A Complete Dichotomy Rises from the
Capture of Vanishing Signatures

Jin-Yi Cai Heng Guo Tyson Williams
University of Wisconsin-Madison University of Wisconsin-Madison University of Wisconsin-Madison
jyc@cs.wisc.edu hguo@cs.wisc.edu tdw@cs.wisc.edu
Abstract

We prove a complexity dichotomy theorem for Holant problems over an arbitrary set of
complex-valued symmetric constraint functions F on Boolean variables. This extends and unifies
all previous dichotomies for Holant problems on symmetric constraint functions taking values
in a field of characteristic zero. We define and characterize all symmetric vanishing signatures.
They turned out to be essential to the complete classification of Holant problems. The dichotomy
theorem has an explicit tractability criterion. The Holant problem defined by a set of constraint
functions F is solvable in polynomial time if it satisfies this tractability criterion, and is #P-hard
otherwise. The tractability criterion can be intuitively stated as follows: the set F is tractable
if (1) every function in F has arity at most 2, or (2) F is transformable to an affine type, or
(3) F is transformable to a product type, or (4) F is vanishing, combined with the right type
of binary functions, or (5) F belongs to a special category of vanishing type Fibonacci gates.
The proof of this theorem utilizes many previous dichotomy theorems on Holant problems and
Boolean #CSP.

1 Introduction

In the study of counting problems, several interesting frameworks of increasing generality have been
proposed. One is called H-coloring or Graph Homomorphism [33, 0, &, 21, 22, 25, [, 28]. Another
is called Constraint Satisfaction Problems (#CSP) [2, B, 4, [, 9, 8, 3, 20, PG, 01, G]. Recently,
inspired by Valiant’s holographic algorithms [36, B3], a further refined framework called Holant
problems [I5, 06, 7] was proposed. They all describe classes of counting problems that can be
expressed as a sum-of-product computation, specified by a set of local constraint functions F, also
called signatures. They differ mainly in what F can be and what is assumed to be present in F
by default. Such frameworks are interesting because the language is ezpressive enough so that
they contain many natural counting problems, while specific enough so that it is possible to prove
dichotomy theorems. Such theorems completely classify every problem in a class to be either in P
or #P-hard [34, 7, 24, [g].

The goal is to understand which counting problems are computable in polynomial time (called
tractable) and which are not (called intractable). We aim for a characterization in terms of F.
An ideal outcome is to be able to classify, within a broad class of functions, every function set F
according to whether it defines a tractable counting problem or a #P-hard one. We note that,
by an analogue of Ladner’s theorem [82], such a dichotomy is false for the whole of #P, unless
P = #P.



We give a brief description of the Holant framework here [I5, 06, [2]. A signature grid ) =
(G, F,m) is a tuple, where G = (V, E) is a graph, 7 labels each v € V with a function f, € F,
and f, maps {0, 1}deg(”) to C. We consider all 0-1 edge assignments. An assignment o for every
e € E gives an evaluation [[,cy fo(0 [g()), where E(v) denotes the incident edges of v and o |,
denotes the restriction of o to E(v). The counting problem on the instance 2 is to compute

Holanto = Z H fo (0 \E(v)) . (1)

o:E—{0,1} veV

For example, consider the PERFECT MATCHING problem on (G. This problem corresponds to
attaching the EXACT-ONE function at every vertex of G.

The Holant framework can be defined for general domain [¢]; in this paper we restrict to
the Boolean case ¢ = 2. The #CSP problems are the special case of Holant problems where
all EQUALITY functions (with any number of inputs) are assumed to be included in F. Graph
Homomorphism is the further special case of #CSP where F consists of a single binary function
(in addition to all EQUALITY functions).

Consider the following constraint function f : {0,1}* — C. Let the input (21,22, 3, 24) have
Hamming weight w, then f(x1,x9,x3,24) = 3,0,1,0, 3, respectively, if w = 0, 1,2, 3,4, respectively.
We denote this function by f = [3,0,1,0,3]. What is the counting problem defined by the Holant
sum in () when F = {f}? For a 4-regular graph G, by definition, this is a sum over all 0-1 edge
assignments of products of local evaluations. We only sum over assignments which assign an even
number of 1’s to the incident edges of each vertex, since f = 0 for w = 1 and 3. Then each vertex
contributes a factor 3 if the 4 incident edges are assigned all 0 or all 1, and contributes a factor 1 if
exactly two incident edges are assigned 1. Before anyone thinks that this problem is artificial, let’s
consider a holographic transformation. This Holant problem can be expressed in the bipartite form
Holant ((=2) | f), where (=2) is the binary EQUALITY function that we denote by its truth table
(1,0,0,1) indexed by {0,1}2, or as a symmetric signature [1,0,1]. The notation Holant ((=2) | f)
means that on a (2-4 regular) bipartite graph H = (U,V, E), every u € U is assigned (=2), and
every v € V is assigned f. We can think of H as the edge-vertex incident graph of G. If we

apply the holographic transformation Z = i[l _14, then Valiant’s Holant Theorem [36] tells
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us that Holant ((=2) | f) is exactly the same as Holant ((=2)Z%? | (Z71)®4f). Here (=2)Z%% is a

row vector indexed by {0,1}? denoting the transformed function under Z from (=3) = (1,0,0, 1),
and (Z~1)®4f is the column vector indexed by {0,1}* denoting the transformed function under
Z~! from f. Let f be the EXACT-Two function on {0,1}%. We can write its truth table as a
column vector indexed by {0, 1}*, which has a value 1 at Hamming weight two and 0 elsewhere. In
symmetric signature notation, f = [0,0,1,0,0]. Then we have
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= 5[3,0,1,0,3];
hence (Z~1)®4f = 2f. Meanwhile, Z transforms (=3) to the binary DISEQUALITY function

(=2)Z2%2 =1 0 0 NZ¥={a 0+0 N?}Z? =1 )+ -)®}=1[0,1,0] = (£2).



Hence, up to a global constant factor of 2™ on a graph with n vertices, the Holant problem with
[3,0,1,0,3] is exactly the same as Holant ((#2) | [0,0,1,0,0]). A moment’s reflection shows that this
latter problem is counting the number of Eulerian orientations on 4-regular graphs, an eminently
natural problem! Thus holographic transformations can reveal the fact that completely different
looking problems are really the same problem, and there is no objective criterion on one problem
being more “natural” than another. Hence we would like to classify all Holant problems given by
such signatures.

An interesting observation is that Holant ((#2) | [0,0,1,0,0]) has exactly the same value as
Holant ((#2) | [a,b,1,0,0]) on any signature grid, for any a,b € C. This is because on a bipartite
graph, (#2) demands that exactly half of the edges are 0 and the other half are 1, while on the
other side, any use of the value a or b results in strictly less than half of the edges being 1. This
is related to a phenomenon we call vanishing. Vanishing signatures are constraint functions, that
when applied to any signature grid, produce a zero Holant value. A simple example is a tensor
product of (1 z) Whenever two copies of (1 z) meet, they annihilate each other since they
give the value (1 2) . (1 z) = 0. These ghostly constraint functions are like the elusive dark
matter. They do not actually contribute any value to the Holant sum. However in order to give
a complete dichotomy for Holant problems, it turns out to be essential that we capture these
vanishing signatures. The vanishing signatures are like dark matter in physics in another way.
Their contribution to the Holant sum is not directly observed. Yet in terms of the dimension of
the algebraic variety they constitute, they make up the vast majority of the tractable symmetric
signatures. Furthermore, they provide a large substrate to produce non-vanishing and tractable
signatures, when combined with others. In #CSP problems, they are invisible due to the presumed
inclusion of all the EQUALITY functions; and they lurk beneath the surface when one only considers
real-valued Holant problems.

The vanishing signatures have influenced previous dichotomy results, although this influence
was not fully recognized at the time. In the dichotomy theorems in [IZ] and in [9], almost all
tractable signatures can be transformed into a tractable #CSP problem, except for one special
category. The tractability proof for this category used the fact that they are a special case of
generalized Fibonacci signatures [T5]. However, what went completely unnoticed is that for every
input instance using such signatures alone, the Holant value is always zero!

The most significant previous encounter with vanishing signatures was in the parity setting [7).
The authors noticed that a large fraction of signatures always induce an even Holant value, which is
vanishing in Zy. However, the parity dichotomy was achieved using an existential argument without
obtaining a complete characterization of the vanishing signatures. Consequently, the dichotomy
criterion is non-constructive and is currently not known to be decidable. Nevertheless, this work is
important because it was the first to discover nontrivial vanishing signatures in the parity setting
and to obtain a dichotomy that is completed by vanishing signatures.

To complement our characterization of vanishing signatures, we also obtain a characterization
of signatures transformable to the #CSP tractable Affine type o/ or Product type &2, after nor-
malizing by orthogonal transformations. An orthogonal transformation is natural since the binary
EQUALITY (=2) is unchanged under such holographic transformations. With explicit characteriza-
tions of these tractable signatures, we are able to prove our dichotomy theorem.

We first prove a dichotomy for a single signature, and then we extend it to an arbitrary set of
signatures. The most difficult part is to prove a dichotomy for a single signature of arity 4. The
proof involves a demanding interpolation step and an approximation argument, both of which use



asymmetric signatures. We found that the shortest path to proving a dichotomy for symmetric
signatures goes through the world of asymmetric ones.

With this dichotomy, we come to a conclusion on a long series of dichotomies on Holant problems.
They become special cases of this dichotomy. However, the proof of this theorem is logically
dependent on these previous dichotomies |16, 02, 14, B0, 381, 00, 0, 9, 29]. In particular, this
dichotomy extends the dichotomy in [29] that covers all real-valued symmetric signatures. While
we do not rely on their real-valued dichotomy, we do make important use of two results in [29].
One is the #P-hardness of the Eulerian orientations problem; the other is a dichotomy for #CSP¢,
where every variable appears a multiple of d times.

2 Preliminaries

2.1 Problems and Definitions

The framework of Holant problems, a subset of #P, is defined for functions mapping any [¢]* — F
for a finite ¢ and some field F. In this paper, we investigate the complex weighted Boolean Holant
problems, that is, all functions are [2]¥ — C. We shall therefore assume throughout that ¢ = 2.
Strictly speaking, for consideration of models of computation, functions take complex algebraic
numbers.

A signature grid Q@ = (H, F,m) consists of a graph H = (V, E') where each vertex is labeled by a
function f, € F, and 7 : V — F is the labelling. The Holant problem on instance € is to evaluate
Holantg = >, [[,ey fo(0 [E@w)), @ sum over all edge assignments o : £ — {0, 1}.

A function f, can be represented as a truth table, or as a tensor in (C?)®4¢&(*)  We also use f*
to denote the value f(«), where « is a binary string. A function f € F is also called a signature.
A symmetric signature f on k Boolean variables can be expressed as [fo, f1,- .., fx], where f; is the
value of f on inputs of Hamming weight ¢. In this paper, we consider symmetric signatures. Since
a signature of arity &k must be placed on a vertex of degree k, we can also view the signature as a
vertex with k£ dangling edges. Throughout this paper, we do not distinguish these two views.

A Holant problem is parametrized by a set of signatures.

Definition 2.1. Given a set of signatures F, we define the counting problem Holant(F) as:
Input: A signature grid Q = (G, F,7);
Output: Holantg.

The following family Holant* of Holant problems were investigated previously [12, I3]. This is
the class of all Holant Problems (on Boolean variables) where unary signatures are freely available.

Definition 2.2. Given a set of signatures F, Holant™(F) denotes Holant(F UU), where U denotes
the set of all unary signatures.

Holant® problems are defined analogously.
Definition 2.3. Given a set of signatures F, we use Holant®(F) to denote Holant(FU{|[0, 1], [1,0]}).

A symmetric signature f of arity n is degenerate if and only if there exists a unary signature u
such that f = u®". For such signatures, it is equivalent to replace it by n copies of the corresponding
unary signature. Replacing a signature f € F by a constant multiple cf, where ¢ # 0, does not
change the complexity of Holant(F). It introduces a global factor to Holantn. Moreover, for two



signatures f, g of the same arity, we use f # ¢ to mean that these signatures are not equal in the
projective space sense, i.e. not equal up to any nonzero constant multiple.

We say a signature set F is tractable (resp. #P-hard) if the corresponding counting problem
Holant(F) is tractable (resp. #P-hard). Similarly for a signature f, we say f is tractable (resp. #P-
hard) if {f} is. We follow the usual conventions about polynomial time Turing reduction <r and
polynomial time Turing equivalence =r.

2.2 Holographic Reduction

To introduce the idea of holographic reductions, it is convenient to consider bipartite graphs. For a
general graph, we can always transform it into a bipartite graph preserving the Holant value. For
each edge in the graph, we replace it by a path of length 2, and assign to the new vertex the binary
EQuALITY signature (=2) = [1,0, 1].

We use Holant (R | G) to denote the Holant problem on bipartite graphs H = (U, V, E), where
each signature for a vertex in U or V is from R or G, respectively. An input instance for the bipartite
Holant problem is a bipartite signature grid and is denoted as Q@ = (H; R | G; 7). Signatures in
R are considered as row vectors (or covariant tensors); signatures in G are considered as column
vectors (or contravariant tensors) [19].

For a 2-by-2 matrix T and a signature set F, define TF = {g | 3f € F of arity n, g = T®" f},
similarly for FT. Whenever we write T%"f or TF, we view the signatures as column vectors;
similarly for fT®" or FT as row vectors.

Let T be an invertible 2-by-2 matrix. The holographic transformation by 7' is the following
operation: given a signature grid Q@ = (H; R | G; w), for the same graph H, we get a new grid
V' = (H; RT | T~'G; =) by replacing each signature in R or G with the corresponding signature
in RT or T~'G. This leads to a seminal result by Valiant.

Theorem 2.4 (Valiant’s Holant Theorem [B6]). If there is a holographic transformation mapping
signature grid 2 to €V, then Holantg = Holantgy.

Therefore, an invertible holographic transformation does not change the complexity of the
Holant problem in the bipartite setting. Furthermore, there is a special kind of holographic trans-
formation, the orthogonal transformation, that preserves the binary equality and thus can be used
freely in the standard setting.

Theorem 2.5 (Theorem 2.2 in [I2]). Suppose T is a 2-by-2 orthogonal matriz (TTT = I3) and let
Q = (H,F,n) be a signature grid. Under a holographic transformation by T, we get a new grid
Y = (H,TF,n) and Holantg = Holantgy.

Since the complexity of signatures are equivalent up to a nonzero constant factor, we also call
a transformation 7' such that TTT = Al for some A # 0 an orthogonal transformation. Such
transformations do not change the complexity of a problem.

2.3 Realization

One basic notion used throughout the paper is realization. We say a signature f is realizable or
constructable from a signature set F if there is a gadget with some dangling edges such that each
vertex is assigned a signature from F, and the resulting graph, when viewed as a black-box signature
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Figure 1: An F-gate with 5 dangling edges.

with inputs on the dangling edges, is exactly f. If f is realizable from a set F, then we can freely
add f into F preserving the complexity.

Formally, such a notion is defined by an F-gate [12, [3]. An F-gate is similar to a signature grid
(H,F,n) except that H = (V, E, D) is a graph with some dangling edges D. The dangling edges
define external variables for the F-gate. (See Figure 0 for an example.) We denote the regular
edges in F by 1,2,...,m, and denote the dangling edges in D by m + 1,...,m + n. Then we can
define a function I' for this F-gate as

F(y1,y2,---,yn): Z H(xhx?a"'7xm7y17"'7yn)a
Z1,22,...,2m€{0,1}
where (y1,92,...,yn) € {0,1}" denotes an assignment on the dangling edges and H(x1, xo, ..., Zm,
Y1,Y2,---,Yn) denotes the value of the signature grid on an assignment of all edges, which is the

product of evaluations at all internal vertices. We also call this function the signature I' of the
F-gate. An F-gate can be used in a signature grid as if it is just a single vertex with the particular
signature.

Using the idea of F-gates, we can reduce one Holant problem to another. Suppose g is the
signature of some F-gate. Then Holant(F U {g}) <7 Holant(F). The reduction is quite simple.
Given an instance of Holant(F U {g}), by replacing every appearance of g by the F-gate, we get
an instance of Holant(F). Since the signature of the F-gate is g, the Holant values for these two
signature grids are identical.

Although our main result is about symmetric signatures, some of our proofs utilize asymmetric
signatures. When an asymmetric signature is used in a gadget, we place a diamond on the edge
corresponding to the most significant index bit. The remaining index bits are in order of decreasing
significance as one travels counterclockwise around the vertex. (See Figure B for an example.)
Some of our gadget constructions are bipartite graphs. To highlight this structure, we use vertices
of different shapes. Any time a gadget has a square vertex, it is assigned [0, 1, 0]. (See Figure @ for
an example.)

We note that even for a very simple signature set F, the signatures for all F-gates can be quite
complicated and expressive.

2.4 #CSP and Its Tractable Signatures

The problem #CSP(F) has the following bipartite view: we make nodes for each variable and each
constraint. Connect a variable node to a constraint node if the variable appears in the constraint



function. Under this view, we can see that
# CSP(F) =7 Holant (& | F) =7 Holant(F U &),

where & = {=1,=9,=3, ...} is the set of equalities of all arities.
For a positive integer d, the problem # CSP?(F) is similar to # CSP(F) except that every
variable has to appear a multiple of d times. Thus we have

# CSPY(F) =7 Holant (& | F),

where &; = {=4, =24, =34, - - - } is the set of equalities of arities that are a multiple of d.
For the #CSP framework, the following two sets of signatures are tractable [12].

Definition 2.6. A k-ary function f(z1,...,xy) is affine if it has the form

Yoo - V1m0

where © = (x1,22,...,2k, 1), A is matriz over Fa, o is a vector over Fa, and x is a 0-1 indicator
function such that x az—o is 1 iff Ax = 0. Note that the inner product (o, x) is calculated over Fa,
while the summation Z;‘:l on the exponent of i = \/—1 is evaluated as a sum mod 4 of 0-1 terms.
We use & to denote the set of all affine functions.

Definition 2.7. A function is of product type if it can be expressed as a product of unary functions,
binary equality functions ([1,0,1]) and binary disequality functions ([0,1,0]). We use & to denote
the set of product type functions.

It is easy to see that if f is a symmetric signature in &, then f is either degenerate, binary
disequality, or generalized equality (i.e. [a,0,...,0,b] for a,b € C). Since our main dichotomy
theorem is for symmetric signatures, we use &7 (resp. &) to refer to the set of symmetric affine
(resp. product-type) signatures. It is known that the set of symmetric signatures in &/ is exactly
F1U P9 U F3, where F1, Fo, and F3 are three families of signatures defined as

F1={M[1,01%F +i"0,1]%%) | A e C,k=1,2,...,r =0,1,2,3},
T = {M[L, 1% +i"[1,-1)%%) | X e C,k=1,2,...,7=0,1,2,3}, and
Fy = {A\([1,1]%% +i"[1,—i]®%) | A e C,k=1,2,...,r=0,1,2,3}.

We explicitly list all the signatures in % U %2 U Z3 up to an arbitrary constant multiple from C:

1. [1,0,...,0,£1]; (F1,r =0,2)
2. [1,0,...,0, £i]; (F1,7=1,3)
3. [1, 0,1,0 ,0 or 1]; (ZFa,r =0)
4. [1,—i,1,— ,...,(—i) or 1J; (ZFa,r=1)
5. [0,1,0,1,...,0 or 1J; (Fa,r =2)
6. [1,4,1,4,...,7 or 1]; (Fo,r =3)
7. [1,0,-1,0,1,0,-1,0,...,0 or L or (=1)]; (Z3,r=0)
8 [1.1.-1-1.1,1,~1,—1,. ... 1or (-1)]: (Far=1)
9. [0,1, () -1,0,1,0,—1,...,0 or 1 or (—1)]; (Fs,r=2)
10. [1,-1,-1,1,1,—1,-1,1,...,1 or (=1)]. (F3,r =3)



There are two corresponding signature sets that are tractable in the Holant framework. A
signature f (resp. a signature set F) is «/-transformable if there exists a holographic transformation
T such that f € T/ (vesp. F C T</) and [1,0,1]T%% € o/. Similarly, a signature f (resp. a
signature set F) is Z-transformable if there exists a holographic transformation 7" such that f €
T (resp. F C TZ) and [1,0,1]T%? € 2. These two families are tractable because after the
transformation by 7T, it is a tractable #CSP instance.

2.5 Some Known Dichotomies

Here we list several known dichotomies. Our main dichotomy theorem is a generalization of all of
them. In order to clearly see this, we state the previous dichotomies using the language of this
paper. In particular, some previous classifications are now presented differently using our new
understanding.

The dichotomy for a single symmetric ternary signature is an important base case in the proof
of our theorem.

Theorem 2.8 (Theorem 3 in [9]). If f = [fo, f1, f2, f3] is a non-degenerate, complex-valued signa-
ture, then Holant(f) is #P-hard unless f satisfies one of the following conditions, in which case
the problem is in P:

1. f is of - or &-transformable;

2. For o € {2i,—2i}, fo=af1 + fo and fs = afs + f1.
We also use the following theorem about edge-weighted signatures on k-regular graphs.

Theorem 2.9 (Theorem 3 in [I0]). Let k > 3 be an integer and suppose f is a non-degenerate,
symmetric, complex-valued binary signature. Then Holant ((=x) | f) is #P-hard unless there ex-
ists a holographic transformation T such that fT®? = [1,0,1] and ((T~1)®*(=y)) is o/~ or 2-
transformable, in which case the problem is in P.

Theorem P29 is more conceptual, but the original statement, which is given in Theorem ¥, is
more directly applicable.

Theorem 2.9’ (Theorem 3 in [I1]). Let k > 3 be an integer. Then Holant (=) | [fo, f1, f2]) is
#P-hard unless one of the following conditions hold, in which case the problem is in P:

1. fofo = f%:
2. fo=fo=0;
3. fi=0;

4. fofz = —f} and f3* = f3*.
The next theorem is a generalization of the Boolean #CSP dichotomy (where d = 1). Define

w={f Y

Theorem 2.10 (Theorem IV.1 in [29]). Let d > 1 be an integer and F be any set of symmetric,
complez-valued signatures in Boolean variables. Then #CSPd(]:) 18 #P-hard unless there exists
T € Tuq such that TF C &2 or TF C &, in which case the problem is in P.



The following three dichotomies are not directly used in this paper. We list them for comparison.
First is the real-valued Holant dichotomy. Our results have no dependence on this dichotomy.

Theorem 2.11 (Theorem II1.2 in [29]). Let F be any set of symmetric, real-valued signatures in
Boolean variables. Then Holant(F) is #P-hard unless F satisfies one of the following conditions,
in which case the problem is in P:

1. Any non-degenerate signature in F is of arity at most 2;
2. F is of - or P-transformable.

The other two dichotomies are the complex-valued Holant® and Holant® dichotomy theorems.
Although we do not directly apply these, our results depend on them through Theorems PR, P9,
and 2Z10.

Theorem 2.12 (Theorem 3.1 in [2]). Let F be any set of non-degenerate, symmetric, complez-
valued signatures in Boolean variables. Then Holant™(F) is #P-hard unless F satisfies one of the
following conditions, in which case the problem is in P:

1. Any signature in F is of arity at most 2;
2. F is P-transformable;

3. There exists o € {2i,—2i}, such that for any signature f € F of arity n, for 0 < k <n — 2,
we have frio = afri1 + fi

Theorem 2.13 (Theorem 6 in [9]). Let F be any set of symmetric, complez-valued signatures in
Boolean variables. Then Holant®(F) is #P-hard unless F satisfies one of the following conditions,
in which case the problem is in P:

1. Any non-degenerate signature in F is of arity at most 2;
F is P-transformable;

FUA{[L,0],[0,1]} is o -transformable;

e

There exists o € {2i,—2i}, such that for any non-degenerate signature f € F of arity n, for
0<k<n-—2, we have fri2 = afri1+ fx-

3 Vanishing Signatures

Vanishing signatures were first introduced in [27] in the parity setting to denote signatures for
which the Holant value is always zero modulo 2.

Definition 3.1. A set of signatures F is called vanishing if the value Holantq (F) is zero for every
signature grid . A signature f is called vanishing if the singleton set {f} is vanishing.

In this section, we characterize all vanishing signatures sets. First recall the following lemma
in [27], where f + g denotes the bitwise addition of two signatures f and g with the same arity,
ie. (f+g)i = fi + g; for any index i. The proof does not depend on any special properties of Zs
and the signatures involved are not restricted to symmetric ones.



Lemma 3.2 (Lemma 6.2 in [27]). Let F be a vanishing signature set. If a signature f can be
realized by a gadget using signatures in F, then F U {f} is also vanishing. If go and g1 are two
signatures in F of the same arity, then F U {go + g1} is vanishing as well.

Obviously, there is a trivial kind of vanishing signatures, those for which the signature entries
are all zero. However, we show that the concept of vanishing signatures is not trivial. Notice that
the unary signature [1,4] when connected to another [1,4] has a Holant of 0. Consider a signature
set F where every signature of arity n is degenerate. That is, every signature of arity n is a tensor
product of unary signatures. Moreover, for each signature, suppose that more than half of the
unary signatures in the tensor product are [1,i]. For any signature grid with signatures from F, it
can be decomposed into many pairs of unary signatures. The total Holant value is the product of
the Holant on each pair. Since more than half of the unaries in each signature are [1, 4], more than
half of the unaries in the whole grid are [1,:]. It must be that two [1,i] are paired up and hence
the whole Holant is 0. Thus, all such signatures form a vanishing set. We also observe that this
argument holds when [1, ] is replaced by [1, —i].

Not all signatures described above are symmetric and our present aim is to characterize sym-
metric vanishing signatures. To this end, we define the following symmetrization operation.

Definition 3.3. Let S,, be the symmetric group of degree n. Then for positive integers t and n

with t < n and unary signatures v,vy,...,v,_¢, we define
n

. _

Sym;, (v; V1, ..., Up—yt) = E ®u7r(k),

€Sy k=1

where the ordered sequence (uy,usg,...,Up) = (Vy..., 0,01, ..., Up—t)-
——
t copies

Note that we include redundant permutations of v in the definition. Equivalent v;’s also in-
duce redundant permutations. These redundant permutations simply introduce a nonzero constant
factor, which does not change the complexity. However, the allowance of redundant permutations
simplifies our calculations. An illustrative example of Definition B33 is

Sym2([1,i); [a,b]) = 2[a,b] @ [1,i] @ [1,4] + 2[1,4] @ [a,b] ® [1,4] + 2[1,i] ® [1,4] @ [a, ]
= 2[3a,2ia + b, —a + 2ib, —30].

Definition 3.4. For a nonzero symmetric signature f = [fo, f1,..., fal, it is of positive vanishing
degree k > 1, denoted by vd™ (f) = k, if and only if k < n is the largest positive integer such that
there exists n — k unary signatures vi, ..., Un_ Such that

f= Syme([l,i]; Vlyeooy Up—k)-

If f cannot be expressed as such a symmetrization form, we define vd™ (f) = 0. If f is the all zero
signature, define vd™ (f) =n + 1.
Similarly we define negative vanishing degree vd™, using —i instead of i.

Notice that it is possible for a signature f to have both vd™(f) and vd™ (f) nonzero. For
example, f = [1,0,1] has vd™ (f) = vd~(f) = 1.

By the discussion above and Lemma B2, we know that for a signature f of arity n, if vd?(f) > §
for some o € {4, —}, then f is a vanishing signature. This argument is easily generalized to a set
of signatures.
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Definition 3.5. For o € {+,—}, we define ¥ = {f | 2vd?(f) > arity(f)}.
Lemma 3.6. For a set of symmetric signatures F, if F C ¥ or F C ¥, then F is vanishing.

In Theorem B3, we show that these two sets capture all symmetric vanishing signature sets.

3.1 Characterizing Vanishing Signatures using Recurrence Relations

Now we give an equivalent characterization of vanishing signatures.

Definition 3.7. An arity n symmetric signature f = [fo, f1,..., fa] is in &, for a nonnegative
integert > 0 ift >mn or for any 0 < k <n—t, fi,..., fret satisfy the recurrence relation

<z> i frge + (t j 1) T o+ <é>i0fk = 0. (2)

We define %, similarly but with —i in place of i in the above recurrence.

It is easy to see that Z; = X, is the set of all zero signatures. Also, for o € {4, —}, we have
Hy C Ry when t <t'. By definition, if arity(f) = n then f € Z5 ;.

Let f = [fo,f1,.--,fa] € %, with 0 < t < n. Then the characteristic polynomial of its
recurrence relation is (1 + zi)!. Thus there exists a polynomial p(z) of degree at most ¢t — 1 such
that fp = i*p(k), for 0 < k < n. This statement extends to %: 41 since a polynomial of degree n
can interpolate any set of n+ 1 values. Furthermore, such an expression is unique. If there are two
polynomials p(z) and ¢(z), both of degree at most n, such that f, = i*p(k) = i*q(k) for 0 < k < n,
then p(r) and ¢(z) must be the same polynomial. Now suppose fi, = i*p(k) (0 < k < n) for some
polynomial p of degree at most ¢t — 1, where 0 < ¢ < n. Then f satisfies the recurrence (2) of order
t. Hence f € %;".

We have proved that f € %{:1 iff there exists a polynomials p(z) of degree at most ¢ such that
fr = i*p(k) (0 <k < n), for all 0 <t <n. For K, 1, just replace @ by —i.

Definition 3.8. For a nonzero symmetric signature f of arity n, it is of positive (resp. negative)
recurrence degree t < n, denoted by rd™ (f) =t (resp. vd™ (f) = t), if and only if f € %;;1 — B
(resp. f € By — &y ). If fis the all zero signature, define xd™(f) =rd™(f) = —1.

Note that although we call it the recurrence degree, it refers to a special kind of recurrence
relation. For any nonzero symmetric signature f, by the uniqueness of the representing polynomial
p(x), it follows that rd?(f) = ¢t iff deg(p) = ¢, where 0 < ¢t < n. We remark that rd?(f) is the
minimum integer ¢ such that f does not belong to %y . Also, for an arity n signature f, rd’(f) =n
if and only if f does not satisfy any such recurrence relation (B) of order ¢t <n for o € {+, —}.

Lemma 3.9. Let f = [fo,..., fa] be a symmetric signature of arity n, not identically 0. Then for
any nonnegative integer 0 < t < n and o € {+,—}, the following are equivalent:

(i) There exist t unary signatures vi, ..., v, such that
f=Sym; ([, i) 01, .., w). (3)

(ii) f € %F, .
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Proof. We consider o = + since the other case is similar, so let v = [1,].

We start with (i) = (i¢) and proceed via induction on both ¢ and n. For the first base case
of t = 0, Sym” (v) = [1,i]®" = [1,4,—1, —i,...,i"], 50 frp1 = ifx forall0 <k <n—1and f € %

The other base case is that t = n — 1. Let Syml(v;vy,...,v) = [fo, ..., fu] where v; = [a;, bj]
forl1<i<t,and S=i"f,+ -+ (?)zﬁ + (g)iofo. We need to show that S = 0. First notice
that any entry in f is a linear combination of terms of the form a; a;, ---a;, , , bj ---bj,, where
0<k<n-—1,and {i1,...,in—1-ksJ1s---sJkt = {1,2,...,n — 1}. Thus S is a linear combination
of such terms as well. Now we compute the coefficient of each of these terms in S.

Each term a;, a;, - - - a;, , ,bj, ---bj, appears twice in S, once in fj and the other time in fi4.
In fi, the coefficient is k!(n — k)!, and in fr11, it is i(k+1)!(n —k —1)!. Thus, its coefficient in S is

<ki 1>ik+1i(k +DIn—k—1)!+ (Z) *E(n — k) = 0.
The above computation works for any such term due to the symmetry of f, so all coefficients in S
are 0, which means that S = 0.

Now assume for any ¢’ < ¢ or for the same t and any n’ < n, the statement holds. For (n,t),

where n > t+1, assume that f = [fo, ..., fn] = Sym” (v;v1,..., %), g = Symflj_l(v; Viy.oon, ) =
(90, - - gn-1], and for any 1 < j < t, hU) = SymZii(v;vl,...,vj,l,vjﬂ,...,vt) = [h(()]), e ,hgzl].

By the induction hypothesis, g satisfies the recurrence relation of order ¢t + 1, namely g € %’;Srl.
Also for any j, hU) satisfies the recurrence relation of order ¢, namely hU) € F; C ;%’t‘:_l.
We have the recurrence relation

wyvp, .. 0) =(n— )o@ Sym” " (v, y) (4)

Sym

t
n—t . )
+ E v; @ Symy "1 (V; V1, .., Vi1, Ui, - - -5 Ug).
Jj=1

By equation (@), the entry of weight k in f for any & > 0 is

t
fk = (n — t)igk—l + Z bjhl(fj—)l'
j=1

We know that {g;} and {hgj )} satisfy the recurrence relation () of order ¢ + 1. Thus, their linear
combination {f;} also satisfies the recurrence relation (B) starting from i = k£ > 0.
We also observe that by equation (8), the entry of weight &k in f for any k < n is

t
Jr=(n—1)gr+ Zajh;(f)-
=1

Since t < n — 1, by the same argument again, the recurrence relation (2) holds for f when k& =0 as
well.

Now we show (i7) = (). Notice that we only need to find unary signatures {v;} for 1 <i <t
such that Sym”*(v;vy,...,v;) matches the first ¢ + 1 entries of f. The theorem follows from this
since we have shown that Sym” *(v;vy,...,v;) satisfies the recurrence relation of order t + 1 and
any such signature is determined by the first ¢ + 1 entries.
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We show that there exist v; = [a;,b;] (1 < i < t) satisfying the above requirement. Since f is
not identically 0, by (2), some nonzero term occurs among { fo, ..., fi}. Let fs # 0, for 0 < s <,
be the first nonzero term. By a nonzero constant multiplier, we may normalize f; = s!(n —s)!, and
set v; = [0,1], for 1 < j <'s (which is vacuous if s = 0), and set v ; = [1,beqj], for 1 <j <t —s
(which is vacuous if s = t). Let F' be the function defined in (B). Then F, = fr =0for 0 <k <'s
(which is vacuous if s = 0). By expanding the symmetrization function, for s < k < t, we get

where A; is the elementary symmetric polynomial in {bs41,...,b:} of degree j for 0 < j <t —s.
By definition, Ag = 1 and Fy = f;. Setting F, = fi for s + 1 < k < t, this is a linear equation
system on A; (1 < j <t —s), with a triangular matrix and nonzero diagonals. From this, we
know that all A;’s are uniquely determined by {fst1,...,ft}. Moreover, {bsi1,...,b;} are the
roots of the equation Z;;f)(—l)j Azt = 0. Thus {bst1,...,bt} are also uniquely determined by
{fs+1,- -, ft} up to a permutation. O

Corollary 3.10. If f is a symmetric signature and o € {+, —}, then vd?(f) 4+ rd?(f) = arity(f).

Thus we have an equivalent form of ¥ for o € {+, —}. Namely,

Y7 = {f | 21d°(f) < arity(f)}.

3.2 Characterizing All Symmetric Vanishing Signature Sets

Now we show that ¥+ and ¥~ capture all symmetric vanishing signature sets. To begin, we show
that a vanishing signature set cannot contain both types of nontrivial vanishing signatures.

Lemma 3.11. Let f, € ¥ and f_ € ¥V ~. If neither fy nor f_ is the zero signature, then the
signature set {fy, f—} is not vanishing.

Proof. Let arity(fy) = n and rd™(fy) = t, so 2t < n. Consider the gadget with two vertices
and 2t edges between two copies of fi. (See Figure B for an example of this gadget.) View fy
in the symmetrized form. Since vd¥(f;) = n — t, in each term, there are n — ¢t many [1,i]’s
and ¢ many unary signatures not equal to (a multiple of) [1,4]. This is a superposition of many
degenerate signatures. Then the only non-vanishing contributions come from the cases where the
n — 2t dangling edges on both sides are all assigned [1, 7], while inside, the ¢ copies of [1,4] pair up
with ¢ unary signatures not equal to [1,] from the other side perfectly. Notice that for any such

Figure 2: Example of a gadget used to create a degenerate vanishing signature from
some general vanishing signature. This example is for a signature of arity 7 and recur-
rence degree 2, which is assigned to both vertices.
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contribution, the Holant value of the inside part is always the same constant and this constant is
not zero because [1,i] paired up with any unary signature other than (a multiple of) [1,¢] is not
zero. Then the superposition of all of the permutations is a degenerate signature [1, i]®2(”_2t) up
to a nonzero constant factor.

Similarly, we can do this for f_ of arity n’ and rd™(f_) = t, where 2t < n/, and get a degenerate
signature [1, —i]®2("/_2t/), up to a nonzero constant factor. Then form a bipartite signature grid
with (n/ — 2t') vertices on one side, each assigned [1,4]®2("=2%) and (n — 2t) vertices on the other
side, each assigned [1, —i]®2(”/_2t/). Connect edges between the two sides arbitrarily as long as it
is a 1-1 correspondence. The resulting Holant is a power of 2, which is not vanishing. O

Lemma 3.12. Every symmetric vanishing signature belongs to ¥ U ¥ ™.

Proof. Let f be a symmetric vanishing signature. We prove this by induction on n, the arity of f.
For n = 1, by connecting f = [fo, f1] to itself, we have f2 + fZ = 0. Then up to a constant factor,
we have either f = [1,4] or f = [1,—i]. The lemma holds.

For n = 2, first we do a self loop. The Holant is fo+ f2. Also, we can connect two copies of f, in
which case the Holant is fg +2f2+ f2. Since f is vanishing, both fo+ fo = 0 and fg +2f2+f2=0.

Solving them, we get f = [1,4,—1] = [1,4]®? or [1, —i, —1] = [1,—i]®2 up to a constant factor.
Now assume n > 2 and the lemma holds for any signature of arity k& < n. Let f = [fo, f1,. .-, fn]
be a vanishing signature. A self loop on f gives f' = [fg, fi,..., fi,_], where f; = f; + fjio for

0 < j < n-—2. Since f is vanishing, f’ is vanishing as well. By the induction hypothesis,
flevtuy-.

If f’is a zero signature, then we have f; + fj42 = 0 for 0 < j < n — 2. This means that the f;’s
satisfy a recurrence relation with characteristic polynomial 22 + 1, so we have fi= ail 4 b(—i)? for

1 1
some a and b. Then we perform a holographic transformation with Z = [z _J ,

Holant ((=2) | f) =r Holant ([1,0, 11292 | (Z_1)®"f)
— Holant (2[0,1,0] | f),

where f = [a,0,...,0,b]. The problem Holant (2[0, 1,0] | f) is a weighted version of testing if a
graph is bipartite. Now consider a graph with only two vertices, both assigned f, and n edges
between them. The Holant of this graph is 2ab. However, we know that it must be vanishing, so
ab=0. If a =0, then f € ¥T. Otherwise, b=0and f € ¥ .

Now suppose that f’isin ¥+ U7~ but is not a zero signature. We consider f € ¥ since the
other case is similar. Then rd™(f’) = ¢, so 2t < n — 2. Consider the gadget which has only two
vertices, both assigned f’, and has 2t edges between them. (See Figure B for an example of this
gadget.) It forms a signature of degree d = 2(n — 2 — 2t). This gadget is valid because n — 2 > 2t.
By the combinatorial view as in the proof of Lemma BI1, this signature is [1,4]®?.

Moreover, rd™ (') = t implies that the entries of f’ satisfy a recurrence of order ¢+ 1. Replacing
fJ’- by f;j + fj+2, we get a recurrence relation for the entries of f with characteristic polynomial
(22 +1)(z — i)t = (z +1i)(x — i)t Thus, f; = i/p(j) + ¢(—i) for some polynomial p(x) of degree
at most ¢ + 1 and some constant c. It suffices to show that ¢ = 0 since 2(t +1) < n as 2t <n — 2.

Consider the signature h = [ho, ..., hy—1] created by connecting f with a single unary signature
[1,7]. For any (n — 1)-regular graph G = (V, E) with h assigned to every vertex, we can define a
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duplicate graph of (d+ 1)|V| vertices as follows. First for each v € V, define vertices v/, vy, ..., vg.
For each ¢, 1 < ¢ < d, we make a copy of G on {v; | v € V'}, i.e., for each edge (u,v) € E, include
the edge (u;,v;) in the new graph. Next for each v € V| we introduce edges between v and v; for
all 1 < i < d. For each v € V, assign the degenerate signature [1,i]®¢ that we just constructed to
the vertices v'; assign f to all the vertices v1,...,v4. Assume the Holant of the original graph G
with h assigned to every vertex is H. Then for the new graph with the given signature assignments,
the Holant is H?. By our assumption, f is vanishing, so H¢ = 0. Thus, H = 0. This holds for any
graph G, so h is vanishing.

Notice that hy = fr + i frxs1 for any 0 < k <n — 1. If h is identically zero, then fx +ifry1 =0
for any 0 < k < n — 1, which means f = [1,4]®" up to a constant factor and we are done. Suppose
h is not zero. By the inductive hypothesis, h € ¥+ U ¥ ~. We claim h cannot be from ¥ ~. This
is because, although we do not directly construct h from f, we can always realize it by the method
depicted in the previous paragraph. Therefore the set {f’,h} is vanishing. As both f’ and h are
nonzero, and f' € ¥+, we have h ¢ ¥, by Lemma BII.

Hence h is in ¥ . Then there exists a polynomial gq(z) of degree at most t' = L”T_IJ such
that hy = i*q(k), for any 0 < k < n — 1. Since 2t < n — 2, we have t < ¢’. On the other hand,
hi = fx +ifrxe1 for any 0 <k <n — 1, so we have

he = fr + ifk+1
= i*p(k) + ()" 4 (#FFp(k + 1) + (i) )
= i* (p(k) = p(k + 1)) + 2¢(=i)"
P*r(k) + 2¢(—i)*
i*q(k)

)

where r(x) = p(x) — p(x 4+ 1) is another polynomial of degree at most ¢. Then we have
q(k) = r(k) = 2¢(-1)F,

which holds for all 0 < k < n—1. Notice that the left hand side is a polynomial of degree at most t/,
call it s(z). However, for all even k € {0,...,n—1}, s(k) = 2c. There are exactly [2] > |25*| = ¢/
many even k within the range {0,...,n — 1}. Thus s(z) = 2c¢ for any x. Now we pick k£ = 1, so
s(1) = —2¢ = 2¢, which implies ¢ = 0. This completes the proof. O

Combining Lemma BM, Lemma BT, and Lemma BTA, we obtain the following theorem that
characterizes all symmetric vanishing signature sets.

Theorem 3.13. Let F be a set of symmetric signatures. Then F is vanishing if and only if
FCVt orFCv.

We note that some particular categories of tractable cases in previous dichotomies (case B of The-
orem IR, case B of Theorem EZT2, and case @ of Theorem PZI3) are in %55

To finish this section, we prove some useful properties regarding vanishing and recurrence de-
grees in the construction of signatures. For two symmetric signatures f and g such that arity(f) >
arity(g), let (f, g) = (g, f) denote the signature that results after connecting all edges of g to f. (If
arity(f) = arity(g), then (f, g) is a constant, which can be viewed as a signature of arity 0.)
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Lemma 3.14. For o € {+,—}, suppose symmetric signatures f and g satisfy vd°(g) = 0 and
arity (f) — axity(g) > 1d°(f). Then 1d°((f, g)) = rd° ().

Proof. We consider o = + since the case 0 = — is similar. Let arity(f) = n, arity(g) = m, and
rd"(f) = t. Denote the signature (f,g) by f’.

If t = —1, then f is identically 0 and so is f’. Hence rd™(f’) = —1.

Suppose ¢t > 0. Then we have f, = i*p(k) where p(x) is a polynomial of degree exactly ¢. Also
arity(f') =n —m > t. We have

j=0
L (m
=Y (")t i)ty
— \J
7=0
= i*q(k),
where q(k) = 370 (T)p(k +j)i’g; is a polynomial in k. Notice that vd*(g) = 0. Then rd*(g) = m
and g € #,;,. Thus ZT:O (T) i/g; # 0. Then the leading coefficient of degree ¢ in the polynomial
q(k) is not zero. However, arity(f’) > t. Thus rd™(f’) =t as well. O

Lemma 3.15. For o € {+,—}, let f be a nonzero symmetric signature and suppose that f' is
obtained from f by a self loop. If vd?(f) > 0, then vd°(f) —vd?(f’) =rd?(f) —rd?(f’) = 1.

Proof. We may assume o = +, arity(f) = n, and rd™(f) = . Since f is not the zero signature,
t > 0. Also since vd"(f) > 0, t = n — vd"(f) < n. By assumption, we have fy = i*p(k), where
p(z) is a polynomial of degree exactly t. Then we have

fe = Ji + frto
= i"(p(k) — p(k +2))
= i*q(k),

where q(k) = p(k) — p(k + 2) is a polynomial in k. If ¢ = 0, then p(z) is a constant polynomial
and q(x) is identically zero. Then rd*(f’) = —1 by definition and rd*(f) — rd™(f’) = 1 holds.
Suppose t > 0, then in g(k), the term of degree ¢ has a zero coefficient, but the term of degree ¢t — 1
is nonzero. So ¢(x) has degree exactly t — 1 < n — 2 = arity(f’). Thus rd*(f’) =t — 1. Notice that
arity(f) — arity(f’) = 2, then vd™ (f) — vd¥(f") = 1 as well. O

Moreover, the set of vanishing signatures is closed under orthogonal transformations. This
is because under any orthogonal transformation, the unary signatures [1,4] and [1, —i] are either
invariant or transformed into each other. Then considering the symmetrized form of any signature,
we have the following lemma.

Lemma 3.16. For a symmetric signature f of arity n, o € {+,—}, and an orthogonal matriz

T € C?*2, either vd? (f) = vd° (T®" f) or vd?(f) = vd~7(T®"f).
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3.3 Characterizing Vanishing Signatures under Holographic Transformation
There is another explanation for the vanishing signatures. Given an f € ¥t with arity(f) = n and

rd*(f) = d, we perform a holographic transformation with Z = B _12] ,

Holant ((=2) | f) =7 Holant ([1,0,1]2%2 | (Z2~1)®"f)
=7 Holant <[0, 1,0] | f) ,

. I . . 1 _;
where f is of the form [fo, f1,..., f4,0,...,0], and f; # 0. To see this, note that Z~! = 5 B il]'

We have Z~1[1,i] = [1,0]. We know that f has a symmetrized form, say Sym™ 4([1,4]; vy, ..., vq).
Then f = (Z7H)®"f = Sym? %([1,0]; u1,...,uq), where u; = Z lv; for 1 < i < d and u; and v;
as column vectors in C2. From this expression for f, it is clear that all entries of Hamming weight
larger than d in f are 0. Moreover, if fd = 0, then one of the u; has to be a multiple of [1,0]. This
contradicts the degree assumption of f, namely vd*(f) =n —rd™(f) = n — d and no higher.

In any bipartite graph for Holant ([O, 1,0] | f), the binary DISEQUALITY (#32) = [0,1,0] on the
left imposes the condition that half of the edges must take the value 0 and the other half must take
the value 1. On the right side, by f € ¥, we have d < n/2, thus f requires that less than half
of the edges are assigned the value 1. Therefore the Holant is always 0. A similar conclusion was
reached in [16] for certain 2-3 bipartite Holant problems with Boolean signatures. However, the
importance was not realized at that time.

Under this transformation, one can observe another interesting phenomenon. For any a,b € C,

Holant ([0, 1,0] | [a,b,1,0,0]) and Holant ([0, 1,0] | [0,0,1,0,0])

take exactly the same value on every signature grid. This is because, to contribute a nonzero term
in the Holant, exactly half of the edges must be assigned 1. Then for the first problem, the signature
on the right can never contribute a nonzero value involving a or b. Thus the Holant values of these
two problems on any signature grid are always the same. Nevertheless, there exists a,b € C such
that there is no holographic transformation between these two problems. We note that this is the
first counter example involving non-unary signatures in the Boolean domain to the converse of the
Holant theorem, which provides a negative answer to a conjecture made by Xia in [37] (Conjecture
4.1).

Furthermore, the problem Holant ([0, 1,0] | [0,0,1,0,0]) counts the number of Eulerian orienta-
tions in a 4-regular graph. This problem is shown to be #P-hard by Huang and Lu (Theorem V.10
in [29]) and plays an important role in our proof of hardness. Translating back to the stan-
dard setting, the problem of counting Eulerian orientations is Holant([3,0,1,0,3]). The problem
Holant ([0, 1,0] | [a, b, 1,0,0]) corresponds to a certain signature f = Z%4[a,b,1,0,0] of arity 4 with
recurrence degree 2. It has a different appearance but induces exactly the same Holant value as the
signature for counting Eulerian orientations. Therefore, all such signatures are #P-hard as well.
We use this fact later.

For future reference, we also note the following. If f = g + h is of arity n, where rd™(g) = d,
rd™(h) = d', and d+d’ < n, then after a holographic transformation by Z, f=(Z"1®"f takes the
form [go,...,94,0,...,0,hg,..., ho], with n —d —d" — 1 > 0 zeros in the middle of the signature.
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4 Main Result and the Tractability Proof

Using the definitions from the previous section, we can now formally state our main result.

Theorem 4.1. Let F be any set of symmetric, complex-valued signatures in Boolean variables.
Then Holant(F) is #P-hard unless F satisfies one of the following conditions, in which case the
problem is in P:

1. All non-degenerate signatures in F are of arity at most 2;

2. F is of -transformable;

3. F is P-transformable;

4. FCVoU{f € %S |arity(f) =2} foro € {+,—};

5. All non-degenerate signatures in F are in %9 for o € {+,—}.

Note that any signature in %9 having arity at least 3 is a vanishing signature. Thus all signatures
of arity at least 3 in case B are vanishing. While both cases @ and B are largely concerned with
vanishing signatures, these two cases differ. In case B, all signatures in F, including unary signatures
but excluding binary signatures, must be vanishing of a single type o; the binary signatures are
only required to be in #9. In contrast, case B has no requirement placed on degenerate signatures,
which include all unary signatures. Then all non-degenerate binary signatures are required to be
in #9. Finally all non-degenerate signatures of arity at least 3 are also required to be in #9, which
is a strong form of vanishing; they must have a large vanishing degree of type o.

Case B is actually a known tractable case [I5]. Every signature (after replacing all degenerate
signatures with corresponding ones) is a generalized Fibonacci signature with m = 02i, which
means that every signature [fo, f1,..., fn] € F satisfies frio = mfri1 + fr for 0 < k < n —2.
However, we present a unified proof of tractability based on vanishing signatures, which leads to
an alternative algorithm for this case.

Proof of tractability of Theorem [ 1. For any signature grid {2, Holantq, is the product of the Holant
on each connected component, so we only need to compute over connected components.

For case [, after decomposing all degenerate signatures into unary ones, a connected component
of the graph is either a path or a cycle and the Holant can be computed using matrix product and
trace. Cases B and B are tractable because, after a particular holographic transformation, their
instances are tractable instances of #CSP(F) (cf. [I2]). For case @, any binary signature g € %9
has rd?(g) < 1, and thus vd?(g) > 1 = arity(g)/2. Any signature f € ¥ has vd?(f) > arity(f)/2.
If F contains a signature f of arity at least 3, then it must belong to #?. Then by the combinatorial
view, more than half of the unary signatures are [1, 0], so Holant vanishes. On the other hand,
if the arity of every signature in F is at most 2, then we have reduced to tractable case .

Now consider case B. First, recursively absorb any unary signature into its neighboring signature.
If it is connected to another unary signature, then this produces a global constant factor. If it
is connected to a binary signature, then this creates another unary signature. We observe that if
f € %3 has arity(f) > 2, then for any unary signature u, after connecting f to u, the signature (f, u)
still belongs to Z9. Hence after recursively absorbing all unary signatures in the above process, we
still have a signature grid where all signatures belong to #J. Any remaining signature f that has
arity at least 3 belongs to ¥ since rd?(f) < 1 and thus vd?(f) > arity(f) — 1 > arity(f)/2. Thus
we have reduced to tractable case @. O

18



5 Dichotomy Theorem for an Arity 4 Signature

Definition 5.1. A 4-by-4 matriz is redundant if its middle two rows and middle two columns are
the same. Denote the set of all redundant 4-by-4 matrices over a field F by RMy(F).

Consider the function ¢ : C*** — C3*3 defined by

(M) =AMB,
where
Lo 0o Lo
A=10 1 1 9 and B =
00 0 1 0 10
0 0 1

Intuitively, the operation ¢ replaces the middle two columns of M with their sum and the middle
two rows of M with their average. Conversely, we have the following function v : C3*3 — RMy(C)
defined by

(N)= BNA.

Intuitively, the operation % duplicates the middle row of N and splits the middle column evenly
into two columns. Notice that ¢(1)(N)) = N. When restricted to RM4(C), ¢ is an isomorphism
between the semi-group of 4-by-4 redundant matrices and the semi-group of 3-by-3 matrices, under
matrix multiplication, and v is its inverse. To see this, just notice that

Lo 100
AB=1(0 1 0 and BA:()ii()
0 01 2 2

0O 0 0 1

are the identity elements of their respective semi-groups.
An example of a redundant matrix is the signature matrix of an arity 4 symmetric signature.

Definition 5.2. The signature matrix of an 4-ary symmetric signature f = [fo, f1, fo, f3, fa] is

f07f17f17f2

| fi, fes fos fs
My = J1, f2, f2, I3
f27f37f37f4

This definition extends to an asymmetric signature g as

0000 0010 0001 0011
g g g g
0100 0110 0101 0111

M =9 9 59 9

g — | ,1000 1010 ,1001 1011

9 g g 9

)
1100 ,1110 1101 1111
g g 974

When we present g as an F-gate, we order the four external edges ABCD counterclockwise. In M,
the row index bits are ordered AB and the column index bits are ordered DC, in a reverse way. This
is for convenience so that the signature matriz of the linking of two arity 4 F-gates is the matriz
product of the signature matrices of the two F-gates. .

If My is redundant, we also define the compressed signature matrix of g as My = ¢(My).
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If all signatures in an JF-gate have an even arity, then the JF-gate also has an even arity.
Knowing that binary signatures alone do not produce #P-hardness, with the above constraint in
mind, we would like to interpolate other arity 4 signatures using the given arity 4 signature. We
are particularly interested in the signature g with the following signature matrix

1 0 0 0

o 1/2 1/2 0
Mo=1o 172 12 o] (5)

0 0 0 1

It is easily seen that ]\Afg = I3 and hence, by the isomorphism, M, is the identity element in the
semi-group of redundant matrices. Lemma B® shows that the Holant problem with this signature
is #P-hard. In Lemma B4, we consider when we can interpolate it.

There are three cases in Lemma B2 and one of them requires the following technical lemma.

Lemma 5.3. Let M = [By By --- By be an n-by-n block matriz such that there ezists A € C, for
all integers 0 < k < t, block By is an n-by-cx matriz for some integer ¢, > 0, and the entry of B
at row r and column c is (By)re = "IN, where v,c > 1. If X is nonzero and is not a root of
unity, then M is nonsingular.

Proof. We prove by induction on n. If n = 1, then the sole entry is A\* for some nonnegative integer
k. This is nonzero since A # 0. Assume n > 1 and let the left-most nonempty block be B;. We
divide row r by A", which is allowed since A # 0. This effectively changes block By into a block of
the form By_;. Thus, we have another matrix of the same form as M but with a nonempty block
By. To simplify notation, we also denote this matrix again by M. The first column of By is all 1’s.
We subtract row r — 1 from row r, for r from n down to 2. This gives us a new matrix M’, and
det M = det M'. Then det M’ is the determinant of the (n — 1)-by-(n — 1) submatrix M" obtained
from M’ by removing the first row and column. Now we do column operations (on M") to return
the blocks to the proper form so that we can invoke the induction hypothesis.

For any block Bj, different from By, we prove by induction on the number of columns in Bj, that
B, can be repaired. In the base case, the rth element of the first column is (BY,),1 = A" — M(—1) =
Ner=1) (\k — 1) for r > 2. We divide this column by A¥ — 1 to obtain A*("=1) which is allowed since
A is not a root of unity and k # 0. This is now the correct form for the rth element of the first
column of a block in M”.

Now for the inductive step, assume that the first d — 1 columns of block Bj, are in the correct
form to be a block in M”. That is, for row index r > 2, which denotes the (r — 1)-th row of M",
the rth element in the first d — 1 columns of Bj, have the form (B}),. = (r — 1)*"'A*"=1. The rth
element in column d of Bj, currently has the form (B}),q = '\ — (r — 1)47I\k"=1)_ Then we
do column operations

U

-1 d—1
d—1
/ i / — pd=1ykr d 1yk(r—1) _ 1\¢—1yk(r—1)
(B} )rd (C_ 1>(Bk)rc rAINFT (g — A = <C_ 1) 1)\

c=1 c=1

T’d_l)\kr _ ,,,d—l/\k‘(r—l)

_ rdfl)\k(rfl)()\k o 1)
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and divide by (A —1) to get rd=I\F(=1) " Once again, this is allowed since \ is not a root of unity
and k # 0. Then more (of the same) column operations yield

“lrd-a 4 rd—1
d—1yk(r—1) _ - _ 1\ Lyk(r—1) _ yk(r—1) d—1 _ 1yd—-1 - _ 1\e—1
rYTN g <c 3 1) (r—=1)“""X A <T +(r—1) 6521 <c B 1) (r—1) )

c=1

and the term in parentheses is precisely (r —1)4~!. This gives the correct form for the rth element
in column d of By, in M".

Now we repair the columns in BY, also by induction on the number of columns. In the base
case, if B{, only has one column, then there is nothing to prove, since this block has disappeared in
M". Otherwise, (B})r2 =7 — (r — 1) = 1, so the second column is already in the correct form to
be the first column in M” and there is still nothing to prove. For the inductive step, assume that
columns 2 to d — 1 are in the correct form to be the first block in M” for d > 3. That is, the entry
at row r > 2 and column c from 2 through d — 1 has the form (B}),. = (r —1)°72. The rth element
in column d currently has the form (Bf),q = 7! — (r — 1)1, Then we do the column operations

EIES 51 (ISR AES ol (o [T

c=2 c=2
= (d—1)(r —1)42

and divide by d — 1, which is nonzero, to get (r — 1)¥"2. This is the correct form for the rth
element in column d of Bf, in M". Therefore, we invoke our original induction hypothesis that the
(n — 1)-by-(n — 1) matrix M" has a nonzero determinant, which completes the proof. O

Lemma 5.4. Let g be the arity 4 signature with My given in () and let f be an arity 4 signature
with complex weights. If My is redundant and My is nonsingular, then for any set F containing f,

we have
Holant(F U {g}) <7 Holant(F).

Proof. Consider an instance Q0 of Holant(F U {g}). Suppose that g appears n times in 2. We
construct from 2 a sequence of instances Qs of Holant(F) indexed by s > 1. We obtain Q from
Q) by replacing each occurrence of g with the gadget Ny in Figure B with f assigned to all vertices.
The edge corresponding to the ith significant index bit of Ng connects to the same location as the
edge corresponding to the ith significant index bit of g.

Now to determine the relationship between Holantp and Holantg,, we use the isomorphism
between redundant 4-by-4 matrices and 3-by-3 matrices. To obtain g from €, we effectively

N1 N2

Figure 3: Recursive construction to interpolate g. The vertices are assigned f.
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replace M, with My, = (My)?®, the sth power of the signature matrix My. By the Jordan normal
form of M, there exists T, A € C3*3 such that

- M b0
Mp=TAT ' =T |0 X bo|T7H,
0 0 X

where by,by € {0,1}. Note that A\jA2A3 = det(ﬁ;) # 0. Also since ]\% = p(My) = I3, and
TI3T~! = I3, we have (T)Myp(T—1) = My. We can view our construction of (2, as first replacing
each M, by ¢¥(T)My(T~1), which does not change the Holant value, and then replacing each new
M, with ¢ (A®) = (A)® to obtain €. Observe that

(WA YT ™)) = TAT ™ = (My)* = (2(M))* = o((My)°),

hence ¥(T)y(A®*)y(T~') = My,. (Note that, by the isomorphism, ¢(T~!) is the multiplicative
inverse of ¢(T") within the semi-group of redundant 4-by-4 matrices; but we prefer not to write it
as ¥(T)~! since it is not the usual matrix inverse as a 4-by-4 matrix. Indeed, ¥(T) is not invertible
as a 4-by-4 matrix.)

In the case analysis below, we stratify the assignments in Q5 based on the assignment to 1(A®).
The inputs to 1(A%) are from {0,1}% x {0,1}2. However, we can combine the input 01 and 10,
since ¥(A®) is redundant. Thus we actually stratify the assignments in Qg based on the assign-
ment to A®, which takes inputs from {0,1,2} x {0,1,2}. In this compressed form, the row and
column assignments to A° are the Hamming weight of the two actual binary valued inputs to the
uncompressed form ¥ (A®).

Now we begin the case analysis on the values of b1 and bs.

1. Assume by = by = 0. We only need to consider the assignments to A® that assign

e (0,0) ¢ many times,
e (1,1) j many times, and
e (2,2) k many times
since any other assignment contributes a factor of 0. Let c;;; be the sum over all such

assignments of the products of evaluations (including the contributions from 7 and T~!) on
Q. Then

Cix
Holantg = Z ;‘7]
i+j+k=n

and the value of the Holant on €, for s > 1, is

iNg 5 (Cijk
Holantg, = Y (AlA;A’g) ( J )
i+j+k=n

The coefficient matrix is Vandermonde, but it may not have full rank because it may be that
NXINE = AUXNE for some (4, 5, k) # (i’,j’,k:’). However, this is not a problem since we
are only interested in the sum ) ¢;;,/27. If two coefficients are the same, we replace their
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corresponding unknowns c;@’“ and C“;% with their sum as a new variable. After all such
combinations, we have a Vandermonde system of full rank. In particular, none of the entries
are zero since A\; A3 = det(My) # 0. Therefore, we can solve the linear system and obtain

the value of Holantg,.

. Assume b; # by. We can permute the Jordan blocks in A so that by = 1 and by = 0, then
A1 = A2, denoted by A. We only need to consider the assignments to A® that assign

1 many times,

0)

, 1) j many times,

2) k many times, and
1)

¢ many times

since any other assignment contributes a factor of 0. Let ¢z be the sum over all such
assignments of the products of evaluations (including the contributions from 7 and T~!) on
Q. Then
Coi
Holantg = Z Ciko

27
i+j+k=n

and the value of the Holant on €, for s > 1, is

Holsatg, = 37 AU (a3 (524
i+j+k+l=n
A3 ke ¢ ( Cijke
—_ ns 'lj
= Z </\> y (A€2j+4)'
i+j+k+l=n

If A3/ is a root of unity, then take a t such that (A3/\)! = 1. Then

tlei;

__ ynst l ijkt

Holantg,, = A g s <)\£2j+£)
itjt+k+l=n

For s > 1, this gives a coefficient matrix that is Vandermonde. Although this system is not
full rank, we can replace all the unknowns c;jie/ 2/ having i + j + k = n — £ by their sum to
form a new unknown ¢, = Zi+j+k:n—e Cijke/2?, where 0 < £ < n. The unknown ¢ is the
Holant of €2 that we seek. The resulting Vandermonde system

" tte,
o, =03 (42)
{=0

has full rank, so we can solve for the unknowns and obtain the value of ¢, = >, 4 jthen Cijho /27,

If A3/ is not a root of unity, then we replace all the unknowns ¢;jx¢/ (X2718) having i4+j = m
with their sum to form new unknowns ¢/ ,,, for any 0 < m,k,¢ and m + k + ¢ = n. The
Holant of €2 is now

Holantg = Z ko
m+k=n
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and the value of the Holant on €y is

A ks ”
o, =3 % (3) ()

i+j+k+L=n
ks
A3
__ \ns § : Y
= A </\ S Crnke-
m~+k+4=n

After a suitable reordering of the columns, the matrix of coefficients satisfies the hypothesis
of Lemma B=3. Therefore, the linear system has full rank. We can solve for the unknowns
and obtain the value of Holantg.

. Assume by = by = 1. In this case, we have Ay = Ao = A3, denoted by A, and we only need to
consider the assignments to A® that assign

e (0,0) or (2,2) ¢ many times,

e (1,1) j many times,

. ¢ many times, and

)

(0,0)
(1,1)
e (0,1) k many times,
(1,2)
(0,2)

° m many times

)

since any other assignment contributes a factor of 0. Let c¢;jrem, be the sum over all such
assignments of the products of evaluations (including the contributions from 7 and T~!) on
Q. Then

€000
Holanto = g ”2]‘
i+j=n

and the value of the Holant on €, for s > 1, is

Holanto, = 3 AU () (s ) ()
i+j+k+l+m=n
= k+0+ Cijkém
= \" Z s M(s—1)" ()\k+£+2m2j+k+m) .

i+j+k+l+m=n

We replace all the unknowns c;jxem/(AFT2m20T5+m) having i + j = p and k + £ = ¢ with

their sum to form new unknowns c/ for any 0 < p,q,m and p+ g +m = n. The Holant of

pgm?
Q2 is now ¢},5y. This new linear system

Holantg, = A™ Z s (s — 1)

pgm
p+gtm=n

is still rank deficient. We now index the columns by (g,m), where ¢ > 0, m > 0, and
g+m < n. Correspondingly, we rename the variables x4, = c;)qm' Note that p=n—q+m is
determined by (g, m). Observe that the column indexed by (g, m) is the sum of the columns

indexed by (¢ — 1,m) and (¢ — 2,m + 1) provided ¢ — 2 > 0. Namely, s7t™(s —1)" =
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si=Hm (g — 1)m 4 ga=2+mHl(s 7)™+l Of course this is only meaningful if ¢ > 2, m > 0 and
g+ m < n. We write the linear system as

Z Holantg,
aqzquzm - )\ns )
g>0, m>0, g+m<n

where oy, = 89T (s—1)™ are the coefficients. Hence OgmTgm = Qg—1,mTgm+g—2m+1Tq,m
and we define new variables

xq_lvm — Iq7m + xq_l7m

Tg—2,m+1 < Tgm + Tg—2,m+1

from ¢ = n down to 2.

Observe that in each update, the newly defined variables have a decreased index value for
g. A more crucial observation is that the column indexed by (0,0) is never updated. This is
because, in order to be an updated entry, there must be some ¢ > 2 and m > 0 such that
(¢g—1,m)=(0,0) or (g —2,m+ 1) = (0,0), which is clearly impossible. Hence z = 4 is
still the Holant value on 2. The 2n + 1 unknowns that remain are

0,0, 1,0, 0,1, 1,1, 0,2, 1,25 --+5 L0n—1, Tin—1, LOn
and their coefficients in row s are
1,5,8(s —1),8%(s — 1),5%(s — 1)%,...,s" (s — 1)L s"(s — 1)"7 L, s"(s — 1)™.

It is clear that the cth entry in this row is a monic polynomial in s of degree ¢, where
0 < ¢ < 2n, and thus s¢ is a linear combination of the first ¢ entries. It follows that the
coefficient matrix is a product of the standard Vandermonde matrix multiplied to its right
by an upper triangular matrix with all 1’s on the diagonal. Hence the matrix is nonsingular,
and we can solve the linear system, in particular, to compute ¢},,. ]

For an asymmetric signature, we often want to reorder the input bits under a circular permuta-

tion. For a single counterclockwise rotation of 90°, the effect on the entries of the signature matrix
of an arity 4 signature is given in Figure .

We ultimately derive most of our #P-hardness results through Lemma b@. In turn, the #P-

hardness in this lemma is by a reduction from the problem of counting Eulerian orientations on
4-regular graphs, which is the Holant problem Holant ([0, 1,0] | [0,0,1,0,0]). Recall that under a

—1

holographic transformation by [1 1 } , this bipartite Holant problem becomes the Holant problem
Holant([1,0,1/3,0,1]).

Theorem 5.5 (Theorem V.10 in [29]). COUNTING-EULERIAN-ORIENTATIONS is #P-hard for 4-
regular graphs.

Lemma 5.6. Let g be the arity 4 signature with M, given in (@) so that ]\ffvg = I3. Then Holant(g)
1s #P-hard.
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(a) A counterclockwise rotation. (b) Movement of signature matrix entries
under a counterclockwise rotation.

Figure 4: The movement of the entries in the signature matrix of an arity 4 signature
under a counterclockwise rotation of the input edges. The Hamming weight one entries
are in the dotted cycle, the Hamming weight two entries are in the two solid cycles (one
has length 4 and the other one is a swap), and the entries of Hamming weight three
are in the dashed cycle.

L

L =L -

Figure 5: Recursive construction to approximate [1,0,1/3,0,1]. The vertices are as-
signed g.

Ni41

Proof. We reduce from the Eulerian orientation problem Holant(&'), where ¢ = [1,0,1/3,0,1],
which is #P-hard by Theorem BZ3. We achieve this via an arbitrarily close approximation using
the recursive construction in Figure H with g assigned to every vertex.

We claim that Gadget N has the signature matrix

1 0 0 ag
My, = 0 agy1 akyr O

P10 argr apgr 0
ag 0 0 1

where a = 1/3 — 1/3(—1/2)*. This is true for Np. Inductively assume My, has this form. Then
the rotated form of the signature matrix for Ny, as described in Figure @, is

1 0 0 Ak+1

0 ar  agyr 0
0 apy1 ag 0 | ©)
A+1 0 0 1
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The action of g on the far right side of Ny, is to replace each of the middle two entries in the
middle two rows of the matrix in (B) with their average, (ay + ap41)/2 = ag42. This gives My, ..

Let G be a graph with n vertices and Hy (resp. Hy, ) be the Holant value on G with all vertices
assigned & (resp. Ni). Since each signature entry in ¢ can be expressed as a rational number
with denominator 3, each term in the sum of Hs can be expressed as a rational number with
denominator 3", and Hy itself is a sum of 227 such terms, where 2n is the number of edges in G. If
the error |Hy, — Hg| is at most 1/3" "1, then we can recover Hy from Hy, by selecting the nearest
rational number to Hy, with denominator 3™.

For each signature entry x in My, its corresponding entry & in My, satisfies |2 — z| < x/ 2k,
Then for each term t in the Holant sum Hy, its corresponding term t in the sum H N, satisfies
tH1 —1/2M" < & < (14 1/2F)", thus —t(1 — (1 — 1/28)") < £ — < #((1 4+ 1/2F)"» — 1). Since
1—(1—1/28" < (14+1/2F)" — 1, we get |t —t| < t((1+1/2¥)" —1). Also each term ¢ < 1. Hence

|Hy, — Hp| < 22"((1+1/2%)™ — 1) < 1/3™
if we take k = 4n. O
We summarize our progress with the following corollary, which combines Lemmas b4 and bB®.

Corollary 5.7. Let f be an arity 4 signature with complex weights. If My is redundant and ]\Ai; 18
nonsingular, then Holant(f) is #P-hard.

In order to make Corollary 521 more applicable, we show that for an arity 4 signature f, the
redundancy of My and the nonsingularity of My are invariant under an invertible holographic
transformation.

Lemma 5.8. Let f be an arity 4 signature with complex weights, T € C**? a matriz, and f =T®4f.

If My is redundant, then M is also redundant and det(gp(Mf)) = det(o(My)) det(T)°.

Proof. Since f = T f we can express M 7 in terms of M; and T' as

M =T%M; (1) (7)

This can be directly checked. Alternatively, this relation is known (and can also be directly checked)
had we not introduced the flip of the middle two columns, i.e., if the columns were ordered
00,01,10,11 by the last two bits in f and f Instead, the columns are ordered by 00,10,01,11
in My and Mf' Let T = (t;), where row index ¢ and column index j range from {0,1}. Then

T2 = (t;t?,), with row index 77’ and column index jj’. Let

o O O
o= O O
O O = O
_ o O O

then ET®2E = T%2, i.e., a simultaneous row flip 7’ <> " and column flip jj' j’g’ keep T®2
: _ R2 T\ ®2 T\®2 & T\ B2 .

unchanged. Then the known relation M fAé’ =T"M;E (T ) and £ (T ) &= (T ) imply (@).

Now X € RMy(C) iff EX = X = X&. Then it follows that M; e RMy(C) if My € RMy(C). For

the two matrices A and B in the definition of ¢, we note that BA = M, where M, given in (B) is the
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identity element of the semi-group RM4(C). Since My € RM4(C), we have BAM; = My = MyBA.
Then we have

p(M;) = AMB = A (T®2Mf (TT)®2> B
— (AT®?B)(AM;B)(A (T)** B) (8)
= p(T*) o (M) ((TT) 7).
Another direct calculation shows that
det(p(T%?%)) = det(T)? = det(p((T7)*%)).
Thus, by applying determinant to both sides of (8), we have
det(p(M;)) = det(p(My)) det(T)°
as claimed. O

In particular, for a nonsingular matrix 7 € C2%2, M ¢ is redundant and M} is nonsingular iff
M 7 is redundant and M 7 is nonsingular. From Corollary b1 and Lemma b= we have the following
corollary.

Corollary 5.9. Let f be an arily 4 signature with complex weights. If there exists a nonsingular
matriz T € C?*2 such that f = T®*f, where Mf is redundant and Mf is nonsingular, then
Holant(f) is #P-hard.

The following lemma applies Corollary b7a.

Lemma 5.10. Let f, = cka® ' + daF, where ¢ # 0 and 0 < k < 4. Then the problem
Holant([fo, f1, f2, f3, fa]) is #P-hard unless o = +i, in which case the problem is in P.

Proof. If o = =i, then rd*(f) = 1, vd*(f) = 3, and so f = [fo, f1, f2, f3, f1] is vanishing by

1
Theorem BT3. Otherwise, a holographic transformation with orthogonal basis T' = 1ia2 [a _041]

transforms f to f = [t,1,0,0,0] for some ¢ € C after normalizing the entry of Hamming weight 1.
(See Appendix B for details.) Using the tetrahedron gadget in Figure B with f assigned to each
vertex, we have a gadget with signature

h=[t"+6t> + 3, + 3t,t2 + 1,t,1].

Since the determinant of m is 4, the compressed signature matrix of this gadget is nonsingular,
so we are done by Corollary B7. O

Figure 6: The tetrahedron gadget. Each vertex is assigned f =[¢,1,0,0,0].
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Now we are ready to prove a dichotomy for a single arity 4 signature.

Theorem 5.11. If f is a non-degenerate, symmetric, complex-valued signature of arity 4 in Boolean
variables, then Holant(f) is #P-hard unless f is of -transformable, &-transformable, or vanishing,
in which case the problem is in P.

Proof. Let f = [fo, f1, f2, f3, f4]. If the compressed signature matrix f]\fvf is nonsingular, then
Holant( f) is #P-hard by Corollary B2, so assume that the rank of My is at most 2. Then we have

Jo fi P 0
alfil+20|fo|l +c|fz]=]0
p) I3 Ja 0

for some a,b,c € C not all zero. If a = ¢ = 0, then b # 0, so fi = fo = f3 = 0. In this
case, f € & is a generalized equality, so f is &-transformable. Suppose a and ¢ are not both 0,
f satisfies a second order recurrence relation. If the roots of the characteristic polynomial of the
recurrence relation are distinct, then fi = ai’ kak +ﬁf k 52, where a1 83 — a1 # 0. A holographic
ar b
az P

either &7~ or Z-transformable. Otherwise, the characteristic polynomial has a double root o with
fr = cka* 1 4+ da¥, where ¢ # 0, and we are done by Lemma 510. O

transformation by [ ] transforms f to (=4) and we can use Theorem EZ¥ to show that f is

The next lemma is related to vanishing signatures. It appears here because its proof uses similar
techniques to those in this section.

Lemma 5.12. If f =[0,1,0,...,0] and g = [0,...,0,1,0] are both of arity n > 3, then the problem
Holant ([0,1,0] | {f,g}) is #P-hard.

Proof. Our goal is to obtain a signature that satisfies the hypothesis of Corollary 6.
The gadget in Figure [Za, with f assigned to the circle vertex, g assigned to the triangle vertex,
and (#£2) assigned to the square vertices, has signature h with signature matrix

0 0 0 w
0110
My, = )
01 1 0
00 0 O
a) The circle is assigned f, the triangle is assigned ) The circle is assigned h’, and the triangle is
g, and the squares are assigned (#2). as51gned R, and the squares are assigned (#2).

Figure 7: Gadget constructions to obtain asymmetric arity 4 signatures.
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where v = n—2 is positive since n > 3. Although this signature matrix is redundant, its compressed
form is singular. Rotating this gadget 90° clockwise and 90° counterclockwise yield signatures h’
and h” respectively, with signature matrices

000 1 000 1
0 v 10 0010
My =191 0 0 and - Myr=1g g
1000 1000

The gadget in Figure 8, with h’ assigned to the circle vertex, h” assigned to the triangle vertex,
and (#2) assigned to the square vertices, has a signature r with signature matrix

000 1 00 0 1
- 0 010 0 v v2+1 0
My=Mw 1o 1 g ol =101 +» o0
1 000 10 0 0

Note that the effect of the (#2) signatures is to reverse all four rows of My, before multiplying
it to the right of Mj,. Although this signature matrix is not redundant, every entry of Hamming
weight two is nonzero since v is positive.

Now we claim that we can use r to interpolate the following signature r’, for any nonzero

value t € C, via the construction in Figure 8. Define p* = (v 4+ Vo2 +4)/2, P = [ler pl], and
T=P [é tol] P~! where t € C is any nonzero value. Then the signature matrix of r’ is
0 001
Moo= |0 T ] (9)
1 000

Consider an instance € of Holant ((#2) | F U {r'}). Suppose that r’ appears n times in Q. We
construct from Q a sequence of instances Qs of Holant ((#2) | F) indexed by s > 1. We obtain
Qs from Q by replacing each occurrence of r’ with the gadget Ny in Figure B with r assigned to
the circle vertices and (#2) assigned to the square vertices. The edge corresponding to the ith
significant index bit of Ns; connects to the same location as the edge corresponding to the ith
significant index bit of g.

N1 Ny N

Figure 8: Recursive construction to interpolate a signature r’ that is only a rotation
away from having a redundant signature matrix and nonsingular compressed matrix.
The circles are assigned r and the squares are assigned (#2).
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The signature matrix of N is the sth power of the matrix obtained from M, after reversing all
rows, and then switching the first and last rows of the final product, namely

oo0oo01fto o o0 o o 17[to o 0"
010001 » of 001 w 001 v 0
001 0/[0 v v2+1 0| |0 v v’4+1 0|0 v v*+1 0
1 00O0/l00 0 1 10 o0 ofloo o 1

The twist of the two input edges on the left side for the first copy of M, switches the middle two
rows, which is equivalent to a total reversal of all rows, followed by the switching of the first and
last rows. The total reversals of rows for all subsequent s — 1 copies of M, are due to the presence
of (#2) signatures.

After such reversals of rows, it is clear that the matrix is a direct sum of block matrices indexed
by {00,11} x {00,11} and {01,10} x {10,01}. Furthermore, in the final product, the block indexed
by {00,11} x {00,11} is [(1) (1) .
s are the four entries in the middle. These middle four entries of My, form the 2-by-2 matrix

1 v s . ]. v _ >\+ O 71 o 2 2
[v 1)24-1} . Since [v v2+1} =P [ 0 )\_] P~ where AL = (v* + 2 £ vVv? +4)/2 are the
eigenvalues, we have

Thus in the gadget N, the only entries of My, that vary with

1 v 17 A0
— + -1
|:U 112—1—1] P{O )\S_}P ’
The determinant is AL A_ = 1, so the eigenvalues are nonzero. Since v is positive, the ratio of the

eigenvalues Ay /A_ is not a root of unity, so neither Ay nor A_ is a root of unity.
Now we determine the relationship between Holantq and Holantg,. We can view our construc-
tion of € as first replacing M, with

1 00 0]Jo0o o 171 0 0 O
0 o0 t 0 o||0 L, O
opooorloop 0|’
000 1/f1t 0 0 o|l]0o 001

which does not change the Holant value, and then replacing the new signature matrix in the middle
with the signature matrix

00 0 1
0 XL 0 0
0 0 A 0
1 0 0 0

We stratify the assignments in 2 based on the assignments to the n occurrences of the signature
matrix

00 0 1
0t 0 0
00ttt o
10 0 O

The inputs to this matrix are from {0, 1}? x {0, 1}2, which correspond to the four input bits. Recall
the way rows and columns of a signature matrix are ordered from Definition B2. Thus, e.g., the
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entry t corresponds to the cyclic input bit pattern 0110 in counterclockwise order. We only need
to consider the assignments that assign

e ¢ many times the bit pattern 0110,
e j many times the bit pattern 1001, and
e k many times the bit patterns 0011 or 1100,

since any other assignment contributes a factor of 0. Let ¢;j;, be the sum over all such assignments
of the product of evaluations (including the contributions from the block matrices containing P
and P~1) on Q. Then
Holantq = Z ti*jcijk
i+j+k=n
and the value of the Holant on €2, for s > 1, is

Holantq, = E AN ¢y = g )\i(z_])cijk-
i+j+k=n i+j+k=n

This Vandermonde system does not have full rank. However, we can define for —n < /¢ < mn,

CZ = Z Cijk-
i—j=t
i+j+k=n
Then the Holant of 2 is
Holanty = Z técé

—n<t<n

and the Holant of €y is
4
Holantq, = E ).

—n<t<n
Now this Vandermonde has full rank because Ay is neither zero nor a root of unity. Therefore, we
can solve for the unknowns {¢,} and obtain the value of Holantg. This completes our claim that
we can interpolate the signature 7’ in (), for any nonzero ¢t € C.

Let t = (Vo2 + 84+ Vv2 +4)/2s0t™ ! = (V2 +8 —Vv2 +4)/2. Let a = (vVv2 +8 —v)/2 and
b= (Vv?+8+v)/2, then ab =2 and both a and b are nonzero. One can verify that

t 0 -1 a 1
SO

Thus, the signature matrix for r’ is

000 1
0 a 1 O
My=10 1 3 o
1000
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After a counterclock-wise rotation of 90° on the edges of 7/, we have a signature r”” with a redundant
signature matrix

00 0 a
0110
M= 11 0
b 0 0 0
Its compressed signature matrix
0 0 a
M. =10 2 0
b 0 0
1 177!
is nonsingular. After a holographic transformation by Z=! = i il o the binary disequality

(#£2) = [0,1,0] is transformed to the binary equality (=2) = [1,0,1]. Thus Holant ([0,1,0] | ") is
transformed to Holant ((=2) | Z®*r""), which is the same as Holant(Z®*"). We conclude that this
Holant problem is #P-hard by Corollary b™. O

6 Vanishing Signatures Revisited

With Corollary b=, Corollary b and Lemma bT2 in hand, we revisit the vanishing signatures
to determine what signatures combine with them to give #P-hardness. We begin with unary
signatures and their tensor powers.

Lemma 6.1. Let f € 77 be a symmetric signature with vrd’(f) > 2 where o € {4+, —}. Suppose

the signature v is a tensor power of a unary signature w. If w is not a multiple of [1, 0], then
Holant({ f,v}) is #P-hard.

Proof. We consider ¢ = + since the other case is similar. Since f € ¥, we have arity(f) >
2rd*(f) > 4, and vd*(f) > 0. As rd"(f) > 2, f is a nonzero signature. By Lemma B3, with
zero or more self loops of f, we can construct some f/ with rd™(f’) = 2 and arity n > 5. We can
repeatedly apply Lemma B3, since in each step we reduce the recurrence degree rd™ by exactly
one, which remains positive and thus the signature is nonzero. Being obtained from f by self loops,
it remains in #*. The process can be continued. After two more self loops, we have [1,7]2("~4).
Assume v = u®" .

Now we have two degenerate signatures and we can connect one to the other to get a tensor
power of a smaller positive arity as long as their arities are not the same. This procedure is like
the subtractive Euclidean algorithm, which halts when the two arities are equal, and that would
be t = ged(n — 4,n’). Alternatively, there are integers x and y such that xn’ + y(n —4) = t, by
replacing x by x + z(n — 4) and y by y — zn/, for any integer z, we may assume z > 0 and y < 0.
Then if we connect |y| copies of [1,7]®"=% to x copies of v = u®", we can realize u® (note that
u is not any multiple of [1,] and thus (u, [1,4]) is a nonzero constant). We can realize g = u®"~%)
by putting (n — 4)/t many copies of u®! together.

Now connect this g back to f’. Since the unary wu is not any multiple of [1,i], we can directly
verify that g € #Z, , and thus rd™ (g) = arity(g) = n — 4, and vd*(g) = 0. By Lemma B4, we get
f" = {f',g) of arity 4 and rd " (f”) = 2. One can verify that Holant(f") is #P-hard by Corollary 572,
by writing f; = i*p(k) for some polynomial p of degree exactly 2. A more revealing proof of
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the #P-hardness of Holant(f") is by noticing that this is the problem Holant ((=2) | f”), which is
! } By rd* (") =

—1
27 ﬁ takes the form [ﬁ(}? ﬁ17ﬁ27070]7 with ﬁQ 7é 0. Then Holant <(752) ’ [ﬁ07 ﬁhﬁQa 07 0]) =
Holant ((#2) | [0,0,1,0,0]), the Eulerian Orientation problem (see section B33), which is #P-hard
by Theorem B3. 0

equivalent to Holant ((752) | ﬁ) under the holographic transformation Z = E

Next we consider binary signatures.

Lemma 6.2. Let f € 77 be a symmetric non-degenerate signature where o € {+,—}. If g ¢ %S
is a non-degenerate binary signature, then Holant({f, g}) is #P-hard.

Proof. We consider ¢ = + since the other case is similar. A unary signature is degenerate. If a
binary symmetric signature f is vanishing, then its vanishing degree is greater than 1, hence at
least 2, and therefore f is also degenerate. Since we assume f is non-degenerate, arity(f) > 3.

We prove the lemma by induction on the arity of f. There are two base cases, arity(f) = 3 and
arity(f) = 4. However, the arity 3 case is easily reduced to the arity 4 case. We show this first,
and then show that the lemma holds for the arity 4 case.

Assume arity(f) = 3. Since f € ¥, we have rd"(f) < 3/2, thus f € %5 . From rd"(f) <1 we
have vd™(f) > 2. On the other hand, f is non-degenerate, and so vd™*(f) < 3, thus vd*(f) = 2.

We connect two copies of f together by one edge to get an arity 4 signature f’. By the
geometric construction, this may not appear to be a symmetric signature, but we show that f’
is in fact symmetric, non-degenerate and vanishing. It is clearly a vanishing signature, since f is
vanishing. Consider the Z transformation, under which f is transformed into f = [t,1,0,0] for
some ¢ up to a nonzero constant. The (=3) on the connecting edge between the two copies of f
is transformed into (#2). In the bipartite setting, our construction is the same as the gadget in
Figure B. One can verify that the resulting signature is f’ =[2t,1,0,0,0]. The crucial observation
is that it takes the same value 0 on inputs 1010 and 1100, where the left two bits are input to one
copy of f and the right two bits are for another. The corresponding signature f’ is non-degenerate,
with rd™ (/) = 1 and vanishing.

Next we consider the base case of arity(f) = 4. Since f € ¥+, we have vd™(f) > 2 and
rd"(f) < 2. Since f is non-degenerate we have rd*(f) # —1,0, hence rd"(f) = 1 and vd ™ (f) = 3.
Also by assumption, the given binary g ¢ %, , we have rd"(g) = 2. Once again, consider the
holographic transformation by Z. This gives

Holant ((=2) | {f,g}) =r Holant ([1,0,1]2%% | {(Z~H®*f,(Z~1)¥?g})
=, Holant ([0, 1,0] | {f,g}) :

where up to a nonzero constant, f = [t,1,0,0,0] and g = [a,b, 1], for some t,a,b € C. We have
a — b% # 0 since g is non-degenerate.

Figure 9: The circles are assigned [¢,1,0,0] and the square (#2).
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fo—=—a 2o

Figure 10: A sequence of binary gadgets that forms another binary gadget. The circles
are assigned [v, 1,0], the squares are assigned (#3), and the triangle is assigned [a, b, 1].

Our next goal is to show that we can realize a signature of the form [c,0, 1] where ¢ # 0. If
b =0, then § is what we want since in this case a = a — b? # 0. Now we assume b # 0.

Connecting § to f via (#2), we get [t + 2b,1,0]. If t # —2b, then by Lemma BT, we can
interpolate any binary signature of the form [v,1,0]. Otherwise t = —2b. Then we connect two
copies of § via (#2), and get g = [2ab, a + b%,2b]. Connecting this g to f via (#£2), we get
[2(a — b?),2b,0], using t = —2b. Since a # b? and b # 0, we can interpolate any [v, 1,0] again by
Lemma AT

Hence, we have the signature [v, 1, 0], where v € C is for us to choose. We construct the gadget
in Figure M with the circles assigned [v, 1, 0], the squares assigned (#2), and the triangle assigned
[a,b,1]. The resulting gadget has signature [a + 2bv + v2,b + v, 1], which can be varified by the

matrix product
v 1110 1] Ja b] [0 1][v 1]  [a+2bv+v* b+w
1 0| (1 O]|b 1| |1 O] |1 O] b+wv 1 |
By setting v = —b, we get [c, 0, 1], where ¢ = a — b? # 0.
With this signature [c, 0, 1], we construct the gadget in Figure [, where [c,0,1] is assigned to

the circle vertex of arity two in Figure [TH and f is assigned to the four circle vertices of arity four
in Figure [Td. We get a signature

h = [3¢® + 6t +t*,3ct + 13, ¢ + 12, ¢, 1].

We note that this computation is reminiscent of matchgate signatures. The internal edge function
[1,0,c] (which is a flip from [c, 0, 1] since both sides are connected to (#2)) is a generalized equality

i @ i
(a) The tetrahedron gadget with (b) A gadget representing an edge
edge signatures given in (b). labeled by a triangle in (a).

Figure 11: The tetrahedron gadget with each triangle replaced by the edge in Fig-
ure [TH, in which the single circle vertex is assigned [c, 0, 1] and the squares are assigned
(#2). The four circle vertices in Figure ITd are assigned [¢, 1,0, 0,0].
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signature, and the signature f on the four circle vertices is a weighted version of the matching
function AT-MOST-ONE.
The compressed signature matrix of A is

3¢+ 6¢t2 +tt 2(3ct +1%) c+t?
M; = 3ct + 13 2(c +t?) t
¢+t 2t 1

and its determinant is 4c¢> # 0. Thus M; is nonsingular. After a holographic transformation
1 1 . . . .
by T = [2 —i]’ the binary disequality (#2) = [0,1,0] is transformed to the binary equality

(=2) = [1,0,1]. Thus Holant ([07 1,0] | iz) is transformed to Holant ((:2) ] T®4iz), which is the

same as Holant(7T®4h). Then we are done by Corollary E9.

Now we do the induction step. Assume f is of arity n > 5. Since f is non-degenerate, rd ™ (f) #
—1,0. First suppose rd™ (f) = 1, then connect the binary g to f to get f' = (f,g). We have noted
that rd"(g) = 2, then vd¥(g) = 0. By Lemma BId we know that rd*(f’) = 1 and arity(f’) =
n —2 > 3. Thus f’ is vanishing. Also f’ is non-degenerate, for otherwise let f = [a,b]®("=2), If
[a,b] is a multiple of [1,4], then rd™(f’) < 0, which is false. If [a,b] is not a multiple of [1,4], then
it can be directly checked that f ¢ % ,, and rd"(f’) = n — 2 > 1, which is also false. Hence f’
is a non-degenerate vanishing signature of arity n — 2. By induction hypothesis we are done.

We now suppose rd*(f) = ¢ > 2. Since f is non-degenerate it is certainly nonzero. Since it is
vanishing, certainly vd™ (f) > 0. Hence we may apply Lemma BIH. Let f’ by obtained from f by a
self loop, then rd* (f') = t—1 > 1 and arity(f’) = n—2. Clearly f’ is still vanishing. We claim that
/' is non-degenerate. This is proved by the same argument as above. If f’ were degenerate, then
either rd™(f’) < 0 or rd¥(f’) = arity(f’) which would contradict f’ being a vanishing signature.
Therefore, we can apply the induction hypothesis. This finishes our proof. O

Finally, we consider a pair of opposite types of vanishing signatures, both of arity at least 3. We
show that opposite types of vanishing signatures cannot mix. More formally, vanishing signatures
from opposite types when put together lead to #P-hardness.

Lemma 6.3. Let f € ¥t and g € ¥~ be non-degenerate signatures of arity at least 3. Then
Holant({f, g}) is #P-hard.

Proof. Let vd™(f) = d, rd™(g) = d', arity(f) = n and arity(g) = n’, then 2d < n and 2d’ < n'. If
d > 2, we can apply Lemma B3 zero or more times to construct a signature obtained from g by
adding a certain number of self loops, and the signature is a tensor power of [1,—i]. To see this,
note that we start with rd™(g) < vd™ (g) with their sum being arity(g). We are allowed to apply
Lemma B3, if the signature is nonzero and its vd™ is positive. Each time we apply Lemma B3,
we reduce rd” and vd™ by one, and the arity by two. Thus rd™ < vd™ is maintained until rd™
becomes 0, at which point the signature is a tensor power of [1, —i]. Note that when rd™ is positive,
the signature is nonzero, and vd™ is also positive, thus Lemma B3 applies. Thus by Lemma B
Holant({f, g}) is #P-hard. Similarly it is #P-hard if d’ > 2. Thus we may assume d = d' = 1.

36



We perform the Z = [1 _12] transformation

Holant ((=2) | {f,9}) =r Holant ([1,0, 11252 | {(z7)®"f,(27)*" g} )

— Holant ([o, 1,0] | {f,g}) .

f = 1fo,..., f4,0,...,0], where fq # 0.
Similarly, as noted before, for g with rd™(g) = d’, (Z71)®"g = g = [0,...,0,da, - -, o], Where
gar # 0. )

Since d = d’ = 1, up to a nonzero constant, f = [a,1,0,...,0] and g = [0,...,0,1,b], for some
a,b € C. We show that it is always possible to get two such signatures of the same arity min{n,n’}.
Suppose n > n’. We form a loop from f , where the loop is really a path consisting of one vertex and
two edges, with the vertex assigned the signature (#2). It is easy to see that this signature is the
degenerate signature 2[1, O]®("_2). Similarly we can form a loop from ¢ and can get 2|0, 1]®("/_2).
Thus we have both [1, 0|22 and [0,1]®("'~2). We can connect all n’ — 2 edges of the second to
the first, connected by (£2). This gives [1,0]%(~"). We can continue subtracting the smaller arity
from the larger one. We continue this process in a subtractive version of the Euclidean algorithm,
and end up with both [1,0]®" and [0,1]®", where t = ged(n — 2,7’ — 2) = ged(n — n/,n’ — 2).
In particular ¢ | n — n’ and by taking (n — n/)/t many copies of [0,1]®%, we can get [0,1]®(—"),
Connecting this back to f via (#2), we get a symmetric signature consisting of the first n’ entries
of f , which has the same arity as §. A similar proof works when n’ > n.

Thus without loss of generality, we may assume n = n’. If a # 0, then connect |0, 1]®(”_2) to
f= [a,1,0,...,0] via (#2) we get h = [a,1,0]. For a # 0, translating this back by Z, we have
a binary signature h ¢ %, together with the given g € »~. By Lemma 63, Holant({f,g}) is
#P-hard. A similar proof works for the case b # 0.

The only case left is when f = [0,1,0,...,0] of arity n, and § = [0,...,0,1,0] of arity n. This
is #P-hard by Lemma bBT2. O
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7 /- and Z-transformable Signatures

In this section, we investigate the properties of o/~ and Z-transformable signatures.

7.1 Characterization of &/- and Z-transformable Signatures

Recall that by definition if a set of signatures F is &/-transformable (resp. &-transformable) then
the binary equality (=2) must be simultaneously transformed into </ (resp. &) along with F.
We first characterize what kind of matrices such a transformation can be by just considering the
transformation of the binary equality. While there are many binary signatures in &/ U &2, it turns
out that it is sufficient to consider only four signatures.

Proposition 7.1. Let T € C?>*2 be a matriz and o = (1 +14)/v/2 = Vi. Let O3(C) denote the
group of 2 x 2 orthogonal matrices over C. Then the following hold:

1. [1,0,1]T®% = [1,0,1] iff T € Oz(C).

2. [1,0,1]T®% = (1,14, 1] iff there exist H € O2(C) such that T = \/%H [;3 _23].
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3. [1,0,1)T%% = [0,1,0] iff there exist H € O2(C) such that T = %H [1 _11]

4. [1,0,1]T®? = [1,0,v] iff there evist H € O2(C) such that T = H [(1] \%} .
Proof. Case [ is clear since

[1,0,1]T%2? = [1,0,1] <= T'LT =1, <= T'T = I,

the definition of a (2-by-2) orthogonal matrix. Now we use this case to prove the others.

For j € {2,3,4}, let M; denote the matrices \/% [;3 _23], % [1 _12] and [(1) \%] respec-

tively. Let T; = HM,, where H is an orthogonal matrix, then
11,0, 782 = [1,0, 1)(HM,)®2 = [1,0,1]M* = f;,

where f; is the binary signature in case j.

On the other hand, suppose that [1,0,1](7;)®? = f;. Then we have

[1,0, 1)(Ty M; 1)®2 = f3(M;H)®? = [1,0,1],

SO TjM;1 is an orthogonal matrix by case 0, say H. Thus T} = HM; as desired. O

We also need the following lemma; the proof is direct.
Lemma 7.2. If a symmetric signature f = [fo, f1,..., fn] can be expressed in the form f

a1, \]®™ + b[1, u]®", for some a,b,\,u € C, then fy satisfies the recurrence relation frio = (X +
) frr1 — Apfi for 0 <k <n—2.

Now we can characterize the 7-transformable signatures.

Lemma 7.3. Let a = (1+14)/v/2 = Vi. A non-degenerate symmetric signature f = [fo, ..., fa] is
& -transformable iff there exists an orthogonal transformation such that after the transformation,
it satisfies one of the following:

1. Forany 0 <k <n—2, froo = fi, and

o fp=0, or

o f1 =0, or

d fl :iZfOS‘éO, or

e n is odd and fi = £(1++/2)ifq (all four choices are permissible);
2. Forany 0 <k <n—2, fryo=—fi;
3. For any 0 <k <n—2, fyros = oifi, where c = x1 and

o fp=0, or

e f1=0, or

o f1 =Haifg#0 (foro=+1), and f1 = +afy #0 (foro=—1).
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We call these three categories of signatures o7, 9%, and .o#3 respectively.

Proof of Lemma [7-3. By definition, f is «/-transformable iff there exists a matrix T and a signature
g such that (=9)T®% € o/ and g = (T~1)®"f € &/. Since g is symmetric, g € & is equivalent to
g € F1U.Fy U .Z3. The set of signatures o is closed under a scalar multiplication. Thus we list
the non-degenerate symmetric binary signatures in &/ up to a scalar multiple (see section 24):

[1,0,+1],[1,0,+4], [1, £1, —1], [1, £4, 1], [0, 1, 0]. (10)

The set of signatures %, U %5 U %3, as column vectors, is also closed under a left multiplication

by D = [(1) ﬂ This can be seen as follows. Any signature in .%; U % U %3 is expressible as

c(vP™ +itv$™), where t € {0,1,2,3} and (v1,v2) is a pair of vectors in the set

(]G (B )LDy a

Then (Dwvy, Dvs) is also a pair of vectors in the above set, up to a different multiplier ¢ and ’.
Therefore g € F, U. % U Fy iff D®"g € F U . %y U F3. Thus we may normalize T by T D’
(¢ € {0,1,2,3}) in consideration of (M), and only deal with those 7" such that

[1,0,1)7%% € {[1,0,1],[1,0,4],[1,4,1],[0,1,0]}. (12)

Now it is clear that f is @/-transformable iff there exists a T satisfying (IZ) such that we can
express f as c((Tv1)®" + it (Tv)®") where (v, vs) is a pair of vectors in the set defined in (ICT).
Any matrix T satisfying ([2) takes the form HN, where H is orthogonal and N is given in
the four cases in Proposition 1. Suppose the given T'= HoN, and f = c((Tv1)®" + it (Tvq)®").
We may further normalize it by choosing an arbitrary orthogonal H' and let H = H'H; 1 Then
T' = H'N also satisfies (I2), and H®" f = c((T"v1)®" +i'(T'v2)®™). We want to find an orthogonal
H’ such that f = H®" f satisfies the recurrence fk+2 = i”fk for some r € {0,1,2,3}. By Lemma [,

i\] and

it is sufficient to choose an orthogonal H’ such that H'Nv; and H'Nwvsy take the form a [
1 .

b [M]’ where A + =0 and Ay = 4" for some r € {0,1,2,3}.
Now we consider the four cases in Proposition .

1. For case [ of Proposition [, N = [é (1)] If [vg vo] = B (i], then H' = E _11} gives the

desired result. For the other two cases of [v1 ve|, H' = I5 gives the desired result.

1 1 1 1 1 1]
oy _ 1 _ !/
2. For case B of Proposition [, N = i [oz3 043} Cf g vo] = [1 J , then H' = 11
gives the desired result. For the other two cases of [v; va], H = I gives the desired result.
1 1 1 1 1 1]
oy _ 1 _ !
3. For case B of Proposition [, N = 7 [z z] If [ vo] = [1 1], then H' = 1 1

gives the desired result. For the other two cases of [v1 vo|, H' = I3 gives the desired result.
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4. For case @ of Proposition [ with v =i, N = [(1) g] If [vg vo] = [(1) (ﬂ , then H' = E _11]

gives the desired result. For the other two cases of [v1 v9], H = I3 gives the desired result.

By examining each case separately where f has been expressed as the sum of two tensor powers,
up to a global factor ¢ the following forms are possible

. 1 Xn 1 Rn
1. f= [1] + 5 [_1] , where 8 = ¢" or i"«". This is type .2/, which has the complication

when n is odd, as stated.

1 —1
H'’ one can make 3 to be any nonzero multiple of i". This means that any ratio between f;
and fo is permissible as long as f1 # %ify (which together with frio = —fx would give a
degenerate signature f).

Xn Xn
2. f = F] +3 { L ] , where 8 = ¢". This is type «%. Furthermore by choosing an orthogonal

. 1 Xn Xn
3. f= [’Y] + 3" [—’J , where v = a or o3. This is type 7.
Conversely, if H®"f is in one of the forms given in the lemma, for some orthogonal H, then one
can directly check that f is «7-transformable. O

We also have a similar characterization for &?-transformable signatures.

Lemma 7.4. A non-degenerate symmetric signature f = [fo,..., fn] is P-transformable iff there
exists an orthogonal transformation such that after the transformation, it satisfies one of the fol-
lowing:

1. Forany 0 <k <n—2, fiyo = fr;
2. Forany 0 <k <n—2, fryo=—fk.

We call the first category of signatures &1 and the second ;. Notice that @/ C £ and
@y = Po. Also note that, since f is non-degenerate, fi # +fp in case [, and f; # +ify in case B,
are implied.

Proof of Lemma [74. By definition, f is #-transformable iff there exists a matrix T" and a signature
g such that (=2)T%% € & and g = (T"1)®"f € &. Since g is symmetric and non-degenerate, g
is a generalized equality, or possibly a binary disequality if n = 2. We can express g as either

g = av{" + buS", where a,b # 0, v = 1], and vy = 0 or when n = 2 there is the additional

0 1|’

case that g = c(vP? — v$?) where ¢ # 0, v; = [ﬂ, and vy = 11 . This set of functions is closed

by a nonzero constant multiplier. On the other hand, (=2)7T%? € £ means that it is either a
binary generalized equality or a binary disequality, and thus 7', after a nonzero multiplier, takes
the form given in cases B and B of Proposition [. To show that the recurrence f+2 = £ f; holds,
by Lemma [, it is sufficient to choose an orthogonal H such that HTvy and HT v, take the form,

1 1
up to a nonzero multiplier, [ )\] and [M] respectively, where A + = 0 and Ap = +1.
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In cases B and B of Proposition [, the matrix 7" is of the form HgN for some orthogonal matrix
Hy and some particular matrix N. Let H = H’HO_I, where H' is an arbitrary 2-by-2 orthogonal
matrix. Then we only need to consider H' Nv; and H' Nvs.

1. In case B of Proposition [, N = % E _12} If vy vo] = [(1) (1)], then H' = I, gives the

1 1
1 -1

1

desired result. If [v; vo] = { 1

} , then H' = [ _11] gives the desired result.

2. In case @ of Proposition [, N = [1 0 } If v = 1, we take H' = I5. Now assume v # 1,

0 Vv
o 10 11 o1
and /v # £1. For both possibilities [v ve] = 0 1l’ and L 1| We take H' = L1l

Conversely, one can directly check the signatures listed in the lemma are &?-transformable. In fact,
the transformations we applied above are all invertible. ]

Combining Lemma [Z3 and Lemma [, we have a necessary and sufficient condition for a single
signature to be &7/~ or #-transformable.

Corollary 7.5. A signature f is o/- or &-transformable iff f € 1 U P U 3.

Notice that our definitions of &?;, &5, and %4 involve an orthogonal transformation. The next
two lemmas give a procedure to check if a signature is in &1 U ¥y U @73. The first one is obvious.

Lemma 7.6. For a symmetric signature f of arity n and a nonsingular matriz T, let f =T®"f,
Then f satisfies a second order recurrence relation iff f does as well.

For a pair of linearly independent vectors vy = [ag, by| and vy = [ay, b1], define

apb1 — a1bg

0 =
(anvl) aoay + boby

which we allow to be co. This is well-defined; the only case this expression is not defined is when
vop = 0 or v; = 0 or both vy and vy are a multiple of the same [1, £i]. Intuitively, this formula is the
tangent of the angle from vy to v1. (The tangent of this “complex angle” is defined in the extended
Riemann complex plane C U {oco}.) An orthogonal transformation must keep this 6 invariant or
negated. Formally, we have the following lemma, which is proved by simple algebra.

Lemma 7.7. For two linearly independent vectors vy, vi € C? and an orthogonal matriz H, let
0o = Hvg and v3 = Hvy. Then 0(vy,v1) = £60(0p, 01).

The following Proposition is easy to prove.

Proposition 7.8 (Lemma 9.11 in [I§]). Let a,b,c,d be four vectors and suppose that c,d are
linearly independent. If for some n > 3, we have a®™ +b®" = c®" 4+ d®", then either a = wic and
b = wad or a =wid and b = wac for some Wi = wy = 1.
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Now we have some necessary conditions for a signature f to be in & U &5 U o5. Let f be a
non-degenerate signature of arity n > 3. If f does not satisfy any second order recurrence relation,
then by Lemma [78 it is not &/~ or &-transformable. Otherwise, we can express f as ngm + vi@”,
where vy and vy are linearly independent, due to f being non-degenerate. By Proposition [,
0(vo,v1) is uniquely determined, up to a £ sign. Then by Lemma [74, f is o/~ or &-transformable
only if (vg,v1) is one of the following values oo, 4i, or £+/2i. We summarize this discussion as
the following lemma.

Lemma 7.9. If a non-degenerate symmetric signature [ is o/ - or &-transformable, then f is of
the form v5™ 4+ v$™ such that vo and vy are linearly independent and (vg,v1) € {oo, +i, £1/2i}.
7.2 Dichotomies when o/~ or &-transformable Signatures Appear

Our characterization of .o7-transformable and o7-transformable signatures are up to an orthogonal
transformation. Since an orthogonal transformation never changes the complexity of the problem,
in the following lemmas, we assume this transformation is already done.

Lemma 7.10. Let F be a set of symmetric signatures. Suppose F contains a non-degenerate
signature f € 1 of arity n > 3. Then Holant(F) is #P-hard unless F is &P-transformable or
o -transformable.

Proof. By assumption, for any 0 < k < n — 2, frio = fr and f; # £fo since f is not degenerate.

We can express f as
Xn ®mn
f=a ! +a L
— 0 1 1 -1 )

where a9 = (fo + f1)/2 and a1 = (fo — f1)/2. For this f, we can further perform an orthogo-

. 1 1 . . S .
nal transformation H = 1 1 such that f is a generalized equality signature of arity n, say
[1,0,...,0,t], where t # 0 after normalizing the first entry. For notational simplicity, we still call

the signature set F after the transformation H (strictly speaking it is HF). Now we argue that
from this generalized equality signature, we can always realize or interpolate the arity 4 equality
signature (=4) = [1,0,0,0,1].

First, we get an arity 4 generalized equality signature. If the arity of f is 3, then we connect
two copies together by a single edge to get an arity 4 signature. For larger arities, we form self
loops until realizing an arity 3 or 4 signature. By this process, we have a signature g = [1,0,0,0, ']
where t' # 0. If ¢’ is a pth root of unity, then we can directly realize (=4) by connecting p copies of g
together, two edges at a time. If ¢ not a root of unity, then we can interpolate (=4) by Lemma A™2.

Since we can always relaize the arity 4 equality, we can realize any equality of even arity. Thus,

#CSP2(F) < Holant(F). By Theorem 210, the # CSP? dichotomy, Holant(F) is #P-hard unless
TF isin & or & where T is of the form Ll) o?k] for an integer 0 < k < 7.

If TF C £, then we have F C T~'%. Notice that 7' = £2. So the original F is
P-transformable after some orthogonal transformation.

Otherwise, TF C o/. It is easy to verify that (=)(T71)®? is [1,0,i% %] € «/. Thus F is
o/ -transformable under some orthogonal transformation. O
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Lemma 7.11. Let F be a set of symmetric signatures. Suppose F contains a non-degenerate
signature f € Py of arity n > 3. Then Holant(F) is #P-hard unless F is &P-transformable or
& -transformable.

Proof. By assumption, for any 0 < k <n—2, fyio = —fr and f; # £ifo since f is not degenerate.

We can express f as
dn n
1 1
f=ao ; tar| . )

where ag = (fo +1if1)/2 and a1 = (fo — if1)/2, and ag,a; # 0. Then under the holographic
vao a1\
transformation Z = ({ {/ao ! J) , we have

”aoi — /a1

omt-t-
and

Holant ((=2) | F U {f}) =r Holant ([1,0,1](Z"1)®* | ZF U {Z®"f})
=7 Holant ([0,1,0] | ZF U {(=n)}) .

Thus, we have a bipartite graph with (=,) on the right and (#3) = [0,1,0] on the left, so all
equalities of arity a multiple of n are realizable on the right side. Moreover, we can move these
equalities to the left side since the binary disequality just reverses these signatures (exchanging
input bits 0’s and 1’s), which leaves the equalities unchanged.

Now we can apply Theorem P10, the # CSP? dichotomy. Let w be a primitive 4n-th root of

unity. Then under the holographic transformation T = B u?k] for some integer k, TZF must be

in & or &. However, if TZF C &, then we have ZF C T~122. Notice that T~ = &. So the
F is P-transformable under this Z transformation.

Otherwise, TZF C /. It is easy to verify that (=2)((TZ)~1)®? is still [0,1,0] € /. Thus F is
a7 -transformable under this T'Z transformation. O

Lemma 7.12. Let F be a set of symmetric signatures. Suppose F contains a non-degenerate
signature f € o5 of arity n > 3. Then Holant(F) is #P-hard unless F is &-transformable or
& -transformable.

Proof. By assumption, for any 0 < k <n — 2, we have fr1o = Fifr. We consider fyio = ify since
the other case is similar. We can express f as
f . 1 ®n u 1 n
— U0 a 1 — I

where a;/ag = i" for some integer r.

A self loop on f yields f/, where f, = fi + fr+2 = (14 @) fr. Thus up to the constant (1 + 7),
f is just the first n — 2 entries of f. By doing more self loops, we eventually obtain an arity 4
signature when n is even or a ternary one when n is odd. There are eight cases depending on the
first two entries of f and the parity of n. However, for any case, we can realize the signature [1,0, 7].

We list them here. (In the calculations below, we cancel certain nonzero constant factors without
explanation.)
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o Sl

(a) Vertices assigned [1, o, 1, —a]. (b) Vertices assigned [1, ai, i, —ar, —1].

Figure 12: Constructions to realize [1,0,].

[0,1,0,4]: Another self loop gives [0, 1]. Connect it back to the ternary and we get [1,0,1].

e [1,0,%,0]: Another self loop gives [1,0]. Connect it back to the ternary and we get [1,0,7].

[1, i, i, —]: Another self loop gives [1, «i]. Connect two copies of it to the ternary and we
get [1, —a]. Then connect this back to the ternary to finally get [1,0,]. See Figure [Z4.

e [1,—ai,i,a]: Same construction as the previous case.

e [0,1,0,7,0]: Another self loop gives [0, 1,0]. Connect it back to this arity 4 signature and get
[1,0,7].

e [1,0,4,0,—1]: Another self loop gives [1,0, ] directly.

o [1,ai,i,—a,—1]: Another self loop gives [1,ai,i]. Connect two copies of it together to get

[1, —cr, —i]. Connect this to the arity 4 signature to get [1,0,]. See Figure I[2H.
e [1,—ai,i,a,—1]: Same construction as the previous case.

With [1,0, 4] in hand, we can connect three copies to get [1,0, —i].” Now we construct a bipartite
graph, with ZU{=2} on the right side and [1, 0, —i] on the left, and do a holographic transformation

a 1
byZ—[_a J.

Holant ([1,0, —4] | F U {f,=2}) =r Holant ([1,0,—i](Z~")®* | ZF U{Z®"f, Z%*(=2)})

1
=7 Holant (22,[1,0, 1] ZF U{[1,0,...,0,i*], 1, —i, 1]}>

= Holant (ZJ—“ U{[L,0,...,0,i], [1, -, 1]}) :

Notice that f becomes [1,0,...,0,*] where k = r 4 2n (after normalizing the first entry) and (=2)
becomes [1,—i,1]. On the other side, [1,0, —i] becomes [1,0,1]. Therefore, we can construct all
equalities of even arity using the powers of the transformed f. Now by the # CSP? dichotomy,
Theorem P10, if F is not hard, ZF U {[1, —i, 1]} must be # CSP? tractable. Therefore there exists

some T of the form B o?d] where the integer d € {0,1,...,7}, such that TZF U {T®?[1, —i, 1]} is

contained in &/ or &.
However, T®2[1, —i, 1] can never be in &. Thus TZF U {T®?[1,—i,1]} C «/. Further notice
that if d € {1,3,5,7} in the expression of T, then T?[1, —i, 1] is not in .«7. Hence T must be of the

Tn the other case of fry2 = —ifk, we get [1,0, —i] directly here.
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form [1 zg] where the integer d € {0,1,...,3}. For such T, T®2?[1,—i,1] € o/, and T~ '/ = .

0
Thus TZF U {T®?[1,—i,1]} C &/ becomes just ZF C «/. Moreover, (=2)(Z~1)®%is [1,i,1] € &
Thus F is «7-transformable under this Z transformation. O

8 The Main Dichotomy

In this section, we prove our main dichotomy theorem. We begin with a dichotomy for a single
signature, which we prove by induction on its arity.

Theorem 8.1. If f is a non-degenerate symmetric signature of arity at least 3 with complex weights
in Boolean variables, then Holant(f) is #P-hard unless f € 21 U P9 U o3 or f is vanishing, in
which case the problem is in P.

Recall that o4 C & and o = &5, Thus f € Py U Py U oA iff f is &/-transformable or
P-transformable by Lemmas [Z3 and 4.

Proof. Let the arity of f be n. The base cases of n = 3 and n = 4 are proved in Theorems 28
and BT respectively. Now assume n > 5.

With the signature f, we form a self loop to get a signature f’ of arity at least 3. We consider
the cases separately whether f’ is degenerate or not.

e Suppose [’ = [a, b]®(”_2) is degenerate. There are three cases to consider.

1. If a = b = 0, then f’ is the all zero signature. For f, this means frio = —fj for
0<k<n-2 sof€ P by Lemma [[A, and therefore Holant(f) is tractable.

2. If a® + b # 0, then f’ is nonzero and [a,b] is not a constant multiple of either [1,1]

r [1,—i]. We may normalize so that a? 4+ b* = 1. Then the orthogonal transformation

[_ab Z] transforms the column vector [a, b] to [1,0]. Let f be the transformed signature

from f, and f’ = [1,0]®("=2) the transformed signature from f’.

Since an orthogonal transformation keeps (=2) invariant, this transformation commutes
with the operation of taking a self loop, i.e. = (f). Here (f)" is the function obtained
from f by taking a self loop. So fo +f2 = 1 and for every integer 1 < k < n — 2, we have
fo=— fk+2 With one or more self loops, we eventually obtain [1,0] or [1,0, 0] depending
on the parity of n. In either case, we connect an appropriate number of copies of this
signature to f to get a arity 4 signature § = [fo, fi, fo,—f1,— fg] We show that Holant(g)
is #P-hard. To see this, we first compute det(My) = —2(fo+f2)(f2+12) = =2(f2+f2),
since fo + f2 = 1. Therefore if f2 + f2 # 0, Holant(g) is #P-hard by Corollary B7.
Otherwise f1 + f2 = 0, and we consider f2 i f1 since the other case is similar. Since
f is non-degenerate, f is non-degenerate, which implies fg # 0. We can express § as
[1,0]%4 — f5[1,i]®%. Under the holographic transformation by T = [é Z((_J}Q ))11//2], we

—J2

have
Holant (=) | §) =r Holant ([1,0,1]7%% | (T~1)®*g)
=r Holant (iL | (:4)) ,
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where R R

and ¢ is transformed by T~! into the arity 4 equality (=4), since

({7 ) -l

By Theorem 2%, Holant <B | (:4)) is #P-hard as f» # 0.

. If a®> +b? = 0 but (a,b) # (0,0), then [a,b] is a nonzero multiple of [1, #i]. Ignoring the
constant multiple, we have f' = [1,i]®(»=2) or [1, —i]®("~2). We consider the first case
since the other case is similar.

In the first case, the characteristic polynomial of the recurrence relation of f’ is x — 1,
so that of fis (z —4)(2? +1) = (x —i)?(z +14). Hence there exist ag, a; and ¢ such that

fre = (ao + a1k)i® + e(—i)*

for every integer 0 < k < n. If a; = 0, then f’ is the all zero signature, a contradiction.
If ¢ = 0, then f is vanishing, one of the tractable cases. Now we assume that ajc # 0

and show that f is #P-hard. Under the holographic transformation Z = [1 1.], we

have
Holant (=) | f) =7 Holant ([1,0,1]2%2 | (z~1)®"f)
=7 Holant (2[0, 1,0] | f) ,

where f takes the form [fo, f1,0,...,0, ¢ with f; # 0, since f is the Z~!-transformation
of the sum of two signatures, with rd™ = 1 and rd~ = 0 respectively. On the other side,
(=2) = [1,0,1] is transformed into (#2) = [0,1,0] after ignoring the constant factor 2.
Now consider the gadget in Figure [3a with f assigned to both vertices. This gadget
has the binary signature [0,c fo,2¢ fl] which is equivalent to [0, f0,2 fl] since ¢ # 0.
Translating back by Z to the original setting, this signature is g = | fo + f1, —1 f1, f() — fl]
This can be verified as

N e
=i [ fo 2f1] |1 —¢ —ifo  fo—fi]

<>t D

) The circle vertices are assigned f (b) The circle vertices are assigned f.
and the squares are assigned (#32).

Figure 13: Two gadgets used when f/ = [1,i]®("=2) or [1, —§]2(=2),
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Since fl # 0, it can be directly checked that g & %, .

If fo # 0, then g is non-degenerate. By Lemma 62, Holant({f’, g}) is #P-hard, hence
Holant(f) is also #P-hard.

Suppose fo = 0. Then we have g = [1,—i]®? after ignoring the nonzero factor fi.
Connecting this degenerate signature to f, we get a signature h = (f, g). We note that g
annihilates the signature c[1, —i]®", and thus h = (f*, g), where f* is the first summand
of f, ie., fi = (ap + ar1k)i® (0 < k < n). Then rd™(f*) = 1, vd"(g) = 0, and we can
apply Lemma BT4. Tt follows that rd™(h) = 1 and arity(h) > 3. This implies that h is
non-degenerate and h € ¥ .

Moreover, assigning f to both vertices in the gadget of Figure [3H, we get a non-
degenerate signature A’ € ¥~ of arity 4. To see this, consider this gadget after a
holographic transformation by Z. In this bipartite setting, it is the same as assigning
f=10,f1,0,...,0,¢] (or equivalently [0,1,0,...,0,¢], where ¢ = ¢/f1 # 0) to both the
circle and triangle vertices in the gadget of Figure [Za. The square vertices there are
still assigned (#3) = [0,1,0]. While it is not apparent from the gadget’s geometry, this
signature is in fact symmetric. In particular, its values on inputs 1010 and 1100 are both
zero. The resulting signature is i/ = (Z~1)®4h/ = [0,0,0,¢,0]. Hence rd~(h/) = 1, and
therefore h’ is non-degenerate and h' € ¥ .

By Lemma B3, Holant({h, h'}) is #P-hard, hence Holant(f) is also #P-hard.

e Suppose f’ is non-degenerate. If f’ is not in one of the tractable cases, then Holant(f’) is #P-
hard and so is Holant(f). We now assume Holant(f’) is not #P-hard. Then, by inductive
hypothesis, f' € 21U Py U a4 or f' is vanishing. If f/ € P U Py U a3, then applying
Lemma 10, Lemma [T, or Lemma 12 to f’ and the set {f, f’}, we have that f is &/~ or
P-transformable, so by Corollary 3 f € &1 U Py U o3.

Otherwise, f’ is vanishing, so f' € ¥ for ¢ € {4,—} by Theorem BI3. For simplicity,
assume that f’ € 7. The other case is similar. Let rd*(f’) = d—1, where 2d < n and d > 2
since f’ is non-degenerate. Then the entries of f’ can be expressed as

£ =iFq(k),

where ¢(z) is a polynomial of degree exactly d — 1. However, notice that if f’ satisfies
some recurrence relation with characteristic polynomial ¢(z), then f satisfies a recurrence
relation with characteristic polynomial (2 + 1)t(z). In this case, t(x) = (z —i)%. Then the
corresponding characteristic polynomial of f is (x —i)%*!(x +14), and thus the entries of f are

fr = i*p(k) + c(—i)*

for some constant ¢ and a polynomial p(z) of degree at most d. However, the degree of p(x)
is exactly d, otherwise the polynomial ¢(x) for f’ would have degree less than d — 1. If ¢ = 0,
then f is vanishing, a tractable case. Now assume ¢ # 0, and we want to show the problem
is #P-hard.

Thus, under the transformation Z = E EJ, we have

Holant ((=2) | f) =¢ Holant ([1,0,1]Z2%% | (Z~H)®"f)
=r Holant <2[0, 1,0] | f) )
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where f = [fo, fioooos fa,0, .. ,0, c|, with fa # 0. Taking a self loop in the original setting
is equivalent to connecting [(), 1,0] to a signature after this transformation. Thus, doing this
once on f we can get f' = [fi,... ,fd, ,...,0] corresponding to f’, and doing this d — 2 times

on f we get a signature h = [fa— 9, fa_ 1,fd, 0,...,0,0/c] of arity n — 2(d — 2) = n — 2d + 4.
The last entry is ¢ when d = 2 and is 0 when d > 2.

As n > 2d, we may do two more self loops and get [fd,(), ...,0] of arity K = n — 2d. Now
connect this signature back to f via [0,1,0]. It is the same as getting the last n — k = 2d
signature entries of f . We may repeat this operation zero or more times until the arity k" of
the resulting signature is less than or equal to k. We claim that this signature has the form
g=10,...,0,c]. In other words, the &’ + 1 entries of § consist of the last ¢ and k" many 0’s
in the 81gnature f , all appearing after fa. This is because there are n — 1 — d many 0 entries
in the signature f after fd, andn—1—-d>k>Fk.

Translating back by the Z transformation, having both [fd,O, ...,0] of arity k and g =
[0,...,0,c] of arity &’ is equivalent to, in the original setting, having both [1,i]* and [1, —i]*".
If k > k/, then we can connect [1,—i]* to [1,i]* and get [1,i]* *. Replacing k by k — k'
we can repeat this process until the new k < k’. If the new k < k' we can continue as in
the subtractive Euclid algorithm. Keep doing this procedure and eventually we get [1,i]*
and [1, —i)t, where t = gcd(k, k), where k = n — 2d and k' < k, as defined in the previous
paragraph. Now putting &/t many copies of [1, —i]* together, we get [1, —i]*.

In the transformed setting, [1,—i]* is [0,...,0,1] of arity k. Then we connect this back
to h via [0,1,0]. Doing this is the same as forcing k connected edges of h be assigned 0,
because [0, 1,0] flips the assigned value 1 in [0,...,0,1] to 0. Thus we get a signature of arity
n—2d+4 — k = 4, which is [fd 2, fd 1,fd,0 O] Note that the last entry is 0 (and not ¢),
because k£ > 1.

However, Holant ([O, 1,0] | [fd,g,fd,l,fd,0,0]) is equivalent to Holant ([0, 1,0] | [0, 0, 1,0, 0])

when f; # 0, which is transformed back by Z to Holant([3,0,1,0,3]). This is the Eulerian
Orientation problem on 4-regular graphs and is #P-hard by Theorem b43. O

Now we are ready to finish the proof of our main theorem.

Proof of hardness of Theorem [-1. Assume Holant(F) is not #P-hard. If all the non-degenerate
signatures in F are of arity at most 2, then the problem is tractable case . Otherwise we have some
non-degenerate signatures of arity at least 3. For any such f, by Theorem B, f € &1 U %P5 U o3
or f is vanishing. If any of them is in &} U &5 U @73, then by Lemma [[10, Lemma [0, or
Lemma T2, we have that F is &/~ or &-transformable, which are tractable cases B and B.

Now we assume all non-degenerate signatures of arity at least 3 in F are vanishing, and there
is a nonempty set of such signatures in F. By Lemma B3, they must all be in # for the same
o € {+,—}. By Lemma 62, we know that any non-degenerate binary signature in F has to be in
. Furthermore, if there is an f € ¥ from F such that rd?(f) > 2, then by Lemma B, the
only unary signature that is allowed in F is [1, 0i], and all degenerate signatures in F are a tensor
product of [1,0i]. Thus, all non-degenerate signatures of arity at least 3 as well as all degenerate
signatures belong to 77, and all non-degenerate binary signatures belong to %9 . This is tractable
case H.

Finally, we have the following: (i) all non-degenerate signatures of arity at least 3 in F belong
to #7; (ii) all signatures f € F N ¥ have rd?(f) < 1, which implies that f € #9; and (iii) all
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non-degenerate binary signatures in F belong to #9. Hence all non-degenerate signatures in F
belong to #9. All unary signatures also belong to #J by definition. This is indeed the tractable
case B. The proof is complete. ]

From the proof of our main theorem, Theorem BT, the tractability criterion is decidable in

polynomial time in the size of the given signature set F.

Theorem 8.2. Given any finite set F of symmetric, complez-valued signatures in Boolean vari-
ables, it is decidable in polynomial time in the size of F whether it satisfies the dichotomy criterion
in Theorem 1 for Holant(F).
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A Simple Interpolations

In addition to the two arity 4 interpolations in section B, we also use interpolation in the proofs of
two other lemmas. Compared to our arity 4 interpolations, these binary interpolations are much
simpler.

Lemma A.1. If x # 0, then for any set F containing [x,1,0], we have

Holant ((#2) | F U{[v,1,0]}) < Holant ((#2) | F)

for any v € C.

Proof. Consider an instance 2 of Holant ((#2) | F U {[v,1,0]}). Suppose that [v,1,0] appears n
times in Q. We stratify the assignments in Q based on the assignments to [v,1,0]. We only need
to consider the Hamming weight zero and Hamming weight one assignments since a Hamming two
assignment contributes a factor of 0. Let ¢ be the number of Hamming weight zero assignments to
[v,1,0] in Q. Then there are n — ¢ Hamming weight one assignments and the Holant on €2 is

n
Holantg = Z vicz-,
=0

where ¢; is the sum over all such assignments of the product of evaluations of all other signatures
on (.

o1



We construct from €2 a sequence of instances €25 of Holant(F) indexed by s > 1. We obtain €
from Q by replacing each occurrence of [v,1,0] with a gadget gs created from s copies of [z, 1,0],
connected sequentially but with (#2) = [0, 1,0] between each sequential pair. The signature of g
is [sx, 1, 0], which can be verified by the matrix product

31 ) e A R i R i
The Holant on €2 is

n
Holantq, = Z(sav)’cZ
i=0
For s > 1, this gives a coefficient matrix that is Vandermonde. Since x is nonzero, sz is distinct
for each s. Therefore, the Vandermonde system has full rank. We can solve for the unknowns c;
and obtain the value of Holantg,. O

Lemma A.2. Ift is nonzero and not a root of unity, then for any set F containing [1,0,0,0,t],
Holant(F U {(=4)}) <r Holant(F).

Proof. Consider an instance Q2 of Holant(F U {(=4)}). Suppose that (=4) appears n times in €.
We stratify the assignments in 2 based on the assignments to (=4). We only need to consider the
all-zero and all-one assignments since any other assignment contributes a factor of 0. Let ¢ be the
number of all-one assignments to (=4) in €. Then there are n — i all-zero assignments and the

Holant on € is .

Holantq = Z G,
i=0
where ¢; is the sum over all such assignments of the product of evaluations of all other signatures
on 2.
We construct from €2 a sequence of instances €2, of Holant(F) indexed by s > 1. We obtain
from Q by replacing each occurrence of (=4) with a gadget g5 created from s copies of [1,0,0,0,¢],
connecting two edges together at a time. The Holant on €5 is

n

Holantq, = Z(ts)ici.
i=0

For s > 1, this gives a coefficient matrix that is Vandermonde. Since ¢ is neither zero nor a root of
unity, ¢° is distinct for each s. Therefore, the Vandermonde system has full rank. We can solve for
the unknowns ¢; and obtain the value of Holantg. O

B An Orthogonal Transformation

In this section, we give the details of the orthogonal transformation used in the proof of Lemma bT0.
We state the general case for symmetric signatures of arity n. The special case of n = 3 was proved
in section 10 in [9].
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We are given a symmetric signature f = [fo, ..., f,] such that f = cka*~! +da®, where ¢ # 0,

d=1
and o # +i. Let S = [; ot g_la]. Note that detS = ¢ # 0. Then the signature f can be
expressed as "
f=5%"1,1,0,...,0]
where [1,1,0,...,0] should be understood as a column vector of dimension 2", which has a 1 in

entries with index weight at most one and 0 elsewhere. This identity can be verified by observing
that

[1,1,0,...,0] = [1,0]®" + Symp~([1,0]; [0, 1])

1
(n—1)!
and we apply S®" using properties of tensor product, S®"[1,0]®" = (S[1,0])®", etc. We consider
the value at index 0"*1% which is the same as the value at any entry of weight k. By considering
where the tensor product factor [0, 1] is located among the n possible locations, we get

d—1 d—1
of +k (c + na) (= k:)To/’C = cka® ! +dok.

1 « U w
_ 1 _ T _ -1 : _ g _ :
Let T = = [a _1] ,then T'=T"=T7" € O2(C) is orthogonal, and R =TS = [0 v] is

upper triangular, where v, w € C and u = V1 + a2 # 0. However, det R = det T'det S = (—1)c # 0,
so we also have v # 0. It follows that

T*"f = (T5)®"[1,1,0,...,0]
= R®"[1,1,0,...,0]
1
(n—1)!
Symj; = ([u, 0]; [w, v])

= e (1,0 4 o s (0,05 0,1)

= [u,0]%" +

(n—1)!
1 n—

= [u" + nu™Tw, w10, 0,0].

Since u" v # 0, we can normalize the entry of Hamming weight one to 1 by a scalar multiplication.
Thus, we have [z,1,0,...,0] for some z € C.
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