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Abstract

We propose and explore a novel alternative framework to study the complexity of counting problems,
called Holant Problems. Compared to counting Constrained Satisfaction Problems (#CSP), it is a
refinement with a more explicit role for the function constraints. Both graph homomorphism and
#CSP can be viewed as special cases of Holant Problems. We prove complexity dichotomy theorems
in this framework. Because the framework is more stringent, previous dichotomy theorems for #CSP
problems no longer apply. Indeed, we discover surprising tractable subclasses of counting problems,
which could not have been easily specified in the #CSP framework. The main technical tool we use
and develop is holographic reductions. Another technical tool used in combination with holographic
reductions is polynomial interpolations.



1 Introduction

In order to study the complexity of counting problems, several interesting frameworks have been
proposed. One is called counting Constrained Satisfaction Problems (#CSP) [4, 2, 15, 3]. Another well
studied framework is called Graph Homomorphisms or H-coloring problems, which can be viewed as a
special case of #CSP problems [5, 6, 18, 19, 16, 17, 21, 7]. One reason such frameworks are interesting
is because the language is expressive enough so that they can express many natural counting problems,
while specific enough so that we can prove complete complexity classifications for them [12]. The
natural counting problems which can be expressed as graph homomorphism problems include counting
the number of vertex covers, the number of k-colorings in a graph, and many others. However, there are
some natural and important counting problems, which can not be expressed as a graph homomorphism
problem. In [20], it is proved that counting the number of perfect matchings in a graph cannot be
expressed as a graph homomorphism function. Additionally, sometimes a problem can be expressed in
the existing framework, such as #CSP, but only with some contrived restrictions.

In this paper, we propose and explore an alternative framework to study the complexity of counting
problems, called Holant Problems. This notion is motivated by holographic reductions proposed by
Valiant [29, 30]. Compared to #CSP, it is a refinement with a more explicit role for the function
constraints. Both graph homomorphism and #CSP can be viewed as special cases of Holant Problems.
We give a brief description here and a more formal definition is given in Section 2. A signature grid
Ω = (G,F , π) is a tuple, where G = (V,E) is a graph, and π maps each v ∈ V (G) to a function
fv ∈ F . We consider all edge assignments. An assignment σ for every e ∈ E gives an evaluation
∏

v∈V fv(σ |E(v)), where E(v) denotes the incident edges of v. The counting problem on the instance Ω
is to compute

HolantΩ =
∑

σ

∏

v∈V

fv(σ |E(v)).

For example, consider the Perfect Matching problem on G. This problem corresponds to attaching
the Exact-One function at every vertex of G, and then consider all 0-1 edge assignments. In this
case, HolantΩ counts the number of perfect matchings. If we use the At-Most-One function at every
vertex, then we are counting all (not necessarily perfect) matchings. So this new framework can express
some natural counting problems which are not expressible as graph homomorphisms.

To see that Holant is a more expressive framework, we show that every #CSP problem can be
simulated by a Holant problem. Represent an instance of a #CSP problem by a bipartite graph where
LHS are labeled by variables and RHS are labeled by constraints. Now the signature grid Ω on this
bipartite graph is as follows: Every variable node on LHS is attached an Equality function, every
constraint node on RHS has the given constraint function. Then HolantΩ is exactly the answer to the
counting #CSP problem. In effect, the Equality function on each variable node forces the incident
edges to take the same value; this effectively reduces to assigning values to each variable on LHS as in
#CSP. It follows that #CSP problems are precisely the special case of Holant problems on bipartite
graphs where every node on LHS is attached an Equality function. We can show that the class of
#CSP problems is equivalent to Holant problems where all Equality functions are always assumed to
be freely available, and implicitly so. Graph homomorphism is a further special case where not only all
Equality functions are freely (and implicitly) available, but the function set F in our signature grid Ω
contains exactly one binary function (other than these Equality functions). It turns out that allowing
Equality functions has a major influence on the computational complexity of the problems. By making
the presence of these Equality functions explicit, the Holant framework of counting problems can make
a finer complexity classification, which is difficult to do in #CSP.

Our Holant Problem framework is strongly influenced by the development of holographic algorithms
and holographic reductions [29, 30, 8, 11]. Indeed, we will use and develop holographic reductions
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here as a primary technique. One advantage of our new framework is that one can naturally consider
new subclasses of counting problems as special cases of Holant problems other than #CSP problems.
For instance, by assuming all unary functions are freely available, we propose an interesting counting
problem family called Holant∗ Problems. Our first main result is a complexity dichotomy theorem for
all Holant∗ Problems for arbitrary complex valued symmetric functions over Boolean variables: Each
problem in the class is either #P-hard or solvable in P. In this dichotomy theorem, all tractable cases
are accomplished by holographic algorithms with Fibonacci gates [11]. And what is more interesting
and surprising is that the key technique used in the hardness proof is also holographic reductions.
Furthermore, we prove that the theorem holds for planar graphs.

Our second main result is a dichotomy theorem for an even more appealing family of counting
problems, called Holantc Problems, where we only assume two special unary functions ∆0 and ∆1 are
available. These two unary functions simply set a particular edge (variable) to a constant value 0 and
1. We can prove again that every problem in the class is either #P-hard or solvable in P. However here
we can only prove it for all real valued symmetric functions over Boolean variables. (We conjecture that
it is still true over C.) Note that when we assume fewer functions are freely available in the framework
it makes the specification of the family more stringent. It delineates more precisely what functions
and in what combinations lead to #P-hardness, or to tractability, respectively. However, the fewer
functions are assumed free, the more challenging it is to prove #P-hardness. We make essential use of
the dichotomy theorem just proved for Holant∗ Problems, as a launching station to prove our dichotomy
theorem for Holantc Problems.

It is precisely the presence of Equality functions as freely available in #CSP that makes #CSP
a less exacting framework than Holant Problems. The Holantc Problems are basically generic Holant
Problems with the ability to fix the assignments of some edges. In many natural counting problems,
this is indeed the case, such as counting problems for perfect matchings. By the Pinning Lemma in
[15], in any #CSP problem, ∆0, ∆1 can be simulated, and as a result can be viewed as freely available.
In other words Equality functions are stronger than ∆0 and ∆1. Therefore Holantc Problems already
subsume #CSP, and in the meanwhile provide a way for a more exacting account of what makes a
problem tractable or #P-hard.

The main technique for the proof of the second dichotomy theorem is polynomial interpolations.
Once we can interpolate all the unary functions, we can apply the result for Holant∗ Problems. Our
dichotomy theorems have already paid dividend in the study of classifications of #CSP problems. Since
#CSP can be viewed as a special case of Holantc Problems, the dichotomy theorem for Holantc Problems
automatically implies a dichotomy theorem for Boolean #CSP problems with real symmetric constraints.
Motivated by this, we investigated how one might generalize the tractable cases to unsymmetric ones.
Surprisingly it turns out that the symmetric tractable cases already supplied the essential ingredients
for all possible (including unsymmetric) tractable ones. This led us to a dichotomy theorem for the
whole family of complex weighted Boolean #CSP. However the proof there requires substantial new
techniques and we report it in a separate paper [10].

2 Definitions and Background

Our functions take values in C by default. We will mostly be concerned with symmetric functions on
Boolean variables, however the framework of Holant Problems is defined for functions mapping any
[q]k → C for a finite q. For brevity we will mostly restrict q = 2.

As stated, a signature grid Ω = (H,F , π) consists of a graph H = (V,E) with each vertex labeled
by a function fv ∈ F . We use Fq when variables range over [q]. The Holant problem on instance Ω
is to compute HolantΩ =

∑

σ

∏

v∈V fv(σ |E(v)), a sum over all edge assignments. A function fv can
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be represented as a truth table, or a tensor in (C2)⊗ deg(v). This is called a signature. We denote by
=k the Equality signature of arity k. ∆0 (respectively ∆1) denotes the unary signature which takes
value 1 on input 0 (respectively 1), and 0 otherwise. A symmetric function f on k Boolean variables
can be expressed by [f0, f1, . . . , fk], where fj is the value of f on inputs of Hamming weight j. Thus,
(=k) = [1, 0, . . . , 0, 1], ∆0 = [1, 0] and ∆1 = [0, 1]. A Holant problem is parameterized by a set of
signatures.

Definition 2.1. Given a set of signatures F , we define a counting problem Holant(F):
Input: A signature grid Ω = (G,F , π);
Output: HolantΩ.

We would like to characterize the complexity of Holant problems in terms of its signature sets.
Some special families of Holant problems have already been widely studied. For example, if Fq contains
all Equality signatures {=1,=2,=3, · · · }, then this is exactly the weighted #CSP problem. #CSP
problems are a special family of Holant problems, where we assume that all Equality functions are
freely available. Graph homomorphism is a further special case, where we only allow a single binary
function in Fq other than all the Equality functions.

We now define two more special families of Holant problems by assuming some signatures are freely
available. We define them for q = 2; they can be easily extended to arbitrary [q].

Definition 2.2. let U denote the set of all unary signatures. Given a set of signatures F , we use
Holant∗(F) to denote Holant(F ∪ U).

Definition 2.3. Given a set of signatures F , we use Holantc(F) to denote Holant(F ∪ {∆0,∆1}).

Replacing a signature f ∈ F by a constant multiple cf , where c 6= 0, does not change the complexity
of Holant(F). So we view f and cf as the same signature. An important property of a signature is
whether it is degenerate.

Definition 2.4. A signature is degenerate iff it is a tensor product of unary signatures.

In particular, a symmetric signature in F is degenerate iff it can be expressed as λ[x, y]⊗k. Also a

symmetric signature [x0, x1, . . . , xn] is non-degenerate iff rank
[

x0 . . . xn−1

x1 . . . xn

]

= 2.

To introduce the idea of holographic reductions, it is convenient to consider bipartite graphs. This
is without loss of generality. For any general graph, we can make it bipartite by adding an additional
vertex on each edge, and giving each new vertex the Equality function =2 on 2 inputs.

We use #Gq|Rq to denote all counting problems, expressed as Holant problems on bipartite
graphs H = (U, V,E), where each signature for a vertex in U or V is from Gq or Rq, respectively.
An input instance for the bipartite Holant problem is a bipartite signature grid and is denoted as
Ω = (H,Gq|Rq, π). Signatures in Gq are denoted by column vectors (or contravariant tensors); signatures
in Rq are denoted by row vectors (or covariant tensors) [14].

One can perform (contravariant and covariant) tensor transformations on the signatures, which
may produce exponential cancelations in tensor spaces. We will define a simple version of holographic
reductions, which are invertible. Suppose #Gq|Rq and #G′

q|R′
q are two Holant problems defined for the

same family of graphs, and T ∈ GLq(C) is a basis. We say that there is a holographic reduction from
#Gq|Rq to #G′

q|R′
q, if the contravariant transformation G′ = T⊗gG and the covariant transformation

R = R′T⊗r map G ∈ Gq to G′ ∈ G′
q and R ∈ Rq to R′ ∈ R′

q, where G and R have arity g and r
respectively. (Notice the reversal of directions when the transformation T⊗n is applied. This is the
meaning of contravariance and covariance.)

3



Theorem 2.1 (Valiant’s Holant Theorem). Suppose there is a holographic reduction from #Gq|Rq to
#G′

q|R′
q mapping signature grid Ω to Ω′, then HolantΩ = HolantΩ′ .

In particular, for invertible holographic reductions from #Gq|Rq to #G′
q|R′

q, one problem is in P
iff the other one is, and similarly one problem is #P-hard iff the other one is also.

Theorem 2.2. Let Fq be a set of signatures and M be a q× q orthogonal matrix, i.e., MMT = Iq. For
any signature grid Ω = (G,Fq , π), replacing every signature F ∈ Fq by M⊗nF , where n is the arity of
F , we can get a new signature grid Ω′. Then HolantΩ = HolantΩ′ .

Proof. First we use a standard technique to reformulate the signature grid Ω = (G,Fq, π). We insert a
new vertex at each edge of G with signature =2. This will not change the value of the signature grid.
Then for the new bipartite signature grid (G′,Fq|{=2}, π), we apply a holographic reduction with basis
M . This will map a signature F ∈ Fq to M⊗nF , where n is the arity of F . It is an algebraic fact that
=2 will map to itself. Now we can replace each new =2 node back to an edge to revert back to G. This
gives the signature grid Ω′ as required. By the Holant theorem, its value is the same as Ω.

This theorem is very useful as a way to normalize a given signature set Fq.
Starting from next section, we will exclusively focus on Boolean variables. A technical issue is the

model of computation for C. Strictly speaking we must only use computable numbers [1, 24]. We will
state our results for all C, assuming all numbers in a particular instance (signature) are computable.

3 A Dichotomy Theorem for Holant∗(F)

Theorem 3.1. Let F be a set of symmetric signatures over C. Then Holant∗(F) is computable in
polynomial time in the following three Classes. In all other cases, Holant∗(F) is #P-hard.

1. Every signature in F is of arity no more than two;

2. There exist two constants a and b (not both zero, depending only on F), such that for all signatures
[x0, x1, . . . , xn] ∈ F one of the two conditions is satisfied: (1) for every k = 0, 1, . . . , n − 2, we
have axk + bxk+1 − axk+2 = 0; (2) n = 2 and the signature [x0, x1, x2] is of form [2aλ, bλ,−2aλ].

3. For every signature [x0, x1, . . . , xn] ∈ F one of the two conditions is satisfied: (1) For every
k = 0, 1, . . . , n − 2, we have xk + xk+2 = 0; (2) n = 2 and the signature [x0, x1, x2] is of form
[λ, 0, λ].

The dichotomy is still true even if the inputs are restricted to planar graphs.

Remark: Since all unary signatures can be used for free, we always assume the arity of every signature
in F is larger than one. And since all the degenerate signatures can be decomposed to unary signatures,
we also assume that every signature in F is non-degenerate.
Proof Outline: The first Class to be computable in P is easy. One can compute the signature of
a path by matrix multiplication. The other two polynomial time computable Classes follow from our
previous work on Fibonacci gates [11].

Now for the hardness, we first prove in Lemma 3.1 that the theorem holds if F contains a single
symmetric signature of arity three. The main technique is holographic reductions. We make use of the
signature theory developed in holographic algorithms [9, 8]. This theory gives us three Categories in a
certain parametrization for the signature according to the eigenvalues. For each Category, we choose
one #P-hard problem to reduce from, all using holographic reductions. In Lemma 3.2, we prove that if
one signature has the form in Class 2 of Theorem 3.1, and we combine it with another signature which
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is not in this Class, then the Holant∗ problem is #P-hard. The main idea of the proof is to reduce it
to Lemma 3.1 with holographic reductions. In Lemma 3.3, we prove the same thing is true for Class 3.
Finally we extend the above proofs to a set of signatures of arbitrary arities and finish the whole proof.

The following lemma is the first important step towards the proof of Theorem 3.1. It says that
Theorem 3.1 holds if F only contains one signature of arity three. Holographic reductions play a
decisive role in the proof. This Lemma serves as the foundation for all subsequent lemmas.

Lemma 3.1. Let [x0, x1, x2, x3] be a symmetric signature with arity 3, then Holant∗([x0, x1, x2, x3]) is
#P-hard unless one of the following two statements is true: (1) there exist two constants a, b (not both
zero) such that ax0 + bx1 − ax2 = 0 and ax1 + bx2 − ax3 = 0; (2) x0 + x2 = 0 and x1 + x3 = 0.

Proof: Assume [x0, x1, x2, x3] does not satisfy either of the two statements, we prove that
Holant∗([x0, x1, x2, x3]) is #P-hard. Our starting point is that #[0, 1, 1]|[1, 0, 0, 1] and #[1, 0, 1]|[1, 1, 0, 0]
are both #P-Complete [31]. The first problem is simply counting the number of vertex covers for 3-
regular graphs; while the second is to count the number of (not necessarily perfect) matchings for
3-regular graphs. We remark that both of them remain #P-Complete even for planar graphs.

First we use the signature theory from holographic algorithms to give a better parametrization.
Given a non-degenerate signature [x0, x1, x2, x3], there are three Categories:

• Category 1. xi = α3−i
1 αi

2 + β3−i
1 βi

2, where α1α2 6= 0, β1β2 6= 0 and α1β2 − α2β1 6= 0;

• Category 2. xi = Aiαi−1 + Bαi, where A 6= 0; or

• Category 3. xi = A(3 − i)α2−i + Bα3−i, where A 6= 0.

Category 3 can be viewed as the reversal of Category 2, so we will omit the proof for Category 3. The
choices made here in this particular parametrization is informed by the “signature theory” [9, 8] that
we have developed in previous work. (But one can directly check that for any non-degenerate signature
[x0, x1, x2, x3], one of these three parameterizations is always possible. Note that, if α = 0 then we take
the convention that the expression iαi−1 = 0, 1, 0, 0 for i = 0, 1, 2, 3 respectively.)

For Category 1, we have

X = [x0, x1, x2, x3] =

[

α1

α2

]⊗3

+

[

β1

β2

]⊗3

.

We restate our conditions from the Lemma statement in this new parametrization. The fact that X is
non-degenerate implies that α1β2 −α2β1 6= 0. The fact that X is not in the case indicated in statement
(1) implies that α1β1 + α2β2 6= 0. This follows from Prop 5.4. The fact that X is not in the case
indicated in statement (2) implies that α2

1 + α2
2 6= 0 or β2

1 + β2
2 6= 0. This follows from Prop 5.5. By

symmetry, we can assume that α2
1 + α2

2 6= 0.
Under the condition α2

1 + α2
2 6= 0, we can apply an orthogonal transformation to map the vector

(α1, α2) to be of the form (α′
1, 0), where α′

1 6= 0. We may use a (complex orthogonal) Householder
matrix for this purpose. Then under this orthogonal basis, the signature becomes

X ′ = [x′
0, x

′
1, x

′
2, x

′
3] =

[

α′
1

0

]⊗3

+

[

β′
1

β′
2

]⊗3

.

By Proposition 5.3, this transformation does not change the complexity of the Holant problem. So it
suffices to prove the #P-hardness result for this signature. By a scalar multiplication we assume α′

1 = 1.
So, reuse the notation X, we can assume the signature is of this form

X = [x0, x1, x2, x3] =

[

1
0

]⊗3

+

[

β1

β2

]⊗3

.
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The two conditions from the statement of the Lemma become simply β1β2 6= 0.

Now under the basis T =
[

1 β1

0 β2

]

, signature [1, 0, 0, 1] becomes [x0, x1, x2, x3]. This is the result of the

contravariant transformation (on truth tables) (x0, x1, x1, x2, x1, x2, x2, x3)
T = T⊗3(1, 0, 0, 0, 0, 0, 0, 1)T ,

namely X = T⊗3

(

[

1
0

]⊗3
+

[

0
1

]⊗3
)

. Under the same basis, [0, 1, 1] undergoes a covariant transformation,

we have

(0, 1, 1, 1)(T−1)⊗2 =
1

β2
2

(0, β2, β2, 1 − 2β1).

Again, we can ignore the scalar factor 1/β2
2 . So by the holographic reduction defined by T , the

complexity of the problem #[0, β2, 1−2β1]|[x0, x1, x2, x3] is the same as #[0, 1, 1]|[1, 0, 0, 1], which is #P-
Complete (vertex cover). In order to prove that Holant∗([x0, x1, x2, x3]) is #P-Complete, we only need
to show that the signature [0, β2, 1− 2β1] can be realized by [x0, x1, x2, x3] with some unary signatures.

For a binary signature F we can write it in a matrix form
[

F (00) F (01)
F (10) F (11)

]

. We use the gadget in

(
t
0
,
 t
1
)
 (
t
0
,
 t
1
)
(
s
0
,
 s
1
)


Figure 1: We use this gadget to realize the signature [0, β2, 1 − 2β1]. All (three) nodes of degree 3 in
this gadget have the signature [x0, x1, x2, x3].

Figure 1 to realize [0, β2, 1−2β1], where the two unary signatures (t0, t1) and (s0, s1) will be determined
later. Let

A =

[

1
0

]

[

1 0
]

=

[

1 0
0 0

]

, B =

[

β1

β2

]

[

β1 β2

]

=

[

β2
1 β1β2

β1β2 β2
2

]

.

In X, if one input is 0, the induced binary signature has matrix form A + β1B. If one input is 1, the
induced binary signature has matrix form β2B. It follows that the signature of the above gadget is

(t0(A + β1B) + t1β2B)(s0(A + β1B) + s1β2B)(t0(A + β1B) + t1β2B)

= (t0A + (t0β1 + t1β2)B)(s0A + (s0β1 + s1β2)B)(t0A + (t0β1 + t1β2)B).

Now we use a new set of variables x = t0, y = t0β1 + t1β2, z = s0, w = s0β1 + s1β2, and write the
above matrix as (xA + yB)(zA + wB)(xA + yB). We note that for any given x, y, z, w, we can find
t0, t1, s0, s1 to satisfy the above relationships. Then, to realize [0, β2, 1 − 2β1], we just want to choose
some x, y, z, w such that

(xA + yB)(zA + wB)(xA + yB) =

[

0 β2

β2 1 − 2β1

]

.

We show that we can find some x, y, z, w to satisfy the above condition.
Substituting A and B, and denote by γ = β2

1 + β2
2 , we have the following:

(xA + yB)(zA + wB)(xA + yB)

= w

[

β2
1(x + yγ)2 yβ1β2γ(x + yγ)

yβ1β2γ(x + yγ) y2β2
2γ2

]

+ z

[

(x + yβ2
1)2 yβ1β2(x + yβ2

1)
yβ1β2(x + yβ2

1) y2β2
1β2

2

]
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We may choose w = (x+ yβ2
1)2 and z = −β2

1(x+ yγ)2 to make the (1, 1) entry zero. The (1, 2) (and
(2, 1)) entry is

g1 = xyβ1β
3
2(x + β2

1y)(x + yγ);

and the (2, 2) entry is
g2 = xy2β4

2(x(2β2
1 + β2

2) + 2y(β4
1 + β2

1β2
2)).

We want to choose some x, y such that [g1, g2] = [β2, 1− 2β1]. We have β2 6= 0. We will choose xy 6= 0.
As both g1 and g2 are homogenous in x and y, we can ignore the common factor xyβ3

2 of g1 and g2. It
follows that we only have to satisfy that g2/g1 = (1 − 2β1)/β2 with y = 1. We need the following

0 = β2g2− (1−2β1)g1 = β1(2β1 −1)x2 +(2β2
1 −β1 +β2

2)(2β2
1 +β2

2)x+β2
1(β2

1 +β2
2)(2β2

1 −β1 +2β2
2). (1)

What we have to prove is that at least one of the roots to the equation in (1) is not a root of g1 =
g1(x, 1) = 0. The roots of g1 = 0 are x = 0, x = −β2

1 and x = −γ. Firstly we can verify that x = −β2
1

can not be a root of (1). This is because when x = −β2
1 , the expression in (1) can be simplified to

β2
1β4

2 6= 0. Secondly if x = −γ is a root of (1), the expression in (1) can be simplified to −β4
2γ, and

this would force γ = 0. So, assuming the expression in (1) as a polynomial in x is indeed of degree 2,
then the only case we need to worry is that x = 0 is a double root of (1). In fact, suppose (1) is indeed
quadratic, and x = 0 is not a double root, then we may let ξ 6= 0 be a root of (1). This ξ 6= −β2

1 ,
because −β2

1 is not a root of (1); ξ can’t be −γ either, for otherwise −γ would be a root of (1) which
we had proved it would force γ = 0, and thus ξ = −γ = 0, a contradiction. Thus ξ is a root of (1) but
not a root of g1, as is needed.

Now let’s consider the exceptional cases: either x = 0 is a double root of (1), or (1) has degree less
than 2. If x = 0 is a double root of (1), we have

(2β2
1 − β1 + β2

2)(2β2
1 + β2

2) = β2
1(β2

1 + β2
2)(2β2

1 − β1 + 2β2
2) = 0.

To satisfy this, there are only four exceptional cases (A1 to A4): β1 = 1, β2 = ±i or β1 = −1
2 , β2 = ± i√

2
.

On the other hand, if the polynomial in (1) has degree less than 2, then β1 = 1
2 . In this case, the

polynomial becomes
(1/2 + β2

2)x + (1/4 + β2
2)/2 = 0.

This gives us four additional exceptional cases (B1 to B4): β1 = 1
2 , β2 = ± i

2 , in which case the
polynomial is linear with root x = 0; or β1 = 1

2 , β2 = ± i√
2
, in which case the polynomial degenerates to

a (non-zero) constant. In all other cases, there is a root of (1) which is not a root of g1, which completes
the #P-completeness proof.

For the cases A1 and A2, we use a new starting problem #[1, 1, 0]|[1, 0, 0, 1], which is the reversal of
the previous problem and therefore it is also #P-Complete. Then all previous part of the proof is still
valid, except that the signature of arity two we would like to realize is

(1, 1, 1, 0)(T−1)⊗2 = (1,
1 − β1

β2
,
1 − β1

β2
,
β2

1 − 2β1

β2
2

).

Substituting β1 = 1, β2 = ±i, the signature is [1, 0, 1] which is trivially realizable by one edge. So we have
proved that it is #P-Complete in the cases A1 and A2. Now consider the case A3 and A4, β1 = −1

2 , β2 =
± i√

2
. We will give a different parametrization. For case A3, we apply an orthogonal transformation

M =
[

−i −
√

2√
2 −i

]

and a scalar multiplier 2i on the signature and it becomes
[

1
0

]⊗3
+

[

2

2
√

2i

]⊗3
. This is

not one of the exceptional cases and we have proved that it is #P-Complete. For case A4, we apply
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another orthogonal transformation M ′ =
[

i −
√

2√
2 i

]

and a scalar multiplier −2i on the signature and

it becomes
[

1
0

]⊗3
+

[

2

−2
√

2i

]⊗3
.

The cases B3 and B4 can be shown by the same method as in A4 and A3, using M ′ and M
respectively. The only cases left are B1 and B2. Here we will use another gadget similar to the one in
Figure 1 except we remove the middle edge (including the node labeled (s0, s1) and the middle node of
degree 3). For B1, the signature of this gadget is

(t0(A + β1B) + t1β2B)2 = (xA + yB)2,

where A and B are as before, and with the specific values of β1, β2, B = 1
4

[

1 i
i −1

]

. By setting x = i

and y = −2i, we have (xA + yB)2 =
[

0 i/2
i/2 0

]

, which is the matrix form of the target signature

[0, β2, 1 − 2β1] = [0, i
2 , 0]. This finishes case B1. The case B2 can be done with x = 1 and y = −2.

Now we prove for Category 2. In this case xi = Aiαi−1 + Bαi, the condition that it does not

satisfy statement (2) in Lemma 3.1 implies that α 6= ±i. This is because rank
[

x0 − x2 x1

x1 − x3 x2

]

= 2 and its

determinant can be shown to be −A2(1 + α2). Under this condition, we can choose some orthogonal

transformation to make it in the form [x, y, 0, 0] where y 6= 0. In fact, if we let T =
[

1 B−1

3

α A + B−1

3
α

]

, then

the signature [x0, x1, x2, x3] can be expressed as

(x0, x1, x1, x2, x1, x2, x2, x3)
T = T⊗3(1, 1, 1, 0, 1, 0, 0, 0)T .

(We chose these basis transformations based on an underlying signature theory of holographic
algorithms, not “out of blue”. But for brevity of exposition we state these transformations as is
without discussing the background. They can be directly verified, albeit a bit tedious.) Let T = QR be

its QR factorization, where Q is orthogonal and R is upper triangular. In fact if we denote T =
[

1 ∗
α ∗

]

,

then we can choose our Q as the (orthogonal) Householder matrix, which is a (complex) reflection,

Q = QT = 1√
1+α2

[

1 α
α −1

]

. Then QT = R =
[

u w
0 v

]

is upper triangular, where u =
√

1 + α2. As

detQ = −1, det R = − detT = −A 6= 0, we have uv 6= 0. This Q is our choice of the orthogonal
transformation. It follows that

Q⊗3(x0, x1, x1, x2, x1, x2, x2, x3)
T

= (QT )⊗3(1, 1, 1, 0, 1, 0, 0, 0)T

= R⊗3(1, 1, 1, 0, 1, 0, 0, 0)T

= R⊗3

{

[

1
0

]⊗3

+

[

1
0

]

⊗
[

1
0

]

⊗
[

0
1

]

+

[

1
0

]

⊗
[

0
1

]

⊗
[

1
0

]

+

[

0
1

]

⊗
[

1
0

]

⊗
[

1
0

]

}

=

[

u
0

]⊗3

+

[

u
0

]

⊗
[

u
0

]

⊗
[

w
v

]

+

[

u
0

]

⊗
[

w
v

]

⊗
[

u
0

]

+

[

w
v

]

⊗
[

u
0

]

⊗
[

u
0

]

This can be written as a symmetric signature form [u3 + 3u2w, u2v, 0, 0]. Note that the entry u2v 6= 0.
By a scalar multiplication, we can make the entry u2v equal to 1. So we only have to deal with a

signature of the form [v, 1, 0, 0] for an arbitrary given v.
For this signature, we can apply a holographic transformation defined by the matrix T ′ =

[

1 v−1

3

0 1

]

with inverse T ′−1 =
[

1 − v−1

3

0 1

]

. To prove #P-hardness, we will reduce from the match-

ing problem #[1, 0, 1] | [1, 1, 0, 0]. Under a contravariant transformation (v, 1, 1, 0, 1, 0, 0, 0)T =
T ′⊗3(1, 1, 1, 0, 1, 0, 0, 0)T , the signature [1, 1, 0, 0] becomes [v, 1, 0, 0]. Under the same basis, [1, 0, 1]
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undergoes the covariant transformation to become (1, 0, 0, 1)(T ′−1)⊗2 = ((1, 0)⊗2 + (0, 1)⊗2)(T ′−1)⊗2 =

(1, 1−v
3 , 1−v

3 , 1+ (1−v)2

9 ). I.e., the signature [1, 0, 1] becomes a new symmetric signature [1, 1−v
3 , 1+ (1−v)2

9 ].
The proof is then to use the same gadget as in Figure 1 to realize this signature, using unary signatures
and [v, 1, 0, 0].

We will rename the values x = t0, y = t1, z = s0 and w = s1 in Figure 1. The signature of this

gadget in matrix form is (xA + yB)(zA + wB)(xA + yB), where A =
[

v 1
1 0

]

and B =
[

1 0
0 0

]

. After

some calculations we found that this signature in matrix form is

[

w · (x2v2 + 2xyv + y2) + z · (x2(v3 + 2v) + 2xy(v2 + 1) + y2v) w · (x2v + xy) + z · (x2(v2 + 1) + xyv)
w · (x2v + xy) + z · (x2(v2 + 1) + xyv) w · x2 + z · x2v

]

.

Our goal is to choose x, y, z and w such that it is equal to

[

1 1−v
3

1−v
3 1 + (1−v)2

9

]

. We can write this as

a system of three linear equations in z and w. Then we can complete the proof, if we can choose x and
y such that the following matrix has determinant 0, yet the first two columns have rank 2.





x2v2 + 2xyv + y2 x2(v3 + 2v) + 2xy(v2 + 1) + y2v 1
x2v + xy x2(v2 + 1) + xyv 1−v

3

x2 x2v 1 + (1−v)2

9



 .

After some row operations it becomes

[

y2 2xy + y2v f3

xy x2 + xyv f2

x2 x2v f1

]

, where f1, f2, f3 are polynomials in v, and

explicitly, f1 = (10 − 2v + v2)/9 and f2 = (3− 13v + 2v2 − v3)/9. Subtracting from the second column

the first column multiplied by v, we get

[

y2 2xy f3

xy x2 f2

x2 0 f1

]

. We will set x = 1; this guarantees that the first

two columns have rank 2, and gives the matrix

[

y2 2y f3

y 1 f2

1 0 f1

]

. Now the determinant is easily calculated,

(subtract the first row by the second row multiplied by y, and the second from the third multiplied by
y). The determinant is −(f1y

2 − 2f2y + f3). As long as f1 and f2 are not simultaneously 0, we can
always choose a y to make this determinant 0.

However it is easy to show that f1 and f2 have no common zero in v, as 3(f2 + vf1) = 1 − v and
v = 1 is not a zero of either f1 or f2. This completes the proof.

Lemma 3.1 shows us what happens when there is a single non-degenerate symmetric signature of
arity 3. It explicitly lists two exceptional cases for being not #P-hard. The next Lemma addresses what
happens if one signature of arity 3 happens to be in the first exceptional case, but some other signature
does not quite fit.

Lemma 3.2. Let [x0, x1, x2, x3] and [y0, y1, y2] be non-degenerate symmetric signatures with arity three
and two respectively. Suppose there exist two constants a, b (not both zero), such that ax0+bx1−ax2 = 0
and ax1 + bx2−ax3 = 0, but ay0 + by1−ay2 6= 0 and [y0, y1, y2] is not of the form [2aλ, bλ,−2aλ]. Then
Holant∗({[x0, x1, x2, x3], [y0, y1, y2]}) is #P-hard.

Lemma 3.3 does the same thing as Lemma 3.2 for the other exceptional case of the arity 3 signature.

Lemma 3.3. Let [x, y,−x,−y] be a symmetric signature with arity three and [y0, y1, y2] be a symmetric
signature with arity two. Suppose they are both non-degenerate. If y0 + y2 6= 0 and [y0, y1, y2] is not of
the form [λ, 0, λ], then Holant∗({[x, y,−x,−y], [y0, y1, y2]}) is #P-hard.
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The proofs of the above two lemmas can be found in the appendix. The following lemma extends
the result to a signature with arbitrary arity. The proof is also given in the appendix.

Lemma 3.4. Let [x0, x1, x2, . . . , xn] be a non-degenerate symmetric signature with arity n > 3, then
Holant∗([x0, x1, x2, . . . , xn]) is #P-hard unless one of the following two statements is true: (1) there exist
two constants a, b (not both zero), such that for all k = 0, 1, . . . , n− 2, we have axk + bxk+1 −axk+2 = 0
(the pair (a, b) is unique up to a scalar factor); (2) for all k = 0, 1, . . . , n − 2, we have xk + xk+2 = 0.

Finally we further extend this result to a set of signatures and finish the proof for Theorem 3.1. The
details can be found in the appendix.

4 A Dichotomy Theorem for Holantc(F)

Theorem 4.1. Let F be a set of real symmetric signatures, and let F1,F2 and F3 be three families of
signatures defined as

F1 = {λ([1, 0]⊗k + ir[0, 1]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3};
F2 = {λ([1, 1]⊗k + ir[1,−1]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3};
F3 = {λ([1, i]⊗k + ir[1, −i]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3}.

Then Holantc(F) is computable in polynomial time if (1) Holant∗(F) is computable in polynomial time
or (2) F ⊆ F1 ∪ F2 ∪ F3. Otherwise, Holantc(F) is #P-hard.

We only give a proof outline here. The complete proof is given as an appendix in Section 11.
Proof Outline: By definition, every instance of Holantc(F) is also an instance of Holant∗(F). So it
is obvious that if Holant∗(F) is computable in polynomial time then so is Holantc(F). The polynomial
time algorithm for F ⊆ F1 ∪ F2 ∪ F3 is non-trivial. The tractability crucially depends on algebraic
cancelations. The crux of the matter is a polynomial time algorithm to evaluate

∑

x1,x2,...,xk=0,1

iL1(X)+L2(X)+···+Ln(X),

where each Li(X) is a 0-1 indicator function of a mod 2 sum. Thus the exponent on i can be viewed as
a mod 4 sum of mod 2 sums. It turns out that this tractability leads to a more general P-time algorithm
which includes unsymmetric signatures as well. In [10], we extend these families to a unified algorithm
which eventually leads a dichotomy theorem for complex valued Boolean #CSP.

The main result here is hardness. We want to prove that aside from these tractable cases, all
remaining problems are #P-hard. Here the main technique is polynomial interpolation. We prove the
second dichotomy theorem (Theorem 4.1) by a reduction to the first (Theorem 3.1). We will show
how to interpolate all the unary signatures. The interpolation method used here is briefly described
in Section 10. Once we can interpolate all unary signatures by Lemma 11.1, we can make use of the
dichotomy theorem for Holant∗(F). The whole proof is organized as a sequence of lemmas (Lemma
11.3 to Lemma 11.7). In each lemma, we prove the theorem for a larger family of F , and the remaining
unproved ones are the beginning of the next lemma. Finally we prove the theorem for all possible
signature sets F . In some cases, the attempt to interpolate all unary signatures does not work. In
these cases, we employ yet another (the third) starting point of #P-hardness, which is the problem of
counting Perfect Matchings on 3-regular graphs [13]. We reduce the Perfect Matching problem
also by polynomial interpolation, which is done in Lemma 11.2. However, note that counting Perfect

Matchings is computable in polynomial time for planar graphs [22, 23, 25], therefore our dichotomy
theorem for Holantc problems here does not extend to planar graphs as our dichotomy theorem for
Holant∗ problems does.
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Appendix

5 Some Preliminary Results

A signature from Fq at a vertex is considered a basic realizable function. Instead of a single vertex,
we can use graph fragments to generalize this notion. An Fq-gate Γ is also a tuple (H,Fq, π), where
H = (V,E,D) is a graph with some dangling edges D. (See Figure 2 for one example.) Other than

H


Figure 2: An F-gate with 5 dangling edges.

these dangling edges, an Fq-gate is the same as a signature grid. The role of dangling edges is similar to
that of external nodes in Valiant’s notion [28, 29], however we allow more than one dangling edges for
a node. In H = (V,E,D) each node is assigned a function in Fq by the mapping π (we do not consider
“dangling” leaf nodes at the end of a dangling edge among these), E is the set of regular edges, denoted
as 1, 2, . . . ,m, and D is the set of dangling edges, denoted as m + 1,m + 2, . . . ,m + n. Then we can
define a function for this F-gate Γ = (H,Fq, π),

Γ(y1, y2, . . . , yn) =
∑

x1x2···xm

H(x1x2 · · · xmy1y2 · · · yn),

where (y1, y2, . . . , yn) ∈ {0, 1}n denotes an assignment on the dangling edges and H(x1x2 · · · xmy1y2 · · · yn)
denotes the value of the signature grid on an assignment of all edges. We will also call this function
the signature of the Fq-gate Γ. An Fq-gate can be used in a signature grid as if it is just a single node
with the particular signature. We note that even for a very simple signature set Fq, the signatures for
all Fq-gates can be quite complicated and expressive. Matchgate signatures are an example.

Using the idea of Fq-gates, we can reduce one holant problem to another. Let g be the signature
of some Fq-gate Γ. Then Holant(Fq ∪ {g}) ≤T Holant(Fq). The reduction is quite simple. Given an
instance of Holant(Fq ∪ {g}), by replacing every appearance of g by an Fq-gate Γ, we get an instance
of Holant(Fq). Since the signature of Γ is g, the values for these two signature grids are identical.

We give some propositions which are useful in the proof. We first give one more definition.

Definition 5.1. Given a symmetric signature [x0, x1, . . . , xn] and any l, h where 0 ≤ l < h ≤ n, we call
[xl, xl+1, . . . , xh] a sub-signature of [x0, x1, . . . , xn] with arity h − l.

Proposition 5.1. If [xl, xl+1, . . . , xh] is a sub-signature of [x0, x1, . . . , xn] and Holant∗([xl, xl+1, . . . , xh])
is #P-Complete, then Holant∗([x0, x1, . . . , xn]) is #P-Complete. This is also true for Holantc.

Proof. We use unary signatures [1, 0], [0, 1] and [x0, x1, . . . , xn] to simulate a sub-signature [xl, xl+1, . . . , xh].
We connect l dangling edges to [x0, x1, . . . , xn] with the unary signature [0, 1], and connect n−h dangling
edges with the unary signature [1, 0].
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Proposition 5.2. Let n ≥ 3 and let [x0, x1, . . . , xn] be a non-degenerate symmetric signature. Then
for any m = 2, 3, . . . , n− 1, there exists a non-degenerate sub-signature of [x0, x1, . . . , xm] with arity m,
unless the signature is of the form [x0, 0, . . . , 0, xn].

Proof. Since rank

[

x0 . . . xn−1

x1 . . . xn

]

= 2, there must be non-zero entries among x0, x1, . . . , xn. If all

entries are non-zero, then either rank

[

x0 . . . xn−2

x1 . . . xn−1

]

= 2, or rank

[

x1 . . . xn−1

x2 . . . xn

]

= 2. Otherwise

they are both of rank 1, and being non-zero, the second row is a multiple of the first row in both
matrices. Since they share at least one column, and being non-zero, this multiplier must be the same,

which says that rank

[

x0 . . . xn−1

x1 . . . xn

]

= 1, a contradiction. Then we use induction to complete the

proof.
Now suppose there are zero entries. Consider x1, . . . , xn−1. Since [x0, . . . , xn] is not of the form

[x0, 0, . . . , 0, xn], there must be some 1 ≤ i ≤ n−1 such that xi 6= 0. Find a xi 6= 0, for some 1 ≤ i ≤ n−1,

such that a neighbor xi−1 = 0 or xi+1 = 0. Now any submatrix containing

[

. . . xi−1 xi . . .

. . . xi xi+1 . . .

]

, has

rank 2.

Proposition 5.3. Let F be a set of signatures and M be a 2 × 2 orthogonal matrix, i.e., MMT = I2.
We define a new set of signatures FM as follows:

FM = {Y |Y = M⊗nX, where X is a signature in F with arity n.}

Then Holant∗(F) and Holant∗(FM ) have the same complexity.

Proof. This is a direct corollary of Theorem 2.2, given the fact that the unary signature set U is invariant
under any transformation M .

Proposition 5.4. Let [x0, x1, x2, x3] be a symmetric signature of arity three, expressed as

[x0, x1, x2, x3] = A(α1, α2)
⊗3 + B(β1, β2)

⊗3.

Then

det

[

x0 x1

x1 x2

]

= AB det

[

α1 β1

α2 β2

]2

α1β1,

det

[

x1 x2

x2 x3

]

= AB det

[

α1 β1

α2 β2

]2

α2β2,

and

det

[

x0 − x2 x1

x1 − x3 x2

]

= AB det

[

α1 β1

α2 β2

]2

(α1β1 + α2β2).

In particular, if AB 6= 0 and det

[

α1 β1

α2 β2

]

6= 0, then, [x0, x1, x2, x3] is non-degenerate and

det

[

x0 − x2 x1

x1 − x3 x2

]

= 0 iff the inner product α1β1 + α2β2 = 0. In this case, the unique (upto a scalar)

non-zero solution (a, b) to
[

x0 − x2 x1

x1 − x3 x2

] [

a
b

]

= 0

is a = α1β1 = −α2β2 and b = α1β2 + α2β1.
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Proof: A straightforward calculation.

Proposition 5.5. Let [x0, x1, x2, x3] be a symmetric signature of arity three, expressed as

[x0, x1, x2, x3] = A(α1, α2)
⊗3 + B(β1, β2)

⊗3,

where AB 6= 0 and det

[

α1 β1

α2 β2

]

6= 0. Then, [x0, x1, x2, x3] is of the form [x, y,−x,−y] implies that

α2
1 + α2

2 = β2
1 + β2

2 = 0.

Proof: The equations x0 + x2 = 0 and x1 + x3 = 0 are respectively Aα1(α
2
1 + α2

2) + Bβ1(β
2
1 + β2

2) = 0
and Aα2(α

2
1 + α2

2)+ Bβ2(β
2
1 + β2

2) = 0. Viewed as a linear equation system on A and B, we obtain that
its determinant is zero:

det

[

α1 β1

α2 β2

]

(α2
1 + α2

2)(β
2
1 + β2

2) = 0.

It follows that at least one of the factors α2
1 + α2

2 = 0 or β2
1 + β2

2 = 0. In the first case, back to the
linear equation system, since (β1, β2) is a non-zero vector, we get the second factor β2

1 + β2
2 = 0 as well.

Similarly starting with β2
1 + β2

2 = 0 we also get α2
1 + α2

2 = 0.

6 Proof of Lemma 3.2

We remark that, since [x0, x1, x2, x3] is non-degenerate, the constant pair (a, b) is unique upto a scalar
factor.
Proof: Our plan of the proof is as follows: We will show that the counting problem Holant∗

({[x0, x1, x2, x3], [y0, y1, y2]}) when restricted to instances where the input graph is bipartite and all
degree three nodes are on one side and given the signature [x0, x1, x2, x3], and all degree two nodes
are on the other side and given the signature [y0, y1, y2], is still #P-complete. (There might be any
number of degree one nodes, on either side of the bipartite graph, assigned any unary signatures.
We may denote this problem Holant∗([x0, x1, x2, x3] | [y0, y1, y2]).) We show its #P-complete by a
holographic reduction where [y0, y1, y2] is (covariantly) transformed to [1, 0, 1] and [x0, x1, x2, x3] is
(contravariantly) transformed to some [u0, u1, u2, u3]. Note that [1, 0, 1] can be replaced by an edge,
and the unary signatures are transformed to some other unary signatures. Thus the complexity of
the problem Holant∗([x0, x1, x2, x3] | [y0, y1, y2]) is the same as Holant∗([u0, u1, u2, u3]). We then apply
Lemma 3.1 to [u0, u1, u2, u3].

Our first step is to show that there exists a non-singular T =

[

α1 β1

α2 β2

]

such that (T−1)⊗2(y0, y1, y1, y2)
T

= (1, 0, 0, 1)T , but [u0, u1, u2, u3] = [x0, x1, x2, x3]T
⊗3 is not of the form [x, y,−x,−y] (exception

(2) in Lemma 3.1). We note that [u0, u1, u2, u3] is non-degenerate, for otherwise, [x0, x1, x2, x3] =
[u0, u1, u2, u3](T

−1)⊗3 would also be degenerate.

Since [y0, y1, y2] is non-degenerate, clearly there exists a basis T =

[

α1 β1

α2 β2

]

such that (y0, y1, y1, y2)
T =

T⊗2(1, 0, 0, 1)T . Let [u0, u1, u2, u3] = [x0, x1, x2, x3]T
⊗3.

We assume for a contradiction that [u0, u1, u2, u3] is of the form [x, y,−x,−y]. Then we can find
scalars A and B, such that

[u0, u1, u2, u3] = A(1, i)⊗3 + B(1,−i)⊗3.

Let ∆ = det(T ) 6= 0, we have T−1 = ∆−1

[

β2 −β1

−α2 α1

]

. Then it follows that

[x0, x1, x2, x3] = [u0, u1, u2, u3](T
−1)⊗3 = A∆−3(β2 −α2i,−β1 + α1i)

⊗3 + B∆−3(β2 + α2i,−β1 −α1i)
⊗3.
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Since [x0, x1, x2, x3] is non-degenerate, AB 6= 0. By the assumption on [x0, x1, x2, x3] and Proposi-
tion 5.4, we have

0 = (β2 − α2i)(β2 + α2i) + (−β1 + α1i)(−β1 − α1i) = α2
1 + α2

2 + β2
1 + β2

2 .

And after a scaling, we also have a = α2
2 + β2

2 = −α2
1 − β2

1 and b = −2(α1α2 + β1β2). Now

(y0, y1, y1, y2)
T = T⊗2(1, 0, 0, 1)T = (α2

1 + β2
1 , α1α2 + β1β2, α1α2 + β1β2, α

2
2 + β2

2)T.

Then [y0, y1, y2] = [−a,−b/2, a] is of the form [2aλ, bλ,−2aλ], a contradiction.
This completes our first step. Our second step is to take care of the other exceptional case (exception

(1) in Lemma 3.1).
This exceptional case is that there exist two constants a′, b′ (not both zero), such that a′u0 + b′u1 −

a′u2 = 0 and a′u1 + b′u2 −a′u3 = 0. We split this exceptional case into two cases depending on whether
a = 0 or a 6= 0.

If a = 0 then b 6= 0 and x1 = x2 = 0. As [x0, 0, 0, x3] is non-degenerate, x0x3 6= 0. We can write

[x0, 0, 0, x3] = x0

(

1 0
)⊗3

+ x3

(

0 1
)⊗3

,

and
[u0, u1, u2, u3] = [x0, 0, 0, x3]T

⊗3 = x0(
(

1 0
)

T )⊗3 + x3(
(

0 1
)

T )⊗3.

The existence of a′, b′ (not both zero), such that a′u0 + b′u1 − a′u2 = 0 and a′u1 + b′u2 − a′u3 = 0,

implies that the matrix

[

u2 − u0 u1

u3 − u1 u2

]

is degenerate. By Proposition 5.4 we have the inner product of

(1, 0)T and (0, 1)T is zero, i.e.,
α1α2 + β1β2 = 0.

But noticing that y1 = α1α2 + β1β2 and a = 0, we have ay0 + by1 − ay2 = 0, a contradiction.
Finally we consider the case a 6= 0. By a scaling we can assume a = 1. Then x2 = bx1 + x0,

x3 = bx2 +x1 = b2x1 +bx0 +x1. Assume temporarily that b 6= ±2i, then the recurrence has two distinct
eigenvalues, and therefore Proposition 5.4 applies. We can then calculate that the determinant

det

[

u0 − u2 u1

u1 − u3 u2

]

= det

[

α1 β1

α2 β2

]2

(α2
1 + β2

1 + b(α1α2 + β1β2) − α2
2 − β2

2)(bx0x1 − x2
1 + x2

0) = 0.

However now we dispense with the temporary assumption that b 6= ±2i; for this is a polynomial identity
valid for all values except for a finite number of exceptional points of b. Thus it holds for all values.

We know that det

[

α1 β1

α2 β2

]

6= 0; the second factor α2
1 + β2

1 + b(α1α2 + β1β2) − α2
2 − β2

2 is exactly

y0 + by1 − y2 which is non-zero. So we have bx0x1 − x2
1 + x2

0 = 0. Since bx0x1 + x2
0 − x2

1 = x0x2 − x2
1,

this says that [x0, x1, x2, x3] is degenerate, a contradiction.

7 Proof of Lemma 3.3

Proof: The overall plan of the proof of this Lemma is the same as for Lemma 3.2.

We can choose a basis T =

[

α1 β1

α2 β2

]

such that (y0, y1, y1, y2)
T = T⊗2(1, 0, 0, 1)T . Then

under the same basis T , [x, y,−x,−y] will become [u0, u1, u2, u3] = [x, y,−x,−y]T⊗3. Using a new
parametrization, we have

[x, y,−x,−y] = A(1, i)⊗3 + B(1,−i)⊗3,

16



and

[u0, u1, u2, u3] = [x, y,−x,−y]T⊗3 = A(α1 + α2i, β1 + β2i)
⊗3 + B(α1 − α2i, β1 − β2i)

⊗3.

Since we assumed that [x, y,−x,−y] is non-degenerate, we have AB 6= 0.
By this holographic reduction, we only need to prove that Holant∗({[u0, u1, u2, u3]}) is #P-Complete.

Since [u0, u1, u2, u3] is non-degenerate, by Lemma 3.1, we have to consider two cases.
If [u0, u1, u2, u3] is of the form [x′, y′,−x′,−y′], then by Proposition 5.5

0 = (α1 + α2i)
2 + (β1 + β2i)

2 = (α1 − α2i)
2 + (β1 − β2i)

2.

This gives α1α2 +β1β2 = 0 and α2
1 +β2

1 = α2
2 +β2

2 . Then by (y0, y1, y1, y2)
T = T⊗2(1, 0, 0, 1)T , we know

that [y0, y1, y2] is of the form [λ, 0, λ], a contradiction.
Now we consider the second exceptional case from Lemma 3.1: there exist two constants a, b (not

both zero) such that au0 + bu1 − au2 = 0 and au1 + bu2 − au3 = 0. By Proposition 5.4 we have

0 = (α1 + α2i)(α1 − α2i) + (β1 + β2i)(β1 + β2i) = α2
1 + α2

2 + β2
1 + β2

2 .

This gives y0 + y2 = α2
1 + β2

1 + α2
2 + β2

2 = 0, a contradiction.

8 Proof of Lemma 3.4

Proof: We assume that Holant∗([x0, x1, x2, . . . , xn]) is not #P-Complete. Then we prove that it must
be in one of the two cases.
Case A: We first consider the case where for every k = 0, 1, . . . , n−2, the sub-signature [xk, xk+1, xk+2]
is non-degenerate. Then by Lemma 3.1, there are the following two exceptional cases (1) and (2) to be
considered for [x0, x1, x2, x3].
(1) There is a non-zero pair (a, b) such that ax0 + bx1 − ax2 = 0 and ax1 + bx2 − ax3 = 0. Such a
non-zero pair (a, b) must be unique up to a scalar factor, since otherwise [x0, x1, x2, x3] is all 0. Then
by Lemma 3.2, for every k = 0, 1, . . . , n − 2, axk + bxk+1 − axk+2 = 0 or [xk, xk+1xk+2] is of the form
[2aλ, bλ,−2aλ].

First we claim a 6= 0. Suppose otherwise a = 0, then x2 = x1 = 0, from the linear relation. But
then surely x3 6= 0, since [x0, x1, x2, x3] is non-degenerate. Consider when k = 2. If ax2 + bx3−ax4 = 0,
then we have a contradiction. Hence [x2, x3, x4] is of the form [2aλ, bλ,−2aλ]. But then x4 = x2 = 0.
It follows that [x1, x2, x3, x4] = [0, 0, x3, 0]. This signature satisfies Lemma 3.1, then it follows that
Holant∗([x1, x2, x3, x4]) is #P-Complete, contrary to assumption.

So we can assume a = 1. Now we show that the form [2aλ, bλ,−2aλ] can not appear among all
[xk, xk+1, xk+2]. This will conclude that we are in the first of two cases in Lemma 3.3.

Suppose the form [2aλ, bλ,−2aλ] does occur. Such a λ certainly is non-zero, otherwise it is
degenerate.

After a scaling, we may take this form [2, b,−2]. If it occurs as [xk, xk+1, xk+2] for k = 0 or 1, then
together with ax0 + bx1 − ax2 = 0 and ax1 + bx2 − ax3 = 0, we have b = ±2i. But then [2, b,−2] is
degenerate. Thus, if this form [2, b,−2] appears as some [xk, xk+1, xk+2], consider the minimal k where it
appears, then k ≥ 2, and there is a sub-signature [x, y, 2, b,−2] with arity 4, where ax+ by−2a = 0 and
ay + 2b − ab = 0. So the sub-signature is [b2 + 2,−b, 2, b,−2]. There is a sub-signature of [−b, 2, b,−2].
Applying Lemma 3.3 to [−b, 2, b,−2] and [b2 + 2,−b, 2], we have b2 + 2 = −2 or b2 + 2 = 2. The
first case gives that [2, b,−2] is degenerate. So we have b2 + 2 = 2 and thus b = 0. In this case, the
sub-signature is [2, 0, 2, 0,−2]. Using a unary signature [1, 1], we will have [2, 2, 2,−2]. By Lemma 3.1,
this is #P-Complete, again contrary to assumption.
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(2) If [x0, x1, x2, x3] is of the form [x, y,−x,−y], then by Lemma 3.3, for every k = 0, 1, . . . , n − 2, we
have xk + xk+2 = 0 or [xk, xk+1, xk+2] is of the form [λ, 0, λ]. We prove that [λ, 0, λ] can not appear.
This will conclude that we are in the second of two cases in Lemma 3.3.

Suppose the form [λ, 0, λ] does appear among [xk, xk+1, xk+2]. It is easy to see that if it occurred
t k = 0 or 1, then [x0, x1, x2, x3] = [x, y,−x,−y] is degenerate. Then look at the first k ≥ 2 where it
occurred, and to its left we have xk + xk+2 = 0. It follows that there must be a sub-signature (after a
scaling) of the form [1, 0,−1, 0,−1]. Now we can use a similar trick with a unary signature [1, 1] and
get [1,−1,−1,−1], which is #P-Complete.

This completes the proof of Case A.
Case B: There exists some 0 ≤ k ≤ n − 2, such that the sub-signature [xk, xk+1, xk+2] is degenerate.

If the signature is of the form [x0, 0, 0, . . . , 0, xn], we can choose (a, b) = (0, 1). In the following we
assume the signature is not of this form.

By Proposition 5.2, there exist a s = 0, 1, . . . , n−3, such that a sub-signature σ3 = [xs, xs+1, xs+2, xs+3]
of arity three is non-degenerate. Starting from a degenerate sub-signature τ2 = [xk, xk+1, xk+2] of arity
two, we want to find a degenerate sub-signature τ ′

2 of arity two which is a sub-signature of σ3. If
s ≤ k ≤ s + 1, then τ2 is already a sub-signature of σ3. Otherwise, k < s or k > s + 1. W.l.o.g, suppose
k < s. Consider the sub-signature [xk+1, xk+2, xk+3]. If it is degenerate, we can replace it for τ2, and
continue. If it is non-degenerate, then we can replace τ ′

2 by [xk, xk+1, xk+2, xk+3], and it will also be
non-degenerate.

Thus we can find a degenerate sub-signature of arity two which is a sub-signature of a non-degenerate
sub-signature of arity three. This must be of the form [s2, sr, r2, x] or [y, s2, sr, r2]. By symmetry, we
only consider the first case. By Lemma 3.1, we have two cases.

For the first case, (r2−s2)r2−(x−sr)sr = 0. This implies that srx = r4. If sr 6= 0, srx = r4 implies
that [s2, sr, r2, x] is degenerate, a contradiction. If sr = 0, then r = 0 by srx = r4. Since [s2, sr, r2, x]
is non-degenerate, we must have s2 6= 0 and and x 6= 0. It is of form [s2, 0, 0, x]. As n > 3, there
must be entries to its left or to its right, say [s2, 0, 0, x, z]. Consider the pair [s2, 0, 0, x] and [0, x, z].
By Lemma 3.2, the (upto scale) unique pair for [s2, 0, 0, x] is (a, b) = (0, 1). If z 6= 0, then Lemma 3.2
would imply #P-completeness. If z = 0, then we have a sub-signature [0, 0, x, 0]. This also implies
#P-completeness by Lemma 3.1.

Finally for the other case: s2 +r2 = 0 and sr+x = 0. Then the signature must be [s2, s2i,−s2,−s2i]
or [s2,−s2i,−s2, s2i]. Both are degenerate, a contradiction.

9 Proof of Theorem 3.1

Proof. The first easy class is obvious.
For the second easy class, if a = 0, all functions in F have form [x1, 0, . . . , 0, xn] or [0, x2, 0], so

Holant∗(F) is obviously easy, and if a 6= 0, we consider two subcases, that a+bλ−aλ2 = 0 has one double
root or two distinct roots. Suppose λ1 and λ2 are the two roots. If they are equal, all functions in F
with arity larger than 2, have form (1, λ1)

⊗n, which is equal to n functions [1, λ1] applied to each inputs,
so Holant∗(F) is easy. If λ1 6= λ2, because λ1λ2 = −1, neither of them is i or −i. All functions in F

have form F = u

[

1
λ1

]⊗n

+v

[

1
λ2

]⊗n

or G = [2a, b,−2a]. We use nonsingular matrix M =

[

1 λ1

1 λ2

]

as base to do holographic reduction on #F|{=2}, which is the bipartite form of problem Holant∗(F).

Under this base, F is turned into M⊗nF = u

[

1 + λ2
1

0

]⊗n

+ v

[

0
1 + λ2

2

]⊗n

, and G is turned into

M⊗2G = [0, (4a2 + b2)/a, 0], and =2= [1, 0, 1] is turned into [1, 0, 1](M−1)
⊗2

= [1 + λ2
2, 0, 1 + λ2

1]. This
reduction reduces Holant∗(F) to an obviously easy problem.
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For the last easy class, we will prove that the Holant is zero unless the input graph is bipartite,
and there is a holographic algorithm for bipartite graphs. If there is a function [1, 0, 1] applied to two
variables x and y, we just merge them into one variable and remove this function. Hence, all functions
on vertices of input graphs have form [u, v,−u,−v, . . .]. If the input graph G(V,E) is not bipartite, there
is a circle v1, e1, . . . , vk, ek, v1 of odd length. We perfectly match all assignments for E into pairs (T, T ′),
such that, T and T ′ assign the same values on E − {e1, . . . , ek}, and opposite values on {e1, . . . , ek}.
Under T and T ′, all functions on V − {v1, . . . , vk} give the same value, and if T (ej) 6= T (ej+1), the
function on vj give the same value, and if T (ej) = T (ej+1), the function on vj give the opposite values.
Consider T (e1), T (e2), . . . , T (ek), T (e1), there must be even many times value change in this sequence.
Since k is odd, there are odd many vjs, whose functions give opposite values under T and T ′. Hence, in
the summation, the contributions of T and T ′ are canceled. If there input graph is bipartite, the problem
is #F|F . #F|F is turned into an easy problem #{[x1, 0, . . . , 0, xn]}|{[x1, 0, . . . , 0, xn]} by holographic

reduction under base M =

[

1 i
1 −i

]

.

Now we prove that if F does not belong to any of the easy classes, Holant∗(F) is #P-hard. Assume
for a contradiction that F fits in none of the exceptional cases yet it is still not #P-hard. We consider
two cases. First, if all the sub-signatures with arity 2 of every signature in F are non-degenerate, then
the same proof as in Lemma 3.4 works. Second, suppose this is not the case, again by the proof of
Lemma 3.4, there exists a signature of the form [x0, 0, 0, . . . , 0, xn] for some arity n ≥ 3. By connecting
to n − 3 unary signatures of (1, 1), we have a new signature [x0, 0, 0, xn] with arity 3. Then by Lemma
3.2 (with a = 0, b = 1), we know that all the signatures in F have this form [x, 0, 0, . . . , 0, y]. But this
is of the second easy case with a = 0, b = 1, a contradiction.

10 Polynomial Interpolation

In this section, we discuss the interpolation method we use for dichotomy theorem for Holantc.
Polynomial interpolation is a powerful tool in the study of counting problems initiated by Valiant [27]
and further developed by Vadhan, Dyer and Greenhill [26, 18]. The method we use here is essentially
the same as Vadhan [26].

For some set of signatures F , we want to show that for all unary signatures f = [x, y], we have
Holant(F ∪ {[x, y]}) ≤T Holant(F). Let Ω = (G,F ∪ {[x, y]}, π). We want to compute HolantΩ in
polynomial time using an oracle for Holant(F).

Let Vf be the subset of vertices in G assigned f in Ω. Suppose |Vf | = n. We can classify all 0-1
assignments σ in the holant sum according to how many vertices in Vf whose incident edge is assigned
a 0 or a 1. Then the holant value can be expressed as

HolantΩ =
∑

0≤i≤n

cix
iyn−i, (2)

where ci is the sum over all edge assignments σ, of products of evaluations at all v ∈ V (G)− Vf , where
σ is such that exactly i vertices in Vf have their incident edges assigned 0 (and n− i have their incident
edges assigned 1.) If we can evaluate these ci, we can evaluate HolantΩ.

Now suppose {Gs} is a sequence of F-gates, and each Gs has one dangling edge. Denote the signature
of Gs by fs = [xs, ys], for s = 0, 1, . . .. If we replace each occurrence of f by fs in Ω we get a new
signature grid Ωs, which is a instance of Holant(F), with

HolantΩs
=

∑

0≤i≤n

cix
i
sy

n−i
s . (3)
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One can evaluate HolantΩs
by oracle access to Holant(F). Note that the same set of values ci occurs.

We can treat ci in (3) as a set of unknowns in a linear system. The idea of interpolation is to find a
suitable sequence {fs} such that the evaluation of HolantΩs

gives a linear system (3) of full rank, from
which we can solve all ci.

In this paper, the sequence {Gs} will be constructed recursively using suitable gadgetry. There are
two gadgets in a recursive construction: one gadget has arity 1, giving the initial signature g = [x0, y0];
the other has arity 2, giving the recursive iteration. It is more convenient to use a 2 × 2 matrix A to
denote it. So we can recursively connect them as in Figure 3 and get {Gs}.

g
 A
 A


Figure 3: Recursive construction.

The signatures of {Gs} have the following relation,

[

xs

ys

]

=

[

a11 a12

a21 a22

] [

xs−1

ys−1

]

, (4)

where A =

[

a11 a12

a21 a22

]

and g =

[

x0

y0

]

.

We call this gadget pair (A, g) a recursive construction. It follows from lemma 6.1 in [26] that

Lemma 10.1. Let α, β be the two eigenvalues of A. If the following three conditions are satisfied

1. det(A) 6= 0;

2. g is not a column eigenvector of A (nor the zero vector);

3. α/β is not a root of unity.

Then the recursive construction (A, g) can be used to interpolate all the unary signatures.

This similar interpolation method also works for signatures with larger arity but only have two
dimensions of freedom. For example, all the signatures are of form [0, x, 0, y]. This example is used in
the proof of Lemma 11.2.

11 Proof of Theorem 4.1

In the dichotomy theorem for Holant∗(F), we assume the arity of every signature in F is larger than one
and all the signatures in F are non-degenerate. In Holantc(F), not all the unary signatures are freely
available, so we can not assume that. In some case, the present of some unary signatures or degenerate
signatures does change the complexity of the problem. However, we can still do some normalization here
to make the proof clear. Since any degenerate signature [x, y]⊗k can be replaced by the corresponding
unary signature [x, y] without change the complexity of the problem, we always assume that all the
signatures in F , whose arity is large than 1, is non-degenerate. Since [1, 0] and [0, 1] are freely available,
we can construct any sub signature of the original signatures as well as any signatures realizable by
some F-gate.

The polynomial algorithm for F ⊆ F1 ∪ F2 ∪ F3 is very non-trivial. In [10], we extend this family
to asymmetric cases and give a unified algorithm there. So we omit the algorithm here. In spirited by
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the tractable algorithm for this generalized family, we prove a dichotomy for all the boolean #CSP in
[10]. Here, F is a set of real signatures, so technically, we only need to consider the real signatures in
the three families F1, F2 and F3. We give the form of these three families as above because we believe
that it is the right form to express them and we also conjecture that this statement is also true for
complex symmetric signatures. The main idea of the proof is to interpolate all the unary function. A
brief description of this polynomial interpolation method is given in Section 10 . If we can do that, we
can reduce the problem Holant∗(F) to Holantc(F) and finish the proof. In some cases, we can not do
that and we prove the theorem separately.

Lemma 11.1. If we can construct a gadget with signature [a, b, c], where b2 6= ac, b 6= 0 and a + c 6= 0,
then we can interpolate all the unary function. (And hence Theorem 4.1 holds.)

Proof. we use the interpolation method as described in Section 10. We consider two recursive

constructions (

[

a b
b c

]

,

[

1
0

]

) and (

[

a b
b c

]

,

[

0
1

]

), and argue that at least one of them will success given the

conditions on a, b, c. We use A to denote

[

a b
b c

]

. Since b2 6= ac, A is non-degenerate, the first condition

of Lemma 10.1 is satisfied for both of the two recursive constructions. If both [1, 0] and [0, 1] are column
eigenvectors of A, then b = 0, a contradiction. So at least for one of the two recursive constructions, the
second condition of Lemma 10.1 is satisfied. Since A is a real symmetric matrix, so both its eigenvalues
are real. If the ratio of two real numbers is a root of unity, they must be the same or opposite to each
other. If the two eigenvalues are the same, we will have b = 0 and a = c, a contradiction. If the two
eigenvalues are opposite to each other, then we have a+c = 0, also a contradiction. Therefore, the third
condition of Lemma 10.1 is also satisfied for both of the two recursive constructions. To sum up, at
least one of the two recursive constructions satisfies all the conditions of Lemma 10.1. This completes
the proof.

If we can construct a gadget with binary symmetric signature [a, b, c], which satisfies all the conditions
in Lemma 11.1, then, we are done. Most of the cases, we prove the theorem by interpolating all the
unary signatures. However, in some cases, we are not able to do that. For example, if all the signature
have the parity condition, then all the unary signatures we can realize have form [a, 0] or [0, a], so we
can not interpolate all the unary signatures. For these cases, our start point is the following lemma.

Lemma 11.2. If a 6= ±1, Holantc([0, 1, 0, a]) is #P Hard.

Proof. Our start point here is that Holant([0, 1, 0, 0]) is #P-Hard. This is exactly the perfect matching
problem in 3-regular graph [13]. So the problem is #P-Hard if a = 0.

Now assume that a 6∈ {−1, 0, 1}, and we use this signature to interpolate all the signature of form
[0, 1, 0, x], in particular, we can interpolate [0, 1, 0, 0] and finish the hardness reduction.

The recursive construction is depicted by Figure 4. By a simple parity argument, every F-gate Ni

has a signature of form [0, xi, 0, yi]. After some calculation, we can get that they satisfy the following
recursive relation:

[

xi+1

yi+1

]

=

[

3(a2 + 1) (a3 + a)
3(a3 + a) a6 + 1

] [

xi

yi

]

.

In this case, the signature we want to interpolate are of arity 3. But since all of them are of form
[0, xi, 0, yi] with two dimensions freedom. We can also use the interpolation method as in Section

10. Let A =

[

3(a2 + 1) (a3 + a)
3(a3 + a) a6 + 1

]

, then (A, [1, a]T) forms a recursive construction. Since det(A) =

3(a4−1)2 6= 0, the first condition holds. Its characterize equation is X2−(a6+3a2+4)X+3(a4−1)2 = 0.
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Figure 4: The recursive construction. The signature of every vertex in the gadget is [0, 1, 0, a].

For this quadratic equation, ∆ = (a6−3a2−2)2+12(a+a3)2 > 0. So A has two distinct real eigenvalues.
The sum of the two eigenvalues is a6 + 3a2 + 4 which is larger than zero. So they are not opposite to
each other. Therefore, the ratio of these two eigenvalues is not a root of unity and the third condition
holds. Consider the second condition, if the initial vector [1, a] is a column eigenvectors of A. We have

A

[

1
a

]

= λ

[

1
a

]

, where λ is one eigenvalue of A. From this, we will conclude that a(a2 − 1)(a4 − 1) = 0,

which will not happen given a 6∈ {−1, 0, 1}. To sum up, this recursive relation satisfies all the three
conditions of Lemma 10.1 and can be used to interpolate all the signatures of form [0, 1, 0, x]. This
completes the proof.

We define some families of symmetric signatures, which will be used in our proof.

G1 = {[a, 0, 0, · · · , 0, b]|ab 6= 0}
G2 = {[x0, x1, · · · , xk]|∀i is even, xi = 0 or ∀i is odd, xi = 0}
G3 = {[x0, x1, · · · , xk]|∀i, xi + xi+2 = 0}

We note that G1, G2 and G3 are supersets of F1, F2 and F3 respectively. The following several lemmas
all have the form “If F 6⊆ A, then Theorem 4.1 holds.” After proving that, in the later lemma, we only
need to consider the case that F ⊆ A.

Lemma 11.3. If F 6⊆ G1 ∪ G2 ∪ G3, then Theorem 4.1 holds.

Proof. Since F 6⊆ G1 ∪G2 ∪G3, there exists a f ∈ F and f 6∈ G1 ∪G2 ∪G3. Since all the unary signatures
are in G3, the arity of f is larger than 1 and f is non-degenerate. There are two cases according to
whether f has a zero entry or not.

(1) f has some zero entries. If there exists a sub signature of f has the form [0, a, b] or [a, b, 0],
where ab 6= 0, then we are done by Lemma 11.1. Otherwise, we can conclude that there is no two
successive non-zero entries. So the signature f is like this [0i0x10

i1x20
i2 · · · xk0

ik ], where xj 6= 0 and for
all 1 ≤ j ≤ k−1, ij ≥ 1. If for all 1 ≤ j ≤ k−1, ij is odd, then f ∈ G2, a contradiction. Otherwise there
exists a sub signature of form [x, 0, 0, · · · , 0, y], where xy 6= 0 and there are even number of 0s between
x and y. If this is the whole f , then f ∈ G1, a contradiction. So there is one 0 before x or after y. By
symmetric, we assume there is a 0 before x, so we have a sub signature [0, x, 0, 0, · · · , 0, y], whose arity
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is even and larger than 3. We call its dangling edges 1, 2, · · · , 2k. Then for every i = 1, 2, · · · , k − 1, we
connect dangling edges 2i + 1 and 2i + 2 together to a regular edge. After that, we have a F-gate with
arity 2, and its signature is [0, x, y]. Then we are done by Lemma 11.1.

(2) f has no zero entry. We only need to prove that we can construct a function [a′, b′, c′] satisfying
the three conditions in Lemma 11.1. Suppose all sub signatures of f with arity 2 do not satisfy
all the three conditions. For each sub-signature [a′, b′, c′], either a′ + c′ = 0, or b′2 = a′c′. If all
of them satisfy a′ + c′ = 0, then f ∈ G3. A contradiction. If all of them satisfy b′2 = a′c′, then
f is degenerate. A contradiction. W.l.o.g, we can assume there is a sub-signature [a, b, c, d] of f ,
such that a + c = 0, b + d 6= 0, and c2 = bd. Combining two [a, b, c, d], we can get a function
[a′, b′, c′] = [a2 +2b2 + c2, ab+2bc+ cd, b2 +2c2 + d2]. b′ = c(b+ d) 6= 0. a′ + c′ = a2 +3b2 +3c2 + d2 > 0.
Because c2 = bd, a′c′ − b′2 = a2b2 + 2a2c2 + a2d2 + 2b4 + 4b2c2 + 2b2d2 6= 0. We are done by Lemma
11.1.

Lemma 11.4. If F 6⊆ G1 ∪ F2 ∪ G3, then Theorem 4.1 holds.

Proof. If F 6⊆ G1 ∪ G2 ∪ G3, then by Lemma 11.3, we are done. Otherwise, there exists a signature
f ∈ F ⊆ G1 ∪ G2 ∪ G3 and f 6∈ G1 ∪ F2 ∪ G3. Then it must be the case that f ∈ G2. Note that every
signature with arity less than 3 in G2 is also contained in G1 ∪ G3, so f is of arity larger than 2. Since
f 6∈ G1, there is some non-zero in the middle of the signature f , after normalization, we can assume
there is a sub signature of form [0, 1, 0, x] (or [x, 0, 1, 0]). If x 6= ±1, then by Lemma 11.2, we know
the problem is #P-Hard and we are done. Otherwise, for every such pattern , we have x = ±1. Since
f 6∈ F2, then there is some sub signature [0, 1, 0,−1] and because f 6∈ G3, there is some sub signature
[0, 1, 0, 1]. Therefore, there is a sub signature [1, 0, 1, 0,−1] of f . Then we can construct a F-gate as
Figure 5 , whose signature is [8, 0, 4, 0]. So by Lemma 11.2, we know that the problem is #P-Hard and

Figure 5: The signature of every degree 4 vertex in the gadget is [1, 0, 1, 0,−1]. And the signature of
the degree 1 vertex in the gadget is [1, 0].

we are done. This completes the proof.

Lemma 11.5. If F 6⊆ G1 ∪ G3, then Theorem 4.1 holds.

Proof. If F 6⊆ G1 ∪ F2 ∪ G3, then by Lemma 11.4, we are done. Otherwise, there exists a signature
f ∈ F ⊆ G1 ∪F2 ∪G3 and f 6∈ G1 ∪G3. Then it must be the case that f ∈ F2. Note that every signature
with arity less than 3 in F2 is also contained in G1 ∪ G3, so f is of arity larger than 2. Then f has a
sub signature [1, 0, 1, 0] or [0, 1, 0, 1]. By symmetry, we assume it is [1, 0, 1, 0]. If F ⊆ F1 ∪ F2 ∪ F3,
then Theorem 4.1 trivially holds and there is nothing to prove. If not, there exists a signature g is in
G1 −F1 ∪ F2 ∪ F3 (⊆ G1 −F1) or G3 −F1 ∪ F2 ∪ F3 (⊆ G3 −F3).
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For the first case, g ∈ (G1 −F1), then after a scale, g is of form [1, 0, 0, · · · , b], where b 6∈ {−1, 0, 1}.
If the arity of g is odd, we can realize [1, b]. (We connect its every two dangling edges into one edge and
left one dangling edge.) Then connecting this unary signature to one dangling edge of [1, 0, 1, 0], we can
realize a binary signature [1, b, 1]. Then by Lemma 11.1, Theorem 4.1 holds. If the arity of g is even,
we can realize [1, 0, b] (left two dangling edges). By connecting one of its dangling edge to one dangling
edge of [1, 0, 1, 0], we can have a new ternary signature [1, 0, b, 0]. By lemma 11.2, we know the problem
is #P-Hard.

For the second case g ∈ (G3 − F3), then g has a sub signature of form [1, b], where b 6∈ {−1, 0, 1}.
By the same argument as above, Theorem 4.1 holds. This completes the proof.

Lemma 11.6. If F 6⊆ G1 ∪ F3, then Theorem 4.1 holds.

Proof. If F 6⊆ G1 ∪ G3, then by Lemma 11.5, we are done. Otherwise, there exists a signature f ∈ F ⊆
G1 ∪ G3 and f 6∈ G1 ∪ F3. Then it must be the case that f ∈ G3 , and f has a sub signature of form
[1, a,−1], where a 6∈ {−1, 0, 1}.

If F ⊆ ({[1, 0, 1]} ∪ G3), then Holant∗(F) is polynomial time computable by Theorem 3.1 and as a
result Theorem 4.1 trivially holds and there is nothing to prove.

If not, there exists a signature g ∈ F ⊆ G1 ∪ G3 and g 6∈ {[1, 0, 1]} ∪ G3. Then it mush be the case
that g ∈ G1. The arity of g is large than 1.

Figure 6: The function on degree 2 nodes is [1, a,−1], and the function on degree 3 nodes is [1, 0, 0, b].

If the arity of g is 2, then g is of form [1, 0, b], where b 6∈ {−1, 0, 1}. Connecting two signatures [1, 0, b]
to the both sides of one binary signature [1, a,−1], we can get a new binary signature [1, ab,−b2]. It
satisfies all the conditions of Lemma 11.1, and we are done. If the arity of g is larger than 2, then
we can always realize a signature [1, 0, 0, b], where b 6= 0. (We connect the unary signature [1, a] to all
its dangling edges except the three ones.) Then we can use an F-gate as Figure 6. Its signature is
[1, a2b, b2], and by Lemma 11.1, we are done. This completes the proof.

By the above lemmas, the only case we have to handle is that F ⊆ G1 ∪ F3. This is done by the
following lemma. which completes the proof of Theorem 4.1.

Lemma 11.7. If F ⊆ G1 ∪ F3, then Theorem 4.1 holds.

Proof. If F ⊆ F1 ∪ F3 or F ⊆ U ∪ F3 ∪ {[1, 0, 1]}, then Holantc(F) is computable in polynomial time
and Theorem4.1 holds. Otherwise, there are two cases. There exists f ∈ F such that f ∈ G1 but
f 6∈ F1 ∪ U ∪ F3. So the arity of f is larger than 1. W.l.o.g, we can assume f has form [1, 0, a] or
[1, 0, 0, a], where a 6∈ {−1, 0, 1}. (By connecting its dangling edges together except two or three depends
on the parity of the arity of f . ) The other case is that there exists f1, f2 ∈ G1 such that f1 ∈ F1 but
f1 6∈ U ∪ F3 ∪ {[1, 0, 1]}, and f2 ∈ U but f2 6∈ F1. So the arity of f1 is larger than 2 and with form
[1, 0, 0, · · · ,±1], and f2 is of form [1, a′], where a′ 6∈ {−1, 0, 1}. By connecting all the dangling edges of f1

except two with f2, we can construct a F-gate with signature of form [1, 0, a], where a 6∈ {−1, 0, 1}.This
is one of the above two forms.
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If F ⊆ G1 ∪ {[0, 1, 0]}, then Holantc(F) is computable in polynomial time and Theorem 4.1 holds.
Otherwise, there exists g ∈ F ⊆ G1 ∪F3, and g 6∈ G1 ∪{[0, 1, 0]}. Then g must have one of the following
sub signatures: [1, 1,−1], [1,−1,−1], [1, 0,−1, 0], [0, 1, 0,−1]. By symmetric, we only need to consider
two cases [1, 1,−1] and [1, 0,−1, 0].

According to f and g, we have four cases. If f = [1, 0, a] and g = [1, 1,−1], then connecting them
together into a chain fgf , we can realize [1, a,−a2]. By Lemma 11.1, we are done. If f = [1, 0, a] and
g = [1, 0,−1, 0], for each of dangling edges of g, we extend it by one copy of f . Then we can realize
[1, 0,−a2, 0]. So by lemma 11.2, the problem is #P-hard. If f = [1, 0, 0, a] and g = [1, 1,−1], we can
connect a unary signature [1, 1] (sub signature of g) to one dangling edge of f , and realize a binary
signature f = [1, 0, a]. This reduce to the first case, which has been proved. If f = [1, 0, 0, a] and
g = [1, 0,−1, 0], we can realize a unary signature [1, a] from f and then connect this unary signature to
one dangling edge of g to realize [1,−a,−1]. Note that [1,−a,−1] 6∈ G1 ∪ F3, by Lemma 11.6, we are
done.

In the above proof, especially in Lemma 11.1, we use the fact that F is a set of real signatures.
However, we believe that this statement is also true for complex symmetric signatures. So we have the
following conjecture.

Conjecture 11.1. Let F be a set of symmetric signatures over C. Then Holantc(F) is computable in
polynomial time if (1) Holant∗(F) is computable in polynomial time or (2) F ⊆ F1∪F2∪F3. Otherwise,
Holantc(F) is #P-Complete.
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