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Abstract

We give a simplified proof of a theorem of Lagarias, Lenstra and Schnorr [17] that the
problem of approximating the length of the shortest lattice vector within a factor of C'n,
for an appropriate constant C, cannot be NP-hard, unless NP = coNP. We also prove
that the problem of findng a n'/4-unique shortest lattice vector is not NP-hard under
polynomial time many-one reductions, unless the polynomial time hierarchy collapses.

1 Introduction

A discrete additive subgroup of R" is called a lattice. Recently in a beautiful paper Ajtai [1]
established the first explicit connection between, in a certain technical sense, the worst-case
and the average-case complexity of the shortest lattice vector problem. This is the problem
of finding or approximating the shortest lattice vector or its length. In a tour de force,
Ajtai [2] further established the NP-hardness of the problem of finding the shortest lattice
vector (in Euclidean norm, or lo-norm), as well as the problem of approximating the shortest
vector length up to a factor of 1 + 2% Here k is a sufficiently large but fixed constant,
and n is the dimension of the lattice or the size of the problem. The Ajtai connection [1] of
worst-case to average-case complexity for lattice problems has been improved by Cai and
Nerurkar [7]. In a forthcoming paper [8], Cai and Nerurkar also improve the NP-hardness
result of Ajtai [2] to show that the problem of approximating the shortest vector length
up to a factor of 1 + n—ls, for any € > 0, is also NP-hard. This improvement also works for
all Ip-norms, for 1 < p < oo. Prior to that, it was known that the shortest lattice vector
problem is NP-hard for the [, -norm, and the nearest lattice vector problem is NP-hard
under all [,-norms, p > 1 [16, 24]. Even finding an approximate solution to within any
constant factor for the nearest vector problem for any [,-norm is NP-hard [4]. In the other
direction, Lagarias, Lenstra and Schnorr [17] showed that the approximation problem (in
lo-norm) within a factor of O(n) cannot be NP-hard, unless NP = coNP. Our first result is
to present a simplified proof of this theorem using a generalization of an idea of Ajtai [1].
The recent breakthrough by Ajtai [1, 2] has its motivations from cryptography, and the
connection between average-case and worst-case complexity in general. It has been realized
for some time that the security of a cryptographic protocol depends on the intractability of
certain computational problem on the average. Unfortunately as yet we have no such proofs
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for any problem in NP. The next best thing to an absolute lower bound would be a proof
of NP-hardness for breaking the protocol. To this end, Ajtai and Dwork [3] have proposed
a public-key cryptosystem with provable security guarantees based on only the worst-case
hardness assumption for an approximate version of the shortest lattice vector problem.
More precisely, they defined the notion of a n°-unique shortest lattice vector, and showed
that for a certain c, if finding the shortest lattice vector in a lattice with a n°-unique shortest
vector is hard in the worst case, then their public-key cryptosystem is provably secure. This
is the first public-key cryptosystem with such provable security guarantees. Hence there is
considerable interest recently in the determination of the exact complexity for a variety of
problems related to the shortest vector problem. In particular one would like to narrow the
gap between those cases where NP-hardness can be proved and those where it is probably
not NP-hard. Goldreich and Goldwasser have obtained the following result: Approximating
the shortest lattice vector within a factor of O(y/n/logn) is not NP-hard under polynomial
time many-one reductions, assuming the polynomial time hierarchy does not collapse [9].
We adapt their proof to show that the problem of finding a n'/*-unique shortest lattice
vector is not NP-hard under polynomial time many-one reductions, unless the polynomial
time hierarchy collapses.

2 Preliminaries

A lattice L (of full rank) in R™ is the set of all integral linear combinations of a set of n
linearly independent vectors in R™. Such a linearly independent set of generating vectors
is called a basis for L. Basis vectors for a lattice are not unique, but related by unimodular
transformations.

The dimension of a lattice L, denoted dim L, is the number of vectors in a basis. We
denote the length (Euclidean norm) of a vector v by ||v||. The inner product is denoted by
(u,v), and [|v||? = (v,v).

A fundamental theorem of Minkowski is the following:

Theorem 2.1 (Minkowski) There is a universal constant vy, such that for any lattice L
of dimension n, v € L, v # 0, such that

|lv]| < yv/ndet(L)"/".

The determinant det(L) of a lattice is the volume of the n-dimensional fundamental par-
allelepiped, and the absolute constant 7 is known as Hermite’s constant. (Some authors
define the least upper bound for ||v||/ det(L)Y/™ or its square ||v||?/ det(L)*/™ as Hermite’s
constant 7y, then -, is bounded above by «v/n or v%n, respectively, for all lattices of di-
mension n, where v is some universal constant.) We denote unit(L) = det(L)!/ 4™(L), We
denote by A;(L) the length of the shortest non-zero lattice vector of L. Then Minkowski’s
Theorem can also be stated as A1(L) < yy/n - unit(L).

There is a second Minkowski theorem dealing with the geometric mean of the so-
called successive minima {/[[;i=y A\i in place of A;. Here \;(L) is defined as \;(L) =
min,, .. yer Maxi<j<; |[vj]|, where the sequence of vectors vq,...,v; € L ranges over all
1 linearly independent lattice vectors.



Theorem 2.2 (Minkowski) For any lattice L of dimension n,

n 1/n
(H Ai(L)> < yv/ndet(L)"/™.
=1

If vy, ..., vy are vectors in R™, such that the linear span of {v1,..., v} intersects L in a
sublattice of dimension k, then we can obtain a quotient lattice, denoted by L/L(v1,...,vk),
by orthogonally projecting L to the orthogonal complement of the span of {v1, ..., v }. Note
that vq,...,v; need not be lattice vectors.

Given a lattice L, the basis length bl(L) is the minimum over all basis vectors {b1, bo, ..., b, }
of the maximum length ||b;||. Call a sequence of n non-zero vectors (b1, b,...,b,) an
admissible sequence for L, if by € L, by € Ly = L/L(b1), etc. In general Ly = L,
by € Ly, and Ly = Lg—1/Lk_1(bg), bg+1 € Lg, for 1 < k < n — 1. It is easy to see that
Ly = L/L(by,...,b). We define bl(L) to be the minimum over all admissible sequences
(b1,b,...,b,) for L of the maximum length ||b;|.

The dual lattice L* of a lattice of dimension n in R" is defined as those vectors u, such
that (u,v) € Z, for all v € L. It consists of all integral linear combinations of the dual basis
vectors bf,...,by, where (b}, b;) = d;;. In particular unit(L*) - unit(L) =1, and L** = L.

A lattice L is said to have a n®-unique shortest lattice vector, if there is a non-zero
vector v € L, such that, if ||u|| < n€||v|| for any lattice vector u € L, then there is an integer
k such that u = kv. Clearly such a vector v is unique up to sign +wv.

Lagarias, Lenstra and Schnorr [17] proved the following theorem:

Theorem 2.3 (Lagarias, Lenstra and Schnorr) The problem of approximating the length
of the shortest lattice vector within a factor of Cn, for an appropriate constant C, cannot
be NP-hard, unless NP = coNP.

Their result is based on the following type of inequalities called transference theorems:

Theorem 2.4 (Lagarias, Lenstra and Schnorr) For any lattice L of dimension n,
* 1 2
1 < N(L)An—ig1(LF) < En )

foralll1<i<mnandalln>T.

For related results see [5, 15]. The proof in [17] uses Korkin-Zolotarev basis of a lattice.
Their transference theorem has been improved by Banaszczyk [6], where the factor n? has
been replaced by n.

Theorem 2.5 (Banaszczyk) For any lattice L of dimension n,
1 < )\i(L))\n—i—i—l(L*) < C’n,
for some universal constant C, and for all 1 <7 <n and all n.

Banaszczyk’s proof is non-elementary, based on harmonic analysis. This bound of Cn is
essentially optimal up to the constant C, since a construction by Conway and Thompson (see
[21]) shows that there exists a self-dual lattice family {L,,} with A;(L,) = Q(y/n).



3 A product relation

Theorem 2.3 follows easily from Banaszczyk’s inequality (Theorem 2.5). Even though Ba-
naszczyk’s inequality is stronger than that of Theorem 2.4, the bound to non-NP-hardness
for approximability of shortest lattice problem remains O(n).

We will give a self-contained elementary proof of Theorem 2.3. The inequalities we prove
are not as strong as Banaszczyk’s inequality, but the proofs are much simpler, and yields
the same bound O(n) for non-NP-hardness. We first prove a lemma, which is modeled after
a lemma of Ajtai [1]. The lemma is proved using Minkowski’s First Theorem on shortest
lattice vectors.

Lemma 3.1 For any lattice L of dimension n, and for any threshold t > 0, there exist an
admissible sequence of vectors for L, (b1,be,...,b,), and an integer k, 0 < k < n, such that,

o [Tk > 0, then [l [Ibe]] < 7/t
o If k <mn, then unit(L/L(b1,...,bg)) > t.

Remark: The conditions & > 0 and & < n can be omitted in the statements if we
understand that the statements are vacuously true for the cases where kK = 0 or k = n
respectively.

Proof: The lemma is trivially true for n = 1. We suppose n > 1, and prove by induction.

If unit(L) > ¢, then the lemma is trivially true by taking & = 0, and any admissible
sequence (by,bo,...,by).

Now suppose unit(L) < ¢. Then by Minkowski’s Theorem, there exists a non-zero vector
by € L, such that ||b1|| < y/nt. Consider Ly = L/L(by). By induction, for L; of dimension

n — 1, there exist an admissible sequence (bs,...,b,) for L1 and an integer k, 1 < k < n,
such that
o If k> 1, then ||bs]l,...,]||bk|| < vvn — 1t

e If k < n, then unit(L;/L(bs,..., b)) > t.

However, note that, (b1, bg,...,b,) is an admissible sequence for L, and L1 /L(bs,...,b;) =
L/L(by,ba,...,bg), the lemma follows. O

Theorem 3.1
1< M\(L*) - bl(L) < y%n.

Proof: We first show that the product is at least 1.

Let v € L* be an arbitrary non-zero vector in the dual lattice. Let (b1, b,...,b,) be an
admissible sequence of vectors of L, with max;<i<y, ||bi|| = b~l(L) Since by, bo, ...,b, are n
linearly independent vectors, there exists some 4, such that (v,b;) # 0. Let ¢ > 1 be the
least such index. Hence, for all j, 1 < j <4, (v,b;) =0, and (v,b;) #0. (If i = 1 then the
first statement is vacuous.) We want to show that

ol - e [ = ol - BL(E) > 1.



Suppose ¢ = 1. Then since by € L, (v,b;) is a non-zero integer, |(v,b1)| > 1. Hence
1L < ||v]| - ||b1]] < ||v]| - maxi<i<n ||bi]|, by Cauchy-Schwarz.

Now suppose ¢ > 1. By the definition of admissible sequence, there exist real numbers
ai,...,q;_1, such that b; + Z;;ll ajb; € L. Recall that (v,b;) =0, for all 1 < j <4, and
(v,b; + 23;11 a;b;) is an integer, and (v,b;) # 0, we obtain (v,b;) = (v,b; + Z;;ll a;bj)
is a non-zero integer, and thus is of absolute value at least 1. Therefore, 1 < [(v,b;)| <
||| - ||bi]| < ||v|| - maxi<i<n ||bi||, again by Cauchy-Schwarz.

We show next that

where v is Hermite’s constant.

Take t to be an arbitrary real number less than ﬁgl (L). Then the integer k from
Lemma 3.1 must be less than n, lest there be an admissible sequence for L with max;<;<p, ||bi]|
< b~l(L) Hence, the second clause in the lemma holds with some £ < n, so that the
quotient lattice L/L(by,...,b;) is of dimension at least 1. Note that the dual lattice
(L/L(b1,...,bg))" within the (n — k)-dimensional linear span of L/L(by,...,bx) is a sublat-
tice of L*. By the lemma, unit(L/L(b1,...,bg)) > t, thus unit ((L/L(b1,...,bx))") < 1/t.

By Minkowski’s Theorem again, there exists a non-zero vector of (L/L(b,...,bx))”, hence
of L*, whose length is less than yv/n —k - 1/t < vy/n/t. Since t < ﬁbl(L) is arbitrary,

the shortest non-zero lattice vector of L* must have length at most v2n/bl(L), i.e.,

A(L*) - bI(L) < ~*n. O

Note that L** = L, we can apply this theorem to the dual lattice L*, and obtain
Corollary 3.1

1< A (L) -bl(L*) < ~%n.

The same idea can give a similar bound relating the shortest vector length A;(L) with
the basis length bl(L*) of the dual. Stronger bounds are found in [6].

Theorem 3.2
1< (L) -bI(L) < Cnl?,
where C is an absolute constant.

The lower bound 1 < A;(L*) - bI(L) is known (see e.g. [1]) and is relatively easy; we
repeat it here: Let v € L*, v # 0, and ||v|| = A\ (L*). Then for any basis bi,...,by, of L,
there must be some 4, such that (v,b;) # 0. Being integral, |(v,b;)| > 1. The lower bound
then follows from the Cauchy-Schwarz inequality.

For the upper bound, we need a similar lemma.

Lemma 3.2 For any lattice L of dimension n, and for any threshold t > 0, there exist a
basis of L, {b1,ba,...,b,}, and an integer k, 0 < k < n, such that,

o If k>0, then ||bi||,...,||bk|| < cnt, for some absolute constant c.

o Ifk <n, then unit(L/L(b1,...,bg)) > t.



Proof: (of Lemma 3.2) By induction. n = 1 is a direct consequence of Minkowski’s
Theorem.

Suppose n > 1. If unit(L) > ¢, then the lemma is trivially true by taking k¥ = 0, and
any basis of L.

Next we assume unit(L) < ¢. Then by Minkowski’s Theorem, there exists a non-zero
vector by € L, such that ||bi|| < yy/nt. We may assume that b; is a primitive vector, i.e., it
is not an integral multiple of other lattice vectors (other than +b;). Let L' = L/L(b;). By
induction, for L' of dimension n — 1, there exist a basis {b),...,b),} for L' and an integer
k, 1 <k < n, such that

e If k> 1, then ||B)]],...,[|b]] < c(n —1)t.
o If k < n, then unit(L'/L(b5, ... b)) > t.

Now {b,...,bl,} can be lifted to a set of lattice vectors {by,...,b,} of L, together with by,
forms a basis of L. In fact, each b; = b}+ a;b1, for some |o;| < 1/2, and by being orthogonal,

1Bl < IBi[7 + 1[bu]2/4 < ¢ (n — )% + 7°nt? /4.

It follows that ||b;|| < ent, for i < k, if we take ¢ = ~, say. (c can be taken to be any
constant slightly bigger than v/(2v/2).) Finally we note that

L'JL(Yy, ... by) = L/L(by,ba, ..., bg).

The lemma is proved. O

Returning to the proof of Theorem 3.2, we take the threshold ¢ to be slightly less than
bl(L)/en. Then the integer k from Lemma 3.2 must be less than n, lest there be a basis of
L with maxi<j<p ||b;]| < bI(L). Thus we have a quotient lattice L/L(b1,...,b;) of dimen-
sion at least 1, with unit(L/L(by,...,bg)) > t. Again the dual lattice (L/L(b1,...,bx))"
within the (n — k)-dimensional linear span of L/L(by,...,b;) is a sublattice of L*. Thus
unit ((L/L(by,-..,bg))") < 1/t. By Minkowski’s Theorem again, there exists a non-zero
vector of (L/L(by,...,bx))", hence of L*, whose length is less than yv/n — k- 1/t < y+/n/t.

Since t can be chosen arbitrarily close to bl(L)/cn, the shortest non-zero lattice vector
of L* must have length at most cyn!®/bl(L), i.e.,

AL(LY) -bI(L) < Cn'?,

for some absolute constant C. O

4 The complexity of approximate shortest lattice vector
We show next that Theorem 2.3 follows immediately from Theorem 3.1.

Theorem 4.1 If the problem of finding the length of the shortest lattice vector for a lattice
of dimension n, within a factor of y*n, is NP-hard under polynomial-time Turing reductions,
then NP = coNP.

Proof: Suppose there is a polynomial-time Turing machine M reducing SAT to the
problem of finding the length of the shortest lattice vector for a lattice of dimension n,



within a factor of y?n. The precise meaning of this reduction is in terms of the notion of a
promise problem [23], where every oracle query by M consists of a lattice L and a threshold
t, with the property that either the shortest lattice vector of L has length < ¢ (in which
case the oracle answer is “yes”), or the length is > (y2dim L)t (in which case the oracle
answer is “no”). The lattice L is presented to the oracle in terms of a basis. The dimension
as well as the bit-length of the basis vectors of L are bounded by a fixed polynomial of the
input length to M, and each oracle query counts as one step by M.

We now describe an NPNcoNP algorithm to solve SAT. Thus NPC NPNcoNP, and so
NP = coNP. Upon any input boolean formula to M, we simulate M, where we handle each
query as follows. Suppose L and a threshold ¢ are presented. First let’s suppose Ay (L) <,
then we can guess a short non-zero vector of L, and verify that its length is at most . It is
not difficult to see that the bit-length of such a shortest vector in terms of the given basis
vectors is polynomially bounded.

Now suppose A1 (L) > t, then by hypothesis A\; (L) > (y? dim L)t. Apply Corollary 3.1 to
the lattice L*, we have 1 < \;(L)-bl(L*) < 72 dim L. It follows that bl(L*) < 1/t. Moreover,
bl(L*) < 1/t implies that A;(L) > ?;L(i*) > t. Thus, we simply guess an admissible sequence
(61,.-.,0dimr+) of vectors for the dual lattice L*, and verify that max; ||6;|| < 1/t. Again
it is not difficult to see that one can first compute a dual basis from the basis given for L,
and verify all the necessary requirements in polynomial time. In particular, the bit-length
of such a guess is polynomially bounded. O

As mentioned earlier, much of the recent interest in the complexity of problems related
to shortest lattice vectors stems from the great advances made by Ajtai [1], and Ajtai
and Dwork [3]. In particular, the Ajtai-Dwork public-key cryptosystem is provably secure
assuming only the worst case intractability of the following problem: Given a n-dimensional
lattice L with a n®-unique shortest vector, for some large constant ¢, find its shortest vector.

Ajtai [2] has shown more recently that the shortest lattice vector problem is NP-hard
under randomized polynomial time reductions. In view of applications to cryptographic
security, hardness for approximate versions of the shortest lattice vector problem are also
important. To this end, Ajtai [2] showed that for a sufficiently large but fixed k, to approx-
imate the length of the shortest lattice vector within a factor of 1 + % remains NP-hard
under randomized polynomial time reductions. More precisely, this means that there is a
probabilistic polynomial time reduction o with the following property: Given an arbitrary
boolean formula ®, o(®) is a lattice L with a threshold ¢, such that, if ® is satisfiable
® € SAT, then with high probability A;(L) < ¢, and if ® is not satisfiable ® ¢ SAT,

then A (L) > (1 + 2%) t. Furthermore, given any approximate short vector v € L, with

0< ||| < (1 + 2%) t, a satisfying assignment to ® can be easily constructed from v. This

approximation factor has been improved by Cai and Nerurkar [8] to 1+ #, for any £ > 0.

The results discussed in this paper belong to the other direction, namely certain approx-
imate shortest lattice vector problems are not NP-hard under some standard complexity
assumptions. Going beyond the factor n, Goldreich and Goldwasser [9] have shown that
approximating the shortest lattice vector within a factor of O(y/n/logn) is not NP-hard
under polynomial time many-one reductions, assuming the polynomial time hierarchy does
not collapse. This is a stronger result of non-NP-hardness, assuming a stronger complexity
assumption. More precisely they showed that there is a (bounded round) interactive proof

system (AM) for the assertion that A\ (L) > t - \/n/logn, assuming that the lattice L sat-



isfies the promise that either A1 (L) <t or A;(L) > t-y/n/logn. The main consequence of
the interactive proof is that unless the polynomial time hierarchy collapses, the following
reduction o(®) = (L, t) does not exist in polynomial time: Given an instance ® for SAT, if
® € SAT, then A\ (L) <t, and if & ¢ SAT, then A\;(L) > ¢- /n/logn.

The basic idea of the IP protocol of [9] is rather simple and beautiful that we describe
it informally: Suppose L satisfies the promise of either A\j(L) <t or \{(L) > t-+/n/logn,
and the prover claims that A;(L) > ¢ - y/n/logn. Imagine we surround each lattice point
p € L a ball By(r) centered at p with radius r =t - \/n/logn/2. If the prover P is honest,
then all such balls are disjoint. Now the verifier randomly picks a lattice point p in secret,
and randomly picks a point z in B,(r). The verifier presents z to the prover, who should
respond with p, the center of the ball from which z was chosen. It is clear that for an
honest prover P with unlimited computing power, since all the balls B,(r) are disjoint, he
has no difficulty meeting his obligation. However, suppose the prover P’ is dishonest, so
that in fact A;(L) < t. Then for any lattice point p picked by the verifier, there is at least
one nearby lattice point p’ with ||p — p'|| < t. Then B,(r) and By (r) would have a large
intersection. This follows from the fact that the radius is almost n'/2 times the distance of
their respective centers. It follows that there is a significant probability that a dishonest
prover will be caught, since in case a point z € B,(r) N By (r) is chosen, the verifier could
equally have chosen p or p'.

The exponent 1/2 in this interactive proof protocol comes from the well known fact that
in n-dimensional space, two unit balls with center distance d have a significant intersection
if d < 1/v/n, and a negligible intersection if d > 1/n'/2=¢, for any € > 0.

In view of the particular version of the shortest vector problem upon which the Ajtai-
Dwork system is based, it is interesting to consider to which extent a non-NP-hardness
result can be shown for it. Define the following promise problem:

The n®unique shortest lattice vector problem:
Given a lattice with a n°-unique shortest vector v, find the shortest vector +wv.

Theorem 4.2 The n®-unique shortest lattice vector problem for ¢ < 1/4 is not NP-hard
unless the polynomaial time hierarchy collapses.

Proof: Let L be a lattice with a n'/4-unique shortest vector. We present a bounded round
interactive proof system (AM) for proving that A\i(L) > t¢.
Let the input size be bounded by n®®). Without loss of generality let the lattice be
given by its basis L = L(by, by, . .., by). Let T = min; <<y, ||i|, which is bounded by 27°%.
The interactive proof protocol is as follows:

V: For i = 0,1,...,|logy T — logyt|, and j = 1,2,...,m = n°W independently uni-
formly picks a lattice point p;; in L (say uniformly within a large exponential sized
parallelepiped), and then pick a uniformly chosen point z;; € By,;(r;), where r; =

2714, /\/n — 1. Sends all z; to V.

P: Returns to V vectors v and pi,...,pl,.

V: Accepts if and only if v € L, ||v|]| > ¢, v is a primitive vector in L (v is a primitive
vectors iff it is not an integral multiple of another lattice vector except +v), and for the
unique ¢ such that 2¢ < [[v]| < 2071, each 2z;; € By (r;), and finally pjj = pij mod v
for all j. ’



The intuitive idea is the following: The prover is supposed to return the shortest lattice
vector v. Consider the orthogonal projection L' of L perpendicular to v, i.e., L' = L/L(v).
If v is indeed the shortest vector of L, then for the right value i, the images of the projected
balls By, (r;) are either disjoint or identical, depending on whether the respective centers
are congruent modulo v. And therefore an honest prover P with unlimited computing
power, has no difficulty meeting his obligation. Now suppose A;(L) < ¢t. Then since v
is a primitive lattice vector with length ||v|| > ¢, it must be linearly independent of the
true shortest vector, and therefore ||v|| is much longer than A;(L). It follows that for the
appropriate 4, in the span of the orthogonal projection L’ there is a lot of overlap between
various projected balls By, (r;), 1 < j < m.

Now we give more details. Suppose Ai1(L) > t. P chooses v € L with ||v|]| = Ai(L).
Then

1
M) > /va- 7 ol

which is approximately n'/4||v|| for large n. This is because a non-zero vector of L' of
length A\;(L') can be lifted to a vector in L, of length at most \/)\1(L’)2 + X|[v|[2, and

linearly independent of v. Thus \/)\1(L’)2 + 1M (L)? > n'/4||v||. Let i the unique value
such that 2¢¢ < |Jv|| < 2!F¢. Then 0 < i < |logy T — logy t]. For this 4, the radius r; is less

than half of A\;(L’),
(L) > 2ity//n — i = 2r;.

Thus the projected images of all the balls By(r;), for all p € L are mutually disjoint (n—1)-
dimensional balls, except for balls with centers that differ by a multiple of v. Since the
points z;1, 22, - - . , Zim did belong to some balls By, (1), Bp,, (i), - - -, Bp,,, (17), the honest
prover P can find some p},...,p;, € L, such that z;; € Bp;, (ri), and pj; = p;j mod v for
all j. The verifier now checks that all the requirements are satisfied. (Primitivity can be
easily checked by expressing the lattice vector v in terms of any basis, and v is primitive iff
the integral coefficients are relatively prime.) Hence honest provers will be accepted with
probability one, and we have completeness.

To show soundness, suppose A;(L) < t. Suppose the prover P’ returns v and p}, ..., p/,.
Without loss of generality, v,p},...,p), € L, v is a primitive vector, and ||v|| > ¢, and
p; = pij mod v, for otherwise it will be rejected immediately. (Note that v € L and
p;- = p;; mod v implies that p;- € L, where i is the unique value as specified in the protocol.)
Since v is a primitive vector with ||v|| >t > A1(L), v must be linearly independent of the
true shortest vector, call it vg. Thus by the n'/4-uniqueness property, |[v|| > n'/*Ai(L).

Hence,
. 1 1 1
=2V L2 V- ol V- T a/

which is of order \/nA;(L).

For every p;;, 1 < j < m, there is at least one neighbor lattice point p;; which is at
most distance A;(L) away, and p;; — p;; = 0 mod vy and hence p;; — p;; Z 0 mod v. Each
such pair of balls has a substantial intersection By, (r;) N B, (r;), since the radius is of
order \/nA;(L). When the point z;; is chosen to be in the intersection, By, (r;) N B, (13),
which happens with substantial probability, p;; or p;; could have been picked as the secret
lattice points, with essentially equal probability (the error term is exponentially small and




accounts for the boundary of the large parallelepiped). In this case, i.e., conditional to
an i and z;; € By, (r;) N Bj,;(r;), any prover can achieve a success probability of at most
1/2 + e™™. We note that every try (every j) is independent, and the above estimate of
1/2 4+ e is valid conditional to any other tries. Compound this by m parallel tries, and
summing over all ¢ from 0 to log, T = n?M | we conclude that the success probability of any

prover is exponentially small, no more than e ™" . Hence dishonest provers will be caught
with probability exponentially close to one. O
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