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Abstract

Holant problems are a general framework to study the algorithmic complexity of counting prob-
lems. Both counting constraint satisfaction problems and graph homomorphisms are special cases.
All previous results of Holant problems are over the Boolean domain. In this paper, we give the
first dichotomy theorem for Holant problems for domain size > 2. We discover unexpected tractable
families of counting problems, by giving new polynomial time algorithms. This paper also initiates
holographic reductions in domains of size > 2. This is our main algorithmic technique, and is used
for both tractable families and hardness reductions. The dichotomy theorem is the following: For
any complex-valued symmetric function F with arity 3 on domain size 3, we give an explicit criterion
on F, such that if F satisfies the criterion then the problem Holant∗(F) is computable in polynomial
time, otherwise Holant∗(F) is #P-hard.

1 Introduction

The study of computational complexity of counting problems has been a very active research area
recently. Three related frameworks in which counting problems can be expressed as partition functions
have received the most attention: Graph Homomorphisms (GH), Constraint Satisfaction Problems
(CSP) and Holant Problems.

Graph Homomorphism was first defined by Lovász [37]. It captures a wide variety of graph prop-
erties. Given any fixed k × k symmetric matrix A over C, the partition function ZA maps any input
graph G = (V,E) to ZA(G) =

∑
ξ:V→[k]

∏
(u,v)∈E Aξ(u),ξ(v). When A is a 0-1 matrix, then the prod-

uct
∏

(u,v)∈E is essentially a Boolean And function. The product value
∏

(u,v)∈E Aξ(u),ξ(v) = 0 or 1,
and it is 1 iff every edge (u, v) ∈ E is mapped to an edge in the graph H whose adjacency matrix
is A. Hence for a 0-1 matrix A, ZA(G) counts the number of “homomorphisms” from G to H. For

example, if A =
[

1 1
1 0

]
then ZA(G) counts the number of Independent Sets in G. If A =

[
0 1 1
1 0 1
1 1 0

]
then ZA(G) is the number of valid 3-colorings. When A is not 0-1, ZA(G) is a weighted sum of
homomorphisms. Each A defines a graph property on graphs G. Clearly if G and G′ are isomorphic
then ZA(G) = ZA(G′). While individual graph properties are fascinating to study, Lovász’s intent is to
study a wide class of graph properties representable as graph homomorphisms. The use of more general
matrices A brings us into contact with another tradition, called partition functions of spin systems from

statistical physics [3, 38]. The case of a 2 × 2 matrix A =
[
β 1
1 γ

]
is called a 2-spin system, and the

special case β = γ is the Ising model [31, 32, 28]. The Potts model with interaction strength γ is defined
by a k×k matrix A where all off-diagonal entries equal to 1 and all diagonal entries equal to 1 +γ [27].
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In classical physics, the matrix A is always real-valued. However, in a generic quantum system for
which complex numbers are the right language, the partition function is in general complex-valued [24].
In particular, if the physics model is over a discrete graph and is non-orientable, then the edge weights
are given by a symmetric complex matrix. We will see that the use of complex numbers is not just a
modeling issue, it provides an inner unity in the algorithmic theory of partition functions.

A more general framework than GH is called counting CSP. Let F be any finite set of (complex-
valued) constraint functions defined on some domain set D. It defines a counting CSP problem
#CSP(F): An input consists of a bipartite graph G = (X,Y,E), each x ∈ X is a variable on D,
each y ∈ Y is labeled by a constraint function f ∈ F , and the edges in E indicate how each constraint
function is applied. The output is the sum of product of evaluations of the constraint functions over
all assignments for the variables [17, 7, 19, 6, 14, 21, 11]. Again if all constraint functions in F are 0-1
valued then it counts the number of solutions. In general, this sum of product a.k.a. partition function
is a weighted sum of solutions, and has occupied a central position. It reaches many areas ranging
from AI, machine learning, tensor networks, statistical physics and coding theory. Note that GH is the
special case where F consists of a single binary symmetric function.

The strength of these frameworks derives from the fact that they can express many problems of
interest and simultaneously it is possible to achieve a complete classification of its worst case complexity.

While GH (or spin systems) can express a great variety of natural counting problems, Freedman,
Lovász and Schrijver [25] showed that GH cannot express the problem of counting Perfect Match-
ings. It is well known that the FKT algorithm [35, 41] can count the number of perfect matchings
in a planar graph in polynomial time. This is one basic component of holographic algorithms recently
introduced by Valiant [43, 42]. (The second basic component is holographic reduction.) To capture this
extended class of problems typified by Perfect Matchings, the framework of Holant problems was
introduced [13, 14, 15]. Briefly, an input instance of a Holant problem is a graph G = (V,E) where each
edge represents a variable and each vertex is labeled by a constraint function. The partition function is
again the sum of product of the constraint function evaluations, over all edge assignments. E.g., if edges
are Boolean variables (i.e., domain size 2), and the constraint function at every vertex is the Exact-
One function which is 1 if exactly one incident edge is assigned true and 0 otherwise, then the partition
function counts the number of perfect matchings. If each vertex has the At-Most-One function then
it counts all (not necessarily perfect) matchings. It can be shown easily that the Holant framework can
simulate spin systems but, as shown by [25], the converse is not true. The Holant framework turns
out to be a very natural setting and captures many interesting problems. E.g., it was independently
discovered in coding theory, where it is called Normal Factor Graphs or Forney Graphs [33, 34, 2, 1].

A complexity dichotomy theorem for counting problems classifies every problem within a class to be
either in P or #P-hard. For GH, this is proved for ZA for all symmetric complex matrices A [10]. This
is a culmination of a long series of results [20, 8, 26]. The proof of [10] is difficult, but the tractability
criterion is very explicit: ZA is in polynomial time if A is a suitable rank-one modification of a tensor
product of Fourier matrices, and is #P-hard otherwise. Explicit dichotomy theorems were also proved
for counting CSP on the Boolean domain (i.e., |D| = 2): unweighted [17], non-negative weighted [19],
real weighted [4], and finally complex weighted [14], where holographic reductions played an important
role in the final result. Complex numbers make their appearance naturally as eigenvalues, and provide
an internal logic to the theory, even if one is only interested in 0-1 valued constraint functions.

When we go from the Boolean domain to domain size > 2, there is a huge increase in difficulty
to prove dichotomy theorems. This is already seen in decision CSP, where the dichotomy (i.e., any
decision CSP is either in P or NP-complete) for the Boolean domain is Schaefer’s theorem [39], but
the dichotomy for domain size 3 is a major achievement by Bulatov [5]. A long standing conjecture
by Feder and Vardi [23] states that a dichotomy for decision CSP holds for all domain size, but this
is open for domain size > 3. The assertion that every decision CSP is either solvable in polynomial
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time or NP-complete is by no means obvious, since assuming P 6= NP, Ladner showed that NP contains
problems that are neither in P nor NP-complete [36]. This is also valid for P versus #P.

With respect to counting problems, for any finite set of 0-1 valued functions F over a general domain,
Bulatov [6] proved a dichotomy theorem for #CSP(F), which uses deep results from Universal Algebra.
Dyer and Richarby [21, 22] gave a more direct proof which has the advantage that their tractability
criterion is decidable. Decidable dichotomy theorems are more desirable since they tell us not only every
F belongs to either one or the other class, but also how to decide for a given F which class it belongs
to. A decidable dichotomy theorem for #CSP(F), where all functions in F take non-negative values, is
given in [11]. Finally a dichotomy theorem for all complex-valued #CSP(F) is proved in [9]. This last
dichotomy is not known to be decidable.

More than giving a formal classification, the deeper meaning of a dichotomy theorem is to provide a
comprehensive structural understanding as to what makes a problem easy and what makes it hard. This
deeper understanding goes beyond the validity of a dichotomy, and even more than decidability, which is:
Given F , decide whether it satisfies the tractability criterion so that #CSP(F) is in P. Ideally we hope
for dichotomy theorems that are explicit in the sense that the tractability criteria provide a mathematical
characterization that can be applied symbolically to an arbitrary F . An explicit dichotomy can also be
readily used to prove broader dichotomy theorems, as we will see in this paper. The known dichotomy
theorems for GH [10] and for CSP on general domains have very different flavors. Dichotomy theorems
for #CSP(F) for all domain size > 2 are not explicit. The tractability criterion is infinitary. This is
in marked contrast with the dichotomy theorems for GH. For Holant problems all previous results are
over the Boolean domain and are mostly explicit. In this paper, we give the first dichotomy theorem
for Holant problems for domain size > 2, and it is explicit.

Our main theorem can be stated as follows: For any complex-valued symmetric function F with
arity 3 on domain size 3, we give an explicit criterion on F, such that if F satisfies the criterion
then the problem Holant∗(F) is computable in polynomial time, otherwise Holant∗(F) is #P-hard.
(Formal definitions will be given in Section 2.) It is known that in the Holant framework any set of
binary functions is tractable. A ternary function is the basic setting in the Holant framework where
both tractable and intractable cases occur. A single ternary function in the Holant framework is the
analog of GH as the basic setting in the CSP framework with a single binary function. Therefore
this case is interesting in its own right. Furthermore, as demonstrated many times in the Boolean
domain [14, 15, 12, 29, 30], a dichotomy for a single ternary function serves as the starting point for
more general dichotomies in the Holant framework.

In order to prove this dichotomy theorem, we have to discover new tractable classes of Holant
problems, and design new polynomial time algorithms. Many intricacies of the interplay between
tractability and intractability do not occur in the Boolean domain. However these new algorithms
actually provide fresh insight to our previous dichotomy theorems for the Boolean domain. They offer
a deeper and more complete understanding of what makes a problem easy and what makes it hard.

Our main algorithmic innovation is to initiate the theory of holographic reductions in domains of size
> 2. It is a recurring theme in our proof techniques here. This is a new development; all previous work on
holographic algorithms and reductions have been on the Boolean domain. Holographic transformation
offers a perspective on internal connections and equivalences between different looking problems, that is
unavailable by any other means. In particular since it naturally uses eigenvalues and eigenvectors, the
field of complex numbers C is the natural setting to formulate the class of problems, even if one is only
interested in 0-1 valued or non-negative valued constraint functions. Using complex-valued constraints
in defining Holant problems we can see the internal logical connections between various problems.
Completely different looking problems can be seen as one and the same problem under holographic
transformations. The proof of our dichotomy theorem would be impossible without working over C.
Even the dichotomy criterion would be impossible to state without it. To quote Jacques Hadamard:
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“The shortest path between two truths on the real line passes through the complex plane.”
Suppose our domain set is {B,G,R}, named for the three colors Blue, Green and Red. We isolate

several classes of tractable cases of F. One of them is a generalization of Fibonacci signatures from
the Boolean domain, under an orthogonal transformation. Another involves a concept called isotropic
vectors, which self-annihilates under dot product. The third type involves a more intricate interplay
between an isotropic vector in some dimension and another function primarily “living” in the other
dimensions. This last type was only discovered after we failed to push through certain hardness proofs.

For hardness proofs, the first main idea is to construct a binary function which acts as an Equality
function when restricted to {G,R}, and is zero elsewhere. This construction allows us to restrict a
function on {B,G,R} to a domain of size 2, and employ the known (and explicit) dichotomy theorems
for the Boolean domain. The plan is to use it to restrict F to {G,R} and, assuming it is non-degenerate,
to anchor the entire hardness proof on that. Here it is crucial that the known Boolean domain dichotomy
is explicit. This part of the proof is quite demanding and heavily depends on holographic reductions.
A central motif is to show that after a holographic reduction, F must possess fantastic regularity to
escape #P-hardness.

What perhaps took us by surprise is that when F restricted to {G,R} is degenerate, there is
still considerable technical difficulty remaining. These are eventually overcome by using unsymmetric
functions.

This work has been a marathon for us. During the process, repeatedly, we failed to clinch the
hardness proof for some subclasses of functions and then new tractable cases were found. So we had to
reformulate the final dichotomy several times. The discovery process is mutually reinforcing between
new algorithms and hardness proofs. On many occasions we believed that we had overcome one last
hurdle, only to be stymied by yet another. However the struggle has also paid handsome dividends.
For example, our SODA paper two years ago [16] was obtained as part of the program to achieve this
dichotomy. We realized we needed a dichotomy for unsymmetric functions over the Boolean domain,
and indeed that is used to overcome a major difficulty in the proof here.

2 Preliminary

2.1 Definitions

Definitions of Holant problem and gadget are introduced in this subsection. The readers who are familiar
with the definitions in [15, 16] may skip.

Let D be a finite domain set, and F be a finite set of constraint functions called signatures. Each
F ∈ F is a mapping from Dk → C for some arity k. We assume signatures take complex algebraic
numbers.

A signature grid Ω = (G,F , π) consists of a graph G = (V,E) where each vertex v ∈ V is labeled
by a function Fv ∈ C, and π is the labeling. The Holant problem on instance Ω is to evaluate

HolantΩ =
∑
σ

∏
v∈V

Fv(σ |E(v)), (1)

a sum over all edge assignments σ : E → D, where E(v) denotes the incident edges at v.
A function Fv is listed by its values lexicographically as a truth table, or as a tensor in (C|D|)⊗ deg(v).

We can identify a unary function F(x) : D → C with a vector u ∈ C|D|. Given two vectors u and v
of dimension |D|, the tensor product u ⊗ v is a vector in C|D|2 , with entries uivj (1 ≤ i, j ≤ |D|). For
matrices A = (ai,j) and B = (bk,l), the tensor product (or Kronecker product) A⊗B is defined similarly;
it has entries ai,jbk,l indexed by ((i, k), (j, l)) lexicographically. We write u⊗k for u ⊗ . . . ⊗ u with k
copies of u. A⊗k is similarly defined. We have (A⊗ B)(A′ ⊗ B′) = (AA′ ⊗ BB′) whenever the matrix
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products are defined. In particular, A⊗k(u1 ⊗ . . . ⊗ uk) = Au1 ⊗ . . . ⊗ Auk when the matrix-vector
products Aui are defined.

A signature F of arity k is degenerate if F = u1 ⊗ u2 ⊗ . . . ⊗ uk for some vectors ui. Equivalently
there are unary functions Fi such that F(x1, . . . , xk) = F1(x1) · · ·Fk(xk). Such a signature is very weak;
there is no interaction between the variables. If every function in F is degenerate, then HolantΩ for any
Ω = (G,F , π) is computable in polynomial time in a trivial way: Simply split every vertex v into deg(v)
many vertices each assigned a unary Fi and connected to the incident edge. Then HolantΩ becomes
a product over each component of a single edge. Thus degenerate signatures are weak and should be
properly understood as made up by unary signatures. To concentrate on the essential features that
differentiate tractability from intractability, we introduced Holant∗ problems [14, 15]. These are Holant
problems where unary signatures are assumed to be present.

We consider a type of graphs G = (V, I, E) with two kinds of edges. Edges in I are ordinary internal
edges with two endpoints. Edges in E are external edges (also called dangling edges) which have only
one endpoint in V . Such a graph can be made into a part of a larger graph as follows. Given a graph G′,
we can replace a vertex v of G′ by a graph G with external edges, merging the external edges with the
incident edges of v. Reversely, when some edges are cut from a graph, the cut edges become external
edges on both sides. When two external edges are connected, they merge to become one edge.

A gadget consists of a graph G = (V, I, E) and a labeling π, where each vertex v ∈ V is labeled by a
function Fv ∈ C. A gadget can be a part of a signature grid. For example, in a signature grid, a single
vertex of degree d constitutes a gadget. It has the single vertex, together with its function, an empty I
set, and its d incident edges as external edges. It can be replaced by a gadget G with |E| = d and vice
versa. In a signature grid, when we want to replace a gadget G with |E| = d by a vertex v of degree d,
what is the right function Fv that keeps the value of the signature grid unchanged? The function of a
gadget is defined to have this property, and it is also a natural generalization of Holant.

On an assignment τ : E → D, the function FG of a gadget G has value

FG(τ) =
∑
σ

∏
v∈V

Fv(τσ |E(v)),

a sum over all edge assignments σ : I → D, and τσ is the combined assignment on E ∪ I.
Suppose one gadget is the disjoint union of two parts, each has two external edges. Suppose the

binary functions (on x1, x2 and x3, x4 respectively) in matrix form are A and B. Then the function of
this gadget is Fx1x3,x2x4 = Ax1,x2 ⊗Bx3,x4 , where Fx1x3,x2x4 denotes the matrix with two indices x1x3

and x2x4, and the value of this entry is just F(x1, x2, x3, x4).
Another example is the following. There are two binary functions A and B. They share an in-

ternal edge x2. Other two edges x1, x3 are external. The function of this gadget is F(x1, x3) =∑
x2

A(x1, x2)A(x2, x3), that is, Fx1,x3 = Ax1,x2Ax2,x3 , the matrix product.

2.2 Holographic Reduction

To introduce the idea of holographic reductions, it is convenient to consider bipartite graphs. For a
general graph, we can always transform it into a bipartite graph preserving the Holant value, as follows:
For each edge in the graph, we replace it by a path of length 2, and assign to the new vertex the binary
Equality function (=2).

We use Holant(R | G) to denote the Holant problem on bipartite graphs H = (U, V,E), where each
signature for a vertex in U or V is from R or G, respectively. An input instance for the bipartite
Holant problem is a bipartite signature grid and is denoted as Ω = (H; R | G; π). Signatures in R are
considered as row vectors (or covariant tensors); signatures in G are considered as column vectors (or
contravariant tensors) [18].
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For a |D| × |D| matrix T and a signature set F , define TF = {G | ∃F ∈ F of arity n, G = T⊗nF},
similarly for FT . Whenever we write T⊗nF or TF , we view the signatures as column vectors; similarly
for FT⊗n or FT as row vectors. A holographic transformation by T is the following operation: given a
signature grid Ω = (H; R | G; π), for the same graph H, we get a new grid Ω′ = (H; RT | T−1G; π)
by replacing each signature in R or G with the corresponding signature in RT or T−1G.

Theorem 2.1 (Valiant’s Holant Theorem [43]). If there is a holographic transformation mapping sig-
nature grid Ω to Ω′, then HolantΩ = HolantΩ′.

Therefore, an invertible holographic transformation does not change the complexity of the Holant
problem in the bipartite setting. We illustrate the power of holographic transformation by an example.
Let F = [3

2 , 0,
1
2 , 0,

3
2 ]. Consider Holant(F) on the Boolean domain. For a 4-regular graph G, Holant(F)

is a sum over all 0-1 edge assignments of products of local evaluations. Each vertex contributes a factor
3
2 if all incident edges are assigned the same truth value, a factor 1

2 if exactly half are assigned 1 and the
other half 0. Before anyone consigns this problem to be artificial and unnatural, consider a holographic

transformation by Z = 1√
2

[
1 1
i −i

]
. Then Holant(F) = Holant(=2| F) = Holant((=2)Z⊗2 | (Z−1)⊗4F).

Let F̂ = [0, 0, 1, 0, 0], and writing it as a symmetrized sum of tensor products, then

Z⊗4F̂ = Z⊗4
{[

1
0

]
⊗
[

1
0

]
⊗
[

0
1

]
⊗
[

0
1

]
+
[

1
0

]
⊗
[

0
1

]
⊗
[

1
0

]
⊗
[

0
1

]
+ · · ·+

[
0
1

]
⊗
[

0
1

]
⊗
[

1
0

]
⊗
[

1
0

]}
= 1

4

{[
1
i

]
⊗
[

1
i

]
⊗
[

1
−i

]
⊗
[

1
−i

]
+
[

1
i

]
⊗
[

1
−i

]
⊗
[

1
i

]
⊗
[

1
−i

]
+ · · ·+

[
1
−i

]
⊗
[

1
−i

]
⊗
[

1
i

]
⊗
[

1
i

]}
= 1

2 [3, 0, 1, 0, 3] = F;

Hence the contravariant transformation (Z−1)⊗4F = F̂. Meanwhile, a covariant transformation by Z
transforms (=2) to the binary Disequality function ( 6=2)

(=2)Z⊗2 = (1 0 0 1)Z⊗2 =
{

(1 0)⊗2 + (0 1)⊗2
}
Z⊗2 = 1

2

{
(1 1)⊗2 + (i −i)⊗2

}
= [0, 1, 0] = ( 6=2).

So Holant(F) = Holant(( 6=2) | [0, 0, 1, 0, 0]); they are really one and the same problem. A moment’s
reflection shows that this latter formulation is counting the number of Eulerian orientations on 4-regular
graphs, an eminently natural problem!

Furthermore, holographic transformation by an orthogonal matrix T preserves the binary equality
and thus can be used freely in the standard setting.

Theorem 2.2. Suppose T is an orthogonal matrix (TT T = I) and let Ω = (G,F , π) be a signature grid.
Under a holographic transformation by T , we get a new grid Ω′ = (G,TF , π) and HolantΩ = HolantΩ′.

When T has a special {B} and {G,R} domain separated form, we observe that each {G,R}-line
in the table for T⊗3F and F, which correspond to a fixed number of B assigned, are closely related
by the {G,R}-block of T , as stated in the following Fact. We call this a domain separated holographic
reduction .

Fact 1. Suppose T is in the {B} and {G,R} domain separated form,

e 0 0
0 a b
0 c d

. Let M =

(
a b
c d

)
.

We have,

(T⊗3F)∗→{G,R} = M⊗3(F∗→{G,R}),

(T⊗3F)1=B,2,3→{G,R} = eM⊗2(F1=B,2,3→{G,R}),

(T⊗3F)1=B,2=B,3→{G,R} = e2M(F1=B,2=B,3→{G,R}).
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Proof. We prove the second formula as an example. Other formulae can be proved similarly.
(T⊗3F)1=B,2,3→{G,R} is the line [(T⊗3F)BGG, (T

⊗3F)BGR, (T
⊗3F)BRR] in the triangular table form

of T⊗3F, and F1=B,2,3→{G,R} is the corresponding line of F.
Because one input of T⊗3F is fixed to B, it is equivalent to connecting one unary function (1, 0, 0)

to T⊗3F. By associativity this unary can be combined with a copy of T in the gadget T⊗3F. This
combination results in a unary function 〈(1, 0, 0), T 〉 = (TB,B, 0, 0) = (e, 0, 0), which is then connected
to F. This creates a binary function eF1=B. Now, we get (T⊗2(eF1=B))∗→{G,R}. The two external
edges of the gadget T⊗2(eF1=B) are restricted to {G,R}. Because the domain of T is separated into
{B} and {G,R}, they force the two internal edges to take values in {G,R}. Since all 4 edges take values
in {G,R}, this turns T⊗2(eF1=B) into eM⊗2F1=B,2,3→{G,R}.

2.3 Notations

A signature F on r variables is symmetric if F(x1, . . . , xr) = F(xσ(1), . . . , xσ(r)) for all σ ∈ Sk, the
symmetric group. It can be shown easily that a symmetric signature F is degenerate iff F = u⊗r for
some unary u.

We use Sym(F) to denote the symmetrization of F as follows: For i1, i2, . . . , ir ∈ {B,G,R},

(Sym(F))(i1i2...ir)
=
∑
σ∈Sr

Fiσ1iσ2···iσr ,

where the summation is over the symmetric group Sr on r symbols. 1

If F is degenerate, given as a simple tensor product

F = v1 ⊗ v2 ⊗ · · · ⊗ vr,

then the symmetrization of F is the symmetric product of the factors:

Sym(F) =
∑
σ∈Sr

vσ1 ⊗ vσ2 ⊗ · · · ⊗ vσr.

We consider a function F and its nonzero multiple cF as the same function, as cF only introduces
a easily computable global factor.

A symmetric signature F on r Boolean variables can be expressed as [f0, f1, . . . , fk], where fj is the
value of F on inputs of Hamming weight j. In the following, we focus on symmetric signatures over
domain [3]. We use three symbols {B,G,R} to denote the domain elements.

Let F be a symmetric signatures of arity 3 over domain {B,G,R}. We use the following notation
for F.

F = [FBBB;FBBG, FBBR;FBGG, FBGR, FBRR;FGGG, FGGR, FGRR, FRRR].

Alternatively we also use the following notation:

FBBB
FBBG FBBR

FBGG FBGR FBRR
FGGG FGGR FGRR FRRR

(2)

1Usually, there is a normalization factor 1
r!

in front of the summation, however a global factor does not change the
complexity and we ignore this factor for notational simplicity.
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This notation can be extended to other arities. For a signature with arity two, we also use a
symmetric q × q matrix to represent it.

F = [FBB;FBG, FBR;FGG, FGR, FRR]

=

FBB FBG FBR
FBG FGG FGR
FBR FGR FRR

 .
For a binary signature, the rank of the signature is the rank of its q × q matrix.
A unary function can be represented as [FB;FG, FR] in symmetric notation, or simply (FB, FG, FR)

in full version.
We use Fi=A, where i ∈ [r] and A ∈ {B,G,R}, to denote a signature of arity r− 1 by fixing the i-th

input of F to A. For example for the F in (2)

F1=B =

FBBB FBBG FBBR
FBBG FBGG FBGR
FBBR FBGR FBRR

 . (3)

Sometimes, we also restrict the i-th input of F to S, a subset of {B,G,R}, and we use Fi→S (for
example F2→{B,R}) to denote it. We use F∗→S to denote the case when we restrict all inputs of F to
S. For example

F∗→{G,R} = [FGGG, FGGR, FGRR, FRRR].

The above notation can be combined, for example

F1=B;2,3→{G,R} = [FBGG, FBGR, FBRR].

We also use Fa,b,c, (a, b, c ∈ N, a+ b+ c = r) to denote the value of F when the numbers of B’s, G’s
and R’s among the inputs are respectively a, b and c. For example, F1,2,0 = FBGG.

Definition 2.3. A symmetric function F of arity r ≥ 2, gives a r-uniform hyper graph G whose vertex
set is the domain of variables. We say two disjoint subsets of domain are separated, if they are contained
in different connected components of G.

For example, if a ternary function has the form

FBBB
0 0

0 0 0
FGGG FGGR FGRR FRRR

We say that B is separated from {G,R}.

2.4 A Calculus with Symmetric Signatures

In order to follow the proofs in this paper, it would be helpful to familiarize oneself with a certain calculus
that lets us reason about these symmetric signatures on domain size 3. We will mainly illustrate it with
signatures of arity 2 or 3. It is easy to generalize it to any higher arities.

For any symmetric signature F of arity 2 on domain {B,G,R}, we make the following identification
of the notation

8



FBB
FBG FBR

FGG FGR FRR

with its matrix form FBB FBG FBR
FBG FGG FGR
FBR FGR FRR

 .
We note that the three corners in counterclock-wise order B,G,R are listed on the main diagonal in
the matrix. Then the off-diagonal entries are filled by the corresponding color pairs, e.g., the entry FBG
between B and G are filled at the (B,G) and (G,B) entry of the matrix.

Let F be a ternary symmetric signature, and let u = (α, β, γ) be a unary signature, both on domain
{B,G,R}, we can form a binary symmetric signature by connecting one input of F with u. Since
F is symmetric, connecting to any one of the input wires defines the same symmetric signature on
the other input wires. We denote this signature by 〈u,F〉. By symmetry, for F of arity at least 2,
〈v, 〈u,F〉〉 = 〈u, 〈v,F〉〉.

Suppose F is given in (2). Then 〈u,F〉 is the following

F ′BB
F ′BG F ′BR

F ′GG F ′GR F ′RR

where each entry F ′XY is obtained by a linear combination αFXY B + βFXY G + γFXY R; i.e., we start
at any entry on the first three rows in the triangular table for F, and then form a linear combination
with coefficients α, β, γ in a counterclock-wise order involving the three entries forming a small triangle.
E.g., start with entry FBBG, we get F ′BG = αFBBG + βFBGG + γFBGR.

Suppose F is a symmetric ternary signature, and u = (1, i, 0). Then we see immediately that
〈u,F〉 = 0 (the zero binary function) iff F has the following form

x
xi y

−x yi z
−xi −y zi w

(4)

Fixing some variables to R and restrict others to {B,G}, we get F1,2,3→{B,G} = [x, xi,−x,−xi],
F1=R;2,3→{B,G} = [y, yi,−y] and F1=R,2=R;3→{B,G} = [z, zi]. They all become the zero function, after
connecting with the unary function (1, i).

Suppose F has the property that when we fix the number of R’s, the restricted signatures on domain
{B,G} all satisfy a single linear recurrence, then, viewed in terms of those small triangles, it follows
that the {B,G}-restricted signatures of 〈u,F〉 also satisfy the same linear recurrence.

Let us suppose we are given a symmetric ternary signature F with FGGR = FGRR = 0, thus

FBBB
FBBG FBBR

FBGG FBGR FBRR
FGGG 0 0 FRRR

By connecting a unary function (1, t, 0) to F we will obtain a binary function whose triangular table
has the third row being [FBGG + tFGGG, FBGR, FBRR]. If we further connect both dangling edges of
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this binary function with (=G,R) =

0 0 0
0 1 0
0 0 1

, we get a symmetric binary signature whose restriction

on {G,R} is [FBGG + tFGGG, FBGR, FBRR], and zero elsewhere.
Now suppose further that the ternary function F satisfies FBGR = FGGR = FGRR = 0, i.e., it has

the form

g
y w

x 0 z
a 0 0 b

Let us consider the gadget as depicted in the following Figure to construct another binary function,
where both vertices of degree 3 are given the function F. We calculate its signature S as follows: It

Figure 1: A binary gadget.

will be the matrix product of 4 matrices. The first matrix is (=G,R) =

0 0 0
0 1 0
0 0 1

. The second is the

matrix form M of 〈u,F〉, where u = (α, β, γ), and we get

αg + βy + γw
αy + βx αw + γz

αx+ βa 0 αz + γb

Thus the matrix form is

M =

αg + βy + γw αy + βx αw + γz
αy + βx αx+ βa 0
αw + γz 0 αz + γb

 .
The third matrix will be M as well, and we note that M is symmetric, MT = M . The fourth will be
=G,R again, which is also symmetric. We can calculate the 2×2 matrix for the signature S∗→{G,R} as a

function on the restricted domain {G,R} to be

[
0 1 0
0 0 1

]
MMT

0 0
1 0
0 1

. Thus the signature S∗→{G,R}

can be computed as follows, picking only the second and third rows of M :[
αy + βx αx+ βa 0
αw + γz 0 αz + γb

]αy + βx αw + γz
αx+ βa 0

0 αz + γb

 .
Written in the symmetric signature notation on domain size 2 we have

[(αy + βx)2 + (αx+ βa)2, (αy + βx)(αw + γz), (αw + γz)2 + (αz + γb)2]. (5)
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2.5 Symmetry and Decomposition

We say a function is decomposable, if it has arity at least 2, and is a product of two functions (of arity
at least 1) applied to its two disjoint variable subsets respectively.

Fact 2. If a symmetric function F = A(x1)B(x2, · · · , xr), then there is a constant c, such that F =
c
∏r
i=1 A(xi).

Proof. If A ≡ 0 then it is trivial. We can assume A(a) 6= 0.
If r = 2, then by F = AB, A(a)B(x2) = A(x2)B(a). Hence, A(a)F = A(a)A(x1)B(x2) =

B(a)A(x1)A(x2), and we can set c = A(a)−1B(a).
If r > 2, restricting to x1 = a, we see that B is symmetric. From F = A(x1)B(x2, . . . , xr), we get

A(a)B(x2, . . . , xr) = A(x2)B(a, x3, . . . , xr). This means that B(x2, . . . , xr) is a product of A(x2) and
a function on (x3, . . . , xr). By induction hypothesis, the conclusion holds.

For the general case, the idea is similar. If a symmetric F is decomposed into A and B, we utilize
this to cut A and B into smaller pieces.

Fact 3. If a symmetric function F = A(x1 · · · , xr)B(xr+1, · · · , xr+s), that is, it is decomposable, then
for some constant c, and unary function C, F = c

∏r+s
i=1 C(xi).

Proof. For convenience we write (y1, · · · , ys) = (xr+1, · · · , xr+s). If r = 1 or s = 1, we are done by Fact
2. Let r > 1 and s > 1. If A ≡ 0 it is done. We can assume A(a1, · · · , ar) 6= 0.

By symmetry, we get A(a1, · · · , ar)B(y1, · · · , ys) = A(y1, a2, · · · , ar)B(a1, y2 · · · , ys). Thus B sat-
isfies the assumption of Fact 2. So B(y1, · · · , ys) has the form c′

∏s
j=1 C(yj). Then F has the form

C(y1)(c′A(x1 · · · , xr)
∏s
j=2 C(yj)). By Fact 2 again, we get the conclusion.

By Fact 3, if a symmetric function is decomposable, then it is a tensor power of a unary function.
It is in 〈U〉 − U , and degenerate.

We have seen symmetry can help to decompose a decomposable function into smaller parts. Next
fact shows that some “partial symmetry” property also helps.

Fact 4. Suppose F satisfies F(x1, x2, y1, y2) = F(x2, x1, y1, y2) = F(x1, x2, y2, y1). If F = A(x1)B(x2, y1, y2),
then there are binary functions C,D, such that F = C(x1, x2)D(y1, y2).

The proof is similar to Facts 2 and 3.

Fact 5. Suppose F satisfies F(x1, x2, y1, y2) = F(x2, x1, y1, y2) = F(x1, x2, y2, y1). If F is decomposed
into two binary functions, then there are binary functions A,B, either F = A(x1, x2)B(y1, y2) or
F = A(x1, y1)B(x2, y2).

The proof is straightforward. If F is decomposed into two binary functions of other forms, just
utilize the “partial symmetry” property to rotate it into one of the two forms.

In our hardness proofs, we will need to use some gadget with this “partial symmetry” property to
realize a function F of arity 4 that can not be decomposed into two binary functions (F 6∈ 〈T 〉). By
Fact 5, we only need to show that it cannot be decomposed into these two forms. We will call this the
partial symmetry argument .
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2.6 Known Dichotomy Theorems

We say a function set F is closed under tensor product, if for any A,B ∈ F , A⊗B ∈ F . Tensor closure
〈F〉 of a set F is the minimum set containing F , closed under tensor product. This closure clearly
exists, being the set of all functions obtained by performing a finite sequence of tensor products from
F .

We use U to denote the set of all unary functions. E is the set of all functions F such that F is
zero except on two inputs (a1, . . . , an) and (ā1, . . . , ān) = (1 − a1, . . . , 1 − an). In other words, F ∈ E
iff its support is contained in a pair of complementary points. We think of E as a generalized form
of Equality function. Equivalently, these are obtained by connecting some subset of variables of
Equality with binary Disequality 6=2. We useM to denote the set of all functions F such that F is
zero except on n+ 1 inputs whose Hamming weight is at most 1, where n is the arity of F . The name
M is given for matching. Finally T is the set of all functions of arity at most 2. Note that U is a subset
of E , M and T .

Suppose F is a function set and M is a 2× 2 matrix. We use MF to denote the set {M⊗rFF |F ∈

F , rF = arity(F )}, the set consisting of all functions in F transformed by a matrix M . Z1 =

(
1 1
i −i

)
and Z2 =

(
1 1
−i i

)
. Note that Z1E = Z2E .

Theorem 2.4. [16] Let F be any set of complex valued functions in Boolean variables. The problem
Holant∗(F) is polynomial time computable, if

1. F ⊆ 〈T 〉, or

2. for some orthogonal matrix H, F ⊆ 〈HE〉, or

3. F ⊆ 〈Z1E〉, or

4. for some Z ∈ {Z1, Z2}, F ⊆ 〈ZM〉.

In all other cases, Holant∗(F) is #P-hard.

This theorem is a generalization to not necessarily symmetric function sets from the following the-
orem which only applies to symmetric function sets. It is also very conceptual; however the following
theorem is very easy to apply.

Theorem 2.5. [14] Let F be any set of non-degenerate, symmetric, complex-valued signatures in
Boolean variables. If F is of one of the following types, then Holant∗(F) is in P, otherwise it is
#P-hard.

1. Any signature in F is of arity at most 2;

2. There exist two constants a and b (b 6= ±2ia, depending only on F), such that for all signatures
[f0, f1, . . . , fn] in F one of the two conditions is satisfied: (1) for every k = 0, 1, . . . , n−2, we have
afk + bfk+1 − afk+2 = 0; (2) n = 2 and the signature [f0, f1, f2] is of the form [2aλ, bλ,−2aλ].

3. For every signature [f0, f1, . . . , fn] ∈ F one of the two conditions is satisfied: (1) For every
k = 0, 1, . . . , n − 2, we have fk + fk+2 = 0; (2) n = 2 and the signature [f0, f1, f2] is of the form
[λ, 0, λ].

4. There exists α ∈ {2i,−2i}, such that for any signature f ∈ F of arity n, for 0 ≤ k ≤ n − 2, we
have fk+2 = αfk+1 + fk.
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In Holant∗ problems, unary functions are freely available. There is no difference between Holant∗(F−
〈U〉) and Holant∗(F ∪ 〈U〉). Theorem 2.5 is stated for F − 〈U〉.

We give the correspondence between Theorem 2.4 and 2.5. Consider the symmetric subset of the
first tractable class 〈T 〉 in Theorem 2.4. If a symmetric function in 〈T 〉 has arity larger than 2, it is
decomposable and degenerate.

The function sets in Theorem 2.5 in forms 2 to 4 can be described by,

Pa,b = {[f0, f1, · · · , fn]|n ∈ N, axk + bxk+1 − axk+2 = 0} ∪ {λ[2a, b,−2a] | λ ∈ C}, (6)

P = {[f0, f1, · · · , fn]|n ∈ N, fk + fk+2 = 0} ∪ {λ[1, 0, 1] | λ ∈ C}.
Form 2 and 4 are described by Pa,b with (a, b) not both zero, with Form 4 corresponding to P1,±2i.
Form 3 is described by P. Note that for α = ±2i, a binary f with f2 = αf1 + f0 is degenerate. In Pa,b,
we always require (a, b) 6= (0, 0), and (a, b) is equivalent to any non-zero multiple of it. When we say
all Pa,b, we let (a, b) range over all C2 − {(0, 0)} (equivalently the projective line P1

C).
By Fact 3 a non-degenerate symmetric function must not be decomposable. It is in a set of tractable

case j in Theorem 2.4, iff it is in the corresponding set of tractable case j in Theorem 2.5. For

example, suppose H =

(
u v
s t

)
is an orthogonal matrix. HE corresponds to the set Pa,b, where the

corresponding relation is that 3 vectors (u2, us, s2), (v2, vt, t2), (a, b,−a) form an orthogonal independent

vector set. One Pa,b corresponds to two (HE)S , given by H and Hτ , where τ =

(
0 1
1 0

)
exchanges

the two columns of H.

2.7 Polynomial Argument

Fact 6. The product of two non-zero polynomials is a non-zero polynomial.

It is a simple fact that a polynomial ring (in any number of indeterminants and over any field) is
an integral domain, and thus has no zero divisor. The way we will use this fact is as follows. When
we design some gadget, usually there are some unary functions (α, β, γ) in this gadget, which work as
parameters in order for the signature realized by the gadget to satisfy some conditions (for example,
it should have full rank). Usually a condition can be described by a polynomial P (α, β, γ) in these
parameters, such that when P (α0, β0, γ0) 6= 0, the signature realized by the gadget using the unary
function (α0, β0, γ0) satisfies this condition.

By Fact 6, when there are several such conditions to satisfy, we only need to show each polynomial
Pi is not zero, usually by finding some point (αi, βi, γi) for each Pi. This guarantees the existence of
some common parameter value (α∗, β∗, γ∗) such that

∏
i Pi(α

∗, β∗, γ∗) 6= 0. The value (α∗, β∗, γ∗) is
implicit and not important; it has no direct connection to the choice of each (αi, βi, γi). This method
is already used in [16]. In proof, we quote it as the polynomial argument .

3 Statement of the Dichotomy Theorem

Theorem 3.1. Let F be a symmetric ternary function over domain {B,G,R}. Then Holant∗(F) is
#P-hard unless F is of one of the following three forms, in which case the problem is in polynomial
time.

1. There exist three vectors α, β, and γ of dimension 3 such that they are mutually orthogonal to
each other, i.e. 〈α, β〉 = 0, 〈α, γ〉 = 0 and 〈β, γ〉 = 0, and

F = α⊗3 + β⊗3 + γ⊗3;
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2. There exist three vectors α, β1, and β2 of dimension 3 such that 〈α, β1〉 = 0, 〈α, β2〉 = 0,
〈β1, β1〉 = 0, 〈β2, β2〉 = 0 and

F = α⊗3 + β1
⊗3 + β2

⊗3;

3. There exist two vectors β and γ of dimension 3 and a function Fβ of arity three, such that β 6= 0,
〈β, β〉 = 0, 〈Fβ,β〉 = 0 and

F = Fβ + β⊗2 ⊗ γ + β ⊗ γ ⊗ β + γ ⊗ β⊗2.

Remarks: 1. In the forms above, the vectors α, β, γ, β1, β2 can be the zero vector (except β in form
3.)
2. In form 3, F is the sum of Fβ with (1/2 of) the symmetrization of β⊗2⊗γ. The constant factor 1/2
doesn’t matter, and can be absorbed in γ.
3. Let T be an orthogonal 3× 3 matrix, then F is of one of the three forms above iff T⊗3F is.

3.1 Canonical Forms for Tractable Cases

Theorem 3.1 gives a complete list of tractable cases for Holant∗(F). Before we give the proof of tractabil-
ity we need to discuss these tractable forms in some detail, and give various canonical forms of these
tractable cases, under an orthogonal transformation T . We note that for an orthogonal T , the arity 2
Equality gate (=2) (on any domain size) is invariant, the unary signatures are transformed to unary
signatures, and the formal description of the three forms of F is also invariant, i.e., F is of one of the
three forms iff T⊗3F is.

In terms of the canonical forms, Theorem 3.1 can be restated as follows. We will write TF for T⊗3F
for simplicity.

Theorem 3.2. Let F be a symmetric ternary function over domain {B,G,R}. Then Holant∗(F) is
#P-hard unless under an orthogonal transformation T , the function TF is of one of the following forms,
in which case the problem is in P.

1. For some a, b, c ∈ C,
TF = ae1

⊗3 + be2
⊗3 + ce3

⊗3.

2. For some c 6= 0 and λ ∈ C,

cTF = β0
⊗3 + β0

⊗3
+ λe3

⊗3,

where β0 = 1√
2
(1, i, 0)T, and β0 is its conjugate 1√

2
(1,−i, 0)T.

3. For ε ∈ {0, 1},
TF = F0 + εSym(β0 ⊗ β0 ⊗ β0),

where F0 satisfies the annihilation condition 〈F0,β0〉 = 0.

We start by defining the complex version of rotations. For any z ∈ C, let c = cos z = eiz+e−iz

2 and

s = sin z = eiz−e−iz
2i , and T2 =

[
c s
−s c

]
. Then c2+s2 = 1 and T2 is a 2×2 orthogonal matrix. If

[
a
b

]
∈ C2

is not isotropic, then T2

[
a
b

]
=

[
ca+ sb
−sa+ cb

]
is also not isotropic (ca+ sb)2 + (−sa+ cb)2 = a2 + b2 6= 0.

Let η = cot z = i e
iz+e−iz

eiz−e−iz = i e
2iz+1
e2iz−1

, we want a suitable z ∈ C, such that −sa + cb = 0. The Möbius
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map ξ 7→ i ξ+1
ξ−1 is a one-to-one onto map on the extended Riemann complex plane C∪ {∞}. As z 7→ e2z

maps C onto C − {0}, the mapping z 7→ η = cot z from C has image C ∪ {∞} − {i,−i}. This proves

that we can find an orthogonal T2 such that T2

[
a
b

]
=

[
a′

0

]
, where a′2 = a2 + b2, for any non-isotropic[

a
b

]
.

Suppose v = (a1, a2, . . . , ad)
T ∈ Cd is non-isotropic, d ≥ 2. Suppose d′ is the number of non-zero

entries ai. Then d′ ≥ 1. By a permutation matrix (which is orthogonal) we may assume they are
a1, . . . , ad′ . Suppose d′ ≥ 2. There exist 1 ≤ i < j ≤ d′, such that (ai, aj)

T is non-isotropic. Otherwise,
summing a2

i + a2
j over all distinct pairs (i, j) among the non-zero entries 1 ≤ i < j ≤ d′ we get

(d′ − 1)
∑d′

i=1 a
2
i = 0 and v is isotropic. Hence, we can use a permutation matrix (which is orthogonal)

to map v such that a2
1 + a2

2 6= 0. By a rotation described above, we may use an orthogonal matrix of
the form diag(T2, Id−2) to transform v, such that it has one fewer non-zero entries but with the same
value 〈v, v〉 =

∑d
i=1 a

2
i . By induction, we have proved

Lemma 3.3. For any non-isotropic v = (a1, a2, . . . , ad)
T ∈ Cd, d ≥ 1, there exists an orthogonal matrix

T such that Tv = (±
√
〈v, v〉, 0, . . . , 0)T. (Both ± are feasible.)

Now suppose v ∈ Cd is a non-zero isotropic vector. Certainly d ≥ 2. We want to show that there is
an orthogonal matrix T transforming v to β0 = 1√

2
(1, i, 0, . . . , 0)T. First suppose d = 2. Then v = (a, b)T

and b = ±ai, and v = a

[
1
±i

]
. As v 6= 0, we have a 6= 0. We may use

[
1 0
0 −1

]
, to get v = a

[
1
i

]
. Use a

complex rotation T2 defined above we get T2v = a

[
c+ si
−s+ ci

]
= a(c+ si)

[
1
i

]
. As c+ si = eiz can be an

arbitrary nonzero complex number, we may choose z such that eiz = 1√
2a

. This gives us T2v = 1√
2

[
1
i

]
.

It is clear that we could also go to any non-zero multiple of

[
1
i

]
, as well as

[
1
−i

]
.

Now suppose d > 2. Let v = (a1, a2, . . . , ad)
T 6= 0 be isotropic. If a1 = 0, then (a2, . . . , ad)

T 6= 0
is isotropic. By induction there exists an order d − 1 orthogonal matrix T ′ such that diag(1, T ′)v =

1√
2
(0, 1, i, 0, . . . , 0)T. Then we complete the induction by a permutation matrix, obtaining an order d

orthogonal matrix T such that Tv = β0. Next we assume a1 6= 0. Then v′ = (a2, . . . , ad)
T is not

isotropic and non-zero. By Lemma 3.3, there exists an order d − 1 orthogonal matrix T ′ such that
diag(1, T ′)v = (a1,

√
〈v′, v′〉, 0, . . . , 0)T. Since v is isotropic, we have

√
〈v′, v′〉 = ±a1i. So we have

diag(1, T ′)v = a1(1,±i, 0, . . . , 0)T. And by the above discussion we get an orthogonal T such that
Tv = β0. We have proved

Lemma 3.4. For any non-zero isotropic v = (a1, a2, . . . , ad)
T ∈ Cd, d ≥ 2, there exists an orthogonal

matrix T such that Tv = β0 = 1√
2
(1, i, 0, . . . , 0)T. (Both (1, i, 0, . . . , 0)T and (1,−i, 0, . . . , 0)T, and all

non-zero multiples of them are feasible.)

Now set d = 3. Our next task is to describe the set of all order 3 orthogonal matrices T which fixes
β0.

Let the first two columns of T be denoted by u = (a1, a2, a3)T and v = (b1, b2, b3)T. We can derive
a1 = 1 − a2i, b1 = a2, b2 = 1 + a2i, and a3 = −b3i. It follows that the first two columns are of the

form

1− ix x
x 1 + ix
iy −y

. Moreover, the columns are unit vectors, and so x = iy2/2. If we form the
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cross-product of these two vectors, we obtain (−iy, y, 1)T. This and its negation (iy,−y,−1)T can be
the third column vector of T . Thus the orthogonal matrix T has the form

T =

1 + y2/2 iy2/2 iy
iy2/2 1− y2/2 −y
iy −y −1

 , (7)

or changing the last column to its negative. This is a complete description of the set of 3×3 orthogonal
matrices T such that Tβ0 = β0.

Our next task is to determine what canonical form a vector v can take, under the mapping of such
an orthogonal matrix T which fixes β0. First we prove a simple lemma.

Lemma 3.5. If β1, β2 ∈ C3 are isotropic, and linearly independent. Then 〈β1, β2〉 6= 0, and there exists
an orthogonal matrix T such that Tβ1 = β0 and Tβ2 = 〈β1, β2〉β0. Let λ = 1/

√
〈β1, β2〉, there exists

an orthogonal matrix T such that λTβ1 = β0 and λTβ2 = β0.

Proof. By Lemma 3.4, we have an orthogonal T1, such that T1β1 = β0. Let γ = T1β2. Write γ =

ab
c

.

If 〈β1, β2〉 = 0, then, since T1 preserves inner product, a+ bi = 0 and c2 = −(a2 + b2) = 0. Hence, γ is
linearly dependent on β0, and thus β2 is linearly dependent on β1, a contradiction. Hence 〈β1, β2〉 6= 0.

Now we may as well assume the given vectors are β0 and γ. Consider those orthogonal matrices
T in (7) fixing β0. Let u = γ/〈γ,β0〉. Then 〈u,β0〉 = 1. We want a T such that Tβ0 = u. Write

v = 1√
2
u =

ab
c

, then 〈v, (1, i, 0)T〉 = 〈u,β0〉 = 1, and it follows that a+ bi = 1 and so −c2 = a2 + b2 =

1−2bi. Hence v = (1−c2
2 , 1+c2

2i , c)
T. On the other hand, from (7), T (1,−i, 0)T = (1+y2, (1−y2)/i, 2yi)T.

Then by setting y = c/i we get T (1,−i, 0)T = 2v. Hence Tβ0 = 1√
2
T (1,−i, 0)T =

√
2v = u.

The last conclusion of Lemma 3.5 follows from what has been proved applied to the pair λβ1 and
λβ2.

Lemma 3.6. Suppose β ∈ C3 is isotropic, γ ∈ C3 is not isotropic, {β, γ} are linearly independent, and
〈β, γ〉 = 0. Then there exists an orthogonal matrix T such that Tβ = β0 and Tγ =

√
〈γ, γ〉e3. For

λ = 1/
√
〈γ, γ〉, there exists an orthogonal matrix T such that λTβ = β0 and λTγ = e3.

Proof. By Lemma 3.4, we may assume β = β0. Write λγ =

ab
c

. Then a+bi = 0 and c2 = a2+b2+c2 =

1. Depending on whether c = ±1, we use one of the two forms of T in (7) fixing β0. If c = −1, we set
y = −b in (7). If c = +1, we set y = −b in the form of T with the negated third column from (7).

The last conclusion follows from what has been proved applied to the pair λβ and λγ.

We are now ready to address in what canonical form each of the three cases in Theorem 3.1 can
take.

We consider each case in turn:
• There exist three vectors α, β, and γ of dimension 3 such that they are mutually orthogonal to each
other, i.e. 〈α, β〉 = 0, 〈α, γ〉 = 0, 〈β, γ〉 = 0, and

F = α⊗3 + β⊗3 + γ⊗3.
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Let r = rank{α, β, γ}. If r = 0, then F = 0 is the identically zero function.
If r = 1, and suppose α 6= 0 and β and γ are linear multiples of α. Then F = α′⊗3 for some α′.

Depending on whether α′ is isotropic, under an orthogonal transformation, TF takes the form

TF = β0
⊗3, or λe3

⊗3. (8)

Let r = 2 and suppose α and β are linearly independent. We show that without loss of generality
we may assume γ = 0. Let γ = aα + bβ. Then 〈γ,γ〉 = 0. If either a = 0 or b = 0, we can combine
the term γ⊗3 with either β⊗3 or α⊗3 respectively, and the term γ⊗3 disappears. If both a, b 6= 0. By
〈α, β〉 = 0, 〈α, γ〉 = 0, 〈β, γ〉 = 0, we get a〈α, α〉 = b〈β, β〉 = 0. Hence 〈α, α〉 = 〈β, β〉 = 0.
This contradicts Lemma 3.5, by linear independence. Therefore in case r = 2 we only need to consider
F = α⊗3 + β⊗3, and α and β are linearly independent.

By Lemma 3.5 α and β can not be both isotropic. Suppose one of them is isotropic. By Lemma 3.6,
F takes the form

β0
⊗3 + λe3

⊗3 (9)

under an orthogonal transformation.
If r = 2 and both α and β are not isotropic, then there exists an orthogonal matrix T such that

Tα = λe1 and Tβ = µe2, thus F takes the form

λe1
⊗3 + µe2

⊗3 (10)

under an orthogonal transformation.
Now suppose r = 3. We claim none of α, β, and γ can be isotropic. Otherwise, say α is isotropic,

then the linearly independent set {α, β, γ} spans the conjugate vector α. Then it follows that 〈α,α〉 =
0 and α = 0, a contradiction. Hence, under an orthogonal transformation F takes the form

λe1
⊗3 + µe2

⊗3 + νe3
⊗3 (11)

• There exist three vectors α, β1, and β2 of dimension 3 such that 〈α, β1〉 = 0, 〈α, β2〉 = 0, 〈β1, β1〉 =
0, 〈β2, β2〉 = 0 and

F = α⊗3 + β1
⊗3 + β2

⊗3.

Let r = rank{β1,β2}. If r = 0, then F = α⊗3. If r = 1, we can combine the terms β1
⊗3 and β2

⊗3,
and F takes the form α⊗3 +β′⊗3, with 〈α,β′〉 = 0. These cases have already been classified in the first
form. F takes the forms in (8), (9) or (10).

Suppose r = 2. By Lemma 3.5, for a suitable non-zero constant λ = 1/
√
〈β1,β2〉, there exists

an orthogonal matrix T such that λTβ1 = β0 and λTβ2 = β0. Under this transformation λT , α is
orthogonal to e1 and e2 which are in the linear span of β0 and β0. Hence α takes the form ce3.

We have proved that in this case, for some non-zero constant λ and orthogonal matrix T ,

λTF = β0
⊗3 + β0

⊗3
+ ce3

⊗3. (12)

• There exist two vectors β and γ of dimension 3 and a (symmetric) function Fβ of arity three, such
that β 6= 0, 〈β, β〉 = 0, 〈Fβ,β〉 = 0 and

F = Fβ + β⊗2 ⊗ γ + β ⊗ γ ⊗ β + γ ⊗ β⊗2.

First we note that β⊗3 also satisfies the annihilation condition, 〈Fβ,β〉 = 0, and can be combined
to Fβ. Hence we can replace γ by any γ + λβ.

There are the following cases, depending on whether 〈β,γ〉 = 0 and whether γ is isotropic.
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Suppose 〈β,γ〉 = 0. Then we can eliminate the terms β⊗2⊗γ +β⊗γ ⊗β+γ ⊗β⊗2 by combining
it to Fβ. We can transform β to β0. In this case, F takes the form

TF = Fβ0 (13)

where 〈Fβ0 ,β0〉 = 0.
Suppose γ is isotropic and 〈β,γ〉 6= 0. Then β and γ are linearly independent. By Lemma 3.5 there

exists an orthogonal matrix T such that

TF = Fβ0 + λ(β0
⊗2 ⊗ β0 + β0 ⊗ β0 ⊗ β0 + β0 ⊗ β0

⊗2),

where λ = 〈β,γ〉 6= 0, and 〈Fβ0 ,β0〉 = 0. Let T2 =

[
c s
−s c

]
, where c = cos z and s = sin z. Then T2

maps

[
1
i

]
to (c+ si)

[
1
i

]
and maps

[
1
−i

]
to (c− si)

[
1
−i

]
. To each term in

β0
⊗2 ⊗ β0 + β0 ⊗ β0 ⊗ β0 + β0 ⊗ β0

⊗2,

diag(T2, 1)⊗3 contributes a factor (c + si)2(c − si) = c + si = ez, which can be an arbitrarily chosen
non-zero complex number. In particular we can set it to 1/λ. Also note that diag(T2, 1)⊗3 transforms
Fβ0 to another such function satisfying the annihilation condition 〈Fβ0 ,β0〉 = 0. Thus we obtain the
form of F under an orthogonal transformation

Fβ0 + β0
⊗2 ⊗ β0 + β0 ⊗ β0 ⊗ β0 + β0 ⊗ β0

⊗2. (14)

Suppose γ is not isotropic and 〈β,γ〉 6= 0. Then we replace γ by γ− cβ, where c = 〈γ,γ〉/(2〈β,γ〉).
Then γ − cβ is isotropic and we have reduced to the previous case.

Summarizing, we note that (8) and (9) are special cases of (13). (10) is a special case of (11). Then
it is clear that Theorem 3.2 is equivalent to Theorem 3.1.

4 Tractability

Suppose F = [3; 1, 1; 5, 1, 3; 7, 5, 1, 1]. Is Holant∗(F) computable in polynomial time? It turns out
that there are three pairwise orthogonal vectors (1,−1, 1)T, (1, 0,−1)T and (1, 2, 1)T such that F =[

1
−1
1

]⊗3

+

[
1
0
−1

]⊗3

+

[
1
2
1

]⊗3

. By Theorem 3.1, Holant∗(F) is tractable. If we take T = 1√
6

[ √
2

√
3 1

−
√

2 0 2√
2 −

√
3 1

]
,

then T is orthogonal, and F = T⊗3F′, where F′ =
√

27e1
⊗3+
√

8e2
⊗3+
√

216e3
⊗3. Hence we can perform

an orthogonal transformation by T , then the problem Holant∗(F) is transformed to Holant∗(F′). For
F′ the polynomial time algorithm on any input graph Γ is simple: In each connected component of Γ,
any color from {B,G,R} at a vertex v uniquely determines the same color at all its neighbors, and
the vertex contributes a factor

√
27 or

√
8 or

√
216 respectively. These values are multiplied over the

connected component. Thus, if G has connected components C1, C2, . . . , Ck, and Cj has nj vertices,
then the Holant values is

∏
1≤j≤k(

√
27
nj

+
√

8
nj

+
√

216
nj

).
We believe for countless such questions, not only the problem is very natural, but also the answer

is not obvious without the underlying theory. Note that even though the function F above takes
only positive values, the vectors can have negative entries. Armed with the dichotomy theorem, any
interested reader can find many more examples.

In this section we prove that Holant∗(F) is computable in polynomial time, for any symmetric
ternary function F given in the three forms of Theorem 3.1, or equivalently Theorem 3.2.
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For any 3 × 3 orthogonal matrix T , it keeps the binary equality (=2) over {B,G,R} unchanged,
namely T TI3T = I3 in matrix notation. Hence Holant∗(F) is tractable iff Holant∗(T⊗3F) is tractable.

The above argument proves that Holant∗(F) is computable in polynomial time if F has form 1.

ae1
⊗3 + be2

⊗3 + ce3
⊗3.

In form 2., let F be

β0
⊗3 + β0

⊗3
+ λe3

⊗3.

Under the matrix M =
[
Z−1 0

0 1

]
, where Z = 1√

2

[
1 1
i −i

]
, Z−1 = 1√

2

[
1 −i
1 i

]
, the function F is trans-

formed to
M⊗3F = e1

⊗3 + e2
⊗3 + λe3

⊗3.

Meanwhile the covariant transformation on the binary equality is (=2)(M−1)⊗2, which has the matrix

form (M−1)TIM−1 =
[
0 1 0
1 0 0
0 0 1

]
. This can be viewed as a Disequality on {B,G} and Equality on

{R}, with a separated domain. Now it is clear that Holant∗(F) is computable in polynomial time by
a connectivity argument. Within each connected component, any assignment of R will be uniquely
propagated as R; any assignment of B or G will be exchanged to G or B along every edge.

The proof of tractability for form 3. is more involved. We refer to the more generic expression of
form 3 in Theorem 3.1. First, under an orthogonal transformation we may assume β =

[
1 i 0

]T
. The

function F is expressed as a sum S + β⊗2 ⊗ γ + β⊗ γ ⊗ β+ γ ⊗ β⊗2, where 〈S,β〉 = 0. We denote by
T0 = S, and Tj for the remaining three terms respectively, 1 ≤ j ≤ 3. The value Holant∗(F) is the sum
over all {B,G,R} edge assignments,

∑
σ

∏
v fv(σ |E(v)), where E(v) are the edges incident to v, and all

fv are the function F, or some unary function.
Without loss of generality, we can assume the input graph is connected. In the first step, we handle

all vertices of degree one. Such a vertex v is connected to another vertex p of degree d. We can calculate
a function of arity d−1 by combining the unary function at v with the function at p. This is a symmetric
function and we can replace the vertex p together with v by a vertex q of degree d − 1 and given this
function. If d = 1, since the graph is connected, there is no vertex left and we have computed the value
of the problem. If d = 2, the new function at q is a unary function. If d = 3, then fp is F. We may
repeat this process until all vertices are of degree 2 or 3 and given either F or 〈u,F〉 =

∑3
j=0 T

′
j for

some unary u, where T ′j = 〈u, Tj〉.
For every vertex v of degree 2 or 3, we can express the function fv as

∑3
j=0 T

′
j or

∑3
j=0 Tj with

the incident edges assigned as (ordered) input variables to each T ′j or Tj . (Note that T ′j and Tj are in
general not symmetric, for 1 ≤ j ≤ 3.) Then Holant∗(F) =

∑
τ

∑
σ

∏
v fv,τ(v)(σ |E(v)), where the first

summation is over all assignments τ from all vertices v ∈ V to some j = τ(v) ∈ {0, 1, 2, 3} which assigns
a copy of T ′j or Tj as fv,τ(v) at v.

We are given that 〈β, T0〉 = 0, then 〈β, T ′0〉 = 0 as well. Meanwhile T ′1 = c1β
⊗2, T ′2 = c2β ⊗ γ,

and T ′3 = c3γ ⊗ β, where the constants c1 = 〈u,γ〉, and c2 = c3 = 〈u,β〉. Note that T ′j and Tj , for
1 ≤ j ≤ 3, are all degenerate functions, and can be decomposed as unary functions. We also note that
they all have at least as many copies of β as γ.

Fix any τ , let S (resp. T ) denote the set of vertices which are assigned the function T0 or T ′0 (resp.
Tj or T ′j , with 1 ≤ j ≤ 3) by τ . Suppose neither S nor T is empty. Then by connectedness, there are
edges between S and T . All functions in T are decomposed into unary functions. There are at least as
many copies of β as γ. Some of these functions may be paired up by edges inside T . If any two copies
of β are paired up, the product is zero. If every copy of β is paired up with some γ within T , then
at least one copy of β is connected to some vertex in S. But every function in S is annihilated by β.
Hence the total contribution for such τ to Holant∗(F) is zero when S and T are both non-empty.
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Now consider
∑

σ

∏
v fv,τ(v)(σ |E(v)) for those τ such that either S or T is empty. Suppose S = ∅.

Again we decompose every function in T into unary functions. Then in order to be non-zero, the number
of β and γ must be exactly equal. Hence if there is any vertex of degree 3, the contribution is 0. We
only need to consider a connected graph such that all vertices have degree 2, which is a cycle. Because
each β must be paired up exactly with γ, We only need to calculate the sum

∑
σ

∏
v fv,τ(v)(σ |E(v)) for

two τ , which is tractable, since the graph is just a cycle.
Finally suppose T = ∅. Then there is only one assignment τ which assigns T0 and T ′0 to every

vertex of degree 3 and 2 respectively. Consider all edge assignments σ. Suppose E = {e1, e2, . . . , em}
is the edge set, and e1 = (p, q). All assignments σ are divided into 3 sets ΣB, ΣG or ΣR, according to
the value σ(e1) = B, G or R, respectively. There is a natural one-to-one mapping φ from ΣB to ΣG,
such that (φ(σ))(ej) = σ(ej) for j = 2, . . . ,m. Let θ(σ) denote

∏
v fv,τ(v)(σ |E(v)), where E(v) are the

edges incident to v. Notice that at all v 6= p, q, the value of fv,τ(v) is the same for σ and φ(σ). But at
v = p, q, fv,τ(v)(φ(σ) |E(v)) = ifv,τ(v)(σ |E(v)). This can be directly verified. Hence θ(φ(σ)) = −θ(σ).
Therefore we only need to calculate θ(σ) for σ in ΣR. We can use σ(e2) to divide ΣR into 3 sets, to
repeat this process. At last, we only need to calculate θ(σ) for the single σ mapping every edge to R.
This concludes the proof of tractability.

5 #P-hardness

The starting point of our hardness proof is the dichotomy for Holant∗(F) problems on the Boolean
domain. A natural hope is that Holant∗(F) is #P-hard if the Boolean domain Holant∗ problem for the
function F∗→{G,R}, which is the restriction of the function F to the two-element subdomain {G,R},
is already #P-hard. But this statement is false when stated in such full generality, as we can easily
construct an F such that Holant∗(F) is tractable while Holant∗(F∗→{G,R}) is #P-hard (e.g., the first
example in Section 4). However, this would be true if we have another special binary function (=G,R) =[
0 0 0
0 1 0
0 0 1

]
. The reduction is straightforward: Given an instance G of Holant∗(F∗→{G,R}), we construct an

instance of Holant∗(F) by inserting a vertex into each edge of G and assigning the binary function =G,R

to these vertices. The binary function =G,R in each edge acts as an equality function in the Boolean
subdomain {G,R} while any assignment of B anywhere produces a zero.

Therefore, our first main step (from Section 5.1 to 5.2) is to construct the function =G,R. If we

can construct a non-degenerate binary function with the form
[
0 0 0
0 ∗ ∗
0 ∗ ∗

]
, we can use interpolation to

interpolate =G,R by a chain of copies of the above binary function as showed in Section 5.2. The
remaining task is to realize such a binary function.

However we find that it is difficult or impossible to realize it directly by gadget construction in most
cases. Here we use the idea of holographic reduction. As shown in the tractability part, holographic
reduction plays an essential role there in developing polynomial algorithms. It also plays an important
role in the hardness proof part as a method to normalize functions. We can always apply an orthogonal
holographic transformation to a signature function without changing its complexity as shown in Theorem
2.2. If we can realize a binary function with rank 2, which can be constructed directly with the help
of unary functions (see Lemma 5.2), then we can hope to use a holographic reduction to transform the
binary function to the above form. This fits well with the idea of holographic reduction. A binary
function with rank 2 shows that there is a hidden structure with a domain of size 2. The holographic
reduction mixes the domain elements in a suitable way so that this hidden Boolean subdomain becomes
explicit.

There are certain rank 2 matrices such as
[
0 0 1
0 0 i
1 i 0

]
, for which an orthogonal holographic transfor-

mation does not exist. The reason is that the eigenvector of this matrix corresponding to the eigenvalue
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0 is isotropic. We shall handle such cases in Lemma 5.3. This is the first place where isotropic vectors
present some obstacle to our proof. There are several places throughout the entire proof, where we
have to deal with isotropic vectors separately. There are two reasons: (1) For an isotropic vector, we
cannot normalize it to a unit vector by an orthogonal transformation; (2) There are indeed additional
tractable functions which are related to isotropic vectors. Consequently we have to circumvent this
obstacle presented by the isotropic eigenvectors.

Additionally, there are some exceptional cases where the above process cannot go through. For these
cases, we either prove the hardness result directly or show that it belongs to one of the three forms in
Theorem 3.1. In the second main step (from Section 5.3 to 5.6), we assume that we are already given
=G,R and we further prove that Holant∗(F) is #P-hard if F is not of one of the three forms in Theorem
3.1.

Given =G,R, Holant∗(F) is #P-hard if Holant∗(F∗→{G,R}) is #P-hard, which we use our previous
dichotomy for Boolean Holant∗ to determine. Hence we may assume that F∗→{G,R} takes a tractable
form. At this point, we employ holographic reduction to normalize our function further. But we should
be careful here since we do not want the transformation to destroy =G,R. We introduce the idea of a
domain separated holographic reduction. A basis for a domain separated holographic transformation is

of the form
[∗ 0 0
0 ∗ ∗
0 ∗ ∗

]
, which mixes up the subdomain {G,R} while keeping B separate. In particular,

such orthogonal holographic transformations preserve =G,R.
For example, when F∗→{G,R} is a non-degenerate Fibonacci signature with two distinct roots (Case

1 in Section 5.3), we can apply an orthogonal holographic transformation of this form so that F is
transformed to

FBBB
FBBG FBBR

FBGG FBGR FBRR
a 0 0 b

According to the Holant∗ dichotomy on domain size 2, when putting this F∗→{G,R} = [a, 0, 0, b] and
a binary function together, the problem is #P-hard unless the binary function is of the form [∗, 0, ∗],
[0, ∗, 0], or degenerate. We shall prove that we can always construct a binary function which is not of
these forms unless the function F has an uncanny regularity such that it is one of the forms in Theorem
3.1.

One idea greatly simplifies our argument in this part. By gadget construction, we can realize some
binary functions with some parameters, which we can set freely to any complex number. Then we
want to prove that we can set these parameters suitably so that the signature escapes from all the
known tractable forms. This is quite difficult since different values may make the signature belong to
different tractable forms. A nice observation here is that the condition that a binary signature belongs
a particular form say [∗, 0, ∗] can be described by the zero set of a polynomial. Thus these values form
an algebraic set. To escape from a finite union of such sets, it is sufficient to prove that for every form,
we can set these parameters to escape from this particular form. We call this the polynomial argument.

The spirit of the proof for all the other tractable non-degenerate ternary forms for F∗→{G,R} is
similar although the details are very different (there are three cases in Section 5.3). In particular,

we need to employ a non-orthogonal holographic transformation
[

1 0
0 Z

]
where Z = 1√

2

[
1 1
i −i

]
. This

transformation does not preserve =G,R, rather it transforms =G,R to ( 6=G,R) =
[
0 0 0
0 0 1
0 1 0

]
.

When the ternary signature F∗→{G,R} is degenerate, the proof structure is quite different (from
Section 5.4 to 5.6). The reason is that any set of binary functions are tractable in the Holant framework.
So we have to construct a non-degenerate signature with arity at least three. It is quite difficult to
construct a totally symmetric function with high arity except with some simple gadgets such as a star
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or a triangle. These gadgets work for some signatures but fail for others. Due to this difficulty, we
employ unsymmetric gadgets too. Fortunately, we also have a dichotomy for unsymmetric Holant∗

problems in the Boolean domain [16]. Since the dichotomy for this more general Boolean Holant∗ is
more complicated, we use a different proof strategy here. We only show the existence of a non-degenerate
signature with arity at least three, but do not analyze all possible forms case-by-case. We instead prove
that we can always construct some binary signature in addition to the higher arity one, which makes
the problem hard no matter what the high arity signature is, provided that F is not one of the tractable
cases.

For a particular family of signatures which can be normalized to the following form:

0
ix x

0 0 0
1 i −1 −i.

where two isotropic vectors (1, i) and (1,−i) interact in an unfavorable way, we have to use a different
argument (See the last case in Section 5.5). Due to its special structure, we have to use a different
hard problem to reduce from, namely the problem of counting perfect matchings on 3-regular graphs.
This problem is #P-hard. (This problem is tractable over planar graphs by the FKT algorithm, the
underlying algorithm for matchgate based holographic algorithms [43, 42]. This also indicates that the
holographic reduction theory developed here is distinct from that theory.) Counting perfect matchings
on 3-regular graphs as a #P-hard problem is also used in Section 5.6 when F∗→{G,R} = [0, 0, 0, 0] is
identically 0.

5.1 Realize a Rank 2 Binary Function

Theorem 5.1. Let F be a symmetric ternary function over domain {B,G,R}. Then one of the following
is true:

1. F is of one of the forms in Theorem 3.1, and Holant∗(F) is in P;

2. Holant∗(F) is #P-hard;

3. There exists an orthogonal 3× 3 matrix T such that Holant∗(F) is polynomial time equivalent to
Holant∗({T⊗3F,=G,R}).

The proof of Theorem 5.1 is completed in Sections 5.1 and 5.2. In Section 5.1 we prove that either
one of the first two alternatives in Theorem 5.1 holds, or we can construct a rank 2 binary symmetric
function f in Holant∗(F), such that the matrix form of f has a non-isotropic eigenvector corresponding
to the eigenvalue 0. (The eigenspace has dimension 1, so the eigenvector is essentially unique.) In
Section 5.2 we use f to get =G,R by holographic reduction and interpolation.

In Lemma 5.2 we first get a rank 2 binary symmetric function f in Holant∗(F).

Lemma 5.2. If F does not take one of the three forms in Theorem 3.1, then we can either prove
that Holant∗(F) is #P-hard or construct a binary symmetric function f from F by connecting a unary
function to it, such that (the matrix form of) f has rank 2.

Proof. By connecting F to a unary u = (x, y, z), we can realize xF1=B+yF1=G+zF1=R. For notational
simplicity, we denote the 3 × 3 matrices X = F1=B, Y = F1=G and Z = F1=R. First suppose there
exists a non-zero unary u such that xX + yY + zZ = 0. If u is isotropic, then F is in the third form of
Theorem 3.1. Suppose u is not isotropic, we may assume uTu = 1. Then we can apply an orthogonal
transformation by a matrix whose first vector is u, to reduce the problem to an equivalent problem in
domain size 2. The dichotomy theorem for Holant∗ problems over domain size 2 completes the proof.

22



The conclusion is that if F is not of the three forms, then Holant∗(F) is #P-hard. In the following, we
assume that X, Y and Z are linearly independent as complex matrices.

Now we prove the lemma by analyzing the ranks of X,Y, Z. By linear independence, X,Y, Z all
have rank ≥ 1.

• If at least one of X,Y, Z has rank 2, then we are done by choosing the corresponding coefficient
to be 1 and the other two to be 0.

• If there are at least two of them (we assume they are X and Y ) have rank 1, we shall prove that
X + Y has rank exactly 2. Firstly, the rank of X + Y is at most 2 since both X and Y have rank
1. For symmetric matrices of rank 1, we can write X = uuT and Y = vvT. We know that u and v
are linearly independent, since X and Y are linearly independent. If X + Y has rank at most 1,
then there exists some w such that uuT + vvT = wwT. There exists a vector u′ which is orthogonal
to u but not to v. This can be seen by considering the dimensions of the null spaces of u and v.
Then 〈u′, v〉v = 〈u′, w〉w. This implies that v is a linear multiple of w since 〈u′, v〉 6= 0. Similarly,
u is also a linear multiple of w. This contradicts the linear independence of u and v.

• In the remaining case, there are at least two of them (we assume they are X and Y ) have rank
3. Then det(xX + Z) = 0 is not a trivial equation since the coefficient of x3 is det(X) 6= 0. Let
x0 be a root for the equation. Then the rank of x0X + Z is less than 3. If the rank is 2, then
we are done. Otherwise, the rank is exactly 1; it cannot be zero since Z is not a linear multiple
of X. Similarly, there exists a y0 such that the rank of the non-zero matrix y0Y + Z is less than
3. Again, if the rank is 2, then we are done. Now we assume that both x0X + Z and y0Y + Z
have rank 1. If x0X + Z and y0Y + Z are linearly independent, then x0X + y0Y + 2Z has rank
exactly 2, by the proof above, and we are done. If x0X + Z and y0Y + Z are linearly dependent,
then a non-trivial combination is the zero matrix λ(x0X + Z) + µ(y0Y + Z) = 0. Since they
are both nonzero matrices, both λ, µ 6= 0. Since X,Y, Z are linearly independent, we must have
x0 = y0 = 0, and Z has rank 1. In this case, we consider zX + Y . Again we have some z0 such
that z0X + Y has rank at most 2. If it is 2, we are done. It can’t be 0, as X,Y are linearly
independent. So z0X + Y has rank exactly 1. Then z0X + Y + Z has rank exactly 2.

Lemma 5.3. If we can realize a rank 2 binary symmetric function in Holant∗(F), then we can either
prove that F takes one of the forms in Theorem 3.1 and Holant∗(F) is in P, or realize a rank 2 binary
symmetric function such that its matrix form has a non-isotropic eigenvector corresponding to the
eigenvalue 0.

Proof. We only need to handle the case that the matrix form of the constructed rank 2 function has an
isotropic eigenvector corresponding to 0.

Suppose A is the 3 × 3 matrix representing the binary function 〈u,F〉 for some unary function u.
By the canonical form in [40], there exists an orthogonal matrix T , such that

TAT T =

0 0 1
0 0 i
1 i 0

 .
We may consider T⊗3F instead of F. Because TAT T is the matrix form for 〈Tu, T⊗3F〉, to reuse

the notation, we can assume there exists a u, such that 〈u,F〉 has the matrix form

0 0 1
0 0 i
1 i 0

. We will

rename this matrix A.
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Given any unary function v and a complex number x, we can realize the binary function 〈xu+v,F〉
which has the matrix form C = xA+ Ã, where Ã is the matrix form of 〈v,F〉. If there exist some unary

function v and a complex number x, such that C is nonsingular, and γ = C−1

1
i
0

 is not isotropic,

then we can realize the binary symmetric function CAC of rank 2 as a chain of three binary symmetric
functions, whose eigenvector corresponding to 0 is γ, and the conclusion holds.

Now, we prove that if there does not exist such v and x, then either Holant∗(F) is in P, or we
can realize a required binary function directly. We calculate the two conditions, C is singular and

γ = C−1

1
i
0

 is isotropic, individually.

Suppose Ã =

a b c
b d e
c e f

. Then C = xA+ Ã =

 a b c+ x
b d e+ xi

c+ x e+ xi f

. Let P (x) = det(C). As a

polynomial in x, P (x) has degree at most 2, and the coefficient of x2 is a+ 2bi− d. If a+ 2bi− d 6= 0,
then for all complex x except at most two values, C is nonsingular.

Because Cγ = (1, i, 0)T, γ is orthogonal to µ = (c + x, e + xi, f) and ν = (b − ai, d − bi, e − ci).

Consider the cross-product vector θ =

(∣∣∣∣e+ xi f
d− bi e− ci

∣∣∣∣ , ∣∣∣∣ f c+ x
e− ci b− ai

∣∣∣∣ , ∣∣∣∣ c+ x e+ xi
b− ai d− bi

∣∣∣∣)T

, which is

orthogonal to µ and ν. Calculation shows that the inner product θTθ is a polynomial Q(x) of degree at
most 2, and the coefficient of x2 is (a+ 2bi− d)2.

Assume a + 2bi − d 6= 0. Then, neither P (x) nor Q(x) is the zero polynomial. There exists an x
such that C is nonsingular, which implies γ 6= 0 in particular, and θTθ 6= 0. If µ and ν were linearly
dependent, then θ = 0 by the definition of θ, and θTθ = 0, a contradiction. Hence, µ and ν are linearly
independent. So γ is a nonzero linear multiple of θ, since they both belong to the 1-dimensional subspace
orthogonal to µ and ν. Then γTγ is a nonzero multiple of θTθ 6= 0, i.e., γ is not isotropic. Then CAC
is the required function.

Now we assume that for any v, Ã = 〈v,F〉 satisfies a+ 2bi− d = 0.
Substitute d by a+ 2bi, we get P (x) = 2(b−ai)(e− ci)x−a(e− ci)2− f(b−ai)2 + 2c(b−ai)(e− ci),

and the coefficient of x in Q(x) is 2i(e− ci)3.
For any fixed Ã, either e − ci = 0, or e − ci 6= 0. If e − ci 6= 0, Q(x) is not the zero polynomial.

If P (x) is not the zero polynomial as well, then by the same argument as above, we get a required
function. Hence we assume P (x) is the zero polynomial. Then by the expression for P (x), it follows
that b− ai = 0, and a = 0. Because we also have a+ 2bi− d = 0, we get a = b = d = 0.

In this case Ã has the form Ã =

0 0 c
0 0 e
c e f

. It has rank ≤ 2. If it has rank ≤ 1, then c = e = 0.

This is a contradiction to e − ci 6= 0. Hence it has rank 2. It is easy to check that the eigenvector
corresponding to the eigenvalue 0 is a multiple of (−e, c, 0)T. If c2 + e2 6= 0, then this eigenvector is
non-isotropic and we are done. Since e − ci 6= 0, the only possibility of c2 + e2 = 0 is e = −ci 6= 0. In

this case it is easy to check that cA+ Ã has the form

 0 0 2c
0 0 0
2c 0 f

. It has rank 2, and a non-isotropic

eigenvector (0, 1, 0)T corresponding to the eigenvalue 0.
Finally we have for any Ã, e− ci = 0, in addition to d = a+ 2bi.
Consider the possible choices of v in Ã = 〈v,F〉. We can set it to be F1=B, F1=G or F1=R.

Considering what entries a, b, c, d, e correspond to in the table (2) for these three cases of Ã, we get

24



the following: If w 6= 0, then Fu,v,w = iFu+1,v−1,w for v ≥ 1 and u + v + w = 3. If w = 0, then
Fu,v,w = Fu,v,0 = siv + tviv−1 for some coefficients s and t, where u, v ≥ 0 and u+ v = 3. This follows

from e = ci and d = a + 2bi for Ã. E.g., e = ci in (3) gives a linear recurrence FBGR = iFBBR,
and d = a + 2bi in (3) gives a linear recurrence FBGG = 2iFBBG + FBBB. Hence, F = S + T is the
summation of two functions S and T , where Su,v,w = iSu+1,v−1,w, and T (u, v, w) = 0, if w 6= 0, and
T (u, v, 0) = tviv−1, where u + v + w = 3. This T can be expressed as the symmetrization of simple
tensor products,

T = T1 + T2 + T3

= t

0
1
0

⊗
1
i
0

⊗
1
i
0

+ t

1
i
0

⊗
0

1
0

⊗
1
i
0

+ t

1
i
0

⊗
1
i
0

⊗
0

1
0


=

t

2
Sym(

1
i
0

⊗
1
i
0

⊗
0

1
0

).

This is in form 3 given in Theorem 3.1 and we have shown that in this case Holant∗(F) is tractable
in Section 4.

We summarize Lemma 5.2 and 5.3 as follows:

Corollary 5.4. If F does not take one of the three forms in Theorem 3.1, then we can either prove
that Holant∗(F) is #P-hard or construct a rank 2 binary symmetric function f from F by connecting a
unary function to it, such that its eigenvector corresponding to the eigenvalue 0 is not isotropic.

5.2 An Interpolation Lemma

Finally we use a holographic transformation and interpolation to get =G,R from the binary function
obtained in Lemma 5.3. This will complete the proof of Theorem 5.1.

Let v be a non-isotropic eigenvector corresponding to the eigenvalue 0 of the binary function A
constructed from F. We may assume 〈v,v〉 = 1. We can extend v to an orthogonal matrix T , such that
v is the first column vector of T . Then the matrix form of the binary function after the holographic
transformation by T−1 = T T takes the form

T TAT =

0 0 0
0 a b
0 b c

 (15)

with rank 2.
The next lemma shows that given this, we can interpolate =G,R.

Lemma 5.5. Let H : {B,G,R}2 → C be a rank 2 binary function of the form (15). Then for any F
containing H, we have

Holant(F ∪ {=G,R}) ≤T Holant(F).

Proof. Consider the Jordan normal form of H. There are two cases: there exist a non-singular M =

diag(1,M2), and either Λ =

[
0 0 0
0 λ 0
0 0 µ

]
, or Λ′ =

[
0 0 0
0 λ 1
0 0 λ

]
, such that H = MΛM−1, or H =

MΛ′M−1.
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For the first case H = MΛM−1, consider an instance I of Holant(F∪{=G,R}). Suppose the function
=G,R appears m times. Replace each occurrence of =G,R by a chain of M , =G,R, M−1. More precisely,
we replace any occurrence of =G,R (x, y) by M(x, z) · (=G,R)(z, w) · M−1(w, y), where z, w are new
variables. This defines a new instance I ′. Since Mdiag(0, I2)M−1 = diag(0, I2), where I2 denotes
the 2 × 2 identity matrix, the Holant value of the instance I and I ′ are the same. To have a non-
zero contribution to the Holant sum, the assignments given to any occurrence of the new Equality
constraints of the form (=G,R)(z, w) must be (G,G) or (R,R). We can stratify the Holant sum defining
the value on I ′ according to how many (G,G) and (R,R) assignments are given to these occurrences of
(=G,R)(z, w). Let ρj denote the sum, over all assignments with j many times (G,G) and m − j many
times (R,R), of the evaluation on I ′, including those of M(x, z) and M−1(w, y). Then the Holant value
on the instance I ′ can be written as

∑m
j=0 ρj .

Now we construct from I a sequence of instances I ′k indexed by k: Replace each occurrence of (=G,R

)(x, y) by a chain of k copies of the function H to get an instance I ′k of Holant(F). More precisely, each
occurrence of (=G,R)(x, y) is replaced by H(x, x1)H(x1, x2) . . . H(xk−1, y), where x1, x2, . . . , xk−1 are
new variables specific for this occurrence of (=G,R)(x, y). The function of this chain is Hk = MΛkM−1.
A moment of reflection shows that the value of the instance I ′k is

m∑
j=0

ρjλ
kjµk(m−j) = µmk

m∑
j=0

ρj(λ/µ)kj .

If λ/µ is a root of unity, then take a k such that (λ/µ)k = 1. (Input size is measured by the number
of variables and constraints. The functions in F are considered constants. Thus this k is a constant.)
We have the value

∑m
j=0 ρjλ

kjµk(m−j) = µmk
∑m

j=0 ρj . As H has rank 2, µ 6= 0, we can compute the
value of I from the value of I ′k.

If λ/µ is not a root of unity, (λ/µ)j are all distinct for j ≥ 1. We can take k = 1, . . . ,m + 1
and get a system of linear equations about ρj . Because the coefficient matrix is Vandermonde in
(λ/µ)j , j = 0, 1, . . .m, we can solve ρj and get the value of I.

For the second case H = MΛ′M−1, the construction is the same, so we only show the difference with
the proof in the first case. Again we can stratify the Holant sum for I ′ according to how many different
types of assignments are given to the m occurrences of the new Equality constraints of the form
(=G,R)(z, w). Any assignment other than assigning only (G,G) or (R,R) will produce a 0 contribution
for I ′. However, this time we cluster all assignments according to exactly j many times (G,G) or (R,R),
and the rest m− j are (G,R)’s, on all m occurrences of these (=G,R)(z, w). Note that any assignment
with a non-zero number of (R,G)’s in the corresponding m signatures in I ′k, after the substitution of
each (=G,R)(x, y) in I by H(x, x1)H(x1, x2) . . . H(xk−1, y), will produce a 0 contribution in the Holant
value for I ′k. This is because, by this substitution, effectively each (=G,R)(z, w) in I ′ is replaced by

Λk =

[
0 0 0
0 λk kλk−1

0 0 λk

]
. Let ρj be the sum over all assignments with j many (G,G) or (R,R), and m−j

many (G,R) of the evaluation (including those of M(x, z) and M−1(w, y)) on I ′. Then the Holant value
on the instance I ′ (and on I) is just ρm.

The value of I ′k is
m∑
j=0

ρjλ
kj(kλk−1)m−j = λ(k−1)m

m∑
j=0

(λjρj)k
m−j .

We can take k = 1, . . . ,m+ 1 and get a system of linear equations on λjρj . Because the coefficient
matrix is a Vandermonde matrix, we can solve λjρj and (since λ 6= 0 as H has rank 2) we can get the
value of ρm, which is the value of I.
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5.3 Reductions From Domain Size 2

Lemma 5.6. If a ternary function F has a separated domain then Holant∗(F) is either #P-hard or is
in one of the tractable forms of Theorem 3.1, and it is determined by the Holant∗ problem defined by
the restriction of F to the separated subdomain of size two.

Proof. Suppose B is separated from G-R in F. Given any connected signature grid for Holant∗(F),
any assignment of B will be uniquely propagated as B. Hence the tractability or #P-hardness of the
problem is determined by the Holant∗ problem defined by F restricted to {G,R}. Then the dichotomy
Theorem 2.5 shows that Holant∗(F) is either #P-hard or is in one of the tractable forms of Theorem
3.1. More specifically, a degenerate signature or a generalized Fibonacci gate (axk+2− bxk+1−axk = 0)
on {G,R} with b 6= ±2ia lead to form 1. A Fibonacci gate with b = ±2ia leads to form 3, where we
take Fβ = FBBBe1

⊗3. Finally the tractable form [x, y,−x,−y] for F∗→{G,R} leads to form 2.

Theorem 5.7. Let F be a symmetric ternary function over domain {B,G,R}, which is not of one of
the forms in Theorem 3.1. Then Holant∗({F,=G,R}) is #P-hard.

Theorem 5.1 and 5.7 imply our main Theorem 3.1. The rest of this paper is devoted to the proof of
Theorem 5.7.

Using =G,R we can realize signatures over domain {G,R} from F such as F∗→{G,R}. If Holant∗(F∗→{G,R})
is already #P-hard as a problem over size 2 domain {G,R}, then Holant∗({F,=G,R}) is #P-hard and
we are done. Therefore, we only need to deal with the cases when Holant∗(F∗→{G,R}) is tractable. They
are listed as follows.

1. F∗→{G,R} = H[a, 0, 0, b]T, where H is a 2× 2 orthogonal matrix, ab 6= 0.

2. F∗→{G,R} = Z[a, 0, 0, b]T, where Z = 1√
2

[
1 1
i −i

]
, ab 6= 0.

3. F∗→{G,R} = Z[a, b, 0, 0]T, where Z = 1√
2

[
1 1
i −i

]
or Z = 1√

2

[
1 1
−i i

]
, b 6= 0.

4. F∗→{G,R} is degenerate.

We will prove Theorem 5.7 by considering these four cases one by one. The overall proof approach
for the first three cases is to construct a binary function over the domain {G,R} such that, together
with F∗→{G,R} it is already #P-hard according to the dichotomy theorem for Holant∗ over domain size
2, Theorem 2.5. For some functions F, we fail to do this; and whenever this happens, we show that F
is indeed among the tractable cases in Theorem 3.1. For the fourth case, where F∗→{G,R} is degenerate
on {G,R}, our approach is different, where we need to construct gadgets with a larger arity, and will
be dealt with in later subsections.

Case 1: F∗→{G,R} = H[a, 0, 0, b]T, ab 6= 0.

After a domain separated holographic reduction under the orthogonal matrix

[
1 0
0 H

]
, we can assume

that F∗→{G,R} = [a, 0, 0, b], where we are given ab 6= 0. We note that this transformation does not
change =G,R. According to Theorem 2.5, when putting this [a, 0, 0, b] and a binary function together,
the problem is #P-hard unless the binary function is of the form [∗, 0, ∗], [0, ∗, 0] or degenerate. Now F
has the form
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FBBB
FBBG FBBR

FBGG FBGR FBRR
a 0 0 b

Suppose FBGR 6= 0. We can realized a binary function [FBGG+at, FBGR, FBRR] over domain {G,R}
by connecting this ternary function to a unary function (1, t, 0), namely 〈(1, t, 0),F〉, and then putting
=G,R on the other two dangling edges. Since a 6= 0 and we can choose any t, we can make the first
entry of [FBGG + at, FBGR, FBRR] arbitrary and the function is out of all three tractable binary forms.
Therefore the problem is #P-hard.

Now we can assume that FBGR = 0. To simplify notations, we use variables to denote the function
entries as follows

g
y w

x 0 z
a 0 0 b

(16)

Then we use the gadget as depicted in Figure 2 to construct another binary function. The signature

Figure 2: A binary gadget.

of this binary function has been calculated in Section 2.4 (see (5)), and is

[f0, f1, f2] = [(αx+ βa)2 + (αy + βx)2, (αy + βx)(αw + γz), (αz + γb)2 + (αw + γz)2].

If there exists some (α, β, γ) such that this [f0, f1, f2] is not of the form [∗, 0, ∗], [0, ∗, 0], or degenerate,
then the problem is #P-hard and we are done.

All conditions are polynomials (1) f0 = f2 = 0, or (2) f1 = 0, or (3) f2
1 = f0f2. By the polynomial

argument , we only need to deal with cases that one of them is the zero polynomial.
If statement (1) f0 = f2 = 0 holds for all (α, β, γ), we have

(x2 + y2)α2 + 2(ax+ xy)αβ + (a2 + x2)β2 = (z2 + w2)α2 + 2(bz + zw)αγ + (b2 + z2)γ2 = 0,

as identically zero polynomials in (α, β, γ). Therefore we have

x2 + y2 = ax+ xy = a2 + x2 = z2 + w2 = bz + zw = b2 + z2 = 0.

Since a 6= 0, we have x 6= 0 from a2 + x2 = 0. Similarly, we have z 6= 0. Then the conclusion is
x = ε1a, y = −a, z = ε2b, w = −b, where ε1, ε2 ∈ {i,−i}. Then we rewrite our function as follows

g
−a −b

ε1a 0 ε2b
a 0 0 b
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Figure 3: A binary gadget.

Next we use the gadget depicted in Figure 3 to construct another binary function over domain
{G,R}, whose signature is calculated with the techniques of Section 2.4

[
ε1 1 0
ε2 0 1

]g + ε2b −a 0
−a ε1a 0
0 0 0

ε1 ε2
1 0
0 1

 =

[
−g − ε1a− ε2b ε1ε2(g + ε1a+ ε2b)

ε1ε2(g + ε1a+ ε2b) −g − ε2b

]
.

If g+ ε1a+ ε2b 6= 0, this symmetric binary signature can not be of the form [∗, 0, ∗] or [0, ∗, 0], and it is
not degenerate as its determinant is nonzero. Therefore the problem is #P-hard.

If g+ ε1a+ ε2b = 0, we show that this is indeed a tractable case in Theorem 3.1. It is of the second
form in Theorem 3.1 where α = (0, 0, 0)T,β1 = 3

√
a(ε1, 1, 0)T and β2 = 3

√
b(ε2, 0, 1)T.

If statement (2) f1 = 0 holds for all (α, β, γ), we have x = y = 0 or z = w = 0. If x = y = 0, the
ternary function (16) is as follows

g
0 w

0 0 z
a 0 0 b

Then G is separated from B-R, and by Lemma 5.6, we are done. The case z = w = 0 is similar.
If statement (3) f2

1 = f0f2 holds for all (α, β, γ), we have

(αx+ βa)2(αz + γb)2 + (αx+ βa)2(αw + γz)2 + (αy + βx)2(αz + γb)2 = 0. (17)

Let α = a and β = −x, we have (ay − x2)2(az + γb)2 = 0 holds for all γ. Since b 6= 0, we can choose
γ such that az + γb 6= 0 and conclude that ay − x2 = 0. Similarly, let α = b and γ = −z, we can get
bw − z2 = 0. Then let β = γ = 1 and α = 0 in (17), we have

a2b2 + a2z2 + b2x2 = 0.

Denote by p = x
a and q = z

b , we have p2 + q2 + 1 = 0 and the ternary signature in (16) has the following
form

g
ap2 bq2

ap 0 bq
a 0 0 b

If p = 0 or q = 0, then the function is separable and we are done by Lemma 5.6. In the following, we
assume that pq 6= 0.
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Figure 4: A binary gadget.

Then we use the gadget in Figure 4 to construct another binary function over domain {G,R}, whose
signature is[

p 1 0
q 0 1

]g − bq3 − ap3 + ap2t apt 0
apt at 0
0 0 0

p q
1 0
0 1

 =

[
p2δ + at(p2 + 1)2 pqδ + apqt(p2 + 1)
pqδ + apqt(p2 + 1) q2δ + ap2q2t

]
,

where δ = g − ap3 − bq3. We denote this symmetric binary function as [g0, g1, g2].
If δ = 0, one can verify that this is indeed a tractable case of Theorem 3.1. This is of the third form

of Theorem 3.1, where β = (1,−p,−q)T,γ = (0, 0, 0)T, and Fβ is the given function F.
Now we assume that δ 6= 0. If there exists some t such that this binary function is not of the

form [∗, 0, ∗], [0, ∗, 0], or degenerate, then the problem is #P-hard and we are done. Otherwise, by
the same argument as above, at least one of the three statements (i) g0 = g2 = 0, (ii) g1 = 0, or (iii)
g2

1 = g0g2 holds for all t. Choose t = 0, we have all three g0, g1, g2 6= 0. Therefore, the only possibility
is that g2

1 = g0g2 holds for all t. However, this is also impossible which can be seen by choosing t = 1
a .

One can calculate the determinant det

[
g0 g1

g1 g2

]
= δq2 6= 0. This completes the proof for the case

F∗={G,R} = H[a, 0, 0, b]T.

Case 2: F∗→{G,R} = Z[a, 0, 0, b]T, ab 6= 0.
The problem Holant∗({F,=G,R}) can be written as Holant∗(=2 |{F,=G,R}), where ∗ means that

both sides can use all unary functions. After a holographic transformation under the matrix Z̃ =[
1 0
0 Z

]
, we can get an equivalent problem Holant∗( 6=B;G,R |{Z̃−1F, 6=G,R}), where the two binary

functions are, respectively,

(6=B;G,R) = Z̃T(=2)Z̃ =

1 0 0
0 0 1
0 1 0

 , and (6=G,R) = Z̃−1(=G,R)(Z̃−1)T =

0 0 0
0 0 1
0 1 0

 . (18)

We use F̃ to denote the ternary function Z̃−1F after the transformation. Then we have F̃∗→{G,R} =
[a, 0, 0, b]. By connecting 6=B;G,R to both sides of 6=G,R, we can get the function 6=G,R on the LHS. For
a bipartite holant problem Holant∗([f0, f1, f2]|[a, 0, 0, b]) over domain size 2, the problem is #P-hard
unless the binary function [f0, f1, f2] is of the form [∗, 0, ∗], [0, ∗, 0], or degenerate [15]. Therefore, we
will try to construct binary functions in the LHS of Holant∗({6=B;G,R, 6=G,R}|{F̃, 6=G,R}) over domain
{G,R}.

Our ternary function F̃ is as follows

F̃BBB
F̃BBG F̃BBR

F̃BGG F̃BGR F̃BRR
a 0 0 b
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If F̃BGR 6= 0, we can realized a binary function [F̃BRR, , F̃BGR, F̃BGG + at] over domain {G,R} by
connecting this ternary function to a unary function (1, t, 0) and putting 6=G,R on the other two dangling
edges. Since a 6= 0 and we can choose any t, we can make the third entry of [F̃BRR, , F̃BGR, F̃BGG + at]
arbitrary and the function is not in all three tractable binary forms. Therefore the problem is #P-hard.
Now we can assume that F̃BGR = 0. To simplify notations, we use variables to denote the function
entries as follows

g
y w

x 0 z
a 0 0 b

Then we use the gadget depicted in Figure 5 to construct another binary function in the LHS. The

Figure 5: A binary gadget.

signature of this binary function is

[f0, f1, f2] = [(αw + γz)2, (αy + βx)(αw + γz) + (αx+ βa)(αz + γb), (αy + βx)2].

If there exists some (α, β, γ) such that this [f0, f1, f2] is not of the form [∗, 0, ∗], [0, ∗, 0], or degenerate,
then the problem is #P-hard and we are done. Otherwise, for all (α, β, γ), we have (1) f0 = f2 = 0, (2)
f1 = 0, or (3) f2

1 = f0f2. Since all the conditions are polynomials of (α, β, γ), we can conclude that at
least one of the three conditions (1), (2), or (3) holds for all (α, β, γ).

If condition (1) f0 = f2 = 0 holds for all (α, β, γ), we have x = y = z = w = 0 and the problem is
separable and therefore tractable. And it can be easily verified that this is the second form of Theorem

3.1, where α = 3
√
g(1, 0, 0)T, β1 =

3√a√
2

(0, 1, i)T and β2 =
3√
b√
2
(0, 1,−i)T.

If condition (2) f1 = 0 holds for all (α, β, γ), we have that

xz + yw = xb+ yz = az + xw = ab+ xz = 0.

Since xz = −ab 6= 0, we can conclude from above that

x

a
=
y

x
= p,

z

b
=
w

z
= q, and pq = −1.

The ternary signature has the form

g
ap2 bq2

ap 0 bq
a 0 0 b
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Figure 6: A binary gadget.

Then we use the gadget in Figure 6 to construct another binary function over domain {G,R}, whose
signature is

[
q 0 1
p 1 0

]g − bq3 − ap3 + ap2t 0 apt
0 0 0
apt 0 at

q p
0 1
1 0

 =

[
q2δ + at(pq + 1)2 pqδ + ap2t(pq + 1)
pqδ + ap2t(pq + 1) p2δ + ap4t

]
,

where δ = g − ap3 − bq3. We denote this symmetric binary function as [g0, g1, g2].
If δ = 0, i.e., g = ap3 + bq3, we show that this is indeed a tractable case of Theorem 3.1 as follows.

The ternary function F̃ can be written as

F̃ = a

p1
0

⊗3

+ b

q0
1

⊗3

.

And

F = Z̃F̃ = a

 p
1√
2
i√
2


⊗3

+ b

 q
1√
2

− i√
2


⊗3

.

This is of the first form of tractable cases in Theorem 3.1, whereα = 3
√
a(p, 1√

2
, i√

2
)T, β = 3

√
b(q, 1√

2
,− i√

2
)T

and γ = (0, 0, 0)T. We note that the condition 〈α,β〉 = 0 is guaranteed by pq = −1.
Now we assume that δ 6= 0. If there exists some t such that the binary function [g0, g1, g2] is not of

the form [∗, 0, ∗], [0, ∗, 0], or degenerate, then the problem is #P-hard and we are done. Otherwise, by
the same argument as above, at least one of the three statements holds for all t: (i) g0 = g2 = 0, (ii)
g1 = 0, or (iii) g2

1 = g0g2. Choose t = 0, we have g0g1g2 6= 0. Therefore, the only possibility is that
g2

1 = g0g2 holds for all t. However, this is also a contradiction which can be seen by choosing t = 1
a .

One can calculate the determinant det

[
g0 g1

g1 g2

]
= δp2 6= 0.

If condition (3) f2
1 = f0f2 holds for all (α, β, γ), we have

0 = f2
1 − f0f2 = 2(αy + βx)(αw + γz)(αx+ βa)(αz + γb) + (αx+ βa)2(αz + γb)2. (19)

Let α = x and β = −y, we have (x2 − ay)2(xz + γb)2 = 0 holds for all γ. Since b 6= 0, we conclude that
ay − x2 = 0. Similarly, let α = z and γ = −w, we can get bw − z2 = 0. Then let β = γ = 1 and α = 0
in (19), we have

ab+ 2xz = 0.

Denote by p = x
a and q = z

b , we have pq = −1
2 and the ternary signature has the form
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g
ap2 bq2

ap 0 bq
a 0 0 b

Figure 7: A binary gadget.

Then we use the gadget in Figure 7 to construct another binary function over domain {G,R}, whose
signature is[

q 0 1
p 1 0

]g − bq3 − ap3 + ap2t 0 apt
0 0 0
apt 0 at

q p
0 1
1 0

 =

[
q2δ + at(pq + 1)2 pqδ + ap2t(pq + 1)
pqδ + ap2t(pq + 1) p2δ + ap4t

]
,

where δ = g − ap3 − bq3. We denote this symmetric binary function as [g0, g1, g2]. (This is the same
construction as in Figure 6, but p and q have a different meaning.)

If δ = 0, we show that this is indeed a tractable case of Theorem 3.1 as follows. The ternary function
F̃ can be written as

F̃ = a

p1
0

⊗3

+ b

q0
1

⊗3

.

And

F = Z̃F̃ = a

 p
1√
2
i√
2


⊗3

+ b

 q
1√
2

− i√
2


⊗3

.

This is of the third form of tractable case in Theorem 3.1, where Fβ is the given function F and
β = (−

√
2, p+ q,−pi+ qi)T,γ = (0, 0, 0)T. We note that pq = −1

2 implies that 〈β,β〉 = 0.
Now we assume that δ 6= 0. If there exists some t such that this binary function is not of the form

[∗, 0, ∗], [0, ∗, 0], or degenerate, then the problem is #P-hard and we are done. Otherwise, by the same
argument as above, at least one of the three (i) g0 = g2 = 0, (ii) g1 = 0, or (iii) g2

1 = g0g2 holds for
all t. Choose t = 0, we have g0g1g2 6= 0. Therefore, the only possibility is that g2

1 = g0g2 holds for all
t. However, this is also a contradiction which can be seen by choosing t = 1

a . One can calculate the

determinant det

[
g0 g1

g1 g2

]
= δp2 6= 0. This completes the proof for the case F∗→{G,R} = Z[a, 0, 0, b]T.

Case 3: F∗→{G,R} = Z[a, b, 0, 0]T, b 6= 0.

Here we only prove for the case Z = 1√
2

[
1 1
i −i

]
. The other case is symmetric. The Holant

problem can be written as Holant∗(=2 |{F,=G,R}), where ∗ means that both sides can use unary

functions. After a holographic transformation under the matrix Z̃ =

[
1 0
0 Z

]
, we can get an equiv-

alent problem Holant∗(6=B;G,R |{Z̃−1F, 6=G,R}), where the two binary functions 6=B;G,R and 6=G,R are
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given in (18). We use F̃ to denote this ternary function after the transformation Z̃−1F. Then we
have F̃∗→{G,R} = [a, b, 0, 0]. And after a scaling, we assume that F̃∗→{G,R} = [a, 1, 0, 0]. By connect-
ing 6=B;G,R to both sides of 6=G,R, we can get a 6=G,R on the LHS. For a bipartite holant problem
Holant∗([f0, f1, f2]|[a, 1, 0, 0]) over domain size 2, the problem is #P-hard unless the binary function
[f0, f1, f2] is of the form [0, ∗, ∗] or degenerate. This can be seen as follows: Clearly for such [f0, f1, f2]
it is tractable, as [0, ∗, ∗] requires the number of edges assigned 0 to be at most the number assigned 1,
while [a, 1, 0, 0] requires the number of edges assigned 0 to be strictly more than the number assigned 1.
Suppose [f0, f1, f2] is nondegenerate and not of this form, we may normalize it to [1, b, c] where c 6= b2.

Consider the holographic reduction defined by M =

[
1 b

0
√
c− b2

]
. The matrix form for [1, 0, 1]M⊗2 is

MTI2M =

[
1 b
b c

]
, namely [1, b, c], while M⊗3[a, 1, 0, 0] is

[
1 b

0
√
c− b2

]⊗3
[
a

[
1
0

]⊗3

+

[
1
0

]
⊗
[
1
0

]
⊗
[
0
1

]
+

[
1
0

]
⊗
[
0
1

]
⊗
[
1
0

]
+

[
0
1

]
⊗
[
1
0

]
⊗
[
1
0

]]
,

which is [a+ 3b,
√
c− b2, 0, 0]. By Theorem 2.5, Holant∗([a+ 3b,

√
c− b2, 0, 0]) is #P-hard. Therefore,

to show #P-hardness, we will construct binary functions in the LHS of Holant∗({6=B;G,R, 6=G,R}|F̃) over
domain {G,R}.

Now we have the ternary function F̃ as follows

F̃BBB
F̃BBG F̃BBR

F̃BGG F̃BGR F̃BRR
a 1 0 0

If F̃BRR 6= 0, we can realized a binary function [F̃BRR, F̃BGR + t, F̃BGG + at] in LHS over domain
{G,R} by connecting this ternary function to a unary function (1, t, 0) and putting 6=G,R on the other
two dangling edges. It can be easily seen that we can choose some t such that [F̃BRR, F̃BGR+t, F̃BGG+at]
is not degenerate. And it is not of the form [0, ∗, ∗] since F̃BRR 6= 0. Therefore the problem is #P-hard.
Now we can assume that F̃BRR = 0. To simplify notations, we use variables to denote the function
entries of F̃ as follows

g
z w

x y 0
a 1 0 0

(20)

Then we use the gadget in Figure 8 to construct another binary function. The signature of this

Figure 8: A binary gadget.

binary function is

[f0, f1, f2] = [(αw+βy)2, (αw+βy)(αz+βx+γy)+(αy+β)2, (αz+βx+γy)2 +2(αy+β)(αx+βa+γ)].
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If there exists some (α, β, γ) such that this [f0, f1, f2] is not of the form [0, ∗, ∗] or degenerate, then the
problem is #P-hard and we are done. Otherwise, for all (α, β, γ), we have the equalities (1) f0 = 0 or
(2) f2

1 = f0f2. Since these are polynomials of (α, β, γ), at least one of (1) f0 = 0 or (2) f2
1 = f0f2 holds

for all (α, β, γ).
If equality (1) f0 = 0 holds for all (α, β, γ), we have y = w = 0. We will verify that the problem

is tractable, and it is of the third form of Theorem 3.1. We use F̃β to denote the following ternary
function

g
z 0

x 0 0
a 0 0 0

Let β̃ = (0, 1, 0)T and γ̃ = (0, 0, 1)T. Compared to (20) we have

F̃ = F̃β + β̃⊗2 ⊗ γ̃ + β̃ ⊗ γ̃ ⊗ β̃ + γ̃ ⊗ β̃⊗2.

Therefore applying the transformation Z̃, we have

F = Z̃F̃ = Z̃F̃β + (Z̃β̃)
⊗2 ⊗ (Z̃γ̃) + (Z̃β̃)⊗ (Z̃γ̃)⊗ (Z̃β̃) + (Z̃γ̃)⊗ (Z̃β̃)

⊗2
.

We verify that this is in the third form of Theorem 3.1, with Fβ = Z̃F̃β, β = Z̃β̃ and γ = Z̃γ̃. First it
is easy to verify that 〈β,β〉 = 0. Second 〈(0, 0, 1), F̃β〉 = 0, and β̃TZ̃T Z̃ = (0, 0, 1), hence

〈β,Fβ〉 = 0.

If equality (2) f2
1 = f0f2 holds for all (α, β, γ), we have

0 = f0f2− f2
1 = (αy+ β)(2(αw+ βy)2(αx+ βa+ γ)− 2(αw+ βy)(αz+ βx+ γy)(αy+ β)− (αy+ β)3).

As a product of two polynomials in (α, β, γ), to be identically zero, one of them must be identically
zero. Since αy + β is not identically zero, we have

2(αw + βy)2(αx+ βa+ γ)− 2(αw + βy)(αz + βx+ γy)(αy + β)− (αy + β)3 = 0, (21)

for all (α, β, γ).
Let α = y and β = −w, we have w = y2. Substituting w = y2 in (21), we have

2y2(αx+ βa+ γ)− 2y(αz + βx+ γy)− (αy + β) = 0,

for all (α, β, γ). And we conclude that y(2xy−2z−1) = 0 and 2ay2−2xy−1 = 0. The second equation
implies that y 6= 0. So we have 2xy − 2z − 1 = 0.

Then the ternary signature has the form

g
ay2 − 1 y2

ay − 1
2y y 0

a 1 0 0

(22)

If g = ay3 − 3
2y, we show that this problem is indeed tractable. We show that this F is of the third

form in Theorem 3.1, where Fβ is the given function F, and

β = (1,− y√
2

+
1

2
√

2y
,
yi√

2
+

i

2
√

2y
)T, γ = (0, 0, 0)T.
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Figure 9: A binary gadget.

First it is easy to verify that 〈β,β〉 = 0. We also need to verify 〈β,F〉 = 0, or 〈β, Z̃F̃〉 = 0, which
is equivalent to 〈Z̃Tβ, F̃〉 = 0. This Z̃Tβ is (1,−y, 1

2y )T, and it is easy to see that indeed this unary

function annihilates F̃ in (22), using the “calculus” from Section 2.4.
Now we assume that g 6= ay3 − 3

2y. We denote by δ = g − ay3 + 3
2y. Then we use the gadget in

Figure 9 to construct another binary function over domain {G,R}, whose signature is

[
y 1 0
− 1

2y 0 1

]δ + y2t 0 yt
0 0 0
yt 0 t

y − 1
2y

1 0
0 1

 =

[
y2δ + y4t − δ

2 + y2t
2

− δ
2 + y2t

2
δ

4y2
+ t

4

]
.

We denote this symmetric binary function as [g0, g1, g2]. If there exists some t such that this binary
function is not of the form [0, ∗, ∗], or degenerate, then the problem is #P-hard and we are done.
Otherwise, by the same argument as above, at least one of the two equations (i) g0 = 0 or (ii) g2

1 = g0g2

holds for all t. Choose t = 0, we have g0 = y2δ 6= 0. Choose t = δ
y2

, we can verify that the signature is

not degenerate. This completes the proof for the case F∗→{G,R} = Z[a, b, 0, 0]T.
We have completed the proof of Theorem 5.7 when F∗→{G,R} is non-degenerate.

5.4 F∗→{G,R} is [1, 0, 0, 0] After an Orthogonal Transformation

We have proved our dichotomy theorem Theorem 3.1 when F∗→{G,R} is non-degenerate. In the rest of
this paper we deal with the case when F∗→{G,R} is degenerate. We first suppose it has rank 1, and
therefore has the form (a, b)⊗3. In this subsection we assume (a, b) is non-isotropic.

Thus, possibly after a reversal, which is an orthogonal transformation, F∗→{G,R} is degenerate of
the form c[1, λ, λ2, λ3]T, where c 6= 0 and λ 6∈ {i,−i}. As (1, λ) is not isotropic, we can perform an
orthogonal transformation, after which, and ignoring a non-zero scalar multiple, we may assume the
bottom line F∗→{G,R} is [1, 0, 0, 0]T.

Suppose F = [u; t, r; s, p, q; 1, 0, 0, 0], namely

u
t r

s p q
1 0 0 0

(23)

Our general method will be to construct some gadgets which can realize certain functions, and
under some conditions we can use them to show that Holant∗(F) is #P-hard. We first construct
the following function H(x1, x2, x3, x4) = (

∑
y∈{B,G,R}F(x1, x2, y)F(y, x3, x4))∗→{G,R}, which can be

realized by connecting two copies of F by one edge, and then connecting =B,G on all four external
edges. Denote by T the set of functions of arity at most 2, and 〈T 〉 the tensor product closure of T .

Lemma 5.8. If p 6= 0 or q 6= 0, then H 6∈ 〈T 〉.
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Proof. By the definition of H, we have H(x1, x2, x3, x4) = H(x2, x1, x3, x4) = H(x1, x2, x4, x3), because
F is a symmetric function. We prove the lemma by a contradiction. Suppose H ∈ 〈T 〉. Then,
either H(x1, x2, x3, x4) = P(x1, x2)Q(x3, x4), or H(x1, x2, x3, x4) = P(x1, x3)Q(x2, x4) for some binary
functions P and Q.

The matrix form Hx1x2, x3x4 (whose rows are indexed by x1x2 and columns are indexed by x3x4,
and are in the order GG,GR,RG,RR) of the function H is

s2 + 1 sp sp sq
sp p2 p2 pq
sp p2 p2 pq
sq pq pq q2

 .
If H(x1, x2, x3, x4) = P(x1, x2)Q(x3, x4) for some binary functions P and Q, then Hx1x2, x3x4 =
P4×1(Q4×1)T has rank at most 1, where we use the vector form P4×1 and Q4×1 for the functions
P and Q. This implies that p = q = 0, by taking some 2× 2 determinantal minors. A contradiction.

The matrix form Hx1x3, x2x4 (also in index order GG,GR,RG,RR) of the function H is
s2 + 1 sp sp p2

sp sq p2 pq
sp p2 sq pq
p2 pq pq q2

 .
If H(x1, x2, x3, x4) = P(x1, x3)Q(x2, x4) for some binary functions P and Q, by the same argument, the
matrix Hx1x3, x2x4 has rank at most 1. If p 6= 0, then because the submatrix indexed by (RG,RR) ×
(GG,GR) is singular, we get sq = p2. Similarly if q 6= 0, by the submatrix indexed by (RG,RR) ×
(RG,RR), we also get sq = p2. Hence, sq = p2 holds. We also have the determinantal minor indexed

by (GG,GR) × (GG,GR),

∣∣∣∣ s2 + 1 sp
sp sq

∣∣∣∣ = p2 = 0 and the minor indexed by (GG,RR) × (GG,RR),∣∣∣∣ s2 + 1 p2

p2 q2

∣∣∣∣ = q2 = 0. A contradiction.

We have proved that H 6∈ 〈T 〉 under the condition p 6= 0 or q 6= 0.

Lemma 5.9. In Holant∗(F), if p 6= 0 or q 6= 0, either for each tractable class Pa,b and P, we can
construct a symmetric non-degenerate binary function not in it, or the domain is separated and the
complexity dichotomy holds.

Proof. Define binary functions Rx = 〈(1, x, 0),F〉∗→{G,R}, which are clearly realizable, where x is an
arbitrary (algebraic) complex number. In symmetric signature notation on the Boolean domain Rx =
[s + x, p, q]. If p 6= 0 or q 6= 0, there is at most one value x such that Rx is degenerate. Assume
p 6= 0. For any a 6= 0, obviously there exists an x such that a non-degenerate Rx 6∈ Pa,b, since the
coefficient of x in the linear equation requirement for Rx ∈ Pa,b (for both alternative forms in Pa,b) is
not zero. For a = 0, then b 6= 0, and because the middle entry of Rx is p 6= 0, there exists an x such
that a non-degenerate Rx 6∈ P0,b. By the same reasoning, there exists an x such that a non-degenerate
Rx 6∈ P. This completes the proof of the lemma for the case p 6= 0.

If p = 0, we have q 6= 0. For each tractable class Pa,b and P, except for P0,b, the function Rx still
handles it for all but finitely many values of x. The exception is P0,b, which has the normalized form
P0,1. We prove this case according to s 6= 0 or s = 0.
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The matrix form Hx1x2, x3x4 (in index order GG,GR,RG,RR) of the function H is
s2 + 1 sp sp sq
sp p2 p2 pq
sp p2 p2 pq
sq pq pq q2

 =


s2 + 1 0 0 sq

0 0 0 0
0 0 0 0
sq 0 0 q2

 .
Since q 6= 0, the following binary function on x1, x3 is non-degenerate and realizable∑

x2,x4∈{G,R}

H(x1, x2, x3, x4) = [s2 + 1, sq, q2].

For s 6= 0 (and q 6= 0), it is easy to check that [s2 + 1, sq, q2] 6∈ P0,1.
Now we suppose s = 0 (and p = 0), the simpler construction does not work and we use a slightly

more complicated construction. Suppose the binary function P = 〈(α, β, γ),F〉 =

 a b c
b e d
c d f

, where

α, β, γ are to be determined. We construct

Q(x1, x2, x3, x4) =

 ∑
y1,y2∈{B,G,R}

F(x1, x2, y1)P(y1, y2)F(y2, x3, x4)

∗→{G,R} .
This is realizable by connecting three copies of F in a chain with the middle copy connected to a unary
(α, β, γ) on one edge, and then connecting =B,G on four external edges. The matrix form Qx1x2, x3x4

(in index order GG,GR,RG,RR) of the function Q is
s 1 0
p 0 0
p 0 0
q 0 0


a b c
b e d
c d f

s p p q
1 0 0 0
0 0 0 0

 =


as2 + 2bs+ e asp+ bp asp+ bp asq + bq
asp+ bp ap2 ap2 apq
asp+ bp ap2 ap2 apq
asq + bq apq apq aq2

 =


e 0 0 bq
0 0 0 0
0 0 0 0
bq 0 0 aq2

 .
Let S =

∑
x2,x4∈{G,R}Q(x1, x2, x3, x4) = [e, bq, aq2], which is realizable. We want to show that there

exists (α, β, γ) such that a non-degenerate S 6∈ P0,1. This means a non-degenerate S satisfies bq 6= 0
and (e 6= 0 or aq2 6= 0). The violation of these requirements are specified by polynomial equations on
(α, β, γ), therefore we only need to show there exists (α, β, γ) satisfying each condition separately.

By definition e = PGG = sα + 1β + 0γ = β is not the zero polynomial (in α, β, γ). Similarly, by
the “calculus” from Section 2.4, a = PBB = uα + tβ + rγ and b = PBG = tα. S is non-degenerate iff
b2 − ae 6= 0, since q 6= 0. If t 6= 0, then b2 − ae, bq and e are all non-zero polynomials in α, β, γ. Hence,
if t 6= 0, we can get a non-degenerate binary function not in P0,1.

If t = 0 (and p = s = 0), for the domain of F, {G} is separated from {B,R}. The validity of
Theorem 3.1 for such cases follows from the complexity dichotomy Theorem 2.5.

The two lemmas above solve the case p 6= 0 or q 6= 0. Now, we consider p = q = 0, and F =
[u; t, r; s, 0, 0; 1, 0, 0, 0]:

u
t r

s 0 0
1 0 0 0
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If r = 0, the domain is separated, and this is handled as before.
Now we suppose r 6= 0.

Lemma 5.10. For F given in (23) where p = q = 0 and r 6= 0, (i.e., F is given in the table above with
r 6= 0), the problem Holant∗(F) is #P-hard, unless s = t = 0 and the domain is separated (in which
case Theorem 3.1 holds).

Proof. Consider 〈(0, 1, x),F〉 = [t+ xr; s, 0; 1, 0, 0], for any complex x. This is

t+ xr
s 0

1 0 0

We can pick an x, and use it to realize =B,G by interpolation. Then we can utilize =B,G to reduce a
#P-hard problem on the Boolean domain {B,G} to Holant∗(F).

Over the domain {B,G}, we try to prove the following: We construct a function not in 〈T 〉, and for
each tractable class Pa,b and P, we construct a binary function not in it. We construct binary functions
first.

• s 6= 0

By choosing an x, we can realize a non-degenerate binary function [t+ xr, s, 1] in domain {B,G}
using 〈(0, 1, x),F〉 and =B,G. The rest of the proof is the same: For each tractable class Pa,b and
P, we find a suitable x such that a non-degenerate [t+ xr, s, 1] does not belong to Pa,b and P.

• s = 0

� t = 0

The domain is separated.

� t 6= 0

For any x, we can realize a non-degenerate binary function [u + xr, t, 0] in domain {B,G} using
〈(1, 0, x),F〉 and =B,G. For each tractable class Pa,b and P, there is some x such that [u+xr, t, 0]
is non-degenerate and not in the class.

Now we construct a suitable ternary function. Obviously, we can realize the ternary function
[u, t, s, 1] in domain {B,G}, using =B,G. If it is not in 〈T 〉, we are done.

Suppose we have [u, t, s, 1] ∈ 〈T 〉. A symmetric ternary signature [u, t, s, 1] being decomposable in
〈T 〉 can only be degenerate, of the form (s, 1)⊗3. That is, F = [s3; s2, r; s, 0, 0; 1, 0, 0, 0].

s3

s2 r
s 0 0

1 0 0 0

We construct 〈(1,−s, 1),F〉 = [r; 0, r; 0, 0, 0], which is

r
0 r

0 0 0

We can use this to realize =B,R by interpolation, using the fact that r 6= 0. Then on domain {B,R},
the problem Holant∗(F′) is #P-hard for F′ = F∗→{B,R} = [s3, r, 0, 0].
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5.5 F∗→{G,R} Is Degenerate Of Rank 1 And Isotropic

Suppose F∗→{G,R} is degenerate of rank 1, therefore of the form (a, b)⊗3, however in this subsection
we assume (a, b) is isotropic. The high level proof strategy is similar to that of subsection 5.4, but
the execution is considerably more complicated. We only need to prove the case when F∗→{G,R} is
[1, i,−1,−i]. The case with [1,−i,−1, i] is the same, and follows formally by taking the conjugation.
Let F = [u; t, r; s, p, q; 1, i,−1,−i], namely

u
t r

s p q
1 i −1 −i

(24)

Suppose T = 〈(α, β, γ),F〉 = αA + βB + γC, where A = F1=B, B = F1=G and C = F1=R.
Construct

H(x1, x2, x3, x4) =

 ∑
y1,y2∈{B,G,R}

F(x1, x2, y1)T(y1, y2)F(y2, x3, x4)

∗→{G,R} .
Because F is symmetric, H satisfies the condition in Fact 5, and we can use the partial symmetry
argument to prove it is not in 〈T 〉, by showing two decompositions are impossible.

Let S =


s 1 i
p i −1
p i −1
q −1 −i

, indexed by {G,R}2 × {B,G,R} in lexicographic order. Then the arity 4

function H has a matrix form H1 = STST, where the rows are indexed by (x1, x2) ∈ {G,R}2 and the
columns are indexed by (x3, x4) ∈ {G,R}2. The other matrix form of H is H2 indexed by (x1, x3) and
(x2, x4). H has decomposition form K(x1, x2)L(x3, x4) (resp. K(x1, x3)L(x2, x4)) iff H1 (resp. H2) has
rank at most 1.

Let P =


s 1
p i
p i
q −1

 and Q =

(
1 0 0
0 1 i

)
. Then, S = PQ. By associativity, we can multiply

QTQT first in H1 = PQTQTPT. We have

QAQT =

(
u t+ ir

t+ ir s+ 2ip− q

)
, QBQT =

(
t s+ ip

s+ ip 0

)
, QCQT =

(
r p+ iq

p+ iq 0

)
,

and

QTQT =

(
uα+ tβ + rγ (t+ ir)α+ (s+ ip)β + (p+ iq)γ

(t+ ir)α+ (s+ ip)β + (p+ iq)γ (s+ 2ip− q)α

)
.

Lemma 5.11. If p 6= is or q 6= ip, then there exist some α, β, γ, such that H 6∈ 〈T 〉.

Proof. The proofs under both conditions are the same. W.l.o.g. we assume p 6= is. The proof is
composed of three steps. We will use different matrix or vector representations of H. The goal is to
show that there are some α, β, γ, such that the two matrix forms of H both have rank at least two.

In the first step, we use the matrix form H1 = P(QTQT)PT of H, and show that for some α, β, γ,
this matrix has rank at least 2.
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The submatrix

(
s 1
p i

)
of P has full rank. We only need to show that

(
s 1
p i

)
(QTQT)

(
s 1
p i

)T

,

a 2×2 submatrix of H1, is of full rank. det(QTQT) is a polynomial whose coefficient of β2 is the nonzero
number −(s + ip)2. For any fixed α and γ, there are 3 different values c1, c2, (c1 + c2)/2 (these may
depend on α, γ), such that when β takes any one of these values, det(QTQT) 6= 0 and consequently H1

has rank at least 2.
In the second and third steps we mainly consider the rank of H2. This is done in a two-step process.

Either we establish that H2 has rank least 2 for some setting c1, c2, (c1 + c2)/2 for which H1 also has
rank at least 2, or we get some additional condition. Then in the third step we establish the existence
of the required α, β, γ for both H1 and H2 under the additional condition.

We start our second step by considering the matrix form H2 = Hx1x3, x2x4 . If at least one of the
three matrices H2 given by (α, c1, γ), (α, c2, γ) and (α, (c1 + c2)/2, γ) has rank at least two, by the
partial symmetry argument , H 6∈ 〈T 〉.

Now suppose all three matrices H2 given by (α, c1, γ), (α, c2, γ) and (α, (c1 + c2)/2, γ) have rank at
most 1. By the conclusion det(QTQT) 6= 0 in the first step, H2 6= 0 for all three settings, their ranks
are exactly 1.

Let the matrices H2 given by (α, c1, γ) and (α, c2, γ) be uuT and vvT for some column vectors u and
v. Then the matrix H2 given by (α, (c1 +c2)/2, γ) is (uuT+vvT)/2. If u and v are linearly independent,
then (uuT + vvT)/2 has rank 2. (It certainly has rank at most two, since its image as a linear map is
contained in the span of {u,v}. By linear independence, there are w satisfying uTw = 0 but vTw 6= 0.
Thus the image contains v, and similarly it also contains u.) Hence u and v are linearly dependent. It
follows that the matrices uuT and vvT are also linearly dependent. This linear dependence remains the
same when we write these two matrices as vectors.

We use the vector form H3 of H to show the consequence of this observation. This form helps
to explain getting rid of P and PT. Let Ã denote the column vector form of QAQT, namely Ã =
(u, t + ir, t + ir, s + 2ip − q)T. Similarly, let B̃ = (t, s + ip, s + ip, 0)T and C̃ = (r, p + iq, p + iq, 0)T be
the column vector forms of QBQT and QCQT, respectively. Then H3 = P⊗2(αÃ + βB̃ + γC̃), which
lists all entries of H, and therefore also all entries of H2, in some order. Notice that the submatrix(
s 1
p i

)⊗2

of P⊗2 is of full rank. Let α = 1 and γ = 0, we get Ã + c1B̃ and Ã + c2B̃ are linearly

dependent, where c1 6= c2. It follows that Ã and B̃ are linearly dependent. Because the entry s+ ip in
B̃ is nonzero, Ã is a multiple of B̃, and s + 2ip − q = 0 as the corresponding entry in B̃ is 0. This is
just (s+ ip) + i(p+ iq) = 0. Hence we have p+ iq = i(s+ ip) 6= 0.

In the third step, we fix α = 0, β = 1, γ = 0. Obviously, H1 has rank at least 2, since det(QBQT) =

−(s + ip)2 6= 0. We consider H2. Since the matrix

(
s 1
p i

)
has rank 2, and

(
t

s+ ip

)
is a nonzero

vector, we have either
(
s 1

)( t
s+ ip

)
6= 0 or

(
p i

)( t
s+ ip

)
6= 0.

Suppose the first is not zero. Consider the (GG,GR) × (GG,GR) submatrix of H2, whose row
index is by x1x3 and the column index is by x2x4. They are precisely the entries in the first row
(GG,GG), (GG,GR), (GG,RG) and (GG,RR) of H1. Recall that H1 = P(QTQT)PT = P(QBQT)PT,
after our choice α = 0, β = 1, γ = 0. The first row of P is

(
s 1

)
. Let

(
a b

)
=
(
s 1

)( t s+ ip
s+ ip 0

)
.
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Then the first row of H1 is(
s 1

)
QBQTPT =

(
s 1

)( t s+ ip
s+ ip 0

)(
s p p q
1 i i −1

)
=
(
a b

)( s p p q
1 i i −1

)
.

Because s+ 2ip− q = 0, which we proved in the second step, we have the linear dependence

(
s
1

)
+

2i

(
p
i

)
−
(

q
−1

)
= 0. Therefore the four entries in the first row of H1 are (k, l, l, k + 2il), where

k = as + b and l = ap + bi. If the submatrix of H2 indexed by (GG,GR) × (GG,GR) is not of full
rank, then l2 = k(k + 2il), which is (l − ik)2 = 0. Hence l = ik. It follows that ap = ias. Notice that

a =
(
s 1

)( t
s+ ip

)
6= 0. We get p = is, a contradiction.

If
(
p i

)( t
s+ ip

)
6= 0, the proof is similar. Consider the (GG,GR)×(RG,RR) submatrix of H2

indexed by x1x3 and x2x4. They are precisely the second row entries (GR,GG), (GR,GR), (GR,RG)
and (GR,RR) of H1. The rest of the proof is the same as in the previous case.

It is straightforward that [p = is and q = ip] iff [s + q = 0 and s + 2ip − q = 0]. In the next three
lemmas we will complete the case stipulated in this Section 5.5, namely F∗→{G,R} is degenerate of rank
1 and isotropic, when the negation [p 6= is or q 6= ip] holds. We will show that Holant∗(F) is #P-hard
in this case. The method is to construct a suitable binary signature, or to show directly the problem is
#P-hard. After that we will deal with the case [p = is and q = ip].

Lemma 5.12. If p 6= is or q 6= ip, or equivalently, if s+ q 6= 0 or s+ 2ip− q 6= 0, then for any (a, b) 6=
(0, 0), we can construct a nondegenerate symmetric binary function W 6∈ Pa,b, and a nondegenerate
symmetric binary function W 6∈ P, except in two cases where this simple construction does not work:

• Case 1. For Pi,−2, when s+ q 6= 0 and s+ 2ip− q = 0;

• Case 2. For P, when s+ q = 0 and s+ 2ip− q 6= 0.

Proof. For any complex number x, we can construct W = 〈F, (1, x, 0)〉∗→{G,R} = [s, p, q] + x[1, i,−1].
We write

W = [f0, f1, f2] = [s+ x, p+ xi, q − x].

The determinant of the matrix form of the binary signature W is det(W) = −(s+ 2ip− q)x+ (sq−p2).
There are 4 requirements related to the conclusion about this symmetric binary function.

1. Nondegenerate, that is, −(s+ 2ip− q)x+ (sq − p2) 6= 0.

2. f0 + f1 6= 0, that is, s+ q 6= 0.

3. a(f0 − f2) + bf1 6= 0, that is, 〈(a, b), ((s− q, p) + x(2, i))〉 6= 0.

4. f0 − f2 6= 0, that is, 2x+ s− q 6= 0.

Each requirement is a polynomial in x. The following conditions can guarantee each requirement
polynomial in x is not the zero polynomial respectively.

1. s+ q 6= 0 or s+ 2ip− q 6= 0.

If s+2ip−q 6= 0, det(W) is not zero obviously. If s+2ip−q = 0 but s+q 6= 0, we claim sq−p2 6= 0.
Assume p2 = sq, then (s− q)2 = −4p2 = −4sq which gives (s+ q)2 = 0. A contradiction.
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2. s+ q 6= 0.

3. • Whenever (a, b) is not a multiple of (i,−2), it is always a nonzero polynomial, since the
coefficient of x is 2a+ ib.

• s+ 2ip− q 6= 0.

Because det

[
s− q p

2 i

]
= i(s + 2ip − q) 6= 0, for any (a, b) 6= (0, 0),

[
a b

] [s− q p
2 i

]
6= 0

(the zero vector), so that there is some x such that
[
a b

] [s− q p
2 i

] [
1
x

]
6= 0. Hence (a, b)

is not orthogonal to (s − q, p) + x(2, i). Therefore, for all nonzero (a, b), the polynomial
〈(a, b), ((s− q, p) + x(2, i))〉 6= 0.

4. This is a not a zero polynomial.

Recall the definitions of Pa,b and P in (6). For Pa,b, items 1, 2 and 3 are sufficient conditions, and
for P, items 1, 2 and 4 are sufficient. We have 3 cases according to the values of s+ q and s+ 2ip− q.

1. s+ q 6= 0 and s+ 2ip− q 6= 0.

All four conditions are satisfied. For every set Pa,b and P, we have a proper function not in it.

2. s+ q 6= 0 and s+ 2ip− q = 0.

All four conditions are satisfied, except for Pi,−2 from item 3.

3. s+ q = 0 and s+ 2ip− q 6= 0.

All conditions are satisfied, except for P from item 2.

For the two exceptional cases of Lemma 5.12 (i.e., exactly one of s + q and s + 2ip − q is 0), we
can not get all the desired binary functions by the simple construction 〈F, (α, β, γ)〉. We go back to
analyze the function H in Lemma 5.11 and some other more complicated constructions. The proof of
Lemma 5.11 not only establishes the conclusion H 6∈ 〈T 〉. It uses the polynomial argument that we will
combine with additional requirements.

Let Z1 = 1
2

(
1 1
i −i

)
and Z2 = 1

2

(
1 1
−i i

)
. Then Pi,−2 is composed of binary symmetric

functions in 〈Z1M〉. More concretely, nondegenerate signatures in Pi,−2 are precisely functions of the
form Z⊗2

1 [a, b, 0], for b 6= 0.

Lemma 5.13. When F∗→{G,R} = [1, i,−1,−i] and s+ q 6= 0, s+ 2ip− q = 0, the problem Holant∗(F)
is #P-hard.

Proof. Let H be the function in Lemma 5.11 with the matrix form H1 = PQTQTPT, with α, β, γ to be
set as we wish. By Lemma 5.11, we already have some (α, β, γ), such that H 6∈ 〈T 〉. Under the condition
s+ q 6= 0, we can further construct a non-degenerate binary function not in each of the tractable classes
〈HE〉, or 〈ZE〉 for Z = Z1 or Z2, or 〈Z2M〉 by Lemma 5.12. Note that when s + q 6= 0, the only
exception to the binary function construction in Lemma 5.12 is Pi,−2 which corresponds to 〈Z1M〉. If
we can prove for some (α, β, γ), a nondegenerate H 6∈ 〈Z1M〉, then we will have proved #P-hardness.
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Consider (Z−1
1 )⊗4H, where Z−1

1 =

(
1 −i
1 i

)
. Let R = (Z−1

1 )⊗2P =


s− 2ip− q 4
s+ q 0
s+ q 0

s+ 2ip− q 0

 =


−4ip 4
s+ q 0
s+ q 0

0 0

. Then a matrix form of (Z−1
1 )⊗4H is RQTQTRT. For (Z−1

1 )⊗4H, we only need to show

that for some (α, β, γ), (Z−1
1 )⊗4H 6∈ 〈M〉. This is equivalent to H 6∈ 〈Z1M〉. Denote (Z−1

1 )⊗4H by H̃.

The domain of H is {G,R}4, and we denote the domain of H̃ by {0, 1}4.
We will show that if at least one of u, t, r is not zero, then H̃ 6∈ 〈M〉 for some (α, β, γ), by the

polynomial argument . Because Z1 is an invertible matrix, H ∈ 〈T 〉 iff H̃ ∈ 〈T 〉. By Lemma 5.11, there
is a H̃ 6∈ 〈T 〉. For this H̃, there are two 2× 2 submatrices of its matrix forms H̃1 and H̃2 respectively,
both are of full rank. Thus, the determinants of the two submatrices, as polynomials in (α, β, γ), are
nonzero polynomials. The requirements that their values are nonzero are the first two conditions in this
application of the polynomial argument . The last condition is H̃(0, 1, 0, 1) 6= 0.

Which pairs of submatrices have rank 2 depend on the specific values, p, q, r etc, of F. We do not
analyze the various cases explicitly. We know there is always one pair that works. For any case which
contains a particular set of values for which a particular pair works, we use this pair of determinants as
the first two conditions in this application of the polynomial argument.

The value of H̃ at the input (0, 1, 0, 1) of Hamming weight 2 is
(
s+ q 0

)
QTQT

(
s+ q

0

)
=

(s+ q)2(uα+ tβ + rγ), which is not the zero polynomial.
By the polynomial argument , there is an H̃ that satisfies all three polynomial conditions. By Fact 4

and 5, this H̃ is indecomposable, because by the partial symmetry argument every decomposition leads
to one of the two special decompositions, that is, rank at most one for H̃1 and H̃2. H̃ is indecomposable
implies that if H̃ ∈ 〈M〉, then H̃ ∈M. The third condition says H̃ 6∈ M.

Now we focus on the case u = t = r = 0. We apply a domain separated holographic reduction

(see Fact. 1) by M =

(√
2 0

0 Z−1
1

)
=

 √2 0 0
0 1 −i
0 1 i

 to the bipartite form of the Holant prob-

lem Holant∗(=2|=G,R,F). We remark that this holographic reduction is only for the convenience in
calculating the signature of the gadget to be constructed.

M⊗3F is given by

0
0 0

−4
√

2ip
√

2(s+ q) 0
8 0 0 0

This calculation can be done per each row in the table for F. E.g., the third row in the table is
F1=B = [s, p, q]. As a column vector it is

(
s p p q

)T
and is transformed to

√
2(Z−1

1 )⊗2[s, p, q] =√
2[s− 2ip− q, s+ q, s+ 2ip− q] = [−4

√
2ip,
√

2(s+ q), 0].
After factoring out the constant 8, we will write M⊗3F as F̃:

0
0 0

a b 0
1 0 0 0
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where a = −ip/
√

2 and b =
√

2(s+q)/8. Note crucially that b 6= 0. Up to a constant factor, the problem

Holant∗(=2|=G,R,F) becomes Holant∗(L1 | L2, F̃), where L1 =

 1 0 0
0 0 1
0 1 0

 and L2 =

 0 0 0
0 0 1
0 1 0

.

Now we construct the following ternary triangular gadget with three external dangling edges. We
denote its signature as V. Each of the three vertices incident to the dangling edges is assigned F̃, and
each of the three edges of the triangle is composed of a chain linked by L1, 〈F̃, (0, 1, 0)〉 and L1. (A
simpler triangular gadget does not work here.) Calculation shows that the function V of this gadget

restricted to {G,R} is V∗→{G,R} = [3b4 + 16a3b3, 8a2b4, 4ab5, 2b6] = 2b3
(

2a
b

)⊗3

+ 3b4
(

1
0

)⊗3

. We

remark that this restriction of V in its domain set is only for the purpose of calculation later on. While
V is realizable in the right hand side of Holant∗(L1 | L2, F̃), we do not claim its restriction V∗→{G,R}

is a realizable signature.
The realizability of V in Holant∗(L1 | L2, F̃) means that in problem Holant∗(=2|=G,R,F), we can

realize (M−1)
⊗3

V in the right hand side. As in Lemma 5.12, we want to get a nondegenerate symmetric
binary function W 6∈ Pi,−2. For this purpose, we only need to show that (Z−1

1 )⊗2W 6∈ M and it is
nondegenerate.

The logical process is the following: start from (M−1)
⊗3

V in the right hand side of Holant∗(=2|=G,R

,F), we connect it with an arbitrary unary function u, and then restrict the input to {G,R}, finally
perform a holographic transformation by Z−1

1 . At this stage we wish to obtain a nondegenerate signature
not in 〈M〉 (being nondegenerate and of arity 2 this is the same as being not inM), by setting the unary

function appropriately. The restriction to {G,R} is equivalent to a transformation by N1 =

(
0 1 0
0 0 1

)
.

Let N =

0 0 0
0 1 0
0 0 1

, then note that N1 = N1N, and MN = NM.

(Z−1
1 )⊗2N⊗2

1 〈(M
−1)
⊗3

V,u〉 = (Z−1
1 )⊗2N⊗2

1 N⊗2〈(M−1)
⊗3

V,u〉

= (Z−1
1 )⊗2N⊗2

1 N⊗2(M−1)
⊗2〈V,u′〉

= (Z−1
1 )⊗2N⊗2

1 (M−1)
⊗2

N⊗2〈V,u′〉

= (Z−1
1 )⊗2N⊗2

1 (M−1)
⊗2〈N⊗3V,u′′〉

= (Z−1
1 )⊗2

(
0 Z1

)⊗2 〈N⊗3V,u′′〉

=

(
0 1 0
0 0 1

)⊗2

〈N⊗3V,u′′〉

= 〈N⊗3
1 V,u′′′〉

= 〈V∗→{G,R},u′′′〉

where u,u′,u′′,u′′′ are unary signatures, and u′′′ is on domain {G,R}, and u′′′ can be arbitrary.

If a = 0, take u′′′ = (1, 1), we get 〈V∗→{G,R},u′′′〉 = 2b4
(

0
b

)⊗2

+ 3b4
(

1
0

)⊗2

6∈ 〈M〉. If a 6= 0, take

u′′′ = (1, 0), we get 〈V∗→{G,R},u′′′〉 = 4ab3
(

2a
b

)⊗2

+ 3b4
(

1
0

)⊗2

6∈ 〈M〉. In either case we realized a

nondegenerate symmetric binary signature W = N⊗2
1 〈(M−1)

⊗3
V,u〉 in Holant∗({=G,R,F}), such that

(Z−1
1 )⊗2W 6∈ 〈M〉, thus W 6∈ 〈Z1M〉.
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In the next lemma we finish off Case 2 from Lemma 5.12. We note that P is composed of symmetric

functions in 〈Z1E〉 = 〈Z2E〉. Note that for τ =

(
0 1
1 0

)
, Z1 = Z2τ and τE = E .

Lemma 5.14. When F∗→{G,R} = [1, i,−1,−i] and s+ q = 0, s+ 2ip− q 6= 0, the problem Holant∗(F)
is #P-hard.

Proof. We still use the function H whose matrix form is PQTQTPT from Lemma 5.11. We employ
the same general approach as in Lemma 5.13. If we can prove for some (α, β, γ), a non-degenerate
H 6∈ 〈Z1E〉, then we will have proved #P-hardness. The existence of (α, β, γ) such that H 6∈ 〈T 〉 was
already proved by Lemma 5.11. Note that by Lemma 5.12, we can construct a nondegenerate binary
function not in the other tractable classes 〈HE〉, or 〈Z1M〉, or 〈Z2M〉.

Consider H̃ = (Z−1
1 )⊗4H, where Z−1

1 =

(
1 −i
1 i

)
. Let R = (Z−1

1 )⊗2P =


2s− 2ip 4

0 0
0 0

2s+ 2ip 0

. Then

a matrix form of H̃ is RQTQTRT. We only need to show that for some (α, β, γ), a non-degenerate
H̃ 6∈ 〈E〉. This is equivalent to H 6∈ 〈Z1E〉. We will in fact show that H̃ 6∈ 〈T 〉 ∪ E for some (α, β, γ);
being not in 〈T 〉 means that H̃ is indecomposable, and consequently H̃ 6∈ 〈E〉 is equivalent to H̃ 6∈ E .
Utilizing Lemma 5.11 as how it is used in 5.13, we only need to prove H̃ 6∈ E .

Obviously, H̃ only has at most 4 nonzero entries by the form of R. They are indexed by {GG,RR}×
{GG,RR}, and we list them as

K =

(
a b
b c

)
= LQTQTLT,

where L =

(
2s− 2ip 4
2s+ 2ip 0

)
. The matrix form of H̃ with row index x1x2 and column index x3x4 is

a 0 0 b
0 0 0 0
0 0 0 0
b 0 0 c

.

Obviously, H̃ 6∈ E iff K 6∈ E iff one column or one row of K has two nonzero entries.
Recall that, with s+ q = 0,

QAQT =

(
u t+ ir

t+ ir 2(s+ ip)

)
, QBQT =

(
t s+ ip

s+ ip 0

)
, QCQT =

(
r −i(s+ ip)

−i(s+ ip) 0

)
.

QTQT = αQAQT + βQBQT + γQCQT.

Note that s+ 2ip− q = 2(s+ ip) 6= 0. det

(
2s− 2ip 4
2s+ 2ip 0

)
6= 0.

Assume the first rows (u, t+ir), (t, s+ip) and (r,−i(s+ip)) are linearly independent. Then the first
row of QTQT can be any vector, so that we can pick (α, β, γ) such that this row vector when multiplied
to the right by LT has two nonzero entries. Consider the second row

(
2s+ 2ip 0

)
of L. It follows that

the second row of K has two nonzero entries.
From now on, we have (u, t+ir), (t, s+ip) and (r,−i(s+ip)) are linearly dependent. Hence, r = −it

and u(s+ ip) = 2t2.

If t = 0, we have r = 0, and u = 0 since s+ ip 6= 0. Then for any x, y,

(
0 x
x y

)
can be realized by

QTQT. The first row of K is (4x, 2(s− ip)x+ 4y)LT, which can be set to any vector by setting x and
y, and in particular we set x and y so that the first row of K has two nonzero entries.
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From now on, we have t 6= 0. F becomes

2
√

2u
0 4t

2
√

2(s− ip) 0 2
√

2(s+ ip)
8 0 0 0

after a domain separated holographic reduction M =

 √2 0 0
0 1 −i
0 1 i

. Normalizing by the constant

factor 1/8, we have G, which has the form

a2

0 ab
c 0 b2

1 0 0 0

where a = (
√

2u)1/2/2, b = t/(2a), and c =
√

2(s− ip)/4. We have obtained t, u 6= 0, so a, b 6= 0 and are
well-defined. The fact that the three terms

√
2u/4, t/2 and

√
2(s+ ip)/4 form a geometric progression

a2, ab and b2 follows from the conditions we have proved. We can verify that b2 =
√

2(s + ip)/4, and
c = −b/a. The problem becomes Holant∗(L1 | L2,G), where L1 and L2 are as before.

We use the triangular gadget again. If we use the chain L1, 〈G, (0, 0, 1)〉,L1 at each edge, when
restricted to {G,R}, we get the edge signature [−2b9/a3, b8,−a3b7, a6b6]. Up to a nonzero factor, this is
[−2, d,−d2, d3], where d = a3/b 6= 0. This is nondegenerate. We can realize Holant∗([0, 1, 0]|[−2, d,−d2, d3]).
Under a holographic transformation, Holant∗([0, 1, 0]|[−2, d,−d2, d3]) is equivalent to

Holant∗

(
[1, 0, 1]

∣∣∣∣∣
(

1 1
i −i

)⊗3

[−2, d,−d2, d3]

)
.

Write [−2, d,−d2, d3] = −
[
1
0

]⊗3

−
[

1
−d

]⊗3

, then

[
1 1
i −i

]⊗3

[−2, d,−d2, d3] = −
[
1
1

]⊗3

−
[

1− d
i+ di

]⊗3

.

This is not in any tractable classes of Theorem 2.5.

We summarize the previous few lemmas in this subsection so far:

Corollary 5.15. When F∗→{G,R} = [1, i,−1,−i] and p 6= is or q 6= ip, the problem Holant∗(F) is
#P-hard.

If p = is and q = ip, the signature F is of the form

u
t r

s is −s
1 i −1 −i

(25)

If r = it, F is in the third form of Theorem 3.1, since 〈(0, 1, i),F〉 = 0. Hence Holant∗(F) is tractable.

47



Now we suppose r 6= it. We shall prove that the problem is #P-hard. We first consider the gadget in

Figure 10. We choose a unary u = (α, β, 0), such that the matrix form of 〈u,F〉 is M =

w x y
x z iz
y iz −z

,

Figure 10: A ternary gadget.

where w = αu+ βt, x = αt+ βs, y = αr + βis and z = αs+ β.
We wish to compute the signature of this construction, namely the ternary function (M⊗3F)∗→{G,R}

on domain size two. Consider the 2 × 3 matrix

[
x z zi
y zi −z

]
, which we decompose to M1M2, where

M1 =

[
x z 0
y zi 0

]
, and M2 =

1 0 0
0 1 i
0 0 0

. Then (M⊗3F)∗→{G,R} is M⊗3
1 (M⊗3

2 F).

As M2 has a separated domain form, (M⊗3
2 F)∗→{G,R} is identically 0, since these values are combi-

nations of values from the bottom line F∗→{G,R}. Formally,

(M⊗3
2 F)∗→{G,R} =

[
0 1 i
0 0 0

]⊗3

F =

[
1 i
0 0

]⊗3 [
0 1 0
0 0 1

]⊗3

F =

[
1 i
0 0

]⊗3

F∗→{G,R} =

[
1 i
0 0

]⊗3 [
1
i

]⊗3

= 0.

To compute the other values of M⊗3
2 F, we may set one input of M⊗3

2 F to B, which by the form of

M2 is the same as M⊗2
2 (F1=B). This can be computed as a matrix product M2

u t r
t s is
r is −s

MT
2 , and

the result is

 u t+ ir 0
t+ ir 0 0

0 0 0

. Thus the signature M⊗3
2 F is

u
t+ ir 0

0 0 0
0 0 0 0

which is

u

1
0
0

⊗3

+ (t+ ir) · 1

2
Sym


1

0
0

⊗2

⊗

0
1
0


 .
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(The symmetrization Sym has six terms.)
Now we apply M1, and get

u

[
x
y

]⊗3

+ (t+ ir) · z
2

Sym

[[
x
y

]⊗2

⊗
[
1
i

]]
.

If we can set y = 0, with x 6= 0 and z 6= 0, then this signature has the form [a, b, 0, 0], with b 6= 0.
This defines a #P-hard problem on domain size two by Theorem 2.5. Similarly if we can set x = 0, with
y 6= 0 and z 6= 0, then this signature has the form [0, 0, b, a], with b 6= 0. This also defines a #P-hard
problem by Theorem 2.5.

We will now show that if s 6= 0, or if s = 0 but r 6= −it, then we can indeed set x, y and z accordingly,
and we will have proved the #P-hardness of Holant∗(F).

First suppose s 6= 0. Since we have r 6= it, either t 6= s2 or r 6= is2. Set any α 6= 0. If t 6= s2, then set
β = −αt/s we get x = αt+βs = 0, and y = αr+βis = α(r− it) 6= 0, and z = αs+β = α(s2− t)/s 6= 0.
Similarly if r 6= is2, then set β = αir/s we get y = αr + βis = 0, and x = αt+ βs = α(t+ ir) 6= 0, and
z = αs+ β = α(s2 + ir)/s 6= 0.

Now suppose s = 0. Then x = αt, y = αr and z = β. We set β = 1/(t + ir) (recall that we have
r 6= it). Then (M⊗3F)∗→{G,R} is α2f̂ , where

f̂ = αu

[
t
r

]⊗3

+
1

2
Sym

[[
t
r

]⊗2

⊗
[
1
i

]]
(26)

For α 6= 0, we can ignore the factor α2. When u = 0 we can show the signature

f =
1

2
Sym

[[
t
r

]⊗2

⊗
[
1
i

]]
= [3t2, t2i+ 2tr, 2tri+ r2, 3r2i]

gives a #P-hard Holant∗ problem as follows, by Theorem 2.5. First, f is nondegenerate. After a

holographic reduction

[
t 1
r i

]−1

this signature is f̃ = 1
2Sym

[[
1
0

]⊗2

⊗
[
0
1

]]
. f is degenerate iff f̃ is,

and if this were the case, then f̃ =

[
a
b

]⊗3

, for some a and b. Taking 〈
[
1 0

]⊗2
, f̃〉, we get a = 0, and

similarly, 〈
[
0 1

]⊗2
, f̃〉 gives us b = 0, a contradiction. Checking against the tractability criterion of

Theorem 2.5, we find that Holant∗(f) is #P-hard, unless t2 + r2 = 0. As t + ir 6= 0, we get the only
exceptional case t− ir = 0.

Now we claim that the proof above also shows that for all u not necessarily 0, the problem is
#P-hard, assuming t − ir 6= 0. This is because the conditions on degeneracy and on tractability are
all expressed in terms polynomial equations on the entries of the signature. For any fixed u, if the
conditions fail to be satisfied for f̂ at α = 0 (which is the same as when u = 0 in (26), as has been
shown), then the conditions also fail to be satisfied for some nonzero α sufficiently small. This shows
that for all u the problem Holant∗(f̂), for some nonzero α, is #P-hard. But for any nonzero α, the
problem Holant∗(f̂) is equivalent to Holant∗((M⊗3F)∗→{G,R}). Hence Holant∗(F) is #P-hard.

Now we suppose s = 0, t = ir and u 6= 0. As t+ ir 6= 0 we have t 6= 0. We will use a slightly more
complicated gadget as depicted in Figure 11, where the outer unary function is u1 = (1/t, 1, 0), and the
inner unary function is u2 = (x, 1, 0). We can calculate the binary function that is the linked chain of
〈u1,F〉 and 〈u2,F〉, and in matrix form it is ∗ ∗ ∗

X Z −iZ
Y −iZ −Z


49



(1/t, 1, 0)(x, 1, 0)(x, 1, 0)(1/t, 1, 0)

(x, 1, 0)

(1/t, 1, 0)

Figure 11: A ternary gadget.

where X = x(u+ 2t) + t, Y = −iX + 4ixt and Z = xt.

We can write

[
X Z −iZ
Y −iZ −Z

]
as M1M2, where

M1 =

[
X Z 0
Y −iZ 0

]
and M2 =

1 0 0
0 1 −i
0 0 0


It can be verified that (M2)⊗3F is

u
0 0

0 0 0
8 0 0 0

So the signature of the gadget is

(M1)⊗3[(M2)⊗3F] = u

[
X
Y

]⊗3

+ 8

[
Z
−iZ

]⊗3

.

Since X = x(u+ 2t) + t, Y = −iX + 4ixt and Z = xt, we can always either set X = 0 and Y Z 6= 0,
or set Y = 0 and XZ 6= 0. (When u+ 2t 6= 0, we can set x = −t/(u+ 2t) 6= 0. When u+ 2t = 0, then
X = t 6= 0, and we set x = 1/4.) This proves #P-hardness given u 6= 0.

Finally, we suppose s = 0, t = ir and u = 0. As r 6= it, we have r, t 6= 0. F is

0
ir r

0 0 0
1 i −1 −i

After a holographic reduction by the matrix T =

 √2 0 0
0 1 −i
0 1 i

, F becomes H = T⊗3F =
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0
0 4ri

0 0 0
8 0 0 0

Our problem Holant∗(F) can be restated as Holant({=2} ∪ U|{F} ∪ U). The left hand side =2

becomes (T−1)
T
I3T

−1 which is a constant 1/2 multiplied by (6=B;G,R) (see equation (18)). Holant∗(F)
is holographic equivalent to Holant({6=B;G,R} ∪ U|{H} ∪ U).

We can realize on the right hand side 〈H, (x, y, z)〉, with a unary (x, y, z), and on the left hand side
( 6=B;G,R)⊗3H =

0
4ri 0

0 0 0
0 0 0 8

It is easy to see that Holant({(6=B;G,R)⊗3H} ∪ U | {〈H, (x, y, z)〉} ∪ U) can be simulated by, and
therefore reducible to, Holant({6=G,R} ∪ U | {H} ∪ U).

Setting x = 0, y = 1
8 , z = 1

4ri , we have the binary function which is an equality on {B,G} and zero
elsewhere, 〈H, (x, y, z)〉 = (=B,G). Then we can apply (=B,G) to restrict ( 6=G,R)⊗3H to the subdomain
{B,G}. Notice that [( 6=G,R)⊗3H]∗→{B,G} is 4ri[0, 1, 0, 0], where [0, 1, 0, 0] is the Perfect Matching
function of 3-regular graphs on the domain {B,G}. Hence we get a #P-hard problem.

5.6 F∗→{G,R} = [0, 0, 0, 0]

We deal with the final case where F∗→{G,R} is identically 0. The signature F is of the form

u
t r

s p q
0 0 0 0

Let x and y be such that x2 + y2 = 1, then H =

[
x y
y −x

]
is an orthogonal matrix. Note that

y 6= ±xi. We will use H to normalize (s, p, q). This transformation happens in the domain {G,R}.
Formally, we perform a transformation in the whole domain {B,G,R} using the orthogonal matrix

Ĥ =

1 0 0
0 x y
0 y −x

. Note that in Ĥ the domain {G,R} is separated from {B}. (Ĥ⊗3F)∗→{G,R} is still

[0,0,0,0]. This is because a value of Ĥ⊗3F under any assignment that is restricted to {G,R} only, after
the transformation Ĥ, becomes a combination of values of F∗→{G,R} under a tensor transformation of
H, hence 0. To compute the rest of the signature of Ĥ⊗3F, we may assign one input to B, and compute
the binary signature (Ĥ⊗3F)1=B on {B,G,R}. By the form of Ĥ this is the same as Ĥ⊗2(F1=B). The

matrix form is the matrix product Ĥ(F1=B)ĤT, where the matrix form of F1=B is

u t r
t s p
r p q

. Thus

Ĥ⊗3F is
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u′

t′ r′

s′ p′ q′

0 0 0 0

where

u′ = u

t′ = tx+ ry

r′ = −rx+ ty

s′ = sx2 + 2pxy + qy2

p′ = −px2 + (s− q)xy + py2

q′ = qx2 − 2pxy + sy2

We easily verify that (q′ − s′ ± 2ip′) = (x ∓ iy)2(q − s ∓ 2ip). Thus, for any given x 6= ±iy, we have
q − s∓ 2ip 6= 0 iff q′ − s′ ± 2ip′ 6= 0.

1. Consider the case s = p = q = 0. If r = ±it, then F is in the third form of Theorem 3.1, since
the isotropic (0, 1,±i) annihilates F, namely 〈(0, 1,±i),F〉 = 0. If r 6= ±it, we can apply an
orthogonal transformation Ĥ with rx = ty, such that F becomes

u
t′ 0

0 0 0
0 0 0 0

where t′ = tx+ ry 6= 0. This gives a #P-hard problem on the domain {B,G}.
From now on not all s, p, q = 0.

2. Suppose p = 0. But either s 6= 0 or q 6= 0. Suppose s 6= 0, by symmetry. We get the binary F1=G

t
s 0

0 0 0

which is effectively a domain two binary signature [t, s, 0]. We can use this to interpolate =B,G.
Then it becomes a solved case before, by the substitution of {B,G} for {G,R}. Note that F∗→{B,G}

is not identically 0.

From now on p 6= 0.

3. Suppose q 6= s± 2ip. We can set y/x to be a solution to Y 2 + s−q
p Y − 1 = 0, such that Y 6= ±i.

Then Ĥ⊗3F has p′ = 0. Note that q′ 6= s′ ± 2ip′ = s′, thus at least one of s′ or q′ 6= 0. Thus we
have reduced this case to the previous case.

From now on q = s± 2ip.

4. Suppose p 6= 0, q = s ± 2ip, and either s = 0 or q = 0. Then either q = ±2ip or s = ∓2ip. By
symmetry assume q = 0. We can get the binary F1=R
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r
p 0

0 0 0

which is effectively a domain two binary signature [r, p, 0] on {B,G}. We can use this to interpolate
=B,G. Then it becomes a solved case before, by the substitution of {B,G} for {G,R}, since
F∗→{B,G} is not identically 0.

From now on both s 6= 0 and q 6= 0.

5. s, p, q 6= 0, q = s ± 2ip, but suppose q 6= −s. Setting y/x = 2p
s ∓ i, we can verify that this gives

an orthogonal matrix H such that q′ = 0. This reduces to the previous case.

6. Finally we have s, p, q 6= 0 and q = s ± 2ip = −s. Then p = ∓si and (s, p, q) = s(1,∓i,−1). We
may normalize to s = 1. We consider the case (1, i,−1); the case (1,−i,−1) is symmetric.

If r = it, F is in the third form of Theorem 3.1, since 〈(0, 1, i),F〉 = 0. Now we suppose r 6= it. We
shall prove that the problem is #P-hard using the gadget in Figure 12. The unary u = (α, β, γ)

Figure 12: A ternary gadget.

with α = 1, γ = 0 is chosen such that the matrix form of 〈u,F〉 is M =

z x y
x 1 i
y i −1

, where

x = t+ β, y = r + iβ. Note that the ratio of x, y can be arbitrary, by choosing β.

We wish to compute the signature of the gadget, which is the domain two signature of the ternary

function (M⊗3F)∗→{B,G}. We can decompose the 2×3 matrix

[
x 1 i
y i −1

]
as the product M1M2,

where M1 =

[
x 1 0
y i 0

]
, and M2 =

1 0 0
0 1 i
0 0 0

. Therefore we wish to compute M⊗3
1 (M⊗3

2 F).

As M2 has a separated domain form, (M⊗3
2 F)∗→{G,R} is identically 0, since these values are

combinations of values from the bottom line F∗→{G,R} by a tensor transformation. To compute
the other values ofM⊗3

2 F, we may set one input ofM⊗3
2 F toB, which by the form ofM2 is the same
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as M⊗2
2 (F1=B). This can be computed by a matrix product and the result is

 u t+ ir 0
t+ ir 0 0

0 0 0

.

Thus the signature M⊗3
2 F is

u
t+ ir 0

0 0 0
0 0 0 0

which is

u

1
0
0

⊗3

+ (t+ ir) · 1

2
Sym


1

0
0

⊗2

⊗

0
1
0


 .

(The symmetrization has six terms.)

Now we apply M1, and get

u

[
x
y

]⊗3

+ (t+ ir) · 1

2
Sym

[[
x
y

]⊗2

⊗
[
1
i

]]
.

If we set β = ir, then x = t+ ir 6= 0 and y = 0. This signature is [(u+ 1)x3, ix3, 0, 0]. Since x 6= 0
this defines a #P-hard problem on domain size two by Theorem 2.5.
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