
Non-negative Weighted #CSPs: An Effective Complexity Dichotomy

Jin-Yi Cai
University of Wisconsin, Madison

Xi Chen
Columbia University

Pinyan Lu
Microsoft Research Asia

Abstract

We prove a complexity dichotomy theorem for all non-negative weighted counting Constraint Satisfaction
Problems (CSP). This caps a long series of important results on counting problems including unweighted and
weighted graph homomorphisms [19, 8, 18, 12] and the celebrated dichotomy theorem for unweighted #CSP [6,
4, 21, 22]. Our dichotomy theorem gives a succinct criterion for tractability. If a set F of constraint functions
satisfies the criterion, then the counting CSP problem defined by F is solvable in polynomial time; if it does not
satisfy the criterion, then the problem is #P-hard. We furthermore show that the question of whether F satisfies
the criterion is decidable in NP.

Surprisingly, our tractability criterion is simpler than the previous criteria for the more restricted classes of
problems, although when specialized to those cases, they are logically equivalent. Our proof mainly uses Linear
Algebra, and represents a departure from Universal Algebra, the dominant methodology in recent years.

1 Introduction

The study of Constraint Satisfaction Problems (CSP) has been one of the most active research areas, where enor-
mous progress has been made in recent years. The investigation of CSP includes at least the following major bran-
ches: Decision Problems — whether a solution exists [36, 27, 3, 32]; Optimization Problems — finding a solution
that satisfies the most constraints (or in the weighted case achieving the highest total weight) [26, 31, 1, 17, 34, 38,
35]; and Counting Problems — to count the number of solutions, including its weighted version [6, 4, 10, 7, 21].
The decision CSP dichotomy conjecture of Feder and Vardi [23], that every decision CSP problem defined by a
constraint language Γ is either in P or NP-complete, remains open. A great deal of work has been devoted to the
optimization version of CSP, constituting a significant fraction of on-going activities in approximation algorithms.

The subject of this paper is on counting CSP; more precisely on weighted counting Constraint Satisfaction Pro-
blems, denoted as weighted #CSP. For unweighted #CSP, the problem is usually stated as follows: D is a fixed finite
set called the domain set. A fixed finite set of constraint predicates Γ = {Θ1, . . . ,Θh} is given, where each Θi is a
relation on Dri of some finite arity ri. Then an instance of #CSP(Γ) consists of a finite set of variables x1, . . . , xn,
ranging over D, and a finite set of constraints from Γ, each applied to a subset of these variables. It defines a new
n-ary relation R where (x1, . . . , xn) ∈ R if and only if all the constraints are satisfied. The #CSP problem then
asks for the size of R. In a (non-negatively) weighted #CSP, the set Γ is replaced by a fixed finite set of constraint
functions, F = {f1, . . . , fh}, where each fi maps Dri to non-negative reals R+. An instance of #CSP(F) consists
of variables x1, . . . , xn, ranging over D, and a finite set of constraint functions from F , each applied to a subset of
these variables. It defines a new n-ary function F : for any assignment (x1, . . . , xn), F (x1, . . . , xn) is the product
of the constraint function evaluations. The output is then the so-called partition function, that is, the sum of F over
all assignments {x1, . . . , xn} → D. The unweighted #CSP is the special case where each constraint function is
0-1 valued. (A formal definition will be given in Section 2.)

Regarding unweighted #CSP, Bulatov [4] proved a sweeping dichotomy theorem. He gave a criterion, congru-
ence singularity, and showed that for any finite set of constraint predicates Γ over any finite domainD, if Γ satisfies
this condition, then #CSP(Γ) is solvable in P; otherwise it is #P-complete. His proof uses deep structural theorems
from universal algebra [11, 28, 24]. Indeed this approach using universal algebra has been one of the most exciting
developments in the study of the complexity of CSP in recent years, first used in decision CSP [29, 30, 3, 2], and
has been called the Algebraic Approach.

However, this is not the only approach. In [21], Dyer and Richerby gave an alternative proof of the dichotomy
theorem for unweighted #CSP. Their proof is considerably more direct, and uses no universal algebra other than the
notion of a Mal’tsev polymorphism. They also showed that the dichotomy is decidable [20, 22]. Furthermore, by
treating rational weights as integral multiples of a common denominator, the dichotomy theorem can be extended
to include positive rational weights [7].

In this paper, we give a complexity dichotomy theorem for all non-negative weighted #CSP(F). To describe
our approach, let us first briefly recap the proofs by Bulatov and by Dyer and Richerby. Bulatov’s proof is deeply
embedded in a structural theory of universal algebra called tame congruence theory [28]. (A congruence is an
equivalence relation expressible in a given universal algebra.) The starting point of this Algebraic Approach is the
realization of a close connection between unweighted #CSP(Γ) and the relational clone 〈Γ〉 generated by Γ. 〈Γ〉
is the closure set of all relations expressible from Γ by boolean conjunction ∧ and the existential quantifier ∃. A
basic property, called congruence permutability, is then shown to be a necessary condition for the tractability of
#CSP(Γ) [9, 6, 10]. It is known from universal algebra that congruence permutability is equivalent to the existence
of Mal’tsev polymorphisms. It is also equivalent to the more combinatorial condition of strong rectangularity of

1

Dyer and Richerby [21]: For any n-ary relationR defined by an instance of #CSP(Γ), if we partition its n variables
into three parts: u = (u1, . . . , uk),v = (v1, . . . , v`) and w = (w1, . . . , wn−k−`), then the following |D|k × |D|`

matrix M must be block-diagonal after separately permuting its rows and columns: M(u,v) = 1 if there exists a
w such that (u,v,w) ∈ R; and M(u,v) = 0 otherwise. (See the formal definition in Section 2.)

Assuming Γ satisfies this necessary condition (otherwise #CSP(Γ) is already #P-hard), Bulatov’s proof delves
much more deeply than Mal’tsev polymorphisms and uses a lot more results and techniques from universal algebra.
The Dyer-Richerby proof manages to avoid much of universal algebra. They went on to give a more combinatorial
criterion, called strong balance: For any n-ary relation R defined by an instance of #CSP(Γ), if we partition its n
variables into four parts: u = (u1, . . . , uk),v = (v1, . . . , v`),w = (w1, . . . , wt), z = (z1, . . . , zn−k−`−t), then
the following |D|k × |D|` integer matrix M must be block-diagonal and all of its blocks are of rank 1 (which we
will refer to as a block-rank-1 matrix):

M(u,v) =
∣∣∣{w : ∃ z such that (u,v,w, z) ∈ R

}∣∣∣, for all u ∈ Dk and v ∈ D`. (1)

(See the formal definition in Section 9.) Dyer and Richerby [21] show that strong balance (which implies strong
rectangularity) is the criterion for the tractability of #CSP(Γ). They further prove that it is equivalent to Bulatov’s
criterion of congruence singularity which is stated in the language of universal algebra.

The first difficulty we encountered when trying to extend the unweighted dichotomy to weighted #CSP(F) is
that there is no direct extension of the notion of strong balance above in the weighted world. While the number
of w satisfying R on the right side of (1) can be naturally replaced by the sum of F (any function defined by an
#CSP(F) instance) over w, we do not see any easy way to introduce existential quantifiers to this more general
weighted setting. Moreover, the use of existential quantifiers in the notion of strong balance is crucial to the proof
of Dyer and Richerby: their polynomial-time counting algorithm for tractable #CSP(Γ) heavily relies on them.

While there seems to be no natural notion of an existential quantifier in the weighted setting, we came to a key
observation that the notion of strong balance is equivalent to the one without using any existential quantifiers (that
is, we only consider partitions of the variables into 3 parts with no z). We include the proof of this equivalence
in Section 9. This inspires us to use the following seemingly weaker notion of balance for weighted #CSP(F),
with no existential quantifiers at all: For any n-ary function F defined by a #CSP(F) instance, if we partition its
n variables into three parts: u = (u1, . . . , uk),v = (v1, . . . , v`) and w = (w1, . . . , wn−k−`), then the following
|D|k × |D|` matrix M must be block-rank-1:

M(u,v) =
∑

w∈Dn−k−`

F (u,v,w), for all u ∈ Dk and v ∈ D`.

It is easy to show that balance is a necessary condition for the tractability of #CSP(F). But is it also sufficient?
If F is balanced, can we solve it in polynomial time? We show that this is indeed the case by giving a polynomial
time counting scheme for all #CSP(F)s with F being balanced. Our algorithm works differently from the one of
Dyer and Richerby. It avoids the use of existential quantifiers and is designed specially for weighted and balanced
#CSP(F)s. As a result, we get the following dichotomy for non-negatively weighted #CSP with a logically simpler
criterion:

Theorem 1 (Main). #CSP(F) is in polynomial-time if F is balanced; and is #P-hard otherwise.

A new ingredient of our proof is the concept of a vector representation for a non-negative function. Let F be a
function over x1, . . . , xn. Then s1, . . . , sn : D → R+ is a vector representation of F if for any (x1, . . . , xn) ∈ Dn

2

such that F (x1, . . . , xn) > 0, we have F (x1, . . . , xn) = s1(x1) · · · sn(xn). The first step of our algorithm is to
show that given any instance of #CSP(F), where F is balanced, the function it defines has a vector representation
which can be computed in polynomial time. However, F may have a lot of “holes” where s1(x1) · · · sn(xn) > 0

but F (x1, . . . , xn) = 0 so it is still not clear how to do the sum of F over x1, . . . , xn.
The next step is quite a surprise. Assuming F is balanced, we show how to construct one-variable functions

t2, . . . , tn : D → R+ in polynomial time such that for any (u1, . . . , un) ∈ Dn with F (u1, . . . , un) > 0, we have

∑
x2,...,xn∈D

F (u1, x2, . . . , xn) = s1(u1) ·
n∏
j=2

sj(uj)

tj(uj)
. (2)

The intriguing part of (2) is that its left side only depends on u1 but it holds for any (u1, . . . , un) ∈ Dn as long
as F (u1, . . . , un) > 0. A crucial ingredient we use in constructing t2, . . . , tn and proving (2) here is the succinct
data structure called frame introduced by Dyer and Richerby for unweighted #CSP [21] (which is similar to the
“compact representation” of Bulatov and Dalmau [5]). Once we have t2, . . . , tn and (2), computing the partition
function becomes trivial.

After obtaining the dichotomy, we also show in Section 6 that the tractability criterion (that is, whether F is
balanced or not) is decidable in NP. The proof follows the approach of Dyer and Richerby [20] for unweighted
#CSP, with new ideas and constructions developed for the weighted setting.

This advance, from unweighted to weighted #CSP, is akin to the leap from the Dyer-Greenhill result on count-
ing 0-1 graph homomorphisms [19] to the Bulatov-Grohe result for the non-negative case [8]. The Bulatov-Grohe
result paved the way for all future developments. This is because not only the Bulatov-Grohe result is intrinsically
important and sweeping but also they gave an elegant dichotomy criterion, which allows its easy application. Al-
most all future results in this area use the Bulatov-Grohe criterion. Here our result covers all non-negative counting
CSP. It achieves a similar leap from the 0-1 case of Bulatov and Dyer-Richerby, and in the meanwhile, simplifies
the dichotomy criterion. Therefore it is hoped that it will also be useful for future research.

In hindsight, perhaps one may re-evaluate the Algebraic Approach. We now know that there is another Alge-
braic Approach, based primarily on matrix algebra rather than (relational) universal algebra, which gives us a
more direct and complete dichotomy theorem for #CSPs. It is perhaps also a case where the proper generalization,
namely weighted #CSP, leads to a simpler resolution of the problem than the original unweighted #CSP.

Weighted #CSP has many special cases that have been studied intensively. Graph homomorphisms can be
considered as a special case of weighted #CSP where there is only one binary constraint function. There has been
great advances made on graph homomorphisms [19, 8, 18, 12]. Our dichotomy theorem generalizes all previous
dichotomy theorems where the constraint functions are non-negative. Looking beyond non-negatively weighted
counting type problems, in graph homomorphisms [25, 13, 37] great progress has already been made. To extend
that to #CSPs with real or even complex weights will require significantly more effort (even for directed graph
homomorphisms [12]). For Boolean #CSP with complex weights, a dichotomy was obtained [15]. Going beyond
CSP type problems, holographic algorithms and reductions are aimed precisely at these counting problems where
cancelation is the main feature. The work on Holant problems and their dichotomy theorems are the beginning
steps in that direction [15, 16, 14].

3

2 Preliminaries

We start with some definitions about non-negative matrices.
Let M be a non-negative m × n matrix. We say M is rectangular if one can permute its rows and columns

separately, so that M becomes a block-diagonal matrix. More exactly, M is rectangular if there exist s pairwise
disjoint and nonempty subsets of [m], denoted byA1, . . . , As, and s pairwise disjoint and nonempty subsets of [n],
denoted by B1, . . . , Bs, for some s ≥ 0, such that for all i ∈ [m] and j ∈ [n],

M(i, j) > 0 ⇐⇒ i ∈ Ak and j ∈ Bk for some k ∈ [s].

Now let M be a non-negative and rectangular m × n matrix with s blocks A1 × B1, . . . , As × Bs. We say it
is block-rank-1 if the Ak ×Bk sub-matrix of M, for every k ∈ [s], is of rank 1.

The two lemmas below then follow directly from the definition of block-rank-1 matrices:

Lemma 1. Let M be a block-rank-1 matrix with s ≥ 1 blocks: A1 × B1, . . . , As × Bs. If i∗ ∈ Ak and j∗ ∈ Bk
for some k ∈ [s], then for any i ∈ Ak we have∑

j∈Bk
M(i, j)∑

j∈Bk
M(i∗, j)

=
M(i, j∗)

M(i∗, j∗)
.

Lemma 2. If M is a non-negative matrix but is not block-rank-1, then there exist two rows of M that are neither
linearly dependent nor orthogonal.

2.1 Basic #P-Hardness About Counting Graph Homomorphisms

Every symmetric and non-negative n × n matrix A defines a graph homomorphism (or partition) function ZA(·)
as follows: Given any undirected graph G = (V,E), we have

ZA(G)
def
=

∑
ξ:V→[n]

∏
uv∈E

A
(
ξ(u), ξ(v)

)
.

We need the following important result of Bulatov and Grohe [8] to derive the hardness part of our dichotomy:

Theorem 2. Let A be a symmetric and non-negative matrix with algebraic entries, then the problem of computing
ZA(·) is in polynomial time if A is block-rank-1; and is #P-hard otherwise.

2.2 Weighted #CSPs

Let D = {1, 2, . . . , d} be the domain set, where the size d will be considered as a constant. A weighted constraint
language F over the domain D is a finite set of functions {f1, . . . , fh} in which fi : Dri → R is an ri-ary function
over D for some ri ≥ 1. The arity ri of fi, i ∈ [h], the number of functions h in F , as well as the values of fi, will
all be considered as constants (except in Section 6 where the decidability of the dichotomy is discussed). In this
paper, we only consider non-negative weighted constraint languages in which every fi maps Dri to non-negative
and algebraic numbers.

4

The pair (D,F) defines the following problem which we simply denote by (D,F):

1. Let x = (x1, . . . , xn) ∈ Dn be a set of n variables over D. The input is then a collection I of m tuples
(f, i1, . . . , ir) in which f is an r-ary function in F and i1, . . . , ir ∈ [n]. We call n+m the size of I .

2. The input I defines the following function FI over x = (x1, . . . , xn) ∈ Dn:

FI(x)
def
=

∏
(f,i1,...,ir)∈I

f(xi1 , . . . , xir), for every x ∈ Dn.

And the output of the problem is the following sum:

Z(I)
def
=
∑
x∈Dn

FI(x).

2.3 Reduction from Unweighted to Weighted #CSPs

A special case is when every function in the language is boolean. In this case, we can view each of the functions
as a relation. We use the following notation for this special case.

An unweighted constraint language Γ over the domain set D is a finite set of relations {Θ1, . . . ,Θh} in which
every Θi is an ri-ary relation over Dri for some ri ≥ 1. The language Γ defines the following problem which we
denote by (D,Γ):

1. Let x = (x1, . . . , xn) ∈ Dn be a set of n variables over D. The input is then a collection I of m tuples
(Θ, i1, . . . , ir) in which Θ is an r-ary relation in Γ and i1, . . . , ir ∈ [n]. We call n+m the size of I .

2. The input I defines the following relation RI over x = (x1, . . . , xn) ∈ Dn:

x ∈ RI ⇐⇒ for every tuple (Θ, i1, . . . , ir) ∈ I , we have (xi1 , . . . , xir) ∈ Θ.

And the output of the problem is the number of x ∈ Dn in the relation RI .

For any non-negative weighted constraint language F = {f1, . . . , fh}, it is natural to define its corresponding
unweighted constraint language Γ = {Θ1, . . . ,Θh}, where x ∈ Θi if and only if fi(x) > 0, for all i ∈ [h] and
x ∈ Dri . In Section 7, we give a polynomial-time reduction from (D,Γ) to (D,F).

Lemma 3. Problem (D,Γ) is polynomial-time reducible to (D,F).

Corollary 1. If (D,F) is not #P-hard, then neither is (D,Γ).

2.4 Strong Rectangularity

In the proof of the complexity dichotomy theorem for unweighted #CSPs [4, 21], an important necessary condition
for (D,Γ) being not #P-hard is strong rectangularity:

5

Definition 1 (Strong Rectangularity). We say Γ is strongly rectangular if for any input I of (D,Γ) (which defines
an n-ary relation RI over (x1, . . . , xn) ∈ Dn) and for any integers a, b : 1 ≤ a < b ≤ n, the following da × db−a

matrix M is rectangular: the rows of M are indexed by u ∈ Da and the columns are indexed by v ∈ Db−a, and

M(u,v) =
∣∣∣{w ∈ Dn−b : (u,v,w) ∈ RI

}∣∣∣, for all u ∈ Da and v ∈ Db−a.

For the special case when b = n, we have M(u,v) = 1 if (u,v) ∈ RI and M(u,v) = 0 otherwise.

The following theorem can be found in [4] and [21]:

Theorem 3. If Γ is not strongly rectangular, then (D,Γ) is #P-hard.

As a result, if (D,F) is not #P-hard, then Γ must be strongly rectangular by Corollary 1 and Theorem 3, where
Γ is the unweighted language that corresponds to F . The strong rectangularity of Γ then gives us the following
algorithmic results from [20], using the succinct and efficiently computable data structure called frame. They turn
out to be very useful later in the study of the original weighted problem (D,F). We start with some notation.

Let I be an input instance of (D,Γ) which defines a relation R over n variables x = (x1, . . . , xn).

Definition 2. For any i ∈ [n], we use priR ⊆ D to denote the projection of R on the ith coordinate: a ∈ priR if
and only if there exist tuples u ∈ Di−1 and v ∈ Dn−i such that (u, a,v) ∈ R.

We define the following relation ∼i on priR: a ∼i b if there exist tuples u ∈ Di−1 and va,vb ∈ Dn−i such
that (u, a,va) ∈ R and (u, b,vb) ∈ R.

Lemma 4 ([20]). If Γ is strongly rectangular then given any input I of (D,Γ) which defines a relation R, we have

(A). For any i ∈ [n], we can compute the set priR in polynomial time in the size of I . Moreover, for every
a ∈ priR, we can find a tuple u ∈ R such that ui = a in polynomial time.

(B). For any i ∈ [n], the relation ∼i must be an equivalence relation and can be computed in polynomial
time. We will use Ei,k ⊆ D, k = 1, 2, . . . , to denote the equivalent classes of ∼i.

(C). For any equivalence class Ei,k, we can find, in polynomial time, a tuple u[i,k] ∈ Di−1 as well as a tuple
v[i,k,a] ∈ Dn−i for each element a ∈ Ei,k such that (u[i,k], a,v[i,k,a]) ∈ R for all a ∈ Ei,k.

As a corollary, if (D,F) is not #P-hard, then we are able to use all the algorithmic results above for (D,Γ) as
subroutines, in the quest of finding a polynomial-time algorithm for (D,F).

3 A Dichotomy for Non-negative Weighted #CSPs and its Decidability

In this section, we prove a dichotomy theorem for all non-negative weighted #CSPs and show that the characteri-
zation can be checked in NP. The lemmas used in the proofs will be proved in the rest of the paper.

In the proof of our dichotomy theorem as well as its decidability, the following two notions of weak balance
and balance play a crucial role. It is similar to and, in some sense, weaker than the concept of strong balance used
in [20]. (Notably we do not use any existential quantifier in the definitions.)

6

Definition 3 (Weak Balance). We say F is weakly balanced if for any input instance I of (D,F) (which defines a
non-negative function F (x1, . . . , xn) over D) and for any integer a : 1 ≤ a < n, the following da × d matrix M

is block-rank-1: the rows of M are indexed by u ∈ Da and the columns are indexed by v ∈ D, and

M(u, v) =
∑

w∈Dn−a−1

F (u, v,w), for all u ∈ Da and v ∈ D.

For the special case when a+ 1 = n, we have M(u, v) = F (u, v) is block-rank-1.

Definition 4 (Balance). We call F balanced if for any input instance I of (D,F) (which defines a non-negative
function F (x1, . . . , xn) over D) and for any integers a, b : 1 ≤ a < b ≤ n, the following da × db−a matrix M is
block-rank-1: the rows of M are indexed by u ∈ Da and the columns are indexed by v ∈ Db−a, and

M(u,v) =
∑

w∈Dn−b

F (u,v,w), for all u ∈ Da and v ∈ Db−a.

For the special case when b = n, we have M(u,v) = F (u,v) is block-rank-1.

It is clear that balance implies weak balance. We prove the following complexity dichotomy theorem.

Theorem 4. (D,F) is in P if Γ is strongly rectangular and F is weakly balanced; and is #P-hard otherwise.

Proof. Assume (D,F) is not #P-hard. By Corollary 1 and Theorem 3, Γ must be strongly rectangular. We prove
the following lemma in Section 8, showing that F must be balanced and thus, weakly balanced:

Lemma 5. If F is not balanced, then (D,F) is #P-hard.

In the next two sections (Sections 4 and 5) we focus on the proof of the following algorithmic lemma:

Lemma 6. If Γ is strongly rectangular and F is weakly balanced, then (D,F) is in polynomial time.

The dichotomy theorem then follows directly.

While the characterization of the dichotomy in Theorem 4 above is very useful in the proof of its decidability,
we can easily simplify it without using strong rectangularity. We prove the following equivalent characterization
using the notion of balance:

Lemma 7. (D,F) is in polynomial time if F is balanced; and is #P-hard otherwise.

Proof. Assume (D,F) is not #P-hard; otherwise we are already done. By Lemma 5, we knowF must be balanced.
By Theorem 4, it suffices to show that if F is balanced, then Γ is strongly rectangular, where we use Γ to denote
the unweighted constraint language that corresponds to F . This follows directly from the definitions of strong
rectangularity and balance, since a matrix that is block-rank-1 must first be rectangular.

Next, we show that the complexity dichotomy is efficiently decidable. Given D and F , the decision problem
of whether (D,F) is in P or #P-hard is actually in NP. (Note that here D and F = {f1, . . . , fh} are considered no
longer as constants, but as the input of the decision problem. The input size is d plus the number of bits needed to
describe f1, . . . , fh.) We prove the following theorem in Section 6. The proof follows the approach of Dyer and
Richerby [20], with new ideas and constructions developed for the more general weighted case. It uses a method
of Lovász [33], which was also used in [18].

7

Theorem 5. Given D and F , the problem of deciding whether (D,F) is in P or #P-hard is in NP.

4 Vector Representation

Assume F is weakly balanced, and let f be an r-ary function in F . We use Θ to denote the corresponding r-ary
relation of f in Γ. In this section, we show that there must exist r non-negative one-variable functions s1, . . . , sr :

D → R+, such that for all x ∈ Dr, either x /∈ Θ and f(x) = 0; or we have f(x) = s1(x1) · · · sr(xr). We call any
s = (s1, . . . , sr) that satisfies the property above a vector representation of f . We prove the following lemma:

Lemma 8. If F is weakly balanced, then every function f ∈ F has a vector representation.

To this end we need the following notation. Let f be any r-ary function over D. Then for any ` ∈ [r], we use
f [`] to denote the following `-ary function over D:

f [`](x1, . . . , x`)
def
=

∑
x`+1,...,xr∈D

f(x1, . . . , x`, x`+1, . . . , xr), for all x1, . . . , x` ∈ D.

In particular, we have f [r] ≡ f .
Let f be an r-ary non-negative function with r ≥ 1. We say f is block-rank-1 if either r = 1; or the following

dr−1 × d matrix M is block-rank-1: the rows of M are indexed by u ∈ Dr−1 and the columns are indexed by v
∈ D, and M(u, v) = f(u, v) for all u ∈ Dr−1 and v ∈ D.

By the definition of weak balance, Lemma 8 is a direct corollary of the following lemma:

Lemma 9. Let f(x1, . . . , xr) be an r-ary non-negative function. If f [`] is block-rank-1 for all ` ∈ [r], then f has
a vector representation s.

Proof. We prove the lemma by induction on r, the arity of f .
The base case when r = 1 is trivial. Now assume for induction that the claim is true for all (r − 1)-ary non-

negative functions, for some r ≥ 2. Let f be an r-ary non-negative function such that f [`] is block-rank-1 for all
` ∈ [r]. By definition, it is easy to see that(

f [r−1]
)[`]

= f [`], for all ` ∈ [r − 1].

As a result, if we denote f [r−1], an (r − 1)-ary non-negative function, by g, then g[`] is block-rank-1 for every ` ∈
[r − 1]. Therefore, by the inductive hypothesis, g = f [r−1] has a vector representation (s1, . . . , sr−1).

Finally, we show how to construct sr so that (s1, . . . , sr−1, sr) is a vector representation of f . To this end, we
let M denote the following dr−1 × d matrix: The rows are indexed by u ∈ Dr−1 and the columns are indexed by
v ∈ D, and M(u, v) = f(u, v) for all u ∈ Dr−1 and v ∈ D. By the assumption we know that M is block-rank-1.
Therefore, by definition, there exist pairwise disjoint and nonempty subsets of Dr−1, denoted by A1, . . . , As, and
pairwise disjoint and nonempty subsets of D, denoted by B1, . . . , Bs, for some s ≥ 0, such that M(u, v) > 0 if,
and only if u ∈ Ai and v ∈ Bi for some i ∈ [s]; and for every i ∈ [s], the Ai ×Bi sub-matrix of M is of rank 1.

We now construct sr : D → R+ as follows. For every i ∈ [s], we arbitrarily pick a vector from Ai and denote
it ui. Then for v ∈ D, we set sr(v) as follows:

1. If v /∈ Bi for any i ∈ [s], then sr(v) = 0; and

8

2. Otherwise, assume v ∈ Bi. Then

sr(v) =
M(ui, v)∑

v′∈Bi
M(ui, v′)

. (3)

To prove that (s1, . . . , sr) is actually a vector representation of f , we only need to show that for every tuple
(u, v) such that u ∈ Ai and v ∈ Bi for some i ∈ [s] (since otherwise we have f(u, v) = 0), we have

f(u, v) = M(u, v) = sr(v)
∏

j∈[r−1]

sj(uj).

By using Lemma 1 and (3), we have

M(u, v) = M(ui, v) ·
∑

v′∈Bi
M(u, v′)∑

v′∈Bi
M(ui, v′)

= sr(v) · f [r−1](u) = sr(v)
∏

j∈[r−1]

sj(uj),

where the last equation above follows from the inductive hypothesis that (s1, . . . , sr−1) is a vector representation
of g = f [r−1]. This finishes the induction, and the lemma is proved.

5 Tractability: The Counting Algorithm

In this section, we prove Lemma 6 by giving a polynomial-time algorithm for the problem (D,F), assuming Γ is
strongly rectangular and F is weakly balanced. As mentioned earlier, because Γ is strongly rectangular we can use
the three polynomial-time algorithms described in Lemma 4 as subroutines. Also because F is weakly balanced,
we may assume, by Lemma 8, that every r-ary function f in F has a vector representation sf = (sf,1, . . . , sf,r),
where sf,i : D → R+ for all i ∈ [r].

Now let I be an input instance of (D,F) and let F denote the function it defines over x = (x1, . . . , xn) ∈ Dn.
For each tuple in I , one can replace the first component, that is, a function f in F , by its corresponding relation Θ

in Γ. We use I ′ to denote the new set, which is clearly an input instance of (D,Γ) and defines a relation R over
x ∈ Dn. We have F (x) > 0 if and only if x ∈ R, for all x ∈ Dn.

The first step of our algorithm is to construct a vector representation s = (s1, . . . , sn) of F , using the vector
representations sf of f , f ∈ F :

Lemma 10. Given I , one can compute s1(·), . . . , sn(·) in polynomial time such that for all x ∈ Dn, either x /∈ R
and F (x) = 0; or F (x) = s1(x1) · · · sn(xn).

Proof. We start with s1, . . . , sn where si(a) = 1 for all i ∈ [n] and a ∈ D. We then enumerate the tuples in I one
by one. For each (f, i1, . . . , ir) ∈ I and each j ∈ [r], we update the function sij (·) using sf,j(·) as follows:

sij (a)
set
= sij (a) · sf,j(a), for every a ∈ D.

It is easy to check that the tuple (s1, . . . , sn) we get is a vector representation of F .

9

The second step of the algorithm is to construct a sequence of one-variable functions tn(·), tn−1(·), . . . , t2(·)
that have the following nice property: for any i ∈ {1, . . . , n− 1} and for any u ∈ R, we have

∑
xi+1,...,xn∈D

F (u1, . . . , ui, xi+1, . . . , xn) = s1(u1) · · · si(ui) ·
si+1(ui+1)

ti+1(ui+1)
· · · sn(un)

tn(un)
. (4)

Before giving the construction and proving (4), we show that Z(I) is easy to compute once we have tn, . . . , t2.
For this purpose, we first compute pr1R in polynomial time using the algorithm in Lemma 4 (A). In addition,

we find a vector ua = (ua,1, ua,2, . . . , ua,n) ∈ R for each a ∈ pr1R such that ua,1 = a in polynomial time. Then

Z(I) =
∑
x∈Dn

F (x) =
∑

a∈pr1R

∑
x2,...,xn∈D

F (a, x2, . . . , xn) =
∑

a∈pr1R
s1(a)

∏
j∈[2:n]

(
sj(ua,j)

tj(ua,j)

)
,

which clearly can be evaluated in polynomial time using s1, . . . , sn and t2, . . . , tn.
Now we construct tn, tn−1, . . . , t2 and prove (4) by induction. We start with tn(·).
Because F is weakly balanced, the following dn−1 × d matrix M must be block-rank-1: the rows are indexed

by u ∈ Dn−1 and the columns are indexed by v ∈ D, and M(u, v) = F (u, v) for all u ∈ Dn−1 and v ∈ D. By
the definition of ∼n, we have v1 ∼n v2 if and only if columns v1 and v2 are in the same block of M and thus, the
equivalent classes {En,k} are exactly the column index sets of those blocks of M.

We define tn(·) as follows. For every a ∈ D, if a /∈ prnR then tn(a) = 0; Otherwise, a belongs to one of the
equivalence classes En,k of ∼n and

tn(a) =
sn(a)∑

b∈En,k
sn(b)

. (5)

By using the algorithm in Lemma 4 (B) tn(·) can be constructed efficiently. We now prove (4) for i = n−1. Given
any u ∈ R, we have un ∈ prnR by definition and let En,k denote the equivalence class that un belongs to. Then

∑
b∈D

F (u1, . . . , un−1, b) =
∑
b∈En,k

F (u1, . . . , un−1, b) =
∏

j∈[n−1]

sj(uj)
∑
b∈En,k

sn(b) =
∏

j∈[n−1]

sj(uj) ·
sn(un)

tn(un)
.

The last equation follows from the construction (5) of tn(·) and the assumption that un ∈ En,k.
Now assume for induction that we already constructed ti+1, . . . , tn, for some i ∈ [2 : n − 1], and they satisfy

(4). To construct ti(·), we first observe that the following di−1 × d matrix M must be block-rank-1, because F is
weakly balanced: the rows are indexed by u = (u1, . . . , ui−1) ∈ Di−1 and the columns are indexed by v ∈ D,

M(u, v) =
∑

w∈Dn−i

F (u, v,w) =
∑

(u,v,w)∈R

F (u, v,w).

Similarly, by the definition of ∼i, its equivalent classes {Ei,k} are precisely the column index sets of those blocks
of M. By (4) and the inductive hypothesis we immediately have the following concise form for M(u, v): for any
w = (wi+1, . . . , wn) ∈ Dn−i such that (u, v,w) ∈ R, we have

M(u, v) =

 ∏
j∈[i−1]

sj(uj)

 si(v)

 ∏
j∈[i+1:n]

sj(wj)

tj(wj)

 . (6)

10

Note that by (4), the choice of w can be arbitrary as long as (u, v,w) ∈ R.
We now construct ti(·). For every a ∈ D,

1. If a /∈ priR, then ti(a) = 0; and

2. Otherwise, let Ei,k denote the equivalence class of ∼i that a belongs to. Then by using the algorithm in
Lemma 4 (C), we find a tuple u[i,k] ∈ Di−1 and a tuple v[i,k,b] ∈ Dn−i for each b ∈ Ei,k such that(

u[i,k], b,v[i,k,b]
)
∈ R, for all b ∈ Ei,k.

Then we set

ti(a) =
M(u[i,k], a)∑

b∈Ei,k M(u[i,k], b)
. (7)

By (6), ti(a) can be computed efficiently using tuples u[i,k] and v[i,k,b], for b ∈ Ei,k.

This finishes the construction of ti(·).
Finally we prove (4). Let u be any tuple in R and Ei,k be the equivalence class of ∼i that ui belongs to. Then∑

xi,...,xn∈D
F (u1, . . . , ui−1, xi, . . . , xn) =

∑
b∈Ei,k

∑
xi+1,...,xn∈D

F (u1, . . . , ui−1, b, xi+1, . . . , xn).

Let u∗ denote the (i− 1)-tuple (u1, . . . , ui−1). Then by the definition of M, we can rewrite the sum as∑
xi,...,xn∈D

F (u1, . . . , ui−1, xi, . . . , xn) =
∑
b∈Ei,k

M(u∗, b).

Recall the tuples u[i,k] and v[i,k,b], b ∈ Ei,k, which we used in the construction of ti(·). Because M is block-rank-1
and because u∗ and u[i,k] are known to belong to the same block of M, we have

∑
b∈Ei,k

M(u∗, b) =
∑
b∈Ei,k

M(u∗, ui)

M(u[i,k], ui)
·M(u[i,k], b) =

M(u∗, ui)

M(u[i,k], ui)
·
∑
b∈Ei,k

M(u[i,k], b).

However, by the definition (7) of ti(·), we have

∑
b∈Ei,k

M(u[i,k], b) =
M(u[i,k], ui)

ti(ui)
,

since we assumed that ui ∈ Ei,k. As a result, we have

∑
xi,...,xn∈D

F (u1, . . . , ui−1, xi, . . . , xn) =
∑
b∈Ei,k

M(u∗, b) =
M(u∗, ui)

ti(ui)
=

 ∏
j∈[i−1]

sj(uj)

 ∏
j∈[i:n]

sj(uj)

tj(uj)

 .

The last equation follows from (6). This finishes the construction of tn, . . . , t2 and the proof of Lemma 6.

11

6 Decidability of the Dichotomy

In this section, we prove Theorem 5 by showing that the decision problem is in NP.
By Theorem 4 we need to decide, given D and F , whether Γ is strongly rectangular and F is weakly balanced

or not. The first part can be done in NP [4, 20] by exhaustively searching for a Mal’tsev polymorphism.

Lemma 11 ([4, 20]). Given Γ, deciding whether it is strongly rectangular is in NP.

6.1 Primitive Balance

Next we show the notion of weak balance is equivalent to the following even weaker notion of primitive balance:

Definition 5 (Primitive Balance). We say F is primitively balanced if for any instance I of (D,F) and the n-ary
function FI(x1, . . . , xn) it defines, the following d× d matrix MI is block-rank-1: The rows of MI are indexed by
x1 ∈ D and the columns are indexed by x2 ∈ D, and

MI(x1, x2) =
∑

x3,...,xn∈D
FI(x1, x2, x3, . . . , xn), for all x1, x2 ∈ D. (8)

It is clear that weak balance implies primitive balance. The following lemma proves the inverse direction:

Lemma 12. If Γ is primitively balanced , then it is also weakly balanced.

Proof. Assume for a contradiction that Γ is not weakly balanced. By definition, this means there exist an I over
n-variables and an integer a : 1 ≤ a < n such that the following da× d matrix M is not block-rank-1: the rows of
M are indexed by u ∈ Da and the columns are indexed by v ∈ D, and

M(u, v) =
∑

w∈Dn−a−1

FI(u, v,w), for all u ∈ Da and v ∈ D.

As a result, we know by Lemma 2 that A = MTM is not block-rank-1.
To reach a contradiction, we construct I ′ from I as follows: I ′ has 2n− a variables in the following order:

x1, x2, y1, . . . , ya, z1, . . . , zn−a−1, w1, . . . , wn−a−1.

The instance I ′ consists of two parts: a copy of I over (y1, . . . , ya, x1, z1, . . . , zn−a−1) and a copy of I over (y1, . . . ,

ya, x2, w1, . . . , wn−a−1). Let FI′ denote the function that I ′ defines. It gives us the following d× d matrix MI′ :

MI′(x1, x2) =
∑

y∈Da,z,w∈Dn−a−1

FI(y, x1, z) · FI(y, x2,w) =
∑
y∈Da

M(y, x1) ·M(y, x2) = A(x1, x2),

which we know is not block-rank-1. This contradicts with the assumption that F is primitively balanced .

Now the decision problem reduces to the following, and we call it

PRIMITIVE BALANCE: Given D and F such that Γ is strongly rectangular (which
by Lemma 11 can be verified in NP), decide whether F is primitively balanced.

12

Since Γ is strongly rectangular, we know that for any input I of (D,F), the d× d matrix MI defined in (8) must
be rectangular. We need the following useful lemma from [20], which gives us a simple way to check whether a
rectangular matrix is block-rank-1 or not.

Lemma 13 ([20]). A rectangular d× d matrix M is block-rank-1 if and only if

M(α, κ)2M(β, λ)2M(α, λ)M(β, κ) = M(α, λ)2M(β, κ)2M(α, κ)M(β, λ) (9)

for all α 6= β ∈ D and κ 6= λ ∈ D.

As a result, for PRIMITIVE BALANCE it suffices to check whether (9) holds for MI , for all instances I and for
all α 6= β, κ 6= λ ∈ D. In the rest of this section, we fix α 6= β ∈ D and κ 6= λ ∈ D, and show that the decision
problem (that is, whether (9) holds for all I) is in NP. Theorem 5 then follows immediately since there are only
polynomially many possible tuples (α, β, κ, λ) to check.

6.2 Reformulation of the Decision Problem

Fixing α 6= β ∈ D and κ 6= λ ∈ D, we follow [20] and reformulate the decision problem using a new pair (D,F),
that is, the 6-th power of (D,F):

1. First, the new domain D = D6, and we use s = (s1, . . . , s6) to denote an element in D, where si ∈ D.

2. Second, F = {g1, . . . , gh} has the same number of functions as F and every gi, i ∈ [h], has the same
arity ri as fi. Function gi : Dri → R+ is constructed explicitly from fi as follows:

gi(s1, . . . , sri) =
∏
j∈[6]

fi(s1,j , . . . , sri,j), for all s1, . . . , sri ∈ D = D6.

In the rest of the section, we will always use xi to denote variables over D and yi, zi to denote variables over D.
Given any input instance I of (D,F) over n variables (x1, . . . , xn), it naturally defines an input instance I of

(D,F) over n variables (y1, . . . , yn) as follows: for each tuple (f, i1, . . . , ir) ∈ I , add a tuple (g, i1, . . . , ir) to I,
where g ∈ F corresponds to f ∈ F . Moreover, this is clearly a bijection between the set of all I and the set of all
I. Similarly, we let G : Dn → R+ denote the n-ary function that I defines:

G(y1, . . . , yn) =
∏

(g,i1,...,ir)∈I

g(yi1 , . . . , yir), for all y1, . . . , yn ∈ D.

The reason why we introduce the new tuple (D,F) is because it gives us a new and much simpler formulation of
the decision problem we are interested.

To see this, we let a, b, c denote the following three specific elements from D:

a = (α, α, α, β, β, β), b = (κ, κ, λ, λ, λ, κ), c = (λ, λ, κ, κ, κ, λ).

Since α 6= β and κ 6= λ, a, b, c are three distinct elements in D. We adopt the notation of [20]. For each s ∈ D, let

homs(I)
def
=

∑
y3,...,yn∈D

G(a, s, y3, . . . , yn), for every instance I of (D,F).

13

It is easy to prove the following two equations. Let I be the instance of (D,F) that corresponds to I , and MI be
the d× d matrix as defined in (8). Then

homb(I) = MI(α, κ)2MI(β, λ)2MI(α, λ)MI(β, κ) and

homc(I) = MI(α, λ)2MI(β, κ)2MI(α, κ)MI(β, λ)

As a result, we have the following reformulation of the decision problem:

MI satisfies (9) for all I ⇐⇒ homb(I) = homc(I) for all I

The next reformulation considers sums over injective tuples only. We say (y1, . . . , yn) ∈ Dn is an injective
tuple if yi 6= yj for all i 6= j ∈ [n] (or equivalently, if we view (y1, . . . , yn) as a map from [n] to D, it is injective).
We use Yn to denote the set of injective n-tuples. (Clearly this definition is only useful when n ≤ |D|, otherwise
Yn is empty.) We now define functions mons(I), which are sums over injective tuples: For each s ∈ D, let

mons(I)
def
=

∑
(a,s,y3,...,yn)∈Yn

G(a, s, y3, . . . , yn), for every instance I of (D,F).

The following lemma shows that homb(I) = homc(I) for all I if and only if the same equation holds for the
sums over injective tuples. The proof is exactly the same as Lemma 41 in [20], using the Mobius inversion. So we
skip it here.

Lemma 14 ([20], Lemma 41). homb(I) = homc(I) for all I if and only if monb(I) = monc(I) for all I.

Finally, the following reformulation gives us a condition that can be checked in NP:

Lemma 15. monb(I) = monc(I) for all I if, and only if, there exists a bijection π from the domain D to itself
(which we will refer to as an automorphism from (D,F) to itself) such that π(a) = π(a), π(b) = π(c), and for
every r-ary function g ∈ F, we have

g(y1, . . . , yr) = g
(
π(y1), . . . , π(yr)

)
, for all y1, . . . , yr ∈ D. (10)

Proof. We start with the easier direction: If π exists, then monb(I) = monc(I) for all I. This is because for any
injective n-tuple (a, b, y3, . . . , yn) ∈ Yn, we can apply π and get a new injective n-tuple (a, c, π(y3), . . . , π(yn)) ∈
Yn and this is a bijection from (a, b, y3, . . . , yn) ∈ Yn and (a, c, z3, . . . , zn) ∈ Yn. Moreover, by (10) we have

G(a, b, y3, . . . , yn) = G
(
a, c, π(y3), . . . , π(yn)

)
.

As a result, the two sums monb(I) and monc(I) over injective tuples must be equal.
The other direction is more difficult. First, we prove that if monb(I) = monc(I) for all I, then for any I and

any tuple (a, b, y3, . . . , yn) ∈ Yn with G(a, b, y3, . . . , yn) > 0, there exists a (a, c, z3, . . . , zn) ∈ Yn such that

G(a, b, y3, . . . , yn) = G(a, c, z3, . . . , zn). (11)

To prove this we look at the following sequence of instances J1 = J, J2, . . . defined from I, where Jj consists of

14

exactly j copies of J over the same set of variables. We use Gj to denote the n-ary function that Jj defines, then

Gj(y1, . . . , yn) =
(
G(y1, . . . , yn)

)j
, for all y1, . . . , yn ∈ D.

Let Q = {q1, . . . , q|Q|} denote the set of all possible positive values of G over Yn; let ki ≥ 0 denote the number
of tuples (a, b, y3, . . . , yn) ∈ Yn such that G(a, b, y3, . . . , yn) = qi, i ∈ [|Q|]; and let `i ≥ 0 denote the number of
tuples (a, c, y3, . . . , yn) ∈ Yn such that G(a, c, y3, . . . , yn) = qi, i ∈ [|Q|]. Then by monb(Ij) = monc(Ij),∑

i∈[|Q|]

ki · (qi)j =
∑
i∈[|Q|]

`i · (qi)j , for all j ≥ 1.

Viewing ki− `i as variables, the above equation gives us a linear system with a Vandermonde matrix if we let j go
from 1 to |Q|. As a result, we must have ki = `i for all i ∈ [|Q|], and (11) follows.

To finish the proof, we need the following technical lemma:

Lemma 16. Let Q be a finite and nonempty set of positive numbers. Then for any k ≥ 1, there exists a sequence
of positive integers N1, . . . , Nk such that

qN1
1 qN2

2 · · · q
Nk
k = (q′1)

N1(q′2)
N2 · · · (q′k)Nk , where q1, . . . , qk, q′1 . . . , q

′
k ∈ Q (12)

if and only if qi = q′i for every i ∈ [k].

Proof. The lemma is trivial if |Q| = 1, so we assume |Q| ≥ 2. We use induction on k. The basis is trivial: we just
set N1 = 1. Now assume the lemma holds for some k ≥ 1, and N1, . . . , Nk is the sequence for k. We show how
to find Nk+1 so that N1, . . . , Nk+1 satisfies the lemma for k + 1. To this end, we let

cmin = min
q>q′∈Q

q/q′ > 1 and cmax = max
q>q′∈Q

q/q′.

Then we let Nk+1 be a large enough integer such that(
cmin

)Nk+1 >
(
cmax

)∑
i∈[k]Ni .

To prove the correctness, we assume (12) holds. First, we must have qk+1 = q′k+1. Otherwise, assume without
generality that qk+1 > q′k+1, then by (12)

(
cmin

)Nk+1 ≤
(
qk+1/q

′
k+1

)Nk+1 =
(
q′1/q1

)N1 · · ·
(
q′k/qk

)Nk ≤
(
cmax

)∑
i∈[k]Nk ,

which contradicts with the definition of Nk+1. Once we have qk+1 = q′k+1, they can be removed from (12) and by
the inductive hypothesis, we have qi = q′i for all i ∈ [k]. This finishes the induction, and the lemma is proved.

To find π, we define the following I. It has |D| variables and we denote them by ys, s ∈ D. (In particular, ya
and yb are the first and second variables of I so that later mons(I) is well-defined.) Let L be the set of all tuples
(g, s1, . . . , sr), where g is an r-ary function in F and g(s1, . . . , sr) > 0. We let N1, . . . , N|L| be the sequence of
positive integers that satisfies Lemma 16 with k = |L| and

Q =
{
g(s1, . . . , sr) : (g, s1, . . . , sr) ∈ L

}
.

15

Then we enumerate all tuples in L in any order. For the ith tuple (g, s1, . . . , sr) ∈ L, i ∈ [|L|], we add Ni copies
of the same tuple (g, s1, . . . , sr) to I. This finishes the definition of I.

From the definition of I, it is easy to see that G(ys : ys = s for all s ∈ D) > 0. Therefore, by (11) we know
there exists a tuple (zs : s ∈ D) ∈ Yn such that za = a, zb = c, and

G
(
ys : ys = s for all s ∈ D

)
= G

(
zs : s ∈ D

)
> 0.

We show that π(s)
def
= zs, for every s ∈ D, is the bijection that we are looking for.

First, using Lemma 16, it follows from the definition of I that for every tuple (g, s1, . . . , sr) ∈ L, we have

g(s1, . . . , sr) = g
(
π(s1), . . . , π(sr)

)
.

So we only need to show that g(π(s1), . . . , π(sr)) = 0 whenever g(s1, . . . , sr) = 0. This follows directly from the
fact that π is a bijection and thus, (s1, . . . , sr)→ (π(s1), . . . , π(sr)) is also a bijection.

With Lemma 14 and Lemma 15, we only need to check whether there exists an automorphism π from (D,F)

to itself such that π(a) = a and π(b) = c. We can just exhaustively check all possible bijections from D to itself,
and this gives us an algorithm in NP.

7 Proof of Lemma 3

Let I be an input of (D,Γ) with n variables x = (x1, . . . , xn) and m tuples, and R be the relation it defines.
For each k ≥ 1, we let Ik denote the following input of (D,F): Ik has n variables (x1, . . . , xn); and for each

(Θ, i1, . . . , ir) ∈ I , we add k copies of (f, i1, . . . , ir) to Ik, where f ∈ F is the r-ary function that corresponds to
Θ ∈ Γ. We use Fk(x) to denote the n-ary non-negative function that Ik defines. Then it is clear that

Fk(x) =
(
F1(x)

)k
, for all x ∈ Dn. (13)

We will show that to compute |R|, one only needs to evaluate Z(Ik) for k from 1 to some polynomial of m. This
gives us a polynomial-time reduction from (D,Γ) to (D,F).

Now we let Qm denote the set of all integer tuples

q =
(
qi,t ≥ 0 : i ∈ [h] and t ∈ Dri such that fi(t) > 0

)
that sum to m. And let VALUEm denote the following set of positive numbers:

VALUEm =

 ∏
i∈[h],t∈Dri

(
fi(t)

)qi,t
: q ∈ Qm

 .

It is easy to show that both |Qm| and |VALUEm| are polynomial in m (as d, h and ri, i ∈ [h] are all constants) and
can be computed in polynomial time in m. Moreover, by the definition of VALUEm we have for every x ∈ Dn:

F1(x) > 0 =⇒ F1(x) ∈ VALUEm.

16

For every c ∈ VALUEm, we let Nc denote the number of x ∈ Dn such that F1(x) = c. Then we have

Z(I1) =
∑

c∈VALUEm

Nc · c (14)

We also have ∣∣R∣∣ =
∑

c∈VALUEm

Nc (15)

and by (13)
Z(Ik) =

∑
c∈VALUEm

Nc · ck, for every k ≥ 1. (16)

If we view {Nc : c ∈ VALUEm} as variables, then by taking k = 1, . . . , |VALUEm|, (16) gives us a Vandermonde
system from which we can compute Nc, c ∈ VALUEm, in polynomial time. We can then use (15) to compute |R|.

This finishes the proof of Lemma 3.

8 Proof of Lemma 5

Assume that F is not balanced. Then by definition, there exists an input instance I for (D,F) such that

1. It defines an n-ary function F (x1, . . . , xn); and

2. There exist integers a, b : 1 ≤ a < b ≤ n such that the following da × db−a matrix M is not
block-rank-1: the rows are indexed by u ∈ Da and the columns are indexed by v ∈ Db−a, and

M(u,v) =
∑

w∈Dn−b

F (u,v,w), for all u ∈ Da and v ∈ Db−a.

Because M is not block-rank-1, by Lemma 2, it has two rows that are neither linearly dependent nor orthogonal.
We let M(u1, ∗) and M(u2, ∗) be such two rows, where u1,u2 ∈ Da. Then

0 <
〈
M(u1, ∗),M(u2, ∗)

〉2
<
〈
M(u1, ∗),M(u1, ∗)

〉
·
〈
M(u2, ∗),M(u2, ∗)

〉
. (17)

We let A = MMT, which is clearly a symmetric and non-negative da × da matrix, with both of its rows and
columns indexed by u ∈ Da. It then immediately follows from (17) that A is not block-rank-1, since all the four
entries in the {u1,u2} × {u1,u2} sub-matrix of A are positive but this 2× 2 sub-matrix is of rank 2 by (17).

To finish the proof, we give a polynomial-time reduction from ZA(·) to (D,F). Because the former is #P-hard
by Theorem 2 (since A is not block-rank-1), we know that (D,F) is also #P-hard.

Let G = (V,E) be an input undirected graph of ZA(·). We construct an input instance IG of (D,F) from G,
using I (which is considered as a constant here since it does not depend on G), as follows.

1. For every vertex v ∈ V , we create a variables over D, denoted by xv,1, . . . , xv,a; and

2. For every edge e = vv′ ∈ E, we add (b− a) + 2(n− b) variables over D, denoted by

ye,a+1, . . . , ye,b, ze,b+1, . . . , ze,n, z
′
e,b+1, . . . , z

′
e,n.

17

Then we make a copy of I over the following n variables:(
xv,1, . . . , xv,a, ye,a+1, . . . , ye,b, ze,b+1, . . . , ze,n

)
as well as the following n variables:(

xv′,1, . . . , xv′,a, ye,a+1, . . . , ye,b, z
′
e,b+1, . . . , z

′
e,n

)
.

This finishes the construction of IG.
It is easy to show by the definitions of M and A above that ZA(G) = Z(IG). This gives us a polynomial-time

reduction from problems ZA(·) to (D,F) since IG can be constructed from G in polynomial time.

9 Equivalence of Balance and Strong Balance

In [21] Dyer and Richerby used the following notion of strong balance for unweighted constraint languages Γ and
showed that (D,Γ) is in polynomial time if Γ is strongly balanced; and is #P-hard otherwise.

Definition 6. Let Γ be an unweighted constraint language over D. We call Γ strongly balanced if for every input
instance I of (D,Γ) (which defines an n-ary relation R) and for any a, b, c : 1 ≤ a < b ≤ c ≤ n, the following
da × db−a matrix M is block-rank-1: the rows are indexed by u ∈ Da and the columns are indexed by v ∈ Db−a,

M(u,v) =
∣∣∣{w ∈ Dc−b : ∃z ∈ Dn−c such that (u,v,w, z) ∈ R

}∣∣∣, for all u ∈ Da and v ∈ Db−a. (18)

There are two special cases. When c = b, M(u,v) is 1 if there exists a z ∈ Dn−c such that (u,v, z) ∈ R; and is
0 otherwise. When n = c, M(u,v) is the number of w ∈ Dc−b such that (u,v,w) ∈ R.

Theorem 6. (D,Γ) is in polynomial time if Γ is strongly balanced; and is #P-hard otherwise.

Notably the difference between the notion of balance we used for weighted languages F (Definition 4) and the
one above for unweighted languages Γ [21] is that we do not allow the use of existential quantifiers in the former.
One can similarly define the following notion of balance for unweighted Γ:

Definition 7. Let Γ be an unweighted constraint language over D. We call Γ balanced if for every instance I of
(D,Γ) (which defines an n-ary relation R) and for any a, b : 1 ≤ a < b ≤ n, the following da × db−a matrix M

is block-rank-1: the rows are indexed by u ∈ Da and the columns are indexed by v ∈ Db−a,

M(u,v) =
∣∣∣{w ∈ Dn−b : (u,v,w) ∈ R

}∣∣∣, for all u ∈ Da and v ∈ Db−a. (19)

We show below that these two notions, strong balance and balance, are equivalent.

Lemma 17 (Equivalence of Balance and Strong Balance). If Γ is balanced, then it is also strongly balanced.

Proof. We assume that Γ is balanced. Let I be any instance of (D,Γ) which defines an n-ary relation R. Let a, b
and c be integers such that 1 ≤ a < b ≤ c ≤ n. It suffices to show that the matrix M in (18) is block-rank-1.

18

For this purpose, we define a new input instance Ik of (D,Γ) for each k ≥ 1:

1. First, Ik has c+ k(n− c) variables in the following order:

x1, . . . , xc, y1,c+1, . . . , y1,n, . . . , yk,c+1, . . . , yk,n.

Below we let yi, i ∈ [k], denote (yi,c+1, . . . , yi,n) for convenience.

2. For each i ∈ [k], we add a copy of I on the following n variables of Ik: x1, . . . , xc, yi,c+1, . . . , yi,n.

It is clear that I1 is exactly I . We also use Rk to denote the relation that Ik defines, k ≥ 1.
Because Γ is balanced, the following da × db−a matrix M[k] is block-rank-1: For u ∈ Da and v ∈ Db−a,

M [k](u,v) =
∣∣∣{(w,y1, . . . ,yk) : w ∈ Dc−b,y1, . . . ,yk ∈ Dn−c and (u,v,w,y1, . . . ,yk) ∈ Rk

}∣∣∣ .
From the definition of Ik, we have M(u,v) > 0 if and only if M [k](u,v) > 0, for all u ∈ Da and v ∈ Db−a.

Therefore, there exist pairwise disjoint and nonempty subsets ofDa, denotedA1, . . . , As, and pairwise disjoint
and nonempty subsets of Db−a, denoted B1, . . . , Bs, for some s ≥ 0, such that

M(u,v) > 0 ⇐⇒ M [k](u,v) > 0 ⇐⇒ u ∈ A` and v ∈ B` for some ` ∈ [s].

Now to prove that M is block-rank-1, we only need to show that for every ` ∈ [s],

M(u1,v1) ·M(u2,v2) = M(u1,v2) ·M(u2,v1), for all u1,u2 ∈ A` and v1,v2 ∈ B`. (20)

To prove (20), we let

Wi,j =
{
w ∈ Dc−b : ∃y ∈ Dn−c such that (ui,vj ,w,y) ∈ R

}
, for i, j ∈ {1, 2}.

Furthermore, for every w ∈ Wi,j , we let Yi,j,w denote the (nonempty) set of y ∈ Dn−c such that (ui,vj ,w,y) ∈
R. Now using Wi,j and Yi,j,w, it follows from the definition of Ik that

M [k](ui,vj) =
∑

w∈Wi,j

∣∣∣Yi,j,w∣∣∣k.
Because M[k] is block-rank-1, we have the following equation for every k ≥ 1:∑

w∈W1,1,w′∈W2,2

(∣∣Y1,1,w∣∣ · ∣∣Y2,2,w′∣∣)k =
∑

w∈W1,2,w′∈W2,1

(∣∣Y1,2,w∣∣ · ∣∣Y2,1,w′∣∣)k.
Since the equation above holds for every k ≥ 1, the two sides must have the same number of positive terms. By
definition, we have Yi,j,w is nonempty for all w ∈Wi,j . As a result, we have

|W1,1| · |W2,2| = |W1,2| · |W2,1|

and (20) follows. This finishes the proof of Lemma 17.

19

References

[1] P. Austrin and E. Mossel. Approximation resistant predicates from pairwise independence. In Proceedings
of the 23rd Annual IEEE Conference on Computational Complexity, pages 249–258, 2008.

[2] A.A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceedings of the 18th Annual
IEEE Symposium on Logic in Computer Science, pages 321–330, 2003.

[3] A.A. Bulatov. A dichotomy theorem for constraints on a three-element set. Journal of the ACM,
53(1):66–120, 2006.

[4] A.A. Bulatov. The complexity of the counting constraint satisfaction problem. In Proceedings of the 35th
International Colloquium on Automata, Languages and Programming, pages 646–661, 2008.

[5] A.A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev constraints. SIAM Journal on Computing,
36(1):16–27, 2006.

[6] A.A. Bulatov and V. Dalmau. Towards a dichotomy theorem for the counting constraint satisfaction
problem. Information and Computation, 205(5):651–678, 2007.

[7] A.A. Bulatov, M.E. Dyer, L.A. Goldberg, M. Jalsenius, M.R Jerrum, and D. Richerby. The complexity of
weighted and unweighted #CSP. arXiv:1005.2678, 2010.

[8] A.A. Bulatov and M. Grohe. The complexity of partition functions. Theoretical Computer Science,
348(2):148–186, 2005.

[9] A.A. Bulatov and P. Jeavons. An algebraic approach to multi-sorted constraints. In Proceedings of 9th
International Conference on Principles and Practice of Constraint Programming, 2003.

[10] A.A Bulatov and M.A. Valeriote. Recent results on the algebraic approach to the CSP. In N. Creignou, P.G.
Kolaitis, and H. Vollmer, editors, Complexity of Constraints, pages 68–92. Springer-Verlag, 2008.

[11] S. Burris and H.P. Sankappanavar. A course in universal algebra, volume 78 of Graduate Texts in
Mathematics. Springer-Verlag, New York-Berlin, 1981.

[12] J.-Y. Cai and X. Chen. A decidable dichotomy theorem on directed graph homomorphisms with
non-negative weights. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer
Science, 2010.

[13] J.-Y. Cai, X. Chen, and P. Lu. Graph homomorphisms with complex values: A dichotomy theorem. In
Proceedings of the 37th International Colloquium on Automata, Languages and Programming, 2010.

[14] J.-Y. Cai, S. Huang, and P. Lu. From holant to #CSP and back: Dichotomy for holantc problems. In
Proceedings of the 21st International Symposium on Algorithms and Computation, also available at
arXiv:1004.0803, 2010.

[15] J.-Y. Cai, P. Lu, and M. Xia. Holant problems and counting CSP. In Proceedings of the 41st annual ACM
symposium on Theory of computing, pages 715–724, 2009.

20

[16] J.-Y. Cai, P. Lu, and M. Xia. Holographic algorithms with matchgates capture precisely tractable planar
#CSP. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pages
427–436, 2010.

[17] I. Dinur, E. Mossel, and O. Regev. Conditional hardness for approximate coloring. SIAM Journal on
Computing, 39(3):843–873, 2009.

[18] M.E. Dyer, L.A. Goldberg, and M. Paterson. On counting homomorphisms to directed acyclic graphs.
Journal of the ACM, 54, 2007.

[19] M.E. Dyer and C. Greenhill. The complexity of counting graph homomorphisms. In Proceedings of the 9th
International Conference on Random Structures and Algorithms, pages 260–289, 2000.

[20] M.E. Dyer and D.M. Richerby. An effective dichotomy for the counting constraint satisfaction problem.
arXiv:1003.3879, 2010.

[21] M.E. Dyer and D.M. Richerby. On the complexity of #CSP. In Proceedings of the 42nd ACM symposium on
Theory of computing, pages 725–734, 2010.

[22] M.E. Dyer and D.M. Richerby. The #CSP dichotomy is decidable. In Proceedings of the 28th Symposium
on Theoretical Aspects of Computer Science, 2011.

[23] T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP and constraint
satisfaction: A study through Datalog and group theory. SIAM Journal on Computing, 28(1):57–104, 1998.

[24] R. Freese and R. McKenzie. Commutator Theory for Congruence Modular Varieties. Cambridge University
Press, 1987.

[25] L.A. Goldberg, M. Grohe, M. Jerrum, and M. Thurley. A complexity dichotomy for partition functions with
mixed signs. SIAM Journal on Computing, 39(7):3336–3402, 2010.

[26] J. Hastad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859, 2001.

[27] P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory, Series B,
48(1):92–110, 1990.

[28] D. Hobby and R. McKenzie. The Structure of Finite Algebras, volume 76 of Contemporary Mathematics.
American Mathematical Society, 1988.

[29] P.G. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer Science,
200:185–204, 1998.

[30] P.G. Jeavons, D.A. Cohen, and M.C. Cooper. Constraints, consistency and closure. Artificial Intelligence,
101:251–265, 1998.

[31] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for max-cut and other
2-variable CSPs? SIAM Journal on Computing, 37(1):319–357, 2007.

[32] G. Kun and M. Szegedy. A new line of attack on the dichotomy conjecture. In Proceedings of the 41st
annual ACM symposium on Theory of computing, pages 725–734, 2009.

21

[33] L. Lovász. Operations with structures. Acta Mathematica Hungarica, 18:321–328, 1967.

[34] P. Raghavendra. Optimal algorithms and inapproximability results for every CSP? In Proceedings of the
40th annual ACM symposium on Theory of computing, pages 245–254, 2008.

[35] P. Raghavendra and D. Steurer. How to round any CSP. In Proceedings of the 50th Annual IEEE Symposium
on Foundations of Computer Science, pages 586–594, 2009.

[36] T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th annual ACM symposium
on Theory of computing, pages 216–226, 1978.

[37] M. Thurley. The complexity of partition functions on Hermitian matrices. arXiv:1004.0992, 2010.

[38] M. Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Proceedings of the 41st annual ACM
symposium on Theory of computing, pages 303–312, 2009.

22

