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Key Idea
Use machine learning 
to refine results 
from static analysis. 



Static Analysis: False Positives
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Machine Learning to Augment
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Program & Property
Inter-Component 

Communication Links

Likelihood ∈ [0, 1]

Link Inference for Android Communication
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Task Link Inference in 
Android Communication
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resolution logic

Android ICC: An Example

Intent 

Filter

Code View

ICC link?

(part of) the 

Yes!



(Bigger part of) the resolution logic 
(Octeau et al., POPL’16)



Previous Work: PRIMO

● PRIMO (Octeau et al., POPL’16) uses a hand-crafted 
probabilistic model that assigns probabilities to ICC links 
inferred by static analysis.

○ Laborious, error-prone and requiring expert domain knowledge.

○ Difficulty catching up with constantly evolving Android system.



Questions



#1
How can we triage may links with minimal expert domain knowledge?

Neural networks.



#2
How can we process inputs of complex data types in a systematic way?

Type-directed encoder.



#3
How do our models perform?

Very good!



#4
Are the models learning the right things?

Seems like so.



We are not trying to…

● Propose new NN 
module

● Eliminate use of domain 
knowledge

● Rule out manual effort

We are trying to…

● Propose systematic way 
to construct NN

● Provide decent 
performance without 
expert knowledge

● Use less labour with 
more automation



Approach
How can we triage may 
links with minimal expert 
domain knowledge?Part 1



Link-Inference Neural Network

LINN: An end-to-end encoder-and-classifier architecture.
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Approach
How can we process inputs 
of complex data types in a 
systematic way?Part 2
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Input Type

Type-Directed Encoder

TDE: mapping type signature to neural network architecture.
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An example: Encoding Product Types 

Instance t := (a, b)
Type T := tuple(A, B)

encA

a : A

a-en : Rn

encB

b : A

b-en : Rm encT

encA encB

t-en : Rl

t : T

comb Rn ⨉ Rm ➝ Rl



Rules for type-directed encoding



Android ICC: Our Abstraction

Type signatures

Intent intent := tuple(act, cats)
Action act := optional(string)
Categories cats := set(string)

Filter filter := tuple(acts, cats)
Actions acts := set(string)
Categories cats := set(string)

intent
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list



Type-Directed Encoder
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Type-Directed Encoder: Instantiation

TreeLSTM

switch TreeLSTM
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Type-Directed Encoder: Instantiation
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A systematic way to build 
and explore structured NN.



Experiments Are our models correctly 
predicting links?



Setup

# pairs # positive # negative

training set 105,108 63,168 41,940

testing set 43,680 29,260 14,420

● Dataset of 10,500 Android APPs from Google Play.
● IC3 (Octeau et al., ICSE’15) for static analysis.
● PRIMO’s abstract matching for may/must partition. 
● Simulated ground truth for may links.
● 4 instantiations of the TDE architecture.



All instantiated models 
perform as good as PRIMO.



Our best model (typed-tree) fills the correlation gap by 72% compared to 
PRIMO despite the harder setting.
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More Results for Our Best Model

ROC (left) and the distribution of predicted likelihood (right) from typed-tree model.

Distribution Correlation



Interpretability How do we know the model 
is learning the right thing?



Sensitivity to 
Masking

Picking distinctive values

Ignoring less useful parts



Learned Encodings

Semantically closer values 
receive more similar 
encodings.

default

(.*)

None

Visualized by t-SNE.



Conclusion

● Neural-augmented 

static analysis

● Type-directed encoder
● Increased accuracy with 

less domain knowledge
● Interpretability study



Future Works

● Apply to other analysis 
tasks

● Push machine learning 
into static analysis 
procedure



Thanks for listening!
Q & A


