Aerie: Distributing File System Functionality for Direct Access
to Storage-Class Memory

Abstract

Storage-class memory technologies such as phase-change memory
and memristors present a radically different interface to storage
than existing block devices. As a result, they provide a unique
opportunity to re-examine storage architectures. We find that the
existing kernel-based stack of components, well suited for disks,
unnecessarily limits the design and implementation of file systems
for this new technology.

We present Aerie, a flexible file-system architecture that ex-
poses storage-class memory to user-mode programs so they can
read and write data without kernel interaction but maintain the
sharing and protection features of file systems. Aerie can imple-
ment a generic POSIX-like file system with performance similar to
or better than a kernel implementation. The main benefit of Aerie,
though, comes from enabling applications to optimize the file sys-
tem for their specific needs. An application may access storage
through an interface or data layout suited to its workload. As a
concrete example, we demonstrate a specialized file system that re-
duces a hierarchical file system abstraction to a key/value store with
fewer consistency guarantees but lower access latency. We find that
a POSIX-style file system on Aerie performs 35% better than ext3
over SCM and only 15% worse than a kernel file system without
crash consistency. A specialized design enabled by Aerie improves
performance by 30-86% over a kernel file system for its workload.

1. Introduction

Emerging device technologies such as phase-change-memory (PCM),

spin-torque transfer RAM (STT-RAM) and memristors provide
persistent storage near the speed of DRAM. These technologies
collectively are termed storage-class memory (SCM) [22] as data
can be accessed through ordinary load/store instructions rather than
through I/0 requests. As a result, user-mode code can access data
directly, so there is no need for the OS to mediate every access.
Furthermore, existing virtual-memory hardware can protect access
to individual data pages.

These two features of storage-class memory, high speed and
direct access from user mode, are a fundamental shift from existing
storage architectures. In most operating systems, the kernel has
to mediate access to storage for protection and to abstract details
of the specific storage device through a driver. The existing OS
structure of file systems as a kernel-level service may no longer
be necessary with SCM.

Recent work has explored high-performance file-system designs
targeted for SCM. The BPFS file system leverages SCM’s proper-
ties to provide strong reliability guarantees and better performance
than existing file systems [16]. The Moneta-D system bypasses the
kernel for data access but metadata operations critical to small-
file performance still require the kernel [13]. Mnemosyne and NV-
heaps [15, 57] provide direct access by memory mapping SCM into
a process, but do not support full file-system functionality. We seek
a system where almost all file system operations are handled at user
mode in a client process, including metadata operations. This can
benefit workloads that operate on many small files rather than a few
large files.

We propose distributing the storage stack to create a flexible,
high-performance storage architecture by mapping SCM into client

processes. This provides two key benefits: (i) low-latency access to
data by removing layers of code, and (ii) flexibility by enabling ap-
plications to define their own file-system interface and implemen-
tation without extending the kernel. With direct access, a program
reading a file can locate the file contents and read the data directly,
without calling the kernel. In addition, an application with fixed-
size files can pre-allocate storage in contiguous extents to lower the
cost of locating file contents. Prior efforts at user-mode file sys-
tems, such as FUSE [1], provide flexibility at a heavy performance
cost from context switching and copying data.

Based on this idea, we designed the Aerie architecture to ex-
pose file-system data stored in SCM directly to user-mode pro-
grams. Applications link to a file-system library that provides lo-
cal access to data and communicates with a service for coordina-
tion. The OS kernel provides only coarse-grained allocation and
protection, and most functionality is distributed to client programs.
For read-only workloads, applications can access data and meta-
data through memory with calls to the file-system service only for
coarse-grained synchronization. When writing data, applications
can modify data directly but must contact the file-system service
to update metadata.

We implement two file-system interfaces on the same layout
with Aerie: a POSIX-style system and one optimized for small-file
access through a put/get interface. Through experiments, we show
that the POSIX-style system performs much better than existing
user-mode file systems and between only 15% slower than a ker-
nel file system without consistency guarantees and 35% faster on
average than ext3. The specialized key-value file-system interface
performs up to 86% faster than the fast kernel file system. Thus, dis-
tributing file system functionality to client processes allows flexible
implementations that dramatically improve performance.

2. Motivation

Despite rapid advancements in storage technology, the fundamental
architecture of storage in operating systems has remained stable:
applications invoke the kernel to store and retrieve data, which
invokes a file system and then a block driver. Microkernels and
user-mode file systems move the file system logic to user-mode,
but leave the remaining layers intact [41, 1]. Databases may bypass
the file system, but still call through the kernel and block driver.

2.1 What Changed?

Four features of past storage technologies require this layered de-
sign in the kernel:

1. Protection: Disks and other block storage devices do not imple-
ment a protection mechanism to limit access by a user or pro-
cess. In addition, they use DMA to read/write data, which does
not respect memory protection. Thus, the OS relies on the file
system to decide which processes have access to which blocks
on disk.

2. Scheduling: Disks have variable latency from seek and rota-
tional delays and benefit significantly from scheduling to re-
order requests.

3. Caching: Slow disks benefit from shared caches that allow
processes to re-use data fetched by another process.

4. Drivers: Disks implement a variety of interfaces and therefore
require a driver to present a standard block interface.

Due to the slow speed of disks and the high benefits of scheduling
and caching, a kernel implementation of file systems provide many
performance benefits at little additional cost.

Storage-class memory technologies promise to change many
assumptions about storage. They have the persistence of storage
but the fine-grained access of memory, and can be attached to the
memory bus and accessed through load and store instructions [22].
Three recent technologies provide SCM capabilities: phase-change
memory (PCM) [38], spin-torque-transfer RAM (STT-RAM) [31],
and memristors [54]. While the performance and reliability de-
tails differ, they all provide byte-granularity access and the ability
to store data persistently across reboots without battery backing.
While SCMs are currently only available in small sizes and scal-
ing projections have flattened in recent years, recent work indicates
that even current SCM devices offer great potential for improved
storage performance [12].

SCM has none of the features that require a kernel implemen-
tation of file systems. As memory, it can be protected by existing
memory-translation hardware. Furthermore, it has much less need
for scheduling to optimize latency, as there are no long seek or ro-
tation delays. Because SCM provide speeds near DRAM, caching
data may be unnecessary. Finally, SCM does not require a driver for
data access as it can implement a standard load/store or protected
DMA interface [13].

2.2 What Benefits?

With these features in mind, we seek to redesign how operating sys-
tems support file systems. We seek two benefits from this redesign:
flexibility and performance.

Flexibility. Major performance improvements can come from
matching application needs to storage-system design. For exam-
ple, Google’s GFS optimizes for web data [24] and Facebook’s
Haystack optimizes for images [8]. These systems provide bet-
ter performance by specializing for a narrow range of application
workloads (e.g., whole file access).

Implementing an application-specific file system today entails
three unattractive choices (i) modify the kernel, which is difficult
and requires long-term maintenance as the kernel evolves; (ii) layer
above an existing file system, as in Microsoft Office file formats
that implement a file system within a file [28] and add additional
latency to file access; or (iii) use a user-mode framework such
as FUSE [1], which decreases performance through extra context
switches to a file-system process.

Direct access to storage from user level allows an application
to implement a file system customized to its needs without modify-
ing the kernel and without any performance penalty from executing
outside the kernel. There are several degrees of freedom for an ap-
plication to optimize a file system. The interface of a file system
can be optimized based on the application needs, such as get/put
for a mail message store rather than open/read/write/close. The in-
terface can also provide concurrency semantics that better target an
application’s concurrency model, such as byte-range locking to en-
able concurrent access to the same file. Moreover, an application
may optimize the file system’s caching scheme and data structures
to the access patterns of the workload. Also, an application can
choose a layout suited to its workload, such as contiguous alloca-
tion for fixed-size files.

Performance. Direct access to file data from user-level can be
lower latency and higher bandwidth than going through the kernel,
as it avoids the cost of changing modes and cache pollution from
entering the kernel [16, 53]. For example, PCM read latencies can
be as low as 70 nanoseconds, while the time for a stat system call

Application || Application |
pue sl I R — |

IbESAPI | = — — — — — 1 T lbrs api
| TFS |
File System |

1 U
Collection, mFile API
11 '
Storage Abstraction Layer
—_—— e — — — 4
Partition, Extent API

|

— e —— — —— — —

SCM Allocation Layer

Kernel Mode | User Mode

Memory Interface

SCM

Figure 1. Aerie design. Functionality is distributed between applica-
tion processes, a trusted service, and the kernel.

in Linux on a modern processor is approximately 800 nanoseconds.
The Moneta-D system provides some of this benefit by bypassing
the kernel for data access [13], but metadata operations critical to
small-file performance, such as for IMAP servers that use many
small files [20], still call into the kernel.

3. Design

Aerie is a local storage service that enables programs to store and
share data through a user-mode file system. Our goals for Aerie are:

1. Flexibility for applications to customize the file system inter-
face, policies, and layout.

2. High performance to reap the benefits of low-latency storage
memory.

3. Protected sharing between processes to enable flexible applica-
tion structuring and composition.

The main enabling mechanism for our goals is direct access
through memory to file-system data and metadata from user mode.
Although direct access enables our first two goals, it is at odds with
our third goal of protected sharing and raises several other chal-
lenges. Protected sharing requires mediating each file system ac-
cess to enforce file system permissions. For performance, we use
hardware memory protection when possible, which poses the chal-
lenge of translating file system permissions to memory protection.

Designing a file system for flexibility and direct access raises
many challenges, of which we focus on four. First, how should file
systems be structured to provide maximum flexibility to applica-
tions while still providing access to shared data? Existing file sys-
tems have a single implementation per system, but direct access
enables each program to have a different implementation. Second,
if clients have direct access to data, how can we ensure a mali-
cious or buggy application does not corrupt file system structures?
Third, how do we provide concurrency control between applica-
tions efficiently? Kernel file systems use locks in shared memory
and provide only limited locking capabilities to user-mode code.
Finally, how can we minimize communication for coordination be-
tween clients to keep performance high?

3.1 Assumptions

We designed Aerie based on assumptions about the features of
future SCM products and application behavior. First, we assume
that hardware provides user-mode code with low-latency, protected
access to SCM. This can be achieved by placing SCM directly on
the memory bus, which allows access through normal load/store
instructions protected by virtual memory hardware [16, 15, 44].
Alternatively, protected user-mode DMA that restricts the set of

memory and SCM addresses can also be used [13].

Second, our failure model assumes that any state stored in
volatile memory such as the hardware cache or main memory
may be lost but any state written to SCM persists. We therefore
depend on hardware to provide an atomic update of at least 64
bits [16, 46]. Similar to past systems [15, 57], we also rely on the
device to implement necessary reliability mechanisms to address
wear and that such mechanisms are robust to malicious attacks that
aim to overwhelm the anti-wearout mechanism [47]. Without such
hardware support, the system must be limited to clients that are
trusted not to inflict excessive wear.

Third, we assume that most sharing is sequential rather than
concurrent. Programs with concurrent access may be better served
by a centralized file system. When concurrent sharing occurs, Aerie
provides correct behavior but with reduced performance.

Finally, we assume programs may exhibit malicious or buggy
behavior such as stray writes. We therefore do not trust the client
library to correctly modify file-system metadata. However, we as-
sume that trusted code in the kernel or service is as reliable as exist-
ing file system code (which can also corrupt data in memory [62]).

3.2 Architecture

Aerie distributes file system functionality for direct and protected
access to storage memory. Figure 1 shows the Aerie organization.
The SCM manager in the kernel allocates SCM to file systems and
constructs page tables that map SCM into processes with the neces-
sary protection. Programs link to the libES library that provides the
file system API. The trusted file system (TFS) service provides in-
tegrity for metadata updates and concurrency control between pro-
cesses.

Aerie relies on hardware protection to enforce access control
over file system data. This allows the client library to service most
file-system operations directly from SCM without contacting the
service or the kernel. For example, when an application opens a
file, the library accesses directory contents in SCM to locate the
file and can then read file data directly from SCM as well.

Thus, Aerie provides two paths to storage: (1) a fast, untrusted
code path, and (2) a slow, trusted code path. The untrusted code
path executes within any user process and relies on virtual memory
hardware to limit access to data. Thus, reading files can be provided
completely by the code in libFS. The trusted code path invokes
TFS to support any operation on file-system state that cannot be
enforced in hardware. For example, enforcing integrity constraints,
such as reference counts, cannot be left to clients.

In order to support multiple file systems, a system may have
multiple implementations of the library and the service, one for
each file system implementation. The kernel code, though, is com-
mon to all file systems. In addition, a single file system may have
multiple libFS implementations optimized for different workloads.

3.2.1 Abstractions and Interfaces

To encourage flexibility, we architect Aerie in three layers, each
providing a specific service. Like ZFS layers (ZPL, DMU, and
SPA) [10], these layers allow lower-level services to be reused by
multiple higher-level file systems or file-system interfaces. Table 1
lists the layers of Aerie and the main operations of the layer.

Storage-class-memory allocation layer. At the bottom level, the
SCM allocation layer does the minimum work required for pro-
tection: it records and enforces resource usage. To achieve this, it
exposes storage in the form of memory partitions and memory ex-
tents, which are close to hardware and provide primitive operations
upon which higher-level interfaces are built.

A memory partition is a contiguous region of virtual addresses
mapped to SCM, and is used for coarse-grain allocation of physical
SCM to a file system volume. Partitions are named by their starting

address, and the allocation layer exposes a list of partitions and
their owners similar to a mount table.

A memory extent is a range of memory within a partition as-
sociated with protection rights and higher-level software assigns
their location and size. Memory extents are similar to standard
file-system extents with the addition of protection and are used by
higher layers to store data within an object, such as file contents.
While each extent is contiguous virtually, higher-level objects con-
structed out of extents, such as files, may not be as they can com-
bine non-adjacent extents through an indirection structure. Extents
are named by a descriptor that encodes their partition and offset
within the partition. In addition to methods to create and delete ex-
tents and partitions, the SCM allocation layer provides a method to
change the protection of an extent with the mprotect operation.

The SCM allocation layer provides a simple ACL representation
for higher levels to specify permission on file-system data. These
ACLs are stored for each extent.

Storage abstraction layer. This layer adds structure and synchro-
nization to the raw memory exposed by the allocation layer. It pro-
vides low-level methods that can be used to implement function-
ality commonly found in file systems, thus allowing higher-level
flexibility.

The storage abstraction layer implements two basic abstractions
of memory: the memory file (mFile), which maps offsets to extents,
and the collection, which groups objects (mFiles or other collec-
tions). Both mFiles and collections provide the same access to all
members (extents for mFiles and elements for a collection). These
abstractions are the building blocks for files, directories, and other
file-system metadata structures.

The storage abstraction layer also provides distributed concur-
rency control through a hierarchical lock service to synchronize
access to shared data across processes. The lock service lets clients
request a lock for shared or exclusive access to an object. It also
offers hierarchical intent locks [27, 60], which can make locking
more efficient when resources can be organized in a hierarchy such
as a directory of files. We describe this more in later sections.

File-system interface layer. The top layer implements a file sys-
tem API. Similar to Pilot [49], this level provides a name space
above lower-level collections and mFiles and can expose familiar
interfaces to create, delete, or rename files. While the lower level
provide the mechanisms for storing, retrieving, and protecting data,
the interface layer provides the policies of how and when to access
data. The FS interface layer assigns protection both to storage ob-
jects that clients can read directly and to metadata limited to the
TFS. The interface can either be a standard POSIX interface or
tailored to application needs, such as a tag-based lookup mecha-
nism [52].

3.2.2 Components

While Aerie seeks to provide as much functionality within a
client process as possible, some file-system features require a third
party. Cooperation between mutually distrustful programs require
a trusted entity to enforce synchronization and integrity [51]. Thus,
Aerie distributes the file system among three components.

libFS Client Library. Applications link against a 1ibFS library for
each file-system interface they use. The library provides functional-
ity from both the FS interface and storage-abstraction layers needed
to find and access data: lookup to map file names to file metadata,
and indexing to translate a file offset into a byte in memory. It also
implements logic to invoke a trusted service.

Trusted File System (TFS) Service. Functionality that requires
a trusted third party (i.e., integrity and concurrency control) but
not privileged hardware access execute in the TFS service, which

[Abstraction | Function | Operations
SCM Allocation
Partitions Contiguous virtual memory holding a FS volume allocate, free, mount
Extent Contiguous memory with same access rights create, delete, mprotect
Storage Abstraction
mFiles Mapping of offsets to memory locations create, delete, addExtent, removeExtent, protect
Collections Grouping of storage objects create, delete, add, remove, protect
Locks Concurrency control request, release, revoke
File System
Files, Directories [Standard POSIX file systems [create, unlink, read, write,

Table 1. Aerie layers and their supported abstractions and operations.

|Update Metadata ™ =™ = T T 1
| Coordinate |

|
|
. TFS |
L“bFS_|~‘_ |

52
o
£ 53 o
~Soae Sy . é !
= SCM MANAGER 3
3 s |
| 3 0S KERNEL €
—gem - —
' |

Figure 2. Aerie components (solid colored). Arrows show communi-
cation between components.

includes code both from the storage abstraction and FS interface
layers. The service also provides complete file system functionality
on data for which memory protection is too coarse. The service
executes as a user-mode process accessed via RPCs.

SCM Manager. Operations requiring hardware privileges, such
as modifying memory permissions or virtual address mappings,
must execute in the kernel. The SCM manager provides the storage
allocation layer, which contains only low-level mechanisms that are
independent of high-level file system organization.

3.3 File System Design

In previous sections we described the layered architecture and basic
components of Aerie. Here, we discuss how to build a complete file
system with this architecture.

Naming. Aerie implements a namespace by mapping each di-
rectory to a collection. The collection maps a name to an iden-
tifier of an mFile (for a file) or a collection (for a subdirectory).
While namespace operations are metadata heavy, operations that
read metadata can be serviced directly and safely by the library to
avoid communication with the TFS service on every file access.
Thus, directory operations such as traverse, read, and open are han-
dled by locating collections and reading them directly.

Protection. 'We use hardware page-level protection to implement
file-system permissions. We precompute the permissions for each
piece of file data and then construct a page table for a process based
on the permissions it receives. In contrast, a normal file system
checks an ACL on every open, whereas we compute the effective
ACL for the user and put those permissions in the page table.
Although hardware-enforced protection enables us to efficiently
enforce permissions, it may be too rigid to directly represent the
whole spectrum of file-system permissions. For example, while
read permission on a file is equivalent to read permission on a page
containing the file data, this does not hold true for directory con-
tents: list and traverse both require reading the directory contents,

but only /ist lets the client see all the names. Thus, clients with
traverse only should not be able to access the page containing di-
rectory contents.

A file-system implementation can therefore choose which mem-
ory to protect with hardware and which to protect in software. Data
with simple read/write permissions corresponding to memory pro-
tection can be made available to libFS through memory. If not, then
libFS must call into the TFS service to access the object.

Integrity. In order to prevent corruptions by untrusted code, only
the TFS service applies modifications to file system objects. Clients
are only trusted to modify file contents but not file system objects,
such as mFiles and collections. Instead, they create a log of their
operations, similar to a file system journal, and ship the journal to
the TFS. The TFS then validates the entries in the journal are legal,
protected by locks, and preserve invariants, such as link counts and
free/allocated status. Finally, the TFS applies them as a transaction
by forcing the log to SCM and then updating data structures.
Similarly to a kernel-mode file system though, the service is vul-
nerable to corrupting itself. The file system and storage abstractions
can use existing techniques such as checksums, replication, sealing
pages through memory protection, or periodic checks of metadata.

Concurrency. Aerie performs concurrency control over storage
objects using the distributed hierarchical lock service. File systems
use hierarchical locks to grant a client access to a subtree of the
name space. A client can read all the files within a subtree without
communicating with the server, which improves performance. A
client requests a lock that covers an object, and can use that until
it is done or the lock is revoked. The TFS requires that clients
hold a lock covering an object when sending a metadata update
to the TFS. Clients, though, can treat locks as advisory, because
the data is already available through memory. In addition, a client
may change the granularity of locks internally, such as by assigning
byte-range locks to different threads while the process holds a lock
on the entire file.

The file system library is free to provide applications any degree
of consistency and concurrency semantics. For example, Windows
file systems provide mandatory locking, while POSIX file systems
do not, and GFS provides atomic append operations [24]. A client
library can choose when to acquire locks and how long to hold them
to implement different consistency levels [27].

Clients can batch updates together while holding a lock. This
amortizes the cost of communicating with the server. Internally, a
client should structure operations as short-lived because a lock may
be revoked on short notice. When a lock is revoked, the client must
ship to the service any buffered metadata updates covered by the
lock before releasing the lock. This is required because TFS does
not accept metadata updates that are not covered by a lock in order
to preserve invariants during concurrent updates. If a client does not
revoke the lock when requested, TFS forcefully releases the lock,
which clients treat similarly to media removal.

Durability. The TFS guarantees atomicity and durability of meta-
data operations, but the libFS clients must ensure durability of file

Subsystem # Lines || Subsystem # Lines
Infrastructure services 3800 Storage objects 10220
SCM manager 650 PXFS 2660
Distributed Lock Service 2910 KVES 340
Total 20580

Table 2. Implementation size.

data by forcing it out to SCM. To provide atomicity when an oper-
ation modifies multiple metadata objects, the TFS provides atomic-
ity using write-ahead redo logging. For example, writing new data
to a file may require the file system to allocate and insert multiple
extents into the file’s storage object, all of which go to a persistent
journal first.

Failures. Aerie must handle four types of failure. First, media
failure may happen when SCM hardware is physically damaged.
Such failures can be addressed using existing techniques such as
checksums and replication. Second, client failures may happen
when a client crashes due to a software error. Aerie addresses client
failures by revoking locks held by the client and discarding any
outstanding metadata updates a failed client has not yet shipped to
the service. This guarantees metadata invariants but allows client
data to be lost. Third, the whole system may fail due to a software
or hardware error, or power failure. Upon system restart, the service
restarts and can perform recovery from the log. Third, the service
may fail similarly to clients. We treat this similar to a system
failure, and require that the TFS and all clients restart.

3.4 Summary

Aerie provides flexibility through simple abstractions that support
a wide variety of file system interfaces. It is structured in three lay-
ers, which are distributed through the kernel, client libraries, and a
trusted file-system service. It prevents a faulty client from corrupt-
ing data by centralizing metadata updates at the TFS, which ensures
clients can only corrupt file contents (similar to current systems).
Aerie uses a distributed hierarchical lock service to synchronize ac-
cess to files, which allows many operations to be performed without
communication and many updates to be batched together.

An alternative design to direct access to SCM is to cache an
entire file system in DRAM and use SCM only to log updates. We
see two challenges to this approach: (1) recovery may be slow, as it
requires rereading data from another medium (flash or disk) and re-
applying a long log, and (2) SCM device scalability may be better
than DRAM and lower power [38].

The Aerie design shares strong similarities with many dis-
tributed file systems that allow clients to access a storage service
directly. However, it relies on hardware for access, which only pro-
vides read and write operation, rather than software, which can
provide a much richer interface [43, 25]. The trust model also dif-
fers from past systems relying on a shared block device, because
clients cannot be trusted to make correct changes to metadata [55].

4. Implementation

We implemented an Aerie prototype on Linux 3.2.2 for x86-64 pro-
cessors. In this section we present the implementation of the two
lower-level layers of Aerie, the SCM allocation layer and storage
abstraction layer. We defer the discussion of two file system inter-
faces to Section 5. Table 2 summarizes the amount of code com-
prising Aerie’s major components. Kernel-mode code is written in
C, while user-mode code is written in C++.

4.1 Infrastructure Services

Aerie relies on low-level mechanisms for inter-process communi-
cation and for consistently updating data in SCM.

Interprocess Communication. We use remote-procedure call
(RPC) implemented using sockets on loopback interface for com-
munication between clients and the server . The server is mul-
tithreaded and can handle multiple RPC requests concurrently.
Batching of metadata operations at a client (Section 4.4) helps take
RPC off the critical path for most operations. An RPC implemen-
tation based on a design compatible with recent operating system
redesigns for many-core processors could further help reduce the
cost of communication [7].

Persistence Primitives. We borrow the persistence primitives
from Mnemosyne [57] to support consistently updating file sys-
tem structures in SCM in the presence of failures. We implement
them through regular x86 instructions and provide three basic oper-
ations: (1) wilflush uses x86 c1f1lush to write and flush a cache line
out of the processor cache into SCM for persistence, (2) bflush uses
x86 mfence to flush the processor write-combining (WC) buffers
into SCM for persistence, and (3) fence uses x86 mfence to order
writes to SCM.

We use these primitives to implement our higher-level consis-
tency mechanisms and a persistent log for redo logging. Writes to
the log are done using x86 streaming instructions (which buffer
writes in WC buffers and enable high bandwidth for sequential
writes). Flush of the log writes to SCM is done through bflush.

4.2 SCM Manager

The SCM manager is a kernel component that provides the storage-
class memory allocation layer. Its sole responsibility is allocation,
mapping, and protection of SCM.

Allocation. The SCM manager is designed for allocating a small
number of large static memory partitions. It allocates contiguous re-
gions of physical memory using first-fit. The SCM manager stores a
table listing each partition and an access control list indicating who
can modify or access the partition, typically the TFS. As with all
data structures in Aerie, the SCM manager stores the partition ta-
ble in SCM and uses persistence primitives to assure consistent up-
dates. The SCM manager does not allocate extents and only records
their location and protection.

Mapping. Once allocated, a partition can be mapped into any
process with the scm_mount_partition API. In order to reduce the
overhead of page tables, the SCM manager uses a linear mapping
of physical addresses that can be computed from a single virtual
base address, and maps SCM at the same virtual address in all
processes. Thus, mounting a partition does not actually map it into
an address space but instead ensures that ensuing page faults will
lazily create the page table. This effectively treats the page table as
a giant software TLB, similar to Mach’s pmap structure [48]. As a
result, page tables are dynamic structures that need not be stored in
SCM

The SCM manager further reduces the space overhead of the
page table by aggressively sharing page tables between processes.
All processes with the same access to files—those with the same
user and group IDs—share the entire page table.

Protection. The unit of protection in Aerie is the extent. We store
extents in a radix tree corresponding to the page-table layout. Each
extent consists of a starting address, length, and a 32-bit ACL
identifier. The 30 higher bits represent a group identifier (GID)
and the lowest 2 bits represent the memory protection rights (read,
write). The scm_create_extent API takes a starting address and
length in pages and creates an extent structure. The scm_mprotect_-
extent changes the protection on an extent. Only processes with
write access to a partition can manipulate extents. At run time each
process inherits and maintains the user’s group memberships in a
hash table. On a fault, the manager uses the GID of the extent as a

key in the hash table to quickly decide if the process has access to
the extent.

Changing permissions on an extent is more expensive than
changing permission on a file because permissions must be changed
for all clients of the file system. To avoid synchronously modifying
many page tables, the SCM manager instead invalidates portions
of the page table mapping the affected extents (if they were valid),
and allows them to be faulted back in later. Thus, clients implicitly
communicate with the kernel to reload mappings when protection
changes.

We borrow a technique from single address space operating sys-
tems to handle page faults [14]. When a page fault occurs, the SCM
manager computes a new page table entry from the linear mapping
and the permissions stored in the extent tree. On a processor archi-
tecture with support for separating protection from addressing [37],
only a single page table would be needed.

4.3 Distributed Lock Service

The storage abstraction layer contains two services: distributed
concurrency control and storage objects. We discuss concurrency
first and storage objects in the next section.

We implement distributed concurrency control with a central-
ized lock service executing in the TFS service. The lock service
provides multiple-reader, single-writer locks identified by a 64-bit
identifier. Our implementation derives from prior lock services for
storage systems [55, 32, 60, 26, 27, 40]. However, because our lock
service is intended for a single machine, we do not replicate the ser-
vice for fault tolerance. Aerie does use Linux’s futexes [21] because
it must be able to revoke locks.

Clients access the lock service via a local clerk. When a client
thread requests a lock, the clerk invokes the lock service to acquire
a global lock that synchronizes the client with other processes. The
clerk then issues a local lightweight mutex that client threads use
to synchronize within the process. When another process requests
conflicting access to the lock, the service calls the clerk back to
revoke the lock.

The clerk may hold the lock after a thread releases the local
mutex. It releases the global lock when it has not been used recently
or when the lock service calls back to revoke the lock. If the lock
is in use when a callback arrives, the clerk prevents additional
threads from acquiring the local mutex and releases the global lock
when the local mutex is released. Clients of the lock service are
responsible for preventing deadlocks by ordering or preempting
locks.

Hierarchical locking. Aerie assigns a unique global lock to every
object, such as a collection or mFile. Like a futex, the ID of an
object can be used as the name of a lock [21]. The lock manager
provides three modes for each lock: explicit, meaning the lock
covers only a single object; hierarchical, meaning it covers the
object and its descendants, and intent, meaning that the object is
not locked, but a descendant may be. When acquiring a hierarchical
lock clients can access members of a collection without additional
locks.

The clerk in 1ibFS implements the hierarchical locking logic. If
it holds a hierarchical lock, the clerk answers requests for locks on
descendant objects locally and issues local mutexes. For example,
a client can lock a directory of files using a global lock and then
acquire local mutexes on individual files. The clerk de-escalates in
response to revocations [32]. When another thread requests con-
flicting access to a resource protected by a hierarchical lock, the
clerk will request locks lower in the hierarchy and release the high-
level lock.

Protection. An unresponsive client can deny service to the file
system due to bugs or malicious behavior. This occurs in any sys-

tem with mandatory file locks, such as Windows. Aerie addresses
denial-of-service by attaching a lease to each lock that must be
renewed by the clerk [26]. A client that does not renew its lease
implicitly releases the lock and allows other processes to proceed.
Furthermore, Aerie can limit the number of locks a process may
hold to reduce contention [11].

4.4 Storage Objects

The storage abstraction layer provides objects upon which file
systems can build. The implementation is shared between the TFS
server, which is responsible for writing to objects, and libFS, which
provides read access to objects and write access to object contents.

4.4.1 Data Structures

We provide simple implementations of mFile and collections that is
sufficient to show the use of the abstractions. We use C++ template
polymorphism to decouple the implementation of the interface
from the implementation of layout and consistent updates. Thus,
other implementations are possible with the same interface and
could provide better performance or less space overhead.

Each storage object is identified by a 64-bit integer (a storage
object ID). The six least-significant bits encode the type of the
object and the remaining 58 bits encode the virtual memory address
where the object is stored. This encoding enforces a minimum
object size of 64-bytes and provides 64 different types. As a result,
accessing an object requires no lookup of its address, but it cannot
be relocated in memory. We did not find the lack of relocation to
be an issue in the file systems we implemented. Objects can grow
arbitrarily large without having to be relocated because they are
not linear regions of virtual memory but a structure composed of
multiple extents. Storage objects expose a buffer to store metadata
from the file system interface layer. They are allocated from extents
with other objects sharing the same protection.

Collections. The collection object provides an associative inter-
face for storing key-value pairs. We implement collections as a lin-
ear hash table that is packed into extents. The hash table stores key-
value pairs in which a key is an array of bytes of arbitrary length
and the value field stores a 64-bit storage object ID. When the hash
table fills, we attach additional extents and rehash some existing el-
ements into the new extents. We perform consistent updates using
shadow updates, so new extents are allocated and populated and
then linked into the hash table with a single 64-bit atomic write
to a pointer. We delete items by marking them using a tombstone
key. When the number of tombstones drop below a configurable
threshold, we rehash the live key-value pairs into a new table and
then update the collection’s header to point to the new table with a
single 64-bit atomic write.

mkFile. The mFile object provides access to a range of bytes
starting at a specified offset. We implement the mFiles as radix tree
of indirect blocks that point to fixed-size extents. Larger extents are
broken into pieces when added to the tree.

4.4.2 Protection

The file-system layer assigns protection to a storage object and
the storage layer must propagate that protection to the memory
containing the file objects using the scm mprotect_extent APIL
However, memory and file systems do not have perfectly com-
patible protection models: memory typically grants read or read-
/write access, while files may have write-only access. In addition,
metadata may have semantically richer permissions, such as direc-
tory list and search. The file system interface maps each granted
permission to the protection it enables and each denied permission
to the protection it disables. The granted permissions remaining af-
ter removing denied permissions are then mapped to memory. This
process ensures that permissions requiring conflicting protection

are properly enforced. For example, granting write-only access to
a file allows the write permission, which is enabled by read/write
protection, but disallows the read permission, which prevents read-
only and read/write protection. Thus, the file data would be set to
no-access protection.

The untrusted library can directly access any storage memory
allowed by protection. Since protection is stricter than permissions,
the library calls into the TFS service for any operations allowed by
file system level permissions but prevented by memory protection,
as in the case of write-only files.

4.4.3 Concurrency

The storage layer associates each storage object with a global
lock. Clients acquire the lock in read-mode when they read objects
directly, and in write mode for metadata updates performed by the
TFS. The service verifies that clients hold the appropriate lock on
the object before it performs any updates.

File systems use hierarchical locks by organizing storage ob-
jects in a tree hierarchy through collections. When a client acquires
a hierarchical lock on a collection, it implicitly locks any other stor-
age object accessible through the collection. When using an im-
plicit lock to perform an update, it must prove to the TFS that its
lock covers the object by providing the list of collections between
the locked and mutated object. In addition, the client must obtain
intent locks above the locks it holds to detect conflicts.

When a storage object is a member of multiple collections, such
as a file hard linked to multiple directories, hierarchical locking no
longer works. The classic solution would be to lock each collec-
tion from which the file is accessible [27]. However, this approach
requires finding those collections, which introduces complex book-
keeping. Instead, we follow a novel locking protocol where clients
do not need to lock each collection but instead explicitly lock just
the object. Each object has a membership count that clients use
to detect when explicit locking is needed. The service updates the
membership count when it adds or removes an object from a col-
lection. The transition from hierarchical locks to explicit is safe
because it requires an exclusive lock on both collections, which
prevents concurrent reads.

4.4.4 Integrity

File systems interfaces and the storage layer cooperate to guarantee
the integrity of metadata. The file system interface enforces high-
level invariants, such as ensuring that rename operations do not
cause cycles in the namespace. The storage layer enforces storage-
object invariants, such as ensuring that mFiles map only allocated
extents.

The TFS server performs all modifications to file system objects
in order to prevent clients from violating these invariants. To avoid
frequent synchronous calls to the service for every metadata update,
clients buffer their updates locally in a log that they send to a server
periodically (similar to delayed writes) or when they must release
a global lock.

The log is implemented by the storage abstraction layer and
contains operations from both storage objects and the file system
interface. Each entry has a header identifying the operation, the
identifiers of the objects it modifies, and fields the operation up-
dates. For example, the entry for creating a file has the directory
object, the object ID of the file, and the name of the file. The abil-
ity to log operations from both storage objects and the file system
enable the TFS server to benefit from work done at the client. For
example, when the client logs a file write that requires allocating
new storage, it logs each individual storage extent it pre-allocates
in addition to logging the high-level file operation. The server then
only has to verify each allocation and attach each extent to the file
rather than having to allocate storage, write the data, and then at-
tach the extents to the file.

The server validates a client’s updates before applying them.
First, it validates that messages have a valid structure, correspond
to known operations, and that the operation maintains invariants.
Second, it verifies that the client holds necessary locks and per-
missions. Finally, it performs the operations using redo logging to
survive crashes. Recent work has shown that file-system integrity
constraints can be enforced using fast local checks on the data be-
ing modified [23].

4.4.5 Crash Recovery

The TFS server uses write-ahead logging implemented using a redo
log to atomically perform multiple metadata updates. The server
first logs each metadata update, flushes the log, and issues a fence
to ensure following writes are ordered after the log writes. It then
writes and flushes metadata using wlflush. In case of a crash, the
TFS server can recover by replaying the log of metadata updates.
The server does not need to reacquire locks as updates were written
and ordered in the log with locks held.

4.4.6 Free Space Management

The TFS service implements a buddy storage allocator [35, 36]
to create extents out of a partition. Clients do not allocate storage
directly through the buddy allocator. Instead, libFS pre-allocates a
pool of 1000 collections, 1000 mFiles, and 1000 extents to avoid
contacting the service for create or append operations. The service
maintains a collection that tracks the pre-allocated objects owned
by each client to prevent memory leaks.

5. File Systems Interfaces on Aerie

A major goal of Aerie is to provide a substrate for flexible file-
system design. To demonstrate this capability, we implemented
two file system interfaces. The first, PXFS, shows how to use
the storage abstractions to implement a POSIX-style file system
interface for compatibility with existing code. The second one,
KVES, shows how to optimize the interface for a specific workload.

5.1 PXFS: POSIX-style File System

PXFS provides most POSIX semantics for files and directories,
including moving files across directories, retaining access to open
files after its permissions change or it is unlinked, and permission
checks on the entire path to a file. It does not provide asynchronous
update of timestamps or predictable file-descriptor numbers.

Storage Objects. We implement POSIX storage objects directly
with mFiles and collections. Files are mFiles with page-size extents
and directories are a collection mapping file names to the object IDs
of files and directories. A root collection holds the root directory.
Because the storage layer provides most of the mechanisms to
access file data, the file and directory implementation is small.
PXFS creates a volatile shadow object in the client when opening
a file for write to buffer metadata writes before sending them to the
TES server.

Naming. We implement a hierarchical namespace by organizing
the directory collections into a tree. To create a file within a di-
rectory, a client creates an mFile, acquires a read/write lock on the
directory’s collection, and then inserts the name and mFile’s ob-
ject ID. To atomically rename a file between directories, PXFS ac-
quires read/write locks on old and new directory collections, inserts
a name/file ID pair in the new destination and removes the name/-
file ID from the old collection. Since acquiring multiple locks, may
lead to deadlock, we acquire all the locks in advance and release all
locks if the TFS revokes a lock. Since acquiring read/write locks on
collections forces other clients that hold locks on the collection to
send their modifications to the service, directory updates that hap-
pen near the root directory may be slow.

PXFS supports both absolute and relative path resolution. Abso-
lute paths are resolved starting at the root by recursively acquiring
a read-only lock on each directory collection until the name is re-
solved. Relative paths are resolved starting at the working directory
by recursively acquiring locks up or down the directory hierarchy
to prevent concurrent renames of directories higher up the tree.

File sharing. PXFS supports concurrent file access. When a
client opens a file, it acquires a lock on the file’s mFile, which
it holds until it closes the file. To allow files to be unlinked while
open, the PXFS TFS service maintains a table of open files that
are not locked. If another client requests the lock on an open file,
clients with the file open notify the service that the file is open when
releasing the lock. The service then adds the file into a collection
of currently open files. The client can still obtain explicit locks on
the mFile to read or write data, and when the client terminates or
notifies the service that it has closed the file, the service reclaims
the file’s memory. This design guarantees the client can directly
access the file even if other clients unlink or rename it.

Permission changes are handled similarly: memory protection
is updated synchronously when the permissions change, but pro-
cesses with the file open notify the service. They can then access
the file through the service over RPC. This approach to sharing is
similar to Sprite’s support for consistent read/write sharing [45],
which reverts to sending requests to the server when there are con-
flicting concurrent accesses to a file. As POSIX specifies that per-
missions are enforced along the path to a file (Windows by default
does not), PXFS updates the protection on all objects underneath a
directory when its permissions change.

Discussion. With this design, read-only access to files only com-
municates with the TFS service to acquire locks, and if there are
no conflicting accesses, a coarse grained lock high in the file sys-
tem tree suffices. The client can write to file data locally, including
writing new data to files, but must communicate with the service
for metadata changes such as creating or appending to a file.

We found that supporting POSIX semantics increases the com-
plexity of the implementation. For example, to retain open files that
have been unlinked, clients must communicate with the server to in-
dicate when files are opened or closed. While we chose to provide
this feature to support applications that depend on it, the perfor-
mance cost when files do not need to be cached may be excessive.
For example, many network file systems, such as NFS [50] and
AFS [30], relax consistency semantics.

5.2 KVFS: Key-Value File System

In order to demonstrate how an application can use Aerie’s facil-
ities to improve performance, we designed KVFS to provide a (i)
simple storage model and (ii) a key-value store interface targeting
applications that store many small files in a single directory, such as
an email client or wiki software. Clients have a shared consistent
view to files through a flat key-based namespace and access files
through a simple put/get/erase interface. In addition, all files have
the same permissions. In contrast to PXFS, KVFS does not sup-
port POSIX semantics, such as hierarchical namespace, unlinking
or renaming open files, and multiple names for a file.

KVES files are implemented with mFiles containing a single
extent holding the entire file contents. The mFiles store no other
metadata, such as permissions or access time. The file system does
not have a hierarchical namespace, so all files are stored in a single
collection that maps file names to mFiles. Thus, KVFS and PXFS
use the same memory layout and differ in the policies the interface
layer uses to allocate and synchronize data.

We enable scalable concurrent access to the flat key-based
namespace through hierarchical locks. A single lock covers the
whole collection and multiple locks under the single lock cover

the extents that comprise the hash table of the collection. Each
extent’s lock also covers the files linked from the key-value pairs
stored in the extent. Operations acquire the single collection lock
in intent mode, and then acquire the lock covering the extent where
the key-value pair is stored. Insert and delete operations acquire a
read/write lock while lookups acquire a read lock. When insert or
delete cause a rehash of the table, the rehash operation acquires the
single lock covering the whole collection in read/write mode.

With this design, a client can operate almost entirely without
communication. It can batch requests to pre-create file objects
and allocate extents, and then commit groups of files at once.
Furthermore, the get/put interface opens a file and returns its data
in a single operation, which removes the need to maintain state
about open files in memory. An alternative model to KVFS would
be to implement a key-value store as a single large file, KVFS,
in contrast, enables mutually distrustful programs to concurrently
access and update files, such as for indexing or backup/restore.

6. Evaluation

The goal of Aerie is flexibility and performance. We evaluate per-
formance with a mix of micro- and macrobenchmarks and compare
against traditional and user-mode file systems. In addition, we eval-
uate the benefits of specializing file system design to a workload.

While we have limited experience building file systems for
Aerie, the PXFS and KVFS file systems demonstrate the value of
its layered architecture. Table 2 gives the size of each file system.
For comparison, the ext3 file system in the Linux kernel is 11,663
lines, and the user-mode implementation for Fuse is 18,916 lines.
KVES, with reduced functionality, is only 340 additional lines of
code yet provides synchronized access to files. While neither KVFS
nor PXFS are as full-featured as ext3, their small size demonstrates
the benefit of Aerie’s storage abstractions to flexible file-system
design.

6.1 Methodology

We performed our experiments on a at 2.4GHz Intel Xeon E5645
six-core (twelve thread) machine equipped with 48GB of DRAM
running x86-64 Linux 3.2.2 kernel.

Storage class memory. It is not yet possible to purchase any form
of storage class memory that can be plugged into a commodity
server and accessed from user mode. Instead, we emulate SCM
using DRAM by adding delays to model SCM’s performance,
which has been used by past projects [56, 61, 57].

As phase-change memory (PCM) is the nearest to commer-
cial availability, we base our model on its performance. There is a
wide variety of projections for PCM’s performance, and the spe-
cific design of the memory system can have a great impact on
performance [38]. We limit our model to the most important as-
pect of performance: slow writes. Our model accounts for PCM’s
slower writes relative to DRAM by introducing a delay after each
write. All writes to SCM in Aerie use a macro that allows us to in-
sert a delay. Our model does not account for additional latency on
loads or the effects of memory-system architecture, including cache
evictions and read-after-write bank conflicts, where reads may be
queued behind long writes to the same bank.

We estimated write bandwidth based on projections provided
by Numonyx [19]. All tests add 150ns of extra latency as demon-
strated previously by PCM prototype devices [9, 4] and limit write
bandwidth to 4GB/s. For all our experiments we report averages of
at least five runs.

Workloads. We compare Aerie against three Linux file systems:
RamFS, ext3 and ext3 with FUSE. RamFS uses the VFS page cache
and dentry cache as an in-memory file system. We modified RamFS

Benchmark Latency (us)
RamFS | ext3 | ext3-FUSE | PXFS

Sequential read 0.77 0.83 3.5 0.7
Sequential write 2.1 1.9 18.4 1.5
Random read 1.2 4.5 25.5 1.2
Random write 14 3.8 20.8 1.6
Open 2.0 4.7 127.0 3.7
Create 9.2 1134 2044.5 13.4
Delete 3.1 11.6 227 2.7
Append 54 7.5 25.3 4.0

Table 3. Latency of common file system operations. All read/write
operations use a 4096-byte buffer.

=4—1W/MR - Reads

25
B ~#=1W/MR - Writes
E 20 MW
< MR
E 15
5 10
F=
o
- M
-3
o

0

2 3 4 5
Clients - PXFS

25 =0—=1W/MR - Reads
2 ~#-1W/MR - Writes
> 20 MW
2 —“<MR
I 15
5
S 10
‘5
g 5
[
=3 e |
O 0

2 3 4 5
Clients - ext3

Figure 3. Performance of concurrent clients reading or writing a 4KB
page of the same file. 1W - one writer, MW - multiple writers, and MR
- multiple readers.

to introduce delays when writing data and metadata in the caches
to account for the extra delay of PCM. RamFS does not provide
any consistency guarantees against crashes; thus it serves as a
best-performing kernel-mode file system. To compare against file
systems that provide crash consistency, we constructed an emulator,
SCM-disk, for a PCM-based block device. Based on Linux’s RAM
disk (brd device driver), SCM-disk introduces delays when writing
a block to limit the effective bandwidth. We mount an ext3 file
system on SCM-disk. In addition, we also configured a user-mode
version of ext3 using FUSE [1] that writes data to SCM-disk. We
use 16GB memory partition for all four configurations.

We wrote our own microbenchmarks that stress specific file
operations. For application-level workloads, we use a modified
version of FileBench [2] that calls through libFS rather than system
calls. Unless otherwise specified, workloads are single threaded.

6.2 Microbenchmark Performance

Individual operations. A prime motivation for Aerie is that direct
access to storage can make user-mode file systems as fast as ones in
the kernel. We evaluate the latency of common file-system opera-
tions. The sequential tests operate on a 1GB file in 4KB blocks, and
the random workloads randomly access 100MB out of a 1GB file
in 4KB blocks. Open/create/delete are measured by opening/creat-
ing/removing 1024 4KB files. Because Aerie batches updates, we
report average latency.

Table 3 shows the latency of common file system operations
on PXFS, RamFS, and both ext3 versions. As expected RamFS

Benchmark Latency (us)

RamFS ext3 ext3-FUSE PXFS
Fileserver 198 (218) | 424 (764) 5324 270 (292)
Webserver 143 (132) | 158(148) 2728 189 (195)
Webproxy 90 (66) 140 (130) 234 86 (64)

Table 4. Average latency and 95-percentile latency (in parentheses) to
complete one workload iteration.

performs consistently better than ext3 except for sequential write.
Writes in RamFS are performed directly to SCM whereas in ext3
they are staged in RAM. PXFS performs close to RamFS for all
operations but create and open, where PXFS latency is 45% and
85% higher respectively. Opening a file takes longer for PXFS be-
cause pathname resolution walks the persistent directory structure
for each path component, and creates a shadow object to buffer
metadata updates. Of the 3.7us to complete an open call, 0.85us
is spent in lookup and 1.5us in creating a shadow. In constrast,
RamFS already has the objects in memory so it only pays the over-
head of looking up directory entries in the dentry cache, which is
highly optimized for lookups. Adding a path-name cache to PXFS
or deferring shadow object creation until the first write can reclaim
much of the performance difference.

Compared with ext3 in the kernel, PXFS is between 15% to
90% faster (average 35%) for all operations. Open is faster for
PXFS because ext3 has to bring the file into the inode cache. PXFS
benefits by not calling into the kernel, which helps all writes and
random reads, and by batching metadata updates for create, delete
and append.

In comparison to Aerie’s performance, user-mode performance
with FUSE was between 5 to 21 times slower for read/write opera-
tions and between 10 to 150 times slower for metadata operations,
largely due to the extra context switches and data copies necessary
to invoke the file-system service. Aerie provides a flexible means
of implementing file systems with high performance.

We separately measure the cost of changing file permissions.
The TFS server asks the SCM manager to change memory protec-
tion on pages storing the file with the scm_mprotect_extent. If a
page has been referenced and is in a page table, the SCM manager
shoots down the page from the TLB and invalidates its page table
entries. Changing protection takes 3.3 s per page that has been ref-
erenced, most of which is TLB shootdowns time. For large files, it
may be faster to flush the entire TLB.

Sharing. Due to the lack of workloads that exhibit sharing be-
tween applications, we measure instead the impact of sharing on
our system through a stress microbenchmark. Figure 3 shows the
latency of reading or writing a 4KB page of the same file shared
between multiple concurrent clients in PXFS. As expected, multi-
ple writers exhibit poor performance due to heavy lock contention,
but a single writer with multiple readers degrades read and write
performance only slightly. Running the same microbenchmark on
ext3 shows similar behaviour but with better absolute performance
than PXFS due to in-kernel shared memory locking rather than dis-
tributed locking.

6.3 Application Workload Performance

We evaluate application-level performance with three FileBench
profiles (Fileserver, Webserver, and Webproxy) to exercise different
aspects of the file system. The Fileserver workload emulates file-
server activity and performs sequences of creates, deletes, appends,
reads, and writes. The Webserver workload performs sequences
of open/read/close on multiple files and appends to a log file.
Webproxy performs sequences of create/write/close, open/read/-
close, and delete operations on multiple files in a single directory
plus appends to a log file. Each workload is broken up into individ-
ual iterations, and we report the latency of an iteration. The File-

Benchmark

Throughput (workload iterations/s)
1 2 4

6
Fileserver 3974 | 8532 | 12131 18190
Fileserver+Webproxy | N/A | 6217 | 11784 16200

Table S. Throughput performance of a multiprogrammed workload
with increasing client processes.

server and Webserver benchmark use 10,000 files, mean directory
width of 20, and a IMB I/O size. The mean file size was 128KB for
the Fileserver and 16KB for the Webserver. The Webproxy bench-
mark was run with 1000 files, mean directory width of 1500, mean
file size of 16KB, and 1MB I/O size.

Table 4 shows the average latency to complete one workload
iteration. Compared to RamFS, PXFS is 35% slower for Fileserver
and Webserver, but matches the performance of Webproxy. The
microbenchmark results in Table 3 explains much of these results.
Additionally, the Fileserver workload uses larger writes (128KB)
than the microbenchmarks (4KB), which ammortize the cost of
entering the kernel and lead to 25% better performance than PXFS.

Webserver is a read-mostly workload (opens/read/close) to
small files. RamFS performs better because of the lower latency
to open a file (60% lower) due to in-memory caching of directory
entries. In contrast, PXFS has no caching and must re-walk per-
sistent structures on every access. PXFS matches the performance
of RamFS on Webproxy because there is only a single directory
lookup.

Compared to ext3, which in constrast to RamFS provides crash
consistency, PXFS achieves 36% and 39% lower latency for the
Fileserver and Webproxy workloads. Both workloads have a large
fraction of file creates and deletes, writes, and random access,
for which PXFS is substantially faster than ext3. For Fileserver,
the large performance improvement comes from PXFS’s better
write performance for writes (103us vs 220us) and 70% faster
deletes (19us vs 62us). The Webserver workload, though, is almost
entirely sequential data reads and performs worse on PXFS for the
same reasons that PXFS performs worse than RamFS.

A large benefit for PXFS comes from batching, which is not
possible in ext3 because the kernel releases locks before return-
ing to usermode. We found the average optimum batch size for our
workloads to be 8MB. As shown in Table 4, batching for PXFS af-
fects latency variance only slightly, with 95-percentile latency only
slightly higher than average latency. The exception is Webproxy
where the 95-percentile is lower due to a single outlier pulling the
average up. Note that the other file systems show similar outlier
effects, even without batching.

6.4 Client and Server Scalability

The preceding results evaluated single-threaded performance. First
we evaluate the effect of having multiple threads in the client. Fig-
ure 4 shows throughput (workload iterations per second) for our
three workloaads as we vary the number of threads in a single client
process. For Fileserver, PXFS achieves better scalability than ext3
and doubles throughput when going from 1 to 6 threads. For the
other two workloads, Webserver and Webproxy, PXFS throughput
does not increase because of single-lock bottlenecks. (1) For Web-
server, we see increased contention (20% of total runtime) for an in-
ternal lock in the storage object implementation. (2) For Webproxy,
we see contention (22% of total runtime) for the lock covering the
single directory. With extra effort, both locks can be split into mul-
tiple fine-grained locks to remove this contention.

RamFS presents near-linear scalability for all three workloads
primarily because it does not have to write to a journal, which
becomes a scalability bottleneck for ext3 (5% for 1 thread vs. 30%
for 4 threads of total run time is spent in journaling). RamFS also
benefits from scalable RCU synchronization for directory lookups.

We evaluate the scalabilty of the TFS server by running two
multiprogrammed workloads: (1) multiple single-threaded File-
server instances, and (2) Fileserver+Webproxy, which runs an equal
number of Fileserver and Webproxy instances. We do not consider
Webserver; as a read-mostly workload it does not put much pres-
sure on the server. We configured each client to operate in a differ-
ent directory to avoid contention between clients due to locking.

Table 5 shows the aggregrate throughput of both tests and sug-
gests that both workloads can scale well (3x speedup for 4 clients).
This is because multiple threads in the TFS server can perform
metadata updates concurrently under different parts of the names-
pace due to hierarchical locks. The server CPU utilization increases
from 24% for 1 client to 72% for 4 clients.

6.5 Workload-Specific Performance

A key motivator for Aerie is the ability to create workload-specific
file system interfaces. We compare the performance of KVFS
with a get/put interface in a single directory against PXFS for the
Webproxy workload, whose usage fits the KVFS interface. We
modified the Webproxy workload by converting the create-write-
close file sequence to a put operation, open-read-close file to a get
operation and delete to an erase operation. We convert the append
to a get/modify/put sequence.

Figure 4 shows the performance of KVFS for the Webproxy
workload. For a single thread, KVFES is 86% faster tham RamFS
and 79% faster than PXFS. With six threads, it is 30% faster
tham RamFS and 415% faster than PXFS. With a single thread,
the biggest benefit comes from using a get/put interface instead
of open/read/write/close. With the standard interface, PXFS must
create a temporary in-memory object representing an open file
and record the file offset on every read. With get/put, KVFS can
locate the file in memory and copy it directly to an application
buffer. With multiple threads, the performance benefit comes from
using multiple locks within a single directory, which alleviates the
scalability limitations of PXFS. In addition, data access is faster
with KVFS because it stores files in a single extent rather than using
a radix tree of multiple extents. Thus, getting or putting data is a
single memcpy operation.

7. Related Work

Our work touches and benefits from a wide scope of previous work.
Below we discuss and draw connections to classes of previous work
we feel are most-closely related.

File systems for SCM. There have been several prior projects in-
vestigating the integration of storage-class memory into file sys-
tems. Initially cast as non-volatile RAM (NVRAM), these mem-
ories can be used as persistent write buffers to reduce the latency
of writing data [29], or to hold frequently changing metadata and
small files [42, 59]. However, the fundamental file system and stor-
age architecture are left unchanged. More recently, the BPFS file
system leverages SCM’s properties to provide strong reliability
guarantees and better performance over traditional file systems [16]
while SCMES utilizes the existing memory management module in
the operating system to remove block management from the file
system [61]. However, both designs provide no direct access to
storage from user mode and no flexibility in file system interface
and organization. The Moneta-D system makes a first step towards
direct user-mode access by bypassing the kernel for data access.
However, metadata operations critical to small-file access still re-
quire the kernel, and direct access is not exploited for file system
flexibility.

Distributed file systems. Our architecture has been influenced by
distributed file system designs and naturally bears many similarities

30

25

20

Iteration throughput in
thousands

Threads - Fileserver

3

, /: 40
7 7 15 , /"

S

Threads - Webserver

60
/J/- 50

30

4 5 6 1 2 3 4 5 6
Threads - Webproxy

Figure 4. Throughtput performance (workload iterations per second) as a function of the number of threads in a single client.

to them. Coda [34], Farsite [3] and Ivy [43] distribute file system
functionality to untrusted clients, and reintegrate clients’ changes
to the file system by verifying and replaying operations previously
written to a log. Previous work on distributed file systems provided
direct access to block storage over the network to improve perfor-
mance and scalability [5, 18, 25, 55, 39]. Aerie applies similar tech-
niques to a local setting and must work with the fixed memory inter-
face rather than a flexible software interface to storage. Similar to
KVFS, many distributed file systems relax file system consistency
semantics for improved performance [30, 50].

File system structure. Several projects have explored build-
ing file systems on primitives higher than the block abstraction.
ZFS [10], object-based storage devices (OSD) [25] and the log-
ical disk [17] all expose groups of blocks and atomic operations.
While ZFS collects block storage under a transactional object store,
OSDs push the object functionality into the storage device itself in-
stead. Boxwood [40] explored fault-tolerant data structures such
as fault-tolerant B-tree as the fundamental storage infrastructure
for building distributed file or other storage systems. Aerie sim-
ilarly exposes primitive structures, mFiles and collections, to the
file system interface layer.

User-mode access. Exokernel [33] and Nemesis [6] have ex-
plored exposing storage to user-mode for application performance
and flexibility. However, they still maintained protection of the
block device within the kernel, so disk access still required invoking
a kernel-mode device driver. Other attempts to move the file-system
code to user mode have retained the model of a shared file system
that accesses storage through a shared device, such as a network
or disk [41, 1]. Modern DBMS completely bypass the file system
and perform direct I/O to the block device, which however prevents
sharing the block device with other untrusted applications. Finally,
previous work on user-mode networking [58] had recognized the
need for direct protected access to fast network devices to avoid
software-layering overheads.

8. Conclusion

New storage technologies promise high-speed access to storage di-
rectly from user mode. The existing file-system architecture, where
a shared kernel component mediates all access to data, unnecessar-
ily limits performance both by interposing on requests and com-
plicating file system implementation. The Aerie architecture rep-
resents a new design targeting storage-class memory, and reduces
the kernel role to just multiplexing physical memory. As a result,
applications can achieve high performance by optimizing the file
system interface for application needs without changes to complex
kernel code.

References

[1] Fuse: File system in userspace. http://fuse.sourceforge.net.

[2] Filebench benchmark. http://sourceforge.net/apps/
mediawiki/filebench, 2011.

[3] ADYA, A., BOLOSKY, W. J., CASTRO, M., CERMAK, G., CHAIKEN,
R., DOUCEUR, J. R., HOWELL, J., LORCH, J. R., THEIMER, M.,
AND WATTENHOFER, R. P. Farsite: federated, available, and reliable
storage for an incompletely trusted environment. In OSDI 5 (Dec.
2002).

AHN, S., SONG, Y., JEONG, C., SHIN, J., FAL, Y., HWANG, Y.,
LEE, S., RYoo, K., LEE, S., PARK, J., HORIL, H., HA, Y., YL, J.,
KuH, B., KoH, G., JEONG, G., JEONG, H., KiMm, K., AND RYU, B.
Highly manufacturable high density phase change memory of 64mb
and beyond. In Electron Devices Meeting, 2004. IEDM Technical
Digest. IEEE International (dec. 2004), pp. 907 — 910.

[5] ANDERSON, D., CHASE, J., AND VAHDAT, A. Interposed request
routing for scalable network storage. In OSDI 4 (Oct. 2000).

[6] BARHAM, P. R. A fresh approach to file system quality of service. In
NOSSDAV (May 1997).

[71 BAUMANN, A., BARHAM, P., DAGAND, P.-E., HARRIS, T.,
IsAAcs, R., PETER, S., ROSCOE, T., SCHUPBACH, A., AND
SINGHANIA, A. The multikernel: a new OS architecture for scalable
multicore systems. In SOSP 22 (Oct. 2009).

BEAVER, D., KUMAR, S., L1, H. C., SOBEL, J., AND VAJGEL, P.
Finding a needle in Haystack: Facebook’s photo storage. In OSDI 9
(Oct. 2010).

BEDESCHI, F., RESTA, C., KHOURI, O., BUDA, E., COSTA, L.,
FERRARO, M., PELLIZZER, F., OTTOGALLI, F., PIROVANO, A.,
Tosi, M., BEZ, R., GASTALDI, R., AND CASAGRANDE, G. An
8Mb demonstrator for high-density 1.8V phase-change memories. In
VLSI Circuits, Symposium on (June 2004).

BONWICK, J., AHRENS, M., HENSON, V., MAYBEE, M., AND
SHELLENBAUM, M. The zettabyte file system. Technical report, Sun
Microsystems, 2002.

[11] BURROWS, M. The Chubby lock service for loosely-coupled
distributed systems. In OSDI 7 (Nov. 2006).

[12] CAULFIELD, A. M., DE, A., COBURN, J., MOLLOW, T. I., GUPTA,
R. K., AND SWANSON, S. Moneta: A high-performance storage array
architecture for next-generation, non-volatile memories. In MICRO
43 (Dec. 2010).

[13] CAULFIELD, A. M., MoLLov, T. 1., EISNER, L. A., DE, A,
COBURN, J., AND SWANSON, S. Providing safe, user space access
to fast, solid state disks. In ASPLOS 17 (Mar. 2012).

[14] CHASE, J. S., LEVY, H. M., FEELEY, M. J., AND LAZOWSKA,
E. D. Sharing and protection in a single-address-space operating
system. ACM TOCS 12, 4 (Nov. 1994), 271-307.

[15] COBURN, J., CAULFIELD, A. M., AKEL, A., GRUPP, L. M.,
GUPTA, R. K., JHALA, R., AND SWANSON, S. NV-Heaps: making
persistent objects fast and safe with next-generation, non-volatile
memories. In ASPLOS 16 (Mar. 2011).

[16] CoNDIT, J., NIGHTINGALE, E. B., FroOST, C., IPEK, E., LEE,
B., BURGER, D., AND COETZEE, D. Better I/O through byte-
addressable, persistent memory. In SOSP 22 (Oct. 2009).

[17] DE JONGE, W., KAASHOEK, M. F., AND HSIEH, W. C. The logical
disk: a new approach to improving file systems. In SOSP 14 (Dec.

[4

=

[8

[t

[9

—

[10]

1993).

[18] DEBERGALIS, M., CORBETT, P., KLEIMAN, S., LENT, A.,
NOVECK, D., TALPEY, T., AND WITTLE, M. The direct access
file system. In FAST 2 (Mar. 2003).

[19] DOLLER, E. Phase change memory and its impacts on memory hier-
archy. http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.
pdf, 2009.

[20] DOVECOT. Mailbox formats.
MailboxFormat/.

[21] DREPPER, U. Futexes are tricky. www.akkadia.org/drepper/
futex.pdf, 2005.

[22] FREITAS, R. F., AND WILCKE, W. W. Storage-class memory:
the next storage system technology. IBM Journal of Research and
Development 52, 4 (2008), 439-447.

[23] FRYER, D., SUN, K., MAHMOOD, R., CHENG, T., BENJAMIN,
S., GOEL, A., AND BROWN, A. D. Recon: Verifying file system
consistency at runtime. In FAST 10 (Feb. 2012).

[24] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google file
system. In SOSP 19 (Oct. 2003).

[25] GIBSON, G. A., ROCHBERG, D., ZELENKA, J., NAGLE, D. F. .,
AMIRI, K., CHANG, F. W., FEINBERG, E. M., OFF, H. G., LEE,
C., OZCERI, B., AND RIEDEL, E. File server scaling with network-
attached secure disks. In SIGMETRICS 1997 (June 1997), pp. 272—
284.

GRAY, C., AND CHERITON, D. Leases: an efficient fault-tolerant
mechanism for distributed file cache consistency. In SOSP 12 (Dec.
1989).

GRAY, J. N, LORIE, R. A., PUTZOLU, G. R., AND TRAIGER, I. L.
Granularity of locks and degrees of consistency in a shared data base.
In Readings in database systems. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1988, pp. 94-121.

HARTER, T., DRAGGA, C., VAUGHN, M., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. A file is not a file:
understanding the I/O behavior of Apple desktop applications. In
SOSP 23 (Oct. 2011), pp. 71-83.

[29] HiTZ, D., LAU, J., AND MALCOLM, M. File system design for an
nfs file server appliance. Tech. Rep. TR 3002, NetApp, 2005.

[30] HOWARD, J. H., KAZAR, M. L., MENEES, S. G., NICHOLS, D. A.,
SATYANARAYANAN, M., SIDEBOTHAM, R. N., AND WEST, M. J.
Scale and performance in a distributed file system. ACM Transactions
on Computer Systems 6, 1 (Feb. 1988), 51-81.

[31] HUAL Y. Spin-transfer torque mram (STT-MRAM): Challenges and
prospects. AAPPS Bulletin 18, 6 (Dec. 2008), 33—40.

[32] JosHI, A. M. Adaptive locking strategies in a multi-node data sharing
environment. In VLDB 17 (Sept. 1991).

[33] KAASHOEK, M. F., ENGLER, D. R., GANGER, G. R., BRICENO,
H. M., HUNT, R., MAZIERES, D., PINCKNEY, T., GRIMM, R.,
JANNOTTI, J., AND MACKENZIE, K. Application performance and
flexibility on exokernel systems. In SOSP 16 (Oct. 1997).

[34] KISTLER, J. J., AND SATYANARAYANAN, M. Disconnected
operation in the Coda file system. ACM Transactions on Computer
Systems 10 (Feb. 1992), 3-25.

[35] KNOWLTON, K. C. A fast storage allocator. Communications of ACM
8, 10 (Oct. 1965), 623-624.

[36] KNUTH, D. The art of computer programming volume 1: Fundamen-
tal algorithms. Addison-Wesley, Reading, MA.

[37] KOLDINGER, E. J., CHASE, J. S., AND EGGERS, S. J. Architecture
support for single address space operating systems. In ASPLOS 5
(Oct. 1992).

[38] LEE, B. C., IPEK, E., MUTLU, O., AND BURGER, D. Architecting
phase-change memory as a scalable DRAM alternative. In ISCA 36
(June 2007).

[39] LEE, E. K., AND THEKKATH, C. A. Petal: distributed virtual disks.
In ASPLOS 7 (Oct. 1996).

[40] MACCORMICK, J., MURPHY, N., NAJORK, M., THEKKATH, C. A.,

http://wiki.dovecot.org/

[26]

[27

[28

AND ZHOU, L. Boxwood: Abstractions as the foundation for storage
infrastructure. In OSDI 6 (Dec. 2004).

[41] MAZIERES, D. A toolkit for user-level file systems. In USENIX ATC
(June 2001).

[42] MILLER, E., BRANDT, S., AND LONG, D. HeRMES: High-
performance reliable MRAM-enabled storage. In HotOS 8 (May
2001).

[43] MUTHITACHAROEN, A., MORRIS, R., GIL, T. M., AND CHEN, B.
Ivy: a read/write peer-to-peer file system. In OSDI 5 (Dec. 2002).

[44] NARAYANAN, D., AND HODSON, O. Whole-system persistence. In
ASPLOS 17 (Mar. 2012).

[45] OUSTERHOUT, J. K., CHERENSON, A. R., DOUGLIS, F., NELSON,
M. N., AND WELCH, B. B. The Sprite network operating system.
IEEE Computer 21 (Feb. 1988), 23-36.

[46] OUYANG, X., NELLANS, D. W., WIPFEL, R., FLYNN, D., AND
PANDA, D. K. Beyond block I/0O: Rethinking traditional storage
primitives. In HPCA 17 (Feb. 2011), pp. 301-311.

[47] QURESHI, M. K., MICHELE, J. K., FRANCESCHINI, SRINIVASAN,
V., LASTRAS, L., AND ABALI, B. Enhancing lifetime and security of
PCM-Based. main memory with start-gap wear leveling. In MICRO
42 (Dec. 2009).

[48] RASHID, R., TEVANIAN, A., YOUNG, M., GOLUB, D., BARON, R.,
BLACK, D., BOLOSKY, W., AND CHEW, J. Machine-independent
virtual memory management for paged uniprocessor and multiproces-
sor architectures. In ASPLOS 2 (Oct. 1987).

[49] REDELL, D. D., DALAL, Y. K., HORSLEY, T. R., LAUER,
H. C., LYNCH, W. C., MCJONES, P. R., MURRAY, H. G., AND
PURCELL, S. C. Pilot: an operating system for a personal computer.
Communications of ACM 23 (Feb. 1980), 81-92.

SANDBERG, R. The Sun network file system: Design, implementation
and experience. In Proceedings of the Summer USENIX Conference
(June 1986).

[51] SCHROEDER, M. D. Cooperation of Mutually Suspicious Subsystems
in a Computer Utility. PhD thesis, Massachusetts Institute of
Technology, 1972.

[52] SELTZER, M., AND MURPHY, N. Hierarchical file systems are dead.
In HotOS 12 (May 2009).

[53] SOARES, L., AND STUMM, M. FlexSC: Flexible system call
scheduling with exception-less system calls. In OSDI 9 (Oct. 2010).

[54] STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., AND
WILLIAMS, R. S. The missing memristor found. Nature 453
(2008), 80-83.

[55] THEKKATH, C. A., MANN, T., AND LEE, E. K. Frangipani: A
scalable distributed file system. In SOSP 16 (Oct. 1997).

[56] VENKATARAMAN, S., TOLIA, N., RANGANATHAN, P., AND
CAMPBELL, R. H. Consistent and durable data structures for non-
volatile byte-addressable memory. In FAST 9 (Feb. 2011).

[57] VoLos, H., TACK, A. J., AND SWIFT, M. M. Mnemosyne:
lightweight persistent memory. In ASPLOS 16 (Mar. 2011).

[58] VON EICKEN, T., BASU, A., BUCH, V., AND VOGELS, W. U-Net: a
user-level network interface for parallel and distributed computing. In
SOSP 15 (Dec. 1995).

[59] WANG, A.-1. A., REIHER, P., POPEK, G. J., AND KUENNING, G. H.
Conquest: Better performance through a disk/persistent-ram hybrid
file system. In USENIX ATC (June 2002).

[60] WILLIAM E. SNAMAN, J., AND THIEL, D. W. The VAX/VMS
Distributed Lock Manager. Digital Technical Journal 1, 5 (Sept.
1987), 29-44.

[61] WU, X., AND REDDY, A. L. N. SCMFS: a file system for storage
class memory. In SC2011 (Nov. 2011).

[62] ZHANG, Y., RAJIMWALE, A., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. End-to-end data integrity for file systems:
a zfs case study. In FAST 8 (Feb. 2010).

[50]

