p. 938 COUNT(A) p. 949

Fig. 1.1. Index of conditions and problem definitions.

use 1n to denote the all-one vector of dimension n. Sometimes we omit n when the
dimension is clear from the context. For a positive integer N , we let ωN = e2πi/N , a
primitive Nth root of unity.

Let x,y be two vectors in Cn. Then we use 〈x,y〉 to denote their inner product,

〈x,y〉 =
n∑

i=1

xi · yi,

and x ◦ y ∈ Cn to denote their Hadamard product, (x ◦ y)i = xi · yi for all i ∈ [n].
Let A = (Ai,j) be a k × � matrix and B = (Bi,j) be an m× n matrix. We use

Ai,∗, i ∈ [k], to denote the ith row vector and A∗,j , j ∈ [�], to denote the jth column
vector of A. We let C = A⊗B denote their tensor product: C is a km× �n matrix
whose rows and columns are indexed by [k]× [m] and [�]× [n], respectively, such that

C(i1,i2),(j1,j2) = Ai1,j1 · Bi2,j2 for all i1 ∈ [k], i2 ∈ [m], j1 ∈ [�], and j2 ∈ [n].

Given an n × n symmetric complex matrix A, we use G = (V,E) to denote the
following undirected graph: V = [n] and ij ∈ E iff Ai,j �= 0. We say A is connected if
G is connected, and we say A has connected components A1, . . . ,As if the connected
components of G are V1, . . . , Vs and Ai is the |Vi| × |Vi| submatrix of A restricted by
Vi ⊆ [n] for all i ∈ [s]. Moreover, we say A is bipartite if G is bipartite; otherwise,
A is nonbipartite. Let Σ and Π be two permutations of [n]. Then we use AΣ,Π to
denote the n× n matrix whose (i, j)th entry is AΣ(i),Π(j), i, j ∈ [n].

We say C is the bipartization of a matrix F if

C =

(
0 F
FT 0

)
.

We usually use Di to denote the (i, i)th entry of a diagonal matrix D.
We say a problem is tractable if it can be solved in polynomial time. Given two

problems P and Q, we say P is polynomial-time reducible to Q, or P ≤ Q, if there
is a polynomial-time algorithm that solves P using an oracle for Q. These reductions
are known as Cook reductions. We also say P is polynomial-time equivalent to Q, or
P ≡ Q, if P ≤ Q and Q ≤ P .
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2.2. Model of computation.2 One technical issue is the model of computation
with algebraic numbers. We adopt a standard model from [26] for computation in an
algebraic number field. We start with some notation.

Let A be a fixed symmetric matrix where every entry Ai,j is an algebraic number.
We let A denote the finite set of algebraic numbers consisting of entries Ai,j of A.
Then it is easy to see that ZA(G), for any undirected graph G, is a number in Q(A ),
the algebraic extension of Q by A . By the primitive element theorem [30], there
exists an algebraic number α ∈ Q(A ) such that Q(A ) = Q(α). (Essentially, Q
has characteristic 0, and therefore the field extension Q(A ) is separable. We can
take the normal closure of Q(A ), which is a finite-dimensional separable and normal
extension of Q, and thus Galois [24]. By Galois correspondence, there are only a finite
number of intermediate fields between Q and this Galois extension field and thus a
fortiori only a finite number of intermediate fields between Q and Q(A ). Then Artin’s
theorem on primitive elements implies that Q(A ) is a simple extension Q(α).) In the
proof of Theorem 1.1 when the complexity of a partition function ZA(·) is concerned,
the matrix A is considered fixed. Thus, we may assume we are given, as part of the
problem description, such a number α, encoded by a minimal polynomial F (x) ∈ Q[x]
of α. In addition to F , we are given a sufficiently good rational approximation α̂ of
α which uniquely determines α as a root of F (x).3

Let d = deg(F ). Then every number c in Q(A ), including the Ai,j ’s and ZA(G)
for any G, has a unique representation as a polynomial of α:

c0 + c1 · α+ · · ·+ cd−1 · αd−1, where every ci is a rational number.

We will refer to this polynomial as the standard representation of c. Given a number
c ∈ Q(A ) in the standard representation, its input size is the sum of the binary
lengths of all the rational coefficients. It is easy to see that all the field operations
over Q(A ) in this representation can be computed in polynomial time in the input
size.

We emphasize that when the complexity of ZA(·) is concerned in the proof of
Theorem 1.1, all the following are considered as constants since they are part of the
problem description and not part of the input: the size of A, the minimal polynomial
F (x) of α, the approximation α̂ of α, as well as the entries Ai,j of A encoded in the
standard representation. Given an undirected graph G, the problem is then to output
ZA(G) ∈ Q(A ) encoded in the standard representation. We remark that the same
model applies to the problem of computing ZC,D(·), to be defined in section 2.3.

However, for most of the proof of Theorem 1.1 this issue of computation model
seems not to be central, because our proof starts with a preprocessing step using the
purification lemma (see section 3 for a high-level description of the proof, and see
section 7 for the purification lemma), after which the matrix concerned becomes a
pure one, meaning that every entry is the product of a nonnegative integer and a
root of unity. So throughout the proof, we let C denote the set of algebraic numbers
and refer to them simply as complex numbers, except in the proof of the purification
lemma in section 7, where we will be more careful about the model of computation.

2For readers who are not particularly concerned with details of the model of computation with
complex numbers, this section can be skipped initially.

3This is a slight modification to the model of [26] and of [34, 33]. It will come in handy later in
one step of the proof in section 7, in which it allows us to avoid certain technical subtleties.

D
ow

nl
oa

de
d 

07
/3

1/
15

 to
 1

28
.1

05
.1

4.
12

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 931

After the proof of Theorem 1.1, we consider the decidability of the dichotomy
theorem and prove Theorem 1.2. The input of the problem is the full description of
A, including the minimal polynomial F (x) of α, the approximation α̂ of α, as well as
the standard representation of the entries Ai,j of A. We refer to the binary length of
all the components above as the input size of A. To prove Theorem 1.2, we give an
algorithm that runs in polynomial time in the binary length of A and decides whether
the problem of computing ZA(·) is in polynomial time or #P-hard.

2.3. Definitions of EVAL(A) and EVAL(C,D). Let A ∈ Cm×m be a symme-
tric matrix with entries (Ai,j). It defines a graph homomorphism problem EVAL(A)
as follows: Given an undirected graph G = (V,E), compute

ZA(G) =
∑

ξ:V→[m]

wtA(ξ), where wtA(ξ) =
∏

(u,v)∈E
Aξ(u),ξ(v).

We call ξ an assignment to the vertices of G and wtA(ξ) the weight of ξ.
To study the complexity of EVAL(A), we introduce a much larger class of EVAL

problems with not only edge weights but also vertex weights. Moreover, the vertex
weights depend on the degrees of vertices of G, modulo some integer modulus. It is a
generalization of the edge-vertex weight problems introduced in [21]. See also [29].

Definition 2.1. Let C ∈ Cm×m be a symmetric matrix and

D =
(
D[0],D[1], . . . ,D[N−1])

be a sequence of diagonal matrices in Cm×m for some N ≥ 1. We define the following
problem EVAL(C,D): Given an undirected graph G = (V,E), compute

(2.1) ZC,D(G) =
∑

ξ:V→[m]

wtC,D(ξ),

where

wtC,D(ξ) =

( ∏
(u,v)∈E

Cξ(u),ξ(v)

)( ∏
v∈V

D
[deg(v) modN ]
ξ(v)

)

and deg(v) denotes the degree of v in G.
Let G be an undirected graph with connected components G1, . . . , Gs.
Property 2.2. ZC,D(G) = ZC,D(G1)× · · · × ZC,D(Gs).
Property 2.2 implies that whether we need to design an algorithm for EVAL(C,D)

or reduce EVAL(C,D) to another problem EVAL(C′,D′), it suffices to consider con-
nected input graphs. Also note that since EVAL(A) is a special case of EVAL(C,D)
in which every D[i] is an identity matrix, Property 2.2 and the remarks above apply
to EVAL(A) as well.

Next, suppose C is the bipartization of an m× n F, so C is (m+ n)× (m+ n).
Given a graph G and a vertex u in G, we use Ξ1 to denote the set of ξ : V → [m+ n]
with ξ(u) ∈ [m] and Ξ2 to denote the set of ξ with ξ(u) ∈ [m+ 1 : m+ n]. Then let

Z→C,D(G, u) =
∑
ξ∈Ξ1

wtC,D(ξ) and Z←C,D(G, u) =
∑
ξ∈Ξ2

wtC,D(ξ).

The next property follows from the definitions.
Property 2.3. ZC,D(G) = Z→C,D(G, u) + Z←C,D(G, u).

D
ow

nl
oa

de
d 

07
/3

1/
15

 to
 1

28
.1

05
.1

4.
12

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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We introduce these two new functions because of the following lemma.
Lemma 2.4. For each i ∈ {0, 1, 2}, let F[i] be an mi × ni complex matrix, where

m0 = m1m2 and n0 = n1n2; let C
[i] be the bipartization of F[i]; and let

D[i] =
(
D[i,0], . . . ,D[i,N−1])

be a sequence of (mi + ni)× (mi + ni) diagonal matrices for some N ≥ 1, where

D[i,r] =

(
P[i,r]

Q[i,r]

)
and P[i,r], Q[i,r] are mi ×mi, ni × ni diagonal matrices, respectively. Assume

F[0] = F[1] ⊗ F[2], P[0,r] = P[1,r] ⊗P[2,r], and Q[0,r] = Q[1,r] ⊗Q[2,r]

for all r ∈ [0 : N − 1]. Then for any connected graph G and any vertex u∗ in G,

Z→C[0],D[0](G, u∗) = Z→C[1],D[1](G, u∗) · Z→C[2],D[2](G, u∗) and(2.2)

Z←C[0],D[0](G, u∗) = Z←C[1],D[1](G, u∗) · Z←C[2],D[2](G, u∗).(2.3)

Proof. We only prove (2.2) about Z→. The proof of (2.3) is similar. First, if G is
not bipartite, then Z→

C[i],D[i](G, u∗) = 0 for all i ∈ {0, 1, 2}, and (2.2) holds trivially.

Now assume G = (U ∪ V,E) is a bipartite graph, u∗ ∈ U , and every edge uv ∈ E
has one vertex u from U and one vertex v from V . We let Ξi, i ∈ {0, 1, 2}, denote the
set of assignments ξi from U ∪ V to [mi + ni] such that ξi(u) ∈ [mi] for all u ∈ U and
ξi(v) ∈ [mi + 1 : mi + ni] for all v ∈ V . Since G is connected, we have

Z→C[i],D[i](G, u∗) =
∑
ξi∈Ξi

wtC[i],D[i](ξi) for i ∈ {0, 1, 2}.

We define a map ρ from Ξ1 × Ξ2 to Ξ0 as follows: ρ(ξ1, ξ2) = ξ0, where for every
u ∈ U , ξ0(u) is the row index of F[0] that corresponds to row ξ1(u) of F[1] and row
ξ2(u) of F

[2] in the tensor product F[0] = F[1] ⊗F[2]; and for every v ∈ V , ξ0(v)−m0

is the column index of F[0] that corresponds to column ξ1(v)−m1 of F[1] and column
ξ2(v)−m2 of F[2] in the tensor product. It is clear that ρ is a bijection, and

wtC[0],D[0](ξ0) = wtC[1],D[1](ξ1) · wtC[2],D[2](ξ2),

if ρ(ξ1, ξ2) = ξ0. Equation (2.2) then follows, and the lemma is proved.

2.4. Basic #P-hardness. We state the dichotomy of Bulatov and Grohe.
Theorem 2.5 (Bulatov and Grohe [4]). Let A be a symmetric and connected

matrix with nonnegative algebraic entries. Then EVAL(A) is either in polynomial time
or #P-hard. Moreover, we have the following two cases:

1. If A is bipartite, then EVAL(A) is in polynomial time if the rank of A is 2;
otherwise EVAL(A) is #P-hard.

2. If A is not bipartite, then EVAL(A) is in polynomial time if the rank of A is
at most 1; otherwise EVAL(A) is #P-hard.

Theorem 2.5 gives us the following useful corollary.
Corollary 2.6. Let A be a symmetric and connected matrix with nonnegative

algebraic entries. If A has a 2 × 2 submatrix B such that all four entries of B are
nonzero and det(B) �= 0, then the problem EVAL(A) is #P-hard.
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3. A high-level description of the proof. The first step in the proof of
Theorem 1.1 is to reduce the problem to connected graphs and matrices.

Let A be an m×m symmetric complex matrix. If G has connected components
{Gi}, then ZA(G) =

∏
i ZA(Gi); if G is connected and A has connected components

{Aj}, then ZA(G) =
∑

j ZAj (G). Thus, if every ZAj (·) is computable in polynomial
time, then so is ZA(·). The hardness direction is less obvious. Assume that EVAL(Aj)
is #P-hard for some j; we want to show that EVAL(A) is also #P-hard by giving a
polynomial-time reduction from EVAL(Aj) to EVAL(A).

Now let G be an undirected graph. To compute ZAj (G), it suffices to compute
ZAj (Gi) for all connected components Gi of G. Therefore, we may just assume that
G is connected. Define a pinning version of ZA(·) as follows. For any chosen vertex
w ∈ V (G) and any k ∈ [m], we let

ZA(G,w, k) =
∑

ξ:V→[m], ξ(w)=k

∏
(u,v)∈E

Aξ(u),ξ(v).

Then we can prove a pinning lemma (Lemma 4.1) which states that the problem of
computing ZA(·) is polynomial-time equivalent to computing ZA(·, ·, ·). Note that if
Vj denotes the subset of [m] where Aj is the submatrix of A restricted by Vj , then
for a connected graph G, we have

ZAj (G) =
∑
k∈Vj

ZA(G,w, k),

which gives us the desired polynomial-time reduction from EVAL(Aj) to EVAL(A).
The proof of this pinning lemma (Lemma 4.1) is a standard adaptation to the

complex numbers of the one proved in [21]. For technical reasons we indeed need a
total of three pinning lemmas (Lemmas 4.1, 4.3, and 8.4), and the proofs of the other
two are a bit more involved. We remark that all three pinning lemmas show only
the existence of polynomial-time reductions between ZA(·) and ZA(·, ·, ·) but do not
constructively produce such a reduction, given A. The proof of the pinning lemma in
[21] used a result by Lovász [29] for real matrices. It is possible to use a new result of
Schrijver [32] in the complex case. However, we give direct and self-contained proofs
of our three lemmas without using [29] or [32].

After this preliminary step, we restrict to connected and symmetric A. As indi-
cated, for our work the two most influential predecessor papers are those by Bulatov
and Grohe [4] and Goldberg et al. [21]. In both papers, the polynomial-time algo-
rithms for the tractable cases are relatively straightforward or are previously known.
The difficult part of the proof is to show that, in all other cases, the problem is #P-
hard. Our proof follows a conceptual framework similar to that of Goldberg et al. [21].
However, over the complex numbers, new difficulties arise in both the tractability and
the hardness part of the proof. Therefore, both the overall organization and the
substantive part of the proof have to be done separately.

First, the complex numbers afford a richer variety of cancellations, which could
lead to surprisingly efficient algorithms for EVAL(A) when the complex matrix A
satisfies certain nice conditions. This turns out to be the case, and we obtain addi-
tional nontrivial tractable cases. These boil down to the following class of problems
called EVAL(q). Let q be a fixed prime power. The input of EVAL(q) is a quadratic
polynomial f(x1, x2, . . . , xn) with integer coefficients; the output is

Zq(f) =
∑

x1,x2,...,xn∈Zq

ωf(x1,x2,...,xn)
q .
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We show that for any fixed prime power q, EVAL(q) is in polynomial time. In
the algorithm (see section 12), Gauss sums play a crucial role. The tractability part
of our dichotomy theorem is then done by reducing EVAL(A), assuming A satisfies a
set of nice structural conditions (to be described in the rest of this section) imposed
by the hardness part, to EVAL(q) for some appropriate prime power q. While the
corresponding sums for finite fields (when q is a prime) are known to be in polynomial
time [10, 15], [27, Theorem 6.30] and, in particular, this includes the special case of Z2

used in [21], our algorithm over rings Zq is new and should be of independent interest.
Next we briefly describe the proof structure of the hardness part of the dichotomy

theorem. Let A be a connected and symmetric matrix. The difficulty starts with the
most basic proof technique, called gadget constructions. With a graph gadget, one
can take any input undirected graph G and produce a modified graph G∗ by replacing
each edge of G with the gadget. Moreover, one can define a suitable modified matrix
A∗ from the fixed matrix A and the gadget such that ZA∗(G) = ZA(G∗) for all
undirected graphs G.

A simple example of this maneuver is called thickening, where one replaces each
edge in the input G by t parallel edges to get G∗. It is easy to see that ifA∗ is obtained
from A by replacing each entry Ai,j by its tth power (Ai,j)

t, then the equation above
holds and we get a reduction from EVAL(A∗) to EVAL(A). In particular, if A is real
(as in the case of [21]) and t is even, this produces a nonnegative matrix A∗, to which
one may apply the Bulatov–Grohe result:

1. If A∗, as a symmetric and nonnegative matrix, does not satisfy the tractabil-
ity criteria of Bulatov and Grohe as described in Theorem 2.5, then both EVAL(A∗)
and EVAL(A) are #P-hard and we are done.

2. Otherwise, A∗ satisfies the Bulatov–Grohe tractability criteria, from whichA
must satisfy certain necessary structural properties since A∗ is derived from A.

The big picture of the proof of the dichotomy theorem is then to design various
graph gadgets to show that, assuming EVAL(A) is not #P-hard, the matrix A must
satisfy a collection of strong necessary conditions over its complex entries Ai,j . (The
exact proof structure, however, is different from this very-high-level description, which
will become clear in the rest of this section.) To finish the proof, we show that for
every A that satisfies all these structural conditions, one can reduce EVAL(A) to
EVAL(q) for some appropriate prime power q (which depends only on A), and thus
EVAL(A) is tractable.

For complex matrices A, we immediately encountered the following difficulty.
Any graph gadget will only produce a matrix A∗ whose entries are obtained from
entries of A by arithmetic operations + and ×. While for real numbers any even
power guarantees a nonnegative quantity, as was done in [21], no obvious arithmetic
operations on the complex numbers have this property. Pointedly, conjugation is not
an arithmetic operation. However, it is clear that for roots of unity, one can produce
conjugation by multiplication.

Thus, our proof starts with a process of replacing an arbitrary complex matrix by
a purified complex matrix with a special form. It turns out that we must separate out
the cases where A is bipartite or nonbipartite. A purified bipartite (and symmetric,
connected) matrix is the bipartization of a matrix B, where

B =

⎛⎜⎜⎜⎝
μ1

μ2

. . .

μk

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
ζ1,1 ζ1,2 . . . ζ1,m−k
ζ2,1 ζ2,2 . . . ζ2,m−k
...

...
. . .

...
ζk,1 ζk,2 . . . ζk,m−k

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
μk+1

μk+2

. . .

μm

⎞⎟⎟⎟⎠D
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for some 1 ≤ k < m, in which every μi is a positive rational number and every ζi,j
is a root of unity. The claim is that for every symmetric, connected, and bipartite
matrix A ∈ Cm×m, either we can already prove the #P-hardness of EVAL(A) or there
exists a purified bipartite matrix A′ ∈ Cm×m such that EVAL(A′) is polynomial-time
equivalent to EVAL(A) (Theorem 5.2). For nonbipartite matrices A, a corresponding
statement holds (Theorem 6.2). For convenience, we only consider the bipartite case
in the discussion below.

Continuing now with a purified bipartite matrix A′, the next step is to further
regularize its entries. In particular we need to combine those rows and columns of the
matrix where they are essentially the same, apart from a multiple of a root of unity.
This process is called cyclotomic reduction. To carry out this process, we need to use
the more general problem EVAL(C,D) defined earlier in section 2.3. We also need to
introduce the following type of matrices, called discrete unitary matrices.

Definition 3.1 (discrete unitary matrix). Let F ∈ Cm×m be a (not necessarily
symmetric) matrix with entries (Fi,j). We call F an M -discrete unitary matrix, for
some positive integer M , if it satisfies the following conditions:

1. Every entry Fi,j of F is a root of unity, and F1,i = Fi,1 = 1 for all i ∈ [m].
2. M is the least common multiple (lcm) of orders of all the entries Fi,j of F.
3. For all i �= j ∈ [m], we have 〈Fi,∗,Fj,∗〉 = 0 and 〈F∗,i,F∗,j〉 = 0.

Some of the simplest examples of discrete unitary matrices are as follows:

(
1 1
1 −1

)
,

⎛⎜⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎟⎠ ,

⎛⎝1 1 1
1 ω ω2

1 ω2 ω

⎞⎠ ,

⎛⎜⎜⎜⎜⎝
1 1 1 1 1
1 ζ ζ−1 ζ2 ζ−2

1 ζ2 ζ−2 ζ−1 ζ
1 ζ−1 ζ ζ−2 ζ2

1 ζ−2 ζ2 ζ ζ−1

⎞⎟⎟⎟⎟⎠ ,

where ω = e2πi/3 and ζ = e2πi/5. Tensor products of discrete unitary matrices are
also discrete unitary matrices. These matrices play a major role in our proof.

Now we come back to the proof outline. We show that EVAL(A′) is either #P-
hard or polynomial-time equivalent to EVAL(C,D) for some matrix C ∈ C2n×2n and
some D of diagonal matrices from C2n×2n, where n ≤ m and C is the bipartization
of a discrete unitary matrix, denoted by F. In addition, there are further stringent
requirements for D; otherwise EVAL(A′) is #P-hard. The detailed statements can
be found in Theorems 5.3 and 5.4, summarized in properties (U1) to (U5). Roughly
speaking, the first matrix D[0] in D must be the identity matrix, and for any matrix
D[r] in D, each entry of D[r] is either zero or a root of unity. We call these conditions,
with some abuse of terminology, the discrete unitary requirements. The proof that
these requirements are necessary is demanding and among the most difficult in the
paper.

Next, assume that we have a problem EVAL(C,D) satisfying the discrete unitary
requirements with C being the bipartization of F. Recall that ωq = e2πi/q.

Definition 3.2. Let q > 1 be a prime power. The following q × q matrix Fq is
called the q-Fourier matrix: The (x, y)th entry of Fq is ωxy

q , x, y ∈ [0 : q − 1].
We show that either EVAL(C,D) is #P-hard or, after a permutation of rows and

columns, F becomes the tensor product of a collection of suitable Fourier matrices:

Fq1 ⊗Fq2 ⊗ · · · ⊗Fqd , where d ≥ 1 and every qi is a prime power.

Basically, we show that even with the stringent conditions imposed on the pair (C,D)
by the discrete unitary requirements, most of EVAL(C,D) are still #P-hard, unless
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F is the tensor product of Fourier matrices. On the other hand, the tensor product
decomposition into Fourier matrices finally brings in group theory and Gauss sums.
It gives us a canonical way of writing the entries of F in a closed form. More exactly,
we index the rows and columns of F using x = (x1, . . . , xd) ∈ Zq1 × · · · × Zqd so that

Fx,y =
∏
i∈[d]

ωxiyi
qi for any x,y ∈ Zq1 × · · · × Zqd .

Assume q1, . . . , qd are powers of s ≤ d distinct primes p1, . . . , ps. We can also view
the set of indices as Zq1 × · · · × Zqd = G1 × · · · ×Gs, where Gi is the finite Abelian
group which is the product of all the groups Zqj with qj being a power of pi.

This canonical tensor product decomposition of F gives us a natural way to index
the rows and columns of C and the diagonal matrices in D using x. More exactly, we
index the first half of the rows and columns of C and every D[r] in D using (0,x) and
index the second half of the rows and columns using (1,x), x ∈ Zq1 × · · · × Zqd .

With this canonical expression of F and C, we further inquire into the structure
of D. Here one more substantial difficulty awaits us. There are two more properties
that we must demand of those diagonal matrices in D. If D does not satisfy these
additional properties, then EVAL(C,D) is #P-hard.

First, for each r, we define Λr and Δr to be the support of D[r], where Λr refers
to the first half of the entries and Δr refers to the second half of the entries (here we
follow the convention of using Di to denote the (i, i)th entry of a diagonal matrix D):

Λr =
{
x : D

[r]
(0,x) �= 0

}
and Δr =

{
x : D

[r]
(1,x) �= 0

}
.

We let S denote the set of subscripts r such that Λr �= ∅ and let T denote the set of
r such that Δr �= ∅. We can prove that for each r ∈ S, Λr =

∏s
i=1 Λr,i must be a

direct product of cosets Λr,i in the Abelian groups Gi, where i = 1, . . . , s correspond
to the constituent prime powers of the group, and for each r ∈ T , Δr =

∏s
i=1 Δr,i

is a direct product of cosets in the same Abelian groups. Otherwise, EVAL(C,D) is
#P-hard.

Second, we show that for each r ∈ S and r ∈ T , respectively,D[r] on its support Λr

for the first half of its entries and on Δr for the second half of its entries, respectively,
possesses a quadratic structure; otherwise ZC,D(·) is #P-hard. We can express the
quadratic structure as a set of exponential difference equations over bases which are
appropriate roots of unity of orders equal to various prime powers. The constructions
used in this part of the proof are the most demanding in the paper.

After all these necessary conditions, we finally show that if C and D satisfy all
these requirements, there is a polynomial-time algorithm for EVAL(C,D) and thus,
EVAL(A) is also in polynomial time. To this end, we reduce EVAL(C,D) to EVAL(q)
for some appropriate prime power q (which depends only on C and D). As noted
earlier, the tractability of EVAL(q) is new and is of independent interest.

4. Pinning lemmas and preliminary reductions. We prove two pinning
lemmas in this section, one for EVAL(A) and one for EVAL(C,D). The proof of the
first lemma is very similar to that of the pinning lemma from [21], but the second one
has some complications. We will prove a third pinning lemma in section 8.1.

4.1. A pinning lemma for EVAL(A). Let A be an m×m symmetric complex
matrix. We define a new problem EVALP(A): The input is a triple (G,w, i), where
G = (V,E) is an undirected graph, w ∈ V is a vertex, and i ∈ [m]; the output is
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GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 937

ZA(G,w, i) =
∑

ξ:V→[m]
ξ(w)=i

wtA(ξ).

It is easy to see that EVAL(A) ≤ EVALP(A). The other direction also holds.
Lemma 4.1 (first pinning lemma). EVALP(A) ≡ EVAL(A).
Proof. We define an equivalence relation ∼ over [m]: i ∼ j if for any undirected

graph G = (V,E) and w ∈ V , ZA(G,w, i) = ZA(G,w, j). Note that we do not know,
given A, how to compute ∼ efficiently, although this is possible using the new results
of Schrijver [32]. Instead, the lemma only proves, nonconstructively, the existence of
a polynomial-time reduction, which is sufficient for our purposes.

This relation divides the set [m] into s equivalence classes A1, . . . ,As for some
positive integer s. For any distinct t, t′ ∈ [s], there exists a pair Pt,t′ = (G,w), where
G is an undirected graph and w is a vertex of G, such that

ZA(G,w, i) = ZA(G,w, j) �= ZA(G,w, i′) = ZA(G,w, j′)

for all i, j ∈ At and i′, j′ ∈ At′ . Again, we do not know how to compute such a pair
efficiently, but it always exists by the definition of the equivalence relation ∼.

Now given any subset S ⊆ [s], we define a problem EVAL(A, S). The input is a
pair (G,w), where G = (V,E) is an undirected graph and w ∈ V ; the output is

ZA(G,w, S) =
∑

ξ:V→[m]
ξ(w)∈

⋃
t∈S At

wtA(ξ).

When S = [s], EVAL(A, S) is exactly EVAL(A). We make the following claim.
Claim 4.2. If S ⊆ [s] and |S| ≥ 2, then there exists a partition {S1, . . . , Sk} of

S for some k > 1 such that EVAL(A, Sd) ≤ EVAL(A, S) for all d ∈ [k].
We use Claim 4.2 to prove Lemma 4.1. Let (G,w, i) be an input of EVALP(A),

and let i ∈ At for some t ∈ [s]. We will use Claim 4.2 to prove that EVAL(A, {t}) ≤
EVAL(A). If this is the case, then we are done because

ZA(G,w, i) =
1

|At|
· ZA(G,w, {t}).

Finally we show that EVAL(A, {t}) ≤ EVAL(A). It is trivially true when s = 1.
When s ≥ 2, by Claim 4.2 there exists a partition {S1, . . . , Sk} of S for some k > 1,
such that EVAL(A, Sd) ≤ EVAL(A, S) ≡ EVAL(A), for all d ∈ [k]. Without loss
of generality, assume t ∈ S1. If S1 = {t}, then we are done; otherwise, |S1| ≥ 2,
and we just rename S1 to be S and repeat the process above. As |S| is strictly
decreasing after each iteration, this procedure will stop at some time. The lemma is
proved.

Proof of Claim 4.2. Let t, t′ be two distinct integers in S. We let Pt,t′ = (G∗, w∗),
where G∗ = (V ∗, E∗). It defines the following equivalence relation ∼∗ over S: For
a, b ∈ S, a ∼∗ b if ZA(G∗, w∗, i) = ZA(G∗, w∗, j), where i ∈ Aa and j ∈ Ab.

This equivalence relation ∼∗ is well-defined, being independent of our choices of
i ∈ Aa, j ∈ Ab. It gives us equivalence classes {S1, . . . , Sk}, a partition of S. Because
(G∗, w∗) = Pt,t′ , by the definition of ∼∗, t and t′ belong to different classes and thus
k ≥ 2. For each d ∈ [k], we let Xd = ZA(G∗, w∗, i), where i ∈ Aa and a ∈ Sd. This
number Xd is well-defined and is independent of the choices of a ∈ Sd and i ∈ Aa.
Moreover, the definition of ∼∗ implies that Xd �= Xd′ for all d �= d′ ∈ [k].
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938 JIN-YI CAI, XI CHEN, AND PINYAN LU

Next, let G be an undirected graph and w be a vertex. We show that by querying
EVAL(A, S) as an oracle, one can compute ZA(G,w, Sd) efficiently for all d. To this
end, for each p ∈ [0 : k− 1] we construct a graph G[p] = (V [p], E[p]) as follows. G[p] is
the disjoint union of G and p independent copies of G∗, except that the w in G and
the w∗’s in all copies of G∗ are identified as one single vertex w′ ∈ V [p]. Thus, we
have |V [p]| = |V |+ p · |V ∗| − p. In particular, G[0] = G.

From the construction of these graphs, we get the following equations:

ZA(G[p], w′, S) =
∑
d∈[k]

(Xd)
p · ZA(G,w, Sd) for every p ∈ [0 : k − 1].

Since Xd �= Xd′ for all d �= d′, this is a Vandermonde system. We can solve it to get
ZA(G,w, Sd) for all d. As k and the size of G∗ are constants that are independent of
G, we get a polynomial-time reduction from EVAL(A, Sd) to EVAL(A, S).

4.2. A pinning lemma for EVAL(C,D). LetC ∈ C2m×2m be the bipartization
of F ∈ Cm×m. Let D = (D[0], . . . ,D[N−1]) be a sequence of N 2m × 2m diagonal
matrices. We define a problem EVALP(C,D): The input is a triple (G,w, i), where
G = (V,E) is an undirected graph, w ∈ V , and i ∈ [2m]; the output is

ZC,D(G,w, i) =
∑

ξ:V→[2m]
ξ(w)=i

wtC,D(ξ).

Clearly, EVAL(C,D) ≤ EVALP(C,D). However, unlike EVALP(A) and EVAL(A), we
can prove the other direction only when (C,D) satisfies the following condition:

(Pinning) Every entry of F is a power of ωN , where N denotes the number of
matrices in D; F/

√
m is a unitary matrix, and D[0] is the 2m× 2m identity matrix.

Lemma 4.3 (second pinning lemma). If (C,D) satisfies the condition (Pinning)
above, then EVALP(C,D) ≡ EVAL(C,D).

Corollary 4.4. If (C,D) satisfies the condition (Pinning), then the problem of
computing Z→C,D as well as Z←C,D is polynomial-time reducible to EVAL(C,D).

Proof of Lemma 4.3. The proof structure is similar to that of Lemma 4.1. We
start by introducing the following equivalence relation over [2m]: i ∼ j if for any
undirected G = (V,E) and w ∈ V , ZC,D(G,w, i) = ZC,D(G,w, j). It partitions [2m]
into s equivalence classes A1,A2, . . . ,As for some s ≥ 1. For any distinct t, t′ ∈ [s],
there exists a pair Pt,t′ = (G,w), where G is an undirected graph and w is a vertex,
such that for all i, j ∈ At and i′, j′ ∈ At′ ,

ZC,D(G,w, i) = ZC,D(G,w, j) �= ZC,D(G,w, i′) = ZC,D(G,w, j′).

Now for any subset S ⊆ [s], we define EVAL(C,D, S). The input is a pair (G,w),
where G = (V,E) is an undirected graph and w is a vertex in G; and the output is

ZC,D(G,w, S) =
∑

ξ:V→[2m]
ξ(w)∈

⋃
t∈S At

wtC,D(ξ).

When S = [s], EVAL(C,D, S) is exactly EVAL(C,D). We make the following claim.
Claim 4.5. If S ⊆ [s] and |S| ≥ 2, there exists a partition {S1, . . . , Sk} of S for

some k > 1 such that EVAL(C,D, Sd) ≤ EVAL(C,D, S) for all d ∈ [k].
Lemma 4.3 then follows from Claim 4.5. The rest of the proof is exactly the same

as that of Lemma 4.1 using Claim 4.2, so we omit it here.
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. . . 
w*

[ 1 ] G * G *

G w

x1

y1 xp

yp

w*
[ p ] 

N -1  edges 

1  edge 

Fig. 4.1. Graph G[p], p ∈ [0 : k − 1].

Proof of Claim 4.5. Let t, t′ be two distinct integers in S (as |S| ≥ 2). Let
Pt,t′ = (G∗, w∗), where G∗ = (V ∗, E∗). It defines the following equivalence relation.
For a, b ∈ S, a ∼∗ b if ZC,D(G∗, w∗, i) = ZC,D(G

∗, w∗, j), where i ∈ Aa and j ∈ Ab.

This partitions S into equivalence classes {S1, . . . , Sk}. Because (G∗, w∗) = Pt,t′ ,
t and t′ must belong to different classes and thus we have k ≥ 2. For each d ∈ [k], we
let Yd = ZC,D(G∗, w∗, i), where i ∈ Aa and a ∈ Sd. The definition of the equivalence
relation implies that Yd �= Yd′ for all distinct d, d′ ∈ [k].

Now let G be an undirected graph and w be a vertex. We show that by querying
EVAL(C,D, S) as an oracle, one can compute ZC,D(G,w, Sd) efficiently for all d. To
this end, for each integer p ∈ [0 : k − 1], we construct a graph G[p] = (V [p], E[p]) as
follows: G[p] contains G and p independent copies of G∗. The vertex w in G is then
connected appropriately to the w∗ of each G∗ (see Figure 4.1). More precisely,

V [p] = V ∪ {vi : i ∈ [p] and v ∈ V ∗} ∪ {x1, . . . , xp, y1, . . . , yp},

where x1, . . . , xp, y1, . . . , yp are new vertices, and E[p] contains the following edges:

1. if uv ∈ E, then uv ∈ E[p]; if uv ∈ E∗, then uivi ∈ E[p] for all i ∈ [p];
2. one edge between (w∗i , xi) and (yi, w) for each i ∈ [p]; and
3. N − 1 edges between (xi, w) and (w∗i , yi) for each i ∈ [p].

In particular, we have G[0] = G.

We get the following equations. For p ∈ [0 : k − 1], ZC,D(G
[p], w, S) is equal to

∑
i∈

⋃
a∈S Aa

i1,...,ip∈[2m]

ZC,D(G,w, i)

⎛⎝ p∏
j=1

ZC,D(G
∗, w∗, ij)

⎞⎠ p∏
j=1

⎛⎝ ∑
x∈[2m]

Cij ,xCi,x

∑
y∈[2m]

Cij ,yCi,y

⎞⎠ .

Note that deg(xi) = deg(yi) = N and the changes to the degrees of w and w∗i are all
multiples of N . By (Pinning), there are no new vertex weight contributions from D.

Also by (Pinning),
∑

x∈[2m]Cij ,xCi,x = 〈Fij ,∗,Fi,∗〉 = 0 unless i = ij . Therefore,

ZC,D(G
[p], w, S) = m2p ·

∑
i∈∪a∈SAa

ZC,D(G,w, i) ·
(
ZC,D(G∗, w∗, i)

)p
= m2p ·

∑
d∈[k]

(Yd)
p · ZC,D(G,w, Sd).D
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Because Yd �= Yd′ for all d �= d′, this is a Vandermonde system and we can solve it to
get ZC,D(G,w, Sd) for all d. As both k and the size of G∗ are constants independent
of G, this gives a reduction from EVAL(C,D, Sd) to EVAL(C,D, S) for every d.

4.3. Reduction to connected matrices. The following lemma allows us to
focus on the connected components of A.

Lemma 4.6. Let A ∈ Cm×m be a symmetric matrix with components {Ai}.
1. If EVAL(Ai) is #P-hard for some i ∈ [s], then EVAL(A) is #P-hard.
2. If EVAL(Ai) is polynomial-time computable for every i, then so is EVAL(A).

Proof. Lemma 4.6 follows from the first pinning lemma (Lemma 4.1).
The main dichotomy, Theorem 1.1, will be proved by showing that for every

connected A ∈ Cm×m, EVAL(A) is either solvable in polynomial time or #P-hard.

5. Proof outline of the case: A is bipartite. We now give an overview of
the proof of Theorem 1.1 for the case when A is connected and bipartite. The proof
consists of two parts: a hardness part and a tractability part. The hardness part is
further divided into three major steps in which we gradually “simplify” the problem
being considered. In each of the three steps, we consider an EVAL problem passed
down by the previous step (Step 1 starts with EVAL(A) itself) and show that

1. either the problem is #P-hard, or
2. the matrix that defines the problem satisfies certain structural properties, or
3. the problem is polynomial-time equivalent to a new EVAL problem, and the

matrix that defines the new problem satisfies certain structural properties.
One can view these three steps as three filters that remove #P-hard EVAL(A)

using different arguments. Finally, in the tractability part, we show that all the EVAL
problems that survive the three filters are indeed polynomial-time solvable.

5.1. Step 1: Purification of matrix A. We start with EVAL(A), where A ∈
Cm×m is a fixed symmetric, connected, and bipartite matrix with algebraic entries.
It is easy to see that if m = 1, then EVAL(A) is tractable. So in the discussion below,
we always assume m > 1. In this step, we show that EVAL(A) is either #P-hard or
polynomial-time equivalent to EVAL(A′), in which A′ is also an m × m matrix but
has a very nice structure.

Definition 5.1. Let A ∈ Cm×m be a symmetric, connected, and bipartite ma-
trix. We say it is a purified bipartite matrix if there exist positive rational numbers
μ1, . . . , μm and an integer 1 ≤ k < m such that

1. Ai,j = 0 for all i, j ∈ [k]; Ai,j = 0 for all i, j ∈ [k + 1 : m]; and
2. Ai,j/(μiμj) = Aj,i/(μiμj) is a root of unity for all i ∈ [k], j ∈ [k + 1 : m].

In other words, there exists a k × (m− k) matrix B of the form

B =

⎛⎜⎜⎜⎝
μ1

μ2

. . .

μk

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
ζ1,1 ζ1,2 . . . ζ1,m−k
ζ2,1 ζ2,2 . . . ζ2,m−k
...

...
. . .

...
ζk,1 ζk,2 . . . ζk,m−k

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
μk+1

μk+2

. . .

μm

⎞⎟⎟⎟⎠ ,

where every μi is a positive rational number and every ζi,j is a root of unity, and A
is the bipartization of B.

Theorem 5.2. Let A ∈ Cm×m be a symmetric, connected, and bipartite matrix
with algebraic entries. Then either EVAL(A) is #P-hard or there exists an m × m
purified bipartite matrix A′ such that EVAL(A) ≡ EVAL(A′). (By Definition 5.1, A′

is symmetric and thus EVAL(A′) is well-defined.)
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5.2. Step 2: Reduction to discrete unitary matrix. Now letA ∈ Cm×m de-
note a purified bipartite matrix. Note that we renamed the A′ passed down from Step
1 to A for convenience. We show that EVAL(A) is either #P-hard or polynomial-time
equivalent to EVAL(C,D) for some C and D, where the matrix C is the bipartization
of a discrete unitary matrix. (See section 3 for the definition.) Also note that the
tensor product of two discrete unitary matrices is also discrete unitary.

Theorem 5.3. Given a purified bipartite matrix A ∈ Cm×m, either 1. EVAL(A)
is tractable; or 2. EVAL(A) is #P-hard; or 3. there exists a triple ((M,N),C,D) such
that EVAL(A) ≡ EVAL(C,D), and ((M,N),C,D) satisfies the following conditions:

(U1) C ∈ C2n×2n for some n ≥ 1, and

D =
(
D[0],D[1], . . . ,D[N−1])

is a sequence of N 2n× 2n diagonal matrices over C for some even N > 1.
(U2) C is the bipartization of an M -discrete unitary matrix F ∈ Cn×n, where

M ≥ 1 and M |N . (Note that C and F uniquely determine each other.)
(U3) D[0] is the 2n× 2n identity matrix, and for every r ∈ [N − 1] we have

∃ i ∈ [n], D
[r]
i �= 0 =⇒ ∃ i′ ∈ [n], D

[r]
i′ = 1, and

∃ i ∈ [n+ 1 : 2n], D
[r]
i �= 0 =⇒ ∃ i′ ∈ [n+ 1 : 2n], D

[r]
i′ = 1.

(U4) For all r ∈ [N − 1] and all i ∈ [2n], D
[r]
i ∈ Q(ωN) and |D[r]

i | ∈ {0, 1}.

5.3. Step 3: Canonical form of C, F, and D. After the first two steps, the
original problem EVAL(A) is shown to be either tractable or #P-hard or polynomial-
time equivalent to a new problem EVAL(C,D). There are also positive integers M
and N such that ((M,N),C,D) satisfies conditions (U1)–(U4).

For convenience, we still use 2m to denote the number of rows of C and D[r],
though it should be noted that this new m is indeed the n in Theorem 5.3, which
is different from the m used in the first two steps. We also denote the upper-right
m×m block of C by F.

In this step, we adopt the following convention: Given an n × n matrix, we use
[0 : n− 1], instead of [n], to index its rows and columns. For example, we index the
rows of F using [0 : m− 1] and index the rows of C using [0 : 2m− 1].

We start with the special case when M = 1. As F is M -discrete unitary, we must
have m = 1. It is easy to check that EVAL(C,D) is tractable: C is a 2× 2 matrix(

0 1
1 0

)
;

ZC,D(G) is 0 unless G is bipartite; for connected and bipartite G, there are at most
two assignments ξ : V → {0, 1} which could yield nonzero values; finally, for a graph
G with connected components Gi ZC,D(G) is the product of ZC,D(Gi)’s.

For the general case when the parameter M > 1 we further investigate the struc-
ture of F as well as the diagonal matrices in D and derive three necessary conditions
on them for EVAL(C,D) to not be #P-hard. In the tractability part, we prove that
these conditions are actually sufficient for it to be polynomial-time computable.

5.3.1. Step 3.1: Entries of D[r] are either 0 or powers of ωN . In the first
step, we prove the following theorem.

Theorem 5.4. Suppose ((M,N),C,D) satisfies (U1)–(U4) with M > 1. Then ei-
ther EVAL(C,D) is #P-hard or ((M,N),C,D) satisfies the following condition (U5):

(U5) For all r ∈ [N − 1] and i ∈ [0 : 2n− 1], D
[r]
i is either 0 or a power of ωN .
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5.3.2. Step 3.2: Fourier decomposition. Second, we show that either prob-
lem EVAL(C,D) is #P-hard, or we can permute the rows and columns of F, so that
the new F is the tensor product of a collection of Fourier matrices defined below.

Definition 5.5. Let q > 1 be a prime power, and k ≥ 1 be an integer such that
gcd(k, q) = 1. We call the following q × q matrix Fq,k a (q, k)-Fourier matrix: The
(x, y)th entry of Fq,k, where x, y ∈ [0 : q − 1], is

ωkxy
q = e2πi

(
kxy/q

)
.

In particular, when k = 1, we use Fq to denote Fq,1 for short.
Theorem 5.6. Assume ((M,N),C,D) satisfies conditions (U1)–(U5) and M > 1.

Then either EVAL(C,D) is #P-hard or there exist permutations Σ and Π of [0 : m−1]
and a sequence q1, q2, . . . , qd of d prime powers, for some d ≥ 1, such that

(5.1) FΣ,Π =
⊗
i∈[d]

Fqi .

Suppose there do exist permutations Σ,Π and prime powers q1, . . . , qd such that
FΣ,Π satisfies (5.1). Then we let CΣ,Π denote the bipartization of FΣ,Π and let DΣ,Π

denote a sequence of N 2m× 2m diagonal matrices in which the rth matrix is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D
[r]
Σ(0)

. . .

D
[r]
Σ(m−1)

D
[r]
Π(0)+m

. . .

D
[r]
Π(m−1)+m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, r ∈ [0 : N − 1].

Since permuting the rows and columns of C and D[r] by the same permutation pair
does not affect the complexity of EVAL(C,D), EVAL(CΣ,Π,DΣ,Π) ≡ EVAL(C,D).
From now on, we let F,C, and D denote FΣ,Π,CΣ,Π, and DΣ,Π, respectively, with

(5.2) F =
⊗
i∈[d]

Fqi .

Before moving forward, we rearrange the prime powers q1, q2, . . . , qd and divide
them into groups according to different primes. We need the following notation. Let
p = (p1, . . . , ps) be a strictly increasing sequence of primes and t = (t1, . . . , ts) be a
sequence of positive integers. Let Q = {qi : i ∈ [s]} be a set of s sequences in which
each qi is a nonincreasing sequence (qi,1, . . . , qi,ti) of powers of pi. We let qi denote
qi,1 for all i ∈ [s], let

Zqi =
∏
j∈[ti]

Zqi,j = Zqi,1 × · · · × Zqi,ti

for all i ∈ [s], and let

ZQ =
∏

i∈[s],j∈[ti]
Zqi,j =

∏
i∈[s]

Zqi = Zq1,1 × · · · × Zq1,t1
× · · · × Zqs,1 × · · · × Zqs,ts
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be the Cartesian products of the respective finite Abelian groups. Both ZQ and Zqi

are finite Abelian groups under componentwise operations. This implies that both
ZQ and Zqi are Z-modules and thus kx is well-defined for all k ∈ Z and x in ZQ or
Zqi . As Z-modules, we can also refer to their members as “vectors.” When we use
x to denote a vector in ZQ, we denote its (i, j)th entry by xi,j ∈ Zqi,j . We use xi

to denote (xi,j : j ∈ [ti]) ∈ Zqi , so x = (x1, . . . ,xs). Given x,y ∈ ZQ, we let x ± y
denote the vector in ZQ whose (i, j)th entry is xi,j ± yi,j (mod qi,j). Similarly, for
each i ∈ [s], we can define x± y for vectors x,y ∈ Zqi .

From (5.2), there exist p, t,Q such that ((M,N),C,D, (p, t,Q)) satisfies the fol-
lowing three conditions (R1)–(R3), which we refer to combined as (R).

(R1) p = (p1, . . . , ps) is a strictly increasing sequence of primes; t = (t1, . . . , ts)
is a sequence of positive integers; Q = {qi : i ∈ [s]} is a collection of s sequences, in
which each qi = (qi,1, . . . , qi,ti) is a nonincreasing sequence of powers of pi.

(R2) C is the bipartization of F ∈ Cm×m and ((M,N),C,D) satisfies (U1)–(U5).
(R3) There is a bijection ρ : [0 : m− 1] → ZQ (so m =

∏
i,j qi,j) such that

(5.3) Fa,b =
∏

i∈[s],j∈[ti]
ωxi,j yi,j
qi,j for all a, b ∈ [0 : m− 1],

where (xi,j : i ∈ [s], j ∈ [ti]) = x = ρ(a) and (yi,j : i ∈ [s], j ∈ [ti]) = y = ρ(b). Note
that (5.3) also gives us an expression of M using Q. It is the product of the largest
prime powers qi = qi,1 for each distinct prime pi: M = q1q2 · · · qs.

For convenience, from now on we use x ∈ ZQ to index rows and columns of F:

(5.4) Fx,y = Fρ−1(x),ρ−1(y) =
∏

i∈[s],j∈[ti]
ωxi,j yi,j
qi,j for all x,y ∈ ZQ,

whenever we have a tuple ((M,N),C,D, (p, t,Q)) that is known to satisfy condition
(R). We assume that F is indexed by (x,y) ∈ Z2

Q rather than (a, b) ∈ [0 : m−1]2 and
that (R3) refers to (5.4). Correspondingly, we use {0, 1}× ZQ to index the entries of
matrices C and D[r]: (0,x) refers to the (ρ−1(x))th row or column, and (1,x) refers
to the (m+ ρ−1(x))th row or column.

5.3.3. Step 3.3: Affine support for D. Now we have a 4-tuple ((M,N),C,D,
(p, t,Q)) that satisfies (R). In this step, we prove for every r ∈ [N − 1] (recall that
D[0] is already known to be the identity matrix), the nonzero entries of the rth matrix
D[r] in D must have a very nice coset structure; otherwise EVAL(C,D) is #P-hard.

For every r ∈ [N − 1], we define Λr ⊆ ZQ and Δr ⊆ ZQ as

Λr =
{
x ∈ ZQ : D

[r]
(0,x) �= 0

}
and Δr =

{
x ∈ ZQ : D

[r]
(1,x) �= 0

}
.

We use S to denote the set of r ∈ [N − 1] such that Λr �= ∅ and T to denote the set of
r ∈ [N − 1] such that Δr �= ∅. We recall the following standard definition of a coset
of a group, specialized to our situation.

Definition 5.7. Let Φ be a nonempty subset of ZQ (or Zqi for some i ∈ [s]). We
say Φ is a coset in ZQ (or Zqi) if there is a vector x0 ∈ Φ such that {x− x0 |x ∈ Φ}
is a subgroup of ZQ (or Zqi). Given a coset Φ (in ZQ or Zqi), we use Φlin to denote
its corresponding subgroup {x− x′ |x,x′ ∈ Φ}.

Theorem 5.8. Let ((M,N),C,D, (p, t,Q)) be a 4-tuple that satisfies (R). Then
either EVAL(C,D) is #P-hard or Λr,Δr ⊆ ZQ satisfy the following condition (L):

(L1) For every r ∈ S, Λr =
∏s

i=1 Λr,i, where Λr,i is a coset in Zqi , i ∈ [s].
(L2) For every r ∈ T , Δr =

∏s
i=1 Δr,i, where Δr,i is a coset in Zqi , i ∈ [s].
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Suppose EVAL(C,D) is not #P-hard. By Theorem 5.8, ((M,N),C,D, (p, t, Q))
satisfies not only (R) but also (L). Actually, by (U3), D also satisfies the following:

(L3) There exists an a[r] ∈ Λr for each r ∈ S, a b[r] ∈ Δr for each r ∈ T such
that

D
[r]

(0,a[r])
= D

[r]

(1,b[r])
= 1.

From now on, when we say condition (L), we mean all three conditions (L1)–(L3).

5.3.4. Step 3.4: Quadratic structure. In this final step within Step 3, we
prove that for every r ∈ [N − 1], the nonzero entries of D[r] must have a quadratic
structure; otherwise EVAL(C,D) is #P-hard. We start with some notation.

Given x in Zqi for some i ∈ [s], we use extr(x) (extension of x for short), where
r ∈ S, to denote the following unique vector:(

a
[r]
1 , . . . ,a

[r]
i−1,x,a

[r]
i+1, . . . ,a

[r]
s

)
∈ ZQ.

Similarly we let ext′r(x), where r ∈ T , denote the following unique vector:(
b
[r]
1 , . . . ,b

[r]
i−1,x,b

[r]
i+1, . . . ,b

[r]
s

)
∈ ZQ.

Let a be a vector in Zqi for some i ∈ [s]. Then we use ã to denote the vector b ∈ ZQ
such that bi = a and bj = 0 for all other j �= i. Also recall that qk = qk,1.

Theorem 5.9. Let ((M,N),C,D, (p, t,Q)) be a tuple that satisfies both (R) and
(L). Then either EVAL(C,D) is #P-hard, or D satisfies the following condition (D):

(D1) For all r ∈ S and x ∈ Λr, we have

(5.5) D
[r]
(0,x) = D

[r]
(0,extr(x1))

D
[r]
(0,extr(x2))

· · ·D[r]
(0,extr(xs))

.

(D2) For all r ∈ T and x ∈ Δr, we have

(5.6) D
[r]
(1,x) = D

[r]
(1,ext′r(x1))

D
[r]
(1,ext′r(x2))

· · ·D[r]
(1,ext′r(xs))

.

(D3) For all r ∈ S, k ∈ [s], and a ∈ Λlin
r,k, there are b ∈ Zqk

and α ∈ ZN such that

(5.7) ωα
N · Fx,b̃ = D

[r]
(0,x+ã) ·D

[r]
(0,x) for all x ∈ Λr.

(D4) For all r ∈ T , k ∈ [s], and a ∈ Δlin
r,k, there are b ∈ Zqk

and α ∈ ZN such
that

(5.8) ωα
N · Fb̃,x = D

[r]
(1,x+ã) ·D

[r]
(1,x) for all x ∈ Δr.

Note that in (D3) and (D4), the expressions on the left-hand side do not depend
on all other components of x except the kth component xk, since all other components
of b̃ are 0. The statements in conditions (D3)–(D4) are a technically precise way to
express the idea that there is a quadratic structure on the support of each diagonal
matrix D[r]. We express it in terms of an exponential difference equation.

5.4. Tractability. Now we can state a theorem of tractability.
Theorem 5.10. Suppose that ((M,N),C,D, (p, t,Q)) satisfies (R), (L), and

(D). Then the problem EVAL(C,D) can be solved in polynomial time.
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6. Proof outline of the case: A is not bipartite. Both the definitions and
the theorems of the case when the fixed matrix A is not bipartite are similar to, but
also have significant differences from, those of the bipartite case.

6.1. Step 1: Purification of matrix A. We start with A ∈ Cm×m, a sym-
metric, connected, and nonbipartite matrix with algebraic entries. In the discussion
below, we assume m > 1; EVAL(A) is clearly tractable if m = 1.

Definition 6.1. Let A ∈ Cm×m be a symmetric matrix. We say A is a purified
nonbipartite matrix if there exist positive rational numbers μ1, μ2, . . . , μm such that
Ai,j/(μiμj) is a root of unity for all i, j ∈ [m].

In other words, A has the form

A =

⎛⎜⎜⎜⎝
μ1

μ2

. . .

μm

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

ζ1,1 ζ1,2 . . . ζ1,m
ζ2,1 ζ2,2 . . . ζ2,m
...

...
. . .

...
ζm,1 ζm,2 . . . ζm,m

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
μ1

μ2

. . .

μm

⎞⎟⎟⎟⎠ ,

where ζi,j = ζj,i are all roots of unity. We prove the following theorem.

Theorem 6.2. Let A ∈ Cm×m be a symmetric, connected, and nonbipartite ma-
trix, where m > 1. Then either EVAL(A) is #P-hard or there exists a purified
nonbipartite matrix A′ ∈ Cm×m such that EVAL(A) ≡ EVAL(A′).

6.2. Step 2: Reduction to discrete unitary matrix.

Theorem 6.3. Let A ∈ Cm×m be a purified nonbipartite matrix. Then either (1)
EVAL(A) is tractable or (2) EVAL(A) is #P-hard or (3) there exists a triple ((M,N),
F,D) such that EVAL(A) ≡ EVAL(F,D) and ((M,N),F,D) satisfies (U ′1)–(U ′4):

(U ′1) F ∈ Cn×n for some n ≥ 1, and D = (D[0], . . . ,D[N−1]) is a sequence of N
n× n diagonal matrices for some even N > 1.

(U ′2) F is a symmetric M -discrete unitary matrix, where M ≥ 1 and M |N .
(U ′3) D[0] is the identity matrix. For each r ∈ [N − 1], either D[r] = 0 or D[r]

has an entry equal to 1.

(U ′4) For all r ∈ [N − 1] and i ∈ [n], D
[r]
i ∈ Q(ωN ) and |D[r]

i | ∈ {0, 1}.

6.3. Step 3: Canonical form of F and D. Now suppose we have a tuple
((M,N),F,D) that satisfies (U ′1)–(U ′4). For convenience we still use m to denote the
number of rows and columns of F and each D[r] in D, though it should be noted that
this new m is indeed the n in Theorem 6.3, which is different from the m used in the
first two steps. Similar to the bipartite case, we adopt the following convention in
this step: given an n × n matrix, we use [0 : n − 1], instead of [n], to index its rows
and columns.

We start with the special case when M = 1. Since F is M -discrete unitary, we
must have m = 1 and F = (1). In this case, it is clear that the problem EVAL(C,D)
is tractable. So in the rest of this section, we always assume that M > 1.

6.3.1. Step 3.1: Entries of D[r] are either 0 or powers of ωN .

Theorem 6.4. Suppose ((M,N),F,D) satisfies (U ′1)–(U ′4) and M > 1. Then ei-
ther EVAL(F,D) is #P-hard or ((M,N),F,D) satisfies the following condition (U ′5):

(U ′5) For all r ∈ [N − 1], entries of D[r] are either zero or powers of ωN .

6.3.2. Step 3.2: Fourier decomposition. Let q be a prime power. We say
W is a nondegenerate matrix in Z2×2

q if Wx �= 0 for all x �= 0 ∈ Z2
q . The following
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lemma gives some equivalent characterizations of nondegenerate matrices. The proof
is elementary, so we omit it here.

Lemma 6.5. Let q be a prime power and W ∈ Z2×2
q . The following statements

are equivalent: (1) W is nondegenerate; (2) x �→ Wx is a bijection from Z2
q to itself;

and (3) det(W) is invertible in Zq.
Definition 6.6 (generalized Fourier matrix). Let q be a prime power and W =

(Wij) be a symmetric nondegenerate matrix in Z2×2
q . We say a q2 × q2 matrix Fq,W

is a (q,W)-generalized Fourier matrix if there exists a bijection ρ from [0 : q2 − 1] to
[0 : q − 1]2 such that

(Fq,W)i,j = ωW11x1y1+W12x1y2+W21x2y1+W22x2y2
q for all i, j ∈ [0 : q2 − 1],

where x = (x1, x2) = ρ(i) and y = (y1, y2) = ρ(j).
Theorem 6.7. Suppose ((M,N),F,D) satisfies conditions (U ′1)–(U ′5). Then ei-

ther EVAL(F,D) is #P-hard or there exists a permutation Σ of [0 : m − 1] such
that

FΣ,Σ =

(
g⊗

i=1

Fdi,W[i]

)
⊗
(

�⊗
i=1

Fqi,ki

)
,

where d = (d1, . . . , dg) and W = (W[1], . . . ,W[g]) are two sequences, for some g ≥ 0.
(Note that the g here can be 0, in which case d and W are empty.) For each i ∈ [g],
di > 1 is a power of 2 and W[i] is a 2× 2 symmetric nondegenerate matrix over Zdi ;
q = (q1, . . . , q�) and k = (k1, . . . , k�) are two sequences for some � ≥ 0 (again � can
be 0). For each i ∈ [�], qi is a prime power, ki ∈ Zqi , and gcd(qi, ki) = 1.

Assume there does exist a permutation Σ, together with the four sequences, such
that FΣ,Σ satisfies the equation above; otherwise, EVAL(F,D) is #P-hard. Then we
apply Σ to D[r], r ∈ [0 : N − 1], to get a new sequence DΣ of N diagonal matrices
in which the rth matrix of DΣ is⎛⎜⎜⎝

D
[r]
Σ(0)

. . .

D
[r]
Σ(m−1)

⎞⎟⎟⎠ .

It is clear that EVAL(FΣ,Σ,DΣ) ≡ EVAL(F,D). From now on, we simply let F and D
denote FΣ,Σ and DΣ, respectively. Thus, we have

(6.1) F =

(
g⊗

i=1

Fdi,W[i]

)
⊗
(

�⊗
i=1

Fqi,ki

)
.

Before moving forward to Step 3.3, we rearrange the prime powers in d and q
and divide them into groups according to different primes.

By (6.1), there exist d,W ,p, t,Q, and K such that tuple ((M,N),F,D, (d,W ,p,
t,Q,K)) satisfies the following condition (R′):

(R′1) d = (d1, . . . , dg) is a nonincreasing sequence of powers of 2 for some g ≥ 0;
W = (W[1], . . . ,W[g]) is a sequence of symmetric nondegenerate 2× 2 matrices over
Zdi (note that d and W can be empty); p = (p1, . . . , ps) is a strictly increasing se-
quence of s primes for some s ≥ 1, starting with p1 = 2; t = (t1, . . . , ts) is a sequence
of integers with t1 ≥ 0 and ti ≥ 1 for all i > 1; Q = {qi : i ∈ [s]} is a collection of
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sequences in which each qi = (qi,1, . . . , qi,ti) is a nonincreasing sequence of powers of
pi (only q1 can be empty as we always fix p1 = 2 even when no powers of 2 occur in
Q); K = {ki : i ∈ [s]} is a collection of sequences in which each ki = (ki,1, . . . , ki,ti)
is a sequence of length ti. Finally, for all i ∈ [s] and j ∈ [ti], ki,j ∈ [0 : qi,j − 1] and
satisfies gcd(ki,j , qi,j) = gcd(ki,j , pi) = 1.

(R′2) ((M,N),F,D) satisfies conditions (U ′1)–(U ′5), and

m =
∏
i∈[g]

(di)
2 ×

∏
i∈[s],j∈[ti]

qi,j .

(R′3) There is a bijection ρ from [0 : m− 1] to Z2
d × ZQ, where

Z2
d =

∏
i∈[g]

(Zdi)
2

and ZQ =
∏

i∈[s],j∈[ti]
Zqi,j ,

such that (for each a ∈ [0 : m− 1], we use(
x0,i,j : i ∈ [g], j ∈ {1, 2}

)
∈ Z2

d and
(
x1,i,j : i ∈ [s], j ∈ [ti]

)
∈ ZQ

to denote the components of x = ρ(a), where x0,i,j ∈ Zdi and x1,i,j ∈ Zqi,j )

Fa,b =
∏
i∈[g]

ω
(x0,i,1 x0,i,2)·W[i]·(y0,i,1 y0,i,2)

T

di

∏
i∈[s],j∈[ti]

ωki,j ·x1,i,jy1,i,j
qi,j

for all a, b ∈ [0 : m− 1], where ((x0,i,j), (x1,i,j)) = x = ρ(a) and y = ρ(b).
For convenience, from now on we will directly use x ∈ Z2

d ×ZQ to index the rows
and columns of F, i.e., Fx,y ≡ Fρ−1(x),ρ−1(y).

6.3.3. Step 3.3: Affine support for D. Now we have a tuple ((M,N),F,D,
(d,W ,p, t,Q,K)) that satisfies (R′). In the next step, we show for every r ∈ [N − 1]
(D[0] is already known to be the identity matrix) the nonzero entries of D[r] (in D)
must have a coset structure; otherwise EVAL(F,D) is #P-hard.

For each r ∈ [N − 1], let Γr ⊆ Z2
d × ZQ denote the set of x such that the entry

of D[r] indexed by x is nonzero. We also use Z to denote the set of r ∈ [N − 1] such
that Γr �= ∅. For convenience, we let Z̃qi , i ∈ [s], denote the following set (or group):

Z̃qi =

{
Zqi if i > 1,

Z2
d × Zq1 if i = 1.

This gives us a new way to denote the components of

x ∈ Z2
d × ZQ = Z̃q1 × Z̃q2 × · · · × Z̃qs ,

i.e., x = (x1, . . . ,xs), where xi ∈ Z̃qi for each i ∈ [s].
Theorem 6.8. Assume that ((M,N),F,D, (d,W ,p, t,Q,K)) satisfies condition

(R′). Then either EVAL(F,D) is #P-hard or D satisfies the following condition:
(L′1) For every r ∈ Z, Γr =

∏s
i=1 Γr,i, where Γr,i is a coset in Z̃qi for all i ∈ [s].

Suppose EVAL(F,D) is not #P-hard. Then by Theorem 6.8, tuple ((M,N),F,D,
(d,W ,p, t,Q,K)) satisfies not only (R′) but also (L′1). By (U ′3), D also satisfies the
following:

(L′2) For every r ∈ Z, there exists an a[r] ∈ Γr ⊆ Z2
d × ZQ such that the entry of

D[r] indexed by a[r] is equal to 1.
From now on, we refer to conditions (L′1) and (L′2) as condition (L′).
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6.3.4. Step 3.4: Quadratic structure. In this final step within Step 3 for the
nonbipartite case, we show that for any index r ∈ [N − 1], the nonzero entries of D[r]

must have a quadratic structure; otherwise EVAL(F,D) is #P-hard.
We need the following notation. Given x in Z̃qi for some i ∈ [s], we let extr(x),

where r ∈ Z, denote the following unique vector:(
a
[r]
1 , . . . ,a

[r]
i−1,x,a

[r]
i+1, . . . ,a

[r]
s

)
∈
∏
j∈[s]

Z̃qj .

Given a ∈ Z̃qi for some i ∈ [s], we let ã = (ã1, . . . , ãs) ∈
∏

j∈[s] Z̃qj such that ãi = a
and all other components are 0.

Theorem 6.9. Suppose ((M,N),F,D, (d,W ,p, t,Q,K)) satisfies (R′) and (L).
Then either EVAL(F,D) is #P-hard or D satisfies the following condition (D′):

(D′1) For all r ∈ Z and x ∈ Γr, we have

(6.2) D[r]
x = D

[r]
extr(x1)

D
[r]
extr(x2)

· · ·D[r]
extr(xs)

.

(D′2) For all r ∈ Z, k ∈ [s], and a ∈ Γlin
r,k, there are b ∈ Z̃qk

and α ∈ ZN such that

(6.3) ωα
N · Fb̃,x = D

[r]
x+ã ·D

[r]
x for all x ∈ Γr.

Note that in (6.3), the expression on the left-hand side does not depend on other
components of x except the kth component xk ∈ Z̃qk

.

6.4. Tractability.
Theorem 6.10. Let ((M,N),F,D, (d,W ,p, t,Q,K)) be a tuple that satisfies all

conditions (R′), (L′), and (D′). Then EVAL(F,D) can be solved in polynomial time.

7. Proofs of Theorems 5.2 and 6.2. In this section, we prove Theorems 5.2
and 6.2. Let A = (Ai.j) denote a connected, symmetric m×m algebraic matrix. (At
this moment, we do not make any assumptions about whether A is bipartite.) We
also let A = {Ai,j : i, j ∈ [m]} denote the finite set of algebraic numbers from the
entries of A. In the first step, we construct a new m × m matrix B from A, which
satisfies the following conditions:

1. B is also connected and symmetric (so that EVAL(B) is well-defined);
2. EVAL(B) ≡ EVAL(A); and
3. each entry of B is the product of a nonnegative integer and a root of unity.

We let B′ be the nonnegative matrix such that B′i,j = |Bi,j |. In the second step,
we show that EVAL(B′) ≤ EVAL(B). Because B′ is a connected, symmetric, and
nonnegative (integer) matrix, we can apply the dichotomy of Bulatov and Grohe [4]
(see Theorem 2.5) to B′ and show that either EVAL(B′) is #P-hard orB is a (bipartite
or nonbipartite, depending on A) purified matrix. When EVAL(B′) is #P-hard, we
have EVAL(B′) ≤ EVAL(B) ≡ EVAL(A) and thus EVAL(A) is #P-hard as well. This
proves both Theorems 5.2 and 6.2.

7.1. Equivalence between EVAL(A) and COUNT(A). Before the construc-
tion of B, we define a class of counting problems closely related to EVAL(A). It has
been used in previous work [21] for establishing polynomial-time reductions between
different EVAL problems.

Let A ∈ Cm×m be any fixed symmetric matrix with algebraic entries. The input
of the problem COUNT(A) is a pair (G, x), where G = (V,E) is an undirected graph
and x ∈ Q(A ). The output is
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#A(G, x) =
∣∣∣{assignment ξ : V → [m]

∣∣ wtA(ξ) = x
}∣∣∣,

a nonnegative integer. We prove the following lemma.
Lemma 7.1. EVAL(A) ≡ COUNT(A).
Proof. To prove EVAL(A) ≤ COUNT(A), recall that the matrix A is considered

fixed with m being a constant. Let G = (V,E) and n = |E|. We use X to denote the
following set of complex numbers:

(7.1) X =

⎧⎨⎩ ∏
i,j∈[m]

A
ki,j

i,j

∣∣∣ integers ki,j ≥ 0 and
∑

i,j∈[m]

ki,j = n

⎫⎬⎭ .

It is clear that |X | is polynomial in n, being
(
n+m2−1
m2−1

)
counting multiplicity, and X

can be enumerated in polynomial time (in n). It follows from the expression in the
definition of wtA(ξ) that for any x /∈ X , #A(G, x) = 0. This implies that

ZA(G) =
∑
x∈X

x ·#A(G, x)

for any undirected graph G and thus EVAL(A) ≤ COUNT(A).
For the other direction, we construct for any p ∈ [|X |] (recall that |X | is poly-

nomial in n) a new undirected graph G[p] from G by replacing every edge uv of G
with p parallel edges between u and v. It is easy to check that any assignment ξ that
has weight x over G has weight xp over G[p]. This gives us the following collection of
equations: For every p ∈ [|X |],

ZA(G[p]) =
∑
x∈X

xp ·#A(G, x).

Note that this is a Vandermonde system. Since we can query EVAL(A) for the values
of ZA(G[p]), we can solve it and get #A(G, x) for every nonzero x ∈ X . We can also
derive #A(G, 0), if 0 ∈ X , using the fact that the #A(G, x)’s sum to m|V |.

7.2. Step 1.1. We now construct the desired matrix B from A. We need the
following notion of a generating set.

Definition 7.2. Let A = {a1, . . . , an} be a set of n nonzero algebraic numbers
for some n ≥ 1. We say {g1, . . . , gd} for some d ≥ 0 is a generating set of A if

1. every gi is a nonzero algebraic number in Q(A ), and
2. for every a ∈ A , there exists a unique tuple (k1, . . . , kd) ∈ Zd such that

a

gk1
1 · · · gkd

d

is a root of unity.

Clearly d = 0 iff the set A consists of roots of unity only. It can also be derived
from the definition that gk1

1 · · · gkd

d of any nonzero (k1, . . . , kd) ∈ Zd cannot be a root
of unity. We prove the following lemma.

Lemma 7.3. Every set A of nonzero algebraic numbers has a generating set.
Lemma 7.3 follows directly from Theorem 17.1. Actually the statement of The-

orem 17.1 is stronger: A generating set {g1, g2, . . . , gd} can be computed from A
in polynomial time. More precisely, following the model of computation discussed
in section 2.2, we let α be a primitive element of Q(A ) so that Q(A ) = Q(α) and
let F (x) be a minimal polynomial of α. Then Theorem 17.1 shows that given the
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standard representation of the aj ’s, one can compute the standard representation of
g1 . . . , gd ∈ Q(α) in polynomial time in the input size of the aj ’s with {g1, . . . , gd}
being a generating set of A . Moreover, for each element a ∈ A one can also compute
in polynomial time the unique tuple of integers (k1, . . . , kd) such that a/(gk1

1 · · · gkd

d )
is a root of unity. In addition, if we are given an approximation α̂ of α that uniquely
determines α as a root of F (x), then we can use it to determine which root of unity it
is in polynomial time. Note that in Lemma 7.3 we only need the existence of a gen-
erating set {g1, . . . , gd}. But later in section 17, the polynomial-time computability
of a generating set will be critical to the proof of Theorem 1.2, the polynomial-time
decidability of the dichotomy criterion.

Now we return to the construction of B. Letting A denote the set of nonzero
entries of A, by Lemma 7.3, A has a generating set G = {g1, . . . , gd}. The matrix
B = (Bi,j) is constructed as follows. Let p1 < · · · < pd denote the d smallest primes.
For every i, j ∈ [m], Bi,j = 0 if Ai,j = 0. Suppose Ai,j �= 0. Since G is a generating
set, we know there exists a unique tuple of integers (k1, . . . , kd) such that

ζi,j =
Ai,j

gk1
1 · · · gkd

d

is a root of unity. Then we set Bi,j = pk1
1 · · · pkd

d · ζi,j .
What we did in constructing B is just replace each gi in G with a prime pi. Bi,j

is well-defined by the uniqueness of (k1, . . . , kd) ∈ Zd; conversely by taking the prime
factorization of |Bi,j | we can recover (k1, . . . , kd) uniquely and recover Ai,j by

Ai,j = gk1
1 · · · gkd

d · Bi,j

pk1
1 · · · pkd

d

.

The next lemma shows that such a replacement does not affect the complexity.
Lemma 7.4. Let A ∈ Cm×m be a symmetric and connected matrix with algebraic

entries and let B be the m×m matrix constructed above. Then EVAL(A) ≡ EVAL(B).
Proof. By Lemma 7.1, it suffices to show that COUNT(A) ≡ COUNT(B). Here we

only prove one of the two directions: COUNT(A) ≤ COUNT(B). The other direction
can be proved similarly.

Let (G, x) be an input pair of COUNT(A), where G = (V,E) and n = |E|. We
use X to denote the set of algebraic numbers defined earlier in (7.1). Recall that |X |
is polynomial in n since m is a constant and can be enumerated in polynomial time.
Furthermore, if x /∈ X , then #A(G, x) must be zero.

Suppose x ∈ X . Then we can find a particular sequence of nonnegative integers
(k∗i,j : i, j ∈ [m]) in polynomial time such that

∑
i,j k

∗
i,j = n and

(7.2) x =
∏

i,j∈[m]

A
k∗
i,j

i,j .

Note that (k∗i,j) is in general not unique for the given x. Using (k∗i,j), we define y by

(7.3) y =
∏

i,j∈[m]

B
k∗
i,j

i,j .

It is clear that x = 0 iff y = 0. This happens precisely when some k∗i,j > 0 for some
entry Ai,j = 0.
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The reduction COUNT(A) ≤ COUNT(B) then follows from the following claim:

(7.4) #A(G, x) = #B(G, y).

To prove this claim, it suffices to show that for any assignment ξ : V → [m], wtA(ξ) =
x iff wtB(ξ) = y. Here we only show that wtA(ξ) = x implies wtB(ξ) = y. The other
direction can be proved similarly.

Let ξ : V → [m] denote an assignment. For every i, j ∈ [m], we use ki,j to denote
the number of edges uv ∈ E such that (ξ(u), ξ(v)) = (i, j) or (j, i). Then

(7.5) wtA(ξ) =
∏

i,j∈[m]

A
ki,j

i,j and wtB(ξ) =
∏

i,j∈[m]

B
ki,j

i,j .

For x = 0, we note that the weight wtA(ξ) is 0 iff for some zero entry Ai,j = 0
we have ki,j > 0. By the construction of B, Ai,j = 0 iff Bi,j = 0, so wtB(ξ) = 0.

In the following, we assume both x, y �= 0. We only consider assignments ξ such
that its ki,j = 0 for any Ai,j = 0 (equivalently ki,j = 0 for any Bi,j = 0). Thus we
may consider the products in (7.5) are over nonzero entries Ai,j and Bi,j , respectively.

Now we use the generating set G = {g1, . . . , gd} chosen for A . There are integer
exponents e1,i,j , e2,i,j, . . . , ed,i,j and roots of unity ζi,j such that for all Ai,j �= 0,

Ai,j =

d∏
�=1

g
e�,i,j
� · ζi,j and Bi,j =

d∏
�=1

p
e�,i,j
� · ζi,j .

The expression of Bi,j here follows from the construction of B. By (7.2) and (7.5),

wtA(ξ) = x =⇒
d∏

�=1

g
∑

i,j(ki,j−k∗
i,j)e�,i,j

� = a root of unity.

The sum in the exponent is over i, j ∈ [m] where the corresponding Ai,j is nonzero.
This last equation is equivalent to (since G is a generating set)

(7.6)
∑
i,j

(ki,j − k∗i,j) · e�,i,j = 0 for all � ∈ [d],

which in turn implies that

(7.7)
∏
i,j

(
ζi,j
)ki,j

=
∏
i,j

(
ζi,j
)k∗

i,j .

It then follows from (7.3), (7.5), (7.6), and (7.7) that wtB(ξ) = y.

7.3. Step 1.2. The following lemma holds for any symmetric B ∈ Cm×m.
Lemma 7.5. If B′i,j = |Bi,j | for all i, j ∈ [m], then EVAL(B′) ≤ EVAL(B).
Proof. From Lemma 7.1, it suffices to show that COUNT(B′) ≤ COUNT(B). Let

(G, x) be an input of COUNT(B′). As B′ is nonnegative, we have #B′(G, x) = 0 if x
is not real or x < 0. Now suppose x ≥ 0, G = (V,E), and n = |E|. We let

Y =

⎧⎨⎩ ∏
i,j∈[m]

B
ki,j

i,j

∣∣∣ integers ki,j ≥ 0 and
∑

i,j∈[m]

ki,j = n

⎫⎬⎭ .
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We know that |Y | is polynomial in n, and Y can be enumerated in polynomial time
in n. Let Yx denote the set of elements of Y whose complex norm is x.

The lemma then follows directly from the equation

#B′(G, x) =
∑
y∈Yx

#B(G, y),

because for every assignment ξ : V → [m], wtB′(ξ) = x iff |wtB(ξ)| = x. This gives us
a polynomial reduction since Yx ⊆ Y , |Yx| is polynomially bounded in n, and Yx can
be enumerated in polynomial time.

Finally we prove Theorems 5.2 and 6.2.
Proof of Theorem 5.2. Let A ∈ Cm×m be a symmetric, connected, and bipartite

matrix. We construct matrices B and B′ as above. Since we assumed A to be
connected and bipartite, both matrices B and B′ are connected and bipartite. Thus,
we know there is a permutation Π of [m] such that BΠ,Π is the bipartization of a
k× (m−k) matrix F for some k ∈ [m− 1], and B′Π,Π is the bipartization of F′, where
F ′i,j = |Fi,j | for all i ∈ [k] and j ∈ [m− k]. Since permuting the rows and columns of
B does not affect the complexity of EVAL(B), we have

(7.8) EVAL(B′Π,Π) ≤ EVAL(BΠ,Π) ≡ EVAL(B) ≡ EVAL(A).

As B′Π,Π is nonnegative, by Bulatov and Grohe we have the following cases:
1. If EVAL(B′Π,Π) is #P-hard, then by (7.8), EVAL(A) is also #P-hard.
2. If EVAL(B′Π,Π) is not #P-hard, then the rank of F′ must be 1. (It cannot be

0 since A is assumed to be connected and bipartite.) Thus, there exist nonnegative
rational numbers μ1, . . . , μm such that F ′i,j = μiμj+k for all i ∈ [k] and j ∈ [m − k].
Moreover, μi �= 0 for all i ∈ [m] since otherwise B′Π,Π is not connected.

As every entry of BΠ,Π is the product of the corresponding entry of B′Π,Π and
some root of unity, BΠ,Π is a purified bipartite matrix. The theorem is proved.

Proof of Theorem 6.2. Let A ∈ Cm×m be a symmetric, connected, and nonbipar-
tite matrix. We constructB and B′ as above. Since A is connected and non-bipartite,
B and B′ are connected and nonbipartite. Also, B′ is nonnegative. Consider the fol-
lowing cases. If B′ is #P-hard, then EVAL(B′) ≤ EVAL(B) ≡ EVAL(A) implies
that EVAL(A) must also be #P-hard. If B′ is not #P-hard, then by Bulatov and
Grohe, the rank of B is 1. (It cannot be 0 as we assumed m > 1, and B is con-
nected.) Because B is symmetric, it is a purified nonbipartite matrix. The theorem
follows.

8. Proof of Theorem 5.3. We start the section by introducing a technique for
establishing reductions between problems EVAL(A) and EVAL(C,D). It was inspired
by the twin reduction lemma proved in [21].

8.1. Cyclotomic reduction and inverse cyclotomic reduction. Let A be
an m ×m symmetric (but not necessarily bipartite) complex matrix, and let (C,D)
be a pair that satisfies the following condition (T ):

(T1) C is an n× n symmetric complex matrix.
(T2) D = (D[0], . . . ,D[N−1]) is a sequence of N n× n diagonal complex matrices

for some N ≥ 1.
(T3) Every diagonal entry in D[0] is a positive integer. Moreover, for each a ∈ [n],

there exist nonnegative integers αa,0, . . . , αa,N−1 such that

D[0]
a =

N−1∑
b=0

αa,b and D[r]
a =

N−1∑
b=0

αa,b · ωbr
N for all r ∈ [N − 1].
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In particular, we say that the tuple (αa,0, . . . , αa,N−1) generates the ath entries
of D.

We need the following definition.
Definition 8.1. Let R = {Ra,b : a ∈ [n], b ∈ [0 : N − 1]} be a partition of [m]

(note that any Ra,b here may be empty) such that for every a ∈ [n],

N−1⋃
b=0

Ra,b �= ∅.

We say A can be generated by C using R if for all i, j ∈ [m],

(8.1) Ai,j = Ca,a′ · ωb+b′
N , where i ∈ Ra,b and j ∈ Ra′,b′ .

Given any pair (C,D) that satisfies (T ), we prove the following lemma.
Lemma 8.2 (cyclotomic reduction lemma). Assume that (C,D) satisfies (T )

with nonnegative integers αa,b. Let R = {Ra,b} be a partition of [m] satisfying

|Ra,b| = αa,b and m =
n∑

a=1

N−1∑
b=0

αa,b ≥ n,

and let A denote the matrix generated by C using R. Then EVAL(A) ≡ EVAL(C,D).
Proof. It suffices to prove for any undirected graph G = (V,E),

ZA(G) =
∑

ξ:V→[m]

wtA(ξ) and ZC,D(G) =
∑

η:V→[n]

wtC,D(η)

are exactly the same. To this end, we define a surjective map ρ from {ξ}, the set of
all assignments from V to [m], to {η}, the set of all assignments from V to [n]. Then
we show that for every η : V → [n],

(8.2) wtC,D(η) =
∑

ξ:ρ(ξ)=η

wtA(ξ).

We define ρ(ξ) as follows. As R is a partition of [m], for each v ∈ V there exists a
unique pair (a(v), b(v)) such that ξ(v) ∈ Ra(v),b(v). Let η(v) = a(v) for each v, and let
ρ(ξ) = η. It is easy to check that ρ is surjective. To prove (8.2), we write wtA(ξ) as

wtA(ξ) =
∏

uv∈E
Aξ(u),ξ(v) =

∏
uv∈E

Cη(u),η(v) × ω
ξ2(u)+ξ2(v)
N .

It follows that∑
ξ:ρ(ξ)=η

wtA(ξ) =
∏

uv∈E
Cη(u),η(v) ×

∑
ξ:ρ(ξ)=η

∏
v∈V

ω
ξ2(v)·deg(v)
N

=
∏

uv∈E
Cη(u),η(v) ×

∏
v∈V

(
N−1∑
b=0

∣∣Rη(v),b

∣∣ · ωb·deg(v)
N

)

=
∏

uv∈E
Cη(u),η(v) ×

∏
v∈V

D
[deg(v) mod N ]
η(v) = wtC,D(η),

and the lemma follows.
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By combining Lemmas 8.2 and 7.5, as well as the dichotomy theorem of Bulatov
and Grohe, we have the following handy corollary for dealing with EVAL(C,D).

Corollary 8.3 (inverse cyclotomic reduction lemma). Let (C,D) be a pair that
satisfies condition (T ). If C has a 2× 2 submatrix(

Ci,k Ci,�

Cj,k Cj,�

)
such that all four entries are nonzero and |Ci,kCj,�| �= |Ci,�Cj,k|, then EVAL(C,D) is
#P-hard.

Proof. By the cyclotomic reduction lemma, there is a symmetric m ×m matrix
A for some positive integer m and a partition R of [m], where

(8.3) R =
{
Ra,b

∣∣ a ∈ [n], b ∈ [0 : N − 1]
}

and

N−1⋃
b=0

Ra,b �= ∅ for all a ∈ [n],

such that EVAL(A) ≡ EVAL(C,D). Moreover, A and C satisfy (8.1).
Now suppose there exist i �= j, k �= � ∈ [n] such that Ci,k, Ci,�, Cj,k, and Cj,� are

nonzero and |Ci,kCj,�| �= |Ci,�Cj,k|. We arbitrarily pick an i′ from ∪bRi,b (known to
be nonempty), a j′ from ∪bRj,b, a k′ from ∪bRk,b, and an �′ from ∪bR�,b. Then from
(8.1), we have |Ai′,k′ | = |Ci,k|, |Ai′,�′ | = |Ci,�|, |Aj′,k′ | = |Cj,k|, |Aj′,�′ | = |Cj,�|, and

|Ai′,k′Aj′,�′ | �= |Ai′,�′Aj′,k′ |.

Let A′ = (|Ai,j |) for all i, j ∈ [m]. Then A′ has a 2 × 2 submatrix of rank 2 and all
its four entries are nonzero. By the dichotomy of Bulatov and Grohe (Corollary 2.6),
EVAL(A′) is #P-hard. It follows that EVAL(C,D) is #P-hard, since EVAL(C,D) ≡
EVAL(A) and by Lemma 7.5, EVAL(A′) ≤ EVAL(A).

Combining Lemma 8.2, (8.2), and the first pinning lemma (Lemma 4.1), we get
the following.

Corollary 8.4 (third pinning lemma). Let (C,D) be a pair that satisfies (T ).
Then we have EVALP(C,D) ≡ EVAL(C,D). In particular, the problem of computing
Z→C,D (or Z←C,D) is polynomial-time reducible to EVAL(C,D).

Proof. It suffices to show that EVALP(C,D) ≤ EVAL(C,D). By the cyclotomic
reduction lemma, there exist a symmetric m × m matrix A for some m ≥ 1 and a
partition R of [m] such that R satisfies (8.3) and EVAL(A) ≡ EVAL(C,D). A,C, and
R also satisfy (8.1). By the first pinning lemma, we have EVALP(A) ≡ EVAL(A) ≡
EVAL(C,D). So we only need to reduce EVALP(C,D) to EVALP(A).

Now let (G,w, i) be an input of EVALP(C,D), where G is an undirected graph,
w is a vertex in G, and i ∈ [n]. By (8.2), we have

ZC,D(G,w, i) =
∑

η:η(w)=i

wtC,D(η) =
∑

ξ:ξ1(w)=i

wtA(ξ) =
∑

j∈∪bRi,b

ZA(G,w, j).

This gives us a polynomial-time reduction from EVALP(C,D) to EVALP(A).
Note that compared to the second pinning lemma, the third pinning lemma does

not require C to be the bipartization of a unitary matrix. It only requires (T ).

8.2. Step 2.1. Let A be a purified bipartite matrix. After collecting its entries
of equal norm in decreasing order by permuting its rows and columns, there exist a
positive integer N and four sequences μ, ν, m, and n such that (A, (N,μ,ν,m,n))
satisfies the following condition:
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(S1) A is the bipartization of an m×n matrix B, so A is (m+n)× (m+n). μ =
(μ1, . . . , μs) and ν = (ν1, . . . , νt) are two strictly decreasing sequences of positive
rational numbers where s ≥ 1 and t ≥ 1. m = (m1, . . . ,ms) and n = (n1, . . . , nt) are
two sequences of positive integers such that m =

∑
mi and n =

∑
ni. The rows of

B are indexed by x = (x1, x2), where x1 ∈ [s] and x2 ∈ [mx1 ]; the columns of B are
indexed by y = (y1, y2), where y1 ∈ [t] and y2 ∈ [ny1 ]. We have, for all x,y,

Bx,y = B(x1,x2),(y1,y2) = μx1νy1Sx,y,

where S = {Sx,y} is an m× n matrix in which every entry is a power of ωN :

B =

⎛⎜⎜⎜⎝
μ1Im1

μ2Im2

. . .

μsIms

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
S(1,∗),(1,∗) S(1,∗),(2,∗) . . . S(1,∗),(t,∗)
S(2,∗),(1,∗) S(2,∗),(2,∗) . . . S(2,∗),(t,∗)

...
...

. . .
...

S(s,∗),(1,∗) S(s,∗),(2,∗) . . . S(s,∗),(t,∗)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
ν1In1

ν2In2

. . .

νtInt

⎞⎟⎟⎟⎠,

where Ik denotes the k × k identity matrix.
We let

I =
⋃
i∈[s]

{
(i, j) : j ∈ [mi]

}
and J =

⋃
i∈[t]

{
(i, j) : j ∈ [ni]

}
,

respectively. We use {0}× I to index the first m rows (or columns) of A and {1}× J
to index the last n rows (or columns) of A. Given x ∈ I and j ∈ [t], we let

Sx,(j,∗) =
(
Sx,(j,1), . . . , Sx,(j,nj)

)
∈ Cnj

denote the jth block of the xth row vector of S. Similarly, given y ∈ J and i ∈ [s],

S(i,∗),y =
(
S(i,1),y, . . . , S(i,mi),y

)
∈ Cmi

denotes the ith block of the yth column vector of S.
Lemma 8.5. Suppose (A, (N,μ,ν,m,n)) satisfies (S1). Then either EVAL(A) is

#P-hard, or (A, (N,μ, ν,m,n)) satisfies the following two conditions:
(S2) For all x,x′ ∈ I, either there exists an integer k such that Sx,∗ = ωk

N · Sx′,∗
or for every j ∈ [t], 〈Sx,(j,∗),Sx′,(j,∗)〉 = 0.

(S3) For all y,y′ ∈ J , either there exists an integer k such that S∗,y = ωk
N · S∗,y′

or for every i ∈ [s], 〈S(i,∗),y,S(i,∗),y′〉 = 0.
Proof. Assume EVAL(A) is not #P-hard. We prove (S2) here. (S3) is similar.
Let G = (V,E) be an undirected graph. We construct a new graph G[p] for each

p ≥ 1 by replacing every edge uv in E with a gadget shown in Figure 8.1. Formally
we define graph G[p] = (V [p], E[p]) as

V [p] = V ∪
{
ae, be : e ∈ E

}
,

and E[p] contains the following edges: For each e = uv ∈ E, add

 v u

pN-1  edges 

1  edge be

a e

Fig. 8.1. Gadget for constructing graph G[p], p ≥ 1.
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1. one edge (u, ae) and (be, v) and
2. (pN − 1) parallel edges (ae, v) and (u, be).

The construction of G[p] gives us an (m+ n)× (m+ n) matrix A[p] such that

ZA[p](G) = ZA(G[p]) for all undirected graphs G.

Thus, we have EVAL(A[p]) ≤ EVAL(A), and EVAL(A[p]) is also not #P-hard.
The entries of A[p] are as follows. First,

A
[p]
(0,u),(1,v) = A

[p]
(1,v),(0,u) = 0 for all u ∈ I and v ∈ J .

So A[p] is a block diagonal matrix with two blocks of m×m and n× n, respectively.
The entries in the upper-left m×m block are

A
[p]
(0,u),(0,v) =

(∑
a∈J

A(0,u),(1,a)(A(0,v),(1,a))
pN−1

)(∑
b∈J

(A(0,u),(1,b))
pN−1A(0,v),(1,b)

)

=

(∑
a∈J

Bu,a(Bv,a)
pN−1

)(∑
b∈J

(Bu,b)
pN−1Bv,b

)
for all u,v ∈ I. The first factor of the last expression is∑

a∈J
μu1νa1Su,a(μv1νa1)

pN−1Sv,a = μu1μ
pN−1
v1

∑
i∈[t]

νpNi 〈Su,(i,∗),Sv,(i,∗)〉.

Similarly, we have for the second factor∑
b∈J

(Bu,b)
pN−1Bv,b = μpN−1

u1
μv1

∑
i∈[t]

νpNi 〈Su,(i,∗),Sv,(i,∗)〉.

As a result, we have

A
[p]
(0,u),(0,v) = (μu1μv1)

pN

∣∣∣∣∣∣
∑
i∈[t]

νpNi 〈Su,(i,∗),Sv,(i,∗)〉

∣∣∣∣∣∣
2

.

It is clear that the upper-left m ×m block of A[p] is nonnegative. This holds for its
lower-right n× n block as well, so A[p] is a nonnegative matrix.

Now let u �= v be two indices in I (if |I| = 1, (S2) is trivially true); then we have

A
[p]
(0,u),(0,u)A

[p]
(0,v),(0,v) = (μu1μv1)

2pN

⎛⎝∑
i∈[t]

ni · νpNi

⎞⎠4

,

which is positive, and

A
[p]
(0,u),(0,v)A

[p]
(0,v),(0,u) = (μu1μv1)

2pN

∣∣∣∣∣∣
∑
i∈[t]

νpNi 〈Su,(i,∗),Sv,(i,∗)〉

∣∣∣∣∣∣
4

.

Since EVAL(A[p]) is not #P-hard, by Bulatov and Grohe (Corollary 2.6),

(8.4)

∣∣∣∣∣∣
∑
i∈[t]

νpNi 〈Su,(i,∗),Sv,(i,∗)〉

∣∣∣∣∣∣ ∈
⎧⎨⎩0,

∑
i∈[t]

ni · νpNi

⎫⎬⎭ .
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On the other hand, the following inequality always holds: For any p ≥ 1,

(8.5)

∣∣∣∣∣∣
∑
i∈[t]

νpNi · 〈Su,(i,∗),Sv,(i,∗)〉

∣∣∣∣∣∣ ≤
∑
i∈[t]

ni · νpNi .

For the equality of (8.5) to hold, S must satisfy |〈Su,(i,∗),Sv,(i,∗)〉| = ni for all i ∈ [t]

and thus Su,(i,∗) = (ωN )ki · Sv,(i,∗) for some ki ∈ [0 : N − 1]. Furthermore, these ki’s
must be the same. As a result, Su,∗ and Sv,∗ are linearly dependent, which contradicts
our assumption. It then follows from (8.4) that∑

i∈[t]
νpNi 〈Su,(i,∗),Sv,(i,∗)〉 = 0 for all p ≥ 1.

As ν1, . . . , νt is strictly decreasing, these equations form a Vandermonde system. It
follows that 〈Su,(i,∗),Sv,(i,∗)〉 = 0 for all i ∈ [t]. This finishes the proof of (S2).

We have the following corollary.
Corollary 8.6. For all i ∈ [s] and j ∈ [t], the rank of the (i, j)th block matrix

S(i,∗),(j,∗) of S has the same rank as S.
Proof. Without loss of generality, we prove rank(S(1,∗),(1,∗)) = rank(S).
First, we use Lemma 8.5 to show that

rank

⎛⎜⎝S(1,∗),(1,∗)
...

S(s,∗),(1,∗)

⎞⎟⎠ = rank(S).

To see this, we take any h = rank(S) rows of S which are linearly independent. Since
any two of them Sx,(∗,∗) and Sy,(∗,∗) are linearly independent, by condition (S2), the
two subvectors Sx,(1,∗) and Sy,(1,∗) are orthogonal. Therefore, the corresponding h
rows of the matrix on the left-hand side are pairwise orthogonal, and the left-hand
side is at least h. Of course it cannot be larger than h, so it is equal to h.

By using condition (S3), we can similarly show that

rank(S(1,∗),(1,∗)) = rank

⎛⎜⎝S(1,∗),(1,∗)
...

S(s,∗),(1,∗)

⎞⎟⎠ .

As a result, we have rank(S(1,∗),(1,∗)) = rank(S).
Now suppose h = rank(S). Then by Corollary 8.6, there must exist indices

1 ≤ i1 < · · · < ih ≤ m1 and 1 ≤ j1 < · · · < jh ≤ n1 such that the {(1, i1), . . . , (1, ih)}×
{(1, j1), . . . , (1, jh)} submatrix of S has full rank h. Without loss of generality (if this
is not true, we can apply an appropriate permutation Π to the rows and columns of
A so that the new S has this property) we assume ik = k and jk = k for all k ∈ [h].
We use H to denote this h× h matrix: Hi,j = S(1,i),(1,j).

By Corollary 8.6 and Lemma 8.5, for every index x ∈ I, there exists a unique
pair of integers j ∈ [h] and k ∈ [0 : N − 1] such that

(8.6) Sx,∗ = ωk
N · S(1,j),∗.

This gives us a partition of index set {0} × I:

R0 =
{
R(0,i,j),k : i ∈ [s], j ∈ [h], k ∈ [0 : N − 1]

}
.
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For every x ∈ I, (0,x) ∈ R(0,i,j),k if i = x1 and x, j, k satisfy (8.6). By Corollary 8.6,⋃
k∈[0:N−1]

R(0,i,j),k �= ∅ for all i ∈ [s] and j ∈ [h].

Similarly, for every index y ∈ J there exists a unique pair of integers j ∈ [h] and
k ∈ [0 : N − 1] such that

(8.7) S∗,y = ωk
N · S∗,(1,j),

and we partition {1} × J into

R1 =
{
R(1,i,j),k : i ∈ [t], j ∈ [h], k ∈ [0 : N − 1]

}
.

For every y ∈ J , (1,y) ∈ R(1,i,j),k if i = y1 and y, j, k satisfy (8.7). By Corollary 8.6,⋃
k∈[0:N−1]

R(1,i,j),k �= ∅ for all i ∈ [t] and j ∈ [h].

Now we define (C,D) and use the cyclotomic reduction lemma (Lemma 8.2) to
show that EVAL(C,D) ≡ EVAL(A). First, C is an (s+ t)h× (s+ t)h matrix which is
the bipartization of an sh × th matrix F. We use the set I ′ ≡ [s] × [h] to index the
rows of F and J ′ ≡ [t]× [h] to index the columns of F. We have

Fx,y = μx1νy1Hx2,y2 = μx1νy1S(1,x2),(1,y2) for all x ∈ I ′, y ∈ J ′,

or equivalently,

F =

⎛⎜⎜⎜⎝
μ1I

μ2I
. . .

μsI

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
H H . . . H
H H . . . H
...

...
. . .

...
H H . . . H

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
ν1I

ν2I
. . .

νtI

⎞⎟⎟⎟⎠ ,

where I is the h× h identity matrix. We use ({0}× I ′)∪ ({1}× J ′) to index the rows
and columns of C.

Second, D = (D[0], . . . ,D[N−1]) is a sequence of N diagonal matrices of the same
size as C. We use {0}×I ′ to index the first sh entries and {1}×J ′ to index the last th
entries. The (0,x)th entries of D are generated by (|R(0,x1,x2),0|, . . . , |R(0,x1,x2),N−1|),
and the (1,y)th entries of D are generated by (|R(1,y1,y2),0|, . . . , |R(1,y1,y2),N−1|):

D
[r]
(0,x) =

N−1∑
k=0

∣∣R(0,x1,x2),k

∣∣ · ωkr
N and D

[r]
(1,y) =

N−1∑
k=0

∣∣R(1,y1,y2),k

∣∣ · ωkr
N

for all r ∈ [0 : N − 1],x = (x1, x2) ∈ I ′, and y = (y1, y2) ∈ J ′.
This finishes the construction of (C,D), and we prove the following lemma.
Lemma 8.7. EVAL(A) ≡ EVAL(C,D).
Proof. First we show that A can be generated from C using R0 ∪ R1.
Let x,x′ ∈ I, (0,x) ∈ R(0,x1,j),k, and (0,x′) ∈ R(0,x′

1,j
′),k′ . Then we have

A(0,x),(0,x′) = C(0,x1,j),(0,x′
1,j

′) = 0,
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since A and C are the bipartizations of B and F, respectively. Therefore,

A(0,x),(0,x′) = C(0,x1,j),(0,x′
1,j

′) · ωk+k′
N

holds trivially. Clearly, this also holds for the lower-right n× n block of A.
Let x ∈ I, (0,x) ∈ R(0,x1,j),k, y ∈ J , and (1,y) ∈ R(1,y1,j′),k′ for some j, k, j′, k′.

By (8.6) and (8.7), we have

A(0,x),(1,y) = μx1νy1Sx,y = μx1νy1S(1,j),y · ωk
N

= μx1νy1S(1,j),(1,j′) · ωk+k′
N = C(0,x1,j),(1,y1,j′) · ωk+k′

N .

A similar equation also holds for the lower-left block. Thus, A can be generated from
C using R0 ∪ R1. Moreover, the construction of D implies that D can be generated
from the partition R0 ∪ R1. The lemma then follows directly from the cyclotomic
reduction lemma.

Before moving forward to the next step, we summarize our progress so far. We
showed that EVAL(A) is either #P-hard or equivalent to EVAL(C,D), where the pair
(C,D) satisfies the following conditions (Shape1)–(Shape3):

(Shape1) C ∈ Cm×m (note that the m here is different from the m used at the
beginning of Step 2.1) is the bipartization of an sh× th matrix F (so m = (s+ t)h).
F is an s × t block matrix. We use I = [s] × [h] and J = [t] × [h] to index the rows
and columns of F, respectively.

(Shape2) There are two strictly decreasing sequences μ = (μ1, . . . , μs) and ν =
(ν1, . . . , νt) of positive rational numbers. There is also an h × h full-rank matrix H
whose entries are all powers of ωN for some positive integer N . Entries of F can be
expressed using μ,ν, and H explicitly as follows:

Fx,y = μx1νy1Hx2,y2 for all x ∈ I and y ∈ J .

(Shape3) D = (D[0], . . . ,D[N−1]) is a sequence of m ×m diagonal matrices. We
use ({0} × I) ∪ ({1} × J) to index the rows and columns of matrices C and D[r]. D
satisfies (T3), so for all r ∈ [N − 1], x ∈ [s]× [h], and y ∈ [t]× [h],

D
[r]
(0,x) = D

[N−r]
(0,x) and D

[r]
(1,y) = D

[N−r]
(1,y) .

8.3. Step 2.2. In Step 2.2, we prove the following lemma.
Lemma 8.8. Either EVAL(C,D) is #P-hard or H and D[0] satisfy the following

two conditions:
(Shape4) (1/

√
h) ·H is a unitary matrix, i.e.,

〈Hi,∗,Hj,∗〉 = 〈H∗,i,H∗,j〉 = 0 for all i �= j ∈ [h].

(Shape5) D[0] satisfies, for all x ∈ I and for all y ∈ J ,

D
[0]
(0,x) = D

[0]
(0,(x1,1))

and D
[0]
(1,y) = D

[0]
(1,(y1,1))

.

Proof. We rearrange the entries of D[0] indexed by {1} × J into a t× h matrix

Xi,j = D
[0]
(1,(i,j)) for all i ∈ [t] and j ∈ [h]

and rearrange its entries indexed by {0} × I into an s× h matrix

Yi,j = D
[0]
(0,(i,j)) for all i ∈ [s] and j ∈ [h].
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Note that by condition (T3), all entries of X and Y are positive integers.
The proof has two stages. First, we show in Lemma 8.9 that either EVAL(C,D)

is #P-hard or H,X, and Y must satisfy

〈Hi,∗ ◦Hj,∗,Xk,∗〉 = 0 for all k ∈ [t] and i �= j ∈ [h] and(8.8)

〈H∗,i ◦H∗,j,Yk,∗〉 = 0 for all k ∈ [s] and i �= j ∈ [h].(8.9)

We use U to denote the set of h-dimensional vectors that are orthogonal to

H1,∗ ◦H2,∗, H1,∗ ◦H3,∗, . . . , H1,∗ ◦Hh,∗.

The above set of h− 1 vectors is linearly independent. This is because

h∑
i=2

ai
(
H1,∗ ◦Hi,∗

)
= H1,∗ ◦

(
h∑

i=2

aiHi,∗

)
,

and if
∑h

i=2 ai(H1,∗ ◦ Hi,∗) = 0, then
∑h

i=2 aiHi,∗ = 0 since all entries of H1,∗ are
nonzero. Because H has full rank, we have ai = 0, i = 2, . . . , h. As a result, U is a
linear space of dimension 1 over C.

Second, we show in Lemma 8.10 that, assuming (8.8) and (8.9), either

〈Hi,∗ ◦Hj,∗, (Xk,∗)
2〉 = 0 for all k ∈ [t] and i �= j ∈ [h] and(8.10)

〈H∗,i ◦H∗,j, (Yk,∗)
2〉 = 0 for all k ∈ [s] and i �= j ∈ [h],(8.11)

or EVAL(C,D) is #P-hard. Here we use (Xk,∗)
2 to denote Xk,∗ ◦Xk,∗.

Equations (8.8) and (8.10) then imply that both Xk,∗ and (Xk,∗)
2 are in U and

thus they are linearly dependent (since the dimension of U is 1). On the other hand,
by (T3), every entry in Xk,∗ is a positive integer. Therefore, Xk,∗ must have the form
u · 1 for some positive integer u. The same argument works for Yk,∗ and the latter
must also have the form u′ · 1. By (8.8) and (8.9), this further implies that

〈Hi,∗,Hj,∗〉 = 0 and 〈H∗,i,H∗,j〉 = 0 for all i �= j ∈ [h].

This finishes the proof of Lemma 8.8.
Now we proceed to the two stages of the proof. In the first stage, we prove the

following.
Lemma 8.9. Either H,X,Y satisfy (8.8) and (8.9), or EVAL(C,D) is #P-hard.
Proof. Suppose EVAL(C,D) is not #P-hard; otherwise we are done.
We let D∗ = (D[0], . . . ,D[0]), a sequence of N m×m diagonal matrices in which

every matrix is a copy of D[0] (as in D). It is easy to check that D∗ satisfies condition
(T3). Let G = (V,E) be an undirected graph. For each p ≥ 1, we build a new graph
G[p] = (V [p], E[p]) in the same way as we did in the proof of Lemma 8.5. This gives us
an m×m matrix C[p] such that ZC[p],D∗(G) = ZC,D(G

[p]) for all undirected graphs

G. Thus, EVAL(C[p],D∗) ≤ EVAL(C,D), and EVAL(C[p],D∗) is also not #P-hard.
MatrixC[p] is a block matrix with the same block structure asC. The upper-right

and lower-left blocks of C[p] are zero matrices. For x,y ∈ I, we have

C
[p]
(0,x),(0,y) =

(∑
a∈J

Fx,a(Fy,a)
pN−1Xa1,a2

)(∑
b∈J

(Fx,b)
pN−1Fy,bXb1,b2

)
.
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From (Shape2) and the fact that all entries of X are positive integers, we can rewrite
the first factor as

μx1(μy1)
pN−1

∑
a∈J

(νa1)
pNHx2,a2Hy2,a2Xa1,a2

= μx1(μy1)
pN−1

∑
a∈[t]

(νa)
pN 〈Hx2,∗ ◦Hy2,∗,Xa,∗〉.

Similarly, we can rewrite the second factor as

(μx1)
pN−1μy1

∑
a∈[t]

(νa)
pN 〈Hx2,∗ ◦Hy2,∗,Xa,∗〉.

Since νa > 0 for all a, we have

(8.12) C
[p]
(0,x),(0,y) = (μx1μy1)

pN

∣∣∣∣∣ ∑
a∈[t]

(νa)
pN 〈Hx2,∗ ◦Hy2,∗,Xa,∗〉

∣∣∣∣∣
2

,

so the upper-left block of C[p] is nonnegative. Similarly one can show that the same
holds for its lower-right block. Thus, C[p] is a nonnegative matrix.

Now for any x ∈ I, we have

C
[p]
(0,x),(0,x) = (μx1)

2pN

⎛⎝∑
a∈[t]

(νa)
pN
∑
b∈[h]

Xa,b

⎞⎠2

,

which is positive, and for any x �= y ∈ I, we have

C
[p]
(0,x),(0,x)C

[p]
(0,y),(0,y) = (μx1μy1)

2pN

⎛⎝∑
a∈[t]

(νa)
pN
∑
b∈[h]

Xa,b

⎞⎠4

> 0.

Since EVAL(C[p],D∗) is not #P-hard and (C[p],D∗) satisfies (T ), by the inverse
cyclotomic reduction lemma (Corollary 8.3), we have either

(8.13)
(
C

[p]
(0,x),(0,y)

)2
= C

[p]
(0,x),(0,x)C

[p]
(0,y),(0,y) or C

[p]
(0,x),(0,y) = 0.

We claim that if the former is true, then x2 = y2. This is because, in this case,∣∣∣∣∣∣
∑
a∈[t]

(νa)
pN 〈Hx2,∗ ◦Hy2,∗,Xa,∗〉

∣∣∣∣∣∣ =
∑
a∈[t]

(νa)
pN
∑
b∈[h]

Xa,b,

and the norm of 〈Hx2,∗ ◦Hy2,∗,Xa,∗〉 must be
∑

b∈[h]Xa,b. The inner product, how-

ever, is a sum of Xa,b’s weighted by roots of unity, so the entries of Hx2,∗ ◦Hy2,∗ must
be the same root of unity. Thus, Hx2,∗ and Hy2,∗ are linearly dependent. Since H is
a matrix of full rank, we conclude that x2 = y2. Together with (8.13), we have∑

a∈[t]
(νa)

pN 〈Hx2,∗ ◦Hy2,∗,Xa,∗〉 = 0 for all p ≥ 1 and all x2 �= y2,

since the argument is independent of the value of p. These equations form a Van-
dermonde system, and we conclude that 〈Hx2,∗ ◦ Hy2,∗,Xa,∗〉 = 0 for all a ∈ [t]
and all x2 �= y2. This finishes the proof of (8.8). Equation (8.9) can be proved
similarly.
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In the second stage, we prove the following lemma.
Lemma 8.10. Suppose matrices H, X, and Y satisfy both (8.8) and (8.9). Then

either they also satisfy (8.10) and (8.11) or EVAL(C,D) is #P-hard.
Proof. We will only prove (8.11). Equation (8.10) can be proved similarly.
Again, we let D∗ denote a sequence of N m×m diagonal matrices in which each

matrix is a copy of D[0] (so D∗ satisfies (T3)). Note that the matrix C[1] we used in
the proof of Lemma 8.9 satisfies the following property: When x2 = y2, by (8.12),

C
[1]
(0,x),(0,y) = (μx1μy1)

N

⎛⎝∑
a∈[t]

(νa)
N
∑
b∈[h]

Xa,b

⎞⎠2

,

and this is equal to 0 when x2 �= y2. Let L denote the second factor on the right-hand
side, which is independent of x and y, so the right-hand side becomes (μx1μy1)

NL.
Additionally, because of (8.9), we have that Yk,∗ and Y1,∗ are linearly dependent

for every k. Thus, for every k ∈ [s], there exists a positive, rational λk such that

(8.14) Yk,∗ = λk ·Y1,∗.

Because of this, we only need to prove (8.11) for the case when k = 1.
Now we start the proof of (8.11). Suppose EVAL(C,D) is not #P-hard. We use

G = (V,E) to denote an undirected graph; then for each p ≥ 1, we build a new graph
G(p) = (V (p), E(p)) by replacing every edge e = uv ∈ E with a gadget that is shown
in Figure 8.2. More exactly, we define G(p) = (V (p), E(p)) as

V (p) = V ∪
{
ae, be, ce, de, a

′
e, b
′
e, c
′
e, d
′
e : e ∈ E

}
,

and E(p) contains exactly the following edges: For every edge e = uv ∈ E, add
1. one edge (u, ae), (a

′
e, v), (ce, be), (de, ae), (c

′
e, b
′
e), and (d′e, a

′
e);

2. pN − 1 parallel edges between (ae, v) and (u, a′e);
3. N − 1 parallel edges between (ae, ce), (be, de), (a

′
e, c
′
e), and (b′e, d

′
e).

It is easy to check that the degree of every vertex in G(p) is a multiple of N .
Moreover, the construction of G(p) gives us a new m × m matrix R(p), which

is symmetric since the gadget is symmetric, such that ZR(p),D∗(G) = ZC,D(G
(p)) for

allG. Thus, EVAL(R(p),D∗) ≤ EVAL(C,D), and EVAL(R(p),D∗) is also not #P-hard.

 v u

p N - 1  e d g e s 

1   e d g e 

a ' 

a e

ce d e

be

e

b ' e

c ' e d ' e

  N - 1  e d g e s  

Fig. 8.2. Gadget for constructing G(p), p ≥ 1.
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Moreover, R(p) is a block matrix which has the same block structure as C. The
upper-right and lower-left blocks of R(p) are zero matrices. The entries in its lower-
right block are as follows: For x,y ∈ J ,

R
(p)
(1,x),(1,y) =

( ∑
a,b∈I

Fa,x(Fa,y)
pN−1C

[1]
(0,a),(0,b)Ya1,a2Yb1,b2

)

×
( ∑

a,b∈I
(Fa,x)

pN−1Fa,yC
[1]
(0,a),(0,b)Ya1,a2Yb1,b2

)
.

Recall that C
[1]
(0,a),(0,b) = 0 when a2 �= b2. From (8.14), Ya1,a2Yb1,b2 = λa1λb1Y1,a2Y1,b2 .

As a result, we can simplify the first factor to be

νx1(νy1)
pN−1L

∑
a,b∈I,a2=b2

(μa1)
pNHa2,x2Ha2,y2(μa1μb1)

Nλa1λb1Y1,a2Y1,b2

= νx1(νy1)
pN−1L

∑
a1,b1∈[s]

(μa1)
(p+1)N (μb1)

Nλa1λb1

∑
a2∈[h]

Ha2,x2Ha2,y2(Y1,a2)
2

= νx1(νy1)
pN−1L′ · 〈H∗,x2 ◦H∗,y2 , (Y1,∗)

2〉,

where

L′ = L
∑

a1,b1∈[s]
(μa1)

(p+1)N (μb1)
Nλa1λb1

is positive and is independent of x,y. Similarly, the second factor becomes

(νx1)
pN−1νy1L

′ · 〈H∗,x2 ◦H∗,y2, (Y1,∗)2〉.

As a result, we have

R
(p)
(1,x),(1,y) = (L′)2 · (νx1νy1)

pN ·
∣∣∣〈H∗,x2 ◦H∗,y2 , (Y1,∗)

2〉
∣∣∣2.

Thus the lower-right block of R(p) is nonnegative. Similarly, one can prove that the
same holds for its upper-left block, so R(p) is nonnegative.

We apply Corollary 8.3 to (R(p),D∗). As EVAL(R(p),D∗) is not #P-hard, either(
R

(p)
(1,x),(1,y)

)2
= R

(p)
(1,x),(1,x)R

(p)
(1,y),(1,y) or R

(p)
(1,x),(1,y) = 0 for any x �= y ∈ J .

We claim that if the former is true, then x2 = y2. This is because, in this case,∣∣∣〈H∗,x2 ◦H∗,y2 , (Y1,∗)
2〉
∣∣∣ = ∑

i∈[h]
Y 2
1,i.

However, the left-hand side is a sum of (Y1,i)
2, which are positive integers, weighted

by roots of unity. To sum to a number of norm
∑

i∈[h] Y
2
1,i the entries of H∗,x2 ◦H∗,y2

must be the same root of unity. As a result, H∗,x2 and H∗,y2 are linearly dependent.
Since H is of full rank, we conclude that x2 = y2. In other words, we have shown that

〈H∗,x2 ◦H∗,y2 , (Y1,∗)
2〉 = 0 for all x2 �= y2.

By combining it with (8.14), we have finished the proof of (8.11).
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8.4. Step 2.3. Now we get a pair (C,D) that satisfies (Shape1)–(Shape5) since
otherwise, by Lemma 8.8, EVAL(C,D) is #P-hard and we are done.

In particular, by using (Shape5), we define two diagonal matrices K[0] and L[0]

as follows. K[0] is an (s+ t)× (s+ t) diagonal matrix. We use (0, i), i ∈ [s], to index
its first s rows and (1, j), j ∈ [t], to index its last t rows. Its diagonal entries are

K
[0]
(0,i) = D

[0]
(0,(i,1)) and K

[0]
(1,j) = D

[0]
(1,(j,1)) for all i ∈ [s] and j ∈ [t].

L[0] is the 2h× 2h identity matrix. We use (0, i), i ∈ [h], to index its first h rows and
(1, j), j ∈ [h], to index its last h rows. By (Shape5), we have

(8.15) D
[0]
(0,x) = K

[0]
(0,x1)

· L[0]
(0,x2)

and D
[0]
(1,y) = K

[0]
(1,y1)

· L[0]
(1,y2)

for all x ∈ I and y ∈ J , or equivalently,

(8.16) D[0] =

(
D

[0]
(0,∗)

D
[0]
(1,∗)

)
=

(
K

[0]
(0,∗) ⊗ L

[0]
(0,∗)

K
[0]
(1,∗) ⊗ L

[0]
(1,∗)

)
.

The goal of Step 2.3 is to prove a similar statement for D[r], r ∈ [N − 1], and these
equations will allow us in Step 2.4 to decompose EVAL(C,D) into two subproblems.

In the proof of Lemma 8.8, we crucially used the property (from (T3)) that all the
diagonal entries of D[0] are positive integers. However, for r ≥ 1, (T3) only gives us
some very weak properties about D[r]. For example, the entries are not guaranteed
to be real numbers. So the proof that we are going to present here is more difficult.
We prove the following lemma.

Lemma 8.11. Let (C,D) be a pair that satisfies (Shape1)–(Shape5). Then either
EVAL(C,D) is #P-hard or it satisfies the following additional condition:

(Shape6) There exist diagonal matrices K[0] and L[0] such that D[0],K[0], and
L[0] satisfy (8.16). Every entry of K[0] is a positive integer, and L[0] is the 2h × 2h
identity matrix. For each r ∈ [N −1], there exist two diagonal matrices K[r] and L[r].
K[r] is an (s + t) × (s+ t) matrix, and L[r] is a 2h× 2h matrix. We index K[r] and
L[r] in the same way we index K[0] and L[0], respectively. Then

D[r] =

(
D

[r]
(0,∗)

D
[r]
(1,∗)

)
=

(
K

[r]
(0,∗) ⊗ L

[r]
(0,∗)

K
[r]
(1,∗) ⊗ L

[r]
(1,∗)

)
.

Moreover, the norm of every entry in L[r] is either 0 or 1, and for any r ∈ [N − 1],

K
[r]
(0,∗) = 0 ⇐⇒ L

[r]
(0,∗) = 0 and K

[r]
(1,∗) = 0 ⇐⇒ L

[r]
(1,∗) = 0;

L
[r]
(0,∗) �= 0 =⇒ ∃ i ∈ [h], L

[r]
(0,i) = 1 and L

[r]
(1,∗) �= 0 =⇒ ∃ i ∈ [h], L

[r]
(1,i) = 1.

We now present the proof of Lemma 8.11. Fix an r ∈ [N − 1] to be any index.
We use the following notation. Consider the diagonal matrix D[r]. It has two parts:

D
[r]
(0,∗) ∈ Csh×sh and D

[r]
(1,∗) ∈ Cth×th.

The first part has s blocks, where each block is a diagonal matrix with h entries. We
will rearrange the entries indexed by (0, ∗) into another s×h matrix, which we denote
as D (just as we did with D[0] in the proof of Lemma 8.8), where

Di,j = D
[r]
(0,(i,j)) for all i ∈ [s] and j ∈ [h].

We prove the following lemma in section 8.4.2.
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Lemma 8.12. Either problem EVAL(C,D) is #P-hard, or we have (1) rank(D) ≤
1 and (2) for each i ∈ [s], all nonzero entries of Di,∗ have the same norm.

Proof of Lemma 8.11. We start with the first half, that is,

(8.17) D
[r]
(0,∗) = K

[r]
(0,∗) ⊗ L

[r]
(0,∗).

Assume D
[r]
(0,∗) is nonzero; otherwise the lemma is true by setting K

[r]
(0,∗) = L

[r]
(0,∗) = 0.

As a result, we know that D �= 0.
Let Da,b be a nonzero entry of D, where a ∈ [s] and b ∈ [h]. From Lemma 8.12,

the rank of D is 1, so Di,∗ = (Di,b/Da,b) ·Da,∗ for any i ∈ [s]. By setting

K
[r]
(0,i) = Di,b and L

[r]
(0,j) =

Da,j

Da,b
,

we have

D
[r]
(0,(i,j)) = Di,j = K

[r]
(0,i) · L

[r]
(0,j) for all i ∈ [s] and j ∈ [h],

and (8.17) follows. The second half can be proved similarly.
One can also check that K[r] and L[r] satisfy all the properties stated in (Shape6).

This finishes the proof of Lemma 8.11 (assuming Lemma 8.12).

8.4.1. The vanishing lemma. We need the following lemma in the proof of
Lemma 8.12.

Lemma 8.13 (vanishing lemma). Let k be a positive integer and let (xi,n)n≥1, for
1 ≤ i ≤ k, be k infinite sequences of nonzero real numbers. For notational uniformity
we also denote by (x0,n)n≥1 the sequence where x0,n = 1 for all n ≥ 1. Suppose

lim
n→∞

xi+1,n

xi,n
= 0 for 0 ≤ i < k.

Part A. Let ai and bi ∈ C for 0 ≤ i ≤ k. Suppose for some � ∈ [k], ai = bi for all
0 ≤ i < �; a0 = b0 = 1; and Im(a�) = Im(b�). If for infinitely many n,∣∣∣∣∣

k∑
i=0

aixi,n

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=0

bixi,n

∣∣∣∣∣ ,
then we have a� = b�.

Part B. Let ai ∈ C for 0 ≤ i ≤ k. If for infinitely many n,∣∣∣∣∣
k∑

i=0

aixi,n

∣∣∣∣∣ = 0,

then we have ai = 0 for all 0 ≤ i ≤ k.
Proof. We first prove Part B, which is simpler. Taking n → ∞ (technically

we take a subsequence of n approaching ∞ where the equality holds, and the same
below), we get a0 = 0. Since x1,n �= 0, we can divide out |x1,n| and get for infinitely
many n, ∣∣∣∣∣

k∑
i=1

aixi,n

/
x1,n

∣∣∣∣∣ = 0.

Now the result follows by induction.
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Next we prove Part A. Multiplying by its conjugate, we get(
k∑

i=0

aixi,n

)⎛⎝ k∑
j=0

ajxj,n

⎞⎠ =

(
k∑

i=0

bixi,n

)⎛⎝ k∑
j=0

bjxj,n

⎞⎠ .

Every term involves a product xi,nxj,n. If max{i, j} < �, then the terms

aiajxi,nxj,n = bibjxi,nxj,n

and they cancel (since ai = bi and aj = bj). If max{i, j} > �, then both aiajxi,nxj,n

and bibjxi,nxj,n are o(|x�,n|) as n → ∞. This is also true when max{i, j} = � and
min{i, j} > 0. The remaining terms correspond to max{i, j} = � and min{i, j} = 0.
After canceling out identical terms, we get

(a� + a�)x�,n + o(|x�,n|) = (b� + b�)x�,n + o(|x�,n|)

as n → ∞. Dividing out x�,n and then taking limit n → ∞, we get Re(a�) = Re(b�).
It follows that a� = b� since Im(a�) = Im(b�).

We also remark that Part A of the vanishing lemma above cannot be extended
to arbitrary sequences {ai} and {bi} without the condition that Im(a�) = Im(b�), as
shown by the following example: Let

a1 = 3 +
√
3i, a2 = 3

(
1

2
+

√
3

2
i

)
, and b1 = b2 = 3.

Then |1+a1x+a2x
2| = |1+b1x+b2x

2| is an identity for all real values x. In particular
this holds when x → 0. We note that a1 �= b1.

8.4.2. Proof of Lemma 8.12. Without loss of generality, we assume 1 = μ1 >
· · · > μs > 0 and 1 = ν1 > · · · > νt > 0. (Otherwise, we can multiply C by an
appropriate scalar so that the new C has this property. This operation clearly does
not affect the complexity of EVAL(C,D).) We assume EVAL(C,D) is not #P-hard.

Again we let D∗ denote a sequence of N m×m diagonal matrices in which every
matrix is a copy of the matrix D[0] in D (so D∗ satisfies (T3). Recall that r is a fixed
index in [N − 1], and recall the definition of the s× h matrix D from D[r].

Let G = (V,E) be an undirected graph. For each n ≥ 1, we build a new graph
G[n] by replacing each edge uv ∈ E with a gadget shown in Figure 8.3. More exactly,
we define G[n] as follows. Let pn = n2N + 1 and qn = nN − 1. (When n → ∞, qn
will be arbitrarily large, and for a given qn, pn will be arbitrarily larger.) Then

V [n] = V ∪
{
ae, xe,i, ye,i, be, ce, a

′
e, x
′
e,i, y

′
e,i, b

′
e, c
′
e : e ∈ E, i ∈ [r]

}
,

and E[n] contains exactly the following edges: For every edge e = uv ∈ E, add
1. one edge (u, ae), (v, a

′
e), (ae, ye,i), and (a′e, y

′
e,i) for all i ∈ [r];

2. N − 1 parallel edges (v, ae), (u, a
′
e), (ae, xe,i), and (a′e, x

′
e,i) for all i ∈ [r];

3. pn parallel edges (be, xe,i) and (b′e, x
′
e,i) for all i ∈ [r];

4. qn parallel edges (ce, ye,i) and (c′e, y
′
e,i) for all i ∈ [r].

It is easy to check that the degree of every vertex in G[n] is a multiple of N except for
be and b′e, which have degree r mod N , and ce and c′e, which have degreeN−r mod N .

Since the gadget is symmetric with respect to vertices u and v, the construction
of G[n] gives us a symmetric m×m matrix R[n] (recall that m = (s+ t)h) such that
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 v u

  N - 1 e d g e s 

1           e d g e 

a ' 

a

x1

b

x ' 1

p n e d g e s

xr y1 yr

c

b ' c ' 

y ' r
x ' r y ' 1

    q n e d g e s 

. . . . . . 

. . . . . . 

Fig. 8.3. Gadget for constructing G[n], n ≥ 1. (Note that the subscript e is suppressed.)

ZR[n],D∗(G) = ZC,D(G[n]) for all G. As a result, EVAL(R[n],D∗) ≤ EVAL(C,D), and

we know that EVAL(R[n],D∗) is also not #P-hard.
The entries of R[n] are as follows: For u ∈ I and v ∈ J , the ((0,u), (1,v))th and

((1,u), (0,v))th entries of R[n] are zero. For u,v ∈ J , R
[n]
(1,u),(1,v) is the product of

∑
a,b,c∈I

(∑
x∈J

FN−1
a,x F pn

b,xD
[0]
(1,x)

)r
⎛⎝∑

y∈J
Fa,yF

qn
c,yD

[0]
(1,y)

⎞⎠r

Fa,uF
N−1
a,v D

[0]
(0,a)D

[r]
(0,b)D

[N−r]
(0,c)

and

∑
a,b,c∈I

(∑
x∈J

FN−1
a,x F pn

b,xD
[0]
(1,x)

)r
⎛⎝∑

y∈J
Fa,yF

qn
c,yD

[0]
(1,y)

⎞⎠r

FN−1
a,u Fa,vD

[0]
(0,a)D

[r]
(0,b)D

[N−r]
(0,c) .

We simplify the first sum. By using (Shape2) and (Shape5), we have∑
x∈J

FN−1
a,x F pn

b,xD
[0]
(1,x) = μN−1

a1
μpn

b1

∑
x∈J

(νx1)
N−1+pnHa2,x2Hb2,x2D

[0]
(1,(x1,1))

= μN−1
a1

μpn

b1

∑
x1∈[t]

(νx1)
N−1+pnD

[0]
(1,(x1,1))

〈Hb2,∗,Ha2,∗〉.(8.18)

Let L denote the following positive number that is independent of u,v, a,b, and c:

L = h ·
∑
x1∈[t]

(νx1)
N−1+pn ·D[0]

(1,(x1,1))
.

By (Shape4), (8.18) is equal to L · μN−1
a1

μpn

b1
if a2 = b2 and 0 otherwise. Similarly,∑

y∈J
Fa,yF

qn
c,yD

[0]
(1,y) = L′ · μa1μ

qn
c1 if a2 = c2

and 0 otherwise, where L′ is a positive number independent of u,v, a,b, and c.
By (Shape3), we have

D
[N−r]
(0,c) = D

[r]
(0,c) = Dc1,c2 .
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968 JIN-YI CAI, XI CHEN, AND PINYAN LU

Combining these equations, the first factor of R
[n]
(1,u),(1,v) becomes

νu1ν
N−1
v1

∑
a∈I,b,c∈[s]

(
L ·μN−1

a1
μpn

b

)r(
L′ ·μa1μ

qn
c

)r
μN
a1
Ha2,u2Ha2,v2D

[0]
(0,(a1,1))

Db,a2Dc,a2 .

Let Z denote the following positive number that is independent of u and v:

Z =
∑

a1∈[s]

(
L · μN−1

a1

)r(
L′ · μa1

)r
μN
a1
D

[0]
(0,(a1,1))

.

Let Pn = rpn and Qn = rqn; then the first factor becomes

Z · νu1ν
N−1
v1

∑
b,c∈[s]

μPn

b μQn
c

∑
a∈[h]

Db,aDc,aHa,u2Ha,v2 .

We can also simplify the second factor so that

R
[n]
(1,u),(1,v) = Z2(νu1νv1)

N

⎛⎝ ∑
b,c∈[s]

μPn

b μQn
c

∑
a∈[h]

Db,aDc,aHa,u2Ha,v2

⎞⎠
×

⎛⎝ ∑
b′,c′∈[s]

μPn

b′ μQn

c′
∑
a∈[h]

Db′,aDc′,aHa,u2Ha,v2

⎞⎠ .

As EVAL(R[n],D∗) is not #P-hard and (R[n],D∗) satisfies (T ) for all n ≥ 1, the
necessary condition of the inverse cyclotomic reduction lemma (Corollary 8.3) applies
to R[n].

In the proof below, for notational convenience we suppress the index n ≥ 1 and use
P,Q, and R to represent sequences {Pn}, {Qn}, and {R[n]}, respectively. Whenever
we state or prove a property about R, we mean R[n] has this property for any large
enough n (sometimes it holds for all n ≥ 1). Moreover, since we only use the entries
of R[n] indexed by ((1,u), (1,v)) with u1 = v1 = 1, we let Ru,v ≡ R(1,(1,u)),(1,(1,v)) for
all u, v ∈ [h]. As a result, we have (note that ν1 = 1)
(8.19)

Ru,v =Z2

⎛⎝ ∑
b,c∈[s]

μP
b μ

Q
c

∑
a∈[h]

Db,aDc,aHa,uHa,v

⎞⎠⎛⎝ ∑
b′,c′∈[s]

μP
b′μ

Q
c′
∑
a∈[h]

Db′,aDc′,aHa,uHa,v

⎞⎠ .

We will consider the above expression for Ru,v stratified according to the order

of magnitude of μP
b μ

Q
c μ

P
b′μ

Q
c′ = (μbμb′)

P (μcμc′)
Q. Because P = Θ(n2) and Q = Θ(n),

when n → ∞, Q is arbitrarily and sufficiently large, and P is further arbitrarily and
sufficiently large compared to Q. Thus, terms are ordered strictly first by μbμb′ and
then by μcμc′ . Inspired by this, we define the following total order ≤μ over

T =
{(

b c
b′ c′

)
: b, b′, c, c′ ∈ [s]

}
.

For T1 and T2 in T , where

T1 =

(
b1 c1
b′1 c′1

)
and T2 =

(
b2 c2
b′2 c′2

)
,
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GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 969

we have T1 ≤μ T2 if either μb1μb′1 < μb2μb′2 , or μb1μb′1 = μb2μb′2 and μc1μc′1 ≤ μc2μc′2 .
For convenience, we denote the entries of a 2× 2 matrix Ti or T in T by(

bi ci
b′i c′i

)
or

(
b c
b′ c′

)
,

respectively. Using ≤μ, we divide T into classes T1, T2, . . . , Td ordered from the largest
to the smallest, for some d ≥ 1, such that the following hold:

1. If T1, T2 ∈ Ti, for some i ∈ [d], then μb1μb′1 = μb2μb′2 and μc1μc′1 = μc2μc′2 .
Note that this is an equivalence relation which we denote by ≡μ.

2. If T1 ∈ Ti, T2 ∈ Tj and i < j, then either μb1μb′1 > μb2μb′2 or μb1μb′1 = μb2μb′2
and μc1μc′1 > μc2μc′2 .

For each i ∈ [d], we arbitrarily pick a T ∈ Ti and use Ui to denote μbμb′ and Wi

to denote μcμc′ . (Note that Ui and Wi are independent of the choice of T .) It is clear
that there is exactly one matrix,

(
1 1
1 1

)
, in T1.

Now we can rewrite (8.19) as follows:

(8.20) Ru,v = Z2
∑
i∈[d]

UP
i WQ

i

∑
T∈Ti

Xu,v,T ,

where

Xu,v,T =

⎛⎝∑
a∈[h]

Db,aDc,aHa,uHa,v

⎞⎠⎛⎝∑
a∈[h]

Db′,aDc′,aHa,uHa,v

⎞⎠ for T =

(
b c
b′ c′

)
.

Clearly the term with the maximum possible order in the sum (8.20) corresponds
to the choice of T =

(
1 1
1 1

)
∈ T1, since μ1 is strictly maximum among all μ1, . . . , μs.

This is true for every (u, v), and it will be the actual leading term of the sum, provided

the coefficient of UP
1 WQ

1 = μ2P+2Q
1 is nonzero.

Consider the diagonal entries where u = v. First notice that from (8.19), we have

Ru,u = R1,1 for all u ∈ [h]; second, the coefficient of the leading term UP
1 WQ

1 is

Xu,u,(1 1
1 1)

=

⎛⎝∑
a∈[h]

|D1,a|2
⎞⎠2

= ‖D1,∗‖4,

which is, again, independent of u. Without loss of generality, we may assumeD1,∗ �= 0;
otherwise, we can remove all terms involving μ1 in (8.19) and μ2 will take its place,
and the proof is completed by induction. (If all Di,∗ = 0, then the statement that D
has rank at most one is trivial.)

Assuming that D1,∗ �= 0, we have Ru,u = R1,1 �= 0 for all u ∈ [h] (and sufficiently
large n). This is because, ignoring the positive factor Z2, the coefficient ‖D1,∗‖4 of

the leading term UP
1 WQ

1 is positive. By using Corollary 8.3, we have the following.
Property 8.14. For all sufficiently large n, |R1,1| > 0 and |Ru,v| ∈ {0, |R1,1|}

for all u, v ∈ [h].
From now on, we focus on u = 1 and let H∗,v = H∗,1 ◦H∗,v. {H∗,v}v∈[h] forms

an orthogonal basis with each ‖H∗,v‖2 = h. We also denote X1,v,T by Xv,T , so

(8.21) Xv,T =

⎛⎝∑
a∈[h]

Db,aDc,aHa,v

⎞⎠⎛⎝∑
a∈[h]

Db′,aDc′,aHa,v

⎞⎠ for T =

(
b c
b′ c′

)
.
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We make three more definitions. Let K = {i ∈ [h] : D1,i �= 0}. By our assumption
K �= ∅. Let A = {v ∈ [h] : for all i, j ∈ K,Hi,v = Hj,v} and B = [h]−A. If |K| = 1,
then A = [h]. The converse is also true, which follows from the fact that {H∗,v}v∈[h]
forms an orthogonal basis. Also since H∗,1 is the all-one vector, 1 ∈ A and A is
nonempty. Moreover, if K = [h], then A = {1}. This again follows from the fact that
{H∗,v} forms an orthogonal basis.

Now we consider the coefficient Xv,T of UP
1 WQ

1 in R1,v, where T =
(
1 1
1 1

)
. For

every v ∈ A, it has norm ‖D1,∗‖4 > 0. Then from Property 8.14 and Part B of the
vanishing lemma the next property follows.

Property 8.15. For any v ∈ A and sufficiently large n, |R1,v| = |R1,1|.
If B �= ∅, then for any v ∈ B, the coefficient of T =

(
1 1
1 1

)
in R1,v is

Xv,T =

(∑
a∈K

|D1,a|2Ha,v

)(∑
a∈K

|D1,a|2Ha,v

)
=

∣∣∣∣∣∑
a∈K

|D1,a|2Ha,v

∣∣∣∣∣
2

∈ R.

Since we assumed v ∈ B,
∑

a∈K |D1,a|2Ha,v is a sum of positive terms |D1,a|2 weighted
by nonconstant Ha,v, for a ∈ K, each with complex norm 1. Thus its absolute value
must be strictly less than ‖D1,∗‖2, which is only achieved when all Ha,v, for a ∈ K,
are equal to a constant. It follows that Xv,T < ‖D1,∗‖4. Therefore, for v ∈ B (and n
sufficiently large), we have |R1,v| < |R1,1|. By using Property 8.14 and Part B of the
vanishing lemma, we have the following property.

Property 8.16. If v ∈ B, then for all sufficiently large n, R1,v = 0 and thus,∑
T∈Ti

Xv,T = 0 for all i ∈ [d].

In particular, by applying Property 8.16 to T1 = {
(
1 1
1 1

)
}, we have∑

a∈K
|D1,a|2Ha,v =

∑
a∈K

|D1,a|2Ha,v = 〈|D1,∗|2,H∗,v〉 = 0 for every v ∈ B,

because |D1,a| is real. Here we use |D1,∗|2 to denote the vector (|D1,1|2, |D1,2|2, . . .).
Furthermore, because {H∗,v} forms an orthogonal basis, |D1,∗|2 must be expressible
as a linear combination of {H∗,v : v ∈ A} over C. From such an expression, we have
|D1,i|2 = |D1,j |2 for all i, j ∈ K, by the definition of K. Since D1,∗ is only nonzero on
K, |D1,i| is a constant on K and D1,i = 0 for any i ∈ [h]−K. (The above proof does
not actually assume B �= ∅; if B = ∅, then A = [h] and by {H∗,v} being an orthogonal
basis, |K| = 1. Then the above statement about D1,∗ is still valid, namely, D1,∗ has
a unique nonzero entry and is zero elsewhere.) We summarize as follows.

Property 8.17. |D1,∗|2 ⊥ H∗,v for all v ∈ B. |D1,∗|2 is constant on K and 0
elsewhere. In particular, the vector χK , which is 1 on K and 0 elsewhere, is in the
span of {H∗,v : v ∈ A} and is orthogonal to all {H∗,v : v ∈ B}.

Our next goal is to show that on K, D2,∗ is a constant multiple of D1,∗. Clearly
if B = ∅, then we have |K| = 1 as noted above and thus it is trivially true that D2,∗
is a constant multiple of D1,∗ on K. So we assume B �= ∅. We now consider

T1 =

(
2 1
1 2

)
and T2 =

(
1 2
2 1

)
.

T1 and T2 belong to the same Tg for some g ∈ [d]. By Property 8.16,
∑

T∈Tg Xv,T = 0

for every v ∈ B. So we focus on terms Xv,T , where T ∈ Tg (i.e., T ≡μ T1). Suppose
T ≡μ T1; then μbμb′ = μ1μ2 and μcμc′ = μ1μ2. Thus, {b, b′} = {c, c′} = {1, 2}, so
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Tg =

{
T1, T2, T3 =

(
1 1
2 2

)
, T4 =

(
2 2
1 1

)}
.

However, due to the presence of a row (1 1), the sum

h∑
a=1

|D1,a|2Ha,v =

h∑
a=1

|D1,a|2Ha,v = 0

for any v ∈ B as shown above. Therefore, the coefficients Xv,T3 , Xv,T4 corresponding
to T3 and T4 are both 0.

We need one more definition: T is of a conjugate-pair form if it is of the form

T =

(
b c
c b

)
.

For a matrix T in conjugate-pair form, the corresponding coefficient

Xv,T =

∣∣∣∣∣
h∑

a=1

Db,aDc,aHa,v

∣∣∣∣∣
2

≥ 0.

The remaining two matrices T1 and T2 in Tg both have this form, so both Xv,T1

and Xv,T2 are nonnegative. Since Xv,T1 +Xv,T2 = 0, Xv,T1 = Xv,T2 = 0. This gives∑
a∈[h]

D1,aD2,aHa,v = 0 for all v ∈ B.

Hence D1,∗ ◦D2,∗ ⊥ H∗,v for all v ∈ B. It follows that D1,∗ ◦D2,∗ can be expressed
as a linear combination of H∗,v over v ∈ A. By the definition of A, this expression
has a constant value on entries indexed by a ∈ K, where |D1,a| is a positive constant.
Therefore, over K, D2,∗ is a constant multiple of D1,∗. This accomplishes our goal
stated above, which we summarize as follows.

Property 8.18. There exists some complex number λ, such that D2,a = λD1,a,
for all a ∈ K.

Let K2 = {i ∈ [h] : D2,i �= 0}. Note that the λ above could be 0, so it is possible
that K �⊂ K2. Our next goal is to show that for every v ∈ A, H∗,v takes a constant
value on K2. This means that for all v ∈ A, Hi,v = Hj,v, for all i, j ∈ K2. Without
loss of generality, we assume D2,∗ �= 0 since otherwise K2 = ∅ and everything below
regarding D2,∗ and regarding H∗,v on K2 is trivially true.

To this end, we consider the matrices in Tg and their corresponding coefficients
Xv,Ti for any v ∈ A. We will apply the more delicate Part A of the vanishing lemma
on R1,v and R1,1 for an arbitrary v ∈ A. Our target is to show that

(8.22)
∑
T∈Tg

Xv,T =
∑
T∈Tg

X1,T for any v ∈ A.

By Property 8.15, |R1,v| = |R1,1| for any sufficiently large n. To apply the vanishing
lemma, we first show that terms that have a higher order of magnitude satisfy

(8.23)
∑

T∈Tg′
Xv,T =

∑
T∈Tg′

X1,T for all 1 ≤ g′ < g and v ∈ A.
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We also need to show that

(8.24) Im

⎛⎝∑
T∈Tg

Xv,T

⎞⎠ = Im

⎛⎝∑
T∈Tg

X1,T

⎞⎠ .

By definition, every T ≥μ T1 satisfies μbμb′ ≥ μ1μ2. Thus, the first column of T
is either (1 1)T, (1 2)T, or (2 1)T.

First, consider those matrices T ≥μ T1 where each row of T has at least one 1.
For every v ∈ A, the two inner product factors in (8.21), namely,

h∑
a=1

Db,aDc,aHa,v and

h∑
a=1

Db′,aDc′,a Ha,v

must be actually a sum over a ∈ K, since D1,∗ is zero elsewhere. But for a ∈ K, Ha,v

is just a constant αv of norm 1 (a root of unity), independent of a ∈ K. Thus

h∑
a=1

Db,aDc,aHa,v = αv

∑
a∈K

Db,aDc,a and

h∑
a=1

Db′,aDc′,a Ha,v = αv

∑
a∈K

Db′,aDc′,a.

Since αvαv = |αv|2 = 1, it follows that their product is(
h∑

a=1

Db,aDc,aHa,v

)(
h∑

a=1

Db′,aDc′,aHa,v

)
=

(∑
a∈K

Db,aDc,a

)(∑
a∈K

Db′,aDc′,a

)
,

which is the same as the coefficient X1,T corresponding to T for v0 = 1 ∈ A. So for
all such T , their contributions to R1,v and to R1,1 are the same for any v ∈ A.

Such T ≥μ T1 with at least one 1 in each row include any matrix of the form(
1 c
1 c′

)
,

(
1 1
2 1

)
, or

(
2 1
1 1

)
.

These exhaust all T >μ T1, and (8.23) follows.
Such T ≥μ T1 also include T1 and T2 in Tg. So Xv,T1 = X1,T1 and Xv,T2 = X1,T2

for any v ∈ A. Now we deal with matrices T3 and T4. We note that the sum of Xv,T3

and Xv,T4 , at any v, is

(8.25)(∑
a∈K

|D1,a|2Ha,v

)(
h∑

a=1

|D2,a|2Ha,v

)
+

(
h∑

a=1

|D2,a|2Ha,v

)(∑
a∈K

|D1,a|2Ha,v

)
,

which is a real number. Equation (8.24) then follows.
Now we can apply Part A of the vanishing lemma, which gives us (8.22). Since

Xv,T1 = X1,T1 and Xv,T2 = X1,T2 , we have

Xv,T3 +Xv,T4 = X1,T3 +X1,T4 = 2 · ‖D1,∗‖2‖D2,∗‖2.

However, this is clearly the maximum possible value of (8.25). (By our assumption,
‖D1,∗‖2‖D2,∗‖2 > 0.) The only way the sum in (8.25) can achieve this maximum
at v ∈ A is for Ha,v to take a constant value βv for all a ∈ K2, and Ha,v to take
a constant value αv for all a ∈ K, for some pair of complex numbers αv and βv of
norm 1. Moreover, by (8.25) we have αvβv + αvβv = 2. It follows that αv = βv.
Therefore, Ha,v is constant on a ∈ K ∪ K2 for each v ∈ A. We summarize it as
follows.
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Property 8.19. For every v ∈ A, there exists a complex number αv of norm 1
such that Ha,v = αv for all a in K ∪K2.

We eventually want to prove K2 = K. Our next goal is to prove that |D2,∗|2 ⊥
H∗,v for all v ∈ B. Of course if B = ∅, then this is vacuously true. We assume B �= ∅.

For this purpose we will examine

T ∗ =

(
2 2
2 2

)
and the class Tg it belongs to. By Property 8.16, we have∑

T∈Tg

Xv,T = 0 for any v ∈ B.

Thus we will examine T ∈ Tg, namely, μbμb′ = μcμc′ = μ2
2.

Now there might be some other pair (b, b′) �= (2, 2) such that μbμb′ = μ2
2. If such a

pair exists, it is essentially unique and is of the form (1, s) or (s, 1), where s > 2. Then
Tg consists of precisely the following matrices, namely, each column must be either
(2 2)T, (s 1)T, or (1 s)T. Let’s examine such a matrix T in more detail. Suppose
T ∈ Tg has a row that is either (1 1) or (1 2) or (2 1). Then,

Xv,T =

(
h∑

a=1

Db,aDc,aHa,v

)(
h∑

a=1

Db′,aDc′,aHa,v

)
= 0 for any v ∈ B.

This is because of the following: The presence of D1,∗ restricts the sum to a ∈ K.
By Property 8.17, we know that for every v ∈ B, |D1,∗|2 ⊥ H∗,v. Moreover, on set
K, we know from Property 8.18 that both vectors D1,∗ ◦D2,∗ and D1,∗ ◦D2,∗ can be
replaced by a constant multiple of the vector |D1,∗|2 (the constant could be 0) and
thus also perpendicular to H∗,v (and to H∗,v).

Now suppose T is a matrix in Tg, and yet it does not have a row which is either
(1 1) or (1 2) or (2 1). It is easy to check that the only cases are

T ∗ =

(
2 2
2 2

)
, T1 =

(
1 s
s 1

)
, and T2 =

(
s 1
1 s

)
.

Thus, Xv,T∗ + Xv,T1 + Xv,T2 = 0 for all v ∈ B. However, as noted above, all three
matrices T ∗, T1, and T2 have the conjugate-pair form, so their contributions∣∣∣∣∣

h∑
a=1

D2,aD2,aHa,v

∣∣∣∣∣
2

,

∣∣∣∣∣
h∑

a=1

D1,aDs,aHa,v

∣∣∣∣∣
2

, and

∣∣∣∣∣
h∑

a=1

Ds,aD1,aHa,v

∣∣∣∣∣
2

are all nonnegative. It follows that all three sums are zero. In particular, from Xv,T∗

we get |D2,∗|2 ⊥ H∗,v for all v ∈ B.
It follows that the vector |D2,∗|2 is in the span of {H∗,v : v ∈ A}. This linear

combination produces a constant value at any entry |D2,a|2 for a ∈ K ∪K2. This is
because each vector H∗,v for v ∈ A has this property by Property 8.19.

As we assumed D2,∗ �= 0, and D2,∗ is 0 outside of K2 (by the definition of K2),
this constant value produced at each entry |D2,a|2 for a ∈ K ∪K2 must be nonzero.
In particular, D2,a �= 0 at a ∈ K. It follows that K ⊆ K2. It also implies that the
vector, which is 1 on K ∪K2 = K2 and 0 elsewhere, is in the span of {H∗,v : v ∈ A}.
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Next we prove that K = K2, by showing that |K| = |K2| (since we already know
K ⊆ K2). Let χK denote the h-dimensional characteristic vector for K, which is 1
for any index a ∈ K and 0 elsewhere. Similarly, we denote by χK2 the characteristic
vector for K2. Both vectors χK and χK2 are in the linear span of {H∗,v : v ∈ A}.
Write χK =

∑
v∈A xvH∗,v, where xv ∈ C; then

xv‖H∗,v‖2 = 〈χK ,H∗,v〉 =
h∑

a=1

χK(a)Ha,v =
∑
a∈K

Ha,v = |K|αv

by Property 8.19. It follows that |xv|h = |K| for each v ∈ A. Thus

|K| = ‖χK‖2 =
∑
v∈A

|xv|2 · ‖H∗,v‖2 = |A|
(
|K|
h

)2

h =
|A||K|2

h
,

and it follows that |K| = h/|A|. Exactly the same argument gives |K2| = h/|A|.
Hence |K| = |K2| and K = K2. At this point the statement in Property 8.18 can be
strengthened to the following.

Property 8.20. There exists some complex number λ such that D2,∗ = λD1,∗.
Our final goal is to generalize this proof to all D�,∗ for � = 1, 2, . . . , s. We prove

this by induction.
Inductive hypothesis: For some � ≥ 2, the (�− 1) rows D1,∗, . . . ,D�−1,∗
satisfy that Di,∗ = λi ·D1,∗ for some λi and 1 ≤ i < �.

The proof mainly follow that of the case � = 2 above, except for one crucial argument
at the end. We presented the special case � = 2 alone for ease of understanding.

We prove that D�,∗ = λ� · D1,∗ for some λ�. Clearly we may assume D�,∗ �= 0,
for otherwise the inductive step is trivial. To start, consider the matrices

T1 =

(
� 1
1 �

)
and T2 =

(
1 �
� 1

)
and the corresponding class Tg they belong to. By Property 8.16, we have for every
v ∈ B,

∑
T∈Tg Xv,T = 0. We only need to examine those T ∈ Tg with exactly the

same order as that of T1, T2: μbμb′ = μcμc′ = μ1μ�. To satisfy this condition, both
columns of T must have entries {1, �} or have both entries < �. No entry in {b, b′, c, c′}
can be > �. There are two cases now: Case 1—There is a row (b c) or (b′ c′) (or both)
which has both entries < �; Case 2—Both rows have an entry = �.

In Case 1, at least one of the inner product sums in the product

Xv,T =

(
h∑

a=1

Db,aDc,aHa,v

)(
h∑

a=1

Db′,aDc′,a Ha,v

)
takes place over a ∈ K. This follows from the inductive hypothesis. In fact that inner
product is a constant multiple of

∑
a∈K |D1,a|2Ha,v or its conjugate

∑
a∈K |D1,a|2Ha,v

which are 0 according to Property 8.17 for all v ∈ B.
In Case 2, it is easy to check that to have the same order μ1μ�, T can only be T1

or T2. Now observe that both T1 and T2 have the conjugate-pair form. Thus, their
contributions Xv,T1 and Xv,T2 are both nonnegative. Since Xv,T1 +Xv,T2 = 0, both
of them have to vanish:∑

a∈[h]
D1,aD�,aHa,v = 0 and

∑
a∈[h]

D1,aD�,aHa,v = 0 for all v ∈ B.
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Hence D1,∗ ◦D�,∗ ⊥ H∗,v for all v ∈ B. It follows that the vector D1,∗ ◦D�,∗ belongs
to the linear span of {H∗,v : v ∈ A}. From the definition of A, this expression has
a constant value on entries indexed by a ∈ K. Therefore, on K, D�,∗ is a constant
multiple of D1,∗. We summarize this as follows.

Property 8.21. There exists some complex number λ� such that D�,a = λ�D1,a

for all a ∈ K.
Let K� = {i ∈ [r] : D�,i �= 0}. Next, we prove that for every v ∈ A, H∗,v takes

a constant value on K�, i.e., Hi,v = Hj,v, for all indices i, j ∈ K�. We had assumed
D�,∗ �= 0, since otherwise the induction is completed for �. Then K� �= ∅.

To show that H∗,v is a constant on K�, we consider

T3 =

(
� �
1 1

)
and T4 =

(
1 1
� �

)
and the class Tg they belong to. We want to apply Part A of the vanishing lemma to
show that

(8.26)
∑
T∈Tg

Xv,T =
∑
T∈Tg

X1,T for any v ∈ A.

For this purpose, we need to compare the respective terms of the sum (8.20) for an
arbitrary v ∈ A and for the particular v0 = 1 ∈ A. More exactly, we will show that

(8.27)
∑

T∈Tg′
Xv,T =

∑
T∈Tg′

X1,T and Im

⎛⎝∑
T∈Tg

Xv,T

⎞⎠ = Im

⎛⎝∑
T∈Tg

X1,T

⎞⎠
for all v ∈ A and g′ < g. Then (8.26) follows from Part A of the vanishing lemma.

To this end, we first consider matrices T that have an order of magnitude strictly
larger than that of T3 and T4. We have either μbμb′ > μ1μ� or μbμb′ = μ1μ� and
μcμc′ > μ1μ�. The first alternative implies b, b′ < �. The second implies c, c′ < �.

In both cases, each row of T has at least one entry < �. By the inductive hypoth-
esis, both inner products in (8.21), namely,

h∑
a=1

Db,aDc,aHa,v and

h∑
a=1

Db′,aDc′,a Ha,v

must be a sum over K since D1,∗ is zero elsewhere. However, for any a ∈ K, Ha,v is
a constant αv of norm 1 (a root of unity), independent of a ∈ K. Thus∑
a∈[h]

Db,aDc,aHa,v = αv

∑
a∈K

Db,aDc,a and
∑
a∈[h]

Db′,aDc′,a Ha,v = αv

∑
a∈K

Db′,aDc′,a.

Since αvαv = |αv|2 = 1, it follows that their product is

Xv,T =

(∑
a∈K

Db,aDc,a

)(∑
a∈K

Db′,aDc′,a

)
,

which is exactly the same as the coefficient X1,T for v0 = 1 ∈ A. Thus for any T ,
where each row has at least one entry < �, Xv,T = X1,T , for any v ∈ A. This includes
all matrices T >μ T3 (as well as some matrices T ≡μ T3 ∈ Tg), and the first part of
(8.27) follows.
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Now we consider any matrix T ∈ Tg. If each row of T has at least one entry < �,
then by the proof above, we know Xv,T = X1,T for any v ∈ A. Suppose T ∈ Tg does
not have this property. Then each column of such a matrix must consist of {1, �}.
We have four such matrices: T1, T2, T3, and T4. But the former two matrices already
belong to the case covered above. So we have∑

T∈Tg

Xv,T −
∑
T∈Tg

X1,T = Xv,T3 +Xv,T4 − (X1,T3 +X1,T4) for any v ∈ A.

Now to the matrices T3, T4 themselves. We note that the sum of their coefficients
Xv,T3 +Xv,T4 , at any v ∈ A, is

(8.28)(∑
a∈K

|D1,a|2Ha,v

)(
h∑

a=1

|D�,a|2Ha,v

)
+

(
h∑

a=1

|D�,a|2Ha,v

)(∑
a∈K

|D1,a|2Ha,v

)
.

This is a real number, and the second part of (8.27) follows.
Now we can apply Part A of the vanishing lemma to conclude that

Xv,T3 +Xv,T4 = X1,T3 +X1,T4 = 2 · ‖D1,∗‖2‖D�,∗‖2 for any v ∈ A.

This is the maximum possible value of (8.28). By assumption, ‖D1,∗‖2‖D�,∗‖2 > 0.
The only way the sum in (8.28) achieves this maximum at v ∈ A is for Ha,v to take
a constant value γv for all a ∈ K� (and we already know that Ha,v takes a constant
value αv for all a ∈ K), where αv and γv are of norm 1. Moreover, by (8.28), we have
αvγv +αvγv = 2. It follows that αv = γv. Thus H∗,v is a constant on K ∪K� for each
v ∈ A. We summarize it as the next property.

Property 8.22. For every v ∈ A, there exists a complex number αv of norm 1
such that Hv,a = αv for all a ∈ K ∪K�.

Our next goal is to prove that |D�,∗|2 ⊥ H∗,v for all v ∈ B. Of course, if B = ∅,
then this is trivially true. We assume B �= ∅. For this purpose, we examine T ∗, the
matrix with all four entries being �, and the class Tg it belongs to. By Property 8.16,
we have

∑
T∈Tg Xv,T = 0 for any v ∈ B, and our target is to show that Xv,T∗ = 0.

To prove this, we need to examine terms Xv,T for all T ≡μ T ∗ ∈ Tg.
It is now possible to have a number of pairs, (a1, b1), (a2, b2), . . . , (ak, bk), for

some k ≥ 0, such that μaiμbi = μ2
� for 1 ≤ i ≤ k. (When � = 2, such a pair, if it

exists, is essentially unique, but for � > 2 there could be many such pairs. This is a
complication for � > 2.) Every matrix T ∈ Tg must have each column chosen from
either (� �)T or one of the pairs (ai bi)

T or (bi ai)
T. Note that if such pairs do not

exist, i.e., k = 0, then Tg = {T ∗} and we have

Xv,T∗ =

(
h∑

a=1

|D�,a|2Ha,v

)(
h∑

a=1

|D�,a|2Ha,v

)
= 0 at any v ∈ B.

The following proof is to show that even when such pairs exist (k ≥ 1), we still have
Xv,T∗ = 0. For this purpose, we show that

∑
T∈Tg ,T �=T∗ Xv,T ≥ 0.

Suppose k ≥ 1. We may assume ai < � < bi for all i ∈ [k]. We examine all the
T ∈ Tg other than T ∗. If T has at least one row, say, (b c), with max{b, c} ≤ � and
min{b, c} < �, then by the inductive hypothesis and Property 8.21, the corresponding
inner product actually takes place over K. In fact, the inner product is a constant
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multiple of the projection of |D1,∗|2 on either H∗,v or H∗,v. But we already know
that this projection is zero for all v ∈ B.

For the remaining T where both rows satisfy [max{b, c} > � or min{b, c} ≥ � ], if
T is not T ∗, then one of its two columns is not (� �)T, and one entry of this column
is ai < � for some i ∈ [k]. It follows that the other entry in the same row as ai must
be bj > � for some j ∈ [k]. As a result, the only matrices remaining are of two types:(

ai bj
bi aj

)
or

(
bi aj
ai bj

)
for some 1 ≤ i, j ≤ k.

We consider the first type. The total contribution of these matrices is

k∑
i,j=1

(
h∑

a=1

Dai,aDbj ,aHa,v

)(
h∑

a′=1

Dbi,a′Daj,a′ Ha′,v

)

=

k∑
i,j=1

(
h∑

a=1

λaiD1,aDbj ,aHa,v

)(
h∑

a′=1

Dbi,a′λaj D1,a′ Ha′,v

)

=
k∑

i,j=1

h∑
a,a′=1

λajD1,aDbj ,aHa,v · λaiDbi,a′D1,a′ Ha′,v

=

[
h∑

a=1

D1,aHa,v

(
k∑

j=1

λaj Dbj ,a

)]
·
[

h∑
a′=1

D1,a′ Ha′,v

(
k∑

i=1

λaiDbi,a′

)]

=

∣∣∣∣∣∣
h∑

a=1

D1,aHa,v

⎛⎝ k∑
j=1

λaj Dbj ,a

⎞⎠∣∣∣∣∣∣
2

≥ 0.

Here in the first equality we used the inductive hypothesis for ai, aj < �.
The argument for the second type of matrices is symmetric. Note also that T ∗

has the conjugate-pair form, and therefore its contribution Xv,T∗ at any v ∈ B is
nonnegative. It follows from

∑
T∈Tg Xv,T = 0 (Property 8.16) that Xv,T∗ = 0 and∣∣∣∣∣

h∑
a=1

|D�,a|2Ha,v

∣∣∣∣∣
2

= 0 for all v ∈ B.

This means that |D�,∗|2 ⊥ H∗,v for all v ∈ B and thus |D�,∗|2 is in the linear span of
{H∗,v : v ∈ A}. Then by the same argument used for � = 2, we obtain K = K�, and
summarize as follows.

Property 8.23. There exists a complex number λ� such that D�,∗ = λ�D1,∗.
This completes the proof by induction that D has rank at most one.

8.5. Step 2.4. After Step 2.3, we obtain a pair (C,D) that satisfies conditions
(Shape1)–(Shape6). By (Shape2), we have

C =

(
0 F
FT 0

)
=

(
0 M⊗H

(M ⊗H)T 0

)
,

where M is an s× t matrix of rank 1, Mi,j = μiνj , and H is the h× h matrix defined
in (Shape2). By (Shape5) and (Shape6), we have for every r ∈ [0 : N − 1]

D[r] =

(
D

[r]
(0,∗)

D
[r]
(1,∗)

)
=

(
K

[r]
(0,∗) ⊗ L

[r]
(0,∗)

K
[r]
(1,∗) ⊗ L

[r]
(1,∗)

)
.
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Every entry in L[r] either is 0 or has norm 1 and L[0] is the 2h × 2h identity
matrix.

Using these matrices, we define two new pairs (C′,K) and (C′′,L), which give rise
to two problems, EVAL(C′,K) and EVAL(C′′,L). First, C′ is the bipartization of M,
so it is (s+ t)× (s+ t), and K is a sequence of N diagonal matrices also of this size:
(K[0], . . . ,K[N−1]). Second, C′′ is the bipartization of H, and it is 2h× 2h, and L is
the sequence of N diagonal matrices: (L[0], . . . ,L[N−1]). The following lemma shows
that EVAL(C,D) has the same complexity as EVAL(C′′,L).

Lemma 8.24. EVAL(C,D) ≡ EVAL(C′′,L).
Proof. Let G be a connected undirected graph and let u∗ be one of its vertices.

Then by Lemmas 2.3 and 2.4, we have

ZC,D(G) = Z→C,D(G, u∗) + Z←C,D(G, u∗),

Z→C,D(G, u∗) = Z→C′,K(G, u∗) · Z→C′′,L(G, u∗), and

Z←C,D(G, u∗) = Z←C′,K(G, u∗) · Z←C′′,L(G, u∗).

As M is of rank 1, both Z→C′,K and Z←C′,K can be computed in polynomial time. We
only prove for Z→C′,K here. If G is not bipartite, Z→C′,K(G, u∗) is trivially 0; otherwise
let U ∪ V be the vertex set of G, u∗ ∈ U , and every edge uv ∈ E has one vertex u
from U and one vertex v from V . Let Ξ denote the set of assignments ξ which map U
to [s] and V to [t]. Then (note that we use K[r] to denote K[r mod N ] for any r ≥ N)

Z→C′,K(G, u∗) =
∑
ξ∈Ξ

( ∏
uv∈E

μξ(u) · νξ(v)

)(∏
u∈U

K
[deg(u)]
(0,ξ(u))

)(∏
v∈V

K
[deg(v)]
(1,ξ(v))

)

=
∏
u∈U

⎛⎝∑
i∈[s]

(μi)
deg(u) ·K [deg(u)]

(0,i)

⎞⎠×
∏
v∈V

⎛⎝∑
j∈[t]

(νj)
deg(v) ·K [deg(v)]

(1,j)

⎞⎠ ,

which can be computed in polynomial time.
Moreover, since (C′′,L) satisfies (Pinning), by the second pinning lemma (Lemma

4.3), the problem of computing Z→C′′,L and Z←C′′,L is reducible to EVAL(C′′,L). It then
follows that EVAL(C,D) ≤ EVAL(C′′,L).

We next prove the reverse direction. First note that by the third pinning lemma
(Corollary 8.4), computing Z→C,D and Z←C,D is reducible to EVAL(C,D). However, this
does not finish the proof because Z→C′,K (or Z←C′,K) could be 0 at (G, u∗). To deal with
this case, we prove the following claim.

Claim 8.25. Given a connected, bipartite G = (U ∪ V,E) and vertex u∗ ∈ U ,
either we can construct a new connected, bipartite G′ = (U ′ ∪ V ′, E′) in polynomial
time such that u∗ ∈ U ⊂ U ′,

(8.29) Z→C′′,L(G
′, u∗) = h|U∪V | · Z→C′′,L(G, u∗),

and Z→C′,K(G
′, u∗) �= 0, or we can show that Z→C′′,L(G, u∗) = 0.

Claim 8.25 gives us a polynomial-time reduction from Z→C′′,L to Z→C,D. A similar
claim can be proved for Z←, and Lemma 8.24 follows. We now prove Claim 8.25.

For each u ∈ U (and v ∈ V ), we use ru (and rv) to denote its degree in G. To
get G′, we need an �u ∈ [s] for each u ∈ U and an �v ∈ [t] for each v ∈ V such that

(8.30)
∑
i∈[s]

μ�uN+ru
i ·K [ru]

(0,i) �= 0 and
∑
i∈[t]

ν�vN+rv
i ·K [rv]

(1,i) �= 0.
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Assume there exists a u ∈ U such that no �u ∈ [s] satisfies (8.30). In this case, note
that the s equations for �u = 1, . . . , s form a Vandermonde system since μ1 > · · · >
μs > 0. Therefore, the (0, ∗)-block of K[ru] is 0 and thus the (0, ∗)-block of L[ru] is
also 0 by (Shape6). It follows that Z

→
C′′,L(G, u∗) = 0, and we are done. Similarly, we

have Z→C′′,L(G, u∗) = 0 if there exists a v ∈ V such that no �v ∈ [t] satisfies (8.30).
Otherwise, suppose there do exist an �u ∈ [s] for each u ∈ U and an �v ∈ [t] for

each v ∈ V , which satisfy (8.30). We construct a bipartite G′ = (U ′ ∪ V ′, E′). First,

U ′ = U ∪ V̂ and V ′ = V ∪ Û , where V̂ = {v̂ : v ∈ V } and Û = {û : u ∈ U}. Edge set
E′ contains E over U ∪ V and the following edges: �uN parallel edges between u and
û, for every u ∈ U , and �vN parallel edges between v and v̂, for every v ∈ V .

Clearly, G′ is a connected and bipartite graph. The degree of u ∈ U (or v ∈ V )
is ru + �uN (or rv + �vN), and the degree of û (or v̂) is �uN (or �vN). We now use
G′ to prove Claim 8.25.

First, we have (the sum is over all ξ that map U ′ to [s], V ′ to [t])

Z→C′,K(G
′, u∗) =

∑
ξ

( ∏
uv∈E

Mξ(u),ξ(v)

∏
u∈U

M �uN
ξ(u),ξ(û)

∏
v∈V

M �vN
ξ(v̂),ξ(v)

)

×
(∏

u∈U
K

[ru]
(0,ξ(u))K

[0]
(1,ξ(û))

)(∏
v∈V

K
[rv]
(1,ξ(v))K

[0]
(0,ξ(v̂))

)

=
∏
u∈U

⎛⎝∑
i∈[s]

μ�uN+ru
i ·K [ru]

(0,i)

⎞⎠ ∏
v∈V

⎛⎝∑
i∈[t]

ν�vN+rv
i ·K [rv]

(1,i)

⎞⎠
×
∏
û∈Û

⎛⎝∑
i∈[t]

ν�uNi ·K [0]
(1,i)

⎞⎠ ∏
v̂∈V̂

⎛⎝∑
i∈[s]

μ�vN
i ·K [0]

(0,i)

⎞⎠ .

It is nonzero: The first two factors are nonzero because of the way we pick �u and �v;
the latter two factors are nonzero because μi, νi > 0, and by (Shape6), every entry of
K[0] is a positive integer.

It now suffices to prove (8.29). Let η be an assignment that maps U to [s] and V
to [t]. Given η, let Ξ denote the set of assignments ξ over U ′ ∪ V ′ that map U ′ to [s]
and V ′ to [t] and that satisfy ξ(u) = η(u), ξ(v) = η(v) for all u ∈ U and v ∈ V . We
have

∑
ξ∈Ξ

wtC′′,L(ξ) =
∑
ξ∈Ξ

( ∏
uv∈E

Hη(u),η(v)

∏
u∈U

(Hη(u),ξ(û))
�uN

∏
v∈V

(Hξ(v̂),η(v))
�vN

)

×
(∏

u∈U
L
[ru]
(0,η(u))L

[0]
(1,ξ(û))

)(∏
v∈V

L
[rv]
(1,η(v))L

[0]
(0,ξ(v̂))

)
=
∑
ξ∈Ξ

wtC′′,L(η) = h|Û∪V̂ | · wtC′′,L(η).

The second equation uses the fact that entries of H are powers of ωN (thus (Hi,j)
N =

1) and L[0] is the identity matrix. Equation (8.29) then follows.

8.6. Step 2.5. We are almost done with Step 2. The only conditions (Ui) that
are possibly violated by (C′′,L) are (U1) (N might be odd) and (U2) (Hi,1 and H1,j

might not be 1). We deal with (U2) first.

D
ow

nl
oa

de
d 

07
/3

1/
15

 to
 1

28
.1

05
.1

4.
12

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

980 JIN-YI CAI, XI CHEN, AND PINYAN LU

What we will do below is to normalize H (in C′′) so that it becomes a discrete
unitary matrix for some positive integer M that divides N , while not changing the
complexity of EVAL(C′′,L).

First, without loss of generality, we may assume H satisfies H1,1 = 1 since other-
wise we can divide H by H1,1, which does not affect the complexity of EVAL(C′′,L).
Then we construct the following pair: (X,Y). X is the bipartization of an h× h ma-
trix over C, whose (i, j)th entry is Hi,jH1,jHi,1; Y is a sequence (Y[0], . . . ,Y[N−1])
of 2h× 2h diagonal matrices; Y[0] is the identity matrix. Let

S = {r ∈ [0 : N − 1] : L
[r]
(0,∗) �= 0} and T = {r ∈ [0 : N − 1] : L

[r]
(1,∗) �= 0};

then we have

Y
[r]
(0,∗) = 0 for all r /∈ S and Y

[r]
(1,∗) = 0 for all r /∈ T .

For each r ∈ S (or r ∈ T ), by (Shape6) there must be an ar ∈ [h] (or br ∈ [h], resp.)
such that the (0, ar)th entry of L[r] is 1 (or the (1, br)th entry of L[r] is 1, resp.). Set

Y
[r]
(0,i) = L

[r]
(0,i)

(
Hi,1

Har ,1

)r

for all i ∈ [h]; Y
[r]
(1,j) = L

[r]
(1,j)

(
H1,j

H1,br

)r

for all j ∈ [h].

We show that EVAL(C′′,L) ≡ EVAL(X,Y). For EVAL(X,Y) ≤ EVAL(C′′,L), we let
G = (U ∪ V,E) be a connected undirected graph and u∗ be a vertex in U . For every
r ∈ S (and r ∈ T ), we use Ur ⊆ U (and Vr ⊆ V , resp.) to denote the set of vertices
with degree r mod N . It is clear that if Ur �= ∅ for some r /∈ S or if Vr �= ∅ for some
r /∈ T , both Z→C′′,L(G, u∗) and Z→X,Y(G, u∗) are trivially zero. Otherwise, we have

Z→C′′,L(G, u∗) =

(∏
r∈S

(Har ,1)
r|Ur|

)(∏
r∈T

(H1,br )
r|Vr|

)
· Z→X,Y(G, u∗).

So the problem of computing Z→X,Y is reducible to computing Z→C′′,L. By combining
it with the second pinning lemma (Lemma 4.3), we know that computing Z→X,Y is
reducible to EVAL(C′′,L). A similar statement can be proved for Z←X,Y, and it follows
that EVAL(X,Y) ≤ EVAL(C′′,L). The other direction, EVAL(C′′,L) ≤ EVAL(X,Y),
can be proved similarly.

One can verify that (X,Y) satisfies (U1)–(U4), except that N might be odd. In
particular the upper-right h× h block of X is an M -discrete unitary matrix for some
positive integer M |N , and Y satisfies both (U3) and (U4) (which follows from the
fact that every entry of H is a power of ωN ).

If N is even, then we are done with Step 2; otherwise we extend Y to be

Y′ = {Y[0], . . . ,Y[N−1],Y[N ], . . . ,Y[2N−1]},

where Y[r] = Y[r−N ], for all r ∈ [N : 2N − 1]. We have EVAL(X,Y) ≡ EVAL(X,Y′),
since ZX,Y(G) = ZX,Y′(G), for all undirected G, and the new tuple ((M, 2N),X,Y′)
now satisfies conditions (U1)–(U4).

9. Proofs of Theorems 5.4 and 5.6. Let ((M,N),C,D) be a tuple that sat-
isfies (U1)–(U4) and let F ∈ Cm×m be the upper-right block of C. In this section, we
index the rows and columns of an n× n matrix with [0 : n− 1].
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 v u

N - 1     e d g e s 

1           e d g e 

ba

c1

d 1

Fig. 9.1. The gadget for p = 1. (Note that the subscript e is suppressed.)

9.1. The group condition. We first show that either F satisfies the following
condition or EVAL(C,D) is #P-hard.

Lemma 9.1. Let ((M,N),C,D) be a tuple that satisfies (U1)–(U4). Then either F
satisfies the group condition (GC),

(row-GC) for all i, j ∈ [0 : m− 1], ∃ k ∈ [0 : m− 1] such that Fk,∗ = Fi,∗ ◦Fj,∗;
(column-GC) for all i, j ∈ [0 : m−1], ∃ k ∈ [0 : m−1] such that F∗,k = F∗,i◦F∗,j,

or EVAL(C,D) is #P-hard.
Proof. Suppose EVAL(C,D) is not #P-hard.
Let G = (V,E) be an undirected graph. For every integer p ≥ 1, we construct a

new graph G[p] by replacing every edge uv ∈ E with a gadget. The gadget for p = 1
is shown in Figure 9.1. More exactly, we define G[p] = (V [p], E[p]) as

V [p] = V ∪
{
ae, be, ce,1, . . . , ce,p, de,1, . . . , de,p : e ∈ E

}
,

and E[p] contains the following edges: For every e = uv ∈ E and i ∈ [p], add
1. one edge (u, ce,i), (ce,i, be), (de,i, ae), and (de,i, v);
2. N − 1 parallel edges (ce,i, v), (ce,i, ae), (de,i, be), and (de,i, u).

It is easy to verify that the degree of every vertex in G[p] is a multiple of N . Thus,
we have ZC,D(G[p]) = ZC(G

[p]) because D satisfies (U3). On the other hand, the way
we construct G[p] gives us, for each p ≥ 1, a symmetric matrix A[p] ∈ C2m×2m which
only depends on C, such that ZA[p](G) = ZC(G

[p]) = ZC,D(G
[p]) for all G. It follows

that EVAL(A[p]) ≤ EVAL(C,D) and thus EVAL(A[p]) is not #P-hard for all p ≥ 1.
The (i, j)th entry of A[p], where i, j ∈ [0 : 2m− 1], is

A
[p]
i,j =

2m−1∑
a=0

2m−1∑
b=0

(
2m−1∑
c=0

Ci,cCa,cCb,cCj,c

)p(2m−1∑
d=0

Ci,dCa,dCb,dCj,d

)p

=

2m−1∑
a=0

2m−1∑
b=0

∣∣∣∣∣
2m−1∑
c=0

Ci,cCa,cCb,cCj,c

∣∣∣∣∣
2p

.

For the first equality, we used the fact that M |N and thus, e.g., (Ca,c)
N−1 = Ca,c as

Ca,c is a power of ωM . Note that A[p] is symmetric and nonnegative and satisfies

A
[p]
i,j = A

[p]
j,i = 0 for all i ∈ [0 : m− 1] and j ∈ [m, 2m− 1].
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For i, j ∈ [0 : m− 1], we have

A
[p]
i,j =

m−1∑
a=0

m−1∑
b=0

∣∣〈Fi,∗ ◦ Fj,∗,Fa,∗ ◦ Fb,∗〉
∣∣2p and

A
[p]
i+m,j+m =

m−1∑
a=0

m−1∑
b=0

∣∣〈F∗,i ◦ F∗,j ,F∗,a ◦ F∗,b〉∣∣2p .(9.1)

It is clear that all these entries are positive real numbers (by taking a = i and b = j).
Now let us focus on the upper-left m × m block of A[p]. Since it is a nonnegative
symmetric matrix, we can apply the dichotomy theorem of Bulatov and Grohe.

On the one hand, for the special case when j = i ∈ [0 : m− 1], we have

A
[p]
i,i =

m−1∑
a=0

m−1∑
b=0

∣∣〈1,Fa,∗ ◦ Fb,∗〉
∣∣2p =

m−1∑
a=0

m−1∑
b=0

|〈Fa,∗,Fb,∗〉|2p .

As F is discrete unitary, A
[p]
i,i = m ·m2p. On the other hand, assuming EVAL(C,D) is

not #P-hard, by using the Bulatov–Grohe dichotomy theorem (Corollary 2.6),

A
[p]
i,i · A

[p]
j,j = A

[p]
i,j ·A

[p]
j,i = (A

[p]
i,j)

2 for all i �= j ∈ [0 : m− 1],

and thus A
[p]
i,j = m2p+1 for all i, j ∈ [0 : m− 1].

Now we use this condition to prove that F satisfies (row-GC). We introduce the
following notation. For i, j ∈ [0 : m− 1], let

Xi,j =
{
|〈Fi,∗ ◦ Fj,∗,Fa,∗ ◦ Fb,∗〉|

∣∣∣ a, b ∈ [0 : m− 1]
}
.

Clearly Xi,j is finite for all i, j, with |Xi,j | ≤ m2. Each x ∈ Xi,j satisfies 0 ≤ x ≤ m.
For each x ∈ Xi,j , let si,j(x) denote the number of pairs (a, b) ∈ [0 : m− 1]2 such that

|〈Fi,∗ ◦ Fj,∗,Fa,∗ ◦Fb,∗〉| = x.

We can now rewrite A
[p]
i,j as the sum

(9.2) A
[p]
i,j =

∑
x∈Xi,j

si,j(x) · x2p,

which is equal to m2p+1 for all p ≥ 1. Note that si,j(x) does not depend on p, and

(9.3)
∑

x∈Xi,j

si,j(x) = m2.

We can view (9.2) and (9.3) as a linear system of equations in the unknowns si,j(x).
Fix i, j; then there are |Xi,j | many variables si,j(x), one for each distinct value x ∈
Xi,j . Equations in (9.2) are indexed by p. If we choose (9.3) and (9.2) for p from 1
up to |Xi,j |− 1, this linear system has an |Xi,j |× |Xi,j | Vandermonde matrix ((x2)p),
with row index p and column index x ∈ Xi,j . It has full rank. Note that by setting
(a, b) = (i, j) and (i′, j), where i′ �= i, respectively, we get m ∈ Xi,j and 0 ∈ Xi,j ,
respectively. Moreover, si,j(0) = m2 −m, si,j(m) = m, and all other si,j(x) = 0 is a
solution to the linear system. Therefore this must be the unique solution.
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GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 983

So Xi,j = {0,m} and thus |〈Fi,∗ ◦ Fj,∗,Fa,∗ ◦ Fb,∗〉| ∈ {0,m} for all i, j, a, b.
Finally, we prove (row-GC). Set j = 0. As F0,∗ = 1, the all-1 vector, we have

|〈Fi,∗ ◦ 1,Fa,∗ ◦ Fb,∗〉| = |〈Fi,∗ ◦ Fb,∗,Fa,∗〉| ∈ {0,m} for all i, a, b ∈ [0 : m− 1].

As {Fa,∗ : a ∈ [0 : m− 1]} is an orthogonal basis with ‖Fa,∗‖2 = m, by Parseval∑
a

|〈Fi,∗ ◦ Fb,∗,Fa,∗〉|2 = m · ‖Fi,∗ ◦ Fb,∗‖2.

Since every entry of Fi,∗ ◦ Fb,∗ is a root of unity, ‖Fi,∗ ◦ Fb,∗‖2 = m. Hence∑
a

|〈Fi,∗ ◦ Fb,∗,Fa,∗〉|2 = m2,

and for all i, b ∈ [0 : m− 1], there is a unique a such that |〈Fi,∗ ◦ Fb,∗,Fa,∗〉| = m.
From property (U2), every entry of Fi,∗, Fb,∗, and Fa,∗ is a root of unity. The

inner product 〈Fi,∗ ◦ Fb,∗,Fa,∗〉 is a sum of m terms each of complex norm 1. To
sum to a complex number of norm m, each term must be a complex number of unit
norms with the same argument, i.e., they are the same complex number eiθ. Thus,
Fi,∗ ◦ Fb,∗ = eiθ · Fa,∗. We assert that in fact eiθ = 1, and Fi,∗ ◦ Fb,∗ = Fa,∗.
This is because Fi,1 = Fa,1 = Fb,1 = 1. This proves the group condition (row-GC).
One can prove (column-GC) similarly using (9.1) and the lower-right m × m block
of A[p].

Next we prove a property concerning discrete unitary matrices that satisfy (GC).
Given an n × n matrix A, let AR denote the set of its row vectors {Ai,∗} and AC

denote the set of its column vectors {A∗,j}. For general matrices, it is possible that
|AR|, |AC| < n, since A may have duplicate rows or columns. But if A is M -discrete
unitary, then it is clear that |AR| = |AC| = n.

Property 9.2. If A ∈ Cn×n is an M -discrete unitary matrix that satisfies (GC),
then AR and AC are finite Abelian groups (of order n) under the Hadamard product.

Proof. The Hadamard product ◦ gives a binary operation on AR and AC. The
group condition (GC) states that both sets AR and AC are closed under this operation,
and it is clearly associative and commutative. Being discrete unitary, the all-1 vector
1 belongs to both AR and AC and serves as the identity element. This operation also
satisfies the cancellation law: if x ◦ y = x ◦ z, then y = z. From general group theory,
a finite set with these properties already forms a group. But here we can be more
specific about the inverse of an element. For each Ai,∗, the inverse should clearly be
Ai,∗. By (GC), there exists a k ∈ [0 : m− 1] such that Ak,∗ = (Ai,∗)

M−1 = Ai,∗. The
second equation is because Ai,j , for all j, is a power of ωM .

9.2. Proof of Theorem 5.4. In this section, we prove Theorem 5.4 by showing
that (U1)–(U4) indeed imply (U5).

Suppose EVAL(C,D) is not #P-hard; otherwise we are already done. By Lemma
9.1, ((M,N),C,D) satisfies (GC). Fixing r to be any index in [N − 1], we will prove
(U5) for the (i, i)th entries of D[r], where i ∈ [m : 2m− 1]. The proof for the first half
of D[r] is similar. For simplicity, let D be the m-dimensional vector such that

Di = D
[r]
m+i for all i ∈ [0 : m− 1].

Also let K = {i ∈ [0 : m− 1] : Di �= 0}. If |K| = 0, then there is nothing to prove; if
|K| = 1, then by (U3), the only nonzero entry in D must be 1. So we assume |K| ≥ 2.
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984 JIN-YI CAI, XI CHEN, AND PINYAN LU

We start with a useful lemma. It implies that to prove Theorem 5.4, i.e., (U5), it
suffices to prove that Di is a root of unity for every i ∈ K.

Lemma 9.3. If D ∈ Q(ωN) is a root of unity, then D must be a power of ωN .
Proof. Assume D = ωk

M for some positive integers k and M with gcd(k,M) = 1.
Since D ∈ Q(ωN ), we have ωk

M ∈ Q(ωN ). By gcd(k,M) = 1, ωM ∈ Q(ωN) and

Q(ωN ) = Q(ωN , ωM ) = Q(ωlcm(M,N)).

The degree of the field extension is [Q(ωN ) : Q] = φ(N), the Euler function [25].
When N |N ′ and φ(N) = φ(N ′), by expanding according to the prime factoriza-

tion for N , we can get (and actually this is all there is to be had) that if N is even,
then N ′ = N ; if N is odd, then N ′ = N or N ′ = 2N . As by (U1) N is even, we have
lcm(M,N) = N , M |N , and D is a power of ωN .

Next we show that every Di, i ∈ K, is a root of unity. Suppose for a contradiction
that this is not true. We show the following lemma about Z = (Z0, . . . , Zm−1), where
Zi = (Di)

N .
Lemma 9.4. Suppose there is a k ∈ K such that Zk is not a root of unity.

Then there exists an infinite integer sequence {Pn} such that when n → ∞, the vector
sequence ((Zk)

Pn : k ∈ K) approaches, but never reaches, the all-one vector 1|K|.

Proof. As Zk has norm 1, Zk = e2πiθk for some real number θk ∈ [0, 1). We will
treat θk as a number in the Z-module R mod 1, i.e., real numbers modulo 1. By the
assumption, we know that at least one of the θk’s, k ∈ K, is irrational.

This lemma follows from the well-known Dirichlet’s box principle. For complete-
ness, we include a proof here. First, for any positive integer P , ((Zk)

P : k ∈ K) �= 1;
otherwise, every θk is rational, contradicting the assumption.

Let n∗ = n|K| + 1 for some integer n > 1. We consider (L · θk : k ∈ K) for all
L ∈ [n∗]. We divide the unit cube [0, 1)|K| into n∗− 1 subcubes of the following form:[

a1
n
,
a1 + 1

n

)
× · · · ×

[
a|K|
n

,
a|K| + 1

n

)
,

where ak ∈ {0, . . . , n− 1} for all k. By cardinality, there are L �= L′ ∈ [n∗] such that(
L · θk mod 1 : k ∈ K

)
and

(
L′ · θk mod 1 : k ∈ K

)
fall in the same subcube. Assume L > L′; by setting Pn = L− L′ ≥ 1, we have∣∣Pn · θk mod 1

∣∣ = |(L− L′) · θk mod 1| < 1/n for all k ∈ K.

Repeating the procedure for every n, we get an infinite sequence {Pn} such that(
(Zk)

Pn = e2πi(Pn·θk) : k ∈ K
)

approaches, but never reaches, the all-one vector of dimension |K|.
Let G = (V,E) be an undirected graph. Then for each p ≥ 1, we build a graph

G[p] by replacing every edge e = uv ∈ E with a gadget that is shown in Figure 9.2.
Recall that r ∈ [N − 1] is fixed. More exactly, we define G[p] = (V [p], E[p]) as follows:

V [p] = V ∪
{
ae, be,i, ce,i,j , a

′
e, b
′
e,i, c

′
e,i,j : e ∈ E, i ∈ [pN ], j ∈ [r]

}
,

and E[p] contains the following edges: For each edge e = uv ∈ E, add
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 v u
  N - 1 e d g e s 

1           e d g e 
a ' 

a

c1 , 1 

b1

c ' 1 , 1 

c1 , r cp N , 1 cp N , r 

bp N 

b ' b ' 

c ' p N , r 
c ' 1 , r c ' p N , 1 

. . . . . . 

. . . . . . 

. . . 

. . . 

. . . 

. . . 

1 p N 

Fig. 9.2. The gadget for p = 1. (Note that the subscript e is suppressed.)

1. one edge (u, ae) and (v, a′e);
2. N − 1 parallel edges (ae, v) and (u, a′e);
3. one edge (ce,i,j , be,i) and (c′e,i,j , b

′
e,i) for all i ∈ [pN ] and j ∈ [r];

4. N − 1 parallel edges (ae, ce,i,j) and (a′e, c
′
e,i,j) for all i ∈ [pN ] and j ∈ [r].

It is easy to verify that the degree of every vertex in G[p] is a multiple of N , except
be,i and b′e,i, which have degree r mod N .

As the gadget is symmetric, the construction gives a symmetric 2m× 2m matrix
A[p] such that ZA[p](G) = ZC,D(G

[p]) for all G and thus EVAL(A[p]) ≤ EVAL(C,D),
and EVAL(A[p]) is also not #P-hard.

The entries of A[p] are as follows. First, for all u, v ∈ [0 : m− 1], the (u,m+ v)th
and (m+ u, v)th entries of A[p] are zero. The entries in the upper-left block are

A[p]
u,v =

⎛⎜⎝ ∑
a∈[0:m−1]

Fu,aFv,a

⎛⎝ ∑
b∈[0:m−1]

D
[r]
m+b

⎛⎝ ∑
c∈[0:m−1]

Fc,bFc,a

⎞⎠r⎞⎠pN
⎞⎟⎠

×

⎛⎜⎝ ∑
a∈[0:m−1]

Fu,aFv,a

⎛⎝ ∑
b∈[0:m−1]

D
[r]
m+b

⎛⎝ ∑
c∈[0:m−1]

Fc,bFc,a

⎞⎠r⎞⎠pN
⎞⎟⎠

for all u, v ∈ [0 : m− 1]. Since F is discrete unitary,∑
c∈[0:m−1]

Fc,bFc,a = 〈F∗,b,F∗,a〉 = 0,

unless a = b. As a result, the equation can be simplified to

A[p]
u,v = Lp ·

(∑
k∈K

(
Dk

)pN
Fu,kFv,k

)(∑
k∈K

(
Dk

)pN
Fu,kFv,k

)

for u, v ∈ [0 : m− 1], where Lp is a positive constant that is independent of u and v.
Assume for a contradiction that some Dk, k ∈ K, is not a root of unity. Then

by Lemma 9.4 we know there exists a sequence {Pn} such that ((Dk)
NPn : k ∈ K)
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approaches, but never equals, the all-one vector, when n → ∞. Also by (U3) we know
there exists an i ∈ K such that Di = 1. Now consider G[Pn] with parameter p = Pn

from this sequence. We have

A[Pn]
u,u = LPn ·

(∑
k∈K

(Dk)
NPn

)2

for any u ∈ [0 : m− 1].

We let Tn denote the second factor on the right-hand side; then |Tn| could be arbi-
trarily close to |K|2 if we choose n large enough. By using the dichotomy theorem of
Bulatov and Grohe and Lemma 7.5 together with the assumption that EVAL(A[Pn])
is not #P-hard, we know the norm of every entry of A[Pn] in its upper-left block is
either 0 or LPn |Tn|.

Now we focus on the first row by fixing u = 0. Since F0,∗ = 1, we have

A
[Pn]
0,v = LPn ·

(∑
k∈K

(Dk)
NPnFv,k

)(∑
k∈K

(Dk)
NPnFv,k

)
for any v ∈ [0 : m− 1].

By Property 9.2, FR = {Fv,∗} is a group under the Hadamard product. We let

S = {v ∈ [0 : m− 1] : for all i, j ∈ K,Fv,i = Fv,j}

and denote {Fv,∗ : v ∈ S} by FS . FS is a subgroup of FR, and 0 ∈ S as F0,∗ = 1.
For any v /∈ S, when n is sufficiently large, we have∣∣∣A[Pn]

0,v

∣∣∣ < ∣∣∣A[Pn]
0,0

∣∣∣.
This is because when n → ∞, Tn → |K|2 but(∑

k∈K
(Dk)

NPnFv,k

)(∑
k∈K

(Dk)
NPnFv,k

)
→
(∑

k∈K
Fv,k

)(∑
k∈K

Fv,k

)
,

which has norm < |K|2 since v /∈ S. So when n is sufficiently large, A
[Pn]
0,v = 0 for all

v /∈ S. Denote ((Dk)
NPn : k ∈ [0 : m− 1]) by Dn; for v /∈ S and sufficiently large n,

(9.4) either 〈Dn,Fv,∗〉 = 0 or 〈Dn,Fv,∗〉 = 0.

Next, we focus on the characteristic vector χ (of dimension m) of K: χk = 1 if
k ∈ K and χk = 0 elsewhere. By (9.4) and the definition of S, we have

(9.5) 〈χ,Fv,∗〉 = 0 for all v /∈ S and |〈χ,Fv,∗〉| = |K| for all v ∈ S.

To prove the first equation, note that by (9.4), either there is an infinite subsequence
(Dn) that satisfies 〈Dn,Fv,∗〉 = 0 or there is an infinite subsequence that satisfies
〈Dn,Fv,∗〉 = 0. Since Dn → χ when n → ∞, either 〈χ,Fv,∗〉 = 0 or 〈χ,Fv,∗〉 = 0.
The second case still gives us 〈χ,Fv,∗〉 = 0 since χ is real. The second equation in
(9.5) follows directly from the definition of S. As a result, we have

χ =
1

m

∑
v∈S

〈χ,Fv,∗〉 · Fv,∗.
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GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 987

Now we assume the expression of Dn, under the orthogonal basis {Fv,∗}, is

Dn =

m−1∑
i=0

xi,nFi,∗, where xi,n =
1

m
〈Dn,Fi,∗〉.

If for some n we have xi,n = 0 for all i /∈ S, then we are done, because by the definition
of S, every Fi,∗, i ∈ S, is a constant over K and thus the vector Dn is a constant over
K. Since we know there exists an i ∈ K such that Di = 1, every Dj , j ∈ K, must be
a root of unity.

Assume this is not the case. Then (here consider those sufficiently large n so that
(9.4) holds),

χ = Dn ◦Dn =

(∑
i

xi,nFi,∗

)
◦

⎛⎝∑
j

xj,nFj,∗

⎞⎠ =
∑
v

yv,nFv,∗,

where

yv,n =
∑

Fi,∗◦Fj,∗=Fv,∗

xi,nxj,n.

The last equation uses the fact that FR is a group under the Hadamard product (so
for any i, j there exists a unique v such that Fv,∗ = Fi,∗ ◦Fj,∗).

Since the Fourier expansion of χ under {Fv,∗} is unique, we must have yv,n = 0
for any v �∈ S. Because Dn → χ, by (9.5), we know that when n → ∞, xi,n, for any
i /∈ S can be arbitrarily close to 0, while |xi,n| can be arbitrarily close to |K|/m for
any i ∈ S. So there exists a sufficiently large n such that

|xi,n| <
4|K||S|
5m2

for all i /∈ S and |xi,n| >
4|K|
5m

for all i ∈ S.

We pick such an n and will use it to reach a contradiction. Since we assumed that for
any n (which is of course also true for this particular n we picked here), there exists at
least one index i /∈ S such that xi,n �= 0, and we can choose a w /∈ S that maximizes
|xi,n| among all i /∈ S. Clearly, |xw,n| is positive.

We consider the expression of yw,n using xi,n. We divide the summation into two
parts: the main terms xi,nxj,n, in which either i ∈ S or j ∈ S, and the remaining
terms, in which i, j /∈ S. (Note that if Fw,∗ = Fi,∗ ◦ Fj,∗, then i and j cannot both
be in S; otherwise, since FS is a subgroup, we have w ∈ S, which contradicts the
assumption that w �∈ S.) The main terms of yw,n are given by

1

m2

∑
j∈S

〈Dn,Fw,∗ ◦ Fj,∗〉〈Dn,Fj,∗〉+
1

m2

∑
i∈S

〈Dn,Fi,∗〉〈Dn,Fi,∗ ◦ Fw,∗〉.

Note that x0,n = 〈Dn,F0,∗〉/m and F0,∗ = 1. Also note that (by the definition
of S) when j ∈ S, Fj,k = αj for all k ∈ K, for some complex number αj of norm 1.
Since Dn is only nonzero on K, we have

〈Dn,Fw,∗ ◦ Fj,∗〉〈Dn,Fj,∗〉 = 〈Dn, αjFw,∗〉〈Dn, αj1〉 = mx0,n · 〈Dn,Fw,∗〉.

Similarly, we can simplify the other sum so that the main terms of yw,n are given by

|S|
m

·
(
x0,n〈Dn,Fw,∗〉+ x0,n〈Dn,Fw,∗〉

)
.
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By (9.4) we have either 〈Dn,Fw,∗〉 or 〈Dn,Fw,∗〉 is 0. Since we assumed that xw,n =
〈Dn,Fw,∗〉/m �= 0, the latter has to be 0. Therefore, the sum of the main terms of
yw,n is equal to x0,nxw,n|S|. As 0 ∈ S, we have∣∣∣x0,nxw,n|S|

∣∣∣ ≥ 4|K||S|
5m

|xw,n|.

Consider the remaining terms. Below we prove that the sum of all these terms
cannot have a norm as large as |x0,nxw,n|S|| and thus yw,n is nonzero and we get a
contradiction. To see this, it is easy to check that the number of remaining terms is
at most m, and the norm of each of them is

|xi,nxj,n| ≤ |xw,n|2 <
4|K||S|
5m2

|xw,n|

since i, j /∈ S. So the norm of their sum is < |x0,nxw,n|S||. Theorem 5.4 is proved.

9.3. Decomposing F into Fourier matrices. Suppose ((M,N),C,D) satis-
fies (U1)–(U5) and (GC); otherwise EVAL(C,D) is #P-hard. We prove Theorem 5.6.
To decompose F into Fourier matrices (recall that F is the upper-right m×m block
matrix of C), we first show that if M = pq and gcd(p, q) = 1, then up to a permu-
tation of rows and columns, F is the tensor product of two smaller matrices, both of
which are discrete unitary and satisfy (GC). Note that p and q here are not necessarily
primes or prime powers.

Lemma 9.5. Let F ∈ Cm×m be an M -discrete unitary matrix that satisfies (GC),
where M = pq, p, q > 1, and gcd(p, q) = 1. Then there exist two permutations Π and
Σ over [0 : m− 1] such that FΠ,Σ = F′ ⊗F′′, where F′ is a p-discrete unitary matrix,
F′′ is a q-discrete unitary matrix, and both of them satisfy (GC).

Proof. Using Property 9.2, both FR and FC are finite Abelian groups. Since F
is M -discrete unitary, the order of any vector in FR or FC is a divisor of M .

By the fundamental theorem of Abelian groups, there is a group isomorphism

ρ : FR → Zg1 × · · · × Zgh ≡ Zg,

where g1, . . . , gh are prime powers, and gi |M for all i. As gcd(p, q) = 1, without loss
of generality, we may assume there exists an integer h′ such that gi |p for all i ∈ [h′]
and gi | q for all other i. We use ρ−1 to define the following two subsets of FR:

Sp = {ρ−1(x) : x ∈ Zg, xi = 0 for all i > h′} and

Sq = {ρ−1(x) : x ∈ Zg, xi = 0 for all i ≤ h′}.

It is easy to show the following four properties: Letting m′ = |Sp| and m′′ = |Sq|,
1. both Sp and Sq are subgroups of FR;
2. Sp = {u ∈ FR : (u)p = 1} and Sq = {v ∈ FR : (v)q = 1};
3. m = m′ ·m′′, gcd(m′, q) = 1, gcd(m′′, p) = 1, gcd(m′,m′′) = 1;
4. (u,v) �→ u ◦ v is a group isomorphism from Sp × Sq onto FR.

Let Sp = {u0 = 1,u1, . . . ,um′−1} and Sq = {v0 = 1,v1, . . . ,vm′′−1}. By 4, there is
a bijection f : i �→ (f1(i), f2(i)) from [0 : m− 1] to [0 : m′− 1]× [0 : m′′− 1] such that

(9.6) Fi,∗ = uf1(i) ◦ vf2(i) for all i ∈ [0 : m− 1].

Next we apply the fundamental theorem to FC. We use the group isomorphism in
the same way to define two subgroups T p and T q with four corresponding properties:

D
ow

nl
oa

de
d 

07
/3

1/
15

 to
 1

28
.1

05
.1

4.
12

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 989

1. Both T p and T q are subgroups of FC;
2. T p = {w ∈ FC : (w)p = 1} and T q = {r ∈ FC : (r)q = 1};
3. m = |T p| · |T q|, gcd(|T p|, q) = 1, gcd(|T q|, p) = 1, and gcd(|T p|, |T q|) = 1;
4. (w, r) �→ w ◦ r is a group isomorphism from T p × T q onto FC.

By comparing item 3 in both lists, we have |T p| = |Sp| = m′ and |T q| = |Sq| = m′′.
Let T p = {w0 = 1,w1, . . . ,wm′−1} and T q = {r0 = 1, r1, . . . , rm′′−1}. Then by

item 4, we have a bijection g from [0 : m− 1] to [0 : m′ − 1]× [0 : m′′ − 1] and

(9.7) F∗,j = wg1(j) ◦ rg2(j) for all j ∈ [0 : m− 1].

Now we are ready to permute the rows and columns of F to get a new matrix G
that is the tensor product of two smaller matrices. We use (x1, x2), where x1 ∈ [0 :
m′ − 1], x2 ∈ [0 : m′′ − 1], to index the rows and columns of G. We use Π(x1, x2) =
f−1(x1, x2), from [0 : m′ − 1]× [0 : m′′ − 1] to [0 : m − 1], to permute the rows of F
and Σ(y1, y2) = g−1(y1, y2) to permute the columns of F. We get G = FΠ,Σ, where

G(x1,x2),(y1,y2) = FΠ(x1,x2),Σ(y1,y2) for all x1, y1 ∈ [0 : m′ − 1], x2, y2 ∈ [0 : m′′ − 1].

By (9.6), and using the fact that u0 = 1 and v0 = 1, we have

G(x1,x2),∗ = G(x1,0),∗ ◦G(0,x2),∗.

Similarly by (9.7) and w0 = 1 and r0 = 1, we have

G∗,(y1,y2) = G∗,(y1,0) ◦G∗,(0,y2).

Therefore, applying both relations, we have

G(x1,x2),(y1,y2) = G(x1,0),(y1,0) ·G(x1,0),(0,y2) ·G(0,x2),(y1,0) ·G(0,x2),(0,y2).

We claim

(9.8) G(x1,0),(0,y2) = 1 and G(0,x2),(y1,0) = 1.

Then we have

(9.9) G(x1,x2),(y1,y2) = G(x1,0),(y1,0) ·G(0,x2),(0,y2).

To prove the first equation in (9.8), we realize that it appears as an entry in both
ux1 and ry2 . Then, by item 2 for Sp and T q, both its pth and qth powers are 1. Thus
it has to be 1. The other equation in (9.8) can be proved the same way.

As a result, we have obtained our tensor product decomposition G = F′ ⊗ F′′:

F′ =
(
F ′x,y ≡ G(x,0),(y,0)

)
and F′′ =

(
F ′′x,y ≡ G(0,x),(0,y)

)
.

The only thing left is to show that F′,F′′ are both discrete unitary and satisfy
(GC). Here we only prove it for F′. The proof for F′′ is the same. For all x �= y,

0 = 〈G(x,0),∗,G(y,0),∗〉 =
∑
z1,z2

G(x,0),(z1,z2)G(y,0),(z1,z2)

=
∑
z1,z2

G(x,0),(z1,0)G(0,0),(0,z2)G(y,0),(z1,0)G(0,0),(0,z2) = m′′ · 〈F′x,∗,F′y,∗〉.D
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Here we used the factorization (9.9) and u0 = 1 and v0 = 1. Similarly, we can prove
that F′∗,x and F′∗,y are orthogonal for all x �= y. F′ also satisfies (GC) because both
Sp and T p are groups and thus closed under the Hadamard product. Finally, F′ is
exactly p-discrete unitary. First, by the definition of M and (9.9), we have

pq = M = lcm
{
order of G(x1,0),(y1,0) ·G(x2,0),(y2,0) : x,y

}
.

Second, the order ofG(x1,0),(y1,0) divides p and the order of G(x2,0),(y2,0) divides q. As a
result, p is the least common multiple of orders of entries of F′ and thus F′ is p-discrete
unitary.

Next we prove Lemma 9.7, which deals with the case when M is a prime power.
Property 9.6. Let A be an M -discrete unitary matrix that satisfies the group

condition (GC). If M is a prime power, then one of its entries is equal to ωM .
Proof. Since M is a prime power, some entry of A has order exactly M as a

root of unity. Hence it has the form ωk
M for some k relatively prime to M . Then

by the group condition (GC) all powers of ωk
M appear as entries of A, in particular

ωM .
Lemma 9.7. Let F ∈ Cm×m be an M -discrete unitary matrix that satisfies (GC).

Moreover, M = pk is a prime power for some k ≥ 1. Then there exist two permuta-
tions Π and Σ such that FΠ,Σ = FM ⊗ F′, where F′ is an M ′-discrete unitary matrix,

M ′ = pk
′
for some k′ ≤ k, and F′ satisfies (GC).

Proof. By Property 9.6, there exist a and b such that Fa,b = ωM . Thus, both the
order of Fa,∗ (in FR) and the order of F∗,b (in FC) are M . Let

S1 =
{
1,Fa,∗, (Fa,∗)

2, . . . , (Fa,∗)
M−1}

denote the subgroup of FR generated by Fa,∗. As the order of Fa,∗ is M , |S1| = M .
Let S2 denote the subset of FR such that u ∈ S2 iff ub = 1. Then it is clear that

S2 is a subgroup of FR. Moreover, (w1,w2) �→ w1 ◦w2 is a group isomorphism from
S1 × S2 onto FR. As a result, |S2| = m/M , which we denote by n.

Let S2 = {u0 = 1,u1, . . . ,un−1}. Then there exists a bijection f from [0 : m− 1]
to [0 : M − 1]× [0 : n− 1], where i �→ f(i) = (f1(i), f2(i)), such that

(9.10) Fi,∗ = (Fa,∗)
f1(i) ◦ uf2(i) for all i ∈ [0 : m− 1].

In particular, we have f(a) = (1, 0).
Similarly, we use T1 to denote the subgroup of FC generated by F∗,b (|T1| = M)

and T2 to denote the subgroup of FC that contains all the v ∈ FC such that va = 1.
(w1,w2) �→ w1 ◦w2 is an isomorphism from T1 × T2 onto FC, so |T2| = m/M = n

Let T2 = {v0 = 1,v1, . . . ,vn−1}. Then there exists a bijection g from [0 : m− 1]
to [0 : M − 1]× [0 : n− 1], where j �→ g(j) = (g1(j), g2(j)), such that

(9.11) F∗,j = (F∗,b)
g1(j) ◦ vg2(j) for all j ∈ [0 : m− 1].

In particular, we have g(b) = (1, 0).
We are ready to permute the rows and columns of F to get a new m×m matrix

G. We use (x1, x2), where x1 ∈ [0 : M − 1] and x2 ∈ [0 : n− 1], to index the rows and
columns of matrix G. We use Π(x1, x2) = f−1(x1, x2), from [0 : M −1]× [0 : n−1] to
[0 : m− 1], to permute the rows and Σ(y1, y2) = g−1(y1, y2) to permute the columns
of F, respectively. As a result, we get G = FΠ,Σ.

By (9.10) and (9.11), and u0 = 1 and v0 = 1, we have

G(x1,x2),∗ = (G(1,0),∗)
x1 ◦G(0,x2),∗ and G∗,(y1,y2) = (G∗,(1,0))

y1 ◦G∗,(0,y2).
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Applying them in succession, we get

G(x1,x2),(y1,y2) = (G(1,0),(y1,y2))
x1G(0,x2),(y1,y2)

= (G(1,0),(1,0))
x1y1(G(1,0),(0,y2))

x1(G(0,x2),(1,0))
y1G(0,x2),(0,y2).

By f(a) = (1, 0) and g(b) = (1, 0), we have

G(1,0),(1,0) = FΠ(1,0),Σ(1,0) = Ff−1(1,0),g−1(1,0) = Fa,b = ωM .

By (9.11), and similar reasoning, we have

G(1,0),(0,y2) = Fa,g−1(0,y2) = (Fa,b)
0 · vy2,a = vy2,a = 1,

where vy2,a denotes the ath entry of vy2 , which is 1 by the definition of T2. By (9.10),

G(0,x2),(1,0) = Ff−1(0,x2),b = (Fa,b)
0 · ux2,b = ux2,b = 1,

where ux2,b denotes the bth entry of ux2 , which is 1 by the definition of S2.
Combining all these equations, we have

(9.12) G(x1,x2),(y1,y2) = ωx1y1

M ·G(0,x2),(0,y2).

As a result, G = FM ⊗ F′, where F′ = (F ′x,y ≡ G(0,x),(0,y)) is an n× n matrix.
To see F′ is discrete unitary, by (9.12), we have

0 = 〈G(0,x),∗,G(0,y),∗〉 = M · 〈F′x,∗,F′y,∗〉 for any x �= y ∈ [0 : n− 1].

Similarly we can prove that F′∗,x and F′∗,y are orthogonal for x �= y. F′ also satisfies
the group condition because both S2 and T2 are groups and thus closed under the
Hadamard product. More precisely, for (row-GC), suppose F′x,∗ and F′y,∗ are two rows
of F′. The corresponding rows G(0,x),∗ and G(0,y),∗ in G are permuted versions of ux

and uy, respectively. We have, by (9.6),

F ′x,z = Ff−1(0,x),g−1(0,z) = ux,g−1(0,z) and F ′y,z = Ff−1(0,y),g−1(0,z) = uy,g−1(0,z).

Since S2 is a group, we have some w ∈ [0 : n− 1] such that ux ◦ uy = uw and thus

F ′x,z · F ′y,z = uw,g−1(0,z) = F ′w,z.

The proof of (column-GC) is similar. F′ is also pk
′
-discrete unitary for some k′

≤ k.
Theorem 5.6 then follows from Lemmas 9.5 and 9.7.

10. Proof of Theorem 5.8. Let ((M,N),C,D, (q, t,Q)) be a 4-tuple that sat-
isfies condition (R). Also assume that EVAL(C,D) is not #P-hard; otherwise, we are
done. For every r in T (recall that T is the set of r ∈ [N − 1] such that Δr �= ∅), we
show that Δr must be a coset in ZQ. Condition (L2) then follows from the following
lemma. Condition (L1) about Λr can be proved similarly.

Lemma 10.1. Let Φ be a coset in G1 ×G2, where G1 and G2 are finite Abelian
groups such that gcd(|G1|, |G2|) = 1. Then for both i = 1, 2, there exists a coset Φi in
Gi such that Φ = Φ1 × Φ2.

Proof. First, we show that if u = (u1, u2),v = (v1, v2) ∈ Φ, where ui, vi ∈ Gi,
then (u1, v2) ∈ Φ.
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c 2
b1

 v u

a ' 

c 1

b ' 
N

b2
bN c N

b ' c ' 
1

c ' 
N

. . . 

. . . 1

. . . 

. . . 

a

d1 d2 dN

d ' 
N

d ' 2 d ' 1

b ' 2 c ' 2
N - 1 e d g e s 

1 e d g e 

r e d g e s 

N - r e d g e s 

Fig. 10.1. The gadget for constructing graph G′. (Note that the subscript e is suppressed.)

Since gcd(|G1|, |G2|) = 1, we can pick an integer k such that |G1|
∣∣k and k ≡ 1

(mod |G2|). As Φ is a coset, we have u+ k(v − u) ∈ Φ. From u1 + k(v1 − u1) = u1

and u2 + k(v2 − u2) = v2, we conclude that (u1, v2) ∈ Φ.
This implies the existence of Φ1 ⊆ G1 and Φ2 ⊆ G2 such that Φ = Φ1 × Φ2: Let

Φ1 =
{
x ∈ G1 : ∃y ∈ G2, (x, y) ∈ Φ

}
and Φ2 =

{
y ∈ G2 : ∃x ∈ G1, (x, y) ∈ Φ

}
.

Then both Φ1 and Φ2 are cosets (in G1 and G2, respectively), and Φ = Φ1 ×
Φ2.

To prove Theorem 5.8, we need the following construction. Given an undirected
graph G = (V,E), we build a new graph G′ by replacing every edge e = uv ∈ E with
the gadget shown in Figure 10.1. More exactly, we define G′ = (V ′, E′) as

V ′ = V ∪
{
ae, be,i, ce,i, de,i, a

′
e, b
′
e,i, c

′
e,i, d

′
e,i : e ∈ E and i ∈ [N ]

}
and E′ contains exactly the following edges: For each e = uv ∈ E, add

1. one edge (u, de,1), (v, d
′
e,1), (u, d

′
e,i) and (v, de,i) for all i ∈ [2 : N ];

2. one edge (ae, be,i) and N − 1 parallel edges (be,i, de,i) for all i ∈ [N ];
3. N − r parallel edges (ae, ce,i) and r parallel edges (ce,i, de,i) for all i ∈ [N ];
4. one edge (a′e, b

′
e,i) and N − 1 parallel edges (b′e,i, d

′
e,i) for all i ∈ [N ];

5. N − r parallel edges (a′e, c
′
e,i) and r parallel edges (c′e,i, d

′
e,i) for all i ∈ [N ].

The degree of de,i and d′e,i for all e ∈ E, i ∈ [N ], is r (mod N). All other vertices in
V ′ have degree 0 (mod N). It is also noted that the graph fragment that defines the
gadget is bipartite, with u, v, be,i, ce,i, b

′
e,i, c

′
e,i on one side and ae, a

′
e, de,i, d

′
e,i on the

other side. The way we construct G′ gives us a 2m× 2m matrix A such that ZA(G)
= ZC,D(G′) for all G, and thus EVAL(A) ≤ EVAL(C,D), and EVAL(A) is also not
#P-hard. We use {0, 1}× ZQ to index the rows and columns of A. Then for all u,v
in ZQ, A(0,u),(1,v) = A(1,u),(0,v) = 0, which follows from the gadget being bipartite.

We now analyze the upper-left m ×m block of A. For u,v ∈ ZQ, A(0,u),(0,v) is
the product of the following two sums:
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∑
a,d1,...,dN∈ZQ

Fu,d1

N∏
i=2

Fv,di

⎛⎝ N∏
i=1

⎛⎝ ∑
bi∈ZQ

Fbi,aFbi,di

⎞⎠⎛⎝ ∑
ci∈ZQ

FN−r
ci,a F r

ci,di

⎞⎠⎞⎠ N∏
i=1

D
[r]
(1,di)

and

∑
a,d1,...,dN∈ZQ

Fv,d1

N∏
i=2

Fu,di

⎛⎝ N∏
i=1

⎛⎝ ∑
bi∈ZQ

Fbi,aFbi,di

⎞⎠⎛⎝ ∑
ci∈ZQ

FN−r
ci,a F r

ci,di

⎞⎠⎞⎠ N∏
i=1

D
[r]
(1,di)

.

Note that in deriving these sums, we used the fact that M |N and entries of F are all
powers of ωM . Next, since F is discrete unitary,∑

bi∈ZQ

Fbi,aFbi,di = 〈F∗,a,F∗,di〉

is m when di = a and is 0 otherwise. The same thing can be said about those sums
over ci. Assuming di = a for all i, by (U5), we have that∏

i∈[N ]

D
[r]
(1,di)

=
(
D

[r]
(1,a)

)N
is 1 when a ∈ Δr and 0 otherwise. As a result, we have
(10.1)

A(0,u),(0,v) =

(∑
a∈Δr

Fu,aFv,am
2N

)(∑
a∈Δr

Fv,aFu,am
2N

)
= m4N

∣∣∣∣∣ ∑
a∈Δr

Fu,aFv,a

∣∣∣∣∣
2

.

By using condition (R3), we can further simplify (10.1) to be

(10.2) A(0,u),(0,v) = m4N

∣∣∣∣∣ ∑
a∈Δr

Fu−v,a

∣∣∣∣∣
2

= m4N
∣∣∣〈χ,Fu−v,∗〉

∣∣∣2,
where χ is a 0-1 characteristic vector such that χa = 0 if a /∈ Δr and χa = 1 if a ∈ Δr,
for all a ∈ ZQ. Since F is discrete unitary, it is easy to show that

0 ≤ A(0,u),(0,v) ≤ m4N |Δr|2 and A(0,u),(0,u) = m4N |Δr|2 for all u,v ∈ ZQ.

As r ∈ T , we have |Δr| ≥ 1, and let n denote |Δr|. Using the dichotomy of Bulatov
and Grohe (Corollary 11.1) and the assumption that EVAL(A) is not #P-hard,

A(0,u),(0,v) ∈
{
0,m4Nn2

}
for all u,v ∈ ZQ.

As a result, we have for all u ∈ ZQ,

(10.3)
∣∣∣〈χ,Fu,∗〉

∣∣∣ ∈ {0, n}.

The inner product 〈χ,Fu,∗〉 is a sum of n terms, each term a power of ωM . To sum to
a complex number of norm n, each term must have exactly the same argument; any
misalignment will result in a complex number of norm < n, which is the maximum
possible. This implies that

(10.4) 〈χ,Fu,∗〉 ∈
{
0, n, nωM , nω2

M , . . . , nωM−1
M

}
.
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Next, let a denote a vector in Δr. We use Φ to denote a+ 〈Δr − a〉, where

Δr − a ≡
{
x− a

∣∣x ∈ Δr

}
and 〈Δr−a〉 is the subgroup generated by Δr−a. Clearly Δr ⊆ Φ. We want to prove
that Δr = Φ, which by definition is a coset in ZQ. This, combined with Lemma 10.1,
will finish the proof of Theorem 5.8.

To this end, we use κ to denote the characteristic vector of Φ: κx = 0 if x /∈ Φ
and κx = 1 if x ∈ Φ. We will show that for every u ∈ ZQ,

(10.5) 〈κ,Fu,∗〉 =
|Φ|
|Δr|

〈χ,Fu,∗〉.

Since F is discrete unitary, {Fu,∗ : u ∈ ZQ} is an orthogonal basis. From (10.5),

κ =
|Φ|
|Δr|

χ,

which implies κ = χ (since both are 0-1 vectors) and thus, Δr = Φ is a coset in ZQ.
We now prove (10.5). We make the following observations: (1) If |〈χ,Fu,∗〉| = n,

then there is an α ∈ ZM such that Fu,x = ωα
M for all x ∈ Δr. (2) Otherwise (which is

equivalent to 〈χ,Fu,∗〉 = 0 from (10.3)), there exist y and z in Δr such that Fu,y �=
Fu,z. Observation (1) has already been noted when we proved (10.4). Observation
(2) is obvious since if Fu,y= Fu,z for all y, z ∈ Δr, then clearly 〈χ,Fu,∗〉 �= 0.

Equation (10.5) then follows from the following two lemmas.
Lemma 10.2. If there exists an α such that Fu,x = ωα

M for all x ∈ Δr, then we
have Fu,x = ωα

M for all x ∈ Φ.
Proof. Let x be a vector in Φ; then there exist x1, . . . ,xk ∈ Δr and h1, . . . , hk ∈

{±1} for some k ≥ 0 such that x = a+
∑k

i=1 hi(xi−a). By using (R3) together with
the assumption that Fu,a = Fu,xi = ωα

M , we have

Fu,x = Fu,a+
∑

i hi(xi−a) = Fu,a

∏
i

Fu,hi(xi−a) = Fu,a

∏
i

(
Fu,xiFu,a

)hi
= ωα

M ,

and the lemma is proved.
Lemma 10.3. If there exist y, z ∈ Φ such that Fu,y �= Fu,z, then

∑
x∈Φ Fu,x = 0.

Proof. Let � be the smallest positive integer such that �(y− z) = 0; then � exists
because ZQ is a finite group and � > 1 because y �= z. We use c to denote Fu,yFu,z.
By (R3) together with the assumption, we have c� = Fu,�(y−z) = 1 but c �= 1.

We define the following equivalence relation ∼ over Φ. For x,x′ ∈ Φ, x ∼ x′ iff
there exists an integer k such that x− x′ = k(y− z). For each x ∈ Φ, its equivalence
class contains the following � vectors: x, x+ (y− z), . . . , x+ (l− 1)(y− z), as Φ is
a coset in ZQ. We conclude that

∑
x∈Φ Fu,x = 0 since for every class, by using (R3),

l−1∑
i=0

Fu,x+i(y−z) = Fu,x

l−1∑
i=0

ci = Fu,x
1− cl

1− c
= 0,

and the lemma is proved.
Now (10.5) can be proved as follows. If |〈χ,Fu,∗〉| = n (= |Δr|), then by observa-

tion (1) and Lemma 10.2, |〈κ,Fu,∗〉| = |Φ|. If |〈χ,Fu,∗〉| �= n, then 〈χ,Fu,∗〉 = 0. By
observation (2) and Δr ⊆ Φ, Lemma 10.3 implies 〈κ,Fu,∗〉 = 0. Therefore, Δr is a
coset in ZQ. To get the decomposition (L2) for Δr =

∏s
i=1 Δr,i, we use Lemma 10.1.
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10.1. A Corollary of Theorem 5.8. Now that we have proved Theorem 5.8,
we know that unless the problem is #P-hard, we may assume that (L) holds. Thus,
Λr and Δr are cosets.

Corollary 10.4. Let H be the m×|Δr| submatrix obtained from F by restricting
to the columns indexed by Δr. Then for any two rows Hu,∗ and Hv,∗, where u,v ∈
ZQ, either there exists some α ∈ ZM such that Hu,∗ = ωα

M ·Hv,∗ or 〈Hu,∗,Hv,∗〉 = 0.
Similarly we denote by G the |Λr|×m submatrix obtained from F by restricting to

the rows indexed by Λr. Then for any two columns G∗,u and G∗,v, where u,v ∈ ZQ,
either there exists an α ∈ ZM such that G∗,u = ωα

M ·G∗,v or 〈G∗,u,G∗,v〉 = 0.
Proof. The rows of H are restrictions of F. Any two rows Hu,∗,Hv,∗ satisfy

Hu,∗ ◦Hv,∗ = Fu−v,∗ |Δr= Hu−v,∗,

which is a row in H. If this Hu−v,∗ is a constant, namely, ωα
M for some α ∈ ZM , then

Hu,∗ = ωα
M Hv,∗; otherwise, Lemma 10.3 says that 〈Hu,∗,Hv,∗〉 = 0.

The proof for G is exactly the same.
As part of a discrete unitary matrix F, all columns {H∗,u |u ∈ Δr} of H must

be orthogonal and thus rank(H) = |Δr|. We denote by n the cardinality |Δr|. There
must be n linearly independent rows in H. We may start with b0 = 0 and assume the
n vectors b0 = 0,b1, . . . ,bn−1 ∈ ZQ are the indices of a set of linearly independent
rows. By Corollary 10.4, these must be orthogonal as row vectors (over C). Since the
rank of the matrix H is exactly n, it is clear that all other rows must be a multiple of
these rows, since the only alternative is to be orthogonal to them all, by Corollary 10.4
again, which is absurd. A symmetric statement for G also holds.

11. Proof of Theorem 5.9. Let ((M,N),C,D, (p, t,Q)) be a tuple that sat-
isfies (R) and (L) including (L3). We also assume that EVAL(C,D) is not #P-hard.
By (L), we have Λr =

∏s
i=1 Λr,i for every r ∈ S and Δr =

∏s
i=1 Δr,i for every r ∈ T ,

where both Λr,i and Δr,i are cosets in Zqi .
Let r be an integer in S. Below we prove (D1) and (D3) for Λr. The other parts

of the theorem, that is, (D2) and (D4), can be proved similarly.
Let G denote the |Λr| ×m submatrix of F whose row set is Λr ⊆ ZQ. We start

with the following simple lemma about G. In this section, we let n = |Λr| ≥ 1. A
symmetric statement also holds for the m× |Δr| submatrix of F whose column set is
Δr, where we replace n = |Λr| by |Δr|, which could be different.

Lemma 11.1. There exist vectors b0 = 0,b1, . . . ,bn−1 ∈ ZQ such that
1. {G∗,bi : i ∈ [0 : n− 1]} forms an orthogonal basis;
2. for all b ∈ ZQ, ∃ i ∈ [0 : n− 1] and α ∈ ZM such that G∗,b = ωα

M ·G∗,bi ;
3. let Ai be the set of b ∈ ZQ s.t. G∗,b is linearly dependent on G∗,bi ; then

|A0| = |A1| = · · · = |An−1| = m/n.

Proof. By Corollary 10.4, and the discussion following Corollary 10.4 (the sym-
metric statements regarding Λr and G), there exist vectors b0 = 0,b1, . . . ,bn−1 ∈ ZQ
such that properties 1 and 2 hold. We now prove property 3.

By (R3), fixing bi for any i, there is a bijection between Ai and A0 by b �→ b−bi.
This is clear from Gb−bi,∗ = Gb,∗ ◦Gbi,∗. Hence we have A0 = {b− bi | b ∈ Ai} for
all sets Ai. It then follows that |A0| = |A1| = · · · = |An−1| = m/n.

Now let G = (V,E) be an undirected graph. For each positive integer p we build
a new graph G[p] from G by replacing every edge e = uv ∈ E with a gadget. We need
G[2] in the proof but it is more convenient to describe G[1] first and illustrate it only
with the case p = 1. (The picture for G[2] will be too cumbersome to draw.)
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. . .

. . .

. . .

. . .

x y vu 

w z 

w ' z ' 

d 1 d 2 d 3 d r + 1 

ba 1 c1 a 2 c2 a N - 1 cN - 1 

d ' d ' d ' d ' 1  1 + r 3 2

ba 1 c1 a 2 c2 a N - 1 cN - 1 ' ' ' ' ' ' '

N - 1     e d g e s 

1           e d g e 

Fig. 11.1. The gadget for constructing G[1]. (Note that the subscript e is suppressed.)

The gadget for G[1] is shown in Figure 11.1. Here G[1] = (V [1], E[1]), where

V [1] =V ∪
{
xe, ye, ae,i, a

′
e,i, be, b

′
e, ce,i, c

′
e,i, de,j , d

′
e,j ,

we, w
′
e, ze, z

′
e : e ∈ E, i ∈ [N − 1], j ∈ [r + 1]

}
,

and E[1] contains exactly the following edges: For every edge e = uv ∈ E, add
1. one edge (u, de,j) for all j ∈ [r + 1]− {2};
2. N − 1 parallel edges (v, de,j) for all j ∈ [r + 1]− {1};
3. one edge (de,1, we), (de,2, ze), (we, ye), and (ze, xe);
4. N − 1 parallel edges (de,1, ze), (de,2, we), (we, xe), and (ze, ye);
5. one edge (ae,i, de,j) for all i ∈ [N − 1] and j ∈ [r + 1]− {2};
6. one edge (be, de,j) for all j ∈ [r + 1]− {1};
7. N − 1 parallel edges (ce,N−1, ae,1) and (ce,i, ae,i+1) for all i ∈ [N − 2];
8. one edge (ae,i, ce,i) for all i ∈ [N − 1];
9. N − 1 parallel edges (u, d′e,j) for all j ∈ [r + 1]− {2};
10. one edge (v, d′e,j) for all j ∈ [r + 1]− {1};
11. one edge (d′e,1, z

′
e), (d

′
e,2, w

′
e), (w

′
e, xe), and (z′e, ye);

12. N − 1 parallel edges (d′e,1, w
′
e), (d

′
e,2, z

′
e), (w

′
e, ye), and (z′e, xe);

13. one edge (a′e,i, d
′
e,j) for all i ∈ [N − 1] and j ∈ [r + 1]− {1};

14. one edges (b′e, d
′
e,j) for all j ∈ [r + 1]− {2};
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15. N − 1 parallel edges (c′e,N−1, a
′
e,1) and (c′e,i, a

′
e,i+1) for all i ∈ [N − 2];

16. one edge (a′e,i, c
′
e,i) for all i ∈ [N − 1].

As indicated earlier, the graph we really need in the proof is G[2]. The gadget for
G[2] consists of two disjoint copies of the gadget for G[1], with the respective copies
of the vertices u, v, x, and y in the two copies identified. Given G = (V,E), we use
this new gadget to build G[2] by replacing each e = uv ∈ E with this gadget. The
degree of every vertex in G[2] is a 0 (mod N) except both copies of ae,i, a

′
e,i, be, and

b′e whose degree is r (mod N).
The construction gives us a 2m × 2m matrix A such that ZA(G) = ZC,D(G

[2])
for all G and thus EVAL(A) (≤ EVAL(C,D)) (right now it is not clear whether A is
a symmetric matrix, which we will prove later) is not #P-hard. We index the rows
and columns of A in the same way as we do for C: The first m rows and columns are
indexed by {0}×ZQ and the last m rows and columns are indexed by {1}×ZQ. Since
C is the bipartization of F, we have A(0,u),(1,v) = A(1,u),(0,v) = 0 for all u,v ∈ ZQ.

Next we analyze the upper-left m×m block of A. Given u,v ∈ ZQ, let Au,v,x,y

denote the following sum:

∑
a1,...,aN−1,b∈Λr

d1,d2∈ZQ

D
[r]
(0,b)

N−1∏
i=1

D
[r]
(0,ai)

⎛⎝ ∑
w∈ZQ

Fw,d1Fw,yFw,d2Fw,x

⎞⎠⎛⎝∑
z∈ZQ

Fz,d2Fz,xFz,d1Fz,y

⎞⎠
×

⎛⎝N−2∏
i=1

∑
ci∈ZQ

Fai,ciFai+1,ci

⎞⎠⎛⎝ ∑
cN−1∈ZQ

FaN−1,cN−1Fa1,cN−1

⎞⎠
×

⎛⎝r+1∏
i=3

∑
di∈ZQ

Fu,diFb,diFv,di

N−1∏
j=1

Faj ,di

⎞⎠Fu,d1

⎛⎝N−1∏
j=1

Faj ,d1

⎞⎠Fv,d2Fb,d2 ;

let Bu,v,x,y denote the following sum:

∑
a1,...,aN−1,b∈Λr,

d1,d2∈ZQ

D
[r]
(0,b)

N−1∏
i=1

D
[r]
(0,ai)

⎛⎝ ∑
w∈ZQ

Fw,d2Fw,xFw,d1Fw,y

⎞⎠⎛⎝∑
z∈ZQ

Fz,d1Fz,yFz,d2Fz,x

⎞⎠
×

⎛⎝N−2∏
i=1

∑
ci∈ZQ

Fai,ciFai+1,ci

⎞⎠⎛⎝ ∑
cN−1∈ZQ

FaN−1,cN−1Fa1,cN−1

⎞⎠
×

⎛⎝r+1∏
i=3

∑
di∈ZQ

Fv,diFb,diFu,di

N−1∏
j=1

Faj ,di

⎞⎠Fv,d2

⎛⎝N−1∏
j=1

Faj ,d2

⎞⎠Fu,d1Fb,d1 .

Then we have

A(0,u),(0,v) =
∑

x,y∈ZQ

A2
u,v,x,yB

2
u,v,x,y.

We simplify Au,v,x,y first. Since F is discrete unitary and satisfies (R3), we have

∑
w∈ZQ

Fw,d1Fw,yFw,d2Fw,x = 〈F∗,d1+y,F∗,d2+x〉 =
{
m if d1 − d2 = x− y,

0 otherwise.
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Also when d1 − d2 = x− y, we have
∑

z∈ZQ Fz,d2Fz,xFz,d1Fz,y = m. Similarly,∑
ci∈ZQ

Fai,ciFai+1,ci = 〈Fai,∗,Fai+1,∗〉

is zero unless ai = ai+1 for i = 1, . . . , N − 2, and∑
cN−1∈ZQ

FaN−1,cN−1Fa1,cN−1 = 〈FaN−1,∗,Fa1,∗〉

is zero unless aN−1 = a1. When a1 = · · · = aN−1, all these inner products are equal
to m. So now we may assume that d1 − d2 = x − y and all ai’s are equal, call it a,
in the sum for Au,v,x,y. Let x− y = s. Then Au,v,x,y is equal to
(11.1)

mN+1
∑

a,b∈Λr

d2∈ZQ

D
[r]
(0,b)D

[r]
(0,a)

⎛⎝r+1∏
i=3

∑
di∈ZQ

Fu,diFb,diFv,diFa,di

⎞⎠Fu,d2+sFb,d2Fv,d2Fa,d2+s.

Again we have∑
di∈ZQ

Fu,diFb,diFv,diFa,di = 〈Fu+b,∗,Fv+a,∗〉 =
{
m if u+ b = v + a,

0 otherwise.

If v − u /∈ Λlin
r ≡ {x− x′ : x,x′ ∈ Λr}, then Au,v,x,y = 0 as a,b ∈ Λr, b− a ∈ Λlin

r .
For every h ∈ Λlin

r (e.g., h = v − u), we define a |Λr|-dimensional vector T[h]:

T [h]
x = D

[r]
(0,x+h)D

[r]
(0,x) for all x ∈ Λr.

By (L), Λr is a coset in ZQ. So for any x ∈ Λr, we also have x+ h ∈ Λr. Therefore,
every entry of T[h] is nonzero and is a power of ωN .

Now we use T[v−u] to express Au,v,x,y. Suppose v − u ∈ Λlin
r ; then

Au,v,x,y = mN+r
∑

a∈Λr,d2∈ZQ
b=a+v−u

D
[r]
(0,b)D

[r]
(0,a)Fu,d2+sFb,d2Fv,d2Fa,d2+s

= mN+r+1
∑
a∈Λr

D
[r]
(0,a+v−u)D

[r]
(0,a)Fu,sFa,s

= mN+r+1 · Fu,x−y〈T[v−u],G∗,x−y〉.

Here we used (R3) in the second equality, and we recall the definition of s = x− y.
Similarly, when v − u /∈ Λlin

r , we have Bu,v,x,y = 0, and when v − u ∈ Λlin
r ,

Bu,v,x,y = mN+r
∑

b∈Λr,d2∈ZQ
a=b+v−u

D
[r]
(0,b)D

[r]
(0,a)Fv,d2Fb,d2+x−yFa,d2Fu,d2+x−y

= mN+r+1 · Fu,x−y〈T[v−u],G∗,x−y〉.

To summarize, when v − u /∈ Λlin
r , A(0,u),(0,v) = 0, and when v − u ∈ Λlin

r ,

(11.2)

A(0,u),(0,v) = m4(N+r+1)
∑

x,y∈ZQ

∣∣∣〈T[v−u],G∗,x−y〉
∣∣∣4= m4N+4r+5

∑
b∈ZQ

∣∣∣〈T[v−u],G∗,b〉
∣∣∣4 .D
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We now show that A is symmetric. Let a = v − u ∈ Λlin
r . By (R3), for b ∈ ZQ,∣∣∣〈T[−a],G∗,−b〉

∣∣∣ = ∣∣∣∣∣∑
x∈Λr

D
[r]
(0,x−a)D

[r]
(0,x)Gx,−b

∣∣∣∣∣ =
∣∣∣∣∣∑
x∈Λr

D
[r]
(0,x)D

[r]
(0,x−a)Gx,b

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y∈Λr

D
[r]
(0,y+a)D

[r]
(0,y)Gy,bFa,b

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
y∈Λr

D
[r]
(0,y+a)D

[r]
(0,y)Gy,b

∣∣∣∣∣∣ =
∣∣∣〈T[a],G∗,b〉

∣∣∣ ,
where the second equality is by conjugation, the third equality is by the substitution
x = y+a, and the fourth equality is because Fa,b is a root of unity. Thus, A(0,u),(0,v) =
A(0,v),(0,u). The lower-right block can be proved similarly. Hence A is symmetric.

Next, we further simplify (11.2) using Lemma 11.1:

(11.3) A(0,u),(0,v) =
m4N+4r+6

n
·
n−1∑
i=0

∣∣∣〈T[v−u],G∗,bi〉
∣∣∣4 .

For the special case of u = v, since T[0] = 1 = G∗,b0 and {G∗,b0 , . . . ,G∗,bn−1} is an
orthogonal basis by Lemma 11.1, we have

n−1∑
i=0

∣∣∣〈T[0],G∗,bi〉
∣∣∣4 = n4 and A(0,u),(0,u) = L · n4, where L ≡ m4N+4r+6/n.

Our next goal is to prove for all a ∈ Λlin
r that there exist b ∈ ZQ, α ∈ ZN such

that

(11.4) T[a] = ωα
N ·G∗,b.

If |Λlin
r | = 1, then (11.4) is trivially true. Thus below we assume |Λlin

r | > 1. Because
A is symmetric and nonnegative, we can apply the dichotomy theorem of Bulatov and
Grohe. For any pair u �= v such that u− v ∈ Λlin

r , we consider the 2× 2 submatrix(
A(0,u),(0,u) A(0,u),(0,v)

A(0,v),(0,u) A(0,v),(0,v)

)
of A. Since EVAL(A) is assumed to be not #P-hard, by Corollary 2.6, we have

A(0,u),(0,v) = A(0,v),(0,u) ∈
{
0, L · n4

}
,

and thus from (11.3) we get

(11.5)

n−1∑
i=0

∣∣∣〈T[v−u],G∗,bi〉
∣∣∣4 ∈

{
0, n4

}
for all u,v such that u− v ∈ Λlin

r .

However, the sum in (11.5) cannot be zero, because by Lemma 11.1, {G∗,bi : i ∈
[0 : n− 1]} is an orthogonal basis with each ‖G∗,bi‖2 = n. Then by Parseval,

n−1∑
i=0

∣∣∣∣〈T[v−u],
G∗,bi

‖G∗,bi‖
〉∣∣∣∣2 = ‖T[v−u]‖2 = n,

as each entry of T[v−u] is a root of unity. Hence
∑n−1

i=0 |〈T[v−u],G∗,bi〉|2 = n2. This
shows that for some 0 ≤ i < n, |〈T[v−u],G∗,bi〉| �= 0, and therefore the sum in (11.5)
is nonzero, and thus in fact
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n−1∑
i=0

∣∣∣〈T[v−u],G∗,bi〉
∣∣∣4 = n4 for all u,v such that u− v ∈ Λlin

r .

If we temporarily denote xi = |〈T[v−u],G∗,bi〉| for 0 ≤ i < n, then each xi ≥ 0.

We have both
∑n−1

i=0 x2
i = n2 and

∑n−1
i=0 x4

i = n4. By taking the square, we have

n4 =

(
n−1∑
i=0

x2
i

)2

=

n−1∑
i=0

x4
i + nonnegative cross terms.

It follows that all cross terms must be zero. Thus, there exists a unique term xi �= 0.
Moreover, this xi must equal to n, while all other xj = 0. We conclude that for all u
and v ∈ ZQ such that u− v ∈ Λlin

r , there exists a unique i ∈ [0 : n− 1] such that∣∣∣〈T[v−u],G∗,bi〉
∣∣∣ = n.

Applying again the argument that 〈T[v−u],G∗,bi〉 is a sum of n terms, each of which
is a root of unity, (11.4) follows.

Below we use (11.4) to prove (D3). Note that if s = 1, then (D3) follows directly
from (11.4). Thus below we assume s > 1. First, (11.4) implies the following lemma.

Lemma 11.2. Let a ∈ Λlin
r,k for some k ∈ [s]. Then for any � �= k and c ∈ Λlin

r,�,

T
[ã]
x+c̃

/
T [ã]
x

is a power of ωq� for all x ∈ Λr.
Recall that q� = q�,1. Also note that for every x ∈ Λr, the translated point x+ c̃

is in Λr, so T[ã] is defined at both x and x+ c̃. Since they are roots of unity, we can
divide one by the other.

Proof. By (11.4), there exists a vector b ∈ ZQ such that

T
[ã]
x+c̃

/
T [ã]
x = Gx+c̃,b

/
Gx,b = Fc̃,b,

which, by (R3), must be a power of ωq� .

Let a ∈ Λlin
r,k and c ∈ Λlin

r,�, � �= k ∈ [s]. By the definition of T
[h]
x in terms of D

[r]
∗ ,

T
[c̃]
x+ã · T

[ã]
x = T [ã+c̃]

x = T
[ã]
x+c̃ · T

[c̃]
x ,

and thus

T
[c̃]
x+ã

/
T [c̃]
x = T

[ã]
x+c̃

/
T [ã]
x .

By Lemma 11.2, the left-hand side of the equation is a power of ωqk , while the right-
hand side of the equation is a power of ωq� . Since k �= �, gcd(qk, q�) = 1, so

(11.6) T
[ã]
x+c̃

/
T [ã]
x = 1 for all c ∈ Λlin

r,� such that � �= k.

This implies that T
[ã]
x , as a function of x, only depends on xk ∈ Λr,k. By (11.4),

T [ã]
x = T

[ã]
extr(xk)

= ωα
N ·Gextr(xk),b = ωα+β

N · F
x̃k,b̃k

= ωα+β
N · F

x,b̃k
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for any x ∈ Λr and for some constants α, β ∈ ZN , and bk ∈ Zqk
that are independent

of x. This proves condition (D3).
Finally we prove (D1) from (D3). Let a

[r] = (a1, a2, . . . , as) ∈ Λr. Then

D
[r]
(0,x) = D

[r]
(0,(x1,x2,...,xs))

D
[r]
(0,(a1,a2,...,as))

=
(
D

[r]
(0,(x1,x2,...,xs−1,xs))

D
[r]
(0,(x1,x2,...,xs−1,as))

)
×
(
D

[r]
(0,(x1,x2,...,xs−1,as))

D
[r]
(0,(x1,...,xs−2,as−1,as))

)
· · ·

×
(
D

[r]
(0,(x1,a2,...,as))

D
[r]
(0,(a1,a2,...,as))

)
for any x ∈ Λr.

We consider the kth factor

(11.7) D
[r]
(0,(x1,...,xk−1,xk,ak+1,...,as))

D
[r]
(0,(x1,...,xk−1,ak,ak+1,...,as))

.

From (11.6) this factor is independent of all other components in the starting point
(x1, . . . ,xk−1, ak, ak+1, . . . , as) except the kth component ak. In particular, we can
replace all other components, as long as we stay within Λr. We choose to replace the
first k − 1 components xi by ai. Then (11.7) becomes

D
[r]
(0,(a1,...,ak−1,xk,ak+1,...,as))

D
[r]
(0,(a1,...,ak−1,ak,ak+1,...,as))

= D
[r]
(0,extr(xk))

D
[r]

(0,a[r])
= D

[r]
(0,extr(xk))

,

and (D1) is now proved.

12. Tractability: Proof of Theorem 5.10. Let ((M,N),C,D, (p, t,Q)) be a
tuple that satisfies (R), (L), (D). In this section, we finally show that EVAL(C,D) is
tractable by reducing it to the following problem. Let q = pk be a prime power for
some prime p and positive integer k. The input of EVAL(q) is a quadratic polynomial
f(x1, x2, . . . , xn) =

∑
i,j∈[n] ai,jxixj , where ai,j ∈ Zq for all i, j, and the output is

Zq(f) =
∑

x1,...,xn∈Zq

ωf(x1,...,xn)
q .

We postpone the proof of the following theorem to the end of this section.
Theorem 12.1. Let q be a prime power. Then EVAL(q) can be solved in polyno-

mial time (in n, the number of variables).
The reduction goes as follows. First, we use conditions (R), (L), and (D) to show

that EVAL(C,D) can be decomposed into s smaller problems, where s is the number
of primes in the sequence p: EVAL(C[1],D[1]), . . . ,EVAL(C[s],D[s]). If each of these s
problems is tractable, then so is EVAL(C,D). Second, we reduce each EVAL(C[i],D[i])
to EVAL(q) for some appropriate prime power q that will become clear later. It follows
from Theorem 12.1 that all EVAL(C[i],D[i])’s can be solved in polynomial time.

12.1. Step 1. For each integer i ∈ [s], we define a 2mi × 2mi matrix C[i] where
mi = |Zqi |: C[i] is the bipartization of the following mi ×mi matrix F[i], where

(12.1) F [i]
x,y =

∏
j∈[ti]

ωxjyj
qi,j for all x = (x1, . . . , xti),y = (y1, . . . , yti) ∈ Zqi .
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We index the rows and columns of F[i] by x ∈ Zqi and index the rows and columns
of C[i] by {0, 1}×Zqi. We let xj , j ∈ [ti], denote the jth entry of x ∈ Zqi,j . By (R3),

(12.2) Fx,y = F [1]
x1,y1

· F [2]
x2,y2

· · ·F [s]
xs,ys

for all x,y ∈ ZQ.

For each integer i ∈ [s], we define a sequence of N 2mi × 2mi diagonal matrices

D[i] =
(
D[i,0], . . . ,D[i,N−1]).

D[i,0] is the 2mi × 2mi identity matrix; for every r ∈ [N − 1], we set

D
[i,r]
(0,∗) = 0 if r /∈ S and D

[i,r]
(0,x) = D

[r]
(0,extr(x))

for all x ∈ Zqi if r ∈ S;

D
[i,r]
(1,∗) = 0 if r /∈ T and D

[i,r]
(1,x) = D

[r]
(1,ext′r(x))

for all x ∈ Zqi if r ∈ T .

By conditions (D1) and (D2), we have

(12.3) D
[r]
(b,x) = D

[1,r]
(b,x1)

· · ·D[s,r]
(b,xs)

for all b ∈ {0, 1} and x ∈ ZQ.

Equation (12.3) is valid for all x ∈ ZQ. For example, for b = 0 and x ∈ ZQ − Λr, the
left-hand side is 0 because x /∈ Λr. The right-hand side is also 0, because there exists
an index i ∈ [s] such that xi /∈ Λr,i and thus extr(xi) /∈ Λr. It then follows from
(12.1), (12.3), and the following lemma that if EVAL(C[i],D[i]) is in polynomial time
for all i ∈ [s], then EVAL(C,D) is also in polynomial time.

Lemma 12.2. Suppose we have the following matrices: for each i ∈ {0, 1, 2}, C[i]

is the bipartization of an mi×mi complex matrix F[i]; D[i] = (D[i,0], . . . , D[i,N−1]) is
a sequence of N 2mi × 2mi diagonal matrices for some N ≥ 1, where

D[i,r] =

(
P[i,r]

Q[i,r]

)
and P[i,r] and Q[i,r] are mi ×mi diagonal matrices; (C[i],D[i]) satisfies (Pinning);

F[0] = F[1] ⊗ F[2], P[0,r] = P[1,r] ⊗P[2,r] and Q[0,r] = Q[1,r] ⊗Q[2,r]

for all r ∈ [0 : N − 1] (so m0 = m1m2). If EVAL(C[1],D[1]) and EVAL(C[2],D[2]) are
tractable, then EVAL(C[0],D[0]) is also tractable.

Proof. By the second pinning lemma (Lemma 4.3), both functions Z→ and Z←

of (C[i],D[i]), for both i = 1 and 2, can be computed in polynomial time. The lemma
then follows from Lemma 2.4.

We now use condition (D4) to prove the following lemma.
Lemma 12.3. Given r ∈ T , i ∈ [s], and a ∈ Δlin

r,i, there exist b ∈ Zqi and α ∈ ZN

such that the following equation holds for all x ∈ Δr,i:

D
[i,r]
(1,x+a) ·D

[i,r]
(1,x) = ωα

N · F [i]
b,x.

Proof. By the definition of D[i,r], we have

D
[i,r]
(1,x+a) ·D

[i,r]
(1,x) = D

[r]
(1,ext′r(x+a)) ·D

[r]
(1,ext′r(x))

= D
[r]
(1,ext′r(x)+ã) ·D

[r]
(1,ext′r(x))

.

Recall that ã is the vector in ZQ such that ãi = a and ãj = 0 for all other j �= i.
Then by condition (D4), we know there exist b ∈ Zqi and α ∈ ZN such that

D
[i,r]
(1,x+a) ·D

[i,r]
(1,x) = ωα

N · Fb̃,ext′r(x)
= ωα

N · F [i]
b,x for all x ∈ Δr,i,

and the lemma is proved.
One can also prove a similar lemma for the other block of D[i,r], using (D3).
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12.2. Step 2. For convenience, in this step we abuse the notation slightly and
use EVAL(C,D) to denote one of the subproblems EVAL(C[i],D[i]), i ∈ [s], defined
in the last step. Then by using conditions (R), (L), and (D), we summarize the
properties of this new pair (C,D) that we need in the reduction as follows:

(F1) There is a prime p and a nonincreasing sequence π = (π1, . . . , πh) of powers
of the same p. F is an m×m complex matrix, where m = π1π2 · · ·πh, and C is the
bipartization of F. We let π denote π1. We also use Zπ ≡ Zπ1 × · · · × Zπh

to index
the rows and columns of F. Then F satisfies

Fx,y =
∏
i∈[h]

ωxiyi
πi

for all x = (x1, . . . , xh) and y = (y1, . . . , yh) ∈ Zπ,

where we use xi ∈ Zπi to denote the ith entry of x, i ∈ [h].
(F2) D = (D[0], . . . ,D[N−1]) is a sequence of N 2m × 2m diagonal matrices for

some N ≥ 1 with π |N . D[0] is the identity matrix, and every diagonal entry of D[r],
r ∈ [N − 1], is either 0 or a power of ωN . We use {0, 1} × Zπ to index the rows and
columns of matrices C and D[r]. (The condition π |N is from the condition M |N in
(U1) and the expression of M in terms of the prime powers, stated after (R3). The π
here is one of the qi = qi,1 there.)

(F3) For each r ∈ [0 : N − 1], we use Λr and Δr to denote

Λr = {x ∈ Zπ

∣∣D[r]
(0,x) �= 0} and Δr = {x ∈ Zπ

∣∣D[r]
(1,x) �= 0}.

We use S to denote the set of r such that Λr �= ∅ and T to denote the set of r such
that Δr �= ∅. Then for every r ∈ S, Λr is a coset in Zπ; for every r ∈ T , Δr is a coset
in Zπ. For each r ∈ S (and r ∈ T ), there is an a[r] ∈ Λr (b[r] ∈ Δr, resp.) such that

D
[r]

(0,a[r])
= 1

(
and D

[r]

(1,b[r])
= 1, resp.

)
.

(F4) For all r ∈ S and a ∈ Λlin
r , there exist b ∈ Zπ and α ∈ ZN such that

D
[r]
(0,x+a)D

[r]
(0,x) = ωα

N ·Fx,b for all x ∈ Λr;

for all r ∈ T and a ∈ Δlin
r , there exist b ∈ Zπ and α ∈ ZN such that

D
[r]
(1,x+a)D

[r]
(1,x) = ωα

N ·Fb,x for all x ∈ Δr.

Now let G be a connected graph. Below we reduce the computation of ZC,D(G)
to EVAL(π̂), where π̂ = π if p �= 2 and π̂ = 2π if p = 2.

Given a ∈ Zπi for some i ∈ [h], let â denote an element in Zπ̂ such that â ≡ a
(mod πi). As πi | π1 = π | π̂, this lifting of a is certainly feasible. For definiteness, we
can choose a itself if we consider a to be an integer between 0 and πi − 1.

First, if G is not bipartite, then ZC,D(G) is trivially 0. From now on we assume
G = (U ∪ V,E) to be bipartite: every edge has one vertex in U and one vertex in V .

Let u∗ be a vertex in U . Then we can decompose ZC,D(G) into

ZC,D(G) = Z→C,D(G, u∗) + Z←C,D(G, u∗).

We will reduce Z→C,D(G, u∗) to EVAL(π̂). The Z← part can be dealt with similarly.
We use Ur, where r ∈ [0 : N−1], to denote the set of vertices in U whose degree is

r (mod N) and use Vρ to denote the set of vertices in V whose degree is ρ (mod N).
We decompose E into

⋃
i,j Ei,j , where Ei,j contains the edges between Ui and Vj .
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If Ur �= ∅ for some r /∈ S or if Vρ �= ∅ for some ρ /∈ T , then Z→C,D(G) = 0. Thus,
we assume that Ur = ∅ for all r �∈ S and Vρ = ∅ for all ρ �∈ T . In this case, we have
(12.4)

Z→C,D(G, u∗) =
∑
(f,g)

⎡⎣∏
r∈S

( ∏
u∈Ur

D
[r]
(0,xu)

)∏
ρ∈T

⎛⎝∏
v∈Vρ

D
[r]
(1,yv)

⎞⎠⎤⎦⎡⎣ ∏
(r,ρ)∈S×T

∏
uv∈Er,ρ

Fxu,yv

⎤⎦.
Here the sum ranges over all pairs (f, g), where

f = (fr; r ∈ S) ∈
∏
r∈S

(Ur → Λr) and g = (gρ; ρ ∈ T ) ∈
∏
ρ∈T

(Vρ → Δρ)

such that f(u) = xu and g(v) = yv.
The following lemma gives us a convenient way to do summation over a coset.
Lemma 12.4. Let Φ be a coset in Zπ and c = (c1, . . . , ch) be a vector in Φ. Then

there exist a positive integer s and an s × h matrix A over Zπ̂ such that the map
τ : (Zπ̂)

s → Zπ1 × · · · × Zπh
, where τ(x) = (τ1(x), . . . , τh(x)) and

(12.5) τj(x) =
(
xA∗,j + ĉj (mod πj)

)
∈ Zπj for all j ∈ [h],

is a uniform map from (Zπ̂)
s onto Φ. This uniformity means that for all b,b′ ∈ Φ, the

number of x ∈ (Zπ̂)
s with τ(x) = b is the same as the number of x with τ(x) = b′.

Proof. Using the fundamental theorem of finite Abelian groups, there is a group
isomorphism f from Zg onto Φlin, where g = (g1, . . . , gs) is a sequence of powers of
p and satisfies π̂ ≥ π = π1 ≥ g1 ≥ · · · ≥ gs for some s ≥ 1. Zg ≡ Zg1 × · · · × Zgs

is a Zπ̂-module. This is clear, since as a Z-module, any multiple of π̂ annihilates Zg.
Thus f is also a Zπ̂-module isomorphism.

Let ai = f(ei) ∈ Φlin for each i ∈ [s], where ei ∈ Zg is the vector whose ith entry
is 1 and all other entries are 0. Let ai = (ai,1, . . . , ai,h) ∈ Zπ, where ai,j ∈ Zπj , i ∈ [s],
j ∈ [h]. Let âi = (âi,1, . . . , âi,h) ∈ (Zπ̂)

h be a lifting of ai componentwise. Similarly
let ĉ be a lifting of c componentwise. Then we claim that A = (âi,j) and ĉ together
give us the required uniform map τ from (Zπ̂)

s to Φ.
To show that τ is uniform, we consider the linear part of τ ′ : (Zπ̂)

s → Φlin,

τ ′(x) = (τ ′1(x), . . . , τ
′
h(x)), where τ ′j(x) =

(
xA∗,j (mod πj)

)
∈ Zπj

for all j ∈ [h]. Clearly we only need to show that τ ′ is a uniform map.
Let σ be the natural projection from Zs

π̂ to Zg:

x = (x1, . . . , xs) �→
(
x1 (mod g1), . . . , xs (mod gs)

)
.

σ is certainly a uniform map, being a surjective homomorphism. Thus, every vector
b ∈ Zg has | kerσ| = π̂s/(g1 · · · gs) many preimages. We show that the map τ ′ factors
through σ and f , i.e., τ ′ = f ◦ σ. Because f is an isomorphism, this implies that τ ′ is
also a uniform map.

As giei = 0 in Zg, the following is a valid expression in the Zπ̂-module for σ(x):

(
x1 (mod g1), . . . , xs (mod gs)

)
=

s∑
i=1

xiei.

Apply f as a Zπ̂-module homomorphism f(σ(x)) =
∑s

i=1 xif(ei) with its jth entry
being

∑s
i=1 xiai,j . This is an expression in the Zπ̂-module Zπj , which is the same as
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s∑
i=1

(
xi (mod πj)

)
· ai,j =

s∑
i=1

xiâi,j (mod πj) = τ ′j(x).

The lemma is proved.
Applying Lemma 12.4 to Λr, for every r ∈ S, there exist a positive integer sr and

an sr × h matrix A[r] over Zπ̂ which give us a uniform map λ[r](x) from Zsr
π̂ to Λr:

(12.6) λ
[r]
i (x) =

(
xA

[r]
∗,i + â

[r]
i (mod πi)

)
for all i ∈ [h] and x ∈ Zsr

π̂ .

Similarly, for every r ∈ T , there exist a positive integer tr and an tr × h matrix B[r]

over Zπ̂ which give us a uniform map δ[r] from Ztr
π̂ to Δr:

(12.7) δ
[r]
i (y) =

(
yB

[r]
∗,i + b̂

[r]
i (mod πi)

)
for all i ∈ [h] and y ∈ Ztr

π̂ .

Using (F3), we have

(12.8) D
[r]

(0,λ[r](0))
= 1 when r ∈ S and D

[r]

(1,δ[r](0))
= 1 when r ∈ T .

Because both λ[r] and δ[r] are uniform, and we know the multiplicity of each map (the
cardinality of inverse images), to compute (12.4) it suffices to compute the following:
(12.9)∑

(xu),(yv)

∏
r∈S

( ∏
u∈Ur

D
[r]

(0,λ[r](xu))

) ∏
r∈T

(∏
v∈Vr

D
[r]

(1,δ[r](yv))

) ∏
r1∈S,r2∈T
uv∈Er1,r2

Fλ[r1](xu),δ[r2](yv),

where the sum is over pairs of sequences(
xu;u ∈

⋃
r∈S

Ur

)
∈
∏
r∈S

(
Zsr
π̂

)|Ur |
and

(
yv; v ∈

⋃
r∈T

Vr

)
∈
∏
r∈T

(
Ztr
π̂

)|Vr|
.

If (1) for all r ∈ S, there is a quadratic polynomial f [r] over Zπ̂ such that

(12.10) D
[r]

(0,λ[r](x))
= ω

f [r](x)
π̂ for all x ∈ Zsr

π̂ ;

(2) for all r ∈ T , there is a quadratic polynomial g[r] over Zπ̂ such that

(12.11) D
[r]

(1,δ[r](y))
= ω

g[r](y)
π̂ for all y ∈ Ztr

π̂ ;

(3) for all r1 ∈ S, r2 ∈ T , there is a quadratic polynomial f [r1,r2] over Zπ̂ such that

(12.12) Fλ[r1](x),δ[r2](y) = ω
f [r1,r2](x,y)
π̂ for all x ∈ Z

sr1
π̂ and y ∈ Z

tr2
π̂ ,

then we can reduce the computation of the summation in (12.9) to EVAL(π̂).
We start with (3). By (F1), the following map f [r1,r2] satisfies (12.12):

f [r1,r2](x,y) =
∑
i∈[h]

π̂

πi
· λ[r1]

i (x) · δ[r2]i (y) =
∑
i∈[h]

π̂

πi

(
xA

[r1]
∗,i + â

[r1]
i

)(
yB

[r2]
∗,i + b̂

[r2]
i

)
.

Note that the presence of the integer π̂/πi is crucial to be able to substitute the mod
πi expressions in (12.6) and in (12.7), respectively, as if they were mod π̂ expressions.
It is also clear that f [r1,r2] is indeed a quadratic polynomial over Zπ̂ .
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Next we prove (1), which is a little more complicated. The proof of (2) is similar.
Let r ∈ S. Let ei denote the vector in Zsr

π̂ whose ith entry is 1 and all other entries
are 0. Using (F4), for each i ∈ [sr], there exist αi ∈ ZN and bi = (bi,1, . . . , bi,h) ∈ Zπ,
where bi,j ∈ Zπj , such that

(12.13) D
[r]

(0,λ[r](x+ei))
D

[r]

(0,λ[r](x))
= ωαi

N

∏
j∈[h]

ω
bi,j ·λ[r]

j (x)
πj for all x ∈ Zsr

π̂ .

We have this equation because λ[r](x + ei) − λ[r](x) is indeed a vector in Zπ that is
independent of x. To see this, observe that the jth entry in λ[r](x+ ei)− λ[r](x) is

eiA
[r]
∗,j = A

[r]
i,j (mod πj),

and thus the displacement vector λ[r](x + ei) − λ[r](x) is independent of x and is in
Λlin
r by definition. This is the a ∈ Λlin

r in the statement of (F4) which we applied.
Before moving forward, we show that ωαi

N must be a power of ωπ̂. This is because
(12.14)

1 =
π̂−1∏
j=0

D
[r]

(0,λ[r]((j+1)ei))
D

[r]

(0,λ[r](jei))
= (ωαi

N )π̂
∏
k∈[h]

ω
bi,k[λ

[r]
k (0ei)+···+λ

[r]
k ((π̂−1)ei)]

πk .

For each k ∈ [h], the exponent of ωπk
is bi,kQk ∈ Zπk

, where Qk is the following sum:
(12.15)
π̂−1∑
j=0

λ
[r]
k (jei) =

π̂−1∑
j=0

(
(jei)A

[r]
∗,k + â

[r]
k (mod πk)

)
=

⎛⎝π̂−1∑
j=1

jei

⎞⎠A
[r]
∗,k (mod πk) = 0.

The last equality comes from J ≡
∑π̂−1

j=1 j = 0 (mod πk), and this is due to our def-
inition of π̂. When p is odd, J is a multiple of π̂ and πk | π̂, and when p = 2, J is a
multiple of π̂/2. However, in this case, we have π̂/2 = π1 and πk |π1.

As a result, (ωαi

N )π̂ = 1. So there exists βi ∈ Zπ̂ for each i ∈ [sr] such that

(12.16) D
[r]

(0,λ[r](x+ei))
D

[r]

(0,λ[r](x))
= ωβi

π̂

∏
j∈[h]

ω
bi,j ·λ[r]

j (x)
πj for all x ∈ Zsr

π̂ .

It follows that every nonzero entry of D[r] is a power of ωπ̂. This uses (F3), that the
(0,a[r])th entry ofD[r] is 1, and the fact that λ[r] is surjective to Λr: any point in Λr is
connected to the normalizing point a[r] by a sequence of moves λ[r](x) → λ[r](x+ ei)
for i ∈ [sr]. Now we know there is a function f [r] : Zsr

π̂ → Zπ̂ which satisfies (12.10).
We want to show that it is indeed a quadratic polynomial. To see this, by (12.16),
(12.17)

f [r](x+ ei)− f [r](x) = βi +
∑
j∈[h]

π̂

πj
· bi,j · λ[r]

j (x) = βi +
∑
j∈[h]

π̂

πj
· b̂i,j ·

(
xA

[r]
∗,j + â

[r]
j

)
for every i ∈ [sr]. We should remark that originally bi,j is in Zπj ; however, with the
integer multiplier (π̂/πj), the quantity (π̂/πj) ·bi,j is now considered in Zπ̂. Moreover,

b̂i,j ≡ bi,j (mod πj) =⇒
(

π̂

πj

)
b̂i,j ≡

(
π̂

πj

)
bi,j (mod π̂).
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Thus the expression in (12.17) is evaluated in Zπ̂, which means that for any i ∈ [sr],
there exist ci,0, . . . , ci,sr ∈ Zπ̂ such that

(12.18) f [r](x + ei)− f [r](x) = ci,0 +
∑
j∈[sr ]

ci,jxj .

Since f [r](0) = 0, the case when p is odd follows from the lemma below.
Lemma 12.5. Let π be a power of an odd prime, and let f be a map from Zs

π to
Zπ for some s ≥ 1. Suppose for every i ∈ [s], there exist ci,0, . . . , ci,s ∈ Zπ such that

(12.19) f(x+ ei)− f(x) = ci,0 +
∑
j∈[s]

ci,jxj for all x ∈ Zs
π

and f(0) = 0. Then there exist ai,j , ai ∈ Zπ such that

(12.20) f(x) =
∑

i≤j∈[s]
ai,jxixj +

∑
i∈[s]

aixi for all x ∈ Zs
π.

Proof. First note that f is uniquely determined by the conditions on f(x+ ei)−
f(x) and f(0). Second, we show that ci,j = cj,i for all i, j ∈ [s]; otherwise f does not
exist, contradicting the assumption. On the one hand, we have

f(ei + ej) = f(ei + ej)− f(ej) + f(ej)− f(0) = ci,0 + ci,j + cj,0.

On the other hand, we have

f(ei + ej) = f(ei + ej)− f(ei) + f(ei)− f(0) = cj,0 + cj,i + ci,0.

It follows that ci,j = cj,i.
Finally, we set ai,j = ci,j for all i < j ∈ [s]; ai,i = ci,i

/
2 for all i ∈ [s] (here ci,i/2

is well defined because π is odd); and ai = ci,0−ai,i for all i ∈ [s]. We now claim that

g(x) =
∑

i≤j∈[s]
ai,jxixj +

∑
i∈[s]

aixi

satisfies both conditions and thus f = g. To see this, we check the case when i = 1:

g(x+ e1)− g(x) = 2a1,1x1 +
∑
j>1

a1,jxj + (a1,1 + a1) = c1,1x1 +
∑
j>1

c1,jxj + c1,0.

Other cases are similar, and the lemma is proved.
When p = 2, we first claim that the constants ci,i in (12.18) must be even, since

0 = f [r](π̂ei)−f [r]((π̂−1)ei)+ · · ·+f [r](ei)−f [r](0) = π̂ci,0+ ci,i(π̂−1+ · · ·+1+0).

This equality happens in Zπ̂ , so ci,i(π̂(π̂ − 1)/2) = 0 (mod π̂). When π̂ − 1 is odd we
have 2 | ci,i. It follows from the lemma below that f [r] is a quadratic polynomial.

Lemma 12.6. Let π be a power of 2 and let f be a map from Zs
π to Zπ satisfying

f(0) = 0. Suppose for every i ∈ [s] there exist ci,0, . . . , ci,s ∈ Zπ, where 2 | ci,i, such
that (12.19) holds. Then there are ai,j , ai ∈ Zπ such that f has the form of (12.20).

Proof. The proof of Lemma 12.6 is essentially the same as that of Lemma 12.5.
Because 2 | ci,i, ai,i = ci,i/2 is well-defined (in particular, when ci,i = 0, we set
ai,i = 0).
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12.3. Proof of Theorem 12.1. Finally we turn to the proof of Theorem 12.1,
i.e., EVAL(q) is tractable for any fixed prime power q.

Actually, there is a well-known polynomial-time algorithm for EVAL(q) when q is
a prime [10, 15], [27, Theorem 6.30]. (The algorithm works for any finite field.) Here
we present a polynomial-time algorithm that works for any prime power q. We start
with the easier case when q is odd.

Lemma 12.7. Let p be an odd prime and let q = pk for some positive integer k.
Let f ∈ Zq[x1, . . . , xn] be a quadratic polynomial over n variables x1, . . . , xn. Then

Zq(f) =
∑

x1,...,xn∈Zq

ωf(x1,...,xn)
q

can be evaluated in polynomial time (in n).
Proof. We assume that f(x1, . . . , xn) has the following form:

(12.21) f(x1, . . . , xn) =
∑

i≤j∈[n]
ci,jxixj +

∑
i∈[n]

cixi + c0,

where all the ci,j and ci are elements in Zq.
First, as a warm up, we give an algorithm and prove its correctness for the case

k = 1, i.e., q = p is an odd prime. Note that if f is affine, then the evaluation can be
trivially done in polynomial time. In fact, it decouples into a product of n sums,

∑
x1,...,xn∈Zq

ωf(x1,...,xn)
q =

∑
x1,...,xn∈Zq

ω
∑n

i=1 cixi+c0
q = ωc0

q ×
n∏

i=1

∑
xi∈Zq

ωcixi
q .

This sum is equal to 0 if any ci ∈ Zq is nonzero and is equal to qnωc0
q otherwise.

Now assume f(x1, . . . , xn) is not affine linear. Then in each round (which we will
describe below), the algorithm will decrease the number of variables by at least one,
in polynomial time. Assume f contains some quadratic terms. There are two cases:
f has at least one square term or f does not have any square terms.

In the first case, without loss of generality, we assume that c1,1 �= 0. There exist
an affine function g ∈ Zq[x2, . . . , xn] and a quadratic polynomial f ′ ∈ Zq[x2, . . . , xn],
both over n− 1 variables x2, x3, . . . , xn, such that

f(x1, x2, . . . , xn) = c1,1
(
x1 + g(x2, x3, . . . , xn)

)2
+ f ′(x2, x3, . . . , xn).

Here we used the fact that both 2 and c1,1 ∈ Zq are invertible in the field Zq. (Recall
we assumed that q = p is an odd prime.) Thus, we can factor out a coefficient 2c1,1
from the cross term x1xi for every i > 1, and from the linear term x1, to obtain the
expression c1,1(x1 + g(x2, . . . , xn))

2.
For any fixed x2, . . . , xn, when x1 ranges over Zq, x1 + g ranges over Zq. Thus,∑

x1,x2,...,xn∈Zq

ωf(x1,x2,...,xn)
q =

∑
x2,...,xn∈Zq

ωf ′
q

∑
x1∈Zq

ωc1,1(x1+g)2

q =
∑
x∈Zq

ωc1,1x
2

q · Zq(f
′).

The first factor can be evaluated in constant time (which is independent of n), and
the computation of Zq(f) is reduced to the computation of Zq(f

′) in which f ′ has at
most n− 1 variables.

Remark 12.8. The claim of
∑

x ω
cx2

q being “computable in constant time” here
is a trivial statement, since we consider q = p to be a fixed constant. However, for a
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general prime p, we remark that the sum is the famous Gauss quadratic sum and has
the following closed formula: If c �= 0,∑

x∈Zp

ωcx2

p =

(
c

p

)
G, where G =

∑
x∈Zp

(
x

p

)
ωx
p .

Here ( cp ) is the Legendre symbol. It can be computed in polynomial time in the binary
length of c and p. G has the closed form G = +

√
p if p ≡ 1 mod 4 and G = +i

√
p if

p ≡ 3 mod 4.4

The second case is that all the quadratic terms in f are cross terms (in particular
this implies that n ≥ 2). In this case we assume, without loss of generality, that c1,2
is nonzero. We apply the following transformation: x1 = x′1 + x′2 and x2 = x′1 − x′2.
As 2 is invertible in Zq, when x′1 and x′2 go over Z2

q, x1 and x2 also go over Z2
q . Thus,∑

x1,x2,...,xn∈Zq

ωf(x1,x2,...,xn)
q =

∑
x′
1,x

′
2,,...,xn∈Zq

ω
f(x′

1+x′
2,x

′
1−x

′
2,...,xn)

q .

Viewing f(x′1+x′2, x
′
1−x′2, . . . , xn) as a new quadratic polynomial f ′ of x′1, x

′
2, . . . , xn

its coefficient of x′21 is exactly c1,2 �= 0. Thus f ′ contains at least one square term.
This reduces our problem back to the first case. We can use the method described
earlier to reduce the number of variables.

Repeating this process we get a polynomial-time algorithm for computing Zq(f)
when q = p is an odd prime. Now we consider the case when q = pk.

We can write any nonzero a ∈ Zq as a = pta′, where t is a unique nonnegative
integer, such that p � a′. We call t the order of a (with respect to p). If f is an affine
linear function, Zq(f) is easy to compute, as the sum factors into n sums as before.
Now we assume f has nonzero quadratic terms. Let t0 be the smallest order of all the
nonzero quadratic coefficients ci,j of f . We consider the following two cases: there
exists at least one square term with coefficient of order t0 or not.

For the first case, without loss of generality, assume c1,1 = pt0c and p � c (so c
is invertible in Zq). By the minimality of t0, every nonzero coefficient of a quadratic
term has a factor pt0 . Now we factor out c1,1 from every quadratic term involving x1,
namely, from x2

1, x1x2, . . . , x1xn. (Clearly it does not matter if the coefficient of a term
x1xi, i �= 1, is 0.) We can write f(x1, x2, . . . , xn) = c1,1(x1 + g(x2, . . . , xn))

2 + c1x1 +
a quadratic polynomial in (x2, . . . , xn), where g is a linear function over x2, . . . , xn.
By adding and then subtracting c1g(x2, . . . , xn), we get

f(x1, x2, . . . , xn) = c1,1
(
x1+g(x2, . . . , xn)

)2
+ c1

(
x1+g(x2, . . . , xn)

)
+f ′(x2, . . . , xn),

where f ′(x2, . . . , xn) ∈ Zq[x2, . . . , xn] is a quadratic polynomial over x2, . . . xn.
For any fixed x2, . . . , xn, when x1 ranges over Zq, x1 + g also ranges over Zq. So

∑
x1,...,xn∈Zq

ωf
q =

⎛⎝∑
x∈Zq

ωc1,1x
2+c1x

q

⎞⎠⎛⎝ ∑
x2,...,xn∈Zq

ωf ′
q

⎞⎠ =
∑
x∈Zq

ωc1,1x
2+c1x

q · Zq(f
′).

4It had been known to Gauss since 1801 that G = ±√
p if p ≡ 1 (mod 4) and G = ±i

√
p if p ≡ 3

(mod 4). The fact that G always takes the plus sign was conjectured by Gauss in his diary in May
1801. He wrote to his friend W. Olbers on September 3, 1805, that seldom had a week passed for
four years that he had not tried in vain to prove this very elegant conjecture. Finally, he wrote, “Wie
der Blitz einschlägt, hat sich das Räthsel gelöst” (as lightning strikes was the puzzle solved).
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The first term can be evaluated in constant time and the problem is reduced to Zq(f
′)

in which f ′ has at most n− 1 variables.
For the second case, all square terms of f either are 0 or have orders larger than

t0. We assume, without loss of generality, that c1,2 = pt0c and p � c. We apply the
following transformation: x1 = x′1 + x′2 and x2 = x′1 − x′2. Since 2 is invertible in Zq,
when x′1 and x′2 go over Z2

q , x1 and x2 also go over Z2
q . After the transformation, we

get a new quadratic polynomial over x′1, x
′
2, x3, . . . , xn such that Zq(f

′) = Zq(f), and
t0 is still the smallest order of all the quadratic terms of f ′: The terms x2

1 and x2
2 (in

f) produce terms with coefficients divisible by pt0+1, the term x1x2 (in f) produces
terms (x′1)

2 and (x′2)
2 with coefficients of order exactly t0, and terms x1xi or x2xi for

i �= 1, 2 produce terms x′1xi and x′2xi with coefficients divisible by pt0 . In particular,
the coefficient of (x′1)

2 in f ′ has order t0, so we reduce the problem to the first case.
To sum up, we have a polynomial-time algorithm for every q = pk, when

p �= 2.
Now we deal with the more difficult case when q = 2k, for some k ≥ 1. We note

that the property of an element c ∈ Z2k being even or odd is well-defined.
Lemma 12.9. Let q = 2k for some k ≥ 1. Let f ∈ Zq[x1, . . . , xn] be a quadratic

polynomial over x1, . . . , xn. Then Zq(f) can be evaluated in polynomial time (in n).
Proof. When k = 1, Zq(f) is computable in polynomial time according to [10],

[27, Theorem 6.30] so we assume k > 1. We also assume f has the form as in (12.21).
The algorithm goes as follows: For each round, we can, in polynomial time, either
1. output the correct value of Zq(f), or
2. build a new quadratic g ∈ Zq/2[x1, . . . , xn] and reduce Zq(f) to Zq/2(g), or
3. build a new quadratic g ∈ Zq[x1, . . . , xn−1] and reduce Zq(f) to Zq(g).

This gives a polynomial-time algorithm for EVAL(q), because both base cases, when
k = 1 or n = 1, can be solved efficiently.

Suppose we have a quadratic polynomial f ∈ Zq[x1, . . . , xn]. Our first step is to
transform f so that all the coefficients of its cross terms (ci,j , where i �= j) and linear
terms (ci) are divisible by 2. Assume f does not yet have this property. Let t be the
smallest index in [n] such that one of {ct, ct,j : j > t} is not divisible by 2. Separating
out the terms involving xt, we rewrite f as follows:

(12.22) f = ct,t · x2
t + xt · f1(x1, . . . , x̂t, . . . , xn) + f2(x1, . . . , x̂t, . . . , xn),

where f1 is an affine linear function and f2 is a quadratic polynomial. Both f1 and f2
are over variables {x1, . . . , xn} − {xt}. Here the notation x̂t means that xt does not
appear in the polynomial. Moreover,

(12.23) f1(x1, . . . , x̂t, . . . , xn) =
∑
i<t

ci,txi +
∑
j>t

ct,jxj + ct.

From the minimality of t, ci,t is even for all i < t, and at least one of {ct,j , ct : j > t}
is odd. We claim that

(12.24) Zq(f) =
∑

x1,...,xn∈Zq

ωf(x1,...,xn)
q =

∑
x1,...,xn∈Zq

f1(x1,...,x̂t,...,xn)≡0 mod 2

ωf(x1,...,xn)
q .

This is because∑
x1,...,xn∈Zq

f1≡1 mod 2

ωf(x1,...,xn)
q =

∑
x1,...,x̂t,...,xn∈Zq

f1≡1 mod 2

∑
xt∈Zq

ω
ct,tx

2
t+xtf1+f2

2k
.D
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However, for any fixed x1, . . . , x̂t, . . . , xn, we have∑
xt∈Zq

ω
ct,tx

2
t+xtf1+f2

2k
= ωf2

2k

∑
xt∈[0:2k−1−1]

ω
ct,tx

2
t+xtf1

2k
+ ω

ct,t(xt+2k−1)2+(xt+2k−1)f1
2k

= ωf2
2k

(
1 + (−1)f1

) ∑
xt∈[0:2k−1−1]

ω
ct,tx

2
t+xtf1

2k
= 0,

since f1 ≡ 1 mod 2. We used (x+ 2k−1)2 ≡ x2 (mod 2k) in the first equality.
Recall that f1 (see (12.23)) is an affine form of {x1, . . . , x̂t, . . . , xn}, that ci,t is

even for all i < t, and that one of {ct,j, ct : j > t} is odd. We consider two cases.
In the first case, ct,j is even for all j > t and ct is odd. Then for any assignment

(x1, . . . , x̂t, . . . , xn) in Zn−1
q , f1 is odd. As a result, by (12.24), Zq(f) is trivially zero.

In the second case, there exists at least one j > t such that ct,j is odd. We let
� > t be the smallest of such j. Then we substitute the variable x� in f with a new
variable x′� over Zq, where (since ct,� is odd, ct,� is invertible in Zq)

(12.25) x� = c−1t,�

⎛⎝2x′� −

⎛⎝∑
i<t

ci,txi +
∑

j>t,j �=�

ct,jxj + ct

⎞⎠⎞⎠ .

Let f ′ denote the new quadratic polynomial in Zq[x1, . . . , x
′
�, . . . , xn]. We claim that

Zq(f
′) = 2 · Zq(f) = 2 ·

∑
x1,...,xn∈Zq

f1≡0 mod 2

ωf(x1,...,xn)
q .

To see it, we define a map from Zn
q to Zn

q : (x1, . . . , x
′
�, . . . , xn) �→ (x1, . . . , x�, . . . , xn),

where x� satisfies (12.25). The range of the map is the set of (x1, . . . , x�, . . . , xn) ∈ Zn
q

such that f1 is even and every such tuple has two preimages in Zn
q . The claim follows.

So to compute Zq(f), we only need to compute Zq(f
′), and the advantage of f ′

∈ Zq[x1, . . . , x
′
�, . . . , xn] over f is the following property that we are going to prove:

(Even) Every cross term and linear term that involves x1, . . . , xt has an even
coefficient in f ′.
To show this, we partition the terms of f ′ that we are interested in into three groups:
cross and linear terms that involve xt; linear terms xs, s < t; and cross terms of the
form xsxs′ , where s < s′, s < t.

First, we consider the expression (12.22) of f after the substitution. The first
term ct,tx

2
t remains the same; the second term xtf1 becomes 2xtx

′
� by (12.25); xt does

not appear in the third term, even after the substitution. So (Even) holds for xt.
Second, we consider the coefficient c′s of the linear term xs in f ′, where s < t.

Only the following terms in f can possibly contribute to c′s:

csxs, c�,�x
2
� , cs,�xsx�, and c�x�.

By the minimality of t, both cs and cs,� are even. For c�,�x
2
� and c�x�, although we do

not know whether c�,� and c� are even or odd, we know that the coefficient −c−1t,� cs,t
of xs in (12.25) is even since cs,t is even. So, every term in the list above makes an
even contribution to c′s and thus c′s is even.

Finally, we consider the coefficient c′s,s′ of the term xsxs′ in f ′, where s < s′ and
s < t. Similarly, only the following terms in f can possibly contribute to c′s,s′ (here
we consider the general case when s′ �= �; the special case when s′ = � is easier):

cs,s′xsxs′ , c�,�x
2
� , cs,�xsx�, and c�,s′x�xs′ (or cs′,�xs′x�).
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By the minimality of t, cs,s′ and cs,� are even. Moreover, the coefficient −c−1t,� cs,t of xs

in (12.25) is even. As a result, every term in the list above makes an even contribution
to c′s,s′ and thus c′s,s′ is even.

To summarize, after substituting x� with x′� using (12.25) we get a new quadratic
polynomial f ′ such that Zq(f

′) = 2Zq(f), and every cross term and linear term that
involves x1, . . . , xt has an even coefficient in f ′. We can then repeat this substitution
procedure on f ′: We either show that Zq(f

′) = 0 or get a quadratic polynomial f ′′

such that Zq(f
′′) = 2Zq(f

′) and the parameter t increases by at least one. So given
a quadratic polynomial f , we can, in polynomial time, either show that Zq(f) = 0 or
get a new quadratic g ∈ Zq[x1, . . . , xn] such that Zq(f) = 2r · Zq(g) for some known
integer r ∈ [0 : n], and every cross term and linear term has an even coefficient in g.

Now it suffices to compute Zq(g). We show that given such a polynomial g in n
variables, we can reduce it to either EVAL(2k−1) = EVAL(q/2) or to the computation
of Zq(g

′), in which g′ is a quadratic polynomial in n− 1 variables. Let

g =
∑

i≤j∈[n]
ai,jxixj +

∑
i∈[n]

aixi + a.

We consider two cases: ai,i is even for all i ∈ [n], or at least one of the ai,i’s is odd. In
the first case, ai,j and ai are even for all i ≤ j ∈ [n]. Let a′i,j and a′i denote integers

in [0 : 2k−1 − 1] that satisfy ai,j ≡ 2a′i,j, ai ≡ 2a′i(mod q), respectively. Then,

Zq(g) = ωa
q ·

∑
x1,...,xn∈Zq

ω
2
(∑

i≤j∈[n] a
′
i,jxixj+

∑
i∈[n] a

′
ixi

)
q = 2n · ωa

q · Z2k−1(g′),

where g′ is the quadratic polynomial over Zq/2 = Z2k−1 in the exponent. This reduces
the computation of Zq(g) to Zq/2(g

′).
In the second case, without loss of generality, we assume a1,1 is odd. Then

f = a1,1(x
2
1 + 2x1g1) + g2 = a1,1(x1 + g1)

2 + g′,

where g1 is an affine form and g2, g
′ are quadratic polynomials, all of which are over

x2, . . . , xn. We are able to do this because a1,j and a1, j ≥ 2, are even. Now

Zq(g) =
∑

x2,...,xn∈Zq

ωg′
q ·

∑
x1∈Zq

ωa1,1(x1+g1)
2

q = Zq(g
′)
∑
x∈Zq

ωa1,1x
2

q .

The last equation is because the sum over x1 ∈ Zq is independent of the value of g1.
This reduces Zq(g) to Zq(g

′) in which g′ is a quadratic polynomial in n− 1 variables.
To sum up, given any quadratic polynomial f , we can, in polynomial time, either

output the correct value of Zq(f) or reduce one of the two parameters, k or n, by at
least one. This gives us a polynomial time algorithm to evaluate Zq(f).

This concludes the proof of Theorem 1.1 for the bipartite case.
Remark 12.10. Back in section 1, we mentioned that Holant(Ω) for Ω = (G,F1

∪F2 ∪ F3) are all tractable, and the tractability boils down to the exponential sum

(12.26)
∑

x1,x2,...,xn∈{0,1}
iL1+L2+ ···+Ls

being computable in polynomial time. This can also be derived from Theorem 12.1.
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First, each mod 2 sum Lj in (12.26) can be replaced by its square (Lj)
2, because

Lj = 0, 1 (mod 2) iff (Lj)
2 = 0, 1 (mod 4), respectively. So, (12.26) can be expressed

as a sum of the form iQ(x1,x2,...,xn), where Q is an ordinary sum of squares of affine
forms with integer coefficients and, in particular, a quadratic polynomial with integer
coefficients. For a sum of squares of affine forms Q, if we evaluate each xi ∈ {0, 1, 2, 3},
we may take xi mod 2, and this reduces (12.26) to EVAL(4):∑

x1,x2,...,xn∈Z4

iQ(x1,x2...,xn) = 2n
∑

x1,x2,...,xn∈{0,1}
iQ(x1,x2,...,xn).

13. Proof of Theorem 6.3. Let A be a symmetric, nonbipartite, and purified
matrix. After collecting its entries of equal norm in decreasing order (by permuting
the rows and columns of A), there exist a positive integer N and two sequences κ
and m such that (A, (N,κ,m)) satisfies the following condition:

(S ′1) A is an m ×m symmetric matrix. κ = (κ1, . . . , κs) is a strictly decreasing
sequence of positive rational numbers, where s ≥ 1. m = (m1, . . . ,ms) is a sequence
of positive integers such that m =

∑
mi. The rows and columns of A are indexed by

x = (x1, x2), where x1 ∈ [s] and x2 ∈ [mx1 ]. For all x,y, A satisfies

Ax,y = A(x1,x2),(y1,y2) = κx1κy1Sx,y,

where S = {Sx,y} is a symmetric matrix in which every entry is a power of ωN :

A =

⎛⎜⎜⎜⎝
κ1Im1

κ2Im2

. . .

κsIms

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
S(1,∗),(1,∗) S(1,∗),(2,∗) . . . S(1,∗),(s,∗)
S(2,∗),(1,∗) S(2,∗),(2,∗) . . . S(2,∗),(s,∗)

...
...

. . .
...

S(s,∗),(1,∗) S(s,∗),(2,∗) . . . S(s,∗),(s,∗)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
κ1Im1

κ2Im2

. . .

κsIms

⎞⎟⎟⎟⎠ ,

where Imi is the mi ×mi identity matrix. We let I = {(i, j) : i ∈ [s], j ∈ [mi]}.
The proof of Theorem 6.3, just like the one of Theorem 5.3, consists of five steps.

All the proofs use the following strategy. We construct from the m×m matrix A its
bipartization A′, a 2m× 2m symmetric matrix. Then we just apply the lemmas for
the bipartite case to A′ and show that A′ is either #P-hard or has certain properties.
Finally, we use these properties of A′ to derive properties of A.

To this end, we need the following lemma.

Lemma 13.1. Let A be a symmetric matrix, and let A′ be its bipartization. Then
EVAL(A′) ≤ EVAL(A).

Proof. Suppose A is an m×m matrix. Let G be a connected undirected graph.
If G is not bipartite, then ZA′(G) is trivially 0, because A′ is the bipartization of A.
Otherwise, assume that G = (U ∪ V,E) is bipartite and connected; let u∗ ∈ U . Then

ZA(G, u∗, i) = ZA′(G, u∗, i) = ZA′(G, u∗,m+ i) for any i ∈ [m].

It then follows that ZA′(G) = 2ZA(G) and EVAL(A′) ≤ EVAL(A).

13.1. Step 2.1.

Lemma 13.2. Suppose that (A, (N,κ,m)) satisfies (S ′1). Then either EVAL(A)
is #P-hard or (A, (N,κ,m)) satisfies the following condition:

(S ′2) For all x,x′ ∈ I, either there exists an integer k such that Sx,∗ = ωk
N · Sx′,∗,

or for every j ∈ [s], 〈Sx,(j,∗),Sx′,(j,∗)〉 = 0.
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Proof. Let A′ be the bipartization of A. Suppose that EVAL(A) is not #P-hard.
From Lemma 13.1, EVAL(A′) ≤ EVAL(A) and thus EVAL(A′) is not #P-hard. Note
that the S matrix in Lemma 8.5 is exactly the same S here. Also (A′, (N,κ,κ,m,m))
satisfies condition (S1), so by Lemma 8.5 together with the assumption that A′ is not
#P-hard, S satisfies (S2) which is exactly the same as (S ′2) here. (For Lemma 8.5,
S also needs to satisfy (S3), but since S is symmetric here, (S3) is the same as
(S2).)

We have the following corollary. The proof is the same as that of Corollary 8.6.
Corollary 13.3. For all i, j ∈ [s], S(i,∗),(j,∗) has the same rank as S.
Next we build a pair (F,D) and apply the cyclotomic reduction lemma on A.
Let h = rank(S). By Corollary 13.3, there exist 1 ≤ i1 < · · · < ih ≤ m1 such that

the {(1, i1), . . . , (1, ih)} × {(1, i1), . . . , (1, ih)} submatrix of S has full rank h (using
the fact that S is symmetric). Without loss of generality (if this is not the case, we
can apply an appropriate permutation Π to the rows and columns of A so that the
new S has this property), assume ik = k for all k ∈ [h]. Let H denote this h × h
symmetric matrix: Hi,j = S(1,i),(1,j). From Corollary 13.3 and Lemma 13.2, for every
index x ∈ I, there exist two unique integers j ∈ [h] and k ∈ [0 : N − 1] such that

(13.1) Sx,∗ = ωk
N · S(1,j),∗ and S∗,x = ωk

N · S∗,(1,j).

This gives us a partition of the index set I

R =
{
R(i,j),k : i ∈ [s], j ∈ [h], k ∈ [0 : N − 1]

}
.

For every x ∈ I, x ∈ R(i,j),k iff i = x1 and x, j, k satisfy (13.1). By Corollary 13.3,⋃
k∈[0:N−1]

R(i,j),k �= ∅ for all i ∈ [s] and j ∈ [h].

Now we define (F,D) and use the cyclotomic reduction lemma and R to show
that EVAL(F,D) ≡ EVAL(A). First, F is an sh× sh matrix. We use I ′ = [s]× [h] to
index the rows and columns of F. Then

Fx,y = κx1κy1Hx2,y2 = κx1κy1S(1,x2),(1,y2) for all x,y ∈ I ′,

or equivalently,

F =

⎛⎜⎜⎜⎝
κ1I

κ2I
. . .

κsI

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
H H . . . H
H H . . . H
...

...
. . .

...
H H . . . H

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
κ1I

κ2I
. . .

κsI

⎞⎟⎟⎟⎠ ,

where I is the h× h identity matrix.
Second, D = (D[0], . . . ,D[N−1]) is a sequence of N diagonal matrices of the same

size as F. We use I ′ to index its diagonal entries. The xth entries are

D[r]
x =

N−1∑
k=0

∣∣R(x1,x2),k

∣∣ · ωkr
N for all r ∈ [0 : N − 1],x ∈ I ′.

We use the cyclotomic reduction lemma (Lemma 8.2) to prove the next lemma.
Lemma 13.4. EVAL(A) ≡ EVAL(F,D).

D
ow

nl
oa

de
d 

07
/3

1/
15

 to
 1

28
.1

05
.1

4.
12

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GRAPH HOMOMORPHISMS WITH COMPLEX VALUES 1015

Proof. Let x,y ∈ I, x ∈ R(x1,j),k and y ∈ R(y1,j′),k′ for some j, k, j′, k′. By (13.1),

Ax,y = κx1κy1Sx,y = κx1κy1S(1,j),(1,j′) · ωk+k′
N = F(x1,j),(y1,j′) · ωk+k′

N .

So A can be generated from F using R. The construction of D implies that D can
be generated from R. The lemma follows from the cyclotomic reduction lemma.

13.2. Steps 2.2 and 2.3. Now we have a pair (F,D) that satisfies the following
condition (Shape′):

(Shape′1) F ∈ Cm×m is a symmetric s× s block matrix. (The m here is different
from the m used in Step 2.1.) We use I = [s]× [h] to index its rows and columns.

(Shape′2) There are a strictly decreasing sequence κ = (κ1, . . . , κs) of positive
rational numbers together with an h× h matrix H of full rank, whose entries are all
powers of ωN , for some N ≥ 1. We have

Fx,y = κx1κy1Hx2,y2 for all x,y ∈ I.

(Shape′3) D = (D[0], . . . ,D[N−1]) is a sequence of N m×m diagonal matrices. D
satisfies (T3), so for all r ∈ [N − 1] and x ∈ I, we have

D[r]
x = D

[N−r]
x .

Now suppose EVAL(F,D) is not #P-hard.

We define (C,D′): C is the bipartization of F; D′ is a sequence of N copies of(
D[r]

D[r]

)
.

The proof of the following lemma is the same as that of Lemma 13.1.

Lemma 13.5. EVAL(C,D′) ≤ EVAL(F,D).

By Lemma 13.5, EVAL(C,D′) ≤ EVAL(F,D) and thus EVAL(C,D′) is not #P-
hard. By (Shape′1)–(Shape

′
3), (C,D′) also satisfies (Shape1)–(Shape3). It then follows

from Lemmas 8.8 and 8.11 that (C,D′) also satisfies (Shape4)–(Shape6). Since (C,D′)
is built from (F,D), the latter must satisfy the following conditions:

(Shape′4) H/
√
h is unitary: 〈Hi,∗,Hj,∗〉 = 〈H∗,i,H∗,j〉 = 0 for all i �= j ∈ [h].

(Shape′5) For all x ∈ I,

D[0]
x = D

[0]
(x1,1)

.

(Shape′6) For each r ∈ [N − 1], there are diagonal matrices K[r] ∈ Cs×s,L[r] ∈
Ch×h. The norm of every diagonal entry in L[r] is either 0 or 1. We have

D[r] = K[r] ⊗ L[r] for all r ∈ [N − 1].

For all r ∈ [N − 1], K[r] = 0 implies L[r] = 0; L[r] �= 0 implies one of its entries is 1.

In particular, (Shape′5) means that by setting

K
[0]
i = D

[0]
(i,1) and L

[0]
j = 1 for all i ∈ [s] and j ∈ [h],

we have D[0] = K[0] ⊗ L[0]. By (T3) in (Shape′3), entries of K
[0] are positive integers.
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13.3. Step 2.4. Suppose (F,D) satisfies (Shape′1)–(Shape
′
6). From (Shape′2) we

have F = M⊗H, where M is an s× s matrix of rank 1: Mi,j = κiκj for all i, j ∈ [s].
We reduce EVAL(F,D) to two problems EVAL(M,K) and EVAL(H,L), where

K =
(
K[0], . . . ,K[N−1]) and L =

(
L[0], . . . ,L[N−1]).

The proof of the following lemma is essentially the same as that of Lemma 8.24.
Lemma 13.6. EVAL(F,D) ≡ EVAL(H,L).
13.4. Step 2.5. Finally we normalize the matrix H in the same way we did for

the bipartite case and obtain a new pair that (1) satisfies conditions (U ′1)–(U ′4) and
(2) is polynomial-time equivalent to EVAL(H,L).

14. Proofs of Theorems 6.4 and 6.7. Suppose ((M,N),F,D) satisfies (U ′1)–
(U ′4). We prove Theorems 6.4 and 6.7 in this section. We first prove that if F does
not satisfy the group condition (GC), then EVAL(F,D) is #P-hard. This is done by
applying Lemma 9.1 (for the bipartite case) to the bipartization C of F.

Lemma 14.1. Suppose ((M,N),F,D) satisfies conditions (U ′1)–(U ′4). Then either
the matrix F satisfies the group condition (GC) or EVAL(F,D) is #P-hard.

Proof. Assume EVAL(F,D) is not #P-hard. Let C and E = (E[0], . . . ,E[N−1]) be

C =

(
0 F
F 0

)
and E[r] =

(
D[r] 0
0 D[r]

)
for all r ∈ [0 : N − 1].

By (U ′1)–(U ′4), ((M,N),C,E) satisfies (U1)–(U4). Furthermore, using Lemma 13.5, we
have EVAL(C,E) ≤ EVAL(F,D) and thus EVAL(C,E) is also not #P-hard. It follows
from Lemma 9.1 that F satisfies the group condition (GC).

14.1. Proof of Theorem 6.4. We prove Theorem 6.4 again, using C and E
again.

Suppose EVAL(F,D) is not #P-hard. On the one hand, EVAL(C,E) ≤ EVAL(F,D)
and EVAL(C,E) is also not #P-hard. On the other hand, ((M,N),C,E) satisfies con-
ditions (U1)–(U4). Thus, using Theorem 5.4, E must satisfy (U5): Every entry of E[r],
r ∈ [N − 1], is either 0 or a power of ωN . It then follows directly that every entry of
D[r], r ∈ [N − 1], is either 0 or a power of ωN .

14.2. Proof of Theorem 6.7. In this section we prove Theorem 6.7. However,
we cannot simply reduce it, using (C,E), to the bipartite case (Theorem 5.6), because
in Theorem 6.7, we are only allowed to permute the rows and columns symmetrically,
while in Theorem 5.6, one can use two different permutations to permute the rows
and columns. But as we will see below, for most of the lemmas we need here, their
proofs are exactly the same as those for the bipartite case. The only exception is
the counterpart of Lemma 9.7, in which we have to bring in the generalized Fourier
matrices (see Definitions 5.5 and 6.6).

Suppose F satisfies (GC). Let FR denote the set of row vectors {Fi,∗} of F and FC

denote the set of column vectors {F∗,j} of F. Since F satisfies (GC), by Property 9.2,
both FR and FC are finite Abelian groups of order m, under the Hadamard product.

We start by proving a symmetric version of Lemma 9.5, stating that when M =
pq and gcd(p, q) = 1 (note that p and q are not necessarily primes), a permutation of
F is the tensor product of two smaller discrete unitary matrices, both of which satisfy
the group condition.

Lemma 14.2. Suppose F ∈ Cm×m is symmetric and M -discrete unitary and
satisfies (GC). Moreover, M = pq, p, q > 1, and gcd(p, q) = 1. Then there is a
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permutation Π of [0 : m − 1] such that FΠ,Π = F′ ⊗ F′′, where F′ is a symmetric
p-discrete unitary matrix, F′′ is a symmetric q-discrete unitary matrix, and both of
them satisfy (GC).

Proof. The proof is almost the same as that of Lemma 9.5. Since F is symmetric
the two bijections f, g that we defined in the proof of Lemma 9.5, from [0 : m− 1] to
[0 : m′ − 1]× [0 : m′′ − 1], are exactly the same.

As a result, we only need to deal with the case when M = pβ is a prime power.
Lemma 14.3. Suppose F ∈ Cm×m is symmetric and M -discrete unitary and

satisfies (GC). Moreover, M = pβ is a prime power, p �= 2, and β ≥ 1. Then there
must exist an integer k ∈ [0 : m− 1] such that p � αk,k, where Fk,k = ω

αk,k

M .
Proof. For i, j ∈ [0 : m− 1], we let αi,j denote the integer in [0 : M − 1] such that

Fi,j = ω
αi,j

M . Assume the lemma is not true, that is, p |αk,k for all k. Then because F
is M -discrete unitary, there must exist i �= j ∈ [0 : m− 1] such that p � αi,j . Without
loss of generality, we assume p � α2,1 = α1,2.

By (GC), there exists a k ∈ [0 : m− 1] such that Fk,∗ = F1,∗ ◦ F2,∗. However,

ω
αk,k

M = Fk,k = F1,kF2,k = Fk,1Fk,2 = F1,1F2,1F1,2F2,2 = ω
α1,1+α2,2+2α1,2

M ,

and αk,k ≡ α1,1+α2,2+2α1,2 (mod M) implies that 0 ≡ 0+0+2α1,2 (mod p). Since
p �= 2 and p � α1,2, we get a contradiction.

The next lemma is the symmetric version of Lemma 9.7 showing that when there
exists a diagonal entry Fk,k such that p � αk,k, F is the tensor product of a Fourier
matrix and a discrete unitary matrix. Note that this lemma also applies to the case
when p = 2. So the only case left is when p = 2 but 2 |αi,i for all i ∈ [0 : m− 1].

Lemma 14.4. Suppose F ∈ Cm×m is symmetric and M -discrete unitary and
satisfies (GC). Moreover, M = pβ is a prime power. If there exists a k ∈ [0 : m − 1]
such that Fk,k = ωα

M and p � α, then there exists a permutation Π such that FΠ,Π =
FM,α ⊗ F′, where F′ is a symmetric and M ′-discrete unitary matrix that satisfies
condition (GC) with M ′ | M .

Proof. The proof is the same as the one of Lemma 9.7 by setting a = b = k. The
only thing to notice is that since F is symmetric, the two bijections f and g that we
defined in the proof of Lemma 9.7 are the same. Thus, the row permutation and the
column permutation applied on F are the same. Since Fk,k = ωα

M , (9.12) becomes

G(x1,x2),(y1,y2) = ωαx1y1

M ·G(0,x2),(0,y2).

This explains why we need to use the Fourier matrix FM,α here.
Finally, we deal with the case when p = 2 and 2 |αi,i for all i ∈ [0 : m− 1].
Lemma 14.5. Suppose F ∈ Cm×m is symmetric and M -discrete unitary and

satisfies (GC) with M = 2β and 2 |αi,i for all i ∈ [0 : m − 1]. Then there exist a
permutation Π and a 2 × 2 symmetric nondegenerate matrix W over ZM (see sec-
tion 6.3.2 and Definition 6.6), such that FΠ,Π = FM,W⊗F′, where F′ is a symmetric,
M ′-discrete unitary matrix that satisfies (GC) with M ′ | M .

Proof. By Property 9.6, there are two integers a �= b such that Fa,b = Fb,a = ωM .
Let Fa,a = ωαa and Fb,b = ωαb . The assumption of the lemma implies that 2 |αa, αb.

We let Sa,b denote the following subset of FR:

Sa,b = {u ∈ FR : ua = ub = 1}.

Clearly Sa,b is a subgroup of FR. On the other hand, let Sa denote the subgroup of
FR that is generated by Fa,∗, and let Sb denote the subgroup generated by Fb,∗:

Sa = {(Fa,∗)
0, (Fa,∗)

1, . . . , (Fa,∗)
M−1} and Sb = {(Fb,∗)

0, (Fb,∗)
1, . . . , (Fb,∗)

M−1}.
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We have |Sa| = |Sb| = M since Fa,b = ωM . It is clear that (u1,u2,u3) �→ u1 ◦u2 ◦u3

is a group homomorphism from Sa × Sb × Sa,b to FR. We show that it is surjective.
Toward this end, we first note that

W =

(
αa 1
1 αb

)
is nondegenerate. This follows from Lemma 6.5, since det(W) = αaαb − 1 is odd.

First, we show that (u1,u2,u3) �→ u1 ◦ u2 ◦ u3 is surjective. This is because for
any u ∈ FR, there exist integers k1 and k2 such that (since W is nondegenerate, by
Lemma 6.5, x �→ Wx is a bijection)

ua = F k1
a,a · F k2

b,a = ωαak1+k2

M and ub = F k1

a,b · F
k2

b,b = ωk1+αbk2

M .

Thus, u ◦ Fk1
a,∗ ◦ Fk2

b,∗ ∈ Sa,b. It follows that u = Fk1
a,∗ ◦ Fk2

b,∗ ◦ u3 for some u3 ∈ Sa,b.
Second, we show that it is also injective. Assume this is not the case. Then there

exist k1, k2, k
′
1, k
′
2 ∈ ZM , and u,u′ ∈ Sa,b such that (k1, k2,u) �= (k′1, k

′
2,u
′) but

(Fa,∗)
k1 ◦ (Fb,∗)

k2 ◦ u = (Fa,∗)
k′
1 ◦ (Fb,∗)

k′
2 ◦ u′.

If k1 = k′1 and k2 = k′2, then u = u′, contradiction. Therefore, we may assume that

� = (�1, �2)
T = (k1 − k′1, k2 − k′2)

T �= 0.

By restricting on the ath and bth entries, we get W� = 0. This contradicts the fact
that W is nondegenerate.

Since (u1,u2,u3) �→ u1 ◦u2 ◦u3 is a group isomorphism, we have |Sa,b| = m/M2,
which we denote by n. Let Sa,b = {v0 = 1,v1, . . . ,vn−1}. There is a bijection f from
[0 : m− 1] to [0 : M − 1]× [0 : M − 1]× [0 : n− 1], f(i) = (f1(i), f2(i), f3(i)), with

(14.1) Fi,∗ = (Fa,∗)
f1(i) ◦ (Fb,∗)

f2(i) ◦ vf3(i) for all i ∈ [0 : m− 1].

Since F is symmetric, this also implies that

(14.2) F∗,j = (F∗,a)
f1(j) ◦ (F∗,b)f2(j) ◦ vf3(j) for all j ∈ [0 : m− 1].

Note that f(a) = (1, 0, 0) and f(b) = (0, 1, 0).
Next we permute F to get a new matrix G. For convenience, we use (x1, x2, x3),

where x1, x2 ∈ [0 : M − 1] and x3 ∈ [0 : n− 1], to index the rows and columns of G.
We permute F using Π(x1, x2, x3) = f−1(x1, x2, x3):

(14.3) G(x1,x2,x3),(y1,y2,y3) = FΠ(x1,x2,x3),Π(y1,y2,y3).

Then by (14.1) and (14.2),

G(x1,x2,x3),∗ = (G(1,0,0),∗)
x1 ◦ (G(0,1,0),∗)

x2 ◦G(0,0,x3),∗ and

G∗,(y1,y2,y3) = (G∗,(1,0,0))
y1 ◦ (G∗,(0,1,0))y2 ◦G∗,(0,0,y3).

As a result,

G(x1,x2,x3),(y1,y2,y3) = (G(1,0,0),(y1,y2,y3))
x1(G(0,1,0),(y1,y2,y3))

x2 G(0,0,x3),(y1,y2,y3).
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We analyze the three factors. First, we have

G(1,0,0),(y1,y2,y3) = F y1
a,a · F

y2

a,b · vy3,a = ωαay1+y2

M ,

where vy3,a is the ath entry of vy3 . Similarly, G(0,1,0),(y1,y2,y3) = ωy1+αby2

M . Second,

G(0,0,x3),(y1,y2,y3) = (G(0,0,x3),(1,0,0))
y1(G(0,0,x3),(0,1,0))

y2 G(0,0,x3),(0,0,y3).

By (14.3) and (14.2) we have

G(0,0,x),(1,0,0) = FΠ(0,0,x),Π(1,0,0) = FΠ(0,0,x),a .

Then by (14.1), FΠ(0,0,x),a = vx,a = 1. Similarly, G(0,0,x),(0,1,0) = vx,b = 1. Therefore,

G(x1,x2,x3),(y1,y2,y3) = ωαax1y1+x1y2+x2y1+αbx2y2

M ·G(0,0,x3),(0,0,y3).

So G = FM,W ⊗ F′; F′ ≡ (F ′i,j = G(0,0,i),(0,0,j)) is symmetric; W is nondegenerate.
The only thing left is to show F′ is discrete unitary and satisfies (GC). F′ satisfies

(GC) because Sa,b is a group and thus is closed under the Hadamard product. To see
that F′ is discrete unitary, we have

0 = 〈G(0,0,i),∗,G(0,0,j),∗〉 = M2 · 〈F′i,∗,F′j,∗〉 for any i �= j ∈ [0 : n− 1].

Since F′ is symmetric, columns F′∗,i and F′∗,j are also orthogonal.
Theorem 6.7 then follows from Lemmas 14.3, 14.4, and 14.5.

15. Proofs of Theorems 6.8 and 6.9. Suppose ((M,N),F,D,(d,W ,p, t,Q,K))
satisfies condition (R′). We prove Theorem 6.8: either EVAL(F,D) is #P-hard or D
satisfies conditions (L′1) and (L′2).

Suppose EVAL(F,D) is not #P-hard. We use (C,E) to denote the bipartization
of (F,D). The plan is to show that (C,E) with appropriate p′, t′, and Q′ satisfies (R).

To see this, we permute C and E using the following permutation Σ. We index
the rows and columns of C and E[r] using {0, 1}×Z2

d×ZQ. We set Σ(1,y) = (1,y) for
all y ∈ Z2

d × ZQ, that is, Σ fixes pointwise the second half of the rows and columns,
and Σ(0,x) = (0,x′), where x′ satisfies

x0,i,1 = W
[i]
1,1x

′
0,i,1 +W

[i]
2,1x

′
0,i,2, x0,i,2 = W

[i]
1,2x

′
0,i,1 +W

[i]
2,2x

′
0,i,2 for all i ∈ [g],

and x1,i,j = ki,j · x′1,i,j for all i ∈ [s], j ∈ [ti]. See (R′) for the definitions of these
symbols.

Before proving properties of CΣ,Σ and EΣ, we need to verify that Σ is indeed a
permutation. This follows from the fact that W[i], for every i ∈ [g], is nondegenerate
over Zdi , and ki,j for all i ∈ [s] and j ∈ [ti] satisfies gcd(ki,j , qi,j) = 1 (so x′ above is
unique). We use Σ0 to denote the (0, ∗)-part of Σ and I to denote the identity map:

Σ(0,x) = (0,Σ0(x)) = (0,x′) for all x ∈ Z2
d × ZQ.

Now we can write CΣ,Σ and EΣ = (E
[0]
Σ , . . . ,E

[N−1]
Σ ) as

(15.1) CΣ,Σ =

(
0 FΣ0,I

FI,Σ0 0

)
and E

[r]
Σ =

(
D

[r]
Σ0

0

0 D[r]

)
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for all r ∈ [0 : N − 1]. We make the following two observations: Observation 1:
EVAL(CΣ,Σ,EΣ) ≡ EVAL(C,E) ≤ EVAL(F,D) and thus EVAL(CΣ,Σ,EΣ) is not #P-
hard. Observation 2: FΣ0,I satisfies(

FΣ0,I

)
x,y

= Fx′,y =
∏
i∈[g]

ω
(x′

0,i,1 x′
0,i,2)·W

[i]·(y0,i,1 y0,i,2)
T

di

∏
i∈[s],j∈[ti]

ω
ki,j ·x′

1,i,jy1,i,j

qi,j

=
∏
i∈[g]

ω
x0,i,1y0,i,1+x0,i,2y0,i,2

di

∏
i∈[s],j∈[ti]

ωx1,i,jy1,i,j
qi,j .

By Observation 2, it is easy to show that CΣ,Σ and EΣ (together with appropriate
q′, t′,Q′) satisfy condition (R). Since EVAL(CΣ,Σ,EΣ) by Observation 1 is not #P-
hard, it follows from Theorem 5.8 and (15.1) that D[r] satisfy (L2) and (L3). This
proves Theorem 6.8 since (L′1) and (L′2) follow from (L2) and (L3), respectively.

We continue to prove Theorem 6.9. Suppose EVAL(F,D) is not #P-hard. Then
the argument above shows that (CΣ,Σ,EΣ) (with appropriate p′, t′,Q′) satisfies both
(R) and (L). Since by Observation 1, EVAL(CΣ,Σ,EΣ) is not #P-hard, by Theorem
5.9 and (15.1), D[r] satisfies (D2) and (D4) for all r ∈ Z. (D′1) follows from (D2).

To prove (D′2), let F′ = FΣ0,I . By (D4), for any r ∈ Z, k ∈ [s] and a ∈ Γlin
r,k, there

exist b ∈ Z̃qk
and α ∈ ZN such that

ωα
N · F ′

b̃,x
= D

[r]
x+ã ·D

[r]
x for all x ∈ Γr, where F′

b̃,∗ = FΣ0(b̃),∗.

Since Σ0 works within each prime factor, there exists a b′ ∈ Z̃qk
such that Σ0(b̃) = b̃′

and (D′2) follows.
16. Tractability: Proof of Theorem 6.10. The proof of Theorem 6.10 is si-

milar to that of Theorem 5.10 for the bipartite case presented in section 12.
Let ((M,N),F,D, (d,W ,p, t,Q,K)) be a tuple that satisfies (R′), (L′), and (D′).

The proof has two steps. First we use (R′), (L′), (D′) to decompose EVAL(F,D) into
s subproblems (recall s is the length of the sequence p), denoted by EVAL(F[i],D[i]),
i ∈ [s], such that if every EVAL(F[i],D[i]) is tractable, then so is EVAL(F,D). Second,
we reduce each EVAL(F[i],D[i]) to EVAL(π) for some prime power π.

By Theorem 12.1, EVAL(π) can be solved in polynomial time for any fixed prime
power π. Thus, EVAL(F[i],D[i]) is tractable for all i ∈ [s], and so is EVAL(F,D).

16.1. Step 1. Fix i to be any index in [s]. We start by defining F[i] and D[i].
Recall the definition of Z̃qi from section 6.3.3. For any x ∈ Z̃qi , we use x̃ ∈

∏s
j=1 Z̃qj

to denote the vector such that (x̃)i = x and (x̃)j = 0 for all j �= i.
F[i] is an mi ×mi symmetric matrix, where mi = |Z̃qi |. We use Z̃qi to index the

rows and columns of F[i]. Then

F [i]
x,y = Fx̃,ỹ for all x,y ∈ Z̃qi .

By condition (R′3), it is easy to see that

(16.1) F = F[1] ⊗ . . .⊗ F[s].

D[i] = (D[i,0], . . . ,D[i,N−1]) is a sequence of mi ×mi diagonal matrices: D[i,0] is
the mi ×mi identity matrix; for every r ∈ [N − 1], the xth entry of D[i,r] is

D[i,r]
x = D

[r]
extr(x)

for all x ∈ Z̃qi .
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By condition (D′1), we have

(16.2) D[r] = D[1,r] ⊗ . . .⊗D[s,r] for all r ∈ [0 : N − 1].

It then follows from (16.1) and (16.2) that

ZF,D(G) = ZF[1],D[1](G)× . . .× ZF[s],D[s](G)

for all graphs G. As a result, we have the following lemma.
Lemma 16.1. If EVAL(F[i],D[i]) is tractable for all i ∈ [s], then EVAL(F,D) is

also tractable.
Recall that Z is the set of r ∈ [N −1] such that D[r] �= 0; Γr,i is a coset in Z̃qi for

each i ∈ [s] such that Γr = Γr,1 × · · · × Γr,s. We use (D′2) to prove the next lemma.

Lemma 16.2. Given r ∈ Z, i ∈ [s], a ∈ Γlin
r,i, there are b ∈ Z̃qi , α ∈ ZN such that

D
[i,r]
x+a ·D

[i,r]
x = ωα

N · F [i]
b,x for all x ∈ Γr,i.

Proof. By the definition of D[i,r], we have

D
[i,r]
x+a ·D

[i,r]
x = D

[r]
extr(x+a) ·D

[r]
extr(x)

= D
[r]
extr(x)+ã ·D

[r]
extr(x)

.

Then by condition (D′2), we know there exist b ∈ Z̃qi and α ∈ ZN such that

D
[i,r]
x+a ·D

[i,r]
x = ωα

N · Fb̃,extr(x)
= ωα

N · F [i]
b,x for all x ∈ Γr,i,

and the lemma is proved.

16.2. Step 2. For convenience, we let EVAL(F,D) denote one of the problems
EVAL(F[i],D[i]) we defined in the last step. By conditions (R′), (L′), (D′) and Lemma
16.2, we summarize the properties of (F,D) as follows. We will use these properties
to show that EVAL(F,D) is tractable.

(F ′1) There is a prime p and a nonincreasing sequence π = (π1, . . . , πh) of powers
of p. F is an m×m symmetric matrix, where m = π1 . . . πh. We let π denote π1 and
use Zπ ≡ Zπ1 × · · · × Zπh

to index the rows and columns of F. We also let T denote
the set of pairs (i, j) ∈ [h]× [h] such that πi = πj . Then there exist ci,j ∈ Zπi = Zπj ,
for all (i, j) ∈ T , such that ci,j = cj,i and

Fx,y =
∏

(i,j)∈T
ωci,jxiyj
πi

for all x = (x1, . . . , xh), y = (y1, . . . , yh) ∈ Zπ,

where xi ∈ Zπi denotes the ith entry of x. We express F in this very general form to
unify the proofs for the two slightly different cases: (F[1],D[1]) and (F[i],D[i]), i ≥ 2.

(F ′2) D = (D[0], . . . ,D[N−1]) is a sequence of N m ×m diagonal matrices, where
N ≥ 1 and π |N . D[0] is the identity matrix; every diagonal entry of D[r], r ∈ [N − 1]
is either 0 or a power of ωN . We also use Zπ to index the diagonal entries of D[r].

(F ′3) For every r ∈ [0 : N − 1], let Γr denote the set of x ∈ Zπ such that the xth
entry of D[r] is nonzero, and let Z denote the set of r such that Γr �= ∅. For every
r ∈ Z, Γr is a coset in Zπ. Moreover, for every r ∈ Z, there is a vector a[r] ∈ Γr such
that the (a[r])th entry of D[r] is 1.

(F ′4) For all r ∈ Z and a ∈ Γlin
r , there exist b ∈ Zπ and α ∈ ZN such that

D
[r]
x+a ·D

[r]
x = ωα

N · Fb,x for all x ∈ Γr.
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Let G be an undirected graph. Below we reduce the computation of ZF,D(G) to
EVAL(π̂), where π̂ = π if p �= 2 and π̂ = 2π if p = 2. Given a ∈ Zπi for some i ∈ [h],
we use â to denote an element in Zπ̂ such that â ≡ a (mod πi). For definiteness we
can choose a itself if we consider a to be an integer between 0 and πi − 1.

Let G = (V,E). We let Vr, r ∈ [0 : N − 1], denote the set of vertices in V
whose degree is r mod N . We decompose E into Ei,j , i ≤ j ∈ [0 : N − 1], where Ei,j

contains the set of edges between Vi and Vj . Clearly, if Vr �= ∅ for some r /∈ Z, then
ZF,D(G) is trivially 0. Thus, we assume Vr = ∅ for all r /∈ Z. In this case, we have

ZF,D(G) =
∑
ξ

[∏
r∈Z

∏
v∈Vr

D[r]
xv

]⎡⎣ ∏
r≤r′∈Z

∏
uv∈Er,r′

Fxu,xv

⎤⎦ ,
where the sum ranges over all assignments ξ = (ξr : Vr → Γr | r ∈ Z) with ξ(v) = xv.

By Lemma 12.4, we know that for every r ∈ Z, there exist a positive integer sr
and an sr × h matrix A[r] over Zπ̂ that give us a uniform map γ[r] (see Lemma 12.4
for the definition) from Zsr

π̂ to Γr:

γ
[r]
i (x) =

(
xA

[r]
∗,i + â

[r]
i (mod πi)

)
for all i ∈ [h].

For every r ∈ Z, we have γ[r](0) = a[r] ∈ Γr. Since γ[r] is uniform and we know the
multiplicity of this map, in order to compute ZF,D(G) it suffices to compute

∑
(xv)

[∏
r∈Z

∏
v∈Vr

D
[r]

γ[r](xv)

]⎡⎣ ∏
r≤r′∈Z

∏
uv∈Er,r′

Fγ[r](xu),γ[r′](xv)

⎤⎦ ,
where the sum is over(

xv ∈ Zsr
π̂ : v ∈ Vr, r ∈ Z

)
=
∏
r∈Z

(Zsr
π̂ )|Vr |.

If for every r ∈ Z, there is a quadratic polynomial f [r] over Zπ̂ such that

(16.3) D
[r]

γ[r](x)
= ω

f [r](x)
π̂ for all x ∈ Zsr

π̂ ,

and for all r, r′ : r ≤ r′ ∈ Z, there is a quadratic polynomial f [r,r′] over Zπ̂ such that

(16.4) Fγ[r](x),γ[r′](y) = ω
f [r,r′](x,y)
π̂ for all x ∈ Zsr

π̂ and y ∈ Z
sr′
π̂ ,

then we can reduce the computation of ZF,D(G) to EVAL(π̂) and finish the proof.
First, we deal with (16.4). By (F ′1), the following function satisfies (16.4):

f [r,r′](x,y) =
∑

(i,j)∈T
ci,j

π̂

πi
γ
[r]
i (x)γ

[r′]
j (y) =

∑
(i,j)∈T

ĉi,j
π̂

πi

(
xA

[r]
∗,i + â

[r]
i

)(
yA

[r′]
∗,j + â

[r′]
j

)
.

Note that (i, j) ∈ T implies that πi = πj and thus

γ
[r]
i (x), γ

[r′]
j (y) ∈ Zπi = Zπj .

To be able to substitute the (mod πi) expressions for γ
[r]
i (x) and γ

[r′]
j (y), the presence

of π̂/πi is crucial. It is also clear that this is a quadratic polynomial over Zπ̂.
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Next we prove the existence of the quadratic polynomial f [r]. Let us fix r to be
an index in Z. We use ei for each i ∈ [sr] to denote the unit vector in Zsr

π̂ whose ith
entry is 1 and whose other entries are 0. Using (F ′4), we know that for every i ∈ [sr],
there exist αi ∈ ZN and bi = (bi,1, . . . , bi,h) ∈ Zπ, where bi,j ∈ Zπj , such that

D
[r]

γ[r](x+ei)
·D[r]

γ[r](x)
= ωαi

N ·
∏
j∈[h]

ω
bi,j ·γ[r]

j (x)
πj for all x ∈ Zsr

π̂ ,

because γ[r](x+ ei)− γ[r](x) is a vector in Zπ that is independent of x.
With the same argument used in the proof of Theorem 5.10 ((12.14) and (12.15)),

ωαi

N must be a power of ωπ̂ for all i ∈ [sr]. As a result, there exists βi ∈ Zπ̂ such that

(16.5) D
[r]

γ[r](x+ei)
·D[r]

γ[r](x)
= ωβi

π̂ ·
∏
j∈[h]

ω
bi,j ·γ[r]

j (x)
πj for all x ∈ Zsr

π̂ .

By the argument used in the proof of Theorem 5.10, every nonzero entry of D[r]

is a power of ωπ̂. As a result, there exists a function f [r] from Zsr
π̂ to Zπ̂ that satisfies

(16.3). To see that f [r] is indeed a quadratic polynomial, by (16.5), we have

f [r](x+ ei)− f [r](x) = βi +
∑
j∈[h]

(
b̂i,j

π̂

πj

(
xA

[r]
∗,j + â

[r]
j

))
for all i ∈ [sr],x ∈ Zsr

π̂ ,

which is an affine linear form of x with all coefficients from Zπ̂ .
By using Lemmas 12.5 and 12.6, we know that f [r] is a quadratic polynomial over

Zπ̂, and this finishes the reduction from EVAL(F,D) to EVAL(π̂).

17. Decidability in polynomial time: Proof of Theorem 1.2. Finally, we
prove Theorem 1.2, i.e., the following decision problem is computable in polynomial
time: Given a symmetric A ∈ Cm×m in which every entry Ai,j is algebraic, decide if
EVAL(A) is tractable or is #P-hard.

We follow the model of computation discussed in section 2.2. Let

A = {Ai,j : i, j ∈ [m]} = {aj : j ∈ [n]}

for some n ≥ 1 and let α be a primitive element of Q(A ). Thus, Q(A ) = Q(α).
The input of the problem consists of the following three parts:
1. a minimal polynomial F (x) ∈ Q[x] of α;
2. a rational approximation α̂ that uniquely determines α as a root of F (x);
3. the standard representation of Ai,j with respect to α and F (x), i, j ∈ [m].

The input size of the decision problem is then the length of the binary string needed
to describe all these three parts.

Given A, we follow the proof of Theorem 1.1 as follows. First by Lemma 4.6, we
can assume without loss of generality that A is connected. Then we follow the proof
sketch described in sections 5 and 6, depending on whether the matrix A is bipartite
or nonbipartite. We assume that A is connected and bipartite below. The proof for
the nonbipartite case is similar.

17.1. Step 1. We show that either EVAL(A) is #P-hard or we can construct a
purified matrix A′ such that EVAL(A) ≡ EVAL(A′) and then pass A′ down to Step
2. We follow the proof of Theorem 5.2. First, we prove that given A , a generating
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set G ⊂ Q(A ) of A can be computed in polynomial time. Recall the definition of a
generating set from Definition 7.2. We denote the input size as m̂. Thus, m̂ ≥ m.

Theorem 17.1. Given a finite set of nonzero algebraic numbers A (under the
model of computation described in section 2.2), one can in polynomial time (in m̂)
find (1) a generating set G = {g1, . . . , gd} of A and (2) for every number a ∈ A the
unique tuple (k1, . . . , kd) ∈ Zd such that a/(gk1

1 · · · gkd

d ) is a root of unity.
We start the proof with the following lemma.
Lemma 17.2. Let

L =
{(

x1, . . . , xn

)
∈ Zn

∣∣∣ ax1
1 · · · axn

n = 1
}
.

Let S be the Q-span of L, and let L′ = Zn ∩ S. Then

(17.1) L′ =
{(

x1, . . . , xn

)
∈ Zn

∣∣∣ ax1
1 · · ·axn

n is a root of unity
}
.

Proof. Clearly L is a lattice, being a discrete subgroup of Zn. Also L′ is a lattice,
and L ⊆ L′. Suppose (x1, . . . , xn) ∈ Zn is in the lattice in (17.1). Then there exists a
nonzero integer � such that (ax1

1 · · · axn
n )� = 1. As a result, �(x1, . . . , xn) ∈ L and thus

(x1, . . . , xn) ∈ S, the Q-span of L.
Conversely, if dim(L) = 0, then L = {(0, . . . , 0)} = S = L′. Suppose dim(L) > 0,

and we let b1, . . . ,bt be a basis for L, where t ∈ [n]. Let (x1, . . . , xn) ∈ Zn ∩ S; then
there exist rational numbers r1, . . . , rt such that (x1, . . . , xn) =

∑t
i=1 ribi. We have

ax1
1 · · · axn

n =
n∏

j=1

a
∑t

i=1 ribi,j
j .

Let N be a positive integer such that Nri is an integer for i ∈ [t]. Then

(
ax1
1 · · · axn

n

)N
=

t∏
i=1

⎛⎝ n∏
j=1

a
bi,j
j

⎞⎠Nri

= 1.

Thus ax1
1 · · · axn

n is a root of unity and (x1, . . . , xn) is in the lattice in (17.1).
To prove Theorem 17.1, we will also need the following theorem by Ge [19, 20].
Theorem 17.3 (see [19, 20]). Given a finite set of nonzero algebraic numbers

A = {a1, . . . , an} (under the model of computation described in section 2.2), one can
in polynomial time find a lattice basis for the lattice L given by

L =
{
x =

(
x1, . . . , xn

)
∈ Zn

∣∣∣ ax1
1 · · · axn

n = 1
}
.

Proof of Theorem 17.1. Conceptually this is what we will do: We first use Ge’s
algorithm to compute a basis for L. Then we show how to compute a basis for L′

efficiently. Finally, we compute a basis for Zn/L′. This basis for Zn/L′ will define
our generating set for A .

More precisely, given the set A = {a1, . . . , an}, we let κ = {k1, . . . ,kt} denote
the lattice basis for L found by Ge’s algorithm [19, 20], where 0 ≤ t ≤ n. This basis
has polynomially many bits in each integer entry ki,j . Here are two easy cases:

1. If t = 0, then we can take gi = ai as the generators, 1 ≤ i ≤ n. There is no
nontrivial relation ak1

1 · · · akn
n = a root of unity for any (k1, . . . , kn) ∈ Zn other than

0; otherwise a suitable nonzero integer power gives a nontrivial lattice point in L.
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2. If t = n, then S = Qn and L′ = Zn; hence every ai is a root of unity. In this
case, the empty set is a generating set for A .

Assume 0 < t < n. We will compute from the basis κ a basis β for L′ = Zn ∩ S,
where S is the Q-span of L; then we compute a basis γ for the quotient lattice Zn/L′.
Both lattice bases γ and β will have polynomially many bits in each integer entry.

Before showing how to compute β and γ, it is clear that dimL′ = dimL = t and
dim(Zn/L′) = n− t. Let

γ =
{
x1, . . . ,xn−t

}
and β =

{
y1, . . . ,yt

}
.

We define the following set {g1, . . . , gn−t} from γ as follows:

gj = a
xj,1

1 a
xj,2

2 · · · axj,n
n , where xj = (xj,1, xj,2, . . . , xj,n).

We check that {g1, . . . , gn−t} is a generating set of A . Clearly, being exponentials, all
gj �= 0. Suppose for some (c1, . . . , cn−t) ∈ Zn−t, gc11 · · · gcn−t

n−t is a root of unity. Since

gc11 gc22 · · · gcn−t

n−t = a
∑n−t

j=1 cjxj,1

1 a
∑n−t

j=1 cjxj,2

2 · · ·a
∑n−t

j=1 cjxj,n

n ,

we have ⎛⎝n−t∑
j=1

cjxj,1,

n−t∑
j=1

cjxj,2, . . . ,

n−t∑
j=1

cjxj,n

⎞⎠ =

n−t∑
j=1

cjxj ∈ L′.

It follows that cj = 0 for all j ∈ [n− t].
On the other hand, by the definition of Zn/L′, for every (k1, . . . , kn) ∈ Zn, there

exists a unique sequence of integers c1, . . . , cn−t ∈ Z such that

(k1, . . . , kn)−
n−t∑
j=1

cjxj ∈ L′.

In particular, for ei = (0, . . . , 1, . . . , 0), where there is a single 1 in the ith position,
there exist integers ci,j , i ∈ [n] and j ∈ [n− t], such that

ei −
n−t∑
j=1

ci,jxj ∈ L′.

As a result, we have

ai

a
∑n−t

j=1 ci,jxj,1

1 a
∑n−t

j=1 ci,jxj,2

2 · · ·a
∑n−t

j=1 ci,jxj,n

n

=
ai

g
ci,1
1 · · · gci,n−t

n−t

is a root of unity. This completes the construction of a generating set G for A . In
the following, we compute the bases γ and β in polynomial time, given κ.

First, we may change the first vector k1 = (k1,1, . . . , k1,n) in κ to be a primitive
vector, meaning that gcd(k1,1, . . . , k1,n) = 1, by factoring out the gcd. If the gcd is
greater than 1, then this changes the lattice L, but it does not change the Q-span S
and thus there is no change to L′.

In addition, there exists a unimodular matrix M1 such that(
k1,1, . . . , k1,n

)
M1 =

(
1, 0, . . . , 0

)
∈ Zn.
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This is just the extended Euclidean algorithm. (An integer matrix M1 is unimodular
iff its determinant is ±1 or, equivalently, it has an integral inverse matrix.)

Now consider the t× n matrix⎛⎜⎝u1,1 . . . u1,n

...
. . .

...
ut,1 . . . ut,n

⎞⎟⎠ =

⎛⎜⎝k1,1 . . . k1,n
...

. . .
...

kt,1 . . . kt,n

⎞⎟⎠M1.

This is also an integral matrix as M1 is integral. Moreover its first row is (1, 0, . . . , 0).
We may perform row transformations to make u2,1 = 0, . . . , ut,1 = 0. Performing the
same transformations on the right-hand side replaces the basis κ by another basis for
the same lattice, and L′ is unchanged. We still use κ = {k1, . . . ,kt} to denote this
new basis.

Next, consider the entries u2,2, . . . , u2,n. If gcd(u2,2, . . . , u2,n) > 1 we may divide
out this gcd. Since the second row satisfies(

k2,1, k2,2, . . . , k2,n
)
=
(
0, u2,2, . . . , u2,n

)
M−11 ,

this gcd must also divide k2,1, k2,2, . . . , k2,n. (In fact, this is also the gcd of (k2,1, k2,2,
. . . , k2,n).) This division updates the basis κ by another basis, which changes the
lattice L, but still it does not change the Q-span S and thus the lattice L′ remains
unchanged. We continue to use the same κ to denote this updated basis.

For the same reason, there exists an (n− 1)× (n− 1) unimodular M′ such that(
u2,2, . . . , u2,n

)
M′ =

(
1, 0, . . . , 0

)
∈ Zn−1.

Append a 1 at the (1, 1) position. This defines a second n×n unimodular matrix M2

such that we may update the matrix equation as follows:⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0
0 1 0 . . . 0
0 u3,2 u3,3 . . . u3,n

...
...

...
. . .

...
0 ut,2 ut,3 . . . ut,n

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎝k1,1 . . . k1,n
...

. . .
...

kt,1 . . . kt,n

⎞⎟⎠M1M2.

Now we may kill off the entries u3,2, . . . , ut,2, accomplished by row transformations
which do not change L or L′. It follows that we can finally find a unimodular matrix
M∗ such that the updated κ satisfies

(17.2)

⎛⎜⎝k1,1 . . . k1,n
...

. . .
...

kt,1 . . . kt,n

⎞⎟⎠M∗ =

⎛⎜⎜⎜⎝
1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0

⎞⎟⎟⎟⎠ .

The right-hand side is the t× t identity matrix It with an all-zero t× (n− t) matrix
appended. The updated κ here is a lattice basis for a lattice L̂ which has the same
Q-span S as L. It is also a full-dimensional sublattice of (the unchanged) L′.

We claim this updated κ = {k1, . . . ,kt} is actually a lattice basis for L′ and thus
L̂ = L′. Assume for some rational numbers r1, . . . , rt the vector

∑t
i=1 riki ∈ Zn.

Then multiplying (r1, . . . , rt) to the left in (17.2) implies that r1, . . . , rt are integers.
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This completes the computation of a basis for L′. As the only operations we perform
are Gaussian eliminations and gcd computations, this is in polynomial time, and the
number of bits in every entry is always polynomially bounded.

Finally we describe the computation of a basis for the quotient lattice Zn/L′.
We start with a basis κ for L′ as computed above and extend it to a basis for

Zn. The extended part will then be a basis for Zn/L′. Suppose that we are given the
basis κ for L′ together with a unimodular matrix M∗ satisfying (17.2). Then consider
the n× n matrix (M∗)−1. Since (M∗)−1 = In(M

∗)−1, the first t rows of (M∗)−1 are
precisely the κ matrix. We define the basis for Zn/L′ to be the last n− t row vectors
of (M∗)−1. It can be easily verified that this is a lattice basis for Zn/L′.

With Theorem 17.1, we can now follow the proof of Theorem 5.2. By using the
generating set, we construct the matrix B as in section 7.2. Every entry of B is the
product of a nonnegative integer and a root of unity with EVAL(A) ≡ EVAL(B).

We then check whether B′, where B′i,j = |Bi,j | for all i, j, satisfies the conditions
imposed by the dichotomy theorem of Bulatov and Grohe. (Note that every entry of
B′ is a nonnegative integer.) If B′ does not satisfy, then EVAL(B′) is #P-hard, and
so is EVAL(A) by Lemma 7.5. Otherwise, B must be a purified matrix, and we pass
it down to the next step.

17.2. Step 2. We follow the proof of Theorem 5.3. After rearranging the rows
and columns of the purified matrix B, we check the orthogonality condition imposed
by Lemma 8.5. If B satisfies the orthogonality condition, we can use the cyclotomic
reduction to construct efficiently a pair (C,D) from B, which satisfies the conditions
(Shape1), (Shape2), (Shape3) and satisfies EVAL(B) ≡ EVAL(C,D).

Next, we check whether the pair (C,D) satisfies (Shape4) and (Shape5). If either
of these two conditions is not satisfied, EVAL(C,D) is #P-hard, and so is EVAL(B).
Finally we check the rank-1 condition, which implies (Shape6), as imposed by Lemma
8.12 on (C,D). With (Shape1)–(Shape6), we follow section 8.6 to construct a tuple
((M, 2N),X,Y′) that satisfies (U1)–(U4), and EVAL(C,D) ≡ EVAL(X,Y′). We then
pass the tuple ((M, 2N),X,Y′) down to Step 3.

17.3. Step 3. We follow Theorems 5.4, 5.6, 5.8, and 5.9. First, (U5) in Theorem
5.4 can be verified efficiently. In Theorem 5.6, we need to check if the matrix F has
a Fourier decomposition, after an appropriate permutation of its rows and columns.
This decomposition, if F has one, can be computed efficiently by first checking the
group condition in Lemma 9.1 and then following the proofs of both Lemma 9.5 and
Lemma 9.7. Finally, it is easy to see that all the conditions imposed by Theorems 5.8
and 5.9 can be checked in polynomial time.

If A and other matrices, pairs, or tuples derived from A satisfy all the conditions
in these three steps, then by the tractability part of the dichotomy theorem, EVAL(A)
is solvable in polynomial time. From this, we obtain the polynomial-time decidability
of the complexity dichotomy, and Theorem 1.2 is proved.
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