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Solutions for Chapter 1 Exercises
115 CRU

1.2 1, abstrection

133, bit

14 8, computer family

15 19, memory

. 16 10, datgpath

1.7 9, control

18 11, desktop (personal computer)
1.9 15, embedded sytem

110 22, saver

1.11 18, LAN

1.12 27, WAN

1.13 23, supercomputer

1.14 14, DRAM

1.15 13, defect

1.16 6, chip

1.17 24, transistor

1.18 12, DVD

1.19 28, yidd

1.20 2, assambler

1.21 20, operating sysem

1.22 7, compiler

123 25,VLY

1.24 16, ingtruction

1.25 4, cache »

1.26 17, indtruction st architecture
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1.27 21, semiconductor
1.28 26, wefer

129 i

130 b

131 e

132 i

133 h
134 d
135 f
136 b

137c¢c

138 f

139d

140 a

141 ¢

142 i

143 e

144 g

145 a

146 Magnetic disk:

Time for 1/2 revolution =1/2 rev x 1/7200 minutes/rev X 60 seconds/
minutes® 4.17 ms

Timefor 1/2 revolution = 1/2 rev x 1/10,000 minutes/rev X 60 seconds/
minutes = 3ms

1.47 (DVD):

Bytes on center circle= 1.35 MB/seconds X 1/1600 minutes/rev x 60
seconds/minutes = 50.6 KB

Bytes on outside circle = 1.35 MB/seconds X 1/570 minutes/rev X 60
seconds/minutes = 142.1 KB

1.48 Tota requests bandwidth = 30 requests/sec X 512 Kbit/request = 15,360
Kbit/sec < 100 Mbit/sec. Therefore, a 100 Mbit Ethernet link will be sufficient.



Solution* for Chapter X Exarclsm

1.49 Possible solutions:
Ethernet, IEEE 802.3, twisted pair cable, 10/100 Mbit
Wirdess Ethernet, IEEE 802.1 |b, no medium, 11 Mbit
Diaup, phonelines, 56 Kbps
ADSL, phonelines, 15 Mbps
Cable modem, cable, 2 Mbps
150
a Propagation delay = missec
Transmissiontime = LIRsec
End-to-end delay =m/s+L/R
b. End-to-end delay =mis+ LJIR+t
c. End-to-end delay = mis+ 2I/R + f/2
1.51 Cost per die = Cost per wafer/(Dies per wafer x Yield) = 6000/( 1500 x 50%)
=8
Cost per chip = (Cost per die + Cost_packaging + Cost_testing)/Test yield =
(8+ 10)/90% = 20
Price = Cost per chip x (1 + 40%) - 28
If we need to sl n chips, then 500,000 + 20« = 28», n = 62,500.
1.52 CISCtime = Px8r=8Prns
RISC time = 2Px 2T= 4 PTns
RISC time = CISC time/2, so the RISC architecture has better performance.
1.53 Using aHub:
Bandwidth that the other four computers consume = 2 Mbpsx 4 = 8 Mbps
Bandwidth left for you = 10 - 8 = 2 Mbps
Time needed = (10 MB x 8 bits/byte) / 2 Mbps = 40 seconds
Using aSwitch:
Bandwidth that the other four computers consume = 2 Mbps x 4 = 8 Mbps

Bandwidth left for you = 10 Mbps. The communication between the other
computers will not disturb you!

Time needed = (10 MB x 8 bits/byte)/10 Mbps = 8 seconds
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154 To calculate d = axfc-axc, the CPU will perform 2 multiplications and 1
subtraction.

Time needed =10x2+1x1=21 nanoseconds.

We can simply rewrite the equation &sd = axb-axc= ax (b-c). Then 1 multi-
plication and 1 subtraction will be performed.

Time needed =10x1 + 1x1 = 11 nanoseconds.

1.55 No solution provided.

1.56 No solution provided.

1.57 No solution provided.

1.68 Performance characteristics:
Network address
Bandwidth (how fast can data be transferred?)
Latency (time between a request/response pair)
Max transmission unit (the maximum number of data that can be transmit-
ted in one shot)

Functions the interface provides:
Send data
Receive data
Status report (whether the cable is connected, etc?)

1.69 We can write Dies per wefer =/((Die area)"’) and Yield = /((Die area)"?)
and thus Cost per die =/((Die areg)®).

1.60 No solution provided.

1.61 From the caption in Figure 1.15, we have 165 dies at 100% yield. If the defect
density is 1 per square centimeter, then theyyield is approximated by
1
| 1|
1 +| 3 ¥ 250mm
100 m
P

= .198.

Thus, 165 x .198 = 32 dieswith a cost of $1000/32 = $31.25 per die.
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1.62 Defects per area.

1.6L \igq = 1
(1 + Defects per area x Die area/2)?

__ ¥ = SR
Defects per area = Drarniﬁﬁd 1}

1980 Die ares 0.16
Yield 048
Defect density 554
1992 Die area |_oo7
Yield 0.48
Defect density 0.91
1992 + 19S0__| improvement 6.09




Solutions for Chapter 2 ExardsM
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2.2 By lookup using the table in Figure 2.5 on page 62,
THfififfos = 0111 1111 1111 1111 1111 1111 1181 1M,
= 2,147,483,642".

2.

w

By lookup using the tablein Figure 2.5 on page 62,
1100 1010 1111 1110 1111 1010 1100 111<U, = cafe facey

2.4 Since MIPS includes add immediate and since immediates can be positive or
negative, subtract immediate would be redundant.

2.6

sl $tO, $t3, 9 # shift $t3 left by 9, store in $tO
srl $tO, ttO, 15 # shift $tO right by 15

2.8 Oneway to implement the code in MIPS:

sll tsO, $sl, 11 # shift receiver left by 22, store in data

srl $sO, $so, 24 # shift data right by 24 (data - receiver, receivedByte)
andi $sl, $sl, Oxfffe # receiver.ready - 0:
on* $sl, tsl, Ox0002 # receiver.enable - 1;

Another way:

srl $sQ $sl, 2 ii data = recei ver. recei vedByte
andi  $sO $sO kOO f §

andi  $sl. $sl. Oxfffe it receiver.ready - 0O;

ori $sl, Ssl, 0x0002 it receiver.enable =

2.9

1b  tsO, 0($sl) # load the lower 8 bytes of a into bits
sl $t0, JsO, 8 it $t0 - bits << 8

or  $s0, $s0, $O # bits.datal = bits.dataO

lul  $sO, 0000 0000 OHO 0100 # bits.data? - 'd’
lui  $t0, 0000 0001 0000 0000 # load a 1 into the upper bits of $t0
or  $s0. $s0, $t0 # bits.valid - 1
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2.10
sit §3. Ss5, $zero
bne Jt3. $zero, Exit
sit 33, $s5, %2
beq $t3, $zero, Exit
sl Jtl, Ss5, 2
add $t1, «tl.1t4
Iw«to, 0O($tl)
jr %o
LO add $sO- fs3. $s4
j Exit
Li: add $sO. fsl, $
i Exit
L2 sub $sO. tsl, Js2
. 3 Eit
L3:  sub $0. fs3, $s4
i Exit
Exit:
28 111
a
if (k=) f-i+j;
elseif (k1) f - g+
elseif (k=2) f-g-
elseif (k=3) f - i -

#test k <0

t if so, exit

i test k <4

t if not, exit

§ st - 4k

t $t1 - SJunpTabl etk)
t $tO - JunpTabl e[K]
t junp register

tk —o0

# break

tk—1

1 break

fk—2

f break

tk—3

f break



Solutions for ChapUr 2 EJMKIMS

b.
bne $s5, $0, d # branch k !'= 0
add JsO $s3, $s4 #f - 1+
j Exit # break
d: addi $tO $s5, -1 # $O0- k - 1
bne StO tO @ # branch k !- 1
add tsQ $sl. $s2 #f - g+h
j Exit # break
C2: addi $tQ $s5, -I # $O0- k - 2
bne $tO $0, C3 # branch k !'= 2
sub tsQ tsl, Ss2 #f -g-h
j Exit # break
C3: addi StQ $s5, -3 # $O0- k - 3
bne $tO $0, Exit \\ branch k !'=3
sub $sO $s3, $s4 #f -1 -]
Exit:
¢ The MIPS code from the previous problem would yield the following
results:

(5 arithmetic) 10 + (1 datatransfer) 14 + (2 conditional branch) 1.7
+ (2jump) 12 = 12.2 cycles

while the MIPS code from this problem would yield the following:

(4 arithmetic) 10 + (O data transfer)1.4 + (4 conditional branch) 1.7
+ (Ojump)1.2 = 10.8 cycles

2.12 The technique of using jump tables produces MIPS code that is independent
of N, and always takes the following number of cycles:

(5 arithmetic) 10 + (1 datatransfer) 14 + (2 conditional branch) 1.7
+ (2jump) 1.2= 12.2 cycles

However, using chained conditional jumps takes the following number of cycles in
aworst-case scenario:

(Narithmetic)1.0+ (Odatatransfer)1.4 +{Nconditionalbranch)1.7
+ (Ojump)1.2 = 2.7Ncycles

Hence, jump tables are faster for the following condition:

N> 12.2/27 = 5 casestatements
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2.13
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2.16 Hence, the results from using if-else statements are better.

set_array:

| oop:

conpare:

jr

addi
sw

sw
addi
jal
sit
slti
lw

addi
jr

sub
jr

$sp,
»fp.
$ra,
*a0,
Jfp,

$S0
$to,
$ti.
$t2,
«a0
tal,

$sp. -52
48<$sp)
44(tsp)
40($sp)
$sp, 48

$zero, $zere
$zero, 10
$s0, 2

Jsp, $tl
$a0, $zero
$s0, $zero

conpare

$V0.
$sQ,
$s0,

$a0,
Sra,
$fp.
$sp.
(ra

tsp.
(fp.
Jra,
tfp.

sub
$v0
$v0,

$ra,

$fp,

$sp,
$ra

$v0,
$ra

0($t2)
180 1
$t0, |oop

40($sp)
44($sp)
48($sp)
$sp, 52

Jsp, "8
4(Ssp)
0($sp)
$sp, 4

$vO, $zero
$v0, 1
0( $sp)

4($sp)
$sp, 8

$a0, $al

# move stack pointer

# save frame pointer

# save return address

# save paraneter (num

# establish frame pointer
#1-0

# max iterations is 10
#8tl -1 *4

# $t2 - address of array[i]
# pass num as paraneter

# pass i as paraneter

# cal 1 conparedium i)

# array[i] - conpare(num i);

*

loop if K10

# restore paraneter (num
# restore return address
# restore frame pointer
# restore stack pointer
# return

# move stack pointer
# save frame pointer
it save return address
# establish frame pointer

# can junp directly to sub
#if sub(a.b) >=0, return 1
# restore return address

# restore frame pointer

# restore stack pointer

# return

# return ab

# return
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The following is adiagram of the status of the stack:
Before set_array During set_array During compare/sub
Sip. 1
$sp—rij
sfp $fp $fp
Sra Sra
Sa0 + num Sa0 * num
| armaypi arrayP|
___arrays arrayls|
«rray[7) arrayrj]
array[6] arrayie)
array[5] array(51
airaym array(4]
arraylS| arrayPl|
arrayT"J arraypi
array[1J array([i]
® gp— “array (0] arrayJOl
Sip. af Jp
$2p. $ra
2.16
# Description: Conputes the Fibonacci function using a recursive process.
# Function: F(n) =0. if n- 0;
t 1. if n- 1;
# F(n-1) + F(n-2). otherwise.
# Input: n. which nust be a nonnegative integer.
# Qutput: F(n).
ii Preconditions: none
# Instructions: Load and run the programin SPIM and answer the pronpt.
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if Algorithm for main program:

# print prompt

if call fib(read) and print result.
# Register usage:

if taO- n (passed directly to fib)

# $sl - f(n)
.data
.align 2
if Data for pronpts and output description
proptl: .asciiz "\n\nThis program conputes the Fibonacci function.”
prnpt2: .asciiz "\nEnter value for n: *
descr: .asciiz “fib(n) - "
.text
.align 2
e -globl__ start
_start:
if Print the prompts
li $vO, 4 if print_str system service
la $aO, prmptl # ... passing address of first prompt
syscall
li SvO, 4 # print_str system service ...
la $aO, prmpt2 if ... passing address of 2nd prompt
syscall
if Read n and call fib with result
li $vO, 5 if read_int system service
syscall 2
move $a0, $O if $0 - n = result of read
jal fib § call fib(n)

move $sl, $O if $sl = fib(n)
# Print result

li $vQ 4 if print_str system service ...
la $a0, descr it ... passing address of output descriptor
syscal |
li $vO 1 if print_int system service
nove $a0, $sl it ... passing argument fib(n)
syscal |

if Gl system- exit
li $vO 10
syscal 1

if Algorithm for Fib(n):

it if (n == 0) return O

if else if (n — 1) return 1

# else return fib(n-1) + filb(n-2).
it
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# Register usage:

# $0 - n (argunent)

# $tl - fibCn-1)

# $t2 - fibtn-2)

# $0 =1 (for conparison)
#

# Stack usage:

# 1. push return address, n, before calling fib(n-I)
#2. pop n
#3. push n, fib(n-1), before calling fibtn-2)
#4. pop fib(n-1), n, return address
fib: bne $aQ $zero, fibneO # if n ~0 ..
nove $vO, $zero # ... return O
jr $31
fibneQ # Assert: n!- 0
li tvQ 1
bne $a0 $vO, fibnel #if n —1 ...
jr $31 # ... return 1
fibnel: # Assert: n> 1
## Conpute fib(n-1)
addi  $sp, $sp, -8 # push ...
sw$ra, 4($sp) # return address
sw $a0, Q($sp) # ... and n
addi $aQ $aQ -1 # pass argunent n-1 ...
jal fib # ... tofib
move $tl, $vO # $tl = fib(n-1)
Iw $a0 Q($sp) # pop n
addi $sp, $sp, 4 # ... from stack

## Conpute fib(n-2)
addi $sp, $sp, -8  tf push ...

sw $a0, 4($sp) #..n
sw$tl, 0($sp) # ... and fib(n-1)
addi $aQ $a0, -2 # pass argument n-2 ...
jal fib # ... tofib
mve $t2, $vO #tt2 = fib(n~2)
lw$tl, OC$sp) # pop fib(n-1)
1w $aQ 4{ $sp) #..n
lw$ra, 8{$sp) # ... and return address
addi $sp, $sp, # ... from stack
## Return flb(n 1) + fben 2)
add $vQ $tl. $t2 # $v0 - fib(n) =fib(n-1) + fib(n-2)
jr $31 # return to caller
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217
# Description:  Conputes the Fibonacci function using an
iterative process.
#Functlon F(n) =0, if n=0;
! if n - 1;
# F(n-1) + Ftn-2). otherwise.
it Input: n, which nust be a nonnegative integer.
it Qutput: F(n).

# Preconditions: none .

# Instructions: Load and run the programin SPIH, and answer
i[t the pronpt.

|

# Algorithm for main program:
it print prompt

it call fib(l, 0, read) and print result.
it
# Register usage:
# - n (passed directly to fib)
it $sl - fCn
.data
.align 2
# Data for pronpts and output description
propt! -asciiz "\n\nThis program conputes the the
Fi bonacci functi on.
propt 2: .asciiz "\nEnter valué for n: "
descr: .asciiz "fib{n) - "
text
.align 2
.globi _ start
—start:
it Pr|nt the prorrpts .
$vo, 4 # print_str system service ...
la $a0, prnptl # ... passing address of first
pronpt
syscal 1 . .
I $vo, 4 # print_str system service ...
la $aQ prnpt2 4 ... passing address of 2nd
pronpt syscal |
# Read n and cafl fib with result
li $vQ 5 # read_int system service
syscal 1
nove $a2 $v0 # %a2 - n - result of read
Ii $al, # Sl - fib(
li $a01 it $a0- fibtl
jal fib itcall fib(n
move Isl, 1vO it $sl - fib(n)
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it Print result

11 MO, 4 it print_str systemservice ..
la a0, descr it ... passing address of output
! it descriptor

syscal 1
If $vO 1 it print_int systemservice ...
nove $a0 tsl it ... passing argument fib(n)
syscal 1

# QGall system - exit
li $va 10
syscal 1

# Algorithm for FibCa. b, count):
# if (count — 0) return b
# else return fib(a + b, a, count - 1).

|t Register usage:

it $a0 - a - fib(n-I)

it Sal - b - fib{n-2)

it $a2 - count (initrally n, finally 0).
it ttl =tenporary a +b

fib: bne $a2, $zero. fibneO # if count —0
nove $vO $al # return b
jr $31
fibre0: # Assert: n !- 0
addi $a2, $a2, -1 # count - count - 1
add $tl, $aQ Sai #8tl - a+b
nove $al, taO ith=a
move $a0, ttl #a-a+odb
j fib it tail call fib(atb. &, count-1}
2.18 No solution provided.
2.19 Irisin ASCII: 73 114 105 115
Irisin Unicode: 0049 0072 0069 0073
Juliein ASCII: 74 117 108 105 101
Julie in Unicode: 004A 0075 006C 0069 0065

2.20 Figure 2.21 shows decimal values corresponding to ACSII characters.
[ATL Jo[y[tTel TTTST T8 ToTTTTTST |
|65 32| 98 |121[ 116 101] 32 |101] 125 32 | s6 | 32 | 08 [ 101 116]115] 0 |
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2.29

add  gto, Szero. fzero # initialize running sum SO - 0
1 oop: beq §a|_ Sier0, finish # finished when Sal is 0
add t O,

StOo, S0 # conpute running sum of $aO
sub Sal, Sal, 1 # conpute this $al tinmes
i I oop
finish: addi StQ StO 100 4 add 100 to a * b
add SvO, StO Szero # return a * b + 100
The progr amconput es a* b + 100.
2.30
Ell Sa2. $a2. 2 # max i- 2500 * 4
sl Sa3. 8a3, 2 # max j- 2500 * 4
add SvO. Szero, Szero # tvO- 0O
add StO Szero. Szero #1-0
outer: add St4, Sao, SO # $t4 = address of array I[i] -
lw  $t4, 0(St41l # $t4 - array I[i]
aod  »tl, Szero. Szero #j - 0
Inner: add sSt3. sal, Sl # $t3 - address of array 2[J]
Iw  St3, 0(St3) # $t3 - array 2[J]
bre »t3. St4, skip # if (array I[i] !- array 2[j]) skip $vO+*
addi SvO, SvO, 1 # $vO++
skip addi Stl, stl, 4 # j++
bre gb Sa3, inner # loop if j 1- 2500 * 4
addi , Sto, 4 # i+t
bre StO. Sa2. outer # loop 1f 1 !- 2500 * 4

The code determines the number of matching elements between the two arrays
and returns this number in register $v0.

2.31 Ignoring the four instructions before the loops, we see that the outer loop
(which iterates 2500 times) has three instructions before the inner loop and two
after. The cycles needed to execute theseare 1 + 2+ 1 = 4 cyclesand 1+2 = 3
cycles, for atotal of 7 cycles per iteration, or 2500 x 7 cycles. The inner loop
requires 1 + 2+ 2+ 1+ 1+ 2= 9 cycles per iteration and it repeats 2500 x 2500
times, for atotal of 9 x 2500 x 2500 cycles. The total number of cycles executed is
therefore (2500 x 7) + (9 x 2500 x 2500) = 56,267,500. The overall execution time
is therefore (56,267,500) / (2 x 10° = 28 ms. Notethat the execution time for the
inner loop is really the only code of significance.
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2.32 ori HI, $t0 25  # register ttl - SO I 25;
2.34

addi $vO, $zero, -1 # Initialize to avoid counting zero word
loop: Tw, $vl, 0($a0) tf Read next word from source

addi $vQ $vO 1 # Increnent count words copied

sw $vl, 0(sal) # Wite to destination

addi $a0 $a0 4 # Advance pointer to next source

addi Sal, %al, 4 # Advance pointer to next destination

bne $vl, tzero, loop # Loop if word copied != zero
Bug |:Count($vO) isinitiaized to zero, not-1 to avoid counting zero word.
Bug 2: Count (SvO) isnot incremented.

Bug 3: Loops if word copied is equal to zero rather than not equal.
2.37

What it accomplis Solulion

wove $tl. $LE BLl=5i? add sel, SR, trarc

clear- 1tO uo-o add tth, §zero. tzero
beq ttl. small. L |if<*tl = small)goto L ] $at, small
beq ttl, #at. L
beq H2. big. L |if<tt2=big)gotoL. 1 8%, big
beq tat, §zero. L
11 ttl. small ttl* small addi__ ttl, %zero. small
11 JtZ, big tZ = big lui %Lz, upper(big)
on" Iz, §t2. lower(big)
ble tt3. St5. L |tf<13 <=It5}goto L sit  tat, $t5, 13
beg  tat, szero, L
bgt LA, 3T, L If{tta>it5)gotolL Sit  tat. 3t5. sw
bne $ak. $rero. L
bge tt5. tt3. L If(tt5>=tt3)gotoL. sit  1at, #t5 tt3
beq lat. $zero, L
5 addi ttO. ttZ. big | SO = ttZ + big 11 tat, big
add  ttd, 1. tat
Iw it5, blg(Jt2) | tt5= Memoryit2 + big] Ti $at. big
add  Jat. $at. %xz
1w 3t3, 5t2. tat

Note: In the solutions, we make use of the 1 i instruction, which should be imple-
mented as shown in rows 5 and 6.

2.38 The problem is that we are using PC-relative addressing, so if that address is
too far away, we won't be able to use 16 bits to describe where it is relative to the
PC. One simple solution would be
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here: bne $sQ  $s2, skip
j there

ski p:

there: add $sO $sO $sO

Thiswill work aslong as our program does not crass the 256MIB address bound-
ary described in the elaboration on page 98.

2.42 Compilation times and run times will vary widdy across machines, but in
generd you should find that compilation timeis gregter when compiling with op-
timizations and that run time is greater for programs that are compiled without
optimizations.
2.45 Let /be the number of instructions taken on the unmodified MIPS. This de-
composes into 0.42/arithmetic ingtructions (24% arithmetic and 18% logical),
0.361 datatrandfer instructions, 0.18/conditional branches, and 0031 jumps. Us-
ing the CPIs given for eech instruction dass we get atotd of (042 x 10+ 0.36 x
14+018x 17 + 003 x 12) x /cycles; if we cdl the unmodified machines cyde
time Cseconds; then the time taken on the unmodiified machineis (042 x 10 +
036 x 14 + 018 x 17 + 003 x 12) x /x Cseconds. Changing some fraction,/
(namely 0.25) of the datatransfer indtructionsinto the autoincrement or autodec-
rement version will leave the number of cydes spent on datatransfer instructions
unchanged. However, each of the 036 x / x /data trandfer instructions that are
correspondsto an arithmetic instruction that can be diminated. So, there
ae now only (0.42- (036 xf)) x | aithmetic instructions, and the modified ma-
chine, with its cyde time of 1.1 x Cseconds, will take{(042 - 0.36) x 10+ 036 X
14+018x 17+ 003 x 12) x | x 11 x Cseconds to execute. When/is 0.25, the
unmodified machineis 2.2% faster than the modified one.

2.46 Gode bef ot "e:

In M 4(Ss6) # tenp reg $t2 - length of array save
Loop: sit stp. Ss3, Szero #tenp reg $tO- 1 if 1 <0

bne §t0, Szero. IndexQutCfBounds tt if 1< 0, goto Error

sit sto, Ss3. S2 # tenp reg $t0 = 0 if i >= length

beq stp, Szero, IndexQutCGiBounds # if i > length, goto Error

sl stl, ss3, 2 # tenp reg $tl =4 * i

add sti. stl. $6 # Sl - address of saved]

Iw sto, 8(stl) # tenp reg $t0 = save[i]

bre st ss5. Exit #go to Exit if save[i] !* k

addi Ss3, Ss3, 1 #i - 1+1

1 Loop

Exit:
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The number of instructions executed over 10iterationsof theloopis10x 10+ 8+
1 =109, This correponds to 10 complete iterations of the loop, plus afind pess
that goes to Exit from the find bne ingtruction, plus the initial Iw ingtruction.
Optimizing to use & most one branch or jump in the loop in addition to using
only a most one branch or jump for out-of-bounds checking yid ds
Codeafter:
% uz. 4($s6) # tenp reg $t2 = length of array save
sit tto, $S3, tzero # tenp reg $tO- 1 if i <0
sit tt3, $s3, §z # temp reg $t3 - 0 if i >- length
siti tt3. $t3, 1 # flip the value of $t3
o (t3. >t3, tto # $t3 - 1 if i is out of bounds
bne tt3. (zero, IndexQutCfBounds # if out of bounds, goto Error
stl ttl. »s3, 2 #temreg Stl -4 * 1
add ttl. ttl, ts6 # Stl - address of saved]
In  tto, 8(ttl) # temp reg $1O - saved]
bne sto, ts5, Exit # go to Exit if save[i] !- k
Lopp: addi ts3. *s3, 1 #1-1+1
sit tto. $S3, tzero #tempreg O =1 ifi <0
sit tt3. >s3. tt2 # temp reg St3 = 0 if i >- length
siti St3, «t3. 1 # flip the value of $t3
o $t3. tt3, tto # $t3 = 1 if i is out of bounds
bne it3, tzero, IndexQutOfBounds e# if out of bounds, goto Error
addi itl. ttl, 4 # temp reg $tl = address of saved]
lu  tto. 8(stl) # temp reg $O = saveli]
beqg O, «s5. Loop # go to Loop if save[i] = k
Exit:

The number of ingtructions executed by this new form of theloopis 10+10*9=

100.
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2.47 To test for loop termination, the constant 401 is needed. Assume that it is
placed in memory when the program is loaded:

|lw tt8, AddressConstant401(tzero) j {tt8 - 401

lw tt7, 4(ta0 i ttt7 = length of a[]
Iw  tte, 4(tal) | tst6 - length of b[]
add tto. tzero, tzero jtinitialize 1 - 0

Loop: Sit $t4. ttQ tzero jtsta - 11f 1 <0
bne tt4. tzero, |ndexCutCf Bounds itif i<o. goto Error
sit tt4, ttQ 6 ittta - 0 1f 1 > length
beq tt4. Jzero, IndexutCGfBounds i tif i > length, goto Error
sit $t4. ttQ tt7 ittta=0if i > length
beq tt4, tzero, IndexQutCGfBounds i tif i > length, goto Error
add ttl, tal, SO i tttl - address of b[i]
Iw tt2. 8(stl) itst2 - bti]
add st2. tt2, tsO itst2 - p[li] +c
add st3. taQ ttO i ttt3 - address of a[i]
SwWoott2, 8(tt3) itafi] - b[i] +¢
add o, ttQ 4 iti-io+a
sit tt4. stQ st8 ittt8 - 1 1f ttO< 401, i.e.,
bne tt4. tzero, Loop itgmo Loop if i <= 100

The number of instructions executed is4 + 101 X 14= 1418. The number of data
references made is 3 + 101 X 2 = 205.

248

compareTo: sub $v0, $a0, Sal  # return v[i].value - v[j+l], value
jr $ra # return from subroutine
2.49 From Figure 2.44 on page 141, 36% of al instructions for SPEC2000int are
dataaccess instructions. Thus, for every 100 instructions there are 36 data accesses,
yielding atotal of 136 memory (1 to read each instruction and 36 to access
data).
a The percentage of all memory accesses that are for data = 36/136 = 26%.

b. Assuming two-thirds of data transfers are loads, the percentage of al mem-
ory accesses that are reads = (100 + (36 x 2/3)}/136 = 91%.

<= 100
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2.50 From Figure 2.44,39% of al instructions for SPEC2000fp are data accessin-
structions. Thus, for every 100 instructions there are 39 data accesses, yielding a
total of 139 memory accesses (1 to read each instruction and 39 to access data).
a The percentage of &l memory accessesthat are for data = 39/139 = 28%.
b. Assuming two-thirds of data transfers are loads, the percentage of al mem-
ory accessesthat are reads = (100 + (39 x 2/3))/139 = 91%.
2.51 Effective CPl = Sum of (CPI of instruction type x Frequency of execution)

The average instruction frequencies for SPEC2000int and SPEC2000fp are 0.47
arithmetic (0.36 arithmetic and 0.11 logical), 0.375 datatransfer, 0.12 conditional
branch, 0.015jump. Thus, the effective CPI is0.47 x 10 + 0.375x 14 + 012 x 17
+0.015x1.2=1.2.

252

Tnstructio

Toad b __# Acc - b; 4
add ¢ K+ ¢ 3 3
store a A= AoCp 3 a
add ¢ A +- ¢ 3 4
store b # Acc - b 3 &
neg Ae -- Ace; T o
add a @& Ace - b; | 3 4
store d_# d - ACC, | 3 [
Tod: = 28

Code size is 22 bytes, and memory bandwidthis 22 + 28 = 50 bytes.
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[ Instriction | Code byt
pop a 3
push ¢ 3
add 1
duo 1
pop b 3
neg 1
push a 3
add 1
pop d 3
Total: 27
Codesizeis 27 bytes, and memory bandwidthis 27 + 28 = 55 bytes.
444 4, b. ¢ § a=bec 7 iz
| add b, a, ¢ # basc T i
|sub d, &. b & d=2-b 7 12
Vs | Total: 21 362, 4

Codesizeis 21 bytes, and memory bandwidth is 21 + 36 = 57 bytes.

truction w
load $1, b [EFEET 2 2
load 12, ¢ $2 =.6x 4 4
add  $3. $1, 12 3= 40 + & 3 )
store S3. a & - i3; q 7]
add S1. 12, $3 =42 + $3; 3 0
store $1. b b - St 4 4
sub_ $4, 13, tI F §4 =33 - tl 3 0
store $4. d d - td: 4 4
Total: 29 20

Code size is 29 bytes, and memory bandwidth is 29 + 20 = 49 bytes.
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The |oad-store machine has the lowest amount of data trffic. It has enough regis-
tersthat it only needs to read and write each memory location once. On the other
hand, since dl ALU operations must be separate from loads and stores, and dl
operations must specify three registers or one register and one address, the load-
store has the worst code size. The memory-memory machine, on the other hand,
isat the other extreme. It hasthe fewest instructions (though aso the largest num-
ber of bytes per instruction) and the largest number of data accesses.

2.53 To know the typical number of memory addresses per instruction, the na-
ture of atypical instruction must be agreed upon. For the purpose of categorizing
computersas 0-, 1-, 2-, 3-address machines, aninstruction that takes two operands
and produces aresult, for example, ad d, istraditionally taken astypical.

Accumulator: An add on this architecture reads one operand from memory, one
from the accumulator, and writes the result in the accumulator. Only the location
of the operand in memory need be specified by the instruction. Category: 1-
address architecture.

Memory-memory: Both operands are read from memory and the result is written
to memory, and al locations must be specified. Category: 3-address architecture.

Sack: Both operands are read (removed) from the stack (top of stack and next to
top of stack), and the result is written to the stack (at the new top of stack). All
locations areknown; none need be specified. Category: 0-address architecture.

Load-store: Both operandsare read from registersand theresult iswrittento areg-
ister. Just like memory-memory, all locations must be specified; however, location
addresses are much smaller—5 hits for alocation in atypical register file versus 32
bits for alocation in acommon memory. Category: 3-address architecture.

254
sbn tenp, tenp, .+1 # clears tenp, always goes to next instruction
start: sbhn tenp, b, .+l # Sets tenp = -b
sbn a, tenp, .+1 # Sets a- a - tenp-a- {-b) - a+hb
2.55 There are a number of ways to do this, but this is perhaps the most concise
and elegant:

sbn ¢, ¢, .+1 #
sbn tmp, tmp, .+1 #
#
#

loop: sbn b, one, end
sbn tmp, a, loop tmp == a; /* always continue */
end: sbn c, tmp, .+1 #c=-tmp; /*-axb*

2.56 Without a stored program, the programmer must physicaly configure the
machine to run the desired program. Hence, anonstored-program machineis one
where the machine must essentially be rewired to run the program. The problem
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i

with such amachineis that much time must be devoted to reprogramming the ma-
chine if one wants to either run another program or fix bugs in the current pro-
gram. Thestored-program concept isimportant in that aprogrammer can quickly
modify and execute a stored program, resulting in the machine being more of a
general -purpose computer instead of a specifically wired calculator.

2.57

M PS:
add
addi

loop: sl
add
Iw
add
sl
add
sw
addi
bre

Power PC:
add
addi

loop: 1w
add
sl
sw
addi
bne

tto.
ttl,
$t2.
$t3,
tt4,
tt4.
$t2,
$t3,
tt4,
(to,
$to.

$to,
stl,
tt4,
tt4,
tt2,
ft4,
tto.
tto,

tzero, $zero
tzero, 10
to, 2
tt2, tal
o(tt3)
tt4, tto
to, 4
tt2, tao
o(tt3)
sto, 1
ttl . loop

tzero, tzero
tzero, 10
4t a)

tt4, tto

to, 4
taO+tt 2
%o, 1

$l , 1 oop

ti1-o0

t set max iterations of | oop
teez2-i ~a

1 tt3 - address of b[i]
t tta - bli]

t tta - bai] +i

ttt2- 1*4*2

t tt3 - address of a[2i]
t a2i] - b[i] +1
ti+

t loop if i !- 10
ti--0

# set max iterations of |oop
# tta = bti]

Htta - bti] +1

ttt2- 1+x4+2

1 a[2i] - b[i] +i
#i+
| Roopifi !- 10
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288
MIPS:
add ty(Q S$zero. $zero t freq =0
add §to, $zero, Szero ti-o
addi St8, Szero, 400 t st8 - 400
outer: add St4, $aQ SO t St4 - address of afi]
lu  st4, 0($t4) itsta - a[i)
add $sO $zero, Szero #x-0
add! $tl. $zero, 400 #j - 400
inner: add St3, $aQ $tl f st3 - address of alj]
lw  $t3. 0($t3) 13- a[j]
bne st3, st4, skip tif (a[1] e a[j]l skip x++
addi SsQ SsQ 1 T x++
skip: addi Stl, Stl, -4 t J-
bne stl. Szero, inner t loopif j !-0
sit *t2, SsO SO t st2-0if x >=freq
bne $t2, $zero. nmext # skip freg = x iF
add $vO SsO Szero § freq = x
next : addi St0, stQ 4 1i++
bne tto, st8, outer 1 1 oop if i 1- 400
Pover PC.
add tvQ szero, Szero t freqg - 0
add $to, szero, Szero ti1-o0
addi «t8, Szero, 400 t st8 - 400
add st7, SaQ Szero { keep track of a[i] with update addressing
outer: lwi (t4, 4(St7) t st4- afi]
add SsO Szero, Szero tx-o0
addi Sctr, Szero, 100 #i - 100
add st6, SaQ Szero # keep track of a[j] with update addressing
inner: lw St3, 4($t6) t 3 - a[j]
bne $t3. St4, skip tif rafi] te- a[j]) skip x++
addi $sQ SsQ 1 t X+
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ski p: be
sit
bne
add
nest: addi
bne
2.59

xor $s0, $s0,

xor $sl, SsO
xor SsQ SsQ

inner ,

stz,
$t2.
$vO
Nno.
no-

$sl
I'sl
$sl

SsQ

$ctr!-0

f:Ve]

$zero, next

SsQ

$zero

$to, 4

$t8.

out er

#j--. loop If jl-0
t tt2 - 0if x > freq
# skip freq - x if

t freq - x

t 1++

# loop if 1 !- 400
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Solutions for Chapter 3 Exercises

3.1 0000 0000 0000 0000 0001 0000 0000 0000y,
3.2 1111 1111 1111 1111 1111 1000 0000 0001w
3.3 1111 1111 1110 0001 0111 1011 1000 0000,

3.4 -250¢en
35 -17in
3.6 21474836310
3.7
addu $t2, lzero, $t3 # copy St3 into $t2
bgez $t3, next # if $t3 >= 0 then done
sub tt2, Szero, St3 # negate $t3 and place into $t2

Next:

3.9 Theproblemisthat A_1 ower will be sign-extended and then added to $t0.
The solution is to adjust A_upper by adding 1 to it if the most significant bit of
A_l ower isa 1. As an example, consider 6-bit two's complement and the address
23 = 010111. If we split it up, we notice that A_| ower is 111 and will be sign-
extended to 111111 =-1 during the arithmetic calculation. A_upper_adjusted
= 011000 = 24 (we added 1 to 010 and the lower bitsareall Os). The calculation is
then24+-1 = 23.

3.10 Either the instruction sequence

addu $t2, $t3, $t4
situ $t2, $t2. $t4

or

addu $t2, $t3, $t4
situ $t2. -$t2, $t3

vorks.

3.12 To detect whether $s0 < $s1, it'stempting to subtract them andlook at the
sign of the result. Thisidea is problematic, because if the subtraction resultsin an
overflow, an exception would occur! To overcome this, there are two possible
methods: You can subtract them as unsigned numbers (which never produces an
exception) and then check to see whether overflow would have occurred. This
method is acceptable, but it is lengthy and does more work than necessary. An
aternative would be to check signs. Overflow can occur if $s0 and (- $s1) share
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the samessign; that is, if $s0 and $s1 differ insign. But in that case, we don't need
to subtract them since the negative one is obviously the smaller! The solution in
pseudocode would be

if <$s0<0) and (Ssl>0) then
$tQ-1
else if <$s0>0) and {$sl<QJ then
$tQ-0 !
el se
$tl:-$sO Ssr
if ($t1<0) then
$tQ-1
el se
$ta-0

3.13 Hereis the equation:
Sum = (a* b Carryln) + (;- be Carryln) + (5- be Carryln) + (as b« Carryln)

Carryln

Sum
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323
o o © None MidEe of & string of 03
0 0 1| Add the mulipiicand | End of a string of Is
0 1 0 |Addthe multiplicand | A string of one 1, so subtract the multipiicand at
position i for the beginning of the string and add twice
the multiplicand (twice to align with position 1 + I) for
the end of the string; net result, add the
0 1 1 |Addwice the End of astring of Is; must align add with 0 In position
multiplicand i+1
1 0 0 Subtracttwice the | Beginning of a string of Is; must subtract with 1 in
multiplicand position 1 +1
1 0 1 Subtract the End of string of Is, so add multiplicand, plus
multiplicand beginning of a string of Is, S0 sublract twice the
L i net result Is to subtract Hie multiplicand
1 1 0 Subtract the Beginning of a string of Is
multiplicand
1 1 1 None Middle of a suing of Is

One example of 6-bit operands that run faster when Booth's algorithm looks at 3
bits at atime is 21en X 277, = 5677

Two-bit Booth's algorithm:
010101  =2l¢en
X011011 =274

- 010101 10 string (always start with padding O to right of LSB)
000000 11 string, middle of a string of I's, no operation
+ 010101 01 string, add multiplicand

- 010101 10 string, subtract multiplicand
000000 11 string
+ 010101 01 string

11111101011 two's complement with sign extension as needed
00000000  zero with sign extension shown
000010101 positive multiplicand with sign extension
11101011
0000000
(-010101

01000110111 =567en
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Don't worry about the carry out of the MSB here; with additional sign extension
for the addends, the sum would correctly have an extended positive sign. Now,
using the 3-bit Booth's algorithm:

010101 =21ien
Xo1iwou =277

-010101 110 string (always start with padding O to right of LSB)
—010101 101 string, subtract the multiplicand
4+ 0101010 011 string, add twicethe multiplicand (i.e., shifted eft 1 place)

11111101011  two's complement of multiplicand with sign extension

111101011  two's complement of multiplicand with sign extension
+ 0101010

01000110111 "S67,,,,
Using the 3-bit version gives only 3 addends to sum to get the product versus 6
addends using the 2-bit algorithm.
Booth's algorithm can be extended to look at any number of bits b at atime. The
amounts to add or subtract include all multiples of the multiplicand from 0 to
2*%2 Thus, for b> 3 this means adding or subtracting values that are other than
powers of 2 multiples of the multiplicand. These values do not have a trivial
“shift left by the power of 2numberof bitpositions” methodof computation.
3.25

1A »fO, -8(»gp)

1A $f2, -ie(tgp)

1A Sfa, -24(Sgp)

fmadd tfO. tfO, tf2, (f4

s.d tfO, -8($gp)
3.26 a

1=0100 0000 0110 0000 0000 00000010 0001

y= 0100 0000 1010 0000 0000 0000 0000 0000
Exponents

100 00000
+100 0000 1
10000000 1
-01111111

100 0001 &
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X 1.100 0000 0000 0000 0010 0001
y x1.010 0000 0000 0000 0000 0000

1 100 0000 0000 0000 0010 0001 000 0000 0000 0000 0000 0000
+ 11 0000 0000 0000 0000 1000 010 0000 0000 0000 0000 0000

1.111 0000 0000 0000 0010 1001 010 0000 0000 0000 0000 0000
Round result for part b.

1.111 1100 0000 0000 0010 1001

Z0011 1100 111000000000 1010 11000000
Exponents

100 0001 O
- 11 1100 1

100 1 --> shift 9 bits
1.1110000 0000 0000 0010 1001010 0000 00

+ z 111000000000101011000000
1111 00000IUOOOOOOIO 1110 101
GRS
Result:

0100 000101110000011100000100 1111

1111 1100 0000 0000 0000 1001 result from mult.
+z 1110000 0000 0101011

1111 11000111 0000 0001 1110011
GRS

0100000101110000 01110000 01001110
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a.27
&
11 111
0000 ©0O0O0OO 00O0O0O 000 000 0000 0101 011
4+ 0000 0 0 0 0 0O0OO 0O O0 O 0 0 0 0 0 0 0 00O0O0 10 1
0000 0000 0000 0000 0000 0000 0110 000
b
0000 DODO o0 o000 0000 0000 G0 oo 0101 1011
0000 0000 0 000 0000 900 0 D0 oo o000 1101
1 1
0000 0000 0000 0000 0000 0000 0100 1110
[
@000 OoOXO QOO0 OCO0OO0OC OGOO 0O0CQO O 1011
¥ 0000.0000 0000 0000 0000 0000 0 1101
1
111 ¥3 11
00 0000 0000 0000 0000 0000 0101 1011
00 0000 0000 0000 0000 0001 0110 11
* 00 o000 0000 O00O OO0OOO 0010 11 1
nn nnOO Onnn ntnNnO0 OBH O 2108 2061 1114
d.
0000 0800 0000 O0GO0 0000 0000 GOO0 011w
0000 110110000 0000 0000 0000 0000 0000 0101 1011
0000 0000 0000 0000 0000 0000 001, 0111
1
010 0 111
0000 0000 0000 0000 0000 0000 000 1 10 11
1
o 1101
0000 0000 00 0 0 0000 0000 0000 0000 1101
0000
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Solutions for Chapter 6 Exercises
6.1
a Shortening the ALU operation will not affect the speedup obtained from
pipelining. It would not affect the dock cycle.

b. If the ALU operation takes 25% more time, it becomes the bottleneck in the
pipeline. The clock cycle needs to be 250 ps. The speedup would be 20%
less.

6.2
a It takes 100 ps * 10° instructions= 100 microseconds to execute on a non-
pipelined processor (ignoring start and end transients in the pipeline).
b. A perfect 20-stage pipeline would speed up the execution by 20 times.
c. Pipeline overhead impacts both latency and throughput.
6.3 See the following figure:

Frogram
execution

2
oeder “Three: T T T T T T
{in msireeos)

adld §3, 34, 56 Eﬂ—ﬂ
Lk

b 55, §3, 52

b §T, 100(85)

add 38, 57, 52

6.4 Thereis a data dependency through $ 3 between the first instruction and each
subsequent instruction. Thereisadatadependency through $6 betweenthe 1 win-
struction and the last instruction. For afive-stage pipeline as shown in Figure 6.7,
the data dependencies between the first instruction and each subsequent instruc-
tion can be resolved by using forwarding.

The data dependency between the load and the last add instruction cannot be
resolved by using forwarding.
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6.6 Any part of the following figure not marked as active is inactive.

— Active
r Active
w e i " ]
] B &
s
T
1
sy
5 o .
_
por
-
o
T
(S —
Howlis
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e
= Active
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a8
a,

SN 1 111
131 21314 11131 11 1041 &¢11 0101 06012
TUOO0 D000 D000 U000 0000 0010 1101 011
1141 2514 %1114 11131 10614 0110 0010 101
b.
14 171 1Ty o 4i1 1 oA 10171 6011 0101 601
0000 0000 DOOQO OOOGE OO0O0G 0010 1101 6113

i 4 L1131 1

1111 1111 11141 1441414 $011 0000 114 110
3
131121 1111 421211131 1131231 1011 0011 01041 DoOL
®0 0 0000 0000 0000 000 0010 1101 044
66 &8 6866 6555 4444 3433 4332 1111 41
121121 1£4311 1111 2£1311 2041 011 02104 604
t114 1108 2214 2413 0110 0240 L4010 011
11232 1123 11311 14390 11006 1101 0100 14
14498 2241 11832 2024 6031 0A0L 00
1111 114F 110 106 101061 B100 L
1121 £ 23 1 LOL L0061 1010 1004 A
FLig L T LA 0 A0 0L L0 19001000 e
1111 11131 006148 61410 100 0000 1011 010
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d. Convert to positive:

11011

0010 1101 011110000 0000 0000 0000 0100 1100 1010 1101
0010 11010111 |

- 1 I

1 1111 0011 1l

1 0110 1011 11

- [

1000 1000 0101

101 1010 1111

- )

10 1101 0111

= 10 1101 0111

00 0000 0000

Since signs differ, convert quotient to negative;
1111 1111 1111 1111 1111 1111 111001017

3.29 Start

Set subtract bit to true

1. If subtract bit true: Subtract the Divisor register from the Remainder and
place the result in the remainder register.

else Add the Divisor register to the Remainder and place the result in the
remainder register.

Test Remainder
>=0

N}

. a Shift the Quotient register to the left, setting rightmost bit to 1.
<0

b. Set subtract bit to false.

Shift the Divisor register right 1 bit.

<33rd rep —> repeat

Test remainder

<0

w N



Sohitloiw for Chapter 3 Exercises

Add Divisor register to remainder and place in Remainder register.
Done

Example:

Perform n+ 1 iterations for nbits

Remainder 0000 1011

Divisor 00110000

Iteration 1:

(subtract)

Rem 1101 1011

Quotient 0

Divisor 0001 1000

Iteration 2:

(adld)

Rem 11110011
Q00

Divisor 0000 1100

Iteration 3:

(adld)

Rem 11111111
Q000

Divisor 0000 0110

Iteration 4:

(adld)

Rem 0000 0101
Q0001

Divisor 0000 0011

Iteration 5:

(subtract)

Rem 0000 0010

Q 0001 1

Divisor 0000 0001

Since remainder is positive, done.
Q = 0011 and Rem = 0010
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3.30
a -1 391 460 350
b. 2 903 506 946
c. -8.18545 XMT?
d.sw $sO, »tO(16) sw Jrl6, Sr8(2)

613 566 "756

613 566 756

6.34413 X 10"

.addiu. $s2, taO, 18724 addiu $18, 14, 0x8924

Qo T »

335

.285 X 10*
+9.84 X 10*

10.125 X10*
10125X 10¢
with guard and round: 101 X 10°
without: 101 X 10°
3.36

363 X 10*
+.687 X 10°

4.317 X10*
with guard and round: 4.32 x 10*
without: 4.31 X 10
337

Wy = §0100,,,, = 10100,
Sign = 0, Significand- .010

Single exponent = 4+ 127 = 131
Double exponent = 4 + 1023 = 1027
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Single
prore. 101000 T 0100000 0000 0000 0000 0003
Daouble
prockio 010000000 0710100 0000 0000 0000 000D 0080 0000 000D 0030 0000 0800 0000 000
238
S [01000 0011 0100100 0000 0000 0000 0000
pr‘;f;'g; 1010000000 O 0100 1000 0000 0000 0000 0000 0000 0000 0000 0000 G000 0000 |
3.39

Single
precision

Double
precision

°lun = 0.000114= UOO1L M* 2'*

Sign = 0, Significand = . 10011
Single exponent = -A+ 127 = 123
Double exponent = -4 + 1023 = 1019

« 1pd—38 23 —»
o [Forems 10011001100110011001100  trunc
1111011 1 10011001100110011001101 round
111 L ¥ >
o | 01111111011 101 OO ICAI 0O COl 0O CO 0O 10O OOl 0O CA 10T true
1001001100 100100100 1001001 0010010d1001dOround
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3.40

Single
precison | 100011110101 01010101 01010101 0101

m! :-ibtl'e 10111 1111 120 1040 1040 2020 2010 1040 1020 1010 2040 1010 1040 1020 10101010 trune.
F 10835 3301 140 1000 1000 1040 1040 1040 1040 1000 1040 1000 1040 1040 4040 1011 mund

3.41 No, since floating point adds are not associative, doing them simultaneously
is not the same as doing them serially.

342
A
Convert+1.1011 « 2'* +-1.11 *27%

1.1011 0000 0000 0000 0000 000
-0.0000 0000 0000 0001 1100 000

1.1010 1111 1111 11100100 000
0i000N0 NOi Oiii Mi Mi 0oicoooo

=3

Calculate new exponent:
111111
100 0110 1
+01111101
1000 0101 O
-011 11111 minusbias
1111 1111
100 01011 new exponent

Multiply significands:
1101 1000 0000 0000 0000 0000
Xi.N0 0000 0000 0000 0000 0000
11111
1 1011 0000 0000 0000 0000 0000 0000 0000 0000 0000 AXD
11 0110 0000 0000 0000 0000 G33D 0000 0000 0000 GO 0000
+1.10 1100 G300 0000 0000 0000 0000 0000 0000 0000 0000 0000 A

1011 1101 0000 00000000 0000 0000 K000 GO3D 0000 0000 0000
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3.43

®

o

o

Normalize and round:

exponent 100 0110 0

signifkand

1.011 10100000 0000 00000000

Signs differ, so result is negative:

1100 0110 0011 1010 0000 0000 KOO0 0000

0101 1111 10111110 01000000 0000 0000
01010001 11111000 0000 0000 0000 0000
Determine difference in exponents:

1011 1111
-1010 0011

0011100--> 28
Add signiiicands after scaling:
1.011 1110 0100 0000 0000 0000 00O 0000 0000 0OOO 0000 0000 0000
+0.000 0000 0000 0000 0000 0000 0000 1111 1000 0000 0000 0000 0000
1.011 11100100 0000 00000000 0000 1111 1000 0000 0000 0000 AX3D
Round (truncate) and repack:
0 1011111 1011 1110 0100 000000000000,
0101 1111101111100100 0000 0000 QOO
Trivialy resultsin zero:
0000 0000 0000 0000 0000 0000 0000 0000

We are computing (x+ y) + z, where z= -xand y* 0
(x+y) +-x=y intuitively
(x+y) + -x= 0 with finite floating-point accuracy
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3.44

a 2'5- 1=32767

b.
3%
2= 303 x 1080
2= 1.04x102%
2= 1.00x10%"
2%";= 1.19x10%%
2= 142x 10

0

as small as 2.0, X 10"%%%
and almost aslarge as 2.0, X 10%%

o

20% more significant digits, and 9556 orders of magnitude more flexibility.
(Exponent is 32 timeslarger.)

3.45 The implied 1 is counted as one of the significand bits. So, 1 sign bit, 16
exponent bits, and 63 fraction bits.

3.46

Load2X 10" .
Square it 4x 10°1°

Square it 16 x 10'%%*
Squareit 2.5 X 1024
Squareit 6.2 X 102
Squareit 36 X 10°6°

Min 6 instructions to utilize the full exponent range.
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Solutions for Chapter 4 Exercises

4.1 For PI, M2is4/3 (2 sec/1.5 sec) times asfast asM|. For P2, Ml is2timesas
fast (10 sec/5 sec) asM 2.

4.2 We know the number of instructions and the total time to execute the pro-
gram. The execution rate for each machine is simply the ratio of the two values.
Thus, the instructions per second for Pl on Ml is (5 x 10° instructions/2 seconds)
=25 x 10° IPS, and the instructions for Pl on M2 is (6 x 10° instructions/1.5 sec-
onds) = 4x 10° IPS.

4.3 M2 runs 4/3 asfast asMI, but it costs 8/5 as much. As 8/5 is more than 4/3,
MI has the better value.

4.6 Running PI 1600 times on MI and M2 requires 3200 and 2400 seconds re-
spectively. Thisleaves 400 seconds |eft for MI and 1200 seconds left for M 2. In that
time MI can run (400 seconds/{ 5 seconds/iteration)) = 80 iterations of P2. M2 can
run (1200 seconds/(10 seconds/iteration)) = 120 iterations. Thus M2 performs
better on this workload.

Looking at cost-effectiveness, we see it costs ($500/(80 iterations/hour)) = $6.25
per (iteration/hour) for M1, while it costs ($800/(120 iterations/hour)) = $6.67
per (iteration/hour) for M2. Thus MI is most cost-effective.

4.7
a Time = (Seconds/cycle) * (Cycles/instruction) * (Number of instructions)

Therefore the expected CPU time is (1 second/5 x 10° cydes) * (0.8
cycles/instruction) * (7.5 x 10° instructions) = 12 seconds

b. P received 12 seconds/3 seconds or 40% of the total CPU time.

4.8 The ided instruction sequence for Pl is one composed entirely of instructions
from dass A (which have CPI of 1). So Mi's peak performance is (4 x 10° cy-
des/second)/( 1 cycle/instruction) = 4000 MIPS.

Similarly, the ideal sequence for M2 contains only instructions from A, B, and C
(which al have a CPI of 2). So M2's peak performance is (6 x 10° cycles/second)/
(2 cycled/instruction) = 3000 MIPS.

4.9 Theaverage CPI of Pl is (1x2 + 2 + 3 + 4 + 3)/6 = 7/3. The average CP! of
P2is (2x2 + 2 + 2+ 4 + 4)/6 = 8/3. P2 thenis ((6 x 10° cydes/second)/(8/3
cycles/instruction))/((4 x 10° cydes/second)/(7/3 cydes/instruction)) = 21/16
times faster than PI.

4.10 Using Cl, theaverage CPI for Il is(4* 2+ .4* 3+ .2* 5) = 3, and theaverage
CPI for 12is(.4* 1+ .2* 2+ .4* 2) = 16. Thus, with Cl, 11 is (6 x 10° cycles/sec-
ond)/~ cydes/instruction))/((3 x 10° cycles/second)/(1.6 cydes/instruction))
= 16/15 times as fast as 12.
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Using C2, the average CPI for 12is(4* 2+.2* 3+ .4* 5) = 34, and the average
CPl for 12is(4* 1+ .4* 2+.2* 2) = 16 Sowith C2,12 isfaster than I1 by factor
of ((3 x 10° cydes/second)/(1.6 cydes/instruction))/((6 x 10° cydes'second)/(3.4
cycleslinstruction)) = 17/16.

For the rest of the questions, it will be necessary to have the CPIs of 11 and 12 on
programs compiled by C3. For 11, C3 produces programswith CPI (6* 2+ .15*
3+.25%5)=29.12hasCP (6* 1+.15* 2+.25* 2) = 14,

The best compiler for each machine is the one which produces programs with the
lowest average CPI. Thus, if you purchased either |1 or 12, you would use C3.

Then performance of Il in comparison to 12 using their optimal compiler (C3) is
({6 x 10° cydes/second)/(2.9 cydes/instmction))/((3 X 10° cydes/'second)/( 14
cycles/instruction)) = 28/29. Thus, 12 has better performance and is the one you
should purchase.

4.11 Program Prunni ngon machine M takes (10° cydes/seconds) * 10 seconds=
10" cydes. P’ takes (10° cydes/seconds) * 9 seconds = 9 x 10° cydes. This leaves
10° less cycles after the optimization.

Everytime we replace a mult with two adds, it takes 4-2* 1 = 2 cydes less per
replacement.

Thus, there must have been 10° cydes /(2 cydes/replacement) = 5 X 1° replace-
mentsto make Pinto P

4.12 The first option reduces the number of instructions to 80%, but increases
thetimeto 120%. Thusit will take: 0.8 * 12 = 0.96 asmuch time astheinitial case.

The second option removes 20W2 = 10% of the instructions and increases the
time taken to 110%. Therefore it will take 0.9 * 11 = 0.99 times as much time as
theinitial case.

Therefore, the first option isthe faster of the two, and it is faster than the orginial,
50 you should have hardware automatically do garbage collection.

4.13 Let | = number of instructionsin program and C = number of cydesin pro-
gram. The six subsets are{ dock rate, C} {cydetime, C} {MIPS, 1} {CP|, C, MIPS!
{CPI, 1, clock rate} {CP!, I, cydetime}. Note that in every case each subset hasto
have at least one rate { CP1, dock rate, cyde time, MIPSJ and one absolute {C, I} .

4.14 Thetota execution time for the machines are as follows:
Computer A =2 + 20 + 200 seconds = 222 seconds
Computer B =5 + 20 + 50 seconds = 75 seconds

Computer C = 10+ 20 + 15 seconds = 45 seconds
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Thus computer C is fester. It is 75/45 = 5/3 times fester than computer B and
222/45 = 74/15 times faster than computer A.

4.15 With the new weighting the total execution time for the group of programs
is:

Computer A=8* 2+ 2* 20+1* 200 seconds = 256 seconds

Computer B =8* 5+ 2* 20+1* 50 seconds = 130 seconds

Computer C =8* 10+ 2* 20+1* 15 seconds = 135 seconds

So with this workload, computer B is faster by a factor of 135/130 = 104 with
respect to computer C and a factor of 256/130 = 1.97 with respect to computer A.
This new weighting reflects abias from the previous results by abiastoward pro-
gram 1 and program 2, which resulted in computer A and computer B looking
comparitively better than before.

4.16 Comparing the times of the program executions on computer A, we see that
to get an equal amount of execution time, we will have to run program 1100 times,
program 2 10 times, and Program 3 1 time. This resultsin the following execution
times:

Computer A = 100 * 2+10* 20+1* 200 seconds = 600 seconds
Computer B = 100* 5+ 10* 20+ 1 * 50 seconds = 750 seconds
Computer C = 100* 10+ 10* 20+ 1 * 15 seconds = 1215 seconds
So computer A is fastest with this workload.

Using computer B's program execution times to determine aweighting, we get a
ratio of 20:5:2 for program 1, program 2, and program 3, respectively. This results
in the following execution times:

Computer A =20* 2 + 5* 20 + 2* 200 seconds = 540 seconds
Computer B = 20!*5 + 5% 20 + 2* 50 seconds = 300 seconds
Computer C =20* 10+ 5* 20+ 2* 15 seconds = 330 seconds
So in this case, computer B is fastest.

Using the execution times on computer C, we get a6:3:4 ratio, resulting in the fol-
lowing total execution times:

Computer A =6* 2 + 3* 20+ 4* 200 seconds = 872 seconds
Computer B =6* 5 + 3* 20+ 4* 50 seconds = 290 seconds
Computer C =6* 10+ 3* 20+ 4* 15 seconds = 180 seconds
So in this case computer C isfastest.
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As we did the weighting to equalize the times on one particular machine, we
ended up running programs that that computer could do the fastest most often
and the programs that it was ower on less often. This will tend to be a compara-
tive improvement in the execution time for the machine we are normaizing time
to (as die weightings are not guaranteed to bias towards the programs that the
other machines are better at). In this example, this type of weighting was enough
to make that computer appear the fastest.

4.17 Weknow CPI isequal to (Cydes/second)/(I nstructions/second). So the CP1
of Pl on Ml is (4 x 10° cydes/second)/(2.5 x 10* instructions/second) = 16 CPI,
and the CPI of Pl on M2 is (6 x 10° cydes/second)/(4 x 10° instructions/second)
=15 CPI.

4.18 We have the CPl, the dock rate, and the total execution time, and we're try-
ing to find the total number of instructions. Using the following equation:

(Cydes/instruction)/(Cydes/second) * Instructions = (Execution time)

We find that there are (5 seconds) * (4 x 10° cydes/second)/(0.8 cydes/instruc-
tion) = 125 x 10° instructions in P2 .on MI, and (10 seconds) * (6 x 10°
cydes/second)/( 15 CPI) =40 X 10%instructionsin P2 on M2.

4.19 No solution provided.
4.20 No solution provided.
4.21 No solution provided.

4.22 Using Amdahl's law (or just common sense), we can determine the follow-
ing:
* Speedup if we improve only multiplication = 100/(30 + 50 + 20/4) = 100/85

=118

* Speedup if we only improve memory access = 100/(30 + 50/2 + 20)) =
100/75=1.33.

« Speedup if both improvements are made = 100/(30 + 50/2 + 20/4) = 100/60
= 167.

4.23 The problem is solved agebraically and results in the equation
100/(r+ (100-X- Y) + X/4) = 100/CX+ (100 -X- Y) + 172)

where X = multiplication percentage and Y = memory percentage. Solving, we get
memory percentage = 15 x multiplication percentage. Many examples thus exist:
for example, multiplication = 20%, memory = 30%, other = 50%, or multiplica-
tion = 30%, memory = 45%, other = 25%, and so on.
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a.9A qul_\jp — Execution tirpebdoreimgrovemenl
Execution time after improvement
Rewrite the execution time equation:
Execution time after improvement = Executiontime affected by improvement + " a t i a nsimeunafected
Amount or improvement
= Execution time affected + Amount of improvement x Execution time unaffected
Amount of improvement

Rewrite execution time affected by improvement as execution time before improve-
ment X f, where/isthe fraction affected. Similarly execution time unaffected.

- Execution time before improvement x f, A" 7

befere ementx (i _fl
= imprav
Amount of improvement

.
ol ] 4+ (1-f) 1 x Execution time before improvement
IAmount of improvement &

3 \ Execution time before improvement
bpeedup = =

77—+ (1 - f) | x Execution time before improvement
V. Amount of improvement )

Speedup =+ 1

+(1-p)

The denominator hastwo terms: the fraction improved (f) divided by the amount
of the improvement and the fraction unimproved (1-/).

e S
[Amolm{ofimpmlv:mml

4.25 We canjust takethe GM of the execution times and use the inverse.
GM(A) = VIOOO = 32, GM(B) = ,/1000 = 32,and GM(C) = 400 = 20,

0 Cisfastest.

4.26 A, B: B hasthe same performanceasA. If werun program 2 once, how many
times should we run program 1? x + 1000 = IO + 100, or x = 100. So the mix is
99% program 1,1% program 2.

B,C: Cisfasabytheratioof;E = 16.
20

Program 2 is run once, so we have 10JC+ 100= 16 x(20x+ 20), x= 3.1 times. So
themix is 76% program 1 and 24% program 2.

A, C: Cisaso faster by 16 here. We use the same equation, but with the proper
times: x+ 1000= 16 x{ 20x+ 20), x= 31.2. So the mix is 97% program 1 and 3%
program 2. Note that the mix is very different in each case!
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4.27 No solution provided.
4.28 No solution provided.
4.29 No solution provided.
4.30

4.31 The harmonic mean of a set of rates,

n " 1 1 1
HM = — - —— =
o< 1 ‘\r/->_|__ ﬁx Time;, | J>L TiveE
2-‘Rate,. Lrime, “nn 1
L =

i= =1

whereAM is the arithmetic mean of the corresponding execution times.
4.32 No solution provided.
4.33 The time of execution is (Number of instructions) * (CPI) * (Clock period).
So theratio of the times (the performance increase) is:

101 = (Number of instructions) * (CPI) * (Clock period)

(Number of instructionsw/opt.) * (CPI w/opt.) * (Clock period)
= I/(Reduction ininstruction count) * (2.5 improvement in CPl)
Reduction in instruction count = .2475.
Thus the instruction count must have been reduced to 24.75% of the original.
4.34 We know that
(Number of instructionson V) * (CPl onV) * (Clock period)
- (TimeonV) _ (Number of instructionson V) * (CPI on V) * (Clock period)

(Timeon P) "* (Number of instructionson P) * (CPI on P) * (Clock period)
5= (1/1.5) * (CPI ofV)/(1.5 CPl)
CPI of V= 11.25.

4.45 The average CPl is .15 * 12 cycles/instruction + .85 * 4 cycles/instruction =
5.2 cycles/instructions, of which .15 * 12 = 18 cycles/instructions of that is due to
multiplication instructions. This means that multiplications take up 1.8/52 =
34.6% of the CPU time.
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4.46 Reducing the CPI of multiplication instructions results in a new average CPI
of .15* 8 +.85* 4=4.6. The clock rate will reduce by afactor of 5/6 . So the new
performance is (5.2/4.6) * (5/6) = 26/27.6 times as good as the original. So the
modification is detrimental and should not be made.

4.47 No solution provided.

4.48 Benchmarking suites are only useful aslong asthey provide agood indicator
of performance on atypica workload of acertain type. This can be made untrueif
the typica workload changes. Additionally, it is possible that, given enough time,
ways to optimize for benchmarks in the hardware or compiler may be found,
which would reduce the meaningfulness of the benchmark results. In those cases
changing the benchmarks isin order.

449 Let The the number of seconds that the benchmark suite takes to run on
Computer A. Then the benchmark takes 10 * T secondsto run on computer B. The
new speed of A is(4/5* T+ 1/5* (T/50)) = 0.804 Tseconds. Then the performance
improvement of the optimized benchmark suite on A over the benchmark suite on
Bis10* T/(0.804 T) = 124.

4.50 No solution provided.
4.51 No solution provided.
4.82 No solution provided.
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Solutions for Chapter 5 Exercises
5.1 Combinational logiconly: a, b, c, h, i
Sequentia logic only: f, g, j

Mixed sequential and combinational: d, e, k
5.2

a RegWrite = O: All R-format instructions, in addition to 1 w, will not work
because these instructions will not be able to write their results to the regis-

ter file.

b. ALUopl = 0: All R-format instructions except subtract will not work cor-
rectly because the ALU will perform subtract instead of the required ALU
operation.

c. ALUopO = 0: beq instruction will not work because the ALU will perform
addition instead of subtraction (see Figure 5.12), so the branch outcome
may be wrong.

d. Branch (or PCSrc) = 0: beq will not execute correctly. The branch instruc-

tion will dways be not taken even when it should be taken.

e. MemRead = 0: 1w will not execute correctly because it will not be able to
read data from memory.

MemWrite = 0: sw will not work correctly becauseit will not be able to write
to the data memory.

S3

o

RegWrite = 1: sw and beq should not write results to the register file, sw
(beq) will overwrite a random register with either the store address (branch
target) or random data from the memory data read port.

ALUopO = 1: 1w and sw will not work correctly because they will perform
subtraction instead of the addition necessary for address calculation.

=3

o

ALUopl = 1: 1w and sw will not work correctly. 1w and sw will perform a
random operation depending on the least significant bits of the address field
instead of addition operation necessary for address calculation.

o

Branch = 1: Instructions other than branches (beq) will not work correctly
if the ALU Zero signal is raised. An R-format instruction that produces zero
output will branch to a random address determined by its least significant
16bits.

e. MemRead = 1: All instructions will work correctly. (Data memory is aways

read, but memory data is never written to the register file except in the case
oflw.)
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f. MemWrite = 1: Only sw will work correctly. The rest of instructions will
store their results in the data memory, while they should not.

5.7 No solution provided.

5.8 A modification to the datapath is necessary to alow the new PC to come
from aregister (Read data 1 port), and anew signal (e.g., JumpReg) to control it
through amultiplexor as shown in Figure 5.42.

A new line should be added to the truth table in Figure 5.18 on page 308 to imple-
ment the j r instruction and a new column to produce the JumpReg signal.

5.9 A modification to the data path is necessary (see Figure 5.43) to feed the
shamt field (instruction [10:6]) to the ALU in order to determine the shift amount
The instruction isin R-Format and is controlled according to thefirst linein Fig-
ure 5.18 on page 308.

TheALU will identify the s11 operation by the ALUop field.

Figure 5.13 on page 302 should be modified to recognize the opcode of si 1; the
third line should be changed to 1X1X0000 0010 (to discriminatethead d and ss 1
functions), and a new line, inserted, for example, 1X0X0000 0011 (to define si 1
by the 0011 operation code).

5.10 Hereonepossible 1 ui implementation is presented:

This implementation doesn't need a modification to the datapath. We can use the
ALU to implement the shift operation. The shift operation can be like the one pre-
sented for Exercise 5.9, but will make the shift amount as a constant 16. A new line
should be added to the truth table in Figure 5.18 on page 308 to define the new
shift function to the function unit. (Remember two things: first, there is no funct
field in this command; second, the shift operation is done to the immediate field,
not the register input.)

RegDst = 1: To writethe ALU output back to the destination register (trt).
ALUSc = 1: Load theimmediate fidd into the ALU.

MemtoReg = 0: Datasourceisthe ALU.

RegWrite= 1: Write resultsback.

MemRead = 0: No memory read required.

MemWrite = 0: No memory write required.

Branch = 0: Not abranch.

ALUOp = 11: si 1 operation.

This ALUOp (11) can be translated by the ALU asshl,ALUI1.16by modifying
the truth tablein Figure 5.13 in away similar to Exercise 5.9.
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5.U A modification is required for the datapath of Figure 5.17 to perform the
autoincrement by adding 4 to the $ r s register through an incrementer. Also we
need a second write port to the register file because two register writes are
required for this instruction. The new write port will be controlled by a new sig-
nal, "Write 2", and adataport, "Write data2." We assume that the Write register 2
identifier is aways the same as Reed register 1{$rs). Thisway "Write 2" indicates
that there is second write to register file to the register identified by "Read register
1" and the data is fed through Write data 2.

A new line should be added to the truth table in Figure 5.18 for the 1 _i n ¢ com-
mand asfollows:

RegDst = 0: First writeto $rt.

ALUSc = 1: Addressfield for address calculation.

MemtoReg = 1: Writeloaded data from memory.

RegWrite = 1: Write loaded datainto $rt.

MemRead = 1: Data memory read.

MemWrite=0: No memory write required.

Branch = 0: Not abranch, output from the PCSrc controlled mux ignored.
ALUOp =00: Addresscalculation.

Write2 = 1: Second register write (to $rs).

Such amodification of the register file architecture may not be required for amul-
tiple-cycle implementation, since multiple writes to the same port can occur on
different cycles.

5.12 This instruction requires two writes to the register file. The only way to
implement it is to modify the register file to have two write ports instead of one.

5.13 From Figure 5.18, the MemtoReg control signal looks identical to both sig-
nals, except for the don't care entries which have different settings for the other
signals. A don't care can be replaced by any signdl; hence both signals can substi-
tute for the MemtoReg signal.

Signds ALUSc and MemRead differ in that sw sets ALSrc (for address calcula-
tion) and resets MemRead (writes memory: can't have aread and a write in the
same cycle), so they can't replace each other. If aread and awrite operation can
take place in the same cycle, then ALUSrc can replace MemRead, and hence we
can eliminate the two signals MemtoReg and MemRead from the control system.

Insight: MemtoReg directs the memory output into the register file; this happens
only inloads. Because sw and beq don't produce output, they don't write to the
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register file (Regwrite = 0), and the setting of MemtoReg is hence adon't care. The
important setting for a signal that replaces the MemtoReg signal isthat it is set for
1w (Mem->Reg), and reset for R-format (ALU->Reg), which is the case for the
ALUSrc (different sources for ALU identify 1 w from R-format) and MemRead (1 w
reads memory but not R-format).

5.14 swap $rs,$rt can be implemented by
addi $rd,$rs,0
addi  $rs,$rt,0
addi  $rt,$rd,0

if thereis an available register $rd

or
sw $rs,temp($rO)
addi $rs,$rt,0
lw $rt,temp($ro)
if not.

Software takes three cycles, and hardware takes one cycle. Assume Rsis the ratio of
swaps in the code mix and that the base CPI is 1:

Average MIPS time per instruction = Rs* 3* T+ (1- R9* 1* T={2Rs+ 1) * T
Complex implementationtime= 11* T

If swap instructions are greater than 5% of the instruction mix, then a hardware
implementation would be preferable.

. 5.27 |_incr $rt,Address(Irs) can beimplemented as
2w trt. Address(trs)
addi $rs, $rs, |

Two cycles instead of one. This time the hardware implementation is more effi-
cient if the load with increment instruction constitute more than 10% of the
instruction mix. :

5.28 Load instructions are on the critical path that includes the following func-
tional units: instruction memory, register fileread, ALU, data memory, and regis-
ter file write. Increasing the delay of any of these units will increase the clock
period of this datapath. The units that are outside this critical path are the two
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adders used for PC calculation (PC + 4 and PC + Immediate field), which pro-
duce the branch outcome.

Based on the numbers given on page 315, the sum of the the two adder's delay can
tolerate delays up to 400 more ps.

Any reduction in the critical path componentswill lead to areduction in the dock
period.

5.29
a

=3

a

@

5.30

a

o

o

=3

RegWrite = 0: All R-format instructions, in addition to 1w, will not work
because these instructions will not be able to write their results to the regis-
ter file.

MemRead = 0: None of the instructions will run correctly because instruc-
tions will not be fetched from memory.

. MemWrite = 0: sw will not work correctly becauseit will not be able to write

to the data memory.

. IRWrite = 0: None of theinstructions will run correctly because instructions

fetched from memory are not properly stored in the IR register.

PCWrite = 0: Jump instructions will not work correctly because their target
address will not be stored in the PC.

. PCWriteCond = 0: Taken branches will not execute correctly because their

target addresswill not be written into the PC.

RegWrite= 1: Jump and branch will write their target address into the regis-
ter file, sw will write the destination address or arandom value into the reg-
igter file.

MemRead = 1: All instructions will work correctly. Memory will be read all
the time, but IRWrite and lorD will safeguard thissignal.

MemWrite = 1: All instructions will not work correctly. Both instruction
and datamemorieswill be written over by the contents of register B.

IRWrite= 1: lw will not work correctly because datamemory output will be
translated as instructions.

PCWrite = 1: All instructions except jump will not work correctly. This sig-
nal should be raised only at the time the new PC addressis ready (PC + 4 at
cycle 1 and jump target in cyde 3). Raising this signal al the time will cor-
rupt the PC by either ALU results of R-format, memory address of 1 w/sw, or
target address of conditional branch, even when they should not be taken.

. PCWriteCond = 1: Instructions other than branches (beq) will not work

correctly if they raise the ALU's Zero signal. An R-format instruction that
produces zero output will branch to a random address determined by .their
least significant 16 bits.
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5.31 RegDst can be replaced by ALUSc, MemtoReg, MemRead, AL Uopl.
MemtoReg can be replaced by RegDst, ALUSrc, MemRead, or ALUOpI.
Branch and ALUOpO can replace each other.

5.32 We use the same datapath, so the immediate field shift will be done inside
theALU. E

1. Instruction fetch step: This is the same (IR <= Memory[PCI; PC <= PC ++ 4)

2. Instruction decode step: We don't redlly need to read any register in this stage if
we know that the instruction in hand is a 1 u1, but we will not know this before
the end of this cydle. It is tempting to read the immediate field into the ALU to
start shifting next cycle, but we don't yet know what the instruction is. So we have
to perform the same way as the standard machine does.

A <=0 ($r0); B <= $rt; ALUOUt <= PC + (sign-extend(immediate field));

3. Execution: Only now we know that we have a 1 ui. We have to usethe ALU to
shift left the low-order 16 bits of input 2 of the multiplexor. (The sign extension is
useless, and sign bits will be flushed out during the shift process.)

ALUOUt <= {IR[15-0316(0)J
4. Instruction completion: Reg[IR[20-16]] = ALUOut.

Thefirst two cycles are identical to the FSM of Figure 5.38. By the end of the sec-
ond cycle the FSM will recognize the opcode. We add the Op="lui', a new transi-
tion condition from state 1 to a new state 10. In this state we perform the left
shifting of the immediate field: ALUScA = x, ALUScB = 10, ALUOp = 11
(assume this means Ieft shift of ALUSIcB). State 10 corresponds to cycle 3. Cycle 4
will be translated into a new state 11, in which RegDst = 0, RegWrite, MemtoReg
= 0. State 11 will make the transition back to state O after completion.

As shown above the instruction execution takes 4 cycles.

5.33 This solution can be done by modifying the data path to extract and shift
theimmediatefield outside the ALU. Oncewerecognizetheinstructionas 1 ui (in
cydle 2), wewill beready to store the immediate field into the register filethe next
cycle. This way the instruction takes 3 cycles instead of the 4 cydes of Exercise
5.26.

1. Instruction fetch step: Unchanged.

2. Instruction decode: Also unchanged, but the immediate field extraction
and shifting will be done in this cycde as well.
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3. Now the final form of the immediate value is ready to be loaded into the
register file. The MemtoReg control signd has to be modified in order to
dlow its multiplexor to select the immediate upper field as the write data
source. We can assume that this signal becomes a 2-bit control signal, and
that the value 2 will select theimmediate upper field.

Figure 544 plots the modified datapath.

Thefirst two cycles are identical to the FSM of Figure 5.38. By the end of the sec-
ond cycle, the FSM will recognize the opcode. We add the Op = 'lui', anew transi-
tion condition from state 1 to anew state 10. In this state we store the immediate
upper field into the register file by these signals: RedDst = 0, RegWrite, MemtoReg
= 2. State 10 will make the transition back to state 0 after its completion.

5.34 We can use the same datapath.
1. Instruction fetch: Unchanged (IR <= Memory[PC]; PC<= PC + 4).

2. Ingtruction decode: Unchanged (A <= Reg[IR] 2521]] B<=REGJ[IR[20-
16]];ALUOut<=PC+(sign-extend(I R[15- Og?

3. Load immediate value from memory (MDR <= Memory[PC]; PC <= PC +
4).
4. Complete instruction (Reg[IR[20-16]] (dependent on instruction format)
<= MDR).
Thefirst two cycles are identical to the FSM of Figure 5.38.
Weadd the Op='ldi', anew transition condition from state 1 to anew state 10. In this

state we fetch theimmediate value from memory into the MDR: MemReed, ALUScA
=0, lorD =0, MDWrite, ALUScB = 01, ALUOp = 00, PCWrite, PCSource = 00.

FSM then makes the transition to another new state 11.

In this state we store the MDR into the register file by these signals: RedDst = 0
(actualy depends on the instruction format), RegWrite, MemtoReg = 1.

State 11 will make the transition back to state 0 after its completion.

Four cydles to complete this instruction, in which we have two instruction mem-
Ory accesses.

5.35 Many solutions are possible. In dl of them, a multiplexor will be needed as
well asa new control signal (e.g., RegRead) to select which register is going to be
read (i.e, using |R[25-11]orIR[20-16]). One smple solution issimply to
add awrite signal to A and break up state 1 into two states, in which A and B are
read. It is possible to avoid adding the write signal to A if B isread first. Then A is
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FIGURE 5.4
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read and RegRead is held stable (because A dwayswrites). Alternatively, you could
decide to read A first becaise it may be needed to calculate an address. You could
then postpone reading B until state 2 and avoid adding an extra cycle for the load
and store instructions. An extra cyde would be needed for the branch and R-type
instructions.

6.36 Effective CPl = Sum(operation frequency * operation latency)
MIPS = Frequency/CPleffective

Instruction Frequency M M2 M3
Loads CPI 25% 5 4 3
Stores CPI 13% 4 4 3
Reype CPI 7% 4 3 3
Branch/jmp CPI  15% 3 3 3
Effective CPI 4.1 338 3
MPS 976 946 933

From the results above, the penalty imposed on frequency (for dl instructions)
exceeds the gains attained through the CPI reduction. M1 is the fastest machine.

The more the load instructions in the instruction mix, the more the CPI gain we
can get for the M2 and M3 machines. In the extreme casewe have al instructions
loads, MI MIPS = 800, M2 MIPS = 300, and M3 MIPS = 933.3, so M3 becomes
the best machine in such a case.

5.37 Effective CPl = Sum(operation frequency * operation latency)
MIPS = Frequency/CPleffective

Instruction Frequency 2.8 GHZ CPI 5.6 GHz CPI 6.4 GHCP
Loads CPI 26% 5 6 7

Stores CPI 10% 4 5 6

Retype CPI 49% 4 4 5
Branch/jmp CPl  15% 3 3 4

Effective CPI 4.11 4.47 5.47

MIPS 1167.9 1250 1170.0
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The two-cycle implementation increases the frequency, which benefits all instruc-
tions, and penalizes only loads and stores. The performance improvement is 7%
relative to die original implementation.

Further increase of the clock frequency by increasing the instruction fetch time
into two cycles will penalize all instructions and will reduce the performance to
about the same as that of the 4.8 GHz base performance. Such implementation
hurts the CPI more than the gain it brings through frequency increase and should
not be implemented.

538
sit  $t4, $zero, $t3
beg $t4. $zero, exit
cnpr: lw  $t4, 0O{s$tl)
lw  $t5, 0{$t5)
bne $t4, $t5, done
addT $t3. $t3, -1
addi ni, $tI,
add" Stz, $t2, 4
bne $t3, Szero, cnpr
exit addi $tl. Szero, $zero
done:

To compare two 100-work blocks we'll perform at most one sit 200 loads, 300
adds, and 201 branches = 803 instructions (if the two blocks are equal). Using
this chapter's multicycle implementation, thiswill take 4 cycles for sit 1000 cycles
forloads, 1200 cycles for adds, and 603 cycles for branches. The total cycles= 2811
cycles.

5.39 No solution provided.
5.49 No solution provided.

5.50 The exception cause can be represented through the status "cause" register,
which records the reason code for the exception. The instruction position at
which the exception occur is identified by saving it in the Exception Program
Counter (EPC) register.

Execution can be restarted for some exceptions like overflow, system call request,
or external |1/O device interrupt by restarting execution at the EPC after handling
the exception.

Other exceptions are not restartable and program has to terminate. Examples of
this are invalid instructions (which can actually be restartable if defined as NOP
by the hardware), power/hardware failure, and divide by zero. In such a case, an
error message can be produced, and program termination takes place.
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5.51

gu

Divide by zero exception can be detected in the ALU in cycle 3, before exe-
cuting the divide instruction.

Overflow can be hardware detected after the completion of the ALU opera-
tion. Thisisdonein cyde 4 (see Figure 5.40)

. Invalid opcode can be detected by the end of cycle 2 (see Figure 5.40).
Thisis an asynchronous exception event that can occur at any cycle. We can
design this machine to test for this condition either at a specific cycle (and
then the exception can take place only in a specific stage), or check in every
cyde (and then this exception can occur at any processor stage).

e. Check for instruction memory address can be done at the time we update
the PC. Thiscan bedonein cycle 1.

Check for datamemory address can be done after address calculation at the
end of cycle 3.

S.53 No solution provided.

o

2 o0

5.57 No solution provided.

5.58 @) will assign the same value (2) to both A and B.
b) will svapAandB (A=2andB = 1).

5.59

modul e ALUControl  (ALUCp, FuncCode, ALUCHI):
input ALUOp[|: O], FuncCode[5:0];
out put ALUCtI[3:0];
if(ALUp — Zb 00)
AUl - 4'b 0010;
1f (ALUp — Zb 01)
ALl = 4'b 0110;
iffALUGp —2'b 10) begin
case( FuncCode)
6' b 100000: ALUQI - 4'b 0010;
6'b 100010: ALLQI - 4'b 0110;
6'b 100100: ALUQI - 4'b 0000;
6'b 100101: ALUQI - 4'b 0001;
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S.60
Il Register File

module RegisterFi
OatalData2,clock)

6'b 101010: ALUQI = 4'b 0111;
defaul t ALUQl - 4'b XxxX;
endcase
end

endnodul e

le (Readl.Read2,Writereg,Writedata.Regwrite,

input [5:0] Read|,Read2.Wn"tereg; // the registers numbers to read

or write

input [31:0] Writedata;

input RegUrite.
clock;

/I data to write
/I The write control
/I the clock to trigger writes

autput [31:0) Datal, DataZ: // the register values read:
reg [31:0] RF [31:0];
initial RF[O] = 32"h 00000000; // Initialize all registers to O

always begin

/I 32 registers each 32 bits long

Datal <= RFCReadl]; Data2 <= RF[Read2];
/I write the register with new value if RegwMte is high
@inegedge clock) 1f RegWrite than RF[Writereg] <= WriteData:

end
endmodule

/IALU Control same as 5.30
module ALUControl (ALUOp, FuncCode. ALUCHI);
input ALUOP[I:0L FuncCode[5:0];
output ALUCHI[3:0];
{ffALUOp — 2'b 00)
ALUCH = 4'b 0010;
if(ALUOp — 2'b 01)
ALUCH - 4'b 0110:
1f(ALUOp = 2'b 10) begin

case(funct)

6'b  100000:
6'b 100010:
6'b 100100:
6'b 100101:
6'b 101010:

L

Add

ALUCH =
ALUCH
ALUCH =
ALUCH =
ALUCH =
mare ALU

4'b 0010;

- 4'b 0110:

4'b 0000;
4'b 0001;
4'b 0111;
control here
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default ALUCLY = 4'b xxxx: //can report an error, or debug
infarmation

endcase
end
endmoduie

HIALU
module HIPSALU (ALUctl. A, B, ALUOUt, Zero):
input [3:0] ALUctl;
input [31:0] A,B;
output [31:0] ALUOut;
output Zero;
assign Zero " tALUOut—0); //Zero is true if ALUOut is O
Blways @(ALUct, A, B} pegin //reevaluate {f these change
case (Aluctl)
0: ALUOl < A&
1: ALUOIt < A 1
2: ALUOUt <- A 3
6: ALUOUL <- » - B;
7: ALUOjt < A< B ? 10;

+

we e

11 Add mare ALU operations here
default: ALUOuE <= ¥%; /fcbn repart an errar, or debug informatisn
endcase }
end
endmodule

/12-to-1 Multiplexor
module Mult2tol Unl.In2.Sel.Out);
input [31:0] Inl, InZ;

input Sel;
output [31:0] Out:
always @!nl, In2. Sel)

case (Sel) //a 2->I multiplexor
0: Out <= Inl;
default: Out <- InZ;
endcase;
endmodul e;
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//This represents every thing in Figure 5.19 on page 309 except the
“control block"

//Wnicn decodes the opcode, and generate the control signals
accordingly

Write ALUS-c. RegWrite,opéode,clack)
masliler fapPabien ReaDshranch MemReag HemtoReg. ALUOp, Mem-

input RegDst.Branch,MemRead,MemtoReg,

ALUOp,MemWrite. ALUSTc.RegWrite clock;
input [1:0] ALUOp;
output [5:0] opcode;
initial begin /linitialize PC and Memories
PC = start;
IMemory = PROGRAM
DMemory - OATA;
end
reg [31:0] PC, IMemory[0:1023]. OMemory[0:1023];
wire [31:0] SignExtendOffset, PCOffset, PCValue, ALUResultOut,
- IAddress. DAddress, IMemOut, DmemOu DWriteData, Instruction,
RWriteData. DreadData. ALUAIn. ALUBIN;
wire [3:0] ALUctl:
wire Zero;
wire [5:0] WriteReg;
/linstruction fields, to improve code readability
wire [5:0] funct;
wire [4:0] rs, rt, rd. shamt
wire [15:0] offset;
ALUControl  alucontroller(ALUOp, Instruction[5:0], ALUctl);
JIALL  control
‘MIPSALU ALUCALUct, ALUAIn, ALUBIn, ALUResultOut, Zero);
RegisterFile REGtrs. rt, WriteReg, RWriteOata, ALUAIn, DWriteData
clock);
Mult2tol regdst (rt, rd, RegDst, RegWrite),
alusrc (DWriteData, SignExtendOffset. ALUSrc, ALUBIN),

. pesre  (PC+4. PC+4+PCoOffset, Branch S Zero. PCValue);
assign [opcode, fs, rt, rd, shamt, funct] = Instruction:

assign offset = Instruction[15:0];

assign SignExtendOffset ~ 116{offset[15]},0ffset}; //sign~extend
lower 16 bits:

assign PCOIfset = SignExtendOifset « 2;
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i7

always @(negedge clock) begin
Instruction - IMemory[PC];
PC <- PCValue;
end
always ©(posedge clock) begin
if MemRead
DreadData <- DMemoryLALUResultOut]:
else 1f MemWrite
DMemoryCALUResultOut] <- OWriteData;
end
end

endmedu] e

module MIPSICYCLE(start);
Il Clock
reg clock: /f clock s & regfster
Initial clock - 0:
parameter LW - 6b 100011. SW - 6b 101011, BEO-6b 000100;
input start;
wire [1:0] AlUOp;
wire [5:0] opcode;
wire [31:0] SignExtend;
wire RegDst,Branch.MemRead.MemtoReg.ALUOp.MemWrite. ALUSrc.RegWrite;
Datapath MIPSDP  (start.RegDst.Branch,MemRead,MemtoReg.ALUOp,
MemWrite.ALUSrc.RegWrite.opcode.clock);
/ldatapath control
always begin

#1 clock =- - clock; //clock generation
case(opcode)
0: |RegDst,ALUSrc.MemtoReg.RegWrite, MemRead.MemWrite,Branch,

ALUOp}- 9'b 100100010;//R-Format

LW IRegDst.ALUSrc.MemtoReg.RegWrite. MemRead, MemWrite,Branch,
ALUOp!- 9'b 011110000;

SV ) RegDst, ALU eg.RegWrite.MettiRead,| rite, Branch.
ALUOp)" 9'b xIxOOIO0O;

BEQ: (RegDst,ALUSrc.MemtoReg.RegWrite, MemRead,Mem-
Write. Branch.ALUOpH 9"b xOxOOOIOl;

v Add more fastructians here
default: Sfinish; /I end simulation if invalid opcode
endcase

end
endmodul e
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5.61 We implement the add shift functionality to the ALU using the Verilog code
provided in B.22 in Appendix B. The 32-bit multiply execution takes 32 cyclesto
complete, so the instruction takes a total of 35 cycles. Assume the ALU control
recognizes the multiply code correctly.

We follow the CD Verilog code, but we add the following:

case(state)

3: begin I/ Execution starts at cycle 3
state=4

casef opcode—6'b 0)

MPYU: begin
Il issue load command to the nmultiplier

! RegOst, ALUST c, Ment oReg, RegW i t e, MenRead,
MenmW i te. Branch, ALUOpJ- 9'b 1001000110;//R- For mat sanme
command. Al u should now recognize the Func Field

end

35: Il After 3? cycles the multiplication
results are available in the 32-bit Product output of
the ALU. Write the high order and low order words in
this and the next cycle.

case(opcode—6'b 0) case <IR5:0])

MPYU:  begin
Regs|[ hi ] =RegH
end
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34:
case<opcode-=6'b 0) case (IR 5:0])

MPYU: begi n

Regs[ | 0] - RegL
end
end

5.62 We add the divide functiondity to the ALU using the code of B.23. The rest
of the solution is almost exactly the same as the answer to Exercise 5.61.

5.63 No solution provided
5.64 No solution provided.
5.65 No solution provided.
5.66 No solution provided.
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Sncethisisan swingtruction, thereisno work donein the WB stage:
6.12 No solution provided.
6.13 No solution provided.
6.14 No solution provided.
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6.17 At the end of the first cycle, instruction 1 is fetched.
At the end of the second cycle, instruction 1 reads registers.
At the end of thethird cycle, instruction 2 reads registers.
At the end of the fourth cycle, instruction 3 reads registers.

At the end of the fifth cycle, instruction 4 reads registers, and instruction 1 writes
registers.

Therefore, at the end of the fifth cycle of execution, registers 16 and $ 1 are being
read and register $2 will be written.

6.18 The forwarding unit is seeing if it needs to forward. It is looking at the
instructions in the fourth and fifth stages and checking to see whether they intend
to writeto the register file and whether the register written is being used as an ALU
input. Thus, itiscomparing3=4?3=2?7=4?7=2?

6.19 The hazard detection unit is checking to see whether the instruction in the
ALU stageisan 1 w instruction and whether theinstruction in the ID stageis read-
ing the register that the 1 w will bewriting. If itis, it needsto stall. If thereisan 1w
instruction, it checks to see whether the destination is register 6 or 1 (the registers
being read).

6.21

a Therewill beabubbleof 1 cycle between a 1w and the dependent add since
theload value is available after the MEM stage.

There is no bubble between an add and the dependent 1w since the add
result is available after the EX stage and it can be forwarded to the EX stage
for the dependent 1 w. Therefore, CPI = cycle/instruction = 15,

Without forwarding, the value being written into a register can only be read
inthe same cycle. Asaresult, therewill beabubble of 2 cyclesbetweenan 1w
and the dependent add since the load valueis written to the register after the
MEM stage. Similarly, there will be abubble of 2 cycles between an add and
thedependent 1 w. Therefore, CPI = 3.

o
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6.22 1t will take 8 cycles to execute this code, including abubbleof 1 cycle due to
the dependency between the 1 w and sub instructions.

Time (in clock cycles)

Program cc1 cc2 cc3 cca ccs cce cc7
execution

arder
{in imstrecsions) i
T B4, 100052} m -z T

sub 86, 54, 53

Al 52, 93,55

Program Fiane (in clock cycles)
exsotion cC1 cC 2 CcC 3 CC 4 CC 5 CC 6 CC 7 CC 8

sub 56, 54, 53

wid 7, 53, 85
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IDIEX ReglsterRs 5 operand reg number, compare to see if match
| IDIEX RegisterRt 5 operand reg number, compare to see if match
EX/MEM RegisterRd 5 desfination reg number, compare to see if match
1
5

EXIMEM RegWiite TRUE if writes to the destination reg
MEMWB RegisterBd desfination reg number, compare to see if match
MEMWB RegWilie | TRUE If writes to the destination reg

1 | forwarding signal

6.29 No solution provided.

6.30 The performance for the single-cycle design will not change since the clock
cycle remains the same.

For the multicycle design, the number of cycles for each instruction class becomes
thefollowing: loads: 7, stores: 6, ALU instructions: 5, branches: 4, jumps: 4.

CPl=025*7+0.10* 6+052*5+0.11* 4+ 0.02* 4= 5.47. The cycle time for
the multicycle design is now 100 ps. The average instruction becomes 5.47 * 100 =
547 ps. Now the multicycle design performs better than the single-cycle design.

6.33 Seethefollowing figure.

when defined by Riype
usad 1L => Zoycle stab | used in 12 => forward
[used Ini2=> 1cyde stall | used lin\2 => forward |
[used in i3 => forward [used i3 => forward
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6.34 Branchestake 1 cyclewhen predicted correctly, 3 cycles when not (including
one more memory access cycle). So the average dock cydle per branchis0.75* 1 +
025* 3 =15

For loads, if the instruction immediately following it is dependent on the load, the
load takes 3 cycles. If the next instruction is not dependent on the load but the
second following instruction is dependent on the load, the load takes two cycles. If
neither two following instructions are dependent on the load, the load takes one
cycle.

The probability that the next instruction is dependent on the load is 0.5. The
probability that the next instruction is not dependent on the load, but the second
following instruction is dependent, is 0.5 * 0.25 = 0.125. The probability that nei-
ther of the two following instructions is dependent on the load is 0.375.

Thusthe effective CPI for loadsis05* 3+0.125* 2+0.375* 1 =2.125.

Using the date from the example on page 425, the average CPI is 0.25 * 2125 +
010*1+052* 1+011* 15+ 002 * 3 = 147.

Average instruction timeis 147 * 100ps = 147 ps. The relative performance of the
restructured pipeline to the single-cycle design is 600/147 = 4.08.

6.35 The opportunity for both forwarding and hazards that cannot be resolved by
forwarding exists when a branch is dependent on one or more results that are still
in the pipeline. Following is an example:

lw  $1. $2(100)
add $1, $1. 1
beq $1, $2, 1

6.36 Prediction accuracy = 100% * PredictRight/TotalBranches
a Branch 1: prediction: T-T-T, right: 3, wrong: 0

Branch 2: prediction: T-T-T-T, right: 0, wrong: 4
Branch 3: prediction: T-T-T-T-T-T, right: 3, wrong: 3
Branch 4: prediction: T-T-T-T-T, right: 4, wrong: 1
Branch 5: prediction: T-T-T-T-T-T-T, right: 5, wrong: 2
Total: right: 15, wrong: 10
Accuracy = 100% * 15/25 = 60%
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b. Branch 1: prediction: N-N-N, right: O, wrong: 3

Branch 2: prediction: N-N-N-N, right: 4, wrong: 0
Branch 3: prediction: N-N-N-N-N-N, right: 3, wrong: 3
Branch 4: prediction: N-N-N-N-N, right: 1, wrong: 4
Branch 5: prediction: N-N-N-N-N-N-N, right: 2, wrong: 5
Total: right: 10, wrong: 15

Accurecy - 100% * 10/25 - 40%

Branch 1: prediction: T-T-T, right: 3, wrong: 0

Branch 2: prediction: T-N-N-N, right: 3, wrong: 1
Branch 3: prediction: T-T-N-T-N-T, right: 1, wrong: 5
Branch 4: prediction: T-T-T-T-N, right: 3, wrong: 2
Branch 5: prediction: T-T-T-N-T-T-N, right: 3, wrong: 4
Tota: right: 13, wrong: 12

Accuracy = 100% * 13/25 = 52%

Branch 1: prediction: T-T-T, right: 3, wrong: 0

Branch 2: prediction: T-N-N-N, right: 3, wrong: 1
Branch 3: prediction: T-T-T-T-T-T, right: 3, wrong: 3
Branch 4: predictior;: T-T-T-T-T, right: 4, wrong: 1
Branch 5: prediction: T-T-T-T-T-T-T, right: 5, wrong: 2
Total: right: 18, wrong: 7

Accuracy = 100% * 18/25 = 72%

6.37 No solution provided.

i)

=

6.38 No solution provided.

6.39 Rearrange the instruction sequence such that the instruction reading avalue
produced by a load instruction is right after the load. In this way, there will be a
stall after the load since the load value is not available till after its MEM stage.

lw $2. 100($6)
add $4. $2, $3
lw $3, 200($7)
add $6, $3, $5
sub $8, 14, $6
lw $7, 300($8)
beq $7, 18, Loop
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6.40 Yes When it isdetermined that the branch is taken (in WB), the pipelinewill
beflushed. At the sametime, the 1 winstruction will stall the pipeline since theload
valueis not available for add. Both flush and stall will zero the control signals. The
flush should take priority since the 1 w stall should not have occurred. They areon
thewrong path. One solution is to add the flush pipeline signal to the Hazard De-
tection Unit. If the pipeline needs to be flushed, no stall will take place.

6.41 The store instruction can read the value from the register if it is produced at
least 3 cycles earlier. Therefore, we only need to consider forwarding the results
produced by the two instructions right before the store. When the store isin EX
stage, the instruction 2 cyclesahead isin WB stage. The instruction can be either a
1w oranALU instruction.

assign EXMEMt = EXMEM R} ZO 16] ;

assign bypassViromB - (IDEXop —SW 5 A CEXt !'- 0) &
(MEMABop — LW & (IDEXrt —HEMABIt)) j
((MEWBop —ALUop) & (IDEXrt —NEMABrd)) );

This signal controls the store value that goes into EX/MEM register. The value
produced by the instruction 1 cydle ahead of the store can be bypassed from the
MEM/WB register. Though the value from an ALU instruction is available 1 cyde
earlier, we need to wait for the load instruction anyway.

assign bypassVfromMB2 - (EXHEMOpP —SW & (EXMEMt !- 0) &
(i bypassViroi \WB) & .
( {{MMBOp — LW & (BEXMEMt —MEMWBrt)) |
{(MEMBop —ALUop) & (BEXVEMt —MEMABrd)) );
Thissigna controls the store value that goes into the data memory and MEM/WB
register.
6.42

assign bypassAfromMEM - (IDEXrs 1- 0) &
( ((BMEMP — LW & (IDEXrs — EXMEMt)) |
((EVEMop — ALUop) & (1DEXrs — EXVEM ) );
assi gn bypassAfromMB = (IDEXrs 1= 0) & (| oypassAfromMEM) &
( ((MEWBop — LW & (IDEXrs —MEMBrt)) |
((MEMABop — ALUop) & (IDEXrs —MEMBrd)) ):
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6.43 The branch cannot be resolved in ID stage if one branch operand is being
calculated in EX stage (assume there is no dumb branch having two identical op-
erands; if so, itisajump), or to be loaded (in EX and MEM).

assign brandiStallinIiD = CIFIDop =- BEQ) &

( ((IOEXop — ALUop) S ({IFIDrs — IDEXrd) |
(IFIDrt — IDEXrd)) ) | // alii in EX
(IDEXop — W) & ((IFIDrs — IDEXrt) |
(IFIDrt — IDEXrt)) ) | // Iw in EX
(EXMEMop — LW) & ((IFIDrs — EXMEMM) |
(IFIDrt == EXMEMrt)) ) ); // lw in MEM

Therefore, we can forward the result from an ALU instruction in MEM stage, and
anALU or 1winWB stage.

assign bypass| DA = (EXMEMp — ALUop) & (IFID's — EXMEM d);
assign bypassIDB = (EXMEMop —ALUop) & (IFID't — EXVEM d);
Thus, the operands of the branch become the following:

assign IDAn = bypassl DA ? EXMEMALWout : Regs[|FIDrs];
assign IDBTn - bypassl DB ? EXMEMALUout : Regs[IFIDrt];

And the branch outcome becomes:
assign takebranch = (IFlDop == BEQ & (IDAn == IDBin);

5.44 For a delayed branch, the instruction following the branch will dways be
executed. We only need to update the PC after fetching this instruction.

If(-stall) begin IFIDIR <- | MemoryEPC]; PC <- PC+4; end;
i f(takebranch) PC <- PC + (161IFIDIRC15]) +4; end;
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6.45

nodul e Predict PCfcurrent PC, next PC, niss, update, destination);
input currentPC, update, desti nati on;
out put nextPC, niss;
integer index, tag;
/1512 entries, direct-map
reg[31: 0] brTargetBuf[0:611], brTarget Buf Tag[ O 511] ;
index = (current PC>>2) & 511;
tag = current PC»(2+9);
if(update) begin //update the destination and tag
br Tar get Buf [ i ndex] - dest i nati on;
br Tar get Buf Tag[ i ndex] =t ag; end;
el se if(tag==brTargetBuf Tag[index]) begin //a hit!
next PC- br Tar get Buf [ i ndex] ; niss-FALSE; end;

el se m ss- TRUE:

endnodul e;

6.46 No solution provided.

6.47

Loop: lw 0(510)

Iw §§; 4(510)
sub $4, $2, $3
sub $6, $5, $3
sw  $4, 0(S10)
SW  $6. 4(510)

addi $10, $10, 8
bne $10, $30, Loop
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6.48 The code can be unrolled twice and rescheduled. The leftover part of the
code can be handled at the end. We will need to test at the beginning to seeif it has
reached the leftover part (other solutions are possible.

Loop: add! $10, $10. 12
bgt $10, $30, Leftover
w  $2. -12($10)
lw  $5, -8<$10)
W $7, -4($10)
sub  $4, $2, $3
sub $6, $5, $3
sub $8, $7, $3
W $4, -12($10)
W $6, -8($10)
W $8, -4($10)
bne $10, $30, Loop
jump  Fini sh

Leftover: lw  $2, -12($10)

sub  $4, $2, $3

W $4, -12($10)

add! $10, $10, -8

beq $10, $30, Firiish

1w $5. 4($10)

sub  $6. $5, $3

W $6, 4($10)

Finish:
6.49
alu or branch hv/sw
Loop:  addi $20. $10, O Iw $2. 0($10)
Iw $5. 4{$10)
sub $4, $2. $3 Iw $7, 8($10)
sub $6, $5. $3 Iw $8, 12($10)

sub $11, $7. $3 s $4, 0($10)
sub $12, $8. $3 v $6, 4($10)
addi $10, $10, 16 v $11, 8($20)
bne $10, $30, Loop SV $12, 12($20)

6.50 The pipe stages added for wire delays dcmot prodiuce any useful work. With
imperfect pipelining due to pipeline overhead, the overhead associated with these
stages reduces throughput, These extra stages increase the control logic complexity
since more pipe stages need to be covered, When considering penalties for branch-
es mispredictions, ¢tc., adding more pipe stages increase penalties and execution
[atency,

6.51 Mo solution provided,
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Solutions for Chapter 7 Exercises

7.1 There are several reasons why you may not want to build large memories out
of SRAM. SRAMSs require more transistorsto build than DRAMs and subsequently
use more area for comparably sized chips. As size increases, access times increase
and power consumption goes up. On the other hand, not using the standard
DRAM interfaces could result in lower latency for the memory, especialy for sys-
tems that do not need more than a few dozen chips.

7.2-7.4 The key features of solutions to these problems:
« Low temporal locality for data means accessing variables only once.
« High temporal locality for data means accessing variables over and over again.
* Low spatia locadlity for data means no marching through arrays; data is scattered.

« High spatia locality for data implies marching through arrays.
7.5 For the data-intensive application, the cache should be write-back. A write

buffer is unlikely to keep up with this many stores, so write-through would be too
slow.

For the safety-critical system, the processor should use the write-through cache.
This way the data will be written in parallel to the cache and main memory, and
we could reload bad data in the cache from memory in the case of an error.
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7.9 2-miss, 3-miss, 11-miss, 16-miss, 21-miss, 13-miss, 64-miss, 48-miss,
19-miss, 11—hit, 3-miss, 22-miss, 4-miss, 27-miss, 6-miss, 11-set.

27

11

]
—

7.10 2-miss, 3—hit, 11-miss, 16-miss, 21-miss, 13-miss, 64-miss, 48-miss,
19-miss, 1 i—hit, 3-miss, 22-hit, 4-miss, 27-miss, 6-hit, 11-miss

© 0.1, 2, 3

01 4.5 6 1]

10 8 9. 10, 11)
11 1213, 14, 15]

7.11 C stores multidimensional arrays in row-major form. Therefore aceessing
the array in row-major form will be fester since there will be a greater degree of
temporal and spatial locality. Column-major form, on the other hand, will result
in capacity misses if the block size is more than oneword.

7.12 The Intrinsity caches are 16 KB caches with 256 blocks and 16 words per
block. Datais 64 bytes= 512 bytes. Thetag fieldis 18 bits(32- (8 + 6}).

Totd bits = 256 x { Data + Tag + Vdid)
=256 X (512 bits+ 18 bits + 1 bit)
= 135,936 bits
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7.13 Simply extend the comparison to include the valid bit as the high-order bit
of the cache tag and extend the address tag by adding ahigh-order " 1" bit. Now the
values are equal only if the tags match and the valid bitisa 1.

7.14 The miss penalty isthe time to transfer one block from main memory to the
cache. Assume that it takes 1 clock cyde to send the address to the main memory.

a Configuration (a) requires 16 main memory & to retrieve a cache

block, and words of the block are transferred 1 at atime.

Misspenalty = 1 + 16 x 10 + 16x 1 = 177 clock cycles.

b. Configuration (b) requires 4 main memory accesses to retrieve a cache block
and words of the block are transferred 4 at atime.
Miss penalty =1+4x 10 + 4x1=45 clock cycles.

c. Configuration (c) requires 4 main memory to retrieve a cache

block, and words of the block are transferred 1 at atime.
Miss penalty =1+4x10+16x 1 = 57 clock cycles

7.16 The shortest reference string will have 4 misses for Cl and 3 misses for C2.
This leads to 32 miss cycles versus 33 miss cycles. The following reference string
will do: 0x00000000, 0x00000020,0x00000040, 0x00000041.

7.17 AMAT = Hit time + Miss rate x Miss penalty

AMAT =2ns+0.05x (20x 2ns) =4 ns
718 AMAT = (1.2x2ns) + (20x2nsx 003) =24ns+ 12ns=36ns
Yes thisisagood choice.

7.19 Execution time = Clock cycle x IC x (CPI” + Cache miss cycles per instruc-
tion)

Execution timeyigina =2 X ICx (2+ 15x20x 005 =71C
Execution timepe, = 24 x ICx (2 + 15x 20 x 0.03) =6.96 IC

Hence, doubling the cache size to improve miss rate at the expense of stretching
the clock cycle results in essentially no net gain.
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7.20

9 1 No gl
17 ES Yes (with 9)
2 £ No
51 3 No
37 1 Yes (with 17)
13 1 Yes (with 37
4 [ No
a 0 Yes (with 4)
a1 1 No
67 3 No
10 2 NO

A bank conflict causes the memory system to stal until the busy bank has com-
pleted the prior operation.

7.21 No solution provided.
7.22 No solution provided.

7.28 Two principles apply to this cache behavior problem. First, a two-way set-
associative cache of the same size as a direct-mapped cache has half the number of
sets. Second, LRU replacement can behave pessimally (as poorly as possible) for
access patterns that cycle through a sequence of addresses that reference more
blocks than will fit in a set managed by LRU replacement.

Consider three addresses—call them A, B, C—that al map to the same set in the
two-way set-associative cache, but to two different sets in the direct-mapped cache.
Without loss of generality, let A map to one set in the direct-mapped cache and B
and C map to another set. Let the access patternbeABCABCA ... and so on. The
direct-mapped cache will then have miss, miss, miss, hit, miss, miss, hit,..., and so
on. With LRU replacement, the block at address C will replace the block at the
address A in the two-way set-associative cache just in time for A to be referenced
again. Thus, the two-way set-associative cache will miss on every reference as this
access pattern repeats.
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7.29
Address size: itbits
Cache size: Sbytes/cache
Block size: B = 2° bytes/block
Associativity: A blocks/set

Number of sets in the cache:

(Bytes/cache)

Sets/cache = — _(Byteslcache) ___
AN = Blocks/set) X (Bytesblock)

Elw

Number of address bits needed to index a particular set of the cache:
Cache set index bits = log, (Sets/cache)

ou 3]

=|-k
= lagy (_ij
Number of bits needed to implement the cache:

Tag address bits/block = (Total address bits) - (Cache set index bits)
- {Block offset bits)

cioonf§)- )
()

Number of bits needed to implement the cache = sets/cache x associativity x (data
+ tag + valid):

=Agnnn ﬂ)ﬂhk-!ng{i)\tl)

-gx(33+k—log-,[i]+l)
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7.32 Here are the cycles spent for each cache:

A%y T =028 B%17 =042 028 x =3¢ _ 949
5 .
] 2% x 10 = 020 |4%x10= 04 020 x Y4 - 04
. = .
ca 8 + 4-10 %5 10=0.20 Fxl0=03 03 _

020 % o = 0.35

Therefore CI spends the most cycles on cache misses.
7.33 Execution time = CPI x Clock cyclex IC
We need to calculate the base CPI that appliesto al three processors. Since we are
given CPl = 2for CI,
CPl_base= CPl - CPI""=2-049 = 151
EXCl =2x 420 psxIC =84 x 10" x IC
EXC2 = (151 + 04) X 420psX IC=802x 10"°X IC
ExC3= (151 +0.35) X 310 psx IC=577X 10"°X IC
Therefore C3 is fastest and Cl is slowest.
7.34 No solution provided.

7.35 If direct mapped arid stride = 256, then we can assume without loss of gen-
erdity that array[0]... array[31] isin block 0. Then, block | hasarray [32] ... [63]
and block 2 has array[64] .. . [127] and so on until block 7 has [224] . . . [255].
(There are 8 blocks X 32 bytes = 256 bytes in the cache.) Then wrapping around,
we find also that block O has array[256]... [287], and so on.

Thus if we look at array[0] and array[256], we are looking at the same cache
block. One access will cause the other to miss, so there will bea 100% missrate. If
the stride were 255, then array [0] would map to block O while array [255] and
array [510] would both map to block 7. Accesses to array [0] would be hots, and
accesses to array [255] and array [510] would conflict. Thus the miss rate would
be 67%.

If the cache is two-way set associative, even if two accesses are in the same cache
set, they can coexist, so the miss ratewill be 0.

7.38 No solution provided.
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7.39 Thetotal size is equal to the number of entries times the size of each entry.
Each pageis 16 KB, and thus, 14 bits of thevirtual and physical addresswill be used
as a page offset. The remaining 40 - 14 = 26 bits of the virtual address constitute
the virtual page number, and there are thus 2% entries in the page table, one for
each virtual page number. Each entry requires 36 - 14 = 22 bitsto store the physical
page number and an additional 4 bits for the valid, protection, dirty, and use bits.
We round the 26 bits up to afull word per entry, so this gives us atotal size of 22
x 32 bits or 256 MB.

7.40 No solution provided.

7.41TheTLB will have ahigh missrate becauseit can only access64 KB (16 x 4 KB)
directly. Performance could be improved by increasing the page size if the architec-
turedlowsit.

7.42 Virtual memory can be used to mark the heap and stack as read and write
only. In the above example, the hardware will not execute the malicious instruc-
tions because the stack memory locations are marked as read and write only and
not execute. :

7.45 Less memory—fewer compulsory misses. (Note that while you might as-
sume that capacity misses would also decrease, both capacity and conflict misses
could increase or decrease based on the locality changes in die rewritten program.
There is not enough information to definitively state the effect on capacity and
conflict misses.)

Increased clock rate—in general there is no effect on the miss numbers; instead,
the miss penalty increases. (Note for advanced students: since memory accesstim-
ing would be accelerated, there could be secondary effects on the miss numbers if
the hardware implements prefetch or early restart.)

Increased associativity—fewer conflict misses.
7.46 No solution provided.
7.47 No solution provided.
7.48 No solution provided.
7.49 No solution provided.
7.50 No solution provided.
7.51 No solution provided.

7.52 This optimization takes advantage of spatial locality. This way we update al
of the entries in ablock before moving to another block.
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Solutions for Chapter 8 Exercises

8.1 Each transaction requires 10,000 x 50 = 50,000 instructions.
CPU limit: 500M/50K = 10,000 transactions/second.

The I/O limit for A is 1500/5 = 300 transactions/second.

The I/O limit for B is 1000/5 = 200 transactions/second.

These I/O limits limit the machine.

8.2 Sysem A
transactions 9 compute 1
10s 45 latency 5

times 900 ms 100 ins | exceeds 1s

Thus system A can only support 9 transactions per second.

System B—first 500 1/Os (first 100 transactions)
transactions 9 compute 1

1/0s 45 latency 5 5
tires 100 us 90 ms| 90 ms| 990.1ms

Thus system B can mppért 11 transactions per second at first.
8.3 Timeffile = 10 seconds + 40 MB * 1/(5/8) seconds’MB - 74 seconds
Power/file = 10 seconds * 35 watts + (74 - 10) seconds * 40 watts = 2910 |
Number of completefilestransferred = 100,000 ¥2910 J = 34 files

8.4 Timeffile = 10 seconds + 0.02 seconds + 40 MB * 1/(5/8) seconds/MB = 74.02
seconds

Hard disk spin timeffile = 0.02 seconds + 40 MB * 1/50 second¥MB = 0.82 sec-
onds

Powerffile =10 seconds * 33 watts + 0.02 seconds * 38 watts + 0.8 seconds * 43
watts + 63.2 seconds * 38 watts = 330 J+ 0.76 J+ 34.4 J+ 2401.6 J = 2766.76 J

Number of completefilestransferred = 100000 J/ 2766.761 = 36 files
Energy for &l 100 files= 2766.76 * 100 = 276676 J
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8.5 After reading sector 7, a seek is necessary to get to the track with sector 8 on
it. Thiswill take some time (on the order of amillisecond, typically), during which
the disk will continue to revolve under the head assembly. Thus, in the version
where sector 8 isin the same angular position as sector 0, sector Swill have already
revolved past the head by the time the seek is completed and some large fraction of
an additional revolution time will be needed to wait for it to come back again. By
skewing the sectors so that sector 8 starts later on the second track, the seek will
have time to complete, and then the sector will soon theresfter appear under the
head without the additional revolution.
8.6 No solution provided.
8.7

a. Number of heads =15
Number of platters = 8
Rotational latency = 833 ms
Heed switch time = 14 ms

Cylinder switchtime= 2.1 ms

o a0 o

[
p @

System A requires 10 + 10~ 20 terabytes.
System B requires 10 + 10 * 1/4 = 12,5 terabytes.
Additional storage: 20 - 12.5 = 7.5 terabytes.

b. System A: 2 blockswritten = 60 ms.

System B: 2 blocks read and written = 120 ms.

Yes System A can potentialy accommodate more failures since it has more
redundant disks. System A has 20 data disks and 20 check disks. System B
has 20 datadisks and 5 check disks. However, two failures in the samegroup
will cause aloss of datain both systems.

o

8.9 The power failure could result in a parity mismatch between the data and
check blocks. This could be prevented if the writes to the two blocks are performed
simultaneously,

8.10 20 meterstime: 20 m* /(15 * 10% gm= 1333 ns
2,000,000 meterstime: 2000000 m * /(15 * 10% ym= 133 ms
8.11 20m: 1333 * 10" s* 6 MB/sec = 0.8 bytes

2000000 m: 13.3* 10"*s* 6 MB/sec = 80KB
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8.12 4KHz* 2 bytes/sample* 100 conversations = 800,000 bytes/sec
Transmissiontimeis 1 KB/5 MB/sec + 150 us = 0.00035 seconds/KB
Tota time/KB = 800 * 0.00035 = 0.28 seconds for 1 second of monitoring
There should be sufficient bandwidth.

8.13

a

N P B O

b
c
d.
e. Each bit in a 3-bit sequence would have to be reversed. The percentage of
errorsis0.01 "0.01 *0.01 =0.000001 (or 0.0001%)

8.14

al

b. 0
8.15

a Not necessarily, there could be a single-bit error or atriple-bit error.

b. No. Parity only specifies whether an error is present, not which bit the error
isin. 5

c. No. There could be adouble-bit error or the word could be correct.
8.16 (Seek time + Rotational delay + Overhead) * 2 + Processing time

(0.008 sec + 0.5/ (10000/60) sec + 0.002) * 2 + (20 million cyctes)(5 GHz) sec =
(.008 +.003 + .002)*2 + .004 = 30 ms

Block processed/second = 1/30 ms = 33.3
Transfer timeis 80 usec and thusis negligible.
8.17 Possible answers may include the following:

« Application programmers need not understand how things work in lower
levels.

Abstraction prevents users from making low-level errors.

Flexibility: modifications can be made to layers of the protocol without dis-
rupting other layers.
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8.1S For 4-word block transfers, the bus bandwidth was 71.11 MB/sec. For 16-
word block transfers, the bus bandwidth was 224.56 MB/sec. The disk drive has a
transfer rate of 50 MB/sec. Thus for 4-word blocks we could sustain 71/50 = 1
simultaneous disk transfers, and for 16-word blocks we could sustain 224/50 = 4
simultaneous disk transfers. The number of simultaneous disk transfers is inher-
ently an integer and we want the sustainable value. Thus, we take the floor of the
quotient of bus bandwidth divided by disk transfer rate.

8.19 For the 4-word block transfers, each block now takes
1. 1 cycleto send an address to memory
2. 150 ng/5 ns = 30 cydlesto read memory
3. 2cydesto send the data
4. 2idle cycles between transfers

Thisisatotal of 35 cycles, so the total transfer takes 35 x 64= 2240 cycles. Modify-
ing the calculations in the example, we have alatency of 11,200 ns, 5.71M trans-
actions/second, and abus bandwidth of 91.43 MB/sec.

For the 16-word block transfers, each block now takes
1. 1 cydeto send an address to memory
2. 150 nsor 30 cyclesto read memory
3. 2cydesto send thedata

4. 4 idle cycles between transfers, during which the read of the next block is
completed

Each of the next two remaining 4-word blocks requires repeating the last two
steps. The last 4-word block needs only 2 idle cydles before the next bus transfer.
Thisisatotal of 1 +20-f 3* (2 +4) + (2 + 2) = 53 cydles, so the transfer takes 53
* 16 = 848 cycles We now have alatency of 4240 ns, 3.77M transactions/second,
and abus bandwidth of 241.5 MB/sec.

Note that the bandwidth for the larger block size is only 2.64 times higher given
the new read times. This is because the 30 ns for subsequent reads results in fewer
opportunities for overlap, and the larger block size performs (relatively) worse in
this situation.

820 Thekey advantage would be that a single transaction takes only 45 cycles, as
compared with 57 cycles for the larger block size. If because of poor locality we
were not able to make use of the extra data brought in, it might make sense to go
with a smaler block size. Said again, the example assumes we want to access 256
words of data, and dearly larger block sizes will be better. (If it could support it,
we'd like to do a single 256-word transaction!)
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8.21 Assume that only the 4-word reads described in the example are provided by
the memory system, even if fewer than 4 words remain when transferring a block.
Then,

Muminer of 4ward banslers 1o
send the block

Time o gerd acddress to memary 1 1 1
(bus cycles)

Time to redd first 4 words in 40 40 40 40 40 40 40 40 40 40 40 40 40
memory (bus cycles)
Block trensfer time, at 2 transfer 4 8 8 8 8] 12| 12| 12| 12 16] 16] 16| 16
bus cycles and 2 idle bus cycles
per 4-word transfer (bus cycles)

-
v
>
i
W
i
i
o
"

ol

Total time to transfer one block 45 49 49 49 49 S3 53 53 53 57 57 57 57
(bus cycles)

NUmber of bus transactions (o 64| 52| 43| 37| 32| 29| 26| 24| 22| 20| 1o 18| 16
read 256 words using the given

block size

Time for 256-word transfer (bus | 2880| 2548| 2107| 1813| 1568| 1537 1378| 1272| 1166| 1140| 1083| 1026! 912
cycles)
Latency (IK) 14400 | 12740 | 10535 | 9065 | 7840| 7685| 6890 | 6360 5830 | 5700| 5415 5130 | 4560

Number of bus transactions 4.444 | 4.082| 4.0824.082|4.0823.774|3.774 | 3.774| 3.774| 3.509{ 3.509 | 3.509 | 3.509
(millions per second)

(MB/«oc) 71.1| 804 97.2|113.0]|130.6}133.2]|148.6| 161.0| 175.6[ 179.6| 189.1] 199.6 | 224.6
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The following graph plots latency and bandwidth versus block size:
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8.22 From the example, a 4-word transfer takes 45 bus cycles and a 16-word block
transfer takes 57 bus cycles. Then,

Himber af 4-
WorO transfers
to send the
ata

Numberof16- | 1| 1| 1| 1 1 1 1 1 1 = 1 1 1 z 4 8| 16
waord transfess
to send the
data
Totalreadtime | 45| 90| 90| eo| 90| 135] 135) 135| 135 180 180| 180| 180| 360| 720| 1440] 2880
using 4-word
blocks (bus
cycles)
Totalreadtime | 57| 57| 57| 57| 67| 57| 57| &7| 57| 67| 67| 57| 57| 114| 228| 456| 912
using 16-word
blocks (bus
cycles)
Latencyusing | 225 | 450 | 450[ 450] 450} 675 675] 675 675 900| 00| 900 900 1800| 3600 720014400
4-word block*
<>
Latency n-Inf | 285| 285| 285| 285| 285| 285| 285| 285| 285} 285| 285] 285 285| 570| 1140] 2280| 4560
le-word
block* (ns)
Bandwidth | 71.1| 44.4|53362.2| 71.1| 53.3| 59.3| 65.2| 71.1| 57.8| 622| 66.7| 71.1| 711} 71.1| 71.1] 711
using 4-word
blocks
(MB/MC)
Bandwidth | 56.1f 70.2|84.2 | 98.2| 112.3| 126.3| 140.4 | 154.4( 168.4| 1825 | 196.5 | 210.5| 224.6 | 224.6 | 224.6 | 224.6| 224.6
using 18-word
blocks
(MB/soc)
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Thefollowing graph plots read latency with 4-word and 16-word blocks:
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The following graph plots bandwidth with 4*word and 16-word blocks:
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823
For 4-word blocks:

Send address and first word simultaneously = | clock
Time until first write occur = 40 clocks
Timeto send remaining 3 words over 32-bit bus= 3 clocks
Required bus idletime = 2 clocks
Total time= 46 clocks
Latency = 64 4-word blocks at 46 cycles per block = 2944 clocks = 14720 ns
Bandwidth = (256 x 4 bytes)/14720 ns = 69.57 MB/sec
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For 8-word blocks:
Send address and first word simultaneously = 1 clock
Time until first write occurs = 40 clocks
Timeto send remaining 7 words over 32-bit bus = 7 clocks
Required bus idle time (two idle periods) = 4 docks
Total time= 52 clocks
Latency = 32 8-word blocks at 52 cycles per block = 1664 clocks = 8320 ns

Bandwidth = (256 x 4 bytes)/8320 ns = 123.08 MB/sec
In neither case does the 32-bit address/32-bit data bus outperform the 64-bit
combined bus design. For smaller blocks, there could be an advantage if the over-
head of afixed 4-word block bus cycle could be avoided.

4-word transfer* 8-word transform
bus bus  memory BUS bus  memory
addr  data s data
. A 11 =
- 1
a8 i
11 >| 40 1 > 40
1 1 1
- R
_ fowmnapp 2 2
2+40+2=ad

Bzl

E
- ®
R e
-

2440 + 8+ 2=52

8.24 For a 16-word read from memory, there will be four sends from the 4-word-
wide memory over the 4-word-wide bus. Transactions involving more than one
send over the bus to satisfy one request are typically called burst transactions.

For burst transactions, some way must be provided to count the number of sends
so that the end of the burst will be known to &l on the bus. We don't want another
device trying to access memory in away that interferes with an ongoing burst
transfer. The common way to do this is to have an additional bus control signal,
called BurstReq or Burst Request, that is asserted for die duration of the burst.
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This signal is unlike the ReadReq signal of Figure 8.10, which is asserted only long
enough to start a single transfer. One of the devices can incorporate the counter
necessary to track when BurstReq should be deasserted, but both devices party to
theburst transfer must be designed to handle the specific burst (4 words, 8 words,
or other amount) desired. For our bus, if BurstReq is not asserted when ReadReq
signals the start of a transaction, then the hardware will know that a single send
from memory is to be done.

So the solution for the 16-word transfer is as follows: The steps in the protocol
begin immediately after the device signals a burst transfer request to the memory
by raising ReadReq and Burst_Request and putting the address on the Date lines.

1. When memory sees the ReadReq and BurstReq lines, it reads the address of
the start of the 16-word block and raises Ack to indicate it has been seen.

n

1/0 device sees the Ack line high and releases the ReadReq and Data lines,
but it keeps BurstReq raised.

3. Memory sees that ReadReq is low and drops the Ack line to acknowledge
the ReadReq signal.

IS

. This step starts when BurstReq is high, the Ack line islow, and the memory
has the next 4 data words ready. Memory places the next 4 data words in
answer to the read request on the Data lines and raises DataRdy.

5. The 1/0 device sees DataRdy, reads the data from the bus, and signals that it
has the data by raising Ack.

o

. The memory 5065 the Ack signal, drops DataRdy, and releases the Data
lines.

~

. After the I/O device sees DataRdy go low, it drops the Ack line but contin-
ues to assert BurstReq if more data remains to be sent to signal that it is
ready for the next 4 words. Step 4 will be next if BurstReq is high.

o

If the last 4 words of the 16-word block have been sent, the 1/0 device drops
BurstReq, which indicates that the burst transmission is complete.

With handshakes taking 20 ns and memory access taking 60 ns, a burst transfer
will be of the following durations:

Step 1 20 ns (memory receives the address at the end of this step; data goes on
the bus at the beginning of step 5)

Steps 2,3,4 Maximum (3 x 20 ns, 60 ns) = 60 ns
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Steps 5,6,7,4 Maximum (4 x 20 ns, 60 ns) = 80 ns (looping to read and then
send the next 4 words; memory read latency completely hidden by hand-
shaking time)

Steps 5,6, 7,4 Maximum {4 x 20 ns, 60 ns) = 80 ns (looping to read and then
send the next 4 words; memory read latency completely hidden by hand-
shaking time)

Steps 5, 6,7, 4 Maximum (4 x 20 ns, 60 ns) = 80 ns {looping to read and then
send the next four words; memory read latency completely hidden by
handshaking time)

End of burst transfer
Thus, the total time to perform the transfer is 320 ns, and the maximum band-
widthis

(16 words x 4 bytes)/320 ns = 200 MB/sec

It is a bit difficult to compare this result to that in the example on page 665
because the example uses memory with a 200 ns access instead of 60 ns. If the
dower memory were used with the asynchronous bus, then the total time for the
burst transfer would increase to 820 ns, and the bandwidth would be

(16 words X 4 bytes)/820 ns= 78 MB/sec
The synchronous bus in the example on page 665 needs 57 bus cycles at 5 ns per
cycle to move a 16-word block. Thisis 285 ns, for abandwidth of

(16 words x 4 bytes)/285 ns = 225 MB/sec
8.26 No solution provided
827 First, the synchronous bushas 50-nsbus cycles. The steps and times required
for the synchronous bus are as follows:

Send the address to memory: 50 ns

Reed the memory: 200 ns

Send the datato the device: 50 ns

Thus, the total time is 300 ns. This yields a maximum bus bandwidth of 4 bytes
every 300 ns, or

4bytes _ _4MB .4 MB

300ns 03 seconds ~ " second
At first glance, it might appear that the asynchronous bus will be much slower,
since it will take seven steps, each at least 40 ns, and the step corresponding to the
memory access will take 200 ns. If we look carefully at Figure 8.10, we redlize that
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several of the steps can be overlapped with the memory access time. In particular,
the memory receives the address at the end of step 1 and does not need to put the
data on the bus until the beginning of step 5; steps 2,3, and 4 can overlap with the
memory access time. This leads to the following timing:

Step 1: 40ns
Steps 2,3,4: maximum (3 x 40 ns, 200 ns) = 200 ns
Steps5,6,7: 3X40ns = 120ns

Thus, the total time to perform the transfer is 360 ns, and the maximum band-
width is

4bztes; 4MB — 111 MB
360 ns  0.36 seconds ' second

Accordingly, the synchronous bus is only about 20% faster. Of course, to sustain
these rates, the device and memory system on the asynchronous bus will need to
be fairly fast to accomplish each handshaking step in 40 ns.

8.28 For the 4-word block transfers, each block takes
1. 1 clock cycle that is required to send the address to memory
20008 _

2 =S
5ns/cyde
3. 2 clock cycles to send the data from the memory

40 dock cycles to read memory

4. 2idle clock cydes between this transfer and the next
This is atotal of 45 cydes, and 256/4 = 64 transactions are needed, so the entire
transfer takes 45 X 64 = 2880 dock cycles. Thus the latency is 2880 cydes X 5
ns/cyde = 14,400 ns.
it

The number of bus transactions per second is

Sustained bandwidth is 232 ~ !ynesi =71.11 MB/sec.

%: 2.2 transactions/second
For the 16-word block transfers, the first block requires

1. 1 dock cycle to send an address to memory

2. 200 ns or 40 cydes to read the first four words in memory

3. 2 cycles to send the data of the block, during which time the read of the four
words in the next block is started

4. 2idle cycles between transfers and during which the read of the next block
is completed
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Each of the three remaining 16-word blocks requires repeating only the last two
steps.

Thus, the total number of cycles for each 16-word block is 1 + 40 + 4 X (2 +2) =
57 cycles, and 256/16 = 16 transactions are needed, so the entire transfer takes,
57 x 16 = 912 cycles. Thus the latency is 912 cyclesx 5 ns/cyde = 4560 ns, which is
roughly one-third of the latency for the case with 4-word blocks.

Sustained bandwidtﬁjl:szﬂ Abyes =224.56 \B/sec
G 15
The number of bus transactions per second with 16-word blocks is

16 transactions

70 s = 3.51M transactions/second

which is lower than the case with 4-word blocks because each transaction takes
longer (57 versus 45 cydes).
8.29 First the mouse:

Clock cydes per second for polling = 30 x 400 = 12,000 cydes per second

} 12x 10}

“ Fraction of the processor dock cycles consumed T 0.002%
Polling can dearly be used for the mouse without much performance impact on
the processor.

For the floppy disk, the rate at which we must poll-is
30 KB
second  _ “pollingaccesses
2 bytes second

polling access
Thus, we can compute the number of cycles:
Cycles per second for polling = 25K x 400 = 10 x 10°
10 X 10* _
500 x 10°
This amount of overhead is significant, but might be tolerable in alow-end system
with only afew 1/0 deviceslike this floppy disk.

Fraction of the processor consumed = 2%
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In the case of the hard disk, we must poll at arate equal to the data rate in four-
word chunks, which is 250K times per second (4 MB per second/16 bytes per
transfer). Thus,
Cycles per second for polling = 250K x400
1 10"
Fraction of the processor consumed = 200105 _ 20%
500 x LO®
Thus onefifth of the processor would be used in just polling the disk. Clearly,
polling is likely unacceptable for a hard disk on this machine.

830 The processor-memory bus takes 8 clock cycles to accept 4 words, or 2
bytes/clock cycle. Thisisabandwidth of 1600 MB/sec. Thus, we need 1600/40 = 40
disks, and because al 40 are transmitting, we need 1600/100 = 16 1/0 buses.

8.31 Assume the transfer sizes are 4000 bytes and 16000 bytes (four sectors and
sixteen sectors, respectively). Each disk access requires 0.1 ms of overhead + 6 ms
of seek.

For the 4 KB access (4 sectors):
« Single disk requires 3 ms + 0.09 ms (accesstime) +6.1 ms = 9.19 ms
« Disk array requires 3 ms + 0.02 ms (accesstime) + 61 ms= 912 ms
For the 16 KB access (16 sectors):
« Single disk requires 3 ms + 0.38 ms (access time) + 6.1 ms = 9.48 ms
« Disk array requires 3 ms + 0.09 ms (accesstime) + 6.1 ms= 9.19 ms
Here are the total times and throughput in I/Os per second:

Single disk requires (9.19 + 9.48)/2 = 9.34 ms and can do 107.1 1/Os per sec-
ond.

Disk array requires (9.12 + 9.19)/2 = 9.16 ms and can do 109.1 1/Os per sec-
ond.

8.32 Theaverageread is (4 + 16)/2 = 10 KB. Thus, the bandwidths are
Singledisk: 107.1 * 10KB - 1071 KB/second.

Disk array: 109.1 * 10 KB = 1091 KB/second.

833 You would need 1/0 equivaents of Load and Store that would specify a des-
tination or source register and an 1/0 device address (or a register holding the ad-
dress). You would either need to have a separate I/O address bus or a signd to

indicate whether the address bus currently holds a memory address or an 1/0 ad-
dress.
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®

If we assume that the processor processes data before polling for the next
byte, the cycles spent polling are 0.02 ms * 1 GHz - 1000 cycles = 19,000
cycles. A polling iteration takes 60 cycles, so 19,000 cycles = 316.7 polls.
Sinceit takes an entire polling iteration to detect a new byte, the cycles spent
polling are 317 * 60 = 19,020 cycles. Each byte thus takes 19,020 + 1000 =
20,020 cycles. The total operation takes 20,020 * 1000 = 20,020,000 cycles.

(Actualy, every third byte is obtained after only 316 polls rather than 317;
0, the answer when taking thisinto account is 20,000,020 cycles)

Every time abyte comes the processor takes 200 + 1000= 1200 cyclesto pro-
cess the data. 0.02 ms * 1 GHz - 1200 cycles = 18,800 cycles spent on the
other task for each byte read. Thetotal time spent on the other task is 18,800
"1000= 18,800,000 cycles.

<3

838 Some simplifying assumptions are the following:

A fixed overhead for initiating and ending the DMA in units of clock cycles.
This ignores memory hierarchy misses adding to the time.

Disk transfers take the same time as the time for the average size transfer,
but the average transfer size may not well represent the distribution of actual
transfer sizes.

* Red disks will not be transferring 100% of the time—far from it.

Network: (2 us+ 25 us* 0.6)/(2us + 25 us) = 63% of origina time (37% reduc-
tion)

Reducing the trap latency will have a small effect on the overal time reduction

839 The interrupt rate when the disk is busy is the same as the polling rate.
Hence,

Cydles per second for disk = 250K x 500 = 125 x 10° cydles per second

. : 125 3<10°
Fraction of the processor consumed during & transfer =, -
B o 7 BooX~Th~«~*"
Assuming that the disk is only transferring data 5% of the time,
Fraction of the processor consumed on average = 25%x5%= 1.25%
Aswe can see, the absence of overhead when an 1/O device is not actually transfer-
ring is the major advantage of an interrupt-driven interface versus polling.



Solutions for Chapter 8 Exordto.

8.40 Each DMA tranfer takes
8K B
MB

=2x10-*seconds

4 second

So if the disk is constantly transferring, it requires

1000 + .m_qﬂ_ "
__g_er =750%%° °$
-3
A
transfer
Since the processor runs at 500 MHz, 3

Fraction of processor consumed = #5=*2R== 15, j0"® = 0.15%
500 x 10

8.44 Maximum 1/O rate of the bus: 1,000,000,000/8000 = 125,000 |/O/second

CPU bottleneck restricts throughput to 10,000 I/O / second
Time/l/O is 6.11 msat disk, each disk can complete 1000/6.11 = 163.67 1/O/sec-
ond
To saturate the CPU requires 10,000 /O second.

10,000

636 61disks.

61 disks
7 disks/scsl controller

845 First, check that neither the memory nor the 1/0 busis abottleneck. Sustain-
able bandwidth into memory is4 bytes per 2 clocks = 800 MB/sec The /0 bus can
sustain 100 MB/sec. Both of these are faster than the disk bandwidth of 40 MB/sec,
so when the disk transfer is in progress there will be negligible additional time
needed to pass the data through the 1/0O bus and write it into memory. Thus, we
ignore this time and focus on the time needed by the DMA controller and the disk.
Thiswill take 0.1 msto initiate, 8 msto seek, 16 KB/40 MB to transfer: total = 85
ms.

= 9scsl controllers.

846 Disk accesstotal time: 10,000/500,000,000 s + 20 ms = 20.002 ms
% delay trapping to OS: 0.01%

Network access total time: 10,000/5,000,000,000 s + 25 us = 27 us

% delay trapping to OS: 7.4%
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ir

8.47 Disk: (2 us + 20 ms* 0.4)/(2 [is + 20 ms) = 40% of original time (60% re-
duction)

Reducing the trap latency will have virtually no effect on the overall time reduc-
tion

Network: (2 us+ 25 us * 0.6)/(2 us + 25 us) = 63% of original time (37% reduc-
tion)

Reducing the trap latency will have a small effect on the overal time reduction
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Solutions for Chapter 9 Exercises
9.1 No solution provided.

9.2 The short answer isthat x isaways 2, and y cen either be 2,4, or 6. In aload-
store architecture the code might look like the fallowing:

load X Into a register load X into a register
Increment register Increment register
Store register back to X store register bach to Y

load Y into a register
add wo registers to register
store register back to Y

When considering the possible interleavings, only the loads/stores are redly of
interest. There are four activities of interest in process 1 and two in process 2.
Thereare 15 possible interleavings, which result in the following:

2211H:x = 2,y=4

9.3 No solution provided.
9.4 No solution provided.
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9.5 Write-back cache with write-update cache coherency and one-word blocks.
Both words are in both caches and are initially clean. Assume 4-byte words and
byte addressing.

Total bus transactions = 2

P1 writes to 100 | One bus transfer to move the word at 100 from Pl to P2 cache.
P2 writes to 104 | One bus transfer to move the word at 104 from P2 to PI cache.
Pi reads 100 No bus transfer; word read from PI cache.
P2 reads 104 No bus transfer; word read from P2 cache.
Pl reads 104 No bus transfer; word read from PI cache.
P2 reads 100 No bus transfer; won) read from P2 cache.

STalswlele

9.6 Write-back cache with write-update cache coherency and four-word blocks.
Theblock isinboth cachesand isinitially clean. Assume 4-byte words and byte ad-
dressing. Assume that the bus moves one word at a time. Addresses 100 and 104
are contained in the one block starting at address 96.

Pl writes to 100 | One bus transfer to move the word at 100 from PI to P2 cache.
P2 writes to 104 | One bus transfer to move the word at 104 from P21a Pl cache.
Pireaids 100 | No bus transfer; word read from P! cache.

P2reaids 104 | No bus transfer, word read from P2 cache.
| Plreeids 104 [ No bus transfer; word read from PI cache.
| P2residsloO | No bus transfer; word read from P2 cache.

|| s|w[m|-

Total bus transactions = 2.

False-sharing appears as a performance problem under a write-invalidate cache
coherency protocol. Writes from different processors to different words that hap-
pen to be allocated in the same cache block cause that block to ping-pong between
the processor caches. That is, a dirty block can reside in only one cache at a time.
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If we modify the cache in this exercise to use write-invalidate, the number of bus
transactions increases to 9.

1 Pl writes 100

Plissues a write-invalidate using one bus transaction to send the address 10(
P2 removes the block from its cache; the block Is now dirty In the PI cache
alone.

2 P2 writes 104

P2 issues a read-with-intent-to-modify and the block Is moved from Pl to P2
using four bus transfers; PI removes the block from Its cache; the block is now
dirty in the P2 cache alone

3 Pl reads 100

PI Issues a read miss and the P2 cache supplies the block to PI and writes
back to the memory at the same time using four bus transfers; the block Is now
clean in both cases.

4 P2 reads 104 | No bus transfer; word read from P2 cache. i
5 P reads 104 | No bus transfer; word read from Pl cache.
6 P2 reads 100 | No bus transfer; word read from P2 cache.

9.7 No solution provided.
9.8 No solution provided.
9.9 No solution provided.
9.10 No solution provided.
9.11 No solution provided.

9.12 No solution provided.

9.13 No solution provided.
9.14 No solution provided.
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Solutions for Appendix B Exercises
B.1

w|n|o|o
w{olr|e

1 1} 2
0 R
0 1 | 1
0 o [ o

B.2 Hereisthefirst equation:

E=((A*B)+(A+C)+(B+C))+ (A-B-C).
Now use DeMorgan's theorems to rewrite the last factor:

E = ((A-B) + (A-C) + (B-C))-(A+B +C)
Now distribute thelast factor:

E=((A-B)» (A+B+C))+((A-C)» (A+B+C))+({B+C)-(A+B+C))
Now distribute within each term; we show one example:
(AB) * (A+B+C)) = (A-B-A) + (A'B + B) + (A'B-C) = 0+0+(A-B-C)
(Thisissimply A « B « C.) Thus, the equation above becomes
E=(A-B+C)+(A+B+C)+(A*B-C),whichisthedesired result.
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B.7 Four inputs AO-A3 & F (0/P) = 1 if an odd number of Is exist in A.

® o o r r oo

oo 9o e -
o e A P N 555
T P 1) - PSR~

|OHHOHOOHHOOHOHHO

Kk OO r r OO

B.8 F=A3A2ATAO + AZA2A1 AO + A3A2 AI'AC' + AZA2AI AO +
A3A2ATAO + ABA2A1A0 + A3A2A1AO + A3A2AI AD'

Note: F =AO XOR Al XORA2 XORA3. Another question can ask the students to
prove that.
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2LYT I2YT T2 I3UY YT PLYT SDYQ 2R
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8.8
o P I
(A FS
B2
) nP°—|[ " B

B.10\ No solution provided.
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FI =X2'XI XO + X2 XI'XO + X2 XI XO'

F2 = X2TU-X0 + X2TU XO + X2 XI'XO' + X2 XI XO = (A XORB XOR C)
F3=Xx2'
F4=X2(=F3)
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B3
L1l ;Zyz + x2y2_'xly| + x2y2xlylx0y0 +x2y_2xly| + mo + Wzdylxayo + x2y2xITOy0
+ x2y2xlyIx0y0
o x2y2 +x2y2xlyl +x2y2xlylx0y0 + Myl + x2y2x|le)y0 + x2y2x_|y|x0y0 + Wleylx_OyO
o (x2,2 +X2y2)(xlyl+x~Tyl)(x0y0 + XOy1))

B.14
8
c
A
o
L
—0
L 1
s

B.15 Generalizing DeMorgan's theorems for this exercise, if A + B = A TB, then
Similarly,

A-B-C=A-(B-C)=A+B-C=A-(B +C)=A+B +C.

Intuitively, DeMorgan's theorems say that (1) the negation of a sum-of-products

form equals the product of the negated sums, and (2) the negation of a product-
of-sums form equals the sum of the negated products. So,

E=E
= (A-BC) + (ACB) + (B-GA)

=(A-B -_C) *(AeC :B) *(B+C+A);first application of DeMorgan'stheorem

= (»& +B+ C)e (TA +C+ B)« EB +"C+A); second application of DeMorgan's
theorem and product-of-sums form

B.16 No solution provided.
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B.18 2-1 multiplexor and 8 bit up/down counter.
B.19

module LATCHCclock.D.Q.Qbar)
input clock,D;
reg O;
wire Obar:
assign Qbar - ~0;
always @(D.clock) //senstivity list watches clock and data
begin

if(clock)

0- 1D

end
endnodul e

B. 20

nodul e decoder (in, out,, enable);
input [1:0] in;

input enable

output [3:0] out;

reg [3:0] out;

always @ (enable. in)
if (enable) begin

out = 0;

case (in)
2°hO : out -
2°hl : out -
2'h2 : out =
2'h3 : out =

endcase

end
endnodul e
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B.21
module ACCICIk, Rst. Load, IN, LOAD, OUT);

input Clk, Rst, Load;
input [3:0] IN;
input [15:0] LOAD
output [15:0] OUT;
wire [15:0] W;

reg [15:0] Register;
initial begin

Regi ster = 0;

end

assign W= IN + QUT;

al ways @ {Rst, Load)

begi n
if Rst begin

Regi ster = 0;
end
if Load begin

Regi ster = LQAD
end
end

always @ (d k)
begi n

Regi ster <- W
end

endnodul e



Solutions fbr Appmdix B Exwdses

B.22 We use Figure 35 to implement the multiplier. We add a control signd
"load" to load the multiplicand and the multiplier. Theload signd dsoinitiatesthe
multiplication. An output Sgnd “done" indicates that Smulation isdone.

module MULKclk, load, Multiplicand. Multiplier, Product, done);
input elk, load;

input [31:0] Multiplicand, Multiplier;

output [63:0] Product;

out put done;

reg [63:0] A Product;
reg [31:0] B

reg [5:0] |oop;

reg done;

initial begin
done - 0; loop = 0;
end

always @(posedge elk) begin
if (load && loop ™Q) begin
done <- 0;
Product <=0;
A <= Miltiplicand;
B <=.Miltiplier;
loop <= 32;
end
ifdoop > 0) begin
if(B[0] =- 1)
Product <- Product + A
A< A1
B< 6» 1;
1 0op <= loop -1;
if(loop — 0)
doie < 1;

end
endnodul e
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B.23 We use Figure 3.10 for divider implementation, with additions similar to the
ones listed above in the answer for Exercise B.22.

nodul e DiVicl k, load. Divisor, Dividend, Quotient, Remainder, done);

input clk, load;

input [31:0] Divisor;
input [63:0] Dividend:
output [31:0] Quotient;
input [31:0] Renainder;
out put done;

reg [31:0] Quotient; /1 Quoti ent

reg [63:0] D R /1Divisor, Remainder
reg [6:0] |oop; /1 Loop counter

reg done;

initial begin
done = 0; 1oop = O;
end

" assign Remainder - R[31:0];

always ©Cposedge elk) begin
if (load SS loop —0) begin
done <= 0;
R <=Dividend;
D <- Divisor << 32;
Quotient <-0;
loop <= 33;
end

iffloop > 0) begin

if(R - D > 0)
begin
Quotient <= (Quotient << 1) + 1;
R< R- DO
end

el se
begi n
Quotient <= Quotient << 1;

end

D< D» L
loop <= loop - 1;
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ifdoop -~ O
done <= 1:
end
end
endnodul e

Note: This code does not check for division by zero (i.e., when Divisior= = 0) or
for quotient overflow (i.e., when Divisior < = Dividiend [64:32)).

B.24 The ALU-supported set less than (s11) usesjust the sign bit. In this case, if
we try a set less than operation using the values - 7;e, and 6en, we would get -7 >
6. Thisis clearly wrong. Modify the 32-bit ALU in Figure 4.11 on page 169 to han-
dle s 11 correctly by factor in overflow in the decision.

If there is no overflow, the calculation is done properly in Figure 4.17 and we sim-
ply use the sign hit (Result31). If there is overflow, however, then the sign bit is
wrong and we need the inverse of the sign hit.

r[r|o|al
rlo|r|a
of|r|~|al

LessThan = Overflow © Result31
Overflow
IteuM| :D_ YeiThng

0 o [
0 1 1
1 0 1
1 25 0
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B.25 Given that a number that is greater than or equal to zero is termed positive
and a number that is less than zero is negative, inspection reveals that the last two
rows of Figure 4.44 restate the information of the first two rows. Because A - B =
A + (-B), the operation A - B when A is positive and B negative is the same as the
operation A + B when A is positive and B is positive. Thus the third row restates
the conditions of the first. The second and fourth rows refer also to the same con-
dition.

Because subtraction of two's complement numbers is performed by addition, a
complete examination of overflow conditions for addition suffices to show also
when overflow will occur for subtraction. Begin with the first two rows of Figure
4.44 and add rows for A and B with opposite signs. Build a table that shows all
possible combinations of Sign and Carryin to the sign bit position and derive the
CarryOut, Overflow, and related information. Thus,

| Camy bn
Sign | Skgn | Bany | Camy | Sk d| o xoR
0 i | Carry Out | Motas

0 0 0 0 0 0 0

0 0 1 0 1 0 1 Carries differ
0 1 0 0 1 1 0 A < 1Bl
0 1 1 1 0 0 No 0 W > 1Bl
1 0 0 0 1 1 No 0 W > 1Bl
1 0 1 1. 0 0 No 0 W < Bl
1 1 0 1 0 1 Yes 1 Carries differ
1 1 1 1 1 1 No 0

From this table an Exclusive OR (XOR) of the Carryin and CarryOut of the sign
bit serves to detect overflow. When the signs of A and B differ, the value of the
Carryin is determined by the relative magnitudes of A and B, as listed in the Notes
column.

B.26 Cl = C4, C2 = C8 C3 = Cl2, and C4 = cl6.
¢4 = Gy, + (Pi,0 ¢ CO).
c8 isgiven in the exercise.
cl2=G,,j, + (Pu,8° G,.a) + (Pn,g * P4 Gy) + {Pn,»P;,4 P30« cO).
CIS=Gusiiz + (Pisiiz* G,...) + (P.5,12* Pu,s * Gpa)
+ (PI5,12' Pll,«* P74+ G3,0) + (PI5,12+ Pll,»« P7.4+"3.0+ CO).
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B.27 The equations for c4, ¢8, and d2 are the same as those given in the solution
to Exercise 4.44. Using 16-bit adders means using another level of carry lookahead
logic to construct the 64-bit adder. The second level generate, G(f, and propagate,
PO, are
GO'=Gis10= Gisy12 + P512* Gy, + Pis,i2- P1y -G74 + Pis,i2* Piije * Proa * Gaio
and
PO’ =Pi5g=Pisnz+ Prig Pra-Pag
Using GO' and PO', we can write cl6 more compactly as
¢l6 = Giso + Pisy-cO
and
€32 = Gayg + Psijjs* CI6

C48 = G472 + P4732-c32
€64 = G349 + P63,45-C48

A 64-bit adder diagram in the style of Figure B.6.3 would look like the foUowing:
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FIGURE B.8.3 Four 4-Ut ALUs u»b« carry lookahaad to form a 16-btt «dder. Note that the
carries ceime from the carry-200kahead unit, not from the 4-bit ALUs.



Solutions for Appendix B Ex«rfl«M

B.28 No solution provided.
B.29 No solution provided.
B.30 No solution provided.
B.31 No solution provided.
B.32 No solution provided.
B.33 No solution provided.

B.34 The longest paths through the top {ripple carry) adder organization in Fig-
ure B. 14.1 all start at input a0 or bO and pass thrdiigh seven full adders on the way
to output s4 or s5. There are many such paths, al with atime delay of 7 x 2T = 14T.
The longest paths through the bottom (carry sale); adder all start at input bO, €O,
fl), bl, el, or fl and proceed through six full adders to outputs s4 or s5. The time
delay for this circuit isonly 6 x 2T = 12T.



