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Abstract

We improve a connection of the worst-case complexity and the average-case complexity
of some well-known lattice problems. This fascinating connection was first discovered by
Ajtai [1] in 1996. We improve the exponent of this connection from 8 to 3.5 + €.
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1 Introduction

A lattice L is a discrete additive subgroup of R™. There are many fascinating problems con-
cerning lattices, both from a structural and from an algorithmic point of view [12, 20, 11, 13].
The study of lattice problems can be traced back to Gauss, Dirichlet and Hermite, among
others [8, 6, 14]. The subject was first conceived as a bridge between geometry and Diophan-
tine approximation and the theory of quadratic forms. The field Geometry of Numbers was
christened by Minkowski when he proved his fundamental theorems on shortest vectors and
successive minima. In recent years, there is enormous interest in the algorithmic aspects of the
theory, especially in connection with basis reduction [18, 23], algorithmic Diophantine approx-
imation and combinatorial optimization [11], integer programming [19], volume estimation for
convex bodies [7, 21, 15] and, cryptography [1, 2, 10, 17].

There is an inherent beauty in many problems in the theory of Geometry of Numbers.
Moreover, major algorithmic progress in the field, such as Lovéasz’s basis reduction algorithm,
has had a tremendous impact on many other subjects (e.g., integer programming [19], or the
disproof of the Mertens conjecture [22]). However, underlying so much fascination and activity
is the belief, yet not a proof, that many of the well-known algorithmic problems for lattices
are computationally hard for P.

Regarding NP-hardness, Lagarias [16] showed that the shortest vector problem is NP-
hard for the /,-norm, but it is not known whether it is NP-hard under any other [, norm.
Van Emde Boas [24] showed that finding the nearest vector is NP-hard under all I, norms,
p > 1. From [3] it is known that finding an approximate solution to within any constant
factor for the nearest vector problem for any [, norm, and, for the shortest vector problem
in the [,-norm, are both NP-hard. There are no known polynomial-time algorithms to find
approximate solutions to these problems within any polynomial factor, even probabilistically.
The celebrated Lovdsz basis reduction algorithm finds a short vector within a factor of 27/2
in P-time. Schnorr’s algorithm gets a bound of (1 4 ¢€)", but the running time badly depends
on € in the exponent [23]. Babai gave an algorithm that approximates the nearest vector by a

factor of (3/v/2)" [4].

The recent breakthrough by Ajtai [1] has its motivations from cryptography, and the con-
nection between average-case and worst-case complexity in general. It has been realized for
some time that the security of a cryptographic protocol depends on the intractability of a cer-
tain computational problem on the average. As noted by Ajtai [1], the most desirable guarantee
for the required security would be a mathematical proof of hardness, either in an asymptotic
sense or for specific values of parameters. Unfortunately as yet we have no such proofs for any
problem in NP. The next best thing to an absolute lower bound would be a proof that breaking
the protocol is NP-hard. However, if one can have neither, as it is currently the case, then as
the next alternative, one would like to have a cryptographic protocol based on a sufficiently
“famous” problem, such as factoring, for which the most able minds have labored long and
hard, and have found no polynomial time algorithms. It is suggested in [1] that some of the
well-known lattice problems also fit this description.

Note that, however, even a proof of hardness for a certain problem usually only refers to
its worst-case complexity, and says nothing about its average-case complexity. Thus, e.g., even
a proof that factoring is not solvable in P or in BPP, or is NP-hard, would not imply that



it is hard on the average. (In fact, in some reasonable sense half the integers are divisible
by 2. Moreover, it is not known to follow from any hardness assumption for factoring in the
worst-case that factoring numbers of the form pgq, for p and ¢ primes, is hard on the average.)

In a beautiful paper, Ajtai [1] found the first explicit connection between, in a certain
technical sense, the worst-case and the average-case complexity of the shortest lattice vector
problem. Ajtai [1] established, among other things, a reduction from the problem of approxi-
mating a short lattice basis in the worst-case, to the problem of finding a short lattice vector v
for a uniformly chosen lattice in a certain random class of lattices. The reduction is probabilis-
tic. Moreover, the connection involves a rather large polynomial factor blow-up n¢. This factor
represents the increase from the length of v in the average-case, to the approximation factor
of the length of the longest basis vector computed, with respect to the best basis possible, in
the worst case. (Technical definitions will be given in Section 2.) More precisely, for a certain
naturally defined class of lattices A Ajtai showed that:

If there is a prob. poly-time algorithm .4 which finds a short vector v of length
at most n, for a uniformly chosen lattice in the class A indexed by n, with non-
trivial probability, then, there is a prob. poly-time algorithm B which, given any
lattice of dimension N by its basis vectors, will find with high probability, a good
basis by, by, ..., by, such that the maximum length max;<;<n ||b;|| is within a fixed
polynomial factor N¢ from the best possible over all bases.

This factor N¢ is the crucial performance guarantee in any intended application to cryp-
tography. It is also of intrinsic interest as it is the provable connection between the worst-case
and the average-case complexity of lattice problems over these naturally defined lattices. It is
this exponent ¢ that we improve significantly in this paper. While no explicit value of ¢ was
given in [1], Ajtai’s proof shows that the exponent ¢ can be taken to be 8. This might look
rather large, nonetheless it is the first time such a reduction is proved for a problem in NP. !
Our main result is to improve this exponent ¢ from 8 to around 3.5 .

Theorem 1 For any constant € > 0, if there exists a probabilistic polynomial time algorithm
A that when given a random lattice A(X), indezed by n,m,q, where ¢ = O(n3) and m = O(n),
with probability ﬁ returns a vector of the lattice A(X) of length < n, then, there exists a
probabilistic polynomial time algorithm B which when given a basis a1, ...,a, € Z™ for a lattice
L= L(ay,...,a,), outputs another basis for L, by,..., by, so that,

max |65

max [|b;]| < ©(n®5*) r
i=1 b, for L =1

min

all bases b/,...,
Our algorithm B has a similar structural design as that of Ajtai’s, but many of the steps
and their proofs are different. The heart of the reduction is an iterative process on a set of
independent lattice vectors S. Assuming that the current set S is not already sufficiently
short compared to the shortest basis possible, this process successively replaces S with another
independent set where the longest member is reduced by a constant factor in length. One

'Related to this are the known random self-reducibilities for problems such as discrete logarithm modulo a
prime p, or quadratic residue modulo m = pq, or the Permanent function. In the first two cases, the random
self-reducibility only applies for a fixed p, resp. m; for varying choices of p, resp. m, there is no known random
reduction. For the Permanent, the problem is not known, nor believed to be, in NP.



starts with the given set of basis vectors which defines the lattice L. When a sufficiently short
independent set of lattice vectors is at hand, we convert it to a basis with a loss of a factor at
most v/n. It is not explicitly tested whether one has reached a sufficiently short independent set
of lattice vectors, one simply tries the main iterative process till, probabilistically, no progress
is being made, and then with high probability the current set S is already sufficiently short.

Now we outline the main iterative process. First we construct a suitable parallelepiped
called a pseudo-cube with lattice points as vertices. Here we use a different rounding procedure
with Gram-Schmidt orthogonalization instead of the tiling by fundamental domains used by
Ajtai. This results in better geometric properties, which translate to a significant reduction in
the exponent ¢. We next partition this pseudo-cube into a large number of sub-pseudo-cubes
which forms a tiling of the whole pseudo-cube. Now we must handle the main difficulties in
the proof of Theorem 1, with a series of technical lemmas. The basic idea is to prove that each
sub-pseudo-cube has roughly the same number of lattice points. The proof relies heavily on
the geometric properties of the set-up, in terms of eigenvalues and singular values. A recent
theorem of Keith Ball [5], which gives a precise upper bound on the volume of the intersection
of any hyperplane with the unit cube, also plays a role in the proof.

Once we achieved a reasonable level of uniformity in the number of lattice points in each
sub-pseudo-cube, we devise a sampling procedure that samples with exact uniform distribution
all the lattice points in the pseudo-cube, and thus inducing a distribution close to being uniform
on the set of sub-pseudo-cubes. We then further uniformize this distribution by amplification
techniques, so that the resulting distribution is almost uniform, and can be used as an input
source X for the presumed algorithm A. For each sub-pseudo-cube we choose its center as an
address, and decompose each lattice vector in a sub-pseudo-cube into the sum of the address
vector and a remainder vector. This choice of the center enables us to prove that the expec-
tation of the remainder vector is zero. Finally, by a change of order of summation, a short
lattice vector of A(X) produced by the algorithm .4 will, with high probability, produce a short
lattice vector of L as a linear combination of remainder vectors. Moreover, Ball’s theorem [5]
implies that one can get independent short lattice vectors by repeating this process.

Based on the reduction in [1], Ajtai and Dwork [2] have proposed a public-key crypto-
system with provable security guarantees based on worst-case hardness assumption. Another
public-key system based on lattice problems was proposed in [10], although no proof was given
for that system assuming worst-case hardness. As the security proof of Ajtai-Dwork system is
based on the proof in [1], our result will automatically improve the security bound.

The paper is organized as follows. In Section 2, we will give the definitions, state some
preliminary lemmas and describe a sampling procedure for sampling a lattice point uniformly.
In Section 3, we will describe our algorithm. In Section 4 we will present some geometric and
probabilistic theorems concerning volume estimates and number of lattice points, and discuss
pseudorandom amplification of randomness. We also mention some additional results. Most
proofs are omitted from this extended abstract due to space limitation.

2 Definitions and Preliminaries

We denote by R the field of real numbers, by Z the ring of integers and by Z, the ring of
integers mod gq.



The Euclidean norm is denoted by || - |. The Frobenius norm ||A||» of a matrix A is

|Allz = /3 jlaij|*. The length of a set of vectors is defined as the length of the longest
vector in the set.

P(vi,...,vn) = {> i1 Bivi | Vi 0 < §; < 1} denotes the parallelepiped defined by v, ..., vy,
P~(vi,...,vy,) is the half-open parallelepiped defined by v1,..., vy, i.e., {d i Bivi | Vi 0 <
Bi < 1}. The wvolume vol (P(vi,...,vy)) of a parallelepiped P(v1,...,v,) is |det (v1,...,vp)|-
The minimal height H of a parallelepiped P = P(vy,...,vy) is the minimum value of the ratio
%, where V' = vol (P) and F; is the volume of the face of P defined by v1,...,0;—1,041,--- Upn,

i.e., the (n — 1)-dimensional volume of the parallelepiped P(v1,...,0i—1,Vit1,---Un).

If ay,...,a, are linearly independent vectors in R™ then the set of all integral linear com-
binations of the a; forms a (n-dimensional) lattice, denoted by L(a,...,ay), and the a; are
called a basis of that lattice. A lattice can also be abstractly defined as a discrete additive
subgroup of R™. For a lattice L, det L denotes the determinant of the lattice. If by,...,b,
is a basis for L, then, det L = vol (P(by,...,b,)) = |det(b1,...,b,)|- It is invariant under a
change of basis. The length of the shortest non-zero vector in L is denoted by sh(L). Define
the length of a basis by, ..., b, as maxj; ||b;||. Then bl(L) denotes the minimum of the lengths
of all bases of L. Let aj,...,a; be the Gram-Schmidt orthogonalization of ay,...,a,, then
B =P (a},...,a}) — S0y saf = {0 vial | — 5 <7 < 3} is called a fundamental brick of
the lattice. Note that vol B = vol (P(af,...,a})) = det L.

Let ngm denote the set of n X m matrices over Z,. For every n,m,q, {2y m ¢ denotes the
uniform distribution on Zy*™. For every X € Zy*™, theset A(X) = {y € Z™ | Xy =0 mod ¢}
defines a lattice of dimension m. A = A,, ,,, 4 denotes the probability space of lattices consisting
of A(X) by choosing X according to €y, ;4. By Minkowski’s Theorem it can be proved that,
Ve 3¢ s.t. VA(X) € Ay gnpe v (v € A(X) and 0 < ||[v]] < n). (In fact, the bound n can be
reduced to n'/?*¢. The important point is, the bound ||v|| < n implies that the assumption on
the hypothetical algorithm A is not vacuous.) We now present some preliminary lemmas.

Lemma 1 Let uy,...,u, be linearly independent vectors in a lattice L satisfying ||u;|| < M.
Then any vector w € R™ can be expressed as a sum of two vectors, v and §, where v € L

and ||6] < @ Moreover if all the vectors are integral, then v and § can be computed in
polynomial time.

Lemma 2 Let L = L(ay,...,a,) be a lattice. Let B be the fundamental brick of L. Then the
whole space R™ can be tiled up as a disjoint union of copies of B:

R" = | J(B+1).
leL

The next lemma proves that if n > 4 then from a short set of linearly independent vectors in
a lattice one can construct a basis with only a 4 blow-up in size.

Lemma 3 Let L = L(aq,...,ay,) be a lattice in Z™. Let 11,...,ry be linearly independent
vectors in L with ||r;|| < M. Then a basis by,...,b, of L can be constructed in P-time so that

for every i, r; = 23':1 a;jb;j where the a;j are integers, a; > 0, and ||b;]| < max{1, 4}M



Next we present an algorithm that samples lattice points uniformly from the half open par-
allelepiped P = P~ (v1,...,v,) where v; are any linearly independent lattice vectors. Let
X = =1 iV, where 0 < x; < 1, be a lattice point in P. By Lemma 3,

U1 o by

) a1 by
(1 T2 ... Ty) . =(r1 22 ... Tp)

Un Qpl OQp2 -+ Op b,

Write x in terms of b;, the coefficient of b, is x,a, which has to be an integer. Choose z,
umformly from the set {a , aln . "‘Z—;l} Then the coefficient of b,,_1 is z,,_104p_1 —I—:cnozn,n_l.
Let a:n 1 be the root of the equation zay,—1 + zpapn—1 = 0. z,_1 is set to the value (0 Tp_1+

y) mod 1 where y is uniformly chosen in { 0 L , n=ie 1} etc. It can be shown that

-1’7 ap-1""
this sampling procedure samples all the lattlce points in P umformly

3 The Algorithm

As described in Section 1 the heart of the algorithm B of Theorem 1 is an iterative process B'.
At all times we maintain a set S of n linearly independent lattice vectors. At each iteration
if the length of S is greater than n3+€ bl(L) then with non-trivial probability we update S,
reducing its length by % If we are unable to do this at some step then we use Lemma 3 to
produce a basis that is at most a y/n factor longer. We start this process with S = {a1,...,a,}-
The following lemma summarizes this iterative process 5.

Lemma 4 Let € > 0 be any constant. Assume there exists an algorithm A that when given a
random value X of Qp, 4, where ¢ = O(n®) and m = O(n), with probability greater than ﬁ
returns a vector of the lattice A(X) of length < n, then there exists an algorithm B’ which when
given two sets of linearly independent vectors a1, ...,a, and ui, ..., Up, Uj,a; € Z", u; € L =
L(ay,...,ap), ||uil| < M, with high probability returns n linearly independent vectors by, ..., by
such that either max; ||b;|| < n3T€ bl(L) or max; [|b;|| < .

Now we describe the algorithm B’ in detail.
Step 1: Constructing the pseudo-cube

Let e; be the unit vector that has its i** coordinate 1 and all other coordinates zero. Let
w; = (n'"5M)e;. Thus, w; are mutually orthogonal vectors and they define a perfect cube of
side n'®M. The w; are not necessarily lattice vectors and we would like to find lattice vectors
v; that are not too far away from the w; so that the parallelepiped they define is close to a
perfect cube. Now applying Lemma 1 each w; can be written as the sum of two vectors v;
and ¢; such that v; € L and ||;]] < \@M. This implies ||v;]] < (n'® + 4)M As noted
in Lemma 1, such v; and §; can be computed efficiently. P(vy,...,v,) is the pseudo-cube
constructed.

Step 2: Sampling lattice points

We work with an expanded and shifted version of the pseudo-cube constructed in Step 1.
Consider the parallelepiped P = P~ (2v1,...,2v,) — > v; = {>pqzivi | —1 < 2z < 1}



We partition P into ¢™ sub-pseudo-cubes. Assume ¢ is odd. (The case for even g is similar
but slightly more involved, and is omitted in this extended abstract.) Consider the sub-

pseudo-cube Q = _(2%, .,2”7“) — Z-”l’j; = {0 zivi | —% <z < } Tile up P
with coples of this sub-pseudo-cube, i.e. with sub- pseudo—cubes of the form Q + 3 2;1 =
{1 4 Lo | 2t; —1 < < 2t; + 1}, for integers t;, — 15— L <t; < L. Each lattice point in P

has an address depending on where in P it lies. Here is how we deﬁne the address of a lattice
point. The sub-pseudo-cube Q + >°7* ; %vi has the address (2¢; mod g, ..., 2t, mod q). Note

that as integers t; run through —qg—l, . —1, the reduced moduli 2¢; mod ¢ run through each
value of Z, exactly once, since ¢ is odd. Now for a lattice point z, if it lies in the interior of
a sub-pseudo-cube, then the address of z is the address of the sub-pseudo-cube. If it lies on
the surface of two or more sub-pseudo-cubes, then one sub-pseudo-cube among these is chosen
with equal probability and the address is then calculated as above. Howewver, in considering
which sub-pseudo-cubes share boundary points, any boundary point of P, x = >} ;| zjv;, with
z; = —1 is identified with the point “at the other end” 2’ = 31" ; zlv; with 2z, = 1 and z; = zj
for j # i. Abstractly, we are making an identification on the boundary of P, which can be
viewed as taking the quotient space R™ modulo the lattice L = L(2v1,2v9,...,2v,). This

identification creates an n-dimensional torus out of P = R"/L(2v1,2vs,...,2v,).

For example, if the point sampled is —v; — vo then the following 4 lattice points are
chosen with equal probability: —wv; — vo, —v1 + ve, v1 — v9 and vy + vo. The address is
then (1,1,0,...,0), (1,¢—1,0,...,0), (¢—1,1,0,...,0) and (¢—1,¢—1,0,...,0) respectively,
as t1, and t9 take on values —q;—l and %. The address space is Zy. We represent a lattice
point [ in P by the tuple (o, d), where o is its address and § € @ and 3 unique even integers
Clyeenlny, —(@—1) <6 <g—1, st (c1,...,cp) =0 mod g and I = 3731, Gv; + 6. This 6 is
called the remainder vector of [.

To sample a lattice point in P, first sample a lattice point / uniformly in the parallelepiped
P~ (2vy,...,2v,) as described in our sampling algorithm given in Section 2. The uniformly
sampled lattice point in P is then [ — )7 ; v;. We want to pick independently m = ©(n) lattice
points in this parallelepiped in such a way that the distribution induced on their addresses is
close to uniform. As will be clear in the next section it is not enough for our purposes to
just sample m points directly from P. If so, the distribution induced on their addresses
will not be as close to the uniform distribution as we want. So we employ a pseudorandom
amplification technique as follows. Using our sampling algorithm we first sample &k = [%]
independent samples from P, x(V, x®, ... x(¥) where () = (o(j),n(j)), and oD, c@ .. o)
are the corresponding addresses and n), 7@, ... n®*) are the remainder vectors. Let o =
(2521 a(j)) mod ¢, (o € Zy, with each coordinate reduced modulo ¢,) and 7 = E?Zl n0).
There is a unique sub—pseudo—cube whose center coordinates are congruent to « coordinate-
wise modulo g. Let x. = 33iL; ¢v; be the center of this sub-pseudo-cube, where (ci, ..., cn) =
a mod q. Then x = x.+ 7 is our constructed lattice point.

It is important to note that y, while not necessarily equal to 22?21 ¥, is always a lattice
point. In fact, ) = 37, CEJ) ~+ n(j), where (c; () cg ), ,c,(lj)) = ¢ mod q. Thus, o =
Z?:l o) = (Ek 1c§] ,...,E] 1cn )mod g- And therefore, Zle cgj) = ¢; mod ¢. Finally,




notice that v; are lattice vectors, by exchanging the order of summation,

ko n [k G\ vi ko
YW = YY) Y g
j=1 i=1 \j=1 q Jj=1
n
C; .
- Z <—> v; + a lattice vector + 7.
i=1 N4

Since each ) € L, it follows that y = P %’UZ' + 7 is also a lattice vector. Note that, xy may
lie outside the sub-pseudo-cube Q + >~i; %vi, or even outside P. But that doesn’t matter.
We still call o the address of y and 7 its remainder vector. We do this m times to get the

lattice points y; with address «; and remainder vector 7;, 1 <i < m.
Step 3: Calling A

If M > n3*¢bl(L), the o4 are distributed almost uniformly on the address space (for a proof
sketch see next section), and so when the matrix X = (a1, as,...,qy) is given to algorithm
A, with non-trivial probability, it returns a vector (hq, ho,...,hy) in A(X) of norm < n.

The output is g = 377" h;jn;. Crucially, g is always a lattice vector of L ([1]). This can
be seen using a similar exchange argument as above. We have Z;-n:l hja; = 0 mod g. Thus,
> i1 hjcij = 0 mod g, for each i, where, (cij,c2j,...,cn;) = aj mod g are the coordinates of
the jth sub-pseudo-cube. Hence,

m n m po m

Z hix; = Z Z 2 v + Z hjn; = a lattice vector + g.
i— q

j=1

i=1 \j=1 j=1

This shows that g, being the difference of two lattice vectors, is itself a lattice vector.

We need to repeat the above ©(n) times to produce n linearly independent lattice vectors.
We next prove that with high probability ||g|| < % when g = ©(n?) is appropriately chosen.

The expected length of the output

As noted above, when given X, with probability ﬁ, A returns a vector h = (hy,ho, ..., hy) €
A(X) of length < n. In case A fails to produce such a vector after n?(!) tries we set h to the
all-zero vector. So in all cases we can assume that ||h|| < n.

Let g = Y%, hin;. We intend to show that with high probability this vector has length
@(TLP’TM). Therefore a choice of ¢ = ©(n?) ensures that with high probability g has a length

not more than 2. The key is to evaluate the expectation E [||g||?].

A different, yet distributionally equivalent, way to uniformly sample lattice points in P
is to first choose an address, that is, choose a sub-pseudo-cube, with a probability that is
proportional to the number of lattice points in the sub-pseudo-cube and then to uniformly
sample a lattice point in that sub-pseudo-cube. This process however cannot be carried out
efficiently. But the distribution this induces on the addresses is identical to the one induced
by our sampling algorithm. Note that the output of A depends only on the addresses of the
lattice points chosen and not on the remainder vectors. So with this equivalent way of looking
at things we can evaluate the expectation E [||g||?], by first randomizing a;, and then for any
fixed output (hi,he,...,hy) by A.



The pseudo-cube P is symmetric about the origin. If z is a lattice point so is —z. Since
lattice points are chosen uniformly the probability that z is chosen is the same as the probability
that —z is chosen. This is also true for lattice points on the boundary of P, where z and —z
are chosen with equal probability. Moreover, the set of center points of all sub-pseudo-cubes
is also invariant under the map x +— —z. This means n and —n are equally likely to occur as
the remainder vector. Thus E [n] = 0. Now,

BUS bl = B[S hibilmemd) = S hehE (oo
=1

il=1 il=1

and

k k
E )] =E S 0P 0" =3 E [, 0.

p,q=1 p,q=1
Ifp#qori#l, ngp) and nl(q) are independent, we have F [(ngp),nl(q))] =(E [ngp)], E [nl(q)]) = 0.

Therefore, E [|| S0, hmil|?] = S, h2E [(niymi)] = £y b2 $5_y B [0 |[2). Tt can be
shown that (proof omitted) the diagonal of @) has length at most O(\/ﬁ(g)) Therefore,
||n§p)|| is at most half that. Using this as an upper bound for E [||n§p)||2], and by Markov’s

n3M

5 )» and thus [|g[| < Y when g is chosen

inequality, we get with high probability ||g|| = O(
to be O(n?).

4 Some geometric and probabilistic lemmas

In this section we give some sketch of the proof that our sampling procedure which samples
lattice points uniformly from a pseudo-cube induces a distribution close to uniform on the
addresses. The key to this proof is some volume estimate using eigenvalue and singular value
techniques. The volume bounds will then be used to estimate the number of lattice points
in a pseudo-cube which in turn will be used to show that if M is larger than n3t€ bl(L), the
distribution induced on the address space by our sampling algorithm is close to the uniform
distribution. But, it is not close enough! We will then use amplification to reduce the distance
between the two distributions. We will also prove an upper bound on the number of lattice
points lying on a hyperplane intersecting a pseudo-cube. This will be used to show that a small
number of independent tries are sufficient to produce n linearly independent lattice vectors.
Most of the Lemmas and proofs are omitted due to space limitation. We first state and prove
a lemma about the volume of a pseudo-cube that is close to a unit cube. Any pseudo-cube can
be suitably scaled down and this lemma applies.

Lemma 5 Let ey,...,e, be the standard unit orthogonal vectors. Let ui,...,u, be linearly
independent vectors such that ||u; —e;]| < e. Then

1—ne < vol(P(u1,...,up)) < (1+¢€™

Proof The upper bound is an easy consequence of Hadamard’s inequality. Since |ju;|| < 1+e,
VOl(P(u1,...,up)) = |det(ug,...,u)| < [l llwll < (1+¢)™



To prove the lower bound, we note that the matrix (u1,...,u,) can be written as a sum of
the unit matrix I and a perturbation matrix A = (aq,...,a,), i.e., (u1,...,u,) = I + A. Since
the determinant is the product of the eigenvalues, and the i’ eigenvalue \;(I+ A) = 1+ \;(A)
for a scalar matrix I, we have vol (P(u1,...,up)) = |det(u1,...,un)| = |[I (NI + A))| =
ITT @+ XA =TT 1+ XA =TT 1 = [M(A)]).

By Schur’s decomposition, there exists a unitary matrix U s.t. UAU™ is an upper triangular
matrix. Since U is unitary, [|Ua;|| = |lail|. Thus, |UA|%2 = ", [Uall? = S0 lail? =
|A|2. Similarly |[UAU*||2 = ||[UA||%2 = ||A||%, since U* is also unitary. Furthermore, a
unitary transformation A — UAU™ preserves eigenvalues, hence \;(A) appear on the diagonal
of UAU*. Thus, Y |\|? < |UAU*|2 = || A2 < né’.

By Cauchy-Schwarz, Y |A\j| < ne. We are left with the problem of minimizing the product
[Ti,(1 — z;) subject to the conditions z; > 0, Y z; < ne. An easy induction shows that
the minimum occurs at z; = ne, z; = 0 for j # 4. Thus vol(P) > 1 — ne. O

Denote g = bl(L). The next lemma proves that the number of lattice points in a paral-
lelepiped of volume V is closely approximated by the ratio 7%, when the minimum height H
is large enough compared to u.

Lemma 6 Let L = L(ay,...,a,) be a lattice in R", ||a;|| < u, g1,---,9n linearly independent
vectors in R™, b € R™. Let Py, =b+ P(g1,...,9n). Let ko (resp. k1) be the number of lattice
points in Py (resp. in its interior). Let H be the minimal height and V be the volume of P,.
Then for j =0,1:

1. (1—2“}{/5)11 2 < kj < <1+2u1}/ﬁ)nd¥L'

2. If in addition, there exist mutually orthogonal vectors wy, ..., wp, |wi|]| =Y, |lwi—gl|/Y =
0] (%) Let F be any hyperplane, then the number of lattice points in F N Py 1s at most

~1
c(H™ 12u\/n (1 + %)n (detL)~! for some constant c.

Denote W = P,. Let W, be the parallelepiped obtained from W by expanding it by a factor
(1 + 2“}}/7_1), and let W, be W contracted by (1 — M) Let B = P(a},...,a}) — >, sa}
be a fundamental brick of this lattice. Tile up the whole space with copies of B. Any two
points of B are at most a distance pv/n apart. Therefore any brick that intersects W has to
lie completely inside W,, and any brick that intersects the parallelepiped W, lies completely
inside W. Clearly the number of bricks that intersect W is an upper bound, and the number

of bricks that lie completely inside W is a lower bound, for the number of lattice points in W.

The proof of part 2. of Lemma 6 uses the following lemma. Its proof, in turn, uses singu-
lar values, Courant-Fischer inequality, and a recent theorem of Ball [5] which states that the
volume of the intersection of any hyperplane with the unit cube (in whatever dimension) has
the precise upper bound of v/2. The proof of Lemma 7 is omitted here for space limitation.

Lemma 7 Let ey1,...,e, be the standard unit orthogonal vectors. Let ui,...,u, be linearly
independent vectors such that ||u; —e;|| < e. Let H be a hyperplane. Then the area of the
surface P(uy,...,u,) N H is at most v/2e(1 + ¢)" L.



In the previous section we proved that, with high probability, each output vector g of
algorithm B’ is short, (||g|| < &). In order to eventually output n linearly independent lattice
vectors we also need to show that with non-trivial probability the (j + 1)%! vector output does
not lie in the linear span of the previous j vectors. The above lemmas and some additional
lemmas can be used to prove that. (Details are omitted here.) We also need the following
lemma, for the uniformity of distribution on the address space.

Lemma 8 If M > n®t¢u and with an appropriate choice of ¢ = ©(n?), there exists a uniformly
distributed random wvariable ( which takes values from the address space and with probability
greater than 1 — % agrees with the actual address of a lattice point chosen randomly according

to our sampling algorithm.

We need to sample m lattice points and ensure that the matrix formed by the m addresses
as column vectors is close to the uniform distribution so that .4 behaves nicely on it. The
above lemma says that each column vector directly sampled is close to being uniform. But
since m = O(n) the 1 — # bound above for each of the m addresses is not good enough.
To decrease the distance between the two distributions, we construct a lattice point by first
sampling k = [%] points and then combining them as described earlier. The next lemma states
that the distribution induced on the address space by this amplification is now much better.

Lemma 9 There exists a uniformly distributed random variable p which takes values from the
address space and with probability greater than 1— # agrees with the actual address of a lattice

point chosen randomly by thus combining [%'| lattice points.

Apart from constructing a relatively short basis with high probability for any lattice in Z",
we are also able to use the hypothesis of Theorem 1 to approximate (with high probability)
the length of a shortest non-zero vector in any lattice in Z" within a better polynomial factor.
This is achieved by using an improved connection between a lattice and its dual. The dual
L* of a lattice L in R™ is defined as L* = {y | Vo € L (z,y) € Z}, where (-,-) denotes the
standard inner product. We state the connection first.

Lemma 10 If L is a lattice in R™ and L* is its dual lattice then,
1 < sh(L)bI(L*) < en'® for some constant c.

The upper bound above is better than the upper bound proved in [1] by a y/n factor. This,
together with our improvement in Theorem 1, enables us to prove the following,

Theorem 2 For any constant € > 0, if there exists a probabilistic polynomial time algorithm
A that when given a random lattice A(X), indexed by n,m, q, where ¢ = O(n?) and m = O(n),
with probability ﬁ returns a vector of the lattice A(X) of length < n, then, there ezxists a
probabilistic polynomial time algorithm C which when given a basis a1, ...,a, € Z" for a lattice
L= L(a1,...,an), returns a number [ such that, | < sh(L) < O(n®T€) I.

Algorithm C applies algorithm B from Theorem 1 to L*, thus obtaining [*, an approximation
to bl(L*). Then, | = } approximates sh(L) to the claimed factor. A similar improvement is
obtained for the n°-unique shortest vector problem stated in [1].
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