Resolution of Hartmanis’ Conjecture for NL-hard sparse sets

Jin-Yi Cai * D. Sivakumar |
Department of Computer Science
State University of New York
Buffalo, NY 14260
Email:{cai,sivak-d}@cs.buffalo.edu

Abstract

We resolve a conjecture of Hartmanis from 1978 about sparse hard sets for nonde-
terministic logspace (NL). We show that there exists a sparse hard set S for NI under
logspace many-one reductions if and only if NI, = L (deterministic logspace).

1 Introduction

A set is sparse if it has at most a polynomial number of strings of each length n. Sparse hard
sets (and sparse complete sets) have been a fascinating subject of study in complexity theory
for the past two decades. Sparse hard sets have two fundamental connections to complexity
theory. First, by the fundamental result of A. Meyer [BH77], they serve as a link between
nonuniform (or circuit) complexity and uniform (or Turing machine) complexity. Secondly,
the various isomorphism conjectures of Berman and Hartmanis [BH77, Har78] imply that
unless drastic collapses of complexity classes occur, interesting complexity classes such as
NP, P,NL cannot have sparse hard or sparse complete sets. For the history and survey of
interesting developments concerning sparse sets, see the articles [HOW92, You92a, You92b,

C095].

The subject of the present paper is sparse hard sets for the complexity class NL, non-
deterministic logspace. In 1978, while studying the isomorphism problem for P and NL
under logspace many-one reductions, Hartmanis observed that all known P-complete sets
were isomorphic to each other under bijections computable (and invertible) in logspace.
Motivated by this observation, Hartmanis conjectured that all P-complete sets are in fact
isomorphic under logspace computable bijections. Based on similar observations about sets
complete for NL, Hartmanis also conjectured that all NL-complete sets are isomorphic under
logspace computable bijections. Moreover, since all the known P-complete and NL-complete
sets were exponentially dense, the isomorphism conjecture implies the following conjecture
about sparse complete sets:

*Research supported in part by NSF grants CCR-9057486 and CCR-9319093, and by an Alfred P. Sloan
Fellowship.
TResearch supported in part by NSF grant CCR-9409104.

Conjecture (Hartmanis, 1978): There is no sparse complete set for P or for
NL under logspace many-one reductions (unless P = L or NL = L, respectively).

Clearly, if P = L (resp. if NL = L) then sparse complete sets exist for P (resp. for NL).
The sparse set conjecture states that if P # L (resp. NI # L) then there is no P-complete
(resp. NL-complete) sparse set.

The analogous conjecture for NP was settled by Mahaney in 1980 [Mah82]. The well
known Karp-Lipton theorem is also concerned with sparse hard sets for NP, but under
Turing reductions. They showed that if a sparse hard set exists for NP under polynomial
time Turing reductions, then the Polynomial-time hierarchy collapses to its second level
32 [KL82]. Concerning the Hartmanis conjecture on sparse hard sets for P and NL, very lit-
tle was known [HOT94] until the recent breakthrough by Ogihara [0gi95], who showed that
if P has a sparse hard set under logspace many-one reductions, then P C DSPACE[log?® n].
The question for NL remained completely open. The conjecture of Hartmanis for P was
settled by Cai and Sivakumar [CS95]. They showed that P has a sparse hard set under
logspace many-one reductions iff P = L.

In this paper, we finally settle the Hartmanis conjecture for NL. We showed that there
is a sparse hard set for NL under logspace many-one reductions iff NL. = L. Our proof
uses the algebraic techniques of [CS95]. An additional crucial ingredient in the proof is the
famous result of Immerman [Imm88] and Szelepcsényi [Sze87|, that NL = co-NL. Assuming
the existence of a sparse hard set for NL, our proof gives a parallel algorithm for an NL-
complete problem. This parallel algorithm can be implemented by a logspace-uniform
circuit of polynomial-size, log-depth circuit that makes polynomially many parallel calls to
the reduction from NL to the sparse set 5. This implies that if NL has a sparse hard set
under logspace many-one reductions, then NL. = L., and if NL has a sparse hard set under
(logspace-uniform) NC! many-one reductions, then NI = (logspace-uniform) NC*.

2 Preliminaries

All our notations and definitions are standard. We denote by P the class of all languages
recognizable in polynomial time by deterministic Turing machines. The class of all languages
recognizable by deterministic Turing machines that use space no more than O(logn) is
denoted LOGSPACE or L; the corresponding nondeterministic class is denoted by NL.

For circuit and parallel complexity, we use the notation SIZE-DEPTH[s(n),d(n)] to
denote the class of languages accepted by a uniform family {C,}>2, of bounded fan-in
circuits of size s(n) and depth d(n) for inputs of length n. The criterion for uniformity of
the circuit family is usually taken to mean that there is a deterministic space (logs(n))-
bounded transducer that, on input 0", outputs an encoding of the circuit C,,. The class
NC* is defined as SIZE-DEPTH[poly(n),log* n], and NC = |J, NC*. (Our NC! is logspace-
uniform NC'.) The following well-known relations hold among these complexity classes:
NC' C L C NL C NC?.

For any language A, let c4(n) = ||[{z € A | |z| < n}|| denote the census function for A.
A is called (polynomially) sparse if c4(n) is bounded by a polynomial in n.

Given a directed graph G' = (V, F) and two distinguished vertices s,t € V', the s-t
connectivity problem asks whether there is a directed path from s to ¢t in G, i.e., whether a
sequence of directed edges (s, u1), (u1, u2),. .., (ug,t) exists. The s-f connectivity problem is
well-known to be complete for NI under logspace many-one reductions [Sav73]. Immerman
[Imm87] has shown that this problem is complete for NL under an extremely weak form
of many-one reductions called first-order projections (that are, in fact, quantifier-free). We
note that the s-¢ connectivity problem is complete for NI (under logspace- or even NC'-
computable) many-one reductions, even if restricted to directed acyclic graphs. We call
this problem “DAG-STCON.” Moreover, without loss of generality, we may also assume
that all instances of DAG-STCON are labeled and layered graphs, that is, graphs where all
edges go from lower-numbered vertices to higher-numbered vertices. A main consequence
of the completeness of DAG-STCON is that if DAG-STCON € NC!, then NL = NC!, and
if DAG-STCON € L, then NL = L.

3 Main Result

Theorem 1 If there is a sparse set S that is hard for NL under logspace many-one re-
ductions, then DAG-STCON can be solved by a logspace-uniform family of polynomial size,
logarithmic depth circuits that make polynomially many parallel queries to the reduction
from NL to S.

That is, modulo the complexity of the reduction, the parallel algorithm for DAG-STCON
works in NC!. It follows that if there is a sparse hard set for NL under many-one reductions
computable in logspace-uniform NC!, then NL equals logspace-uniform NC!, and that if
there is a sparse hard set for NI, under many-one reductions computable in logspace, then
NL = L.

Proof. It is known that if m is of the form 2 - 3% for some integer £ > 0, the polynomial
2™ 4 2"/? 41 is an irreducible polynomial of degree m over GF(2) [vL91]. In the following,
by a finite field GF(2™), where m = 2-3°, we refer explicitly to the field Zg[x]/(xm—l—xmﬂ—l—l).
Following [0gi95, CS95], we will define an auxiliary language in NL. Write k = (}). Let B
be the set of all tuples of the form (G, s,t, 1™, a,a?, .. .,ak_l,ﬁ>, where:

n

(1) G = (V, E)is a directed, layered acyclic graph on n vertices, and has at most k = (3)
edges. Hence the adjacency matrix Ag of GG is upper-triangular.

(2) s and t are vertices in G.
(3) m is of the form 2 -3 for some integer £ > 0.

(4) a,B € GF(2™).

(5) For 1 <i < k, a' denotes the i-th power of a in GF(2™).

(6) Ef;ol ' Xy, = 3, where for 0 <4 < k, 0 < u; < v; < n, (u;,v;) denotes the i-th edge
in G, and X,,,; is a boolean variable that is 1 if and only if there is a path from u; to
t whose first step is the edge (u;,v;).

This definition is somewhat complicated by the necessity of a certain uniformity consider-
ations. Intuitively it may appear that in place of (G,s,%,1™, a,a?,...,a*"! 3), we should
have been able to use just (G,s,?,1™ a,). Unfortunately this is not so simple. How-
ever, for readability, we will abbreviate (G, s,t,1™, a,a?,...,a*" 1) by (G, s,t,1™, a,3)
throughout this paper.

Claim 2 B € NL.

Proof of Claim. We will build a nondeterministic logspace machine N that accepts B. First
we argue that, in O(logn 4 logm) space, N may deterministically verify that the values
a?, 03, ..., 0" " areindeed the correct powers of a. To do this, N proceeds sequentially, for
i from 1 up to k —2, verifying the validity of a-a* = a*t'. For a fixed i, N accomplishes this
by sequentially computing each bit of a‘*! from the values of a and a* given in the input,
and checking it against the value of a‘t! given in the input. This requires two counters,
one that can count up to & — 2 and one that can count up to m. The counters can be
implemented in space O(logn + logm). Now to check the bits: For v € GF(2™), let (v);
denote the j-th bit of v, and let P, € Zj[z] denote the polynomial whose coefficients are
given by the bits of y. Thus, a't! = (P, - P,;)mod(z™ + 2™/ 4 1), where P, and P,: are
multiplied in the ring Zy[z]. For 0 < j < 2m —2, the coefficient of 27 in (P, - P,:) is given by
Y opr=;j(@)s(a’);. This is a mod 2 sum of at most m bits. Denote this sum by S(j). When
the product (P, - P,:) is reduced modulo 2™ 4 2™/? 41, the j-th bit of a**!, for 0 < j < m,
is given by the sum, in Zs, of the following four contributions S1(j), S2(7), S3(4), Sa(7).

(1) For 0 < j < m, 81(j) = S(j). This contribution comes from the term 2z’ of the
product (P, - P,i).

(2) For 0 < j < m/2, S2(j) = S(j + m). This contribution comes from the term z7,
where m < 7 < 3m/2, of the product (P, - P,:).

(3) For m/2 < j < m, S3(j) = S(j + m/2). This contribution also comes from the term
27, where m < 7 < 3m/2, of the product (P, - P,i).

(4) For 0 < 57 < m/2, S4(j) = S(j + 3m/2). This sum equals the coefficient of the term
2™t /247 of the product (P, - P,i), which is equal, mod z™ + 2™ 41, to 2l
Clearly, each of these sums can be evaluated in space O(logm).

Now, we may assume that the input is legitimate, that is, all the powers of a are
correctly presented. Testing whether (G, s,7,1™, a,) € B requires computing polynomially

many predicates X,,. The language 7 = {(G,s,t,u,v) | Xy, = 1} is in NL, and since
NL = co-NL, its complement Z¢ is also in NL. The nondeterministic logspace machines for
Z and Z° can be used to build a nondeterministic logspace machine that computes X, in
the following strong sense: every computation either outputs the correct value of X, or
aborts in a “DON’T KNOW?” state, and at least one computation is guaranteed to output
the correct value of X,,.

Using this, we will build the nondeterministic O(log n+log m) space-bounded machine N
that accepts B as follows: Since the elements of the field GF(2™) have m-bit representations,
the machine N cannot write down entries of the field explicitly in its workspace during the
computation to check Y"5-1 a?X,,,., = 8. Instead, it maintains a (logm)-bit counter that
checks, bit by bit, if the above equality holds. To check the equality of the j-th bit of
Ef;ol @' Xy.; and 3, the machine N proceeds as follows: N first initializes a bit b; = 0.
Then, sequentially and nondeterministically N computes X, for each edge (u;,v;). If
Xuy;v; = 0, it goes on to compute the next value Xy, 4., If Xy, = 1, then it finds the j-
th bit (a'); of @' (which is present in the input), and updates b; = b;®(a');. Notice that, by
design, every computation path of N either computes X, correctly (with a “certificate”)
and proceeds, or it aborts. Finally, N accepts (G, s,t,1™, a,) if and only if for all j, the
7-th bits of Ef;ol @' Xy.; and 3 match. End of Proof of Claim.

By hypothesis, B <,, §. Let f denote the (logspace- or NC'-computable) function that
reduces B to S. We will show how to solve DAG-STCON using f as an oracle. Fix
G = (V,E), sand t. Let n = [V]and k& = (}). Clearly |(G,s,t,1™,a, ()| is bounded
polynomially in n and m. If f is a logspace-computable function that reduces B to 5, the
bound on the length of queries made by f on inputs of length |(G,s,t,1™, a, 3)] is some
polynomial ¢(n,m). Let p(n,m) be a polynomial that bounds the number of strings in
S of length at most g(n,m). We will choose the smallest m of the form 2 - 3* such that
27 [p(n,m) > k = (5). It is clear that m = O(logn). Let F denote the finite extension
GF(2™) of GF(2). Some basic facts about computing in the field F are summarized in the

Appendix.

Our parallel algorithm for DAG-STCON begins by computing f({(G,s,t,1™, a,3)) for
all a, € F. (Setting up the required powers of « is an easily accomplished task, since
it can be precomputed off-line in logspace; see Appendix.) For every a € F, there is a
unique element §, € F such that (G,s,t,1™,a,3,) € B, and therefore f maps precisely
one tuple of the form (G, s,t,1™, a, 3) into S. Since 2™ /p(n,m) > k, there is at least one
string w* € S such that the number of a satisfying f((G,s,t,1™, a, 3,)) = w* is at least k.
Strings w that have > k pre-images a will be called popular.

For any w, whenever f((G,s,t,1™,a,3)) = w, under the assumption that w € S we
have an equation

1 Xugwo + 0 Xuyo, + 02 Xopo, + ...+ 051X =3

Uk —1VE—1

in the variables X,,. Thus for every popular w, we will have a system of at least k£ such
equations; moreover, the system of equations is correct if and only if w € 5. Of course,

there could be many popular w, and we don’t know which ones are in 5. To handle this,
we will assume that every popular w is a string in .5, and attempt to solve for the X,,’s
for all u,v € V,u < v. This scheme produces a polynomial number of sets of solutions.
As long as there is at least one popular w* € 5, one of our assumptions must be correct,
and we will have the correct solution. It remains, therefore, to show: (1) how to solve the
systems of equations by a poly-size log-depth circuit, and (2) how to verify the correctness
of solutions.

Solution of the Systems of Fquations.

For every popular w, when the equations produced are written as matrix-vector product
of the form AX = B, the k x k matrix A obtained is a Vandermonde matrix. Moreover,
since the a’s are distinct, the matrix A has full rank over F. The following lemma, which
is an essential part of the proof for the main result of [CS95], shows that this system of
equations can be solved in NC'. (For completeness we will sketch the proof of the lemma
in the Appendix.)

Lemma 3 Let K = GF(2M), where M = O(log N), and M is of the form 2 -3" for some
integer L > 0. Solving a system AX = B of N equations in N unknowns over the field K,
where A is a Vandermonde matriz of full rank over K, can be done by an O(log N)-space
uniform circuit of size N°) and depth O(log N).

Verification of the Solutions.

Fach set of solutions for the X,,’s can be assumed to be in the form of a matrix X of
the same dimensions as Ag, the adjacency matrix of G. By its definition, X,, is 1 only
if (u,v) € FE. Therefore, for each candidate set of solutions, we will first verify that the
condition X, < Ag(u,v) holds for all u,» € V. It is easy to see that this test can be
performed simultaneously on all sets of solutions by a polynomial-size, log-depth circuit.
Note that since Ag is a strictly upper-triangular matrix, every X that passes this test is
strictly upper-triangular.

For every u € V, we first compute the boolean variable X, that is 1 if and only if u = ¢
or there exists some v such that X,, = 1. In matrix terms, X, = 1 if and only if u = t or
there is at least one 1 in the row corresponding to u in the matrix X. This computation
can be easily done by a polynomial-size, log-depth circuit, since it only requires computing
the OR of n bits. Next we perform the following local consistency test: for every u such
that X, = 1 and for every » such that X,, = 1, verify that X, = 1. This test ensures that
if X promises a path from u to ¢t with v as the first vertex, then indeed X also promises
some path from v to t. Notice that the latter path cannot include the vertex u since G
is acyclic. This is important because, otherwise, it is possible that X passes this test by
setting X, = Xyu = 1 even though ¢ is reachable from neither of w and ». It is clear that
the local consistency test can be performed by a polynomial-size log-depth circuit.

Finally we argue that there exists a path from s to ¢ if and only if some set of solutions

X which passes all these tests and has X = 1. Clearly, if there is a path from s to ¢ then
the correct solution for X will pass all the tests and have X, = 1.

Next we claim that if X passes all the tests, then X, = 0 for all z > t. The claim is
vacuous if ¢ is the last vertex. Otherwise, we prove the claim by induction, starting from the
last vertex. By the first test against the adjacency matrix and since the graph is layered,
the base case is clear. Assume inductively for some t < zp, that X, = 0 for all z such that
zo < z. If X,, =1, then by the definition of X, , for some z > 2y, X,,, = 1. However, it
then fails the local consistency test, since X, = 0.

It follows in particular that if s > ¢ and X passes all the tests, then X; = 0.

To complete the proof, suppose that X passes all the tests. We argue that whenever
X, = 1 for some u < t, there is a path from u to . The base case, namely u = ¢, is trivial.
Suppose X, = 1 for some u < t. By definition, there is a vertex v such that X,, = 1 and
X, = 1. The first test ensures that there is an edge (u,v). If v =1, it is clear that there is
a path from u to t. If v < t, by the inductive hypothesis, there is a path from » to ¢, which,
together with the edge (u,v), gives a path from u to ¢. O

Corollary 4 There is no sparse hard set for NL under L-many-one reductions iff NL. # L.

The proofs of the next two theorems combine the above technique with ideas from [CNS95]
and from [CNS95, Mel95], respectively.

Theorem 5 If there is a sparse hard set for NL under logspace-computable randomized
many-one reductions with two-sided error, then NL. = RL, where RL is the class of languages
accepted by logspace Turing machines with two-way access to the random tape. If there is
a sparse hard set for NL under randomized many-one reductions with two-sided error that
are computable in logspace-uniform NC!, then NL C RNC!.

Theorem 6 If there is a sparse hard set for NL under logspace bounded truth-table reduc-
tions, then NL = L. If there is a sparse hard set for NL under bounded truth-table reductions
computable in logspace-uniform NC!, then N1 equals logspace-uniform NC!.

References

[BH77] L. Berman and J. Hartmanis. On isomorphisms and density of NP and other
complete sets. STAM Journal on Computing, 6:305-321, 1977. A preliminary
version appeared in STOC 1976.

[BvzGHS82] A. Borodin, J. von zur Gathen, and J. Hopcroft. Fast parallel matrix and GCD
computations. Information and Control, 52:241-256, 1982.

[CNS95]

[C095]

[CS95]

[Har78]

[HOT94]

[HOW92]

[Tmm8&7]

[Tmm8&8]

[KL82]

[Mah82]

[Mel95]

[0gi95]

[Sav73]

[Sze87]

[vLO1]
[VV86]

[You92a)

J. Cai, A. Naik, and D. Sivakumar. On the existence of hard sparse sets un-
der weak reductions. In the proceedings of The 13th Annual Symposium on
Theoretical Aspects of Computer Science (STACS), 1996, 307-318.

J. Cai and M. Ogihara. Sparse sets versus complexity classes. UBCS-TR 95-41,
Computer Science Dept., University at Buffalo, September 1995.

J. Cai and D. Sivakumar. The resolution of a Hartmanis conjecture. In Proc.
36th Annual IFEE Symposium on Foundations of Computer Science, pages
362-373, 1995.

J. Hartmanis. On log-tape isomorphisms of complete sets. Theoretical Computer
Science, 7(3):273-286, 1978.

L. Hemachandra, M. Ogiwara, and S. Toda. Space-efficient recognition of sparse
self-reducible languages. Computational Complezity, 4:262-296, 1994.

L. Hemachandra, M. Ogiwara, and O. Watanabe. How hard are sparse sets. In
Proc. 7th Annual IEFEE Conference on Structure in Complezity Theory, pages
222-238, 1992.

N. Immerman. Languages that capture complexity classes. SIAM Journal on
Computing, 16(4):760-778, 1987.

N. Immerman. Nondeterministic space is closed under complementation. STAM
Journal on Computing, 17:935-938, 1988.

R. Karp and R. Lipton. Turing machines that take advice. L’enseignement
Mathematique, 28(3/4):191-209, 1982.

S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman
and Hartmanis. J. Comput. System Sci., 25(2):130-143, 1982.

D. Van Melkebeek. On reductions of P sets to sparse sets. TR 95-06, Computer
Science Dept., The University of Chicago, 1995.

M. Ogihara. Sparse hard sets for P yield space-efficient algorithms. In Proc. 36th
Annual IEEE Symposium on Foundations of Computer Science, pages 354-361,
1995.

W. Savitch. Maze recognizing automata and nondeterministic tape complexity.
J. Comp. Sys. Sci., 7:389-403, 1973.

R. Szelepcsényi. The method of forcing for nondeterministic automata. Bull.

of the FATCS, 33:96-100, 1987.
J.H. van Lint. Introduction to Coding Theory. Springer-Verlag, 1991.

L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theo-
retical Computer Science, 47:85-93, 1986.

P. Young. How reductions to sparse sets collapse the polynomial-time hierarchy:
A primer (Part I). SIGACT News, 23(3):107-117, 1992.

[You92b] P. Young. How reductions to sparse sets collapse the polynomial-time hierarchy:
A primer (Part II). SIGACT News, 23(4):83-94, 1992.

Appendix

Computation in F: First we recall that the polynomial X2 x3 41 ¢ Zo[X]is an irre-
ducible polynomial over Zs for all £ > 0 [vL91], and collect some facts about implementing

the basic operations of F. For each operation, the number of processors needed is at most
o)
n),

(1) Finding a primitive element w that generates the multiplicative group F* of F can
be done in logspace by exhaustive search.

(2) Adding two elements y1,y2 € F is just the bitwise exclusive-or of the representations
of y1 and yz, and can be done in depth O(1). Adding n°(M-many elements can be done in
depth O(logn).

(3) Multiplying two elements of F (in the straightforward way) can be done by a circuit
of depth O(loglogn) and size (logn)°1).

(4) Raising the generator w to any power 7 < 2™, or computing the discrete logarithm of
any element with respect to w, can be done by table lookup in depth O(logn). The tables
themselves can be precomputed using O(logn) space.

(5) Multiplying & = n°() elements of F can be done in O(logn) depth. The idea is to
use the discrete logarithms of the k& elements with respect to the generator w, and convert
multiplications to additions of £ O(logn)-bit integers (modulo 27 — 1), which can be done
in O(logn) depth using the folklore 3-to-2 trick.

Proof of Lemma 3

Lemma 3 Let F = GF(2™), where m = O(logn), and m is of the form 2 - 3% for some
integer £ > 0. Solving a system Ax = b of n equations in n unknowns over the field F,
where A is a Vandermonde matriz of full rank over F, can be done by an O(logn)-space
uniform circuit of size n°M) and depth O(logn).

Proof. Whereas solving general linear equation systems seems to require NC? [BvzGHS2],
we will arrive at our NC! solution via closed formulae. Observe that an equation of the form
Z;:Ol gjuj = v can be viewed as specifying the value of the polynomial G(u) = Zn:_(} gjuj
at the point w € F. With this viewpoint, our task is to compute the polynomial G, that
is, to find the coefficients g; of G. Clearly if we can evaluate G(u) at n distinct points
U1, ..., U, € F, then we an recover the coefficients ¢g; by Lagrange interpolation as follows:

n

Glu) = 3 Glu)Q: = z@

=1

where

(i —up) oo (g — w1) (g — wigr) - (U — uyp) e (u; — ug)’

0: = (w—=ur).oo(u— w1)(— wigr) (U —Uup) (u — ug)

For 0 < 7 < n, g; is the coefficient of u/ in G(u). Collecting the terms corresponding to u’,
we have

1+2
Z Pn] (U, ey Uiy ey Upy)e
H Up — uz)
k#z
Here %; denotes that u; is missing from the list uq,...,u,, and P denotes the k-th elemen-
tary symmetric polynomial, defined as follows:
PO(ylv"'vyﬁ):l; Pk(yla"'ayﬁ): Z Hyzv k> 0.
icle] €l
\T|=k

By Facts (3) and (5), computing v; /(TTjz:(ur —us)) in NC' is fairly straightforward. Hence
it suffices to show how to compute the polynomials Py(u1,...,%,...,u,), in logspace-
uniform NC!. A folklore theorem indicates that this can be done in non-uniform NC!. For
our application, however, the uniformity is crucial.

It is easy to see that for y1,...,y € F, Pe(v1,...,ys) equals Pe(vy1,92,-..,9,0,0,...,0)
for any number of extra zeroes. Let r = |F*|, the number of elements in the multiplicative
group of F. We will give an NC! algorithm to compute the elementary symmetric polynomial
of r elements, not necessarily distinct, from the finite field F. By appending r — £ zeroes,
we can then compute Py(y1,92,.-.,Ys).

For 0 < k < r, the value of the elementary symmetric polynomial Px(y1,¥2,...,¥) is
the coefficient of X" =% in A(X) = [T’_;(X + %) — X”. Note that, given any a € F, h(a)
can be evaluated in NC', by Facts (2) and (5).

If we write h(X) as Ef:_& a; X", the coefficient a; = P_i(y,...,y,) for 0 <i < r. The
idea now is to choose a’s carefully from F, compute h(a) and compute the coefficients a;
by interpolation. If we choose w to be a primitive element of order r in F*, the powers of
w, namely 1 = &° 0! w?, ...,w""!, tun through the elements of F*. For 0 < i < r, let
b; = h(w*). The relationship between the pointwise values (b;’s) and the coefficients (a;’s)

of h(X) can be written as:

bo 1wl W02 e WO (r=1) ag
by Wl w12 ol(r=1) ay
br—l 1 w1 w(r—1)~2 o w(r—1)~(7’—1) ar_q

The above matrix, which we will denote by €2, is the Discrete Fourier Transform matrix, and
is a Vandermonde matrix. Since the powers of w are all distinct, € is invertible, and one can
compute the coefficients a; by (ag,...,a,_1)" = Q"' (bg,...,b,_1)T. The crucial advantage
over the earlier Vandermonde system is that with this particular choice of €2, the matrix
Q7! has a simple explicit form: Qi_jl =1/(Q;;) = w™%. Computing the coefficients of h(X)
is now simply a matrix-vector multiplication. This completes the proof of the lemma. []J

10

