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Abstract

We prove a complexity dichotomy theorem for the following class of Holant Problems. Given a
3-regular graph G = (V, E), compute

Holant(G) = Z H g({o(u),o(v)}),

0:V—{0,1} {u,v}€E

where the (symmetric) edge function ¢ is arbitrary complex valued. Three new techniques are
introduced: (1) Higher dimensional iterations in interpolation; (2) Eigenvalue Shifted Pairs, which
allow us to prove that a pair of combinatorial gadgets in combination succeed in proving #P-hardness;
and (3) Algebraic symmetrization, which significantly lowers the symbolic complezity of the proof for
computational complexity. These theorems can be extended to k-regular graphs. With holographic
reductions the classification theorem also applies to problems beyond the basic model.

Keywords: Computational complexity

1 Introduction

In this paper we consider the following subclass of Holant Problems [4, 5]. An input regular graph
G = (V, E) is given, where every e € E is labeled with a (symmetric) edge function g. The function g
takes 0-1 inputs from its incident nodes and outputs arbitrary values in C. The problem is to compute
the quantity Holant(G) =3>_,.,_ 101} [14,03ep 9{o(w), o(v)}).

Holant Problems are a natural class of counting problems. As introduced in [4, 5], the general Holant
Problem framework can encode all counting Constrained Satisfaction Problems (#CSP). This includes
special cases such as weighted VERTEX COVER, GRAPH COLORINGS, MATCHINGS and PERFECT
MATCHINGS. The subclass of Holant problems in this paper can also be considered as (weighted)
H-homomorphism (or H-coloring) problems [7, 2, 6, 8, 3, 9] with an arbitrary 2 x 2 symmetric complex
matrix H, however restricted to regular graphs G as input. E.g., VERTEX COVER is the case when

1 1
(i.e., the problem is either in P or #P-hard, depending on H) for unweighted H-homomorphisms with
undirected graphs H and directed acyclic graphs H are given in [7] and [6] respectively. A dichotomy
theorem for any symmetric matrix H with non-negative real entries is proved in [2]. Goldberg et. al. [§]
proved a dichotomy theorem for all real symmetric matrices H. Finally, Cai, Chen and Lu have proved
a dichotomy theorem for all complex symmetric matrices H [3].

H = [ 01 ] When the matrix H is a 0-1 matrix, it is called unweighted. Dichotomy theorems
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The crucial difference between Holant Problems and #CSP is that in #CSP, EQuALITY functions
of arbitrary arity are presumed to be present. In terms of H-homomorphism problems, this means that
the input graph is allowed to have vertices of arbitrarily high degrees. This may appear to be a minor
distinction; in fact it has a major impact on complexity. It turns out that if EQUALITY gates of arbitrary
arity are freely available in possible inputs then it is technically easier to prove #P-hardness. Proofs
of previous dichotomy theorems make extensive use of constructions called thickening and stretching.
These constructions require the availability of EQUALITY gates of arbitrary arity (equivalently, vertices
of arbitrarily high degrees) to carry out. Proving #P-hardness becomes more challenging in the degree
restricted case. Furthermore there are indeed cases within this class of counting problems where the
problem is #P-hard for general graphs, but solvable in P when restricted to 3-regular graphs.

We denote the (symmetric) edge function g by [z,v, z], where z = ¢(00),y = ¢g(01) = ¢(10) and
z = ¢g(11). Functions will also be called gates or signatures. (For VERTEX COVER, the function
corresponding to H is the OR gate, and is denoted by the signature [0,1,1].) In this paper we give a
dichotomy theorem for the complexity of Holant problems on 3-regular graphs with arbitrary signature
g = [z,y, 2], where z,y,z € C. First, if y = 0, the Holant problem is easily solvable in P. Assuming
y # 0 we may normalize it and assume y = 1. Our main theorem is as follows:

Theorem 1.1. Suppose a,b € C, and let X = ab, Q = (#)2 Then the Holant Problem on 3-regular
graphs with g = [a, 1,b] is #P-hard except in the following cases, for which the problem is in P.

1. X=1
2.X=Q=0

3 X=—-1and Q=0
4. X=—-1and Q=-1

If we restrict the input to planar 3-reqular graphs, then these four categories are solvable in P, as well
as a fifth category X3 = Q, and the problem remains #P-hard in all other cases. !

These results can be extended to k-regular graphs. One can also use holographic reductions [13] to
extend this theorem to more general Holant Problems.

In order to achieve this result, some new proof techniques are introduced. To discuss this we first
take a look at some previous results. Valiant [11, 12] introduced the powerful technique of interpolation,
which was further developed by many others. In [4] a dichotomy theorem is proved for the case when g
is a 0-1 valued Boolean function. The technique from [4] is to provide certain algebraic criteria which
ensure that interpolation succeeds, and then apply these criteria to prove that (a large number yet)
finitely many individual problems are #P-hard. This involves (a small number of ) gadget constructions,
and the algebraic criteria are powerful enough to show that they succeed in each case. Nonetheless this
involves a case-by-case verification. In [5] this theorem is extended to all real valued a and b, and
we have to deal with infinitely many problems. So instead of focusing on one problem, we devised (a
large number of) recursive gadgets and analyzed the regions of (a,b) € R? where they fail to prove
#P-hardness. The algebraic criteria from [4] are not suitable (Galois theoretic) for general a and b,
and so we formulated weaker but simpler criteria. Using these criteria, the analysis of the failure set
becomes expressible as containment of semi-algebraic sets. As semi-algebraic sets are decidable, this
offers the ultimate possibility that if we found enough gadgets to prove #P-hardness, then there is a

!Technically, computational complexity involving complex or real numbers should, in the Turing model, be restricted
to computable numbers. In other models such as the Blum-Shub-Smale model [1] no such restrictions are needed. Our
results are not sensitive to the exact model of computation.



computational proof (of computational intractability) in a finite number of steps. However this turned
out to be a tremendous undertaking in symbolic computation, and many additional ideas were needed
to finally carry out this plan. In particular, it would seem hopeless to extend that approach to all
complex a and b.

In this paper, we introduce three new ideas. (1) We introduce a method to construct gadgets that
carry out iterations at a higher dimension, and then collapse to a lower dimension for the purpose of
constructing unary signatures. This involves a starter gadget, a recursive iteration gadget, and a finisher
gadget. We prove a lemma that guarantees that among polynomially many iterations, some subset of
them satisfies properties sufficient for interpolation to succeed (it may not be known a priori which
subset worked, but that does not matter). (2) Eigenvalue Shifted Pairs are coupled pairs of gadgets
whose transition matrices differ by A\l where A # 0. They have shifted eigenvalues, and by analyzing
their failure conditions, we can show that except on very rare points, one or the other gadget succeeds.
(3) Algebraic symmetrization. We derive a new expression of the Holant polynomial over 3-regular
graphs, with a crucially reduced degree. This simplification of the Holant and related polynomials
condenses the problem of proving #P-hardness to the point where all remaining cases can be handled
by symbolic computation. We also use the same expression to prove tractability.

The rest of this paper is organized as follows. In Section 2 we discuss notation and background
information. In Section 3 we cover interpolation techniques, including how to collapse higher dimensional
iterations to interpolate unary signatures. In Section 4 we show how to perform algebraic symmetrization
of the Holant, and introduce Eigenvalue Shifted Pairs (ESP) of gadgets. Then we combine the new
techniques to prove Theorem 1.1, the Dichotomy Theorem for 3-regular graphs. Some proof details are
presented in the Appendix.

2 Notations and Background

We state the counting framework more formally. A signature grid Q@ = (G, F, ) consists of a labeled
graph G = (V, E) where 7 labels each vertex v € V with a function f, € F. We consider all edge
assignments & : E — {0,1}; f, takes inputs from its incident edges E(v) at v and outputs values in C.
The counting problem on the instance €2 is to compute?

Holantq = Z H fo(€ |E(v))'

& veVv

Suppose G is a bipartite graph (U, V, F) such that each v € U on the LHS has degree 2. Furthermore
suppose each v € V is labeled by an EQUALITY gate = where k = deg(v). Then any non-zero term
in Holant corresponds to a 0-1 assignment ¢ : V' — {0,1}. In fact, we can merge the two incident
edges at v € U into one edge e,, and label this edge e, by the function f,. This gives an edge-labeled
graph (V, E') where E' = {e, | u € U}. For an edge-labeled graph (V, E’) where e € E’ has label g,
Holanto = 3.y 101} [ez(ow)err 9e(0(v), ¢(w)). If each g is the same function g (but assignments
¢ : V — [q] take values in a finite set [g]) this is exactly the H-coloring problem (for undirected graphs
g is a symmetric function). In particular, if (U,V, E) is a (2, k)-regular bipartite graph, equivalently
G' = (V,E') is a k-regular graph, then this is the H-coloring problem restricted to k-regular graphs.
In this paper we will discuss 3-regular graphs, where each g. is the same symmetric complex-valued
function. We also remark that for general bipartite graphs (U,V, E), giving EQUALITY (of various
arities) to all vertices on one side V defines #CSP as a special case of Holant Problems. But whether

EQUALITY of various arities are present has a major impact on complexity, thus Holant Problems are a
refinement of #CSP.

2The term Holant was first introduced by Valiant in [13] to denote a related exponential sum.



A symmetric function g : {0,1}¥ — C can be denoted as [go, g1, . -, gx], where g; is the value of ¢
on inputs of Hamming weight ¢. They are also called signatures. Frequently we will revert back to the
bipartite view: for (2, 3)-regular bipartite graphs (U, V, E), if every u € U is labeled g = [go, g1, g2] and
every v € V is labeled f = [fo, f1, f2, f3], then we also use #[go, 91,92] | [fo, f1, f2, f3] to denote the
Holant problem. Note that [1,0, 1] and [1,0,0,1] are EQUALITY gates =2 and =3 respectively, and the
main dichotomy theorem in this paper is about #z,y, 2] | [1,0,0,1], for all z,y,z € C. We will also
denote Hol(a,b) = #[a,1,b] | [1,0,0,1]. More generally, If G and R are sets of signatures, and vertices of
U (resp. V) are labeled by signatures from G (resp. R), then we also use #G | R to denote the bipartite
Holant problem. Signatures in G are called generators and signatures in R are called recognizers. This
notation is particularly convenient when we perform holographic transformations.

We use Arg to denote the principal value of the complex argument, i.e. Arg(c) € (—m, 7] for all
nonzero ¢ € C.

2.1 F-Gate

Any signature from F is available at a vertex as part of an input graph. Instead of a single vertex, we
can use graph fragments to generalize this notion. An F-gate I is a pair (H,F), where H = (V, E, D)
is a graph with some dangling edges D (Figure 1 contains some examples). Other than these dangling
edges, an F-gate is the same as a signature grid. The role of dangling edges is similar to that of
external nodes in Valiant’s notion [14], however we allow more than one dangling edge for a node. In
H = (V,E, D) each node is assigned a function in F (we do not consider “dangling” leaf nodes at the
end of a dangling edge among these), E are the regular edges, denoted as 1,2,...,m, and D are the
dangling edges, denoted as m + 1,m + 2,...,m +n. Then we can define a function for this F-gate
I'=(H,F),
D(y1,92,- - 9n) = > H(x122 - Tmy1y2 -+ Yn),
122 Tm €{0,1}™

where (y1,y2,...,yn) € {0,1}" denotes an assignment on the dangling edges and H (z122 -+ - Tm¥1Y2 * - Yn)
denotes the value of the signature grid on an assignment of all edges, i.e., the product of evaluations
at every vertex of H, for (x1,Z2,...,Tm,Y1,Y2,---,Yn) € {0,1}™T". We will also call this function the
signature of the F-gate I'. An F-gate can be used in a signature grid as if it is just a single node with
the particular signature. We note that even for a very simple signature set F, the signatures for all
F-gates can be quite complicated and expressive. Matchgate signatures are an example [14].

In the language of holographic algorithms, the signatures of an F-gate used on one side of the
bipartite graph are called generators and on the other side are called recognizers. Throughout this
paper, we will consider the side with degree 2 vertices as the generators and the other side as the
recognizers. The dangling edges of an F-gate are considered as input or output variables. Any m-
input n-output F-gate can be viewed as a 2" by 2" matrix M which transforms arity-m signatures
into arity-n signatures (this is true even if m or n are 0). Our construction will transform symmetric
signatures to symmetric signatures. This implies that there exists an equivalent n+1 by m+1 matrix M
which operates directly on column vectors written in symmetric signature notation. We will henceforth
identify the matrix M with the F-gate itself. The constructions in this paper are based upon three
different types of bipartite F-gates which we call starter gadgets, recursive gadgets, and finisher gadgets.
An arity-r starter gadget is an F-gate with no input but r output edges. If an F-gate has r input and r
output edges then it is called an arity-r recursive gadget. Finally, an F-gate is an arity-r finisher gadget
if it has r input edges 1 output edge. As a matter of convention, we consider any dangling edge incident
with a generator as an output edge and any dangling edge incident with a recognizer as an input edge;
see Figure 1.



3 Interpolation Techniques

In this section, we develop our new technique of higher dimensional iterations for interpolation of unary
signatures.

3.1 Binary recursive construction

Lemma 3.1. Suppose A € C3*3 is a nonsingular matriz, v € C? is a nonzero vector, and for all integers
k > 1, v is not a column eigenvector of A*. Let F; € C**3 be three matrices, where rank(F;) = 2 for
1 <@ < 3, and the intersection of the row spaces of F; is trivial {0}. Then for every n, there exist some
F e {F |1<i<3}, and some S C {FA*v | 0 < k < n3}, such that |S| > n and vectors in S are
pairwise linearly independent.

Proof. Let k > j > 0 be integers. Then A*v and AJv are nonzero and linearly independent, since
otherwise v is an eigenvector of A¥=J. Let N = [AJv AFv] € C3*2) then rank(N) = 2, and ker(NT)
is a 1-dimensional linear subspace. It follows that there exists an F' € {F; | 1 < i < 3} such that the
row space of F' does not contain ker(NT), and hence has trivial intersection with ker(NT). In other
words, ker(NTFT) = {0}. We conclude that FN € C?*2 has rank 2, and FA/v and FA*v are linearly
independent.

Each F;, where 1 < i < 3, defines a coloring of the set K = {0,1,...,n3} as follows: color k € K
with the linear subspace spanned by F;A¥v. Thus, F; defines an equivalence relation ~; where k ~; k'
iff they receive the same color. Assume for a contradiction that for each F;, where 1 < i < 3, there
are not n pairwise linearly independent vectors among {F;A*v : k € K}. Then, including possibly
the 0-dimensional space {0}, there can be at most n distinct colors assigned by F;. By the pigeonhole
principle, some k and k&’ with 0 < k < k¥’ < n? must receive the same color for all F;, where 1 < i < 3.
This is a contradiction and we are done. O

The next lemma says that under suitable conditions we can construct all unary signatures [z,y|. The
method will be interpolation at a higher dimensional iteration, and finishing up with a suitable finisher
gadget. The crucial new technique here is that by iterating at a higher dimension, we can guarantee
the existence of one finisher gadget that succeeds on polynomially many steps, which results in overall
success. Different finisher gadgets may work for different initial signatures and different input size n,
but these need not be known in advance and have no impact on the final success of the reduction.

Lemma 3.2. Suppose that the following gadgets can be built using complex valued signatures from a
finite generator set G and a finite recognizer set R.

1. A binary starter gadget with nonzero signature [2g, 21, z2].

2. A binary recursive gadget with nonsingular recurrence matriz A, for which [z, 21, 22]* is not a
column eigenvector of A* for any positive integer k.

3. Three finisher gadgets with rank 2 matrices Fy, Fy, F3 € C?*3, where the intersection of the row
spaces of F1, Fy, and F3 is the zero vector.

Then for any x,y € C, #G U {[z,y]} | R <r #G | R.

Proof. The construction begins with the binary starter gadget with signature [z, 21, z2], which we call
Npy. Let F = GUR. Recursively, F-gate Ngi1 is defined to be Ng connected to the binary recursive
gadget in such a way that the input edges of the binary recursive gadget are merged with the output



edges of N;. Then F-gate GG, is defined to be Ny connected to one of the finisher gadgets, with the
input edges of the finisher gadget merged with the output edges of N (see Figure 1(d)). Herein we
analyze the construction with respect to a given bipartite signature grid €2 for the Holant problem
#G U {[x,y]} | R, with underlying graph G = (V,E). Let Q C V be the set of vertices with [z,y]
signatures, and let n = |@Q|. By Lemma 3.1 fix j so that at least n 4 2 of the first (n 4 2)% + 1 vectors of
the form FjA%[zy 21 2] T are pairwise linearly independent. We use finisher gadget Fj in the recursive
construction, so that the signature of G is F; A%z 21 29]T, which we denote by [Xj,Y;]. We note
that there exists a subset S of these signatures for which each Y; is nonzero and |S| = n + 1. We will
argue using only the existence of S, so there is no need to algorithmically “find” such a set, and for
that matter, one can try out all three finisher gadgets without any need to determine which finisher
gadget is “the correct one” beforehand. If we replace every element of ) with a copy of G, we obtain
an instance of #G | R (note that the correct bipartite signature structure is preserved), and we denote
this new signature grid by Q. Then

Holantg, = » XY

0<i<n

where ¢; = > l,ev\g fo(olpw)), Ji is the set of {0,1} edge assignments where the number of Os
assigned to the edges incident to the copies of Gy is i, f, is the signature at v, and E(v) is the set of
edges incident to v. The important point is that the ¢; values do not depend on X, or Y. Since each
signature grid €, is an instance of #G | R, Holantg, can be solved exactly using the oracle. Carrying
out this process for every s € {0,1,...,(n + 2)3}, we arrive at a linear system where the ¢; values are
the unknowns.

Holantg, X0y Xygt e Xpyy co
Holantg, X0y Xiypt e Xy a1
: 0 1 - ) 3 :
HOlaHtQ(n+2>3 X(n+2)3}/v(71+2)3 X(n+2)31/(n+2)3 ce Zln+2)3 Yv(n+2)3 Cn
Define z; = X, and y; = Ys, where S = {so, s1,...,8p}, so that [x;,y;] € S for 0 <i < n, and we have
a subsystem
yan - Holantg, z8y8 5L"(1)y071 T "Bgy(;n €0
yi " Holantg, | | 2y afyr' o a2fy" || @
y, " - Holantg,, $%y2 x%y;l Xy Cn

The matrix above has entry (x,/y,)¢ at index (r,¢). Due to pairwise linear independence of [z, y,],
x, [y, is pairwise distinct for each r» € S. Hence this is a Vandermonde system of full rank. Therefore
the initial feasible linear system has full rank and we can solve it for the ¢; values. With these values
in hand, we can calculate Holantg = 5, c;x'y™ " directly, completing the reduction. O

The ability to simulate all unary signatures will allow us to prove #P-hardness. The next lemma
says that, if R contains the EQUALITY gate =3, then other than on a 1-dimensional curve ab = 1 and
an isolated point (a,b) = (0,0), the ability to simulate unary signatures gives a reduction from VERTEX
CoVER. Note that counting VERTEX COVER on 3-regular graphs is just #[0,1,1] | [1,0,0,1]. Xia et.
al. showed that this is #P-hard even when the input is restricted to 3-regular planar graphs [15]. We
will see shortly that on the curve ab =1 and at (a,b) = (0,0), the problem Hol(a, b) is tractable.



Lemma 3.3. Suppose that (a,b) € C2—{(a,b) : ab=1}—{(0,0)} and let G and R be finite signature sets
where [a,1,b] € G and [1,0,0,1] € R. Further assume that #G U {[z;,y;] : 0 <i<m} | R <r #G | R
for any z;,y; € C and m € Z+. Then #G U {[0,1,1]} | R <7 #G | R, and #G | R is #P-hard.

Proof. Assume ab # 1 and (a,b) # (0,0). Since Hol(0,1) (which is the same as #[0,1,1] | [1,0,0,1],
or counting vertex covers on 3-regular graphs) is #P-hard, we only need to show how to simulate the
generator signature [0, 1, 1]. We split this into three cases, and use a chain of three reductions.

1. ab# 0 and ab # —1
2. ab=0
3. ab=-1

If ab # 0 and ab # —1, then we use Gadget 3 (Figure 2(c)), and we set its signatures to be a = [a, 1, ],
B =[(ab+1)/(1—ab),—a*(ab+1)/(1—ab)],y = [-a"2,b~ (1 +ab)"1], and 6 = [-b/(ab—1),a/(ab—1)].
Calculating the resulting signature of Gadget 3, we find that it is [0, 1, 1] as desired.

If ab = 0 then assume without loss of generality that a = 0 and b # 0. This time we use Gadget
1, setting a = [a,1,b] and 3 = [b,b~!]. Then Gadget 1 simulates a [b~!,1,2b] generator signature, but
since this signature fits the criteria of case 1 above, we are done by reduction from that case.

Similarly, if ab = —1, then Gadget 2 exhibits a generator signature of the form [0,1,5/(2a)] under
the signatures a = [a,1,0], § = [1/(6a), —a/24], and v = [—3/a,a]. Since 5/(2a) is nonzero, we are
done by reduction from case 2. O

Theorem 3.1. Suppose that the following gadgets can be built using generator [a,1,b] and recognizer
[1,0,0,1], where a,b € C, ab # 1, and a® # b>.

1. A binary recursive gadget with nonsingular recurrence matrix A which has eigenvalues o and (3
such that % is not a root of unity.

2. A binary starter gadget with signature s which is not orthogonal to any row eigenvector of A.
Then the problem Hol(a, b) is #P-hard.

Proof. First we show how to build general-purpose binary finisher gadgets for the main construction
using the assumed generator and recognizer, starting first with the case where ab # 0. Using the simplest
a 0 1
1 0 0
matrix for binary recursive Gadget 4 (Figure 3(a)), and we build two more finisher gadgets F’ and F”
using Gadget 4 so that F' = FMy and F” = FM3. Since F and M, both have full rank (note det(My) =
ab(ab—1)3), it follows that F” and " also have full rank. Now we will show that the row spaces of F', F’
and F” have trivial intersection, and it suffices to verify that the cross products of the row vectors of F,
F’, and F" are linearly independent. (To see this, note that the cross product is orthogonal to a vector
if and only if that vector is in the row space. If all three cross products are linearly independent, the
matrix of cross products has full rank and trivial kernel, and the kernel is precisely the intersection of the
row spaces). The cross product of the row vectors of ', F’, and F” are [0, 1—ab,0], (ab—1)%[2b?, —ab(1+
ab), 2a?], and (ab—1)3[2b(a? +ab? +a?b3 +b%), —ab(2a3 + ab+2a2b? +2b3 + a3b3), 2a(a* + a?b+b* + a>b?)]
respectively. Then to see2 that these 3 vectors are 2linearly independent, it suffices to verify that the
2b 2a
20(a® + ab® + a®b® +b*)  2a(a* + a®b + b% + a3b?)

possible choice for a finisher gadget F' (Figure 1(c)), we get F' = } . Let My be the recurrence

submatrix is nonsingular. Since a # 0 and b # 0,



we can just verify det ({ (a? + ab? —|l—)a2b3 +bY) (at+ a2 —iC-L b2+ a12) }) = (ab—1)(a®—b%) # 0, and
the matrix is nonsingular.

If ab = 0, assume without loss of generality that a # 0 and b = 0. Let M5 be the recurrence matrix
for binary recursive Gadget 5. Composing F' with Ms, we get a finisher gadget with matrix FMs,
for which the cross product of the row vectors is [—2a,1 + 2a3, —2a%(1 + a)(1 — a + a?)]. The cross
product of the rows of F and F’ in this case are [0, 1,0] and [0, 0, 2a?] respectively. Then the matrix of
cross products is clearly nonsingular, and we conclude that for any a,b € C, we have 3 finisher gadgets
satisfying Lemma 3.2 item 3 unless ab = 1 or a® = b3.

Now we want to show that s is not an eigenvector of A¥ for any positive integer k (note that s is
nonzero by assumption). Writing out the Jordan Normal Form for A, we have Aks = T=1DFTs, where

k
a® 0 0
D¥ has the form | 0 3% 0 |. Let ¢t =Ts and write t = [c d e]T. By hypothesis, s is not orthogonal
0 * =

to the first two rows of T, thus ¢, d # 0. If s were an eigenvector of A* for some positive integer k, then
T-'DFTs = AFs = \s for some nonzero complex value A\, and D¥t = T'As = At. But then ca® = ¢
and dB* = A\d, which means g—: = 1, contradicting the fact that % is not a root of unity.

We have now met all the criteria for Lemma 3.2, so the reduction #SU{[a, 1, 0], [z, y]} | [1,0,0,1] <7
#S U{[a,1,b]} | [1,0,0,1] holds for any z,y € C, and by Lemma 3.3 the problem Hol(a,b) is #P-
hard. O

3.2 Unary recursive construction

Now we state a similar theorem for the unary case. The following lemma arrives from [10] and is stated
explicitly in [5]. It can be viewed as a unary version of Lemma 3.2 without finisher gadgets.

Lemma 3.4. Suppose there is a recursive unary gadget with nonsingular matrix A and a unary starter
gadget with nonzero column vector s. If the ratio of the eigenvalues of A is not a root of unity and s is
not a column eigenvector of A, then these gadgets can be used to interpolate all unary signatures.

Surprisingly, it turns out that a set of “general purpose” starter gadgets can be made for this
construction, so we refine this lemma by eliminating the starter gadget requirement. The proof of the
following lemma is listed in the appendix.

Theorem 3.2. Suppose there is a recursive unary gadget with nonsingular matriz A, built using
generator [a,1,b] and recognizer [1,0,0,1]. If the ratio of the eigenvalues of A is not a root of unity
then this gadget can be used to interpolate all unary signatures, unless ab =1 or a® = b3.

4 Complex Signatures

Now we aim to characterize Hol(a,b) where a,b € C. The next lemma introduces the technique of
algebraic symmetrization. We show that over 3-regular graphs, the Holant value is expressible as an
integer polynomial P(X,Y), where X = ab and Y = a® + b>. This change of variable, from (a,b) to
(X,Y), is crucial in two ways. First it allows us to derive tractability results easily. Second it facilitates
the proof of hardness for those (a,b) where the problem is indeed #P-hard. Viewing the Holant in
this way reduces the degree of the polynomials involved and draws connections between problems that
may appear unrelated, and the tractability of one implies the other. Once this transformation is made,
Gadgets 4, 6, and 7 (Figure 3) easily cover all of the #P-hard problems where X and Y are real valued,
with a straightforward symbolic computation using CylindricalDecomposition in Mathematica™.



Lemma 4.1. Let G be a 3-reqular graph. Then there exists a polynomial P(-,-) with integer coefficients
in two variables, such that for any signature grid  having underlying graph G and every edge labeled
[a,1,b], the Holant value is Holantg = P(ab, a® + b3).

Proof. Consider any {0,1} vertex assignment o with a non-zero valuation. If ¢’ is the complement
assignment switching all 0’s and 1’s in o, then for ¢ and ¢/, we have the sum of valuations a’t’ + a/b’
for some 7 and j. Here i (resp. j) is the number of edges connecting two degree 3 vertices both assigned
0 (resp. 1) by o. We note that a'd? 4 /b’ = (ab)™P7) (ql*=3l 4- pli=il).

We prove 3 | i — j inductively. For the all-0 assignment, this is clear since every edge contributes
a factor a and the number of edges is divisible by 3 for a 3-regular graph. Now starting from any
assignment o, if we switch the assignment on one vertex from 0 to 1, it is easy to verify that it changes
the valuation from a’®/ to a’' b, where i —j =i’ — j' +3. As every {0, 1} assignment is obtainable from
the all-0 assignment by a sequence of switches, the conclusion 3 | i — j follows.

Now a't! 4 alb® = (ab)™"(4) (g% + b3*), for some k > 0 and a simple induction a?*+1) 4 p3k+1) —
(a®* + b3 (a® + %) — (ab)?(a®* 1) 4 p3k—1)) shows that the Holant is a polynomial P(ab, a® 4 b3) with
integer coefficients. O

Corollary 4.1. If ab= —1 and a'? = 1, then Hol(a,b) is in P.

Proof. The problems Hol(1, —1), Hol(—i, —i), and Hol(7, ¢) are all solvable in P (these are listed as the
families Fi, F2, F3 in [5, 3].) and the value of a® + b® for these problems is 0, 2i, and —2i respectively.
Moreover, a® + b3 takes on one of these three values for all 12 problems under consideration. Since the
value of any 3-regular signature grid is completely determined by a® + b3, ab, and the polynomial P(, )
(which in turn depends only on the underlying graph G), each of these 12 problems is equivalent to
either Hol(1, —1), Hol(—%, —i), or Hol(,7), and is thus solvable in P. O

We now list all the cases where Hol(a, b) is computable in polynomial time.

Theorem 4.1. If any of the following four conditions is true, then Hol(a,b) is solvable in P:

1. ab=1
2.a=b=0
3. a2=1andb=—a"1

4. a® = b3 and the input is restricted to planar graphs

Proof. 1f ab =1 then the signature [a, 1, b] is degenerate and the holant can be computed in polynomial

time. If a = b = 0, a 2-coloring algorithm can be employed on the edges. If !> = 1 and b = —a™!
then we are done by Corollary 4.1. If we restrict the input to planar graphs and a® = b3, holographic
algorithms can be applied [4]. O

Our main task in this paper is to prove that all remaining problems are #P-hard. The following two
lemmas provide sufficient conditions to satisfy the eigenvalue requirement of the recursive constructions.
Proofs are listed in the Appendix.

Lemma 4.2. If both roots of a polynomial x*> + Bx + C with B,C € C have the same norm, then
B|C| = BC. If further B # 0 and C # 0, then Arg(B?) = Arg(0).

Lemma 4.3. If all roots of the complex polynomial 23 4+ Bx? + Cx + D have the same norm, then
C|C|? = B|B|*D.



Now we introduce a powerful new technique called Figenvalue Shifted Pairs.

Definition 4.1. A pair of nonsingular square matrices M and M’ is called an Figenvalue Shifted Pair
if M' = M + 61 for some non-zero § € C, and M has distinct eigenvalues.

Clearly for such a pair, M’ also has distinct eigenvalues.

The recurrence matrices of Gadgets 9 and 10 (Figure 4) are an example of such an Eigenvalue Shifted
Pair. Their recurrence matrices differ by ab — 1 along the diagonal and are identical elsewhere. We will
make significant use of such Eigenvalue Shifted Pairs. We start with a technical lemma.

Lemma 4.4. Suppose o, 3,0 € C, |a| = |B|, « # 3, 6 # 0, and |a + 0| = |B + 0|. Then there exists
r,s € R such that r6 = a + (3 and s6% = af.

Proof. After a rotation in the complex plane, we can assume a = [3, and then since o + 3,8 € R we
just need to prove § € R. Then (a+0)(a+6) =|a+ 62 =[8+62=(B+6)(B+5) = (@+)(a+6)
and we distribute to get a4+ 86 +ad +ad = aa+ 56 +ad +ad. Canceling repeated terms and factoring,
we have (@ — a)(§ — §) = 0, and since a # 3 = @ we know § = § therefore § € R. O

Corollary 4.2. Let M and M’ be an Eigenvalue Shifted Pair of 2 by 2 matrices. If both M and
M’ have eigenvalues of equal norm, then there exists r,s € R such that tr(M) = ré (possibly 0) and
det(M) = s62.

Proof. Let a and 3 be the eigenvalues of M, so a+ 6 and 3+ ¢ are the eigenvalues of M’. Suppose that
|a| = |B] and |+ 6] = |3+ J|. Then by Lemma 4.4, there exists r, s € R such that tr(M) =a+ 3 =10
and det(M) = aff = s6°. O

We now apply an Eigenvalue Shifted Pair to prove that most settings of Hol(a,b) are #P-hard.

Lemma 4.5. Suppose X # +1, 4(X —1)2(X +1) # (Y +2)%, Y +2#0, and X>+ X +Y #0. Then
either unary Gadget 9 or unary Gadget 10 has nonzero eigenvalues with distinct norm, unless X and
Y are both real numbers.

Proof. The recurrence matrices for unary Gadgets 9 and 10 are

_ 1+a® a+b?

My = [a2+b 1+b3}
a®+ab a+b?
Mo = [a2+b ab+b3]

so Mip = My + (X — 1)I, and the eigenvalue shift is nonzero. Checking the determinants, det(My) =
(X —1)%(X +1) # 0 and det(Myo) = (X — 1)(X?2+ X +Y) # 0. Also, tr(Mg)? — 4det(My) =
(Y +2)2—4(X —1)2(X +1) # 0, so the eigenvalues of My are distinct. Therefore by Corollary 4.2, either
My or Mg has nonzero eigenvalues of distinct norm unless tr(My) = r(X — 1) and det(My) = s(X —1)?
for some r, s € R. Then we would have (X —1)?(X+1) = s(X—-1)?s0 X =s—1 € Rand Y +2 = (X —1)
soY=r(X-1—-2€eR. O

Now we will deal with the following exceptional cases from Lemma 4.5 (X = 1 is tractable by
Theorem 4.1).

1. XeRandY e R

2.Y =-2
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3. X24+4X4Y =0
4. X = -1
5. 4X —1)(X +1) = (Y +2)?

The case where X and Y are both real will be dealt with using the tools developed in Section 3, and
some symbolic computation. Where both X and Y are real includes the case where a and b are both
real as a subcase. When a and b are both real, a dichotomy theorem for the complexity of Hol(a,b)
has been proved in [5] with a significant effort. With the new tools developed, we offer a simpler
proof. This also covers some cases where a or b is complex. Working with real-valued X and Y is a
significant advantage, since the failure condition given by Lemma 4.3 is simplified by the disappearance
of conjugates. This brings the problem of proving #P-hardness for all relevant problems within reach
of symbolic computation via cylindrical decomposition. We apply Theorem 3.1 together with a careful
selection of three binary recursive gadgets and a starter gadget to prove that these problems are #P-
hard. Conditions 1 and 2 of Theorem 3.1 are encoded directly into a query for CylindricalDecomposition
in Mathematica™. The details of the gadgets involved and how the query is formulated are both in
the appendix.

Theorem 4.2. Suppose a,b € C, X, Y € R, ab # 1, a® # b3, and it is not the case that a® = 1 and
ab = —1. Then the problem Hol(a,b) is #P-hard.

Now, we can assume that X ¢ R or Y ¢ R, and we deal with the remaining 4 conditions.

Lemma 4.6. If Y = —2 and X ¢ R then the recurrence matriz of unary Gadget 11 has nonzero
etgenvalues with distinct norm.

Proof. Let My be the recurrence matrix for unary Gadget 11. Then det(Mj;) = (X2 + X +Y)(X —
DX +Y)? =4(X-1)*X+2) and tr(My1) = (2X +Y)? = 4(X —1)?, and note these are both nonzero.
If Arg(det(M1)) = Arg(tr(Mi1)?), then there exists 7 € R such that 4(X — 1)*(X + 2) = 16r(X — 1)4,
so X + 2 = 4r, but since X ¢ R this cannot be, so we are done by Lemma 4.2. O

The conditions X2+ X +Y = 0 and X = —1 can be similarly dealt with through the use of carefully
chosen unary recursive gadgets. The 4(X — 1)2(X + 1) = (Y + 2)? condition can be dealt with using
another application of ESP along with some other gadgets. The details are left to the appendix. The
net effect is summarized in the following lemma.

Lemma 4.7. Assume a,b € C such that X and Y are not both real, X # 1, and either X # —1 or
Y # 42i. Then at least one of the unary recursive Gadgets 9 through 17 has a recurrence matrix with
nonzero eigenvalues of distinct norm.

Note that X = —1 and Y = +2i if and only if a® = 43 and b = —1/a; any such setting of a and b is
tractable by Theorem 4.1. We have the following summary theorem.

Theorem 4.3. Suppose X,Y € C but X and Y are not both real, X # 1, a® # b3, and either X # —1
or'Y # +2i. Then the problem Hol(a,b) is #P-hard.

Proof. Immediate from Lemma 4.7 and Theorem 3.2. O

Recall VERTEX COVER is #P-hard on 3-regular planar graphs, and note that all gadgets discussed
are planar (in the case of Gadget 7, each iteration can be redrawn in a planar way by “going around”
the previous iterations; see Figure 1(d)). Thus, all of the hardness results proved so far still apply when
the input graphs are restricted to planar graphs. There are, however, a few cases where the problem is
#P-hard in general, yet is polynomial time computable when restricted to planar graphs. The details
on planar graphs are listed in the Appendix. Given this, we have the following result.
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Theorem 4.4. The problem Hol(a,b) is #P-hard for all a,b € C except in the following cases, for
which the problem is in P.

1. ab=1
2.a=b=0
3. a2=1andb=—a1

If we restrict the input to planar graphs, then these three categories are tractable in P, as well as a
fourth category a® = b3, and the problem remains #P-hard in all other cases.

It is straightforward to change coordinates from (a, b) to (X, (%)2), and this results in Theorem 1.1.
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Appendix
Proof of Theorem 3.2

Proof. Let F' be the matrix of the binary finisher gadget in Figure 1(c), let M4 be the matrix for Gadget
4, let Mg be the matrix for binary recursive Gadget 8, and let S be the matrix for the single-vertex
binary starting gadget (Figure 1(a)). Using Mathematica™, we verify that the matrices [FMyS, F'S],
[FMgS, FS), and [FM4S, FMgS] are all nonsingular provided that ab # 1 and a® # b3, so the vectors
FS, FM4S, and FMgS are pairwise linearly independent. Since A has at most two eigenvectors at
least one element of {F'AS, FMgS, F'S} is not a column eigenvector of A and can be used as a starter
gadget for A. The result then follows from Lemma 3.4. 0

Proof of Lemma 4.2

Proof. If the roots have equal norm, then for some » € R and a,b € C we can write 22+ Bx+C =
(x —ra)(z — rb), where |a| = |b| = 1, so B|C| = —r(a+ b)r? = —r(a~! + b1)r?ab = BC. Equivalently,

B?|C| = |B?|C, and if B and C are nonzero, we have % = 17> that is, Arg(B?) = Arg(C). O

Proof of Lemma 4.3
Proof. If the roots have equal norm, then for some r € R and a, b, ¢ € C we can write 2>+ Bz?2+Cz+D =

(x — ra)(x — rb)(z — rc), where |a| = |b| = |c| =1, 50 B = —r(a+b+c), C = r?(ab+ bc + ca), and
D = —r3abc. Then

C|C1? = r?(ab + be + ca)rt|ab + be + ca*> = r(a+ b+ ¢)r?la + b + ¢|*rPabe = B|B|?D,

where we used the fact that |ab+bc+ca| = |ab+bc+ca|-|la o le7 = a7t +b T+ = la+ b+ =
la + b+ c|. O

Lemma 4.8. If X +X2+Y =0 and X ¢ R then the recurrence matriz of unary Gadget 12 has nonzero
etgenvalues with distinct norm.

Proof. Let Mis be the recurrence matrix for unary Gadget 12. Then det(Mis) = X% — 6X° — XY +
16X4 4+ 11X3Y —10X3+5X2Y2 —7X2Y — X2+ XV3 —4XV? -3XY - Y3 -YV?= X% X —1)° and
tr(Mip) = 2X3—-6X2-3XY -Y?-Y = X(X—1)3 are both nonzero. Since (1—X)det(Mj3) = tr(Mis)?,
we know Arg(det(Mi2)) # Arg(tr(Mi2)?) and conclude by Lemma 4.2 that the eigenvalues of My are
nonzero and have distinct norm. O

When X = —1 no single gadget seems to suffice, but a careful selection of two gadgets together
yields a way to handle this case.
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Lemma 4.9. If X = —1, |Y| # 2, and Y ¢ R, then the recurrence matriz of unary Gadget 10 has
nonzero eigenvalues with distinct norm.

Proof. Let My be the recurrence matrix for unary Gadget 10. If M1 does not have nonzero eigenvalues
with distinct norm, then by Lemma 4.2, (Y —2) [ —2Y| = tr(Mo) - | det(Mo)| = tr(Mio) - det(M1o) =
—(Y =2)(2Y),502Y — [Y2 =Y - |Y|+2|Y| =0, and (|[Y]|-2)(]Y|+Y) = 0. O

Lemma 4.10. If X = -1, |Y| =2, Y ¢ R and Y # £2i then the recurrence matriz of unary Gadget
13 has nonzero eigenvalues with distinct norm.

Proof. Let Mi3 be the recurrence matrix for unary Gadget 13. Then det(Mj3) = —2Y (Y2 +4) # 0. If
the eigenvalues of Mi3 have identical norm then by Lemma 4.2, tr(Mj3)2det(M;3) = tr(M13)2 det(M;3).
Calculation yields tr(M3)2det(Mi3) — tr(M13)2 det(Mi3) =2(Y —-Y) (?2 + 4)2(?2 +Y? + 8), which is
nonzero unless Y € R, Y = 4+2¢, or v + Y2 +8 =0, and in this last case R(Y?) = @ = —4 and
since [Y?| =4, Y? = —4. O

The 4(X — 1)2(X + 1) = (Y + 2)? condition is somewhat resilient to individual unary recursive
gadgets, but by using a second Eigenvalue Shifted Pair, we can reduce it to simpler conditions.

Lemma 4.11. Suppose 4(X —1)2(X +1) = (Y +2)2. Then either unary Gadget 14 or unary Gadget 15
has nonzero eigenvalues with distinct norm, unless either X3+2X2+X+2Y =0, or X34+4X242Y -1 =
0, or both X,Y € R.

Proof. The recurrence matrices for unary Gadgets 14 and 15 are

M. — 3a® + a® + 3ab + b3 a -+ a* + 2a?b + 2b% + ab® + b°
Mo 1 202 + 6P 4+ b+ adb+ 2ab® + b* a® + 3ab + 3b3 + b°

M — 1+3a®+ a8 +ab+a??+ 0% a+a*+2a%b+ 207 + ab® + b°
B 1 202+ a5+ b+a3b+2ab% + b 1+ a3+ ab+ a2b? + 363 +1°

so Mys = M4+ (X —1)2I. Let o and 3 be the eigenvalues of My4. Now, det(My4) = (X — 1)3(X3 +
2X2%+ X +2Y) and tr(Myy) = —2X3 +6X + Y2 +4Y which simplifies to tr(Myy) = —2X3+6X + Y2+
4Y — (Y +2)2+4(X —1)?(X +1) = —2X (X —1)? using the fact that 4(X —1)?(X +1) = (Y +2)2. Hence
det(M4) and tr(Mi4) are both nonzero (if X € {—1,0,1} then the condition (Y +2)? = 4(X —1)?(X +1)
implies Y € R as well). Using this same assumption again, det(M5) = det(Mi5) — (X —1)2((Y +2)% —
4X -1)3HX+1)) = (X -1)3(X34+4X24+2Y —1) # 0. Furthermore tr[M4]? — 4 det(My4) = 4X?(X —
D*—4(X —1)3(X34+2X2 4+ X +2Y) = —4(X —1)3(3X2+ X +2Y), but if this is zero, then substituting
Y = (-3X2-X)/2into (Y +2)2—4(X —1)}(X+1) = 0 we get X(X —1)?(8+9X) =0 and X € R, with
Y € R as a direct consequence. Corollary 4.2 implies that either Gadget 14 or Gadget 15 has nonzero
eigenvalues of distinct norm, unless tr(Miy) = r(X — 1)? and det(My4) = s(X — 1)* for some r, s € R.
But then —2X (X —1)2 = (X —1)2 hence X = —r/2 € R, and (X —1)3(X3+2X2 4+ X +2Y) = s(X —1)*
hence Y = (s(X — 1) — X —2X%2 - X3)/2 e R. O

Now we take advantage of another interesting coincidence; two gadgets with recurrence matrices
that have identical trace.

Lemma 4.12. If X?+ X +Y #0, 4X - 1)2(X +1) = (Y +2), and either X3 +2X? + X +2Y =0
or X3 +4X?%2 +2Y — 1 = 0, then the recurrence matriz of unary Gadget 16 or unary Gadget 17 has
nonzero eigenvalues with distinct norm, unless both X,Y € R.
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Proof. The recurrence matrices for unary Gadgets 16 and 17 are

M [2a3+a6+2ab—|—a4b—|—a262+b3 a* + 3a%b + b% + 2ab® + bv° }
16 —

a® +a® + 2a%b 4 3ab* + b*  a® + 2ab + a®b* + 2b° + ab* + b°
Mo — 2a% + a8 + 2ab + a’b + a?b* + b a+a' + a®b+ b? + aPV? + 2ab3 + b°
T @?+a® b+ 20% + ab? + a?b + b 6P+ 2ab + ab? + 2b° + ab? + b
Let R= (Y +2)?2-4X-1)}(X+1), T =X>+2X2+ X +2Y and U = X3 +4X? +2Y — 1.
Note that regardless of whether 7' =0 or U = 0, X € R implies Y € R, so we will assume X ¢ R.
The main diagonals of Mg and M7 are identical, so tr(Myg) = tr(Mi7). Furthermore, if T = 0 then
tr(MlG) = tI‘(MlG) + R + (X — 1)T/2 = X(X — 1)3/2 7§ 0. If U =0 then tI'(M16) = tr(Mlﬁ) + R +
(X —1)U/2 = (X —1)(X3—1)/2, and we claim this is nonzero as well. Otherwise, X3 = 1 then since
U=0,Y = -2X? and using (2+Y)? = 4(X — 1)2(X +1) we get (2 —2X?)2 = 4(X - 1)3%(X +1)
or equivalently (1 — X2)2 = (X — 1)2(X +1) ie. (1 -X)?(1+ X)? = (X —1)%(X + 1) together with
X ¢ R we get a contradiction. Next, det(Mi7) = (X — 1)3(X + 1)(X? + X +Y) and det(Mg) =
det(Mig) — R(X —1)? = (X —1)3(X +4)(X2+ X +Y), so these are both nonzero. If both Mg and M7
have eigenvalues with equal norm, then applying Lemma 4.2 twice, Arg(det(Myg)) = Arg(tr(Myg)?) =
Arg(tr(Mi7)?) = Arg(det(Mi7)). However, this would imply Arg(X +4) = Arg(X + 1) and X € R, so
we conclude that either Mg or My7 has nonzero eigenvalues with distinct norm. ]

Proof of Lemma 4.7

Proof. By Lemma 4.5, either unary Gadget 9 or 10 has a recurrence matrix with nonzero eigenvalues
of distinct norm, except in the following cases.

.Y =-2
2. X =—1

3. X2+ X+Y =0

4o 4X - 13X +1) = (Y +2)?

If Y = —2 then X ¢ R and unary Gadget 11 applies by Lemma 4.6. If X = —1, then Lemmas 4.9 and
4.10 indicate that either unary Gadget 10 or unary Gadget 13 satisfies the requirement, unless Y = +2i.
If X2+ X +Y =0then X ¢ R, lest X and Y are real, so Lemma 4.8 implies that unary Gadget 12 has
a recurrence matrix of the required form. Now we may assume X2 + X + Y # 0, so by Lemmas 4.11
and 4.12 if 4(X — 1)2(X + 1) = (Y + 2)? then either unary Gadget 14, 15, 16, or 17 has a recurrence
matrix of the required form. O

Proof of Theorem 4.2

Proof. First we transform the problem into coordinates of X = ab and Y = a® + b>. We will use
binary recursive Gadgets 4, 6, and 7 together with the single-vertex starter gadget given in Figure 1(a)
(denote the respective matrices by My, Mg, M7, and S). Calculating the characteristic polynomials
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x® + Bz? + Cx + D of binary recursive Gadgets 4, 6, and 7, we get

By, = —(X+Y+1)

Cy = (X24+X4+Y)(X-1)

Dy = —-X(X-1)3

B = —(-2X°+4X*4+2XY +2X +Y?+2Y)

Cs = (X —1)(X°—4X* - X3V +6X3 +7X%Y +4X2 +4XY24+5XY + X + Y3 +2Y2 4+ V)
D = —(X —1PX+Y)(X' - X34+ X2V +3X? +2XY + X + Y2 4Y)

By = —(—2X?4+2X% 42X +Y?4+4Y +2)

Cr = (X —1D)XXP—2X34+2X2 +4XY 46X +2Y2 +4Y +1)

D; = —2(X-15X(1+X)

Condition 2 of Theorem 1 is satisfied with respect to binary recursive Gadget 4 because det[S, MyS, M7 5] =
(X — D41® — a®) # 0. Now, det[S, MgS, M3S] = (X —1)°(b® —a®)(X? + X +YV)(X +Y + 1) and
det[S, M7S, M2S] = (X —1)5(b3 — a®)(X?Y +4X? +2XY + Y2 +Y), and since these may be zero for
some settings of X and Y, they will need to be encoded into the query. The query is a disjunct of the
following conditions on the left hand side.

ab=1

a® =

a®=1nab=—1

Gadget 4 satisfies Theorem 3.1
Gadget 6 satisfies Theorem 3.1
Gadget 7 satisfies Theorem 3.1

X=1
4X3 =Y?

X=—-1AY =0

DyB} 4+ C} #0

(DB +CH(X*+ X +Y)(X +Y +1)#0
(D7B2 4+ CH)(X?Y +4X%242XY + Y2 4+Y) #0

I

Note that we are using Lemma 4.3 to satisfy condition 1 of Theorem 3.1. Using symbolic computation
via the CylindricalDecomposition function from Mathematica, we verify that for any X,Y € R, at least
one of the above conditions is true, and we are done. O

Problems of the form Hol(a,b) where a3 = b3

Here we characterize all problems of the form #[a, 1,b] | [1,0,0, 1] where a® = b3. Tt turns out that these
are the problems which are #P-hard in general, and yet can be solved in polynomial time when restricted
to planar graphs (aside from a few exceptional cases where it is polytime computable in general). We
still consider general (not necessarily planar) graphs in this section. The relevant interpolation results
can be optained entirely with Gadget 4, using a technique demonstrated in [4].

Lemma 4.13. The problem #la,1,a] | [1,0,0,1] is #P-hard, unless a € {0,1, —1,7,—i}, in which case
it 1s in P.

Proof. If a € R then this is already known [5]; a polynomial time algorithm for a = +i is in [3].
Now assume a ¢ R and a # +i. Since these problems have an extra degree of symmetry, we use
a 2 by 2 recurrence matrix to describe the recursive construction which consists of a single-vertex
starter gadget (Figure 1(a)) followed by some number of applications of binary recursive Gadget 4 (no
finisher gadget is used here). That is, if F-gate NNV; has signature [a;, b;, a;], then the signature of N;i;
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a(l+a?) 2a
2a? 1+a?

det(M) = a(a — 1)*(a + 1)? and tr(M) = (a + 1)(a® + 1) are both nonzero under our assumptions. It

can be verified (using the Resolve function of Mathematica™) that tr(M)|det(M)| # tr(M) det(M)

provided that a ¢ R, so by Lemma 4.2, the eigenvalues of M have distinct norm. Also, M [ ¢ ] =

is given by [aiy1,bi+1,aip1] where [aip1,bi41]T = Mla;, b;]", and M = ] Now,

1
a(2 —a+a?) . .

(14a) (1—a+242) | so the starter gadget is not an eigenvector of M. We conclude by an analogous
version of Theorem 3.2 that the problem is #P-hard. ]
Lemma 4.14. If a® = b3, then the problem #[a,1,b] | [1,0,0,1] is #P-hard unless ab € {0,1, -1}, in
which case it is in P.

Proof. If ab = 0 then ¢ = b = 0 and the problem is in P by Theorem 4.1. Otherwise, ab # 0, let
w = ba~!, and applying a holographic reduction to #[a, 1,b] | [1,0,0, 1] under the basis [ L(‘)j a?Q ] we

]
see that the problem #a, 1,b] | [1,0,0, 1] is equivalent to #[w?a, 1,wb] | [1,0,0, 1], because w® = 1. Since
w?a = wb, we can apply Lemma 4.13 and the problem #[a, 1,b] | [1,0,0,1] is in P if +1 = w?a - wb = ab
and #P-hard otherwise. O

(a) A starter gadget  (b) A recursive gadget (c) A finisher gadget (d) A planar embedding
of a single iteration

Figure 1: Examples of binary starter, recursive, and finisher gadgets

(a) Gadget 1 (b) Gadget 2 (c) Gadget 3

Figure 2: Gadgets used to simulate the [0,1,1] signature
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(a) Gadget 4 (b) Gadget 5 (c) Gadget 6 (d) Gadget 7 (e) Gadget 8

Figure 3: Binary recursive gadgets

b B e

(a) Gadget 9 (b) Gadget 10 (c) Gadget 11 (d) Gadget 12
|
\ \

(e) Gadget 13 (f) Gadget 14 (g) Gadget 15 (h) Gadget 16 (i) Gadget 17

v

Figure 4: Unary recursive gadgets
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