Neural-Augmented Static Analysis of Android Communication

Jinman Zhao, Aws Albarghouthi, Vaibhav Rastogi, Somesh Jha, Damien Octeau University of Wisconsin-Madison, Google

Key Idea

Use machine learning to refine results from static analysis.

Static Analysis: False Positives

Machine Learning to Augment

Link Inference for Android Communication

Task

Link Inference in Android Communication

Android ICC: A User's Experience

Android ICC: An Example

$$match(i, f) = type(i, f) \land visibility(i, f) \land perm(i, f)$$
 $\land (explicit(i, f) \lor implicit(i, f)).$
 $type(i, f) = i_{type} \subseteq f_{type}$
 $visibility(i, f) = i_{app_name} \subseteq f_{app_name} \lor f_{exported} \subseteq \{ true \}$
 $perm(i, f) = i_{perm} \subseteq f_{uses_perm} \land f_{perm} \subseteq i_{uses_perm}$
 $explicit(i, f) = i_{target_comp} \neq \emptyset \land i_{target_app} \subseteq f_{app_name}$
 $\land i_{target_comp} \subseteq f_{comp_name}$
 $implicit(i, f) = i_{target_comp} = \emptyset \land i_{action} \subseteq f_{actions}$
 $\land i_{category} \subseteq f_{categories} \land data(i, f),$

(Bigger part of) the resolution logic (Octeau et al., POPL'16)

Previous Work: PRIMO

- PRIMO (Octeau et al., POPL'16) uses a hand-crafted probabilistic model that assigns probabilities to ICC links inferred by static analysis.
 - Laborious, error-prone and requiring expert domain knowledge.
 - Difficulty catching up with constantly evolving Android system.

Questions

How can we triage may links with minimal expert domain knowledge?

Neural networks.

How can we process inputs of complex data types in a systematic way?

Type-directed encoder.

How do our models perform?

Very good!

Are the models learning the right things?

Seems like so.

We are not trying to...

- Propose new NN module
- Eliminate use of domain knowledge
- Rule out manual effort

We are trying to...

- Propose systematic way
- to construct NN
- Provide decent
 performance without
 expert knowledge
- Use less labour with more automation

Approach

Part 1

How can we triage may links with minimal expert domain knowledge?

Link-Inference Neural Network

LINN: An end-to-end encoder-and-classifier architecture.

Approach

Part 2

How can we process inputs of complex data types in a systematic way?

Type-Directed Encoder

TDE: mapping type signature to neural network architecture.

An example: Encoding Product Types

 $R^n \times R^m \rightarrow R^l$

encB

Rules for type-directed encoding

Android ICC: Our Abstraction

Type signatures

Intent intent := tuple(act, cats)

Action *act* := *optional(string)*

Categories cats := set(string)

Filter *filter* := tuple(acts, cats)

Actions *acts* := *set(string)*

Categories cats := set(string)

Type-Directed Encoder

template

Type-Directed Encoder: Instantiation

Neural network template

Neural network (typed-tree)

Type-Directed Encoder: Instantiation

Neural network template

Neural network (str-rnn)

A systematic way to build and explore structured NN.

Experiments

Are our models correctly predicting links?

Setup

- Dataset of 10,500 Android APPs from Google Play.
- IC3 (Octeau et al., ICSE'15) for static analysis.
- PRIMO's abstract matching for may/must partition.
- Simulated ground truth for may links.
- 4 instantiations of the TDE architecture.

	# pairs	# positive	# negative
training set	105,108	63,168	41,940
testing set	43,680	29,260	14,420

All instantiated models perform as good as PRIMO.

Our best model (typed-tree) fills the correlation gap by 72% compared to PRIMO despite the harder setting.

More Results for Our Best Model

ROC (left) and the distribution of predicted likelihood (right) from typed-tree model.

Interpretability

How do we know the model is learning the right thing?

Sensitivity to Masking

Picking distinctive values

Ignoring less useful parts

```
{"action": "NULL-CONSTANT", "categories": null}
{"actions": ["NULL-CONSTANTPOP_DIALOG", "NULL-CONSTANTPUSH_DIALOG_(.*)",
"(.*)REPLACE_DIALOG_(.*)", "APP-00489869YB964702HUPDATE_VIEW"], "categories":
{"action": "NULL-CONSTANTREPLACE_DIALOG_(.*)", "categories": null}
{"actions": ["(.*).CLOSE"], "categories": null}
{"action": "(.*)", "categories": null}
{"actions": ["android.media.RINGER_MODE_CHANGED",
"sakurasoft.action.ALWAYS_LOCK", "android.intent.action.BOOT_COMPLETED"],
"categories": null}
{"action": "(.*)LO<mark>GIN_SUCCE</mark>SS", "categories": null}
{"actions": ["NULL-CONSTANTLOGIN_FAIL", "NULL-
CONSTANTCREATE_PAYMENT_SUCCESS", "(.*)FATAL_ERROR",
"(.*)CREATE_PAYMENT_FAIL", "NULL-CONSTANTLOGIN_SUCCESS"], "categories": null}
{"action": "APP<mark>-00489869YB9647</mark>02HREPLACE_DIALOG_(.*)", "categories<mark>": null}</mark>
{"actions": ["APP-00489869YB964702HLOGIN_FAIL", "APP-
00489869YB964702HCREATE_PAYMENT_FAIL", "NULL-CONSTANTCREATE_PAYMENT_SUCCESS", "(.*)FATAL_ERROR", "NULL-CONSTANTLOGIN_SUCCESS"], "categories": null}
{"action": "com.joboevan.push.message.(.*)", "categories": null} {"actions": ["com.joboevan.push.message.NULL-CONSTANT"], "categories": null}
{"action": "", "categories": ["(.*)"]}
{"actions": ["com.dreamware.Hells_Kitchen.CONCORRENTE"], "categories":
["android.intent.category.DEFAULT"]}
{"action: "categories": null}
{"actions": ["android.intent.action.MEDIA_BUTTON",
"com.ez.addon.MUSIC_COMMAND", "android.media.AUDIO_BECOMING_NOISY"],
"categories": null}
```

Learned Encodings

Semantically closer values receive more similar encodings.

Visualized by t-SNE.

Conclusion

- Neural-augmented static analysis
- Type-directed encoder
- Increased accuracy with less domain knowledge
- Interpretability study

Future Works

- Apply to other analysis tasks
- Push machine learning into static analysis procedure

Thanks for listening! Q & A