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Abstract

We investigate a natural combinatorial optimization problem called the Label Cut problem.
Given an input graph G with a source s and a sink t, the edges of G are classified into different
categories, represented by a set of labels. The labels may also have weights. We want to pick
a subset of labels of minimum cardinality (or minimum total weight), such that the removal
of all edges with these labels disconnects s and t. We give the first non-trivial approximation
and hardness results for the Label Cut problem. Firstly, we present an O(

√
m)-approximation

algorithm for the Label Cut problem, where m is the number of edges in the input graph.

Secondly, we show that it is NP-hard to approximate Label Cut within 2log1−1/ log logc n
n for

any constant c < 1/2, where n is the input length of the problem. Thirdly, our techniques can
be applied to other previously considered optimization problems. In particular we show that
the Minimum Label Path problem has the same approximation hardness as that of Label Cut,
simultaneously improving and unifying two known hardness results for this problem which were
previously the best (but incomparable due to different complexity assumptions).

1 Introduction

In many graph optimization problems, it is natural to associate edges with labels (or colors) which
partition the set of edges into categories. There are several classical optimization problems consid-
ered under this model, such as the Minimum Label Spanning Tree problem [3, 6, 14, 19] and the
Minimum Label s-t Path problem (Label Path, for short) [4, 14]. In this paper we consider the
Minimum Label s-t Cut problem (Label Cut, for short), in which we are asked to pick labels at
minimum total cost to disconnect a source s and a sink t by removing edges from the graph whose
labels are picked. The Label Cut problem is a natural generalization of the classical Minimum
s-t Cut problem, in the sense that every edge in the latter has a unique label. We give the first
non-trivial approximation algorithm as well as prove hardness results for the Label Cut problem.
This problem is also a generalization of the Minimum Set Cover or Minimum Hitting Set problems.
In fact it can be considered as a version of the Minimum Hitting Set problem where the collection
of sets to be “hit” is implicitly represented (and could be exponentially many).

This problem is sufficiently natural that it can appear in many contexts. We came across this
problem from the work of Jha, Sheyner and Wing [15], and of Sheyner, Haines, Jha, Lippmann,
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and Wing [23, 22] in computer security, in particular on intrusion detection and on generation
and analysis of Attack Graphs¶. In this application, an attack graph G has nodes representing
various states, and directed edges representing state transitions and are labeled by possible “atomic
attacks”. A pair of special nodes s and t are also given representing the initial state and the success
state (for the intruder). To disable an “atomic attack” incurs some cost (a unit or a wighted cost).
Then the computational task is to find a subset of “atomic attacks” of minimum cardinality (or
of minimum total weight), such that the removal of all edges labeled by these “atomic attacks”
disconnects s and t. This is precisely the Minimum Label Cut problem.

Formally, an instance of the Minimum Label Cut problem consists of a graph G = (V,E)
(directed or undirected) with one source node s ∈ V and one sink node t ∈ V , and a label (or color)
set L = {1, 2, . . . , q}. Each edge e ∈ E has a unique label l(e) ∈ L, but different edges may have
the same label. Each label l ∈ L has a nonnegative weight w(l). A subset L′ ⊆ L of labels is called
a label cut if the removal of all edges of labels in L′ disconnects s and t. The problem asks to find
a label cut L′ such that the total weight of L′ is minimized.

1.1 Related Works

In [15] it was observed that Label Cut is NP-hard by reducing Minimum Hitting Set to it.
There is a simple duality between Minimum Hitting Set and Minimum Set Cover. It is well
known that Minimum Set Cover has a greedy polynomial time (1 + loge |U |)-approximation al-
gorithm, where |U | is the size of the underlying set. The same algorithm can be translated
to Hitting Set by duality. In [15] the authors express the Label Cut problem as an implicit
Minimum Hitting Set problem, and then translate the Set Cover algorithm to get an approx-
imation algorithm. This implicit Minimum Hitting Set problem is as follows: Let D = {L′ |
L′ is the set of labels appearing on a path from s and t}. This is the set to hit. A set of labels is
a label cut iff it intersects every L′ ∈ D. The approximation algorithm for Set Cover translates to
an approximation algorithm for Label Cut with approximation guarantee of 1 + ln |D|.

However, as observed by Jha, Sheyner and Wing [15], |D| is typically exponentially larger than
the input size (number of edges in G). Since the removal of all edges is certainly a feasible solution
to Label Cut, the worst-case approximation ratio 1 + ln |D| is useless. (There is an additional
problem. This concerns the need to compute in polynomial time the next “greedy” step in the
approximation algorithm for Set Cover. For implicit Minimum Hitting Set, we would need to find
the next label which “hits” the most remaining paths from s to t, and it is not known how to do
this in general. The authors in [15] consider special cases where this is feasible.)

We mention another problem, dual to Label Cut, called the Label Path problem. Given an
edge-labeled graph, the Label Path problem finds an s-t path with minimum total number of labels
on the path. Label Path is NP-hard by a reduction from 3SAT. Broersma et. al. [4] devised two
exact exponential-time algorithms for the Label Path problem, with respective running times of
O(n ·min{qd, 2q}) and O(n2q!), where d is the s-t distance. Through an approximation preserving
reduction from the Red-Blue Set Cover problem [5], Wirth [24, Theorem 2.16] proved that unless

NP ⊆ DTIME(npolylog(n)) Label Path can not be approximated within ratio O(2log1−ǫ n). Very
recently, Hassin, Monnot and Segev [14] gave an O(

√
n)-approximation algorithm for the weighted

Label Path problem, and an approximation hardness result O(logk n) (for any fixed k ≥ 1) for the
problem assuming P 6= NP. Notice that the two hardness results for Label Path are incomparable.

Minimum s-t Cut is solvable in polynomial time. On the other hand, a generalization called
the Multicut problem, asks for edge removals to disconnect a given set of source-sink pairs at

¶We are indebted to Jeannette Wing who gave an overview talk on their interesting work at Tsinghua University.
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minimum cost, is NP-hard even for trees [13]. The relationship between the Multicut problem and
the Shortest Path problem is very similar to that between Label Cut and Label Path. Multicut can
be approximated within a factor of O(

√
n) in directed graphs [11], a factor of O(log k) in undirected

graphs [12] (where k is the number of source-sink pairs), and a factor of 2 in trees [13]. It seems
that to prove approximation hardness of Multicut is difficult, and the only known hardness results
of Multicut are logarithmic in directed graphs [8] and a constant factor in undirected graphs [7, 17].

1.2 Our Results

In this paper, we give the first non-trivial approximation and hardness results for Label Cut. Firstly,
we give a polynomial time O(

√
m)-approximation algorithm, where m is the number of edges in

the input graph. The idea of the algorithm is that we first make the graph sparse by picking labels
at appropriately inexpensive cost, and when the graph is sufficiently sparse we directly compute
a minimum s-t cut in the resulting graph. The solution to the problem is then the set of labels
picked in the first stage and the labels in the minimum s-t cut computed in the second stage. We
use ideas and results of [14, 18]. We also extend the algorithm to deal with related cut problems
in edge-classified graphs, such as Label Multicut, Label Multiway Cut, and Label k-Cut.

Secondly, on approximation hardness, we show that Label Cut can not be approximated within

2log1−1/ log logc n n for any constant c < 1/2 unless P = NP, where n is the input length of the
problem. We prove this by a gap-preserving reduction from the Label Cover problem, for which
Dinur and Safra [10] proved such a hardness result. The proof is ultimately based on a reduction
from the PCP theorem. Our method of the reduction also gives the same approximation hardness
for the Minimum Label Path problem as that of Label Cut, thus simultaneously improving and
unifying two known hardness results [14, 24] for this problem which were previously the best (but
incomparable due to different complexity assumptions as discussed in Section 1.1).

The proof of hardness for Label Cut and Label Path relies on two ingredients. Firstly we

show that the approximation hardness 2log1−1/ log logc n n (under complexity assumption P 6= NP) is
preserved even for a special type of instances of Label Cover, in which the two parts of an input
bipartite graph have the same number of vertices. Secondly, we show that the mapping relation
between labels in the Label Cover problem can be represented by some sub-structures in the Label
Cut (resp. Label Path) problems, and thus the cut requirement in Label Cut (resp. the connectivity
requirement in Label Path) is equivalent to the edge-covering requirement in Label Cover.

2 An O(
√

m)-Approximation Algorithm for Label Cut

Minimum s-t Cut can be solved in P. If a graph G does not have many edges, it also has an s-t cut
without many edges. Consequently it also has a small label cut. Our plan is to successively remove
edge sets which are relatively large, yet defined by small label sets. When the graph becomes
sufficiently sparse we can directly remove the minimum s-t cut and its corresponding label set.

To do this we consider the Budgeted Maximum Coverage problem (BMCP, for short). We are
given a ground set U , a collection S of subsets of U , and a budget B. Each subset Si ∈ S has a
nonnegative weight. The problem is to find a sub-collection S ′ ⊆ S such that the total weight of
S ′ is at most B and the number of elements in U covered by S ′ is maximized. This problem can
be approximated in polynomial time within a factor of 1− 1

e [18].
Now we give a detailed outline of our approximation algorithm for Label Cut. Denote by

w(L′) =
∑

l∈L′ w(l) the total weight of labels from a label subset L′ ⊆ L. Let m = |E| and L∗ ⊆ L
be an optimal solution to Label Cut. We aim for an m1/2-approximation of the optimal solution,
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i.e., we want to output a label cut L′ ⊆ L such that w(L′) ≤ m1/2w(L∗).
We start with an estimate ∆ on the optimum OPT = w(L∗) of the Label Cut instance, such

that OPT ≤ ∆ < 2 ·OPT. We try a sequence of ∆ as guesses (see Theorem 2.1). Suppose we have
a correct ∆. Starting with H0 = G, we will perform a sequence of edge removal operations. This
creates graphs H0,H1, . . . ,Hm′ , where Hi+1 is obtained from Hi by the removal of some subset of
edges. Each step i also produces a subset of labels Li. The final output is the union of all these Li.

At step i, we are given Hi. Keeping only edges in Hi with label weight > ∆ (and delete
others) defines a subgraph H ′

i. Suppose that G is undirected, then we find connected components
of H ′

i. For directed G we find strongly connected components of H ′
i. Then we merge the nodes

from Hi within each (strongly) connected component defined above to obtain H∗
i . Edges within a

component disappear. Other edges remain; in particular between the merged nodes there may be
multiple edges in H∗

i . All edges retain their labels, and all label weights in H∗
i are ≤ ∆.

If OPT ≤ ∆, then vertices s and t remain distinct in H∗
i ; otherwise an s-t path using only edges

of weight > ∆ exists which has no intersection with the cut of total weight OPT ≤ ∆.
Now we use a Maxflow-Mincut algorithm to find the minimum cut size c∗i = |mincutH∗

i
(s, t)| of

H∗
i . Here each edge in H∗

i counts as one, and multiple edges count with multiplicity. If c∗i ≤ m1/2,
then we find a minimum cut of H∗

i , and use all labels on this cut. This is our Li, and with this
we terminate with m′ = i. Note that all edges of Hi of labels in Li also form a cut in Hi. Now
suppose c∗i > m1/2. We consider the following instance of BMCP where the ground set is the
set of all edges E(Hi) of the graph Hi, and the collection of subsets S in BMCP consists of all
Sl = {e ∈ E(Hi) | l(e) = l} for l ∈ L, and where the weight of Sl is w(l). We apply the polynomial
time approximation algorithm [18] on this instance for budget ∆ to get a sub-collection S ′ ⊆ S.
Then we use all labels coming from S ′ as our Li in this case. We claim that the edge set

⋃
l∈Li

Sl

corresponding to Li has cardinality at least 1
2m

1/2 (see Lemma 2.1).
This gives the approximation algorithm for Label Cut, as presented by Algorithm A below. For

any subset E′ ⊆ E, let L(E′) denote the set of all labels in E′.

Algorithm A
1. let i← 0, H0 ← G. Define H ′

0 and H∗
0 as described above.

2. while |mincutH∗
i
(s, t)| > m1/2

a. Construct a BMCP instance I ′ as follows: the ground set U = E(Hi), the collection S
consists of Sl = {e ∈ E(Hi) | l(e) = l} with weight w(l) for every l ∈ L, and the budget
B = ∆.

b. Approximately solve I ′ and let Ei be the set of covered edges.
c. let Li ← L(Ei), Hi+1 ← Hi \ Ei. Define H ′

i+1 and H∗
i+1 as described above.

d. let i← i+ 1.
3. endwhile
4. let Li ← L(mincutH∗

i
(s, t)).

5. return L′ =
⋃

i Li.

Let m′ be the number of iterations of step 2, i.e., m′ equals the value of i when step 2 terminates.

Lemma 2.1 For Algorithm A, if OPT ≤ ∆, then m′ < 2m1/2.

Proof: Suppose that an optimal solution to the Label Cut instance I is L∗ ⊆ L with total weight
OPT = w(L∗) ≤ ∆, and that E∗ ⊆ E(G) is the set of edges corresponding to the label subset L∗.
In each iteration of step 2, E∗ ∩ E(H∗

i ) is a feasible solution to the BMCP instance I ′, since the
total weight of labels in E∗ ∩ E(H∗

i ) is at most w(L∗),

w(L(E∗ ∩ E(Hi))) ≤ w(L∗) ≤ ∆.
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A crucial observation is that E∗∩E(H∗
i ) ⊆ E∗∩E(Hi) is also an s-t cut in H∗

i . This is because
any s-t path in H∗

i can be extended to an s-t path in Hi by appending only edges of label weight
> ∆. The path in Hi must intersect E∗ ∩ E(Hi), but all edges in E∗ have label weight ≤ ∆,
therefore the s-t path in H∗

i must intersect E∗ ∩ E(H∗
i ).

So, we know that
|E∗ ∩ E(H∗

i )| ≥ |mincutH∗
i
(s, t)| > m1/2.

By the work of [18], we know that Ei from 2.b. covers at least (1 − 1
e )OPTBMCP(I ′) edges,

where OPTBMCP(I ′) is the optimum of instance I ′. So in each iteration of step 2 at least

(1− 1

e
)OPTBMCP(I ′) ≥ (1− 1

e
)|E∗ ∩ E(H∗

i )| > 1

2
m1/2

edges are removed from Hi. Since there are at most m edges in total in graph H0, it follows that
the number of iterations m′ < 2m1/2.

Theorem 2.1 The Label Cut problem can be approximated within a factor of O(m1/2) in polyno-
mial time, where m is the number of edges in the input graph of the problem.

Proof: Let wmin denote the minimum (nonzero) label weight. Then we know wmin ≤ OPT ≤ w(L).

We try Algorithm A with ∆ = 2k · wmin for every k = 0, . . . , ⌈log2
w(L)
wmin
⌉, where ∆ is used as an

estimate of OPT. Let k be such that

2k−1 · wmin < OPT ≤ 2k · wmin.

Then for the guess ∆ = 2k · wmin, we have

OPT ≤ ∆ < 2 ·OPT.

With this ∆, we know that the number of iterations m′ < 2m1/2 by Lemma 2.1. Moreover,
when step 2 terminates, |mincutH∗

m′
(s, t)| is at most m1/2, implying that

w(Lm′) ≤ |mincutH∗
m′

(s, t)| ·max{w(l): l ∈ L(E(H∗
m′))} ≤ m1/2∆.

Thus the total weight of the output L′ is at most

m′∆ + w(Lm′) ≤ 2m1/2 ·∆ +m1/2 ·∆ = O(m1/2) ·OPT.

We note that, from the label set Lm′ derived from mincutH∗
m′

(s, t), all edges of labels from Lm′

in Hm′ do constitute an s-t cut in Hm′ , and therefore the output L′ is an s-t cut in G.
Finally, for every k, we run Algorithm A. (We never run beyond m′ ≥ 2m1/2, and verify each

time s and t remain distinct in the merging operations; if these are unsatisfied then we go to the
next ∆.) Among all tries with different ∆ we pick the label subset with minimum total weight as
our final solution.

Our method here can be extended to deal with other cut problems in the edge-classified graph
model, such as Label Multicut, Label Multiway Cut and Label k-Cut e.t.c. (we call them generally
Label γ-Cut problems below). Algorithm A can be generalized to deal with each of them by
replacing the minimum s-t cut computation in step 2 with a known approximation algorithm for
the corresponding (NP-hard) unlabeled problem. If the approximation ratio of the algorithm for
the unlabeled problem is ρ, we can show that the approximation ratio of the modified algorithm
A is O((mρ)1/2). For the problems Multicut, Multiway Cut and k-Cut in undirected graphs, we
know that ρ are O(log k) [12], 1.3438 [16], and 2 [21], respectively. The proof of Theorem 2.2 is
omitted here due to space limit and is given in the Appendix.
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Theorem 2.2 The Label γ-Cut problem can be approximated within factor of O((mρ)1/2) in poly-
nomial time, where m is the number of edges in the input graph and ρ is the approximation ratio
of the existing approximation algorithm for γ-Cut.

3 Approximation Hardness for Label Cut

In this section we prove that it is NP-hard to approximate the Minimum Label Cut problem

to within 2log1−o(1) n. We do this by reducing the Minimum Label Cover problem to Label Cut.
The Minimum Label Cover problem (Label Cover, for short) was implicit in [20] and first formally
defined in [1]. Label Cover is one of the six canonical intractable problems in terms of approximation
introduced by Arora and Lund [2]. The current best known approximation hardness result for Label
Cover is due to Dinur and Safra [10], which states that the problem is NP-hard to approximate

within 2log1−1/ log logc n n for any constant c < 1/2.
In the Minimum Label Cover problem, we are given a bipartite graph G = (U, V,E) where

E ⊆ U × V , two sets of possible labels B1 and B2 for vertices in U and V respectively, and a
relation Π ⊆ E×B1×B2 that consists of admissible pairs of labels for each edge e ∈ E. A labeling
is a pair of functions (P1,P2) that assigns a non-empty set of labels to every vertex in U ∪ V ,
where P1:U → 2B1 and P2:V → 2B2 . It is said to cover an edge e = (u, v) (where u ∈ U and
v ∈ V ) if for every label b ∈ P2(v) there is some label a ∈ P1(u) such that (e, a, b) ∈ Π. The
l1-cost of a labeling is the l1 norm of the vector (|P1(u1)|, . . . , |P1(u|U |)|), that is, the total number∑

u∈U |P1(u)| of labels assigned to vertices in U by function P1 counted with multiplicities. A
total-cover (a solution) of G is a labeling that covers all the edges in G. The problem is to find
a total-cover with minimal l1-cost. We always implicitly assume that the only instances we shall
consider for Minimum Label Cover are such that a total-cover exists (see [2], p403, line −8).

Dinur and Safra [10] proved the approximation hardness result 2log1−o(1) n for Label Cover via a
reduction from the following version of the PCP Theorem.

Theorem 3.1 ([9]) Let Ψ = {ψ1, . . . , ψn} be a system of local-tests over variables X = {x1, . . . , xn′}
such that each local-test depends on D = log logc n variables (for any constant c < 1/2), and each

variable ranges over a field F where |F| = O(2log1−1/O(D) n). It is NP-hard to distinguish between
the following two cases:

Yes: There is an assignment to the variables such that all ψ1, . . . , ψn are satisfied.
No: No assignment can satisfy more than 2

|F| fraction of the ψi’s.

Define gc(n) = 2log1−1/ log logc n n. Dinur and Safra proved that

Theorem 3.2 ([10]) Let Ψ be a local-test system defined in Theorem 3.1. Then an instance I =
((U, V,E), B1, B2,Π) of Label Cover can be constructed from Ψ in polynomial time such that for
any constant c < 1/2,

(Soundness) Ψ is satisfied =⇒ OPT(I) = |U |, and

(Completeness) No assignment can satisfy more than
2

|F| fraction of Ψ =⇒ OPT(I) > g|U |,

where g = gc(|I|) and OPT(I) denotes the optimum of Label Cover on the instance I.

We shall prove the approximation hardness of Label Cut via a gap-preserving reduction from
Label Cover. For succinctness, denote by E(v) ⊆ E all edges that are incident to v, and by
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N(v) ⊆ U all endpoints of edges in E(v) that lie in U , i.e., N(v) is the neighborhood of vertex
v. Without loss of generality we assume |N(v)| ≥ 1 for all v ∈ V . Similarly every u is in some
neighborhood N(v), i.e., U =

⋃
v∈V N(v). Let us begin with a simple lemma about labels in B2.

Lemma 3.1 For any vertex v ∈ V and label b ∈ B2, if there is a vertex u ∈ N(v) such that for all
a ∈ B1, ((u, v), a, b) 6∈ Π, then vertex v can not be assigned with label b by any solution.

Proof: The proof is straightforward. If vertex v is associated with label b by some solution
(P1,P2), since (P1,P2) must be a total-cover, we know that every vertex u ∈ N(v) has a mapping
((u, v), a, b) ∈ Π for some a ∈ B1 by the cover condition, contradicting the condition in the lemma.

If a label b ∈ B2 satisfies the condition in Lemma 3.1, we say this label b is excluded (by the
vertex v). A label b is non-excluded (by the vertex v) iff for all u ∈ N(v) there exists some label
a ∈ B1, such that ((u, v), a, b) ∈ Π. Since we only consider instances where a total-cover exists, we
must have for every v, it has a non-empty set of non-excluded labels.

The following lemma gives a transformation on the instances of Label Cover, which is useful
for the gap-preserving reduction from Label Cover to Label Cut.

Lemma 3.2 Without loss of generality, we may assume that instances of Label Cover satisfy |U | =
|V |.

Proof: Take any instance I = ((U, V,E), B1, B2,Π) of Label Cover. We apply a transformation
on I, which was originally introduced in [2, p. 413] (for the maximum version of Label Cover), to
obtain an instance I ′ = ((U ′, V ′, E′), B1, B2,Π

′) of Label Cover. U ′ consists of |V | copies of U , and
V ′ consists of |U | copies of V . It is obvious that |U ′| = |V ′| for the new instance I ′. The edge set
E′ in I ′ consists of copies of E between each new pair of copies of U and V . The relation Π′ is
constructed by duplicating Π accordingly.

If I has a labeling (P1,P2) with l1-cost equal to |U |, then I ′ has a labeling with l1-cost |U ′|,
since we can get a labeling for I ′ by duplicating (P1,P2). Conversely, if every labeling for I has
l1-cost > g|U |, then every labeling for I ′ has l1-cost > g|U ′|. Suppose not. If I ′ has a labeling
(P ′

1,P ′
2) with l1-cost ≤ g|U ′|, then we can get a labeling for each copy of U and V by restricting

(P ′
1,P ′

2) on that copy. Picking the copy of U with the minimum l1-cost, together with any copy of
V gives us a solution to I with l1-cost ≤ g|U |. That is, for instances I and I ′ we have

OPT(I) = |U | =⇒ OPT(I ′) = |U ′|,
OPT(I) > g|U | =⇒ OPT(I ′) > g|U ′|.

By adjusting the arbitrary constant c < 1/2, g = gc(n) can absorb any polynomial increase in
n. The Lemma follows.

Lemma 3.3 There is a polynomial-time gap-preserving reduction τ from Label Cover to Label
Cut that transforms any instance I = ((U, V,E), B1, B2,Π) of Label Cover to an instance I ′ =
((V ′, E′), s, t, L) of Label Cut, such that,

OPTCOVER(I) = |U | =⇒ OPTCUT(I ′) ≤ |U |+ |V |,
OPTCOVER(I) > g|U | =⇒ OPTCUT(I ′) > g|U |+ |V |,

where OPTCOVER() (resp. OPTCUT()) returns the optimum of any instance of Label Cover (resp.
Label Cut).
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Figure 1: Gadget Gv,b for vertex v ∈ V and label b ∈ B2

Figure 2: Gadget Gv for vertex v ∈ V

Proof: Given an instance I = ((U, V,E), B1, B2,Π) of Label Cover, the instance I ′ = (G′, s, t, L)
of Label Cut is constructed as follows. For every vertex v and non-excluded label b, there is a gadget
Gv,b, as shown in Figure 1. Gv,b consists of a series of parallel chains, each of which corresponds to
an edge (u, v) ∈ E(v). For such an edge (u, v), suppose that the set of labels mapped to b ∈ B2 by
Π is {a1, a2, . . . , ap} ⊆ B1, i.e., this is the subset of labels a ∈ B1 such that ((u, v), a, b) ∈ Π. (Since
b is a non-excluded label by v, for every neighbor u ∈ N(v), this number p ≥ 1. This p depends on
v, b and u. Note also that |N(v)| ≥ 1 as noted earlier.) Then in Gv,b the chain corresponding to
edge (u, v) contains p consecutive diamonds, with the ith diamond (1 ≤ i ≤ p) having label (u, ai)
for its two top edges, and label (v, b) for its two bottom edges (see Figure 1). All other chains are
constructed in the same manner, one chain for each u ∈ N(v). The dashed lines (not belonging to
the graph) at the two ends of Gv,b mean that the ends of each chain are merged.

Next, a gadget Gv for every vertex v ∈ V is constructed by linking several gadgets Gv,b together,
where each gadget Gv,b corresponds to a non-excluded label b by v (see Figure 2.) Note that only
Gv,b for non-excluded labels b for the vertex v appear in Gv. Its number is at least one but ≤ |B2|.
(In Figure 2 for notational simplicity we assume that for the given example of Gv , all |B2| labels are
non-excluded labels for v and are denoted as 1, 2, . . . , |B2|.) Finally, graph G′ = (V ′, E′) consists of
a series of parallel gadgets Gv for every vertex v ∈ V . All the heads of gadgets Gv are merged into
one vertex, that is, the source vertex s, meanwhile all the tails of gadgets Gv are merged into one
vertex, that is, the sink vertex t. The label set L contains all labels of the forms (u, a) and (v, b)
used in the construction. Every label in L has unit weight. Since each diamond of G′ corresponds
to a tuple of Π, we know that I ′ can be constructed in polynomial time.

Suppose (P∗
1 ,P∗

2 ) is an optimal solution to the Label Cover instance I whose l1-cost is |U |.
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For any v ∈ V , since P∗
2 (v) is non-empty, there exists some b ∈ P∗

2 (v). This b is obviously a
non-excluded label, by the definition of a solution in Label Cover. So (v, b) is a label in L. Now
we pick the label (v, b). Next, for all u ∈ U , pick all labels (u, a) for a ∈ P∗

1 (u). Since the l1-cost
of (P∗

1 ,P∗
2 ) is |U |, this counts |P∗

1 (u)| for different u ∈ U with multiplicity, it follows that we have
picked a total of |U |+ |V | labels from L. We claim that removing all edges with the picked labels
disconnects s and t in G′. This is equivalent to disconnecting every Gv. Fix any v ∈ V . We consider
the picked label (v, b), and show that the gadget Gv,b is disconnected. This in turn is equivalent
to disconnecting every chain in Gv,b, one chain for each u ∈ N(v). Consider such a chain defined
by a particular u ∈ N(v). Since all edges labeled (v, b) have been removed, we just need to prove
that at least one diamond has been completely removed. Suppose there are p diamonds, where the
upper path is labeled by (u, a1), . . . , (u, ap), and these ai are those satisfing ((u, v), ai, b) ∈ Π. (see
Figure 1). Since (P∗

1 ,P∗
2 ) is a total-cover, for some 1 ≤ i ≤ p, ai ∈ P∗

1 (u). But we did pick labels
(u, a), for all a ∈ P∗

1 (u). It follows that OPTCUT(I ′) ≤ |U |+ |V |.
Now we prove the second part of the lemma by its contrapositive. Suppose the optimum of

the Label Cut instance I ′ is ≤ g|U | + |V |, and an optimal solution is L∗ ⊆ L. For clarity let us
call a label in L of the form (u, a) a u-label, and a label of the form (v, b) a v-label. Denote by nul

(resp. nvl) the number of u-labels (resp. v-labels) in L∗. Since G′ consists of |V | subgraphs Gv in
parallel, the removal of edges with labels in L∗ must disconnect each Gv. By construction of Gv

as a chain of Gv,b, it must disconnect some Gv,b, and therefore must pick at least one v-label (v, b)
for every v ∈ V . This defines our assignment P2 on V , and nvl ≥ |V |. Next we define P1 on U as
follows: P1(u) = {a | (u, a) is a picked u-label in L∗}. Since nvl ≥ |V |, it follows that nul ≤ g|U |.
Since L∗ disconnects Gv,b, for every u ∈ N(v), L∗ must include at least one u-label (u, a) such
that ((u, v), a, b) ∈ Π. In particular P1(u) is non-empty. Since U =

⋃
v∈V N(v), this is true for all

u ∈ U . This also shows that (P1,P2) is a solution to the Label Cover instance I. Since nul ≤ g|U |,
we know that the l1-cost of (P1,P2) is ≤ g|U |. This completes the proof of the contrapositive.

Theorem 3.3 For any constant c < 1/2, the Label Cut problem can not be approximated within

2log1−1/ log logc n n in polynomial time unless P = NP, where n is the input length of the problem.

Proof: Given any Label Cover instance I, first we apply the transformation presented in Lemma
3.2 to get an instance Î = ((U, V,E), B1, B2,Π) of Label Cover such that |U | = |V |. Denote
by m the length of the Label Cover instance I, and by n the length of the Label Cut instance
I ′ = (G′, s, t, L) generated by the reduction τ in Lemma 3.3 on instance Î . By Lemma 3.3, the
gap between the two cases in the lemma is at least g/2, where g = gc(m). By Theorems 3.1 and
3.2, it is NP-hard to approximate Label Cover within ratio gc(m) for any constant c < 1/2. Since
essentially the edges (together with their labels) in G′ reflect the relation Π, we know that n ≤ mk

for some positive constant k, i.e., m ≥ n1/k. So we have that it is NP-hard to approximate Label
Cut (instances generated by the reduction τ of Lemma 3.3) within ratio gc(m)/2 for any constant
c < 1/2. This implies the approximation hardness gc′(n) of Label Cut for any constant c′ < 1/2
under the complexity assumption P 6= NP (the coefficient 1/2 and exponential 1/k can be absorbed
in the exponent of the hardness gc′(n)).

4 Approximation Hardness for Label Path

The Minimum Label Path problem has been well studied before [24, 14]. The instance of the
problem is the same as that of Label Cut. The goal of the problem is to find an s-t path P with
minimum total weight of labels that appear on P . We show that the approximation hardness of

Label Path is 2log1−1/ log logc n n for any constant c < 1/2 under the complexity assumption P 6= NP.
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This simultaneously improves and unifies two known hardness results for this problem which were
previously the best (but incomparable due to different complexity assumptions). The previous
results were (a) it is NP-hard to approximate Label Path within factor logk n for any fixed k ≥ 1

[14], and (b) Label Path can not be approximated within O(2log1−ǫ n) for any constant ǫ > 0 unless
NP ⊆ DTIME(npolylog(n)) [24]. In both of these two hardness results, n denotes the number of
vertices in the input graph.

We prove the approximation hardness for Label Path via a gap-preserving reduction from Label
Cover that is similar to that from Label Cover to Label Cut given in Section 3. The reduction
uses two types of gadgets G′

v,b and G′
v, which are transformations of the two gadgets Gv,b and Gv

(see Figures 1 and 2) used for Label Cut. According to the construction of the gadgets G′
v,b and

G′
v and the designation method of labels to edges in the gadgets, the connectivity requirement in

the Label Path instance generated by the reduction is equivalent to the edge-covering requirement
of the given Label Cover instance. Again, the proof (including the reduction and the gadgets G′

v,b

and G′
v) of Theorem 4.1 is omitted here and is given in the Appendix.

Theorem 4.1 For any constant c < 1/2, the Label Path problem can not be approximated within

2log1−1/ log logc n n in polynomial time unless P = NP, where n is the input length of the problem.

5 Conclusions

We introduce and study the Minimum Label Cut problem in the edge-classified graph model,
which is the labeled (or colored) version of the classical minimum s-t cut problem. We present a
polynomial time approximation algorithm for Label Cut with performance ratio O(

√
m), where m

is the number of edges in the input graph. We show that unless P = NP Label Cut can not be

approximated in polynomial time within a factor of 2log1−1/ log logc n n for any constant c < 1/2, where
n is the length of the instance of Label Cut, via a gap-preserving reduction from the Minimum Label
Cover problem. Our method of the reduction also gives a stronger approximation hardness result
for the Minimum Label Path problem, improving and unifying the best previously known hardness
results [14, 24] for this problem. It remains an interesting problem to improve the approximation
algorithm as well as to improve approximation hardness results (say, nǫ-hardness) for Label Cut
and the related problems.
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Appendix

Proof of Theorem 2.2

Proof: We modify Algorithm A such that it is suitable to deal with Label γ-Cut by replacing the
minimum s-t cut computation in step 2 by an existing ρ-approximation algorithm (call it algorithm
B), for the corresponding unlabeled γ-Cut problem. Denote by ci the capacity (i.e., the number of
edges in our setting) of the γ-cut returned by algorithm B on graph H∗

i . Step 2 of Algorithm A is
replaced by

2. while ci = |B(H∗
i )| > (mρ)1/2.

Denote by c∗i the optimum of γ-Cut on the instance H∗
i . Since algorithm B returns a ρ-

approximation on H∗
i , we know that ρ · c∗i ≥ ci > (mρ)1/2, i.e., we have

c∗i > (m/ρ)1/2.

Recall that E∗ ⊆ E(G) is the set of edges corresponding to an optimum solution L∗ ⊆ L of
Label γ-Cut. Since E∗∩E(H∗

i ) is a γ-cut for H∗
i , we have |E∗∩E(H∗

i )| ≥ c∗i > (m/ρ)1/2. Moreover,
since E∗ ∩ E(H∗

i ) is also a feasible solution to the BMCP instance I ′, for the edge subset Ei we
have

|Ei| ≥ (1− 1

e
)OPTBMCP(I ′) ≥ (1− 1

e
)|E∗ ∩ E(H∗

i )| > 1

2
(m/ρ)1/2.

So we know that the number of iterations of step 2 of the modified Algorithm A is at most

m
1
2(m/ρ)1/2

= 2(mρ)1/2.

By the guess technique used in Theorem 2.1, there is a try of the modified Algorithm A whose
output satisfies that

w(
⋃

i

Li) ≤ 2(mρ)1/2 ·∆ + (mρ)1/2 ·∆ = O((mρ)1/2) ·OPT,

completing the proof of the theorem.
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Figure 3: Gadget G′
v,b for vertex v ∈ V and label b ∈ B2

Proof of Theorem 4.1

Proof: We prove the theorem via a gap-preserving reduction τ ′ which transforms any Label Cover
instance I = ((U, V,E), B1, B2,Π) to a Label Path instance I ′ = ((V ′, E′), s, t, L) in polynomial
time. First we give the reduction τ ′.

Given an instance I = ((U, V,E), B1, B2,Π) of Label Cover, the instance I ′ = (G′, s, t, L) of
Label Path is constructed as follows. For every vertex v ∈ V and non-excluded label b, there is a
gadget G′

v,b (see Figure 3). G′
v,b consists of a series of consecutive subgraphs, with each of them

corresponding to an edge (u, v) ∈ E(v). For such an edge (u, v) ∈ E(v), suppose that the set of
labels mapped to b ∈ B2 by Π is {a1, a2, . . . , ap} ⊆ B1. (Since b is a non-excluded label by v, we
know that for every neighbor u ∈ N(v), this number p (depends on v, b and u) is at least 1. Note
also that |N(v)| ≥ 1 as discussed in Section 3.) Then the subgraph corresponding to edge (u, v)
contains p parallel paths of length 2 (for clarity, we call each such path a rung), with the ith rung
(1 ≤ i ≤ p) having labels (u, ai) and (v, b) for its two consecutive edges (see Figure 3). All other
subgraphs are constructed in the same manner, one subgraph for each u ∈ N(v). The dashed lines
(not belonging to the graph) at the two ends of the paths mean that for each subgraph the ends of
the paths are merged.

Next, a gadget G′
v for every vertex v ∈ V is constructed by stacking up several gadgets G′

v,b

with each of them corresponding to a non-excluded label b by v (see Figure 4). Note that only
G′

v,b for non-excluded labels b for the vertex v appear in G′
v. Its number is at least one but ≤ |B2|.

(For notational simplicity we assume that for the given example of G′
v in Figure 4 all |B2| labels

are non-excluded labels for v.) Finally, the graph G′ = (V ′, E′) consists of a series of consecutive
gadgets G′

v (in arbitrary order) for every vertex v ∈ V . The left end of the first gadget G′
v in G′

denotes the source vertex s, meanwhile the right end of the last gadget G′
v in G′ denotes the sink

vertex t. The label set L contains all u-labels and v-labels used in the construction. Every label
in L has unit weight. Since each rung of G′ corresponds to a tuple of Π, I ′ can be constructed in
polynomial time.

For the Label Cover instance I and the Label Path instance I ′ generated by the reduction τ ′,
we claim that

OPTCOVER(I) = |U | =⇒ OPTPATH(I ′) ≤ |U |+ |V |,
OPTCOVER(I) > g|U | =⇒ OPTPATH(I ′) > g|U |+ |V |,

where OPTPATH() returns the optimum of any instance of Label Path.
Suppose that (P∗

1 ,P∗
2 ) is an optimal solution to the Label Cover instance I with l1-cost |U |. We

define a label subset L′ for the Label Path instance I ′ as follows. For every v ∈ V , since P∗
2 (v) 6= ∅,

we pick some b ∈ P∗
2 (v) to include (v, b) in L′. These are all the v-labels in L′. For u-labels we
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Figure 4: Gadget G′
v for vertex v ∈ V

include all (u, a) in L′ for every u ∈ U and a ∈ P∗
1 (u). Since the l1-cost of labeling (P∗

1 ,P∗
2 ) is

|U |, P∗
1 assigns only one label to every vertex u ∈ U , (as every u is in some N(v), P∗

1 assigns at
least one, and hence, exactly one label to u), and we have picked also one label (v, b) in L′ for
every v ∈ V . Note also that for any v ∈ V , the label b we picked for v is obviously a non-excluded
label, by the definition of a solution in Label Cover, and hence (v, b) is a label in L. Consider any
vertex v ∈ V and a non-excluded label b by v. For every u ∈ N(v) and label a ∈ B1 such that
((u, v), a, b) ∈ Π, the label (u, a) is assigned to some edge in the gadget G′

v,b by its construction. So
we know that every u-label we put in L′ is actually also in the label set L. That is, L′ is a subset
of L with size of |U |+ |V |.

Then fix any vertex v ∈ V . We consider the picked label (v, b), and show that L′ contains a
path passing through the gadget G′

v,b. (Note that we view a path as the set of edges that appear
on it, and we say that L′ contains an edge subset E′ if L′ contains L(E′).) Recall that G′

v,b consists
of a series of consecutive subgraphs, one subgraph for each u ∈ N(v). Consider the subgraph for a
particular u ∈ N(v). Suppose that there are p rungs in the subgraph, where the first edges of all
such p rungs are labeled with (u, a1), . . . , (u, ap), and these ai are those satisfying ((u, v), ai, b) ∈ Π
(see Figure 3). Since (P∗

1 ,P∗
2 ) is a total-cover, for some 1 ≤ i ≤ p, ai ∈ P∗

1 (u). But we did
pick labels (u, a) for all a ∈ P∗

1 (u). So L′ must contain a whole rung for the considered subgraph
corresponding to u for G′

v,b. Since this holds for every subgraph corresponding to u ∈ N(v) in G′
v,b,

we know that L′ contains a path in G′
v,b from its left end to its right end. This gives a path passing

through G′
v (See Figure 4). These paths for every gadget G′

v constitute an s-t path of G′, that is, L′

is a feasible solution to instance I ′. Since |L′| = |U |+ |V |, we know that OPTPATH(I ′) ≤ |U |+ |V |.
For the second part of the claim we prove its contrapositive. Suppose that P ∗ is an optimal s-t

path of G′ with L(P ∗) = L∗ and |L∗| ≤ g|U |+ |V |. Denote by nul (resp. nvl) the number of u-labels
(resp. v-labels) in L∗. Since G′ consists of |V | consecutive subgraphs G′

v , P
∗ must traverse each

G′
v. By the construction of G′

v as a stack of G′
v,b, it must traverse at least one G′

v,b, and therefore
L∗ must pick at least one v-label (v, b) for every v ∈ V . This defines our assignment P2 on V , and
nvl ≥ |V |. Next we define P1 on U as follows: P1(u) = {a | (u, a) is a picked u-label in L∗}. Since
nvl ≥ |V |, it follows that nul ≤ g|U |. Since for every v, P ∗ traverses some G′

v,b of G′
v , for every

u ∈ N(v), L∗ must include at least one u-label (u, a) such that ((u, v), a, b) ∈ Π. In particular
P1(u) is non-empty. Since U =

⋃
v∈V N(v), this is true for all u ∈ U . It follows that (P1,P2) is a

solution to the Label Cover instance I. Since nul ≤ g|U |, we know that the l1-cost of (P1,P2) is
≤ g|U |. This completes the proof of the contrapositive.

we know that it By an argument similar to that of Theorem 3.3, we know that it is NP-hard
to approximate Label Path within ratio gc(n) for any constant c < 1/2, where n denotes the input
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length of Label Path. The proof of the theorem is concluded.
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