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Entscheidungsproblem

The rigorous foundation of Computability Theory was

established in the 1930s, . . .

Answering a question of Hilbert
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Computable yet Not Efficiently Computable

Given N , how fast can one factor it?

N = 577207212969718332037857911728272431?
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N ′ = 13756295877065550723286378713930120642244218835580062

5186902271294765416798340629392379444118675259?
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N = 9361973132609× 61654440233248340616559
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N
′

= 1471865453993855302660887614137521979×

93461639715357977769163558199606896584051237541638188580280321
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P and NP

P is deterministic polynomial time.

e.g. Determinant, Graph Matching (monomer-dimer

problem), Max-Flow Min-Cut.

NP is non-deterministic polynomial time.

For any given instance x, it is a Yes instance iff there is a

short proof which can be checked in P.

e.g. SATisfiability, Graph 3-Coloring, Hamiltonian

Circuit, Clique, Vertex Cover, Traveling Salesman, etc.

Also, Factoring, Graph Isomorphism, etc.

Analogues of recursive and r.e.
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The P vs. NP Question

It is generally conjectured that many combinatorial

problems in the class NP are not computable in

polynomial time.

Conjecture: P 6= NP.

P =? NP is: Is there a universal and efficient method to

discover a mathematical proof when one exists?

Can “clever guesses” be systematically eliminated?

This is the analogue of 0 6= 0′.
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What a topologist has to say

For the pure mathematician the boundary that Gödel

delineated between decidable and undecidable, recursive

and nonrecursive, has an attractive sharpness that

declares itself as a phenomenon of absolutes. In contrast,

the complexity classes of computer science for example P

and NP require an asymptotic formulation and . . . demand

a bit of patience before their fundamental character is

appreciated.

— Michael Freedman
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#P

Counting problems:

#SAT: How many satisfying assignments are there in a

Boolean formula?

#PerfMatch: How many perfect matchings (Dimer

Problem) are there in a graph?

#P is at least as powerful as NP, and in fact subsumes the

entire polynomial time hierarchy ∪iΣ
p
i [Toda].

#P-completeness: #SAT, #PerfMatch, Permanent, etc.
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Post’s Problem

The Turing degrees were introduced by Emil Post in 1944.

Many fundamental results were established by Kleene and

Post by 1954.

The Post Problem asks whether there exists any r.e.

degree strictly between 0 and 0’.

This was solved by the famous Friedberg-Muchnik

Theorem.

Priority argument.

The degree structure is very complicated.

18



Friedberg-Muchnik like Theorems in Complexity

Ladner in 1975 showed that, if P 6= NP, then there are

problems in NP that are neither in the class P nor

NP-complete.

The same argument proves the parallel result for #P.

However all such problems are “artificial” or otherwise

uninteresting.

They are specifically constructed to be neither in P nor

complete.
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Schaefer’s Dichotomy Theorem

If we consider Boolean satisfaction type problems,

Schaefer proved a sort of anti-Friedberg-Muchnik

Theorem, called a Dichotomy Theorem:

Consider any finite set S of Boolean predicates (e.g.,

Bollean OR, At-Most-One, Not-All-Equal, Boolean XOR,

etc. )

Now consider the Constraint-Satisfaction-Problem (CSP)

defined by this set S:

Input: X = {x1, x2, . . . , xn}, and a collection of constraints

from S applied to X.

Output: Is there an assignment σ : X → {0, 1} such that all

constraints are satisfied?

20



Schaefer’s Dichotomy Theorem

For any finite set S of Boolean predicates the problem

CSP(S) is either solvable in P or NP-complete.
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Creignou-Hermann Theorem

Any finite set S of Boolean predicates defines a counting

CSP problems

Input: X = {x1, x2, . . . , xn}, and a collection of constraints

from S applied to X.

Output: How many assignments σ : X → {0, 1} satisfy all

constraints?

Creignou-Hermann Theorem:

For any finite set S of Boolean predicates, #CSP(S) is

either solvable in Polynomial time or #P-complete.
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Feder-Vardi Conjecture

Any finite set S of predicates over any finite domain set D,

the decision CSP problem CSP(S) is either in P or

NP-complete.

Analagously, for the counting CSP problem #CSP(S).

The Feder-Vardi Conjecture is open, except for domain

size 2 and 3.

For domain size 3, this is a major achievement by Bulatov.
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Counting Dichotomies

Three frameworks:

• Graph Homomorphisms.

• Counting CSP problems.

• Holant Problems.

In all three frameworks we have proved Complexity

Dichotomies.
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An Example

Consider counting Vertex Covers:

G = (V,E).

Attach an OR function on two bits at every e ∈ E.

Represent the OR by a truth table F = (0, 1, 1, 1), call it a

signature.

Consider all σ : V → {0, 1}:

σ is a vertex cover ⇐⇒
∏

(x,y)∈E

F (σ(x), σ(y)) = 1

∑

σ

∏

(x,y)∈E

F (σ(x), σ(y))

counts the number of vertex covers.
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Graph Homomorphism

Let A = (Ai,j) ∈ Cm×m be a symmetric complex matrix.

The graph homomorphism problem GH(A) is:

Input: An undirected graph G = (V,E).

Output:

ZA(G) =
∑

ξ:V→[m]

∏

(u,v)∈E

Aξ(u),ξ(v).

ξ is an assignment to the vertices of G and

wtA(ξ) =
∏

(u,v)∈E

Aξ(u),ξ(v)

is called the weight of ξ.
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Some Examples

Let

A =





0 1

1 1





This matrix is the truth table of the Boolean Or. ZA

counts the number of Vertex Covers in G.

Let

A =









0 1 1

1 0 1

1 1 0









then ZA counts the number of Three-Colorings in G.
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Some More Examples

Let

A =

















0 1 · · · 1

1 0 · · · 1

...
...

. . .
...

1 1 · · · 0

















then ZA counts the number of k-Colorings in G.

Let

A =





1 1

1 −1





then ZA is equivalent to counting the number of induced

subgraphs of G with an even number of edges.
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Graph homomorphism

Lovász first studied Graph homomorphisms.

L. Lovász: Operations with structures, Acta Math. Hung.

18 (1967), 321-328.

http://www.cs.elte.hu/~lovasz/hom-paper.html
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Perfect Matchings
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Edge Assignments

G = (V,E).

Now attach F = the Exact-One function at each v ∈ V .

Consider all edge assignments σ : E → {0, 1}:

σ is a perfect matching ⇐⇒
∏

v∈V

F (σ
∣

∣

E(v)
) = 1

Holant(G) =
∑

σ

∏

v∈V

F (σ
∣

∣

E(v)
)

counts the number of perfect matchings. Here E(v) are the

incident edges of v.

Edge assignments are more general, can simulate vertex

assignments.
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Graph Homomorphisms with 0-1 Matrices

Theorem (Dyer and Geenhill)

Let A ∈ Rm×m be a symmetric 0-1 matrix. Let H be the

graph whose adjacency matrix is A.

Then ZA is either computable in P-time, or #P-complete.

Dichotomy criterion: Each connected component of H is

either a complete graph with all self-loops present, or a

complete bipartite graph with no self-loops.
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Non-negative Matrices

Theorem (Bulatov and Grohe)

Let A ∈ Rm×m be a symmetric and connected matrix with

non-negative entries:

• If A is bipartite, then GH(A) is in polynomial time if

the rank of A is at most 2; otherwise GH(A) is

#P-hard.

• If A is not bipartite, then GH(A) is in polynomial

time if the rank of A is at most 1; otherwise GH(A) is

#P-hard.
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Real Matrices

Theorem (Goldberg, Jerrum, Grohe and Thurley)

There is a complexity dichotomy theorem for GH(A).

For any symmetric real matrix A ∈ R
m×m, the problem of

computing ZA(G), for any input G, is either in P or

#P-hard.
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A Complete Dichotomy Theorem for GH

Theorem (C, Chen and Lu)

There is a complexity dichotomy theorem for GH(A).

For any symmetric complex vlaued matrix A ∈ C
m×m, the

problem of computing ZA(G), for any input G, is either in

P or #P-hard.

The tractability criterion is decidable.

http://arxiv.org/abs/0903.4728

(121 pages.)
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Overview

The proof consists of two parts: the hardness part and the

tractability part.

The hardness part can be viewed as three filters which

remove hard ZA problems using different arguments.

In the tractability part, we show that all the ZA problems

that survive the three filters are indeed polynomial-time

solvable.

Ultimately, tractable ZA problems roughly correspond to

rank one modifications of tensor products of Fourier

matrices. (. . . Not quite true literally . . .).
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A Peek Under the Hood

“A mathematics lecture without a proof is like a movie

without a love scene.”

— Hendrik Lenstra
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Discrete Unitary

Definition

Let A = (Ai,j) ∈ Cm×m. We say A is an M-discrete unitary

matrix, for some positive integer M , if

1. Every entry Ai,j is a power of ωM = e2π
√
−1/M ;

2. M = lcm of the orders of Fi,j;

3. A1,i = Ai,1 = 1 for all i ∈ [m];

4. For all i 6= j ∈ [m], 〈Ai,∗,Aj,∗〉 = 0 and 〈A∗,i,A∗,j〉 = 0.

Inner product 〈Ai,∗,Aj,∗〉 =
∑m

k=1 Ai,kAj,k.
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Some Simple Examples

H2 =





1 1

1 −1



 , H4 =















1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1















,

F3 =









1 1 1

1 ω ω2

1 ω2 ω









, F5 =





















1 1 1 1 1

1 ζ ζ−1 ζ2 ζ−2

1 ζ2 ζ−2 ζ−1 ζ

1 ζ−1 ζ ζ−2 ζ2

1 ζ−2 ζ2 ζ ζ−1





















,

where ω = e2πi/3 and ζ = e2πi/5.
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A Group Condition

Theorem

Let A be a symmetric M-discrete unitary matrix. Then

• either ZA(·) is #P-hard,

• or A must satisfy the following Group-Condition

(GC):

∀ i, j ∈ [0 : m− 1], ∃ k ∈ [0 : m− 1] such that

Ak,∗ = Ai,∗ ◦Aj,∗.

v = Ai,∗ ◦Aj,∗ is the Hadamard product with vℓ = Ai,ℓ ·Aj,ℓ.
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A Gadget Construction

Special case p = 2. Thick edges denote M − 1 parallel edges.
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An Edge Gets Replaced

Replacing every edge e by the gadget . . .

G =⇒ G[p].

Define G[p] = (V [p], E[p]) as

V
[p]

= V ∪ {ae, be, ce,1, . . . , ce,p, de,1, . . . , de,p | e ∈ E}

and E[p] contains exactly the following edges: ∀e = uv ∈ E, and ∀1 ≤ i ≤ p,

1. One edge between (u, ce,i), (ce,i, be), (de,i, ae), and (de,i, v);
2. M − 1 edges between (ce,i, v), (ce,i, ae), (de,i, be), and (de,i, u).
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A Reduction

∀p ≥ 1, there is a symmetric matrix A[p] ∈ C2m×2m which

only depends on A, such that

ZA[p](G) = ZA(G[p]), for all G.

Thus ZA[p](·) is reducible to ZA(·), and therefore

ZA(·) is not #P-hard

=⇒
ZA[p](·) is not #P-hard for all p ≥ 1.
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Expression for A[p]

The (i, j)th entry of A[p], where i, j ∈ [0 : m− 1], is

A
[p]
i,j =

m−1
∑

a=0

m−1
∑

b=0

(

m−1
∑

c=0

Ai,cAa,cAb,cAj,c

)p(m−1
∑

d=0

Ai,dAa,dAb,dAj,d

)p

.

Note (Aa,c)
M−1 = Aa,c, etc.
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Properties of A[p]

A
[p]
i,j =

m−1
∑

a=0

m−1
∑

b=0

∣

∣

∣

∣

∣

m−1
∑

c=0

Ai,cAa,cAb,cAj,c

∣

∣

∣

∣

∣

2p

=

m−1
∑

a=0

m−1
∑

b=0

∣

∣〈Ai,∗ ◦Aj,∗,Aa,∗ ◦Ab,∗〉
∣

∣

2p
,

A[p] is symmetric and non-negative. In fact A
[p]
i,j > 0. (By

taking a = i and b = j).
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Diagonal and Off-Diagonal

A
[p]
i,i =

m−1
∑

a=0

m−1
∑

b=0

∣

∣〈1,Aa,∗ ◦Ab,∗〉
∣

∣

2p
=

m−1
∑

a=0

m−1
∑

b=0

|〈Aa,∗,Ab,∗〉|2p .

As A is a discrete unitary matrix, we have A
[p]
i,i = m ·m2p.

ZA(·) is not #P-hard

=⇒ (by a known result for non-negative matrices)

det





A
[p]
i,i A

[p]
i,j

A
[p]
j,i A

[p]
j,j



 = 0.

and thus A
[p]
i,j = m2p+1 for all i, j ∈ [0 : m− 1].
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Another Way to Sum A
[p]
i,j

A
[p]
i,j =

m−1
∑

a=0

m−1
∑

b=0

∣

∣〈Ai,∗ ◦Aj,∗,Aa,∗ ◦Ab,∗〉
∣

∣

2p

=
∑

x∈Xi,j

s
[x]
i,j · x2p,

where s
[x]
i,j is the number of pairs (a, b) such that

x = |〈Ai,∗ ◦Aj,∗,Aa,∗ ◦Ab,∗〉|.

Note that s
[x]
i,j , for all x, do not depend on p.
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A Linear System

So

A
[p]
i,j =

∑

x∈Xi,j

s
[x]
i,j · x2p.

Meanwhile, it is also known that for all p ≥ 1,

A
[p]
i,j = m2p+1.

We can view, for each i and j fixed,

∑

x∈Xi,j

s
[x]
i,j · x2p = m2p+1

as a linear system (p = 1, 2, 3, . . .) in the unknowns s
[x]
i,j .
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A Vandermonde System

It is a Vandermonde system.

We can “solve” it, and get Xi,j = {0,m},

s
[m]
i,j = m and s

[0]
i,j = m2 −m, for all i, j ∈ [0 : m− 1].

This implies that for all i, j, a, b ∈ [0 : m− 1],

|〈Ai,∗ ◦Aj,∗,Aa,∗ ◦Ab,∗〉| is either m or 0.
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Toward Group Condition

Set j = 0. Because A0,∗ = 1, we have

|〈Ai,∗ ◦ 1,Aa,∗ ◦Ab,∗〉| = |〈Ai,∗ ◦Ab,∗,Aa,∗〉|,

which is either m or 0, for all i, a, b ∈ [0 : m− 1].

Meanwhile, as {Aa,∗, a ∈ [0 : m− 1]} is an orthogonal basis,

where each ||Aa,∗||2 = m, by Parseval’s Equality, we have

∑

a

|〈Ai,∗ ◦Ab,∗,Aa,∗〉|2 = m‖Ai,∗ ◦Ab,∗‖2.
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Consequence of Parseval

Since every entry of Ai,∗ ◦Ab,∗ is a root of unity,

‖Ai,∗ ◦Ab,∗‖2 = m. Hence

∑

a

|〈Ai,∗ ◦Ab,∗,Aa,∗〉|2 = m2.

Recall

|〈Ai,∗ ◦Ab,∗,Aa,∗〉| is either m or 0.

As a result, for all i, b ∈ [0 : m− 1], there exists a unique a

such that |〈Ai,∗ ◦Ab,∗,Aa,∗〉| = m.
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A Sum of Roots of Unity

Every entry of Ai,∗,Ab,∗ and Aa,∗ is a root of unity.

Denote the inner product of rows 〈Ai,∗ ◦Ab,∗,Aa,∗〉 is a sum

of m terms each of complex norm 1. To sum to a compelx

number of norm m, they must be all aligned exactly the

same.

Thus,

Ai,∗ ◦Ab,∗ = eiθAa,∗.

But Ai,1 = Aa,1 = Ab,1 = 1. Hence

Ai,∗ ◦Ab,∗ = Aa,∗.
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What is Polynomial Time Computable?

A peek of what is tractable.
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Fourier Matrices

Let m ≥ 1. Let k ≥ 1 and gcd(k,m) = 1.

Let ω = e2πik/m and x, y ∈ [0 : m− 1]. Then A is an m×m

Fourier matrix if the (x, y)th entry is ωxy.



























1 1 1 . . . 1

1 ω ω2 . . . ωm−1

1 ω2 ω4 . . . ω2(m−1)

1 ω3 ω6 . . . ω3(m−1)

...
...

...
. . .

...

1 ωm−1 ω2(m−1) . . . ω(m−1)2


























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Quadratic Polynomial

Let m be any positive integer. The input is a

quadratic polynomial

f(x1, x2, . . . , xn) =
∑

i,j∈[n]

ai,jxixj ,

where ai,j ∈ Zm for all i, j; and the output is

Zm(f) =
∑

x1,...,xn∈Zm

ωf(x1,...,xn)
m .

Theorem

This problem can be solved in polynomial time.

Use Gauss sums.
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Gauss Sums

For a prime p, the Gauss sum is

Gp =
∑

x∈Zp

(

x

p

)

ωx,

where
(

c
p

)

is the Legendre symbol.

Gp has the closed form

Gp =







±√
p, if p ≡ 1 mod 4

±i
√
p, if p ≡ 3 mod 4
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Gauss Sums

For a prime p, the Gauss sum is

Gp =
∑

x∈Zp

(

x

p

)

ωx,

where
(

c
p

)

is the Legendre symbol.

Gp has the closed form

Gp =







+
√
p, if p ≡ 1 mod 4

+i
√
p, if p ≡ 3 mod 4
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“Elegant Theorem” of the Sign

Gauss knew since 1801 that G2
p =

(

−1
p

)

p. Thus

Gp =







±√
p, if p ≡ 1 mod 4

±i
√
p, if p ≡ 3 mod 4

The fact that Gp always takes the sign + was conjectured

by Gauss in his diary in May 1801, and solved on Sept 3,

1805.
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... Seldom had a week passed for four years that I had not

tried in vein to prove this very elegant theorem mentioned

in 1801 ...

“Wie der Blitz einschlägt, hat sich das Räthsel gelöst ...”

(“as lightning strikes, was the puzzle solved ...”).

—C. F. Gauss, Sept. 3, 1805.)
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A Complexity Trichotomy for Planar CSP

Theorem

Let F be any finite set of real-valued symmetric constraint

functions on Boolean variables. Then there are precisely

three classes of #CSP(F) problems, depending on F .

(1) #CSP(F) is in P.

(2) #CSP(F) is #P-hard, but solvable in P for planar

inputs.

(3) #CSP(F) is #P-hard even for planar inputs.

Furthermore F is in class (2) iff there is a holographic

algorithm based on matchgates and the planar problems

are solved by the FKT algorithm for Perfect Matchings.
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Back to Post’s Problem

Is there a subclass of problems, which are “natural”,

“interesting”, and “non-artificial”, which one can carve

out of r.e. sets in Recursion Theory, for which one can

develop a parallel theory, where the answer to Post’s

Problem is opposite of the Friedberg-Muchnik Theorem.

If yes, I hope the theory is mathematically deep, and with

many connections to other parts of mathematics.

Is there an opportunity for Complexity Theory and

Recursion Theory get back together again?
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Some References

Some papers can be found on my web site

http://www.cs.wisc.edu/~jyc

THANK YOU!
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