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Abstract

Building on the recent breakthrough by Ogihara, we resolve a conjecture made by Hartmanis
in 1978 regarding the (non) existence of sparse sets complete for P under logspace many-one
reductions. We show that if there exists a sparse hard set for P under logspace many-one
reductions, then P = LOGSPACE. We further prove that if P has a sparse hard set under
many-one reductions computable in NC!, then P collapses to NC!.



1 Introduction

A set S is called sparse if there are at most a polynomial number of strings in 5 up to length
n. Sparse sets have been the subject of study in complexity theory for the past 20 years,
as they reveal inherent structure and limitations of computation [BH77, HOW92, You92a,
You92b]. For instance, it is well known that the class of languages polynomial time Turing
reducible (i.e. by Cook reductions) to a sparse set is precisely the class of languages with
polynomial size circuits.

One major motivation for the study of sparse sets, and various reducibilities to them,
is concerned with the isomorphism conjectures by Berman and Hartmanis. In 1976, they
proved that all the natural NP-complete problems (such as those found in [GJ79]) are iso-
morphic under polynomial time computable functions [BH77]. Based on this evidence they
conjectured that all NP-complete problems under polynomial time many-one reducibility
(i.e. Karp reductions) are p-time isomorphic. Noting that the densities of any two p-time
isomorphic sets are polynomially related, and all known NP-complete sets are exponen-
tially dense, they also conjectured that there are no sparse complete sets for NP. Based on
similar evidence for P-complete problems under logspace many-one reducibility, Hartmanis
conjectured in 1978 that there are no sparse complete sets for P under logspace many-one
reductions [Har78]. It is this conjecture that we address in our paper.

The Berman-Hartmanis isomorphism conjecture has generated a lot of research work in
this field. Building on earlier work by Fortune [For79], Mahaney [Mah82] showed that if NP
has a sparse complete set under polynomial time many-one reducibility, then P = NP. This
is the definitive result concerning the nonexistence of sparse complete sets for NP under
Karp reductions. Note that if P = NP, then both conjectures concerning isomorphism and
the nonexistence of sparse complete sets for NP are false. Regarding Cook reductions, the
famous result by Karp and Lipton [KL82] showed that if NP has a sparse hard set then
the polynomial hierarchy collapses to its second level, 35 = TI5. In the subsequent years,
considerable research effort has been devoted to studying variations of this problem; we
especially mention the results by Ogihara and Watanabe concerning bounded truth table
reductions of NP to sparse sets [OW91]; see [HOW92] or [You92a, You92b] for a survey.

The current paper resolves the Hartmanis conjecture of 1978 in the sense of Mahaney,
namely there are no sparse complete sets for P under logspace many-one reductions, if P #
LOGSPACE. Unlike the NP case, very little progress had been made on this conjecture till
very recently. The only known result till last year is due to Hemachandra, Ogihara and Toda
[HOT94]. They showed that if P has polylogarithmically sparse hard sets, then P = SC, the
class of languages recognizable in simultaneous polynomial time and polylogarithmic space.
Because of the assumption of polylogarithmic sparsity the result leaves an exponential gap.
Very recently, Ogihara [Ogi95] made substantial progress toward resolving the Hartmanis
conjecture. He showed that if there is a sparse set S that is hard for P under logspace
many-one reductions, then P C DSPACE[log? n]. Our work builds on the work of Ogihara.

Our main result of this paper is the following: if there is a sparse set 5 that is hard
for P under logspace many-one reductions, then P = LOGSPACE. In fact, we prove the
stronger statement: if there is a sparse set S that is hard for P under many-one reductions,
then the P-complete circuit-value problem can be solved by a logspace-uniform family of
polynomial size, logarithmic depth circuits that make polynomially many parallel calls to the



reduction. Consequently, if P has a sparse hard set under many-one reductions computable
in logspace-uniform NC!, then P equals logspace-uniform NC!.

An interesting aspect of our work is that the techniques we employ are probabilistic
and algebraic in nature, and are influenced by the recent developments in derandomization
techniques, especially constructions of small sample spaces, and the theory of finite fields.
The proof of our first theorem begins with a crucial observation due to Ogihara. The main
ingredient in the resulting simulation is the solution of a system of linear equations over a
finite field. We first prove a probabilistic lemma of general interest. Under the assumption
of the existence of a sparse set hard for P, we obtain an RNC? simulation of P. Using a
“small-bias sample space” construction ([NN90, AGHP90]), we derandomize this algorithm
to obtain an NC? simulation. Finally, exploiting additional algebraic properties of a closely
related construction, we arrive at a Vandermonde system. We then solve the system using
closed formulae involving the elementary symmetric polynomials over a certain field and
discrete Fourier transforms. The final result is a collapse of P to logspace uniform NC!. In
fact, modulo the complexity of the reduction, the resulting simulation can be done in TCP.

The basic techniques involving derandomization and algebraic computation are rather
powerful. There are already a number of extensions, and many additional results will be
reported in a subsequent paper. Those results are primarily concerned with various other
reducibilities and complexity classes. A number of additional techniques will be needed,
including properties of error correcting codes, and a generalization of Mulmuley’s NC?
algorithm [Mul87], combined with an idea of Chistov [Chi85], to compute the rank of a
matrix over a finite field. We will show, e.g., if there exists a sparse set hard for P under
bounded truth table reductions, then P = NC2. As an indication of the effectiveness of our
derandomization and algebraic techniques, we note that it took the research community 10
years to take the similar step from many-one reducibility in Mahaney’s result for NP to
bounded truth table reducibility in Ogihara-Watanabe’s theorem.

2 Preliminaries

All our notations and definitions are standard. We denote by P the class of all languages
recognizable in polynomial time by deterministic Turing machines; NP denotes the class
of nondeterministic polynomial time languages. The class of all languages recognizable by
deterministic Turing machines that use space no more than O(logn) is denoted LOGSPACE
or L; the corresponding nondeterministic class is denoted by NL. In general, DSPACE[s(n)]
denotes the class of languages accepted by deterministic Turing machines, which, on inputs
of length n, use space no more than O(s(n)).

For circuit and parallel complexity, we use the notation SIZE-DEPTH[s(n),d(n)] to
denote the class of languages accepted by a uniform family {C,}>2, of bounded fan-in
circuits of size s(n) and depth d(n) for inputs of length n. The criterion for uniformity of
the circuit family is usually taken to mean that there is a deterministic space (logs(n))-
bounded transducer that, on input 0", outputs an encoding of the circuit C,,. The class
NCF is defined as SIZE—DEPTH[poly(n),logk n], and NC = [J, NC*. (Our NC! is logspace-
uniform NC'.) The randomized version of NC* is denoted by RNC*.

For any language A, let c4(n) = ||[{z € A | |z| < n}|| denote the census function for A.



A is called (polynomially) sparse if c4(n) is bounded by a polynomial in n.

A Boolean circuit C'is a directed acyclic graph with £ input nodes labeled 1,...,¢, and
one output node. The interior nodes, called gates, are labeled from the set {—=, A, V}, and
are respectively called NOT, AND and OR gates. On any input z € {0,1}", the output of
each gate is defined in the natural way, as also is the output of the circuit. The circuit-value
problem, abbreviated CVP, of determining whether a Boolean circuit C' outputs ‘1’ on input
z was shown by Ladner [Lad75] to be complete for P under logspace-computable many-one
reductions. Cook [Coo85] defined the notion of NC! reducibility, and notes that this problem
is complete for P under NC! reductions. This reducibility is somewhat subtle technically,
so we refer the reader to [Coo85] for details. However, we remark that a consequence of the
completeness of CVP is that if CVP € NC!, then P = NC!.

All logarithms in this paper are to the base 2.

3 An RNC? simulation

In this section, we consider the hypothesis that there is a polynomially sparse set S hard
for P under logspace (or even NC?) many-one reductions. Note that the sparse set S need
not belong to P itself. (Thus our assumption is even weaker than P-completeness as stated
in Hartmanis’ conjecture.) The framework and basic ideas introduced here are used in all
our results.

Following Ogihara [0gi95] we define the set A of tuples (C, z, I,b) where C' is a boolean
circuit,  is an input to C, I is a subset of the gates, and b is a bit (0 or 1), such that the
sum mod 2 of the values of the gates chosen in I from C' on input z equals b, i.e.,

@gz(x) = b.

el

Clearly, A € P and hence A <L §. Let f be a logspace computable function such that for
all z, » € A <= f(z) € S. It is also obvious that CVP <L A, therefore it suffices to
show that A can be solved in RNC?2.

We note that for any C', z, I, exactly one of the bits b = 0, 1 satisfies the equation, and
thus exactly one of f((C,z,1,0))and f((C,z,I,1))is a string in 5. Moreover, suppose for
two distinct subsets I and J and some pair of bits b,0', f((C,z,1,b))= f((C,z,J, b)), (we
are not assuming that the image is in ). In this case, regardless of whether @;c7 g:(z) = b
and @;c7gi(x) = b are true or not, they hold or fail simultaneously. Thus we have an
equation mod 2 on the values of the gates of C' on input z, namely

t€INT

and I A J # 0.

Fix any C and z, let n denote the number of nodes in C' (including the inputs, output,
and the interior gates). Let N denote the largest value of | f((C,z,1,b))| (over all I and b).
Clearly N is polynomially bounded in n. Let p(n) be a polynomial function that bounds
cs(N). Since there are only polynomially many strings in 5, some string w € S must be



mapped on by at least 2”/p(n) many subsets I, more precisely, by the tuple (C,z,1,bs),
where by is the “right value” by = @< g:(z). (For notational simplicity we assume p(n) is a
power of 2.) As described above, any two such I give rise to an equation mod 2 on the values
of the gates of C' on input z. The idea now is to choose polynomially many random subsets
I € {0,1}" and compute f((C,z,I,0))and f({C,z,I,1)), collecting as many equations as
possible. The following lemma ensures that this process gives us a system of linear equations
of sufficiently high rank, even if we restrict attention to a single “popular” w € S5 which
appears for at least 2" /p(n) many subsets I.

3.1 A probabilistic lemma

Let B = {0,1}" denote the n-dimensional binary cube. With respect to the finite field of
two elements GI(2) = Z3, B is a vector space of dimension n. Let 7" C B be an arbitrary
subset of the cube. We ask the following question: If we uniformly and independently pick
a sequence of m points in B, what can we say about the probability distribution of the
dimension of the affine span of those points picked from 7" as a function of m, n and |T|?

Lemma 1 Suppose |T| > 2"/k, where k = n®0), then for m = 2kn? + n = 00, if
we uniformly and independently pick a sequence of m points in B, the probability that

the dimension of the affine span of the points from T is less than n — logy, k is at most
e—n2+0(nlogn)_

Proof. Consider any sequence of points of B being picked by the above process. Let us

mark any such sequence pi,ps2,...,pm by a 0-1 sequence of the same length m according
to the following rule: Suppose the subsequence p;,,pi,,...,p;, is the intersection of the
sequence {p;} with the set 7. p; is marked 0. For j > 1, precisely those points p;,
are marked 1 if the dimension of the affine span of p;,,p;,,...,p;, is greater than that of

PiysDigs -+ > Pi;_y- All other points in {p;} are marked 0. This defines a 0-1 sequence o of
length m. We wish to estimate the probability that the number of 1’s in o is small.

The process of uniformly and independently picking a sequence of m points in B induces
a probability distribution over the set of 0-1 sequences ¢ of length m defined as above.
Suppose we have picked a sequence py,ps,...,p;—1 which intersects with T in a set whose
affine span has dimension < n — logy k. Then there are at least |T| — 27719825~ points of
T, which, if picked next, would increase the dimension of the affine span of the intersection.
This cardinality is > 2" /k — 2" /(2k) = 2"/(2k). Hence the conditional probability

Prlo; = 1| the number of 1’sin o1,...,0,_1 < n —log, k] > 1/(2k).

For any sequence o with strictly fewer than n — logy, £ many 1’s,

bl

1 m—(n—log, k)
o)

Prlo] < (1 - —
which is bounded above by e if m = 2kn® + n. Therefore,

Pr[dim(affine span of {p;}/=,NT") < n—log, k] < E (m) e < g2 +0(nlogn) O

j<n—logy k J



Now by the above lemma, if in parallel we try polynomially many uniformly and inde-
pendently chosen I, with high probability we will obtain a system of linear equations with
rank deficiency at most log, p(n). We now describe how we can use these to determine in
NC? the outputs of all the gates of C' on input z.

Wolog let the rank of the system be n—log, p(n), and let m(= n°(1)) denote the number
of equations we have. Denote the equations by F1,..., F,,, and for 7 > 1, call an equation F;
useful if the rank rk(Fq, ..., E;) > rk(Fq, ..., F;_1). Clearly the number of useful equations
is n — logy p(n). Mulmuley [Mul87] gives an algorithm to compute the rank of an £ X n
matrix, which, for £ = n°(), can be implemented by a circuit of depth O(log2 n) and size
n°M). For 1 < i < m, we compute in parallel rk(Eq, ..., E;), and identify all the useful
equations. Now we have n — log, p(n) equations in n variables, with rank n — log, p(n).
We apply the same process to the columns, and identify the (n — logy p(n))-many useful
columns. We rename the variables so that the first n —log, p(n) columns are all useful. For
each of the p(n) possible assignments to the last log, p(n) variables, we create in parallel a
system of n —log, p(n) equations as an (n —log, p(n)) X (n —log, p(n)) matrix. Each one of
these can be solved in log? n depth and poly(n) size using the algorithm due to Borodin, et
al. [BvzGH82]. For each potential solution we get for the gates of the circuit C' on input z,
we can check its validity using the local information about the circuit €' and input z, such
as z; = 0, or z; = 1, or g;(z) = gi(z) A gs(z), etc. There will be a unique solution that
passes all such tests and we will find the output of C'(z) in particular. We have proved:

Theorem 2 If there is a sparse set that is hard for P under logspace or NC?* many-one
reductions, then P C RNC2.

4 Deterministic construction

As before we have B = {0,1}" = Z2" considered as an n-dimensional vector space over the
finite field Zz. For each I € B, let by = @;c;9:(x) be the “right value.” Then the string
w= f((C,z,I,br)) € S and this w is called the color of I. The presumed reduction to the
sparse set S gives a coloring of B with at most p(n) colors. Let D C B be a subset of B of
cardinality bounded by a certain polynomial in n. The coloring of B induces a coloring of
D, thus D is the union of at most p(n) many color classes:

D201UCQU...UCp(n).

Let the affine span of C; be denoted by L; + d;, where L; is a linear subspace, and d; is
a displacement vector. Let L = L1 + Lo+ ...+ Lp(n) be the sum of the linear subspaces.
We call L the span of the color classes. L; is spanned by differences of vectors in C;. For
some spanning set of vectors of L;, each vector in the set gives us an equation mod 2 of
the values of the gates of €' with the given input. If we collect a generating set of vectors
for each L;, together they span L. Thus, if we can construct a set D with polynomial size
and with dim L > n — O(logn) (irrespective of the coloring), we would have succeeded in
derandomizing the construction of the last section. That is, by sampling exhaustively in D,
we would have obtained a system of linear equations of rank > n — O(logn).

We claim that the above task can be accomplished as follows: given p(n), construct a
polynomial sized set D such that for any linear subspace M of B with dim M < n—log, p(n),



and any p(n) displacement vectors b, ...,b,) € B, the union of the p(n) affine subspaces
fg)(ﬂ/[ + b;) does not cover the set D. For if so, then no matter what the induced coloring

on D is, the span of the color classes . must be of dimension > n—log, p(n), simply because

the union of at most p(n) affine subspaces Ufg)(L + d;) does cover D:

p(n) p(n)
U +di)2 [J(Li+di) 2 D.
=1 =1

Let £ = 1+ logy p(n) = O(logn). Wolog, we may assume such a linear subspace M
has dimension exactly = n — k. Any such M can be specified as the null space of a linear
system of equations

a1, + ajexe + ...+ ajpz, =0,

where ¢ = 1,...,k, and the k vectors {(ai1,@i2,...a;n) | ¢ = 1,...,k} are independent
vectors in B over Zs.

Let m = 2k+logy, n+1 = 2log, p(n)+log, n+3 = O(logn). The Galois field F = GF(2™)
has a vector space structure over GF(2) of dimension m. Choose any basis {e1,..., €},
then for u = "%, u;e; and v = 3"/~ v;e; in F, we can define an inner product by letting

m
(u,v) = Z u;v;,
=1

and doing all arithmetic over Z.

The set D is defined as follows:
D ={((1,v),{w,v),..., <un_17'v>) | u,v € F}.

Note that |D| = 22" = n°(1), Now consider any non-zero vector a = (ag, a1,...,a,_1) € B
and any b € Zs. We wish to estimate the size of the intersection of D with the affine
hyperplane E:'L:_ol a;x; = b.

Since the inner product (-,-) is bilinear over Z5 we have

|
—

n

. n_l .
a;(u',v) = (Z a;u’,v).
=0

Il
=]

7

Let ¢,(X) denote the polynomial """ a; X' € F[X]. If u is a root of the polynomial
qa(X), then clearly the inner product (372 a;u’,v) = 0. Now suppose u € F is not a root
of q.(X), then Z?:_Ol a;u' = q,(u) is a non-zero element in F. Tt is easy to see that for any
non-zero w € F,

Ufé%[<w,v> =0]=1/2.

Thus,

= P%[u is a root of ¢,(X)] + PI]’;‘[’ZL is not a root of ¢,(X)]-1/2.
ue ue

6



But ¢,(X) is a non-zero polynomial of degree at most n — 1, thus

n—1
Pr[u i t of q,(X)] < .
uel}}[umaroo of ¢, (X)] < S
Collecting terms, we have
n—1
i 1 n-1
u,ljéF[; a;{u',v) =0] < 3 + SYESE

In particular, if m > log, n, both affine hyperplanes E?:_Ol a;z; = 0,1 must intersect our set

D.

In general, consider any k linearly independent equations Z;:& a;;x; = b;, where a;;,b; €
Zs,and ¢t = 1,...,k. Denote this affine space by II. Denote the point in D specified by u, v
as D(u,v). We wish to estimate the probability Pr, ,er[D(u,v) € 1I].

Let Q = {Ele ﬁZ[Z?:_& a;jX’] | Bi € Z2, but not all 0} be a set of polynomials. We
claim that the cardinality of @ is exactly 25 —1, and none of the polynomials in @ is the zero
polynomial. This follows from the fact that the vectors (a,...,a;,—1) are independent
over Zs. Let u € F be such that no polynomial in ¢) has u as a root. For such a u,

n—1 ) n—1 )
Z a;;(u',v) = <Z a;;u',v) = by,

i =1,...,k, is a linear equation system on (the m bits of) » with linearly independent
coefficient vectors over Zy. (For otherwise, a non-zero linear combination of the coefficient
vectors of v will be zero, which is precisely the same as u being a root of one of the
polynomials in @.) Thus, the conditional probability for v to satisfy this linear equation
system is precisely 1/2%. However, since |Q| = 2% — 1, and each polynomial in @ is non-zero
and of degree at most n — 1,

ulsz[” is a root of some polynomial in Q] < (2¥ — 1)(n —1)/2™.

Collecting terms, we obtain

1
Sl €10 - o
(28 —1)(n—1) ( 1)
< =2 14—
< om + o5
n
< Qm—k’

which by our choice of m and k is bounded above by 1/25*1. Thus, in particular,

Pr [D(u, 11 .
Dr [D(u,v) € ] >0

Other than linear independence, the coefficient vectors and the right hand side vector
bi,...,bs in the definition of II are arbitrary; the total number of the b vectors is 2% =
2p(n) > p(n), and it follows that no linear subspace M of dimension < n — log, p(n) can
cover the set D with some p(n) displacements.

Theorem 3 If there is a sparse set S which is hard for P under NC?* many-one reductions,

then P = NC2.



5 The Finale: NC! Simulation

In this section, we build upon previous ideas to obtain an optimal simulation. We show
that if there is a sparse set S that is hard for P under many-one reductions computable in
logspace, then P = LOGSPACE. In fact, we prove the following stronger statement:

Theorem 4 If a sparse set S is hard for P under many-one reductions, then the P-complete
circuit-value problem can be solved by a logspace-uniform family of polynomial size, loga-
rithmic depth circuits that make polynomially many parallel calls to the reduction.

That is, modulo the complexity of the reduction to the sparse set, the resulting algorithm
can be implemented by a uniform circuit of polynomial size and logarithmic depth. Tt
follows that if the reduction itself is computable in logspace-uniform NC!, then P equals
logspace-uniform NC!.

Proof. (Sketch) It is known that the polynomial X2 x3 11 ¢ Zy[X]is an irreducible
polynomial over Zg for all £ > 0 [vL91]. In the following, by a finite field GF(2™), where
m = 2 -3, we refer explicitly to the field Zz[X]/(XQ'SZ + X3 4 1).

Let S be a sparse set hard for P under logspace-computable many-one reductions. As
before, we will consider a refinement of the circuit-value problem. Define

n—1
L= {<C"r7 1™ u,0) [m=2- 3£7u7'v € GH2™), Z uigi - ID} )

where C'is a boolean circuit and z is an input to C', and where gy, ..., g,_1 are 0-1 variables
that denote the values of the gates of C' on input z. Here exponentiation and summation
are carried out in the finite field GF(2™). It is easy to see that I € P, since all the required
field arithmetic involved in checking 3" u'g; = v can be performed in polynomial time.

Clearly [(C,z,1™, u,v)| is bounded polynomially in n and m. If f is a logspace-
computable function that reduces L to S, the bound on the length of queries made by
f on inputs of length [(C,z,1™, u,v)| is some polynomial ¢(n,m). Let p(n,m) be a poly-
nomial that bounds the number of strings in S of length at most ¢(n,m). We will choose
the smallest m of the form 2 - 3° such that 2™ /p(n, m) > n. It is clear that m = O(logn).
Let F denote the finite extension GF(2™) of GF(2).

Facts. We first collect some facts about implementing the basic operations of F. For each
operation, the number of processors needed is at most n®().

(1) Finding a primitive element w that generates the multiplicative group F* of F can be
done in logspace by exhaustive search.

(2) Adding two elements 31,92 € F is just the bitwise exclusive-or of the representations
of y1 and yg, and can be done in depth O(1). Adding n?M)-many elements can be
done in depth O(logn).

(3) Using logarithmic space, it is also possible to build the multiplication table for F, so
multiplying two elements of F can be done by a circuit of depth O(loglogn) and size
(log n)°M),



(4) Raising the generator w to any power i < 2™, or computing the discrete logarithm
of any element with respect to w, can be done by table lookup in depth O(loglogn).
The tables themselves can be precomputed using O(logn) space.

(5) Multiplying & = n®() elements of F can be done in O(logn) depth. The idea is to
use the discrete logarithms of the k elements with respect to the generator w, and
convert multiplications to additions of k£ O(log n)-bit integers (modulo 2™ — 1), which
can be done in O(logn) depth using the folklore 3-to-2 trick.

Our parallel algorithm for CVP begins by computing f((C,z,u,v)) for all u,v € F. For
every non-zero u € F, there is a unique element v, € F such that (C,z,u,v,) € L, and
therefore f({(C,z,u,v,)) € S. Since 2™ /p(n, m) > n, there is at least one string w € S such
that the number of u satisfying f({C,z,u,v,)) = w is at least n. Of course, there could be
many such w (not necessarily in 5'), and we don’t know which w is a string in 5. To handle
this, we will assume that every w that has > n preimages is a string in 5, and attempt to
solve for the g¢;’s. As long as there is at least one w € 5 that has > n preimages, one of
the assumptions must be correct, and we will have the correct solution. Since we know the
details of the circuit C', the solutions can be verified, and the incorrect ones weeded out.

Assume, therefore, wolog, that w € 5 has > n preimages. Let uq,ug,...,u, denote n of
them, and let vy, vq,...,v, denote the corresponding v,’s. The equations
1gO+Ujgl+u?g2+...—}—u?“lgn_l:vj, i=12,...,n

form an inhomogeneous system of linear equations, where the coefficients u; form a Van-
dermonde matrix. Since the u;’s are distinct elements of the field F, the system has full
rank.

It remains to show how to solve this system of equations in NC'. While solving general
linear equation systems seems to require NC%, we will arrive at our NC! solution via closed
formulae.

We omit the details in this extended abstract, but the following closed formula can be

shown,
n

_ 1+i v -~
g'_E -1 — P, (U, U, Uy,
! ¢:1( ) [pi(un — ui) i (i tn)
Here @; denotes that u; is missing from the list uq,...,u,, and P denotes the k-th elemen-

tary symmetric polynomial, defined as follows:

PO(ylv"wyﬁ):l; Pk(ylv"wyf): Z Hyzv k> 0.
1Cle] €1l
[I=k

By Facts (3) and (5), computing v;/([Tgxi(ur — u;)) in NC' is fairly straightforward.
Hence it suffices to show how to compute the polynomials Py(u1,...,%,...,u,), in logspace-
uniform NC!. A folklore theorem indicates that this can be done in non-uniform NC!. For
our application, however, the uniformity is crucial.

It is easy to see that for y1,...,9 € F, Pr(y1,...,y¢) equals Pe(v1,92,-..,9,0,0,...,0)
for any number of extra zeroes. Let r = |F*|, the number of elements in the multiplicative



group of F. We will give an NC! algorithm to compute the elementary symmetric poly-
nomial of r elements, not necessarily distinct, from the finite field F. By appending r — ¢
zeroes, we can then compute Py(y1,¥y2,...,¥2)-

For 0 < k < r, the value of the elementary symmetric polynomial Px(y1,¥z2,...,¥) is
the coefficient of X" =% in h(X) = [T—,(X + ;) — X”. Note that, given any a € F, h(a)
can be evaluated in NC', by Facts (2) and (5).

If we write h(X) as Zf:_& a; X", the coefficient a; = P,_;(y1,...,¥,) for 0 < i < r. The
idea now is to choose a’s carefully from F, compute h(a) and compute the coefficients a;
by interpolation. If we choose w to be a primitive element of order r in F*, the powers of
w, namely 1 = w% w!,w?,...,w""!, run through the elements of F*. For 0 < i < r, let
b; = h(w"). The relationship between the pointwise values (b;’s) and the coefficients (a;’s)

of h(X) can be written as:

bO 1 0 w92 0-(r—1)

w w ag
b1 1 w! wh? e w1 ay
b_1 1 ! w(r—1)~2 o w(r—1)~(7’—1) ar_q

The matrix €2 is the Discrete Fourier Transform matrix, and is a Vandermonde matrix. Since
the powers of w are all distinct, €2 is invertible, and one can compute the coefficients a; by
(ag,...,a,_1)" = Q7 Y(bg,...,b,_1)T. The crucial advantage over the earlier Vandermonde
system is that with this particular choice of 2, the matrix Q7! has a simple explicit form:

Q7' = 1/(ij) = Y.

Computing the coefficients of A( X') is now simply a matrix-vector multiplication. Theorem 4
is proven. O

Corollary 5 If there is a sparse set S that is hard for P under logspace-computable many-
one reductions, then P = LOGSPACE.

Corollary 6 If there is a sparse set S that is hard for P under many-one reductions com-
putable in logspace-uniform NC!, then P equals logspace-uniform NC?.

Corollary 7 If there is a set S with census function bounded by 20°8™° that is hard for
P under many-one reductions computable in space (logn)®, then P C DSPACE[(logn)c],
where ¢ = max{a,b}.
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