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ABSTRACT
Hardware devices can fail, but many drivers assume they
do not. When confronted with real devices that misbe-
have, these assumptions can lead to driver or system fail-
ures. While major operating system and device vendors
recommend that drivers detect and recover from hardware
failures, we find that there are many drivers that will crash
or hang when a device fails. Such bugs cannot easily be
detected by regular stress testing because the failures are
induced by the device and not the software load.
This paper describes Carburizer, a code-manipulation tool

and associated runtime that improves system reliability in
the presence of faulty devices. Carburizer analyzes driver
source code to find locations where the driver incorrectly
trusts the hardware to behave. Carburizer identified almost
1000 such bugs in Linux drivers with a false positive rate
of less than 8 percent. With the aid of shadow drivers for
recovery, Carburizer can automatically repair 840 of these
bugs with no programmer involvement.
To facilitate proactive management of device failures, Car-

burizer can also locate existing driver code that detects de-
vice failures and inserts missing failure-reporting code. Fi-
nally, the Carburizer runtime can detect and tolerate inter-
rupt-related bugs, such as stuck or missing interrupts.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability; D.3.4 [Progra-
mming Languages]: Processors

General Terms
Reliability, Design
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Device Drivers, Reliability, Recovery, Debugging, Code Gen-
eration
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1. INTRODUCTION
Reliability remains a paramount problem for operating sys-
tems. As computers are further embedded within our lives,
we demand higher reliability because there are fewer oppor-
tunities to compensate for their failure. At the same time,
computers are increasingly dependent on attached devices
for the services they provide.
Applications invoke devices through device drivers. The

device and driver interact through a protocol specified by the
hardware. When the device obeys the specification, a driver
may trust any inputs it receives. Unfortunately, devices do
not always behave according to their specification. Some
failures are caused by wear-out or electrical interference [25].
In addition, internal software failures can occur in devices
that execute embedded firmware, sometimes up to millions
of lines of code [50].
Studies of Windows servers at Microsoft demonstrate the

scope of the problem [2]. In one study of Windows servers,
eight percent of systems suffered from a storage or network
adapter failure [2]. Many of these failures are transient:
hardware vendors repeatedly report that the majority of re-
turned devices operate correctly and retrying an operation
often succeeds [1, 3, 31]. In total, 9% of all unplanned re-
boots of servers at Microsoft during a separate study were
caused by adapter or hardware failures. Most importantly,
when running platforms with the same adapters and soft-
ware that tolerates hardware faults, reported device failures
rates drop from 8 percent to 3 percent [2]. This evidence
suggests that (1) device failure is a major cause of system
crashes, (2) transient device failures are common, and (3)
drivers that tolerate device failures can improve reliability.
Without addressing this problem, the reliability of operat-
ing systems is limited by the reliability of devices.
Device hardware failures cause system hangs or crashes

when drivers cannot detect or tolerate the failure. The Linux
kernel mailing list contains numerous reports of drivers wait-
ing forever and reminders from kernel experts to avoid in-
finite waits [26]. Nevertheless, this code persists. For ex-
ample, the code below from the 3c59x.c network driver in
the Linux 2.6.18.8 kernel will loop forever if the device never
returns the right value:

while (ioread16(ioaddr + Wn7_MasterStatus))
& 0x8000)

;

To address this problem, major OS vendors have issued
recommendations on how to harden drivers to device fail-
ures [16, 41, 20]. These recommendations include validating



all inputs from a device, ensuring that all code waiting for
a device will terminate, and reporting all hardware failures.
Despite these recommendations, we found that a large num-
ber of Linux drivers do not properly tolerate hardware fail-
ures. We see two reasons for this: (1) testing drivers against
hardware failures is difficult, and (2) hardening drivers by
hand is challenging. Common testing procedures, such as
stress testing, will not detect failures related to hardware.
Instead, fault-injection testing is required [2, 17, 52]. Un-
like other software testing, device drivers require that an
instance of the device be present, which limits the number
of machines that can run tests.
Previous work on driver fault tolerance has concentrated

on two major approaches: static bug finding [4, 6, 12, 32]
and run-time fault tolerance [48, 46, 18, 51, 44]. Static ap-
proaches check for bugs in the interface between the driver
and the kernel to ensure that the driver does not violate
kernel-programming rules, such as by failing to release a
lock. But, these tools do not verify that the driver validates
inputs received from the device.
Systems that tolerate faults at run time, such as Safe-

Drive [51] and Nooks [44], either instrument driver code or
execute it in an isolated environment. These systems detect
faults, including hardware-induced faults, dynamically and
trigger a recovery mechanism. However, these systems have
had limited deployment, perhaps due to the heavyweight
nature of the solution.
This paper presents Carburizer,1 a code-manipulation tool

and associated runtime that automatically hardens drivers.
A hardened driver is one that can survive the failure of its
device and if possible, return the device to its full function.
Carburizer implements three major hardening recommen-
dations: (1) validate inputs from the device, (2) verify de-
vice responsiveness, and (3) report hardware failures so that
an administrator can proactively manage the failing hard-
ware [2, 16, 20, 41].
Carburizer analyzes driver code to find where it accepts

input from the device. If the driver uses device data with-
out checking its correctness, Carburizer modifies the driver
to insert validation code. If the driver checks device data
for correctness, Carburizer inserts code to report a failure
if the data is incorrect. Finally, the Carburizer runtime de-
tects stuck interrupts and non-responsive devices and causes
the driver to poll the device. To automatically repair bugs,
Carburizer also invokes a generic recovery service that can
reset the device. We rely on shadow drivers [43] to provide
this recovery service.
Despite the common application of static analysis tools to

the Linux kernel [9], Carburizer uncovers a large number of
problems. Carburizer identified 992 bugs in existing Linux
drivers where a hardware failure may cause the driver to
crash or hang. With manual inspection of a random sub-
set, we determined that the false positive rate is 7.4%, for
approximately 919 true bugs found. Discounting for false
positives, Carburizer repairs approximately 845 real bugs
by inserting code to detect hardware failures and recover at
runtime. When run with common I/O workloads, drivers
modified by Carburizer perform similarly to native drivers.
In the remainder of this paper, we first discuss hardware

failures and OS vendor guidelines for hardening drivers. We
then present the three major functions of Carburizer in Sec-

1Carburizing is a process of hardening steel through heat
treatment.

tions 3, 4 and 5. Section 6 presents the overhead of our code
changes, and we finish with related work in Section 7 and
conclusions.

2. DEVICE HARDWARE FAILURES
In this section, we describe the problem of hardware device
failures and vendor recommendations on how to tolerate and
manage device failures.

2.1 Failures Types
Modern CMOS devices are prone to internal failures and
without significant design changes, this problem is expected
to worsen as transistors shrink. Prior studies indicate that
these devices experience transient bit-flip faults, where a sin-
gle bit changes value; permanent stuck-at faults, when a bit
assumes a fixed value for an extended period; and bridging
faults when an adjacent pair of bits are electrically mated,
causing a logical-and or logical-or gate between the bits [47,
25]. Environmental conditions such as electromagnetic inter-
ference and radiation can cause transient faults. Wear-out
and insufficient burn-in may result in stuck-at and bridging
faults in the devices.
In addition, when a device contains embedded firmware,

or even an embedded operating system [50], any software-
related failure is possible, such as out-of-resource errors from
memory leaks or concurrency bugs.

Failure manifestations.
Device drivers observe failures when they access data gen-
erated by the device. For PCI drivers, which perform I/O
through memory or I/O ports, the driver reads incorrect
values from the device. For USB drivers, which use a re-
quest/response protocol, a device failure may cause a re-
sponse packet to contain incorrect data [25]. Sources at
Microsoft report that device hangs and interrupt storms are
common manifestations of faulty hardware [14].
Many hardware failures are likely to manifest as corrupt

values in device registers. A single bit-flip internal to a de-
vice controller may propagate to other internal registers be-
fore the device driver reads a garbled value exposed through
a device register. Similarly, an internal stuck-at failure may
result in a transient corruption in a device register, a stuck
value in a register, a stuck interrupt request line, or un-
predictable DMA accesses. Bugs in device firmware may
manifest as incorrect output values or timing failures, when
a device does not respond within the specified time period.

2.2 Vendor Recommendations
Major OS vendors provide recommendations to driver writ-
ers on how to tolerate device failures [2, 16, 20, 41]. Table 1
summarizes the recommendations of Microsoft, IBM, Intel,
and Sun on how to prevent faulty hardware from causing
system failures. The advice can be condensed to four major
actions:

1. Validate. All input from a device should be treated as
suspicious and validated to make sure that values lie
within range.

2. Timeout. All interaction with a device should be sub-
ject to timeouts to prevent waiting forever when the
device is not responsive.



Validation
Input validation. Check pointers, array indexes, packet
lengths, and status data received from hardware [41, 16,
20]. F
Unrepeatable reads. Read data from hardware once. Do
not reread as it may be corrupt later [41]
DMA protection. Ensure that the device only writes to
valid DMA memory [41, 20]
Data corruption. Use CRCs to detect data corruption if
higher layers will not also check [41, 20]
Timing
Infinite polling. Ensure that spinning while waiting on the
hardware can time out, and bound all loops [41, 20, 16]. F
Stuck interrupts. Handle interrupts that cannot be dis-
missed [17, 41] F
Lost request. Use a watchdog to verify hardware respon-
siveness [2, 16] F
Excessive delay. Avoid delaying the OS, busy waiting, and
holding locks for extended periods [2, 16]
Unexpected events. Handle out-of-sequence events [20, 16]

Reporting
Report hardware failures. Notify the operating system of
errors, log all useful information [2, 16, 20, 41] F
Recovery
Handle all failures. Handle error conditions, including

generic and hardware-specific errors [2, 16, 41] F
Cleanup properly. Ensure the driver cleans up resources
after a fault [41, 20] F
Conceal failure. Hide recoverable faults from applica-

tions [16] F
Do not crash. Avoid halting the system [2, 16, 20, 34] F
Test drivers. Test driver using fault injection [52, 17, 20]
Wrap I/O memory access. Use only wrapper functions to
perform programmed/memory-mapped I/O [41, 20, 34]

Table 1: Vendor recommendations for hardening drivers

against hardware failures. Recommendations addressed

by Carburizer are marked with a F.

3. Report. All suspect behavior should be reported to an
OS service, allowing centralized detection and manage-
ment of hardware failures.

4. Recover. The driver should recover from any device
failure, if necessary by restarting the device.

The goal of our work is to automatically implement these
recommendations. First, we seek to make drivers tolerate
and recover from device failures, so device failures do not
lead to system failures. For this aspect of our work, we focus
on transient failures that do not recur after the device is
reset. Second, we seek to make drivers report device failures
so that administrators learn of transient failures and can
proactively replace faulty devices.
Carburizer addresses all four aspects of vendor recommen-

dations described above. Section 3 addresses bugs that can
be found through static analysis, including infinite polling
and input validation. Section 4 addresses reporting hard-
ware failures to a centralized service. Section 5 addresses
runtime support for tolerating device failures, including re-
covery, stuck interrupts, and lost requests. The recommen-
dations that Carburizer can apply automatically are marked
in Table 1. The remaining recommendations can be ad-
dressed with other techniques, such as an IOMMU for DMA
memory protection, or cannot be applied without semantic
information about the device.
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Figure 1: The Carburizer architecture. Existing kernel

drivers are converted to hardened drivers and execute

with runtime support for failure detection and recovery.

3. HARDENING DRIVERS
This section describes how Carburizer finds and fixes infinite
polling and input validation bugs from Table 1. These are
hardware dependence bugs that arise because the software
depends on the hardware’s correctness for its own correct-
ness. The goal of our work is to (1) find places where driver
code uses data originating from a device, (2) verify that the
driver checks the data for validity before performing actions
that could lead to a crash or hang, and if not, (3) automat-
ically insert validity or timing checks into the code. These
checks invoke a generic recovery mechanism, which we de-
scribe in Section 5. When used without a recovery service,
Carburizer identifies bugs for a programmer to fix.
Figure 1 shows the overall architecture of our system. Car-

burizer takes unmodified drivers as input and with a set of
static analyses produces (1) a list of possible bugs and (2)
a driver with these bugs repaired, i.e. drivers that validate
all input coming from hardware before using it in critical
control or data flow paths. The Carburizer runtime detects
additional hardware failures at runtime and can restore func-
tionality after a hardware failure.
We implement Carburizer with CIL [30]. CIL reads in pre-

processed C code and produces an internal representation of
the code suitable for static analysis. Tools built with CIL
can then modify the code and produce a new pre-processed
source file as output.
We next describe the analyses for hardening drivers in

Carburizer and our strategies for automatically repairing
these bugs. We experiment with device drivers from the
Linux 2.6.18.8 kernel.

3.1 Finding Sensitive Code
Carburizer locates code that is dependent on inputs from
the device. When a driver makes a control decision, such
as a branch or function call, based on data from the device,
the control code is sensitive because it is dependent on the
correct functioning of the device. If code uses a value origi-
nating from a device in an address calculation, for example
as an array index, use of the address is dependent on the
device. Carburizer finds hardware-dependent code that is
incorrect for some device inputs.
Carburizer’s analyses are performed in two passes. The

first pass is common to all analyses and identifies variables
that are tainted, or dependent on input from the device. Car-
burizer consults a table of functions known to perform I/O,
such as readl for memory-mapped I/O or inb for port I/O.
Initially, Carburizer marks all heap and stack variables that
receive results from these functions as tainted. Carburizer
then propagates taint to variables that are computed from



1 static int amd8111e_read_phy(.......)
2 {
3 .
4 reg_val = readl(mmio + PHY_ACCESS);
5 while (reg_val & PHY_CMD_ACTIVE)
6 reg_val = readl( mmio + PHY_ACCESS );
7 .
8 }

Figure 2: The AMD 8111e network driver (amd8111e.c)

can hang if the readl() call in line 6 always returns the

same value.

or aliased to the tainted variables. Carburizer considers the
static visibility of variables but does not consider possible
calling contexts. For compound variables such as structures
and arrays, the analysis is field insensitive and assumes that
the entire structure is tainted if any field contains a value
read from the device. We find that in practice this occurs
rarely, and therefore yields a simpler analysis that is almost
as precise as being sensitive to fields.
The output of the first pass is a table containing all vari-

ables in all functions indicating if the variable is tainted.
Carburizer also stores a list of tainted functions that return
values calculated from device inputs. The table from the
first pass is used by second-pass analyses described below.

3.1.1 Infinite Polling
Drivers often wait for a device to enter a given state by
polling a device register. Commonly, the driver sits in a
tight loop reading the device register until a bit is set to the
proper value, as shown in Figure 2. If the device never sets
the proper value, this loop will cause the system to hang.
Driver developers are expected to ensure these loops will
timeout eventually. We find, though, that in many cases
device drivers omit the timeout code and loops terminate
only if the device functions correctly.
To identify these unbounded loops, we implement an anal-

ysis to detect control paths that wait forever for a particular
input from the device. Carburizer locates all loops where
the terminating conditions are tainted (i.e., dependent on
the device). For each loop, Carburizer computes the set of
conditions that cause the loop to terminate through while

clauses as well as conditional break, return and goto state-
ments. If all the terminating conditions for a loop are hard-
ware dependent, the loop may iterate infinitely when the
device misbehaves. Figure 2 shows a bug detected by our
analysis. The code in lines 5-6 can loop infinitely if readl,
a function to read a device register, never returns the cor-
rect value. While this is a simple example, our analysis can
detect complex cases, such as loops that contain case state-
ments or that call functions performing I/O.

3.1.2 Checking Array Accesses
Many drivers use inputs from a device to index into an array.
When the range of the variable (e.g., 65536 for a short) is
larger than the array, an incorrect index can lead to reading
an unmapped address (for large indices) or corrupting adja-
cent data structures. Figure 3 shows a loop in the Pro Audio
sound driver (pas2 card.c) that does not check for bounds
while accessing an array. While many drivers always check
array bounds, some drivers are not as conscientious. Fur-
thermore, a single driver may be inconsistent in its checks.

1 static void __init attach_pas_card(...) {
2 .
3 if ((pas_model = pas_read(0xFF88)))
4 {
5 char temp[100];
6

7 sprintf(temp,
8 "%s rev %d",
9 pas_model_names[(int) pas_model],

10 pas_read(0x2789));
11 .
12 }

Figure 3: The Pro Audio Sound driver (pas2 card.c)

uses the pas_model variable as an array index in line 9

without any checks.

1 static void orc_interrupt(...) {
2 .
3 bScbIdx = ORC_RD(hcsp->HCS_Base,
4 ORC_RQUEUE);
5

6 pScb = (ORC_SCB * ) ((ULONG)
7 hcsp->HCS_virScbArray
8 + (ULONG)
9 (sizeof(ORC_SCB) * bScbIdx));

10

11 pScb->SCB_Status = 0x0;
12

13 inia100SCBPost((BYTE * )
14 hcsp, (BYTE * ) pScb);
15 .
16 }

Figure 4: The pScbIdx variable is used in pointer arith-

metic in line 11 without any check in the a100 SCSI

driver (a100u2w.c).

We implement an analysis in Carburizer to determine wheth-
er tainted variables are used as array indices in static arrays.
If the array is accessed using a tainted variable, Carburizer
flags the access as a potential hardware dependence bug.
The analysis can detect when values returned by one func-
tion are used as array indices in another. In addition, when
an array index is computed from multiple variables, Carbur-
izer checks whether all the input variables are untainted.
Carburizer also detects dynamic (variable-sized) array de-

referencing with tainted variables. CIL converts all dynamic
array accesses into pointer arithmetic and memory derefer-
encing, so it requires a separate analysis from static arrays
(those declared as arrays with a fixed size). In the second
analysis pass, Carburizer detects whether a tainted variable
is used for pointer arithmetic or as the address of a memory
dereference. In both cases, Carburizer detects a potentially
unsafe memory reference. We report a bug where the pointer
arithmetic is performed rather than where a dereference oc-
curs; this is the location where a bounds check is required,
as the offset may not be available when memory is actually
dereferenced. If the pointer is never used, this may result in
a false positive.
Figure 4 shows driver code where unsafe data from device

is used for pointer arithmetic. At line 3, bScbIdx is assigned
value from the ORC_RD macro, which reads a 32-bit value from
the device. At line 9, this value is used as an offset for pointer
pScb. If a single bit of the incoming data is flipped, the
pointer dereference in line 11 could cause memory corruption
or, if the address is unmapped, a system crash.



1 void hptiop_iop_request_callback( ... ) {
2 .
3 p = (struct hpt_iop_cmd __iomem * )req;
4 arg = (struct hi_k * )
5 (readl(&req->context) |
6 ((u64) readl(&req->context_hi32)<<32));
7

8 if (readl(&req->result) == IOP_SUCCESS) {
9 arg->result = HPT_IOCTL_OK;

10 }
11 .
12 }

Figure 5: The HighPoint RR3xxx SCSI driver (hp-

tiop.c) reads arg from the controller in line 5 and deref-

erences it as a pointer in line 9.

While rare, drivers may also read a pointer directly from
a device. Figure 5 shows an example from a SCSI driver
where the driver reads a 64-bit pointer in lines 5 and 6 and
dereferences it in line 9. Carburizer also flags this use of
pointers as a bug.

3.1.3 Removing False Positives
False positives may arise when the driver has a timeout in
a loop or validates input that our analysis does not detect.
From the suspect loops, Carburizer determines whether the
programmer has already implemented a timeout mechanism
by looking for the use of a timeout counter. A timeout
counter is a variable that is (1) either incremented or decre-
mented in the loop, (2) not used as an array index or in
pointer arithmetic, and (3) used in a terminating condition
for the loop, such as a while clause or in an if before a break,
goto, or return statement. If a loop contains a counter, Car-
burizer determines that it will not loop infinitely. We also
detect the use of the kernel jiffies clock as a counter.
False positives for unsafe pointer dereferencing and ar-

ray indexing may occur if the driver already validates the
pointer or index with a comparison to NULL or a shift/-
mask operation on the incoming pointer data from the de-
vice. Carburizer does not flag a bug when these operations
occur between the I/O operation and the pointer arithmetic
or pointer dereference.
Carburizer removes false positives that occur when a taint-

ed variable is used multiple times without an intervening I/O
operation and when a tainted variable is re-assigned with an
untainted value. We keep track of where in the code a vari-
able becomes tainted, and only detect a bug if the pointer
dereference or array index occurs after the taint.
We find that the false positive techniques have been help-

ful. Identifying validity checks and repeated use of a vari-
able reduced the number of detected dynamic-array access
bugs from 650 to 150, and the other techniques further re-
duced it by almost half. For infinite polling, these techniques
identified half the results as false positives where the driver
correctly broke out of the loop.

3.2 Repairing Sensitive Code
Finding driver bugs alone is valuable, but reliability does
not improve until the bug is fixed. After finding a bug, Car-
burizer in many cases can generate a fix. Repairing sensitive
code consists of inserting a test to detect whether a failure
occurred and code to handle the failure. To recover, Car-
burizer inserts code that invokes a generic recovery function
capable of resetting the hardware. While repeating a device

1 static int amd8111e_read_phy(.......)
2 {
3 .
4 unsigned long long delta = (cpu/khz/HZ) * 2;
5 unsigned long long _start = 0;
6 unsigned long long _cur = 0;
7 timeout = rdtscll(start) + delta ;

8 reg_val = readl(mmio + PHY_ACCESS);
9 while (reg_val & PHY_CMD_ACTIVE) {

10 reg_val = readl( mmio + PHY_ACCESS );
11

12 if (_cur < timeout) {
13 rdtscll(_cur);
14 } else {
15 __shadow_recover();
16 }
17 .
18 }

Figure 6: The code from Figure 2 fixed by Carburizer

with a timeout counter.

read operation may fix the bug, this is not safe in general be-
cause device-register reads can have side effects. As recovery
affects performance, we ensure it will not be invoked unless
an unhandled failure occurs and the driver could otherwise
crash or hang.
Carburizer relies on a generic recovery function common

to all drivers. However, some drivers already implement
recovery functionality. For example, the E1000 gigabit Eth-
ernet driver provides a function to shutdown and resume
the driver when it detects an error. For such drivers, it may
be helpful to modify Carburizer to generate code invoking a
driver-specific function instead.

Fixing infinite polling.
When Carburizer identifies a loop where a driver may wait
infinitely, it generates code to break out of the loop after
a fixed delay. We selected maximum delays based on the
delays used in other drivers. For loops that do not sleep,
we found that most drivers wait for two timer ticks before
timing out; we chose five ticks, a slightly longer delay, to
avoid incorrectly breaking out of loops. For loops that invoke
a sleep function such as msleep, we insert code that breaks
out of loops after five seconds, because the delay does not
impact the rest of the system. This is far longer than most
devices require and ensures that if our analysis does raise
false positives, the repair will not break the driver. As shown
in Figure 6, for tight loops Carburizer generates code to read
the processor timestamp counter before the loop and breaks
out of the loop after the specified time delay. When the loop
times out, the driver invokes a generic recovery function.
This repair will only be invoked after a previously infinite
loop times out, ensuring that there will not be any falsely
detected failures.

Fixing invalid array indices.
When array bounds are known, Carburizer can insert code
to detect invalid array indices with a simple bounds check
before the array is accessed. Carburizer computes the size
of static arrays and inserts bounds checks on array indices
when the index comes from the device. When an array index
is used repeatedly, Carburizer only inserts a bounds check
before the first use of the tainted array indice.



1 static void __init attach_pas_card(...)
2 {
3 .
4 if ((pas_model = pas_read(0xFF88)))
5 {
6 char temp[100];
7
8 if ((int )pas_model < 0 ||
9 (int )pas_model >= 5) {

10 __shadow_recover();
11 }
12 sprintf(temp,
13 "%s rev %d",
14 pas_model_names[(int) pas_model],
15 pas_read(0x2789));
16 .
17 }

Figure 7: The code from Figure 3 fixed by Carburizer

with a bounds check.

1 void hptiop_iop_request_callback( ... ) {
2 .
3 p = (struct hpt_iop_cmd __iomem * )req;
4 arg = (struct hi_k * )
5 (readl(&req->context) |
6 ((u64) readl(&req->context_hi32)<<32));
7

8 if (readl(&req->result) == IOP_SUCCESS) {

9 if (arg == NULL)
10 __shadow_recover();
11 arg->result = HPT_IOCTL_OK;
12 }
13 .
14 }

Figure 8: The code from Figure 5 after repair. Carbur-

izer inserts a null-pointer check in line 9.

For dynamically sized arrays, the bound is not available.
Carburizer reports the bug but does not generate a repair.
With programmer annotations indicating where array bounds
are stored [15, 51], Carburizer could also generate code for
dynamic bounds checking.
Figure 7 shows the code from Figure 3 after repair. In

this code, the array size is declared statically and Carburizer
automatically generates the appropriate range check. This
check will only trigger a recovery if the index is outside the
array bounds, so it never falsely detects a failure.
When repairing code that reads a pointer directly from a

device, Carburizer does not know legal values for the pointer.
As result, it only ensures that the pointer is non-NULL.
Unlike other fixes, this only prevents a subset of crashes,
because legal values of the pointer are not known. Figure 8
shows repaired code where data from device is dereferenced.

Fixing driver panics.
Carburizer can also fix driver code that intentionally crashes
the system when hardware fails. Many drivers invoke panic

when they encounter abnormal hardware situations. While
OS vendors discourage this practice, it is used when driver
developers do not know how to recover and ensures that er-
rors do not propagate and corrupt the system. If a recovery
facility is available then crashing the system is not necessary.
Carburizer incorporates a simple analysis to identify calls to
panic, BUG, ASSERT and other system halting functions and
replace them with calls to the recovery function.

3.3 Summary
The static analysis performed by Carburizer finds many bugs
but is neither sound nor complete: it may produce false pos-
itives, and identify code as needing a fix when it is in fact
correct, and false negatives by missing some bugs. Nonethe-
less, we find that it identifies many true bugs.
False positives may occur when the driver already con-

tains a validity check that Carburizer does not recognize.
For example, if the timeout mechanism for a loop is imple-
mented in a separate function, Carburizer will not find it
and will falsely mark the loop as a bug. Carburizer only de-
tects counters implemented as standard integer types. When
drivers use custom data-types, Carburizer does not detect
the counter and again falsely marks the loop as an error.
For array indexing, Carburizer does not consider shift oper-
ations as a validity check because, if the array is not a power
of two in size, some index values will cause accesses past the
end of the array.
False negatives can occur because our interprocedural anal-

ysis only passes taint through return values. When a tainted
variable is passed as an argument, Carburizer does not de-
tect its use as sensitive code. Carburizer also cannot detect
silent failures that occur when the hardware produces a legal
but wrong value, such as in incorrect index that lies within
the bounds of the array.

3.4 Analysis Results
We ran our code across all drivers in the Linux 2.6.18.8
kernel distribution. In total, we analyzed 6359 source files
across the drivers and sound directories. For major driver
classes, Table 2 shows the number of bugs found of each
type. Despite analyzing over 2.8 million lines of code, on a
2.4 GHz Core 2 processor the analysis only takes thirty seven
minutes to run, output repaired source files and compile the
driver files.
The results show that hardware dependence bugs are wide-

spread, with 992 bugs found across various driver classes. Of
these, Carburizer can automatically repair the 903 infinite
loop and static array index bugs. Only the 89 dynamic-array
dereferences require programmer involvement.
We estimate the false positive rate by randomly sampling

bugs and inspecting the code. With weighted sampling
across all classes of bugs, we compute that Carburizer is
able to detect bugs at a false positive rate of 7.4% ± 4.3%
with 95% confidence.For the infinite loop bugs, we inspected
140 cases and found only 5 false positives. In these cases, the
timeout mechanism was implemented in a function separate
from the loop, which Carburizer does not detect. However,
Carburizer’s timeout wasmore relaxed than the driver’s, and
as a result did not harm the driver. This low false positive
rate demonstrates that a fairly simple and fast analysis can
detect infinite loops with high accuracy.
For static arrays, we randomly sampled 15 identified bugs

and found 6 true bugs that could cause a system crash if the
hardware experienced a transient failure, such as a single
bit flip in a device register. Most of the remaining false
positives occurred because the array was exactly the size of
the index’s range, for example 256 entries for an unsigned
byte index. However, even in the case of false positives, the
code added by Carburizer correctly checked array bounds
and does not falsely detect a failure. The only harm done to
the driver is the overhead of an unnecessary bounds check.
More advanced analysis could remove these false positives.



Driver Infinite Polling Static Array Dynamic Array Panic
Class Found Found Found Fixed

net 117 2 21 2
scsi 298 31 22 121
sound 64 1 0 2
video 174 0 22 22
other 381 9 57 32

Total 860 43 89 179

Table 2: Instances of hardware dependencies by modern Linux device drivers.(2.6.18.8 kernel)

For dynamic arrays and memory dereferencing, we sam-
pled 35 bugs and found 25 real bugs for a programmer to fix.
Most false positives manifested in drivers that use mecha-
nisms other than a mask or comparison for verifying an in-
dex. For example, the Intel i810 audio driver uses the mod-
ulo operation on a dynamic array offset. The SIS graphic
driver calls a function to validate all inputs, and Carbur-
izer’s analysis cannot detect validation done in a separate
function. Better interprocedural analysis is needed to pre-
vent these false positives.
Overall, we found that 498 driver modules out of the 1950

analyzed contained bugs. The bugs followed two distribu-
tions. Many drivers had only one or two hardware depen-
dence bugs. The developers of these drivers were typically
vigilant about validating device input but forgot in a few
places. A small number of drivers performed very little val-
idation and had a large number of bugs. For example, Car-
burizer detected 24 infinite loops in the telespci ISDN driver
and 80 in the ATP 870 SCSI driver.
These bugs demonstrate that language or library con-

structs can improve the quality of driver code. For example,
constructs to wait for a device condition safely, with inter-
nally implemented timeouts, reduce the problem of hung
systems due to devices. Past work on language support
for concurrency in drivers has investigated providing sim-
ilar language features to avoid correctness violations [8] .

3.5 Experimental Results
We verify that the Carburizer’s repair transformation works
by testing it on three Ethernet drivers. Testing every driver
repair is not practical because it would require obtaining
hundreds of devices. We focus on network drivers because
we have only implemented the recovery mechanism for this
driver class. We test whether carburized drivers, those mod-
ified by Carburizer, can detect and recovery from hardware
faults.
Of the devices at our disposal, through physical hardware

or emulation in a virtual machine, only two 100Mbps net-
work interface cards use drivers that had bugs according to
our analysis: a DEC DC21x4x card using the de4x5 driver,
and a 3Com 3C905 card using the 3c59x driver. We also
tested the forcedeth driver for NVIDIA MCP55 Pro gigabit
devices because it places high performance demands on the
system (see Section 6). In the case of forcedeth, since there
are no bugs in the driver, we emulate problematic code by
manually inserting bugs, running Carburizer on the driver,
and testing the resulting code.
We inject hardware faults with a simple fault injection

tool that modifies the return values of the read(b,w,l) and
in(b,w,l) I/O functions. We modified the forcedeth driver
by inserting code that returns incorrect output for a specific
device read operation on a device register. We then simu-
lated a series of transient faults in the register of interest.

We injected hardware read faults at three locations in the
de4x5 driver to induce an infinite-loop in interrupt context.
The loop continued even if the hardware returned 0xffffffff, a
code used to indicate that the hardware is no longer present
in the system. We injected a similar set of faults into the
3c59x driver to create an infinite loop in the interrupt han-
dler and trigger recovery. We did not test all the bugs in
each driver, because a single driver may support many de-
vices, and some bugs only occur for a specific device. As a
result, we could not force the driver through all buggy code
paths with a single device.
In each test, we found that the driver quickly detected the

failure with the generated code and triggered the recovery
mechanism. After a short delay while the driver recovered, it
returned to normal function without interfering with appli-
cations. We stopped injecting faults in the de4x5 and 3c59x
drivers after they each recovered four times. The forcedeth
driver successfully recovered from more than ten of these
transient faults. These tests demonstrate that automatic
recovery can restart drivers after hardware failures.

4. REPORTING HARDWARE FAILURES
A transient hardware failure, even while recoverable, re-
duces performance and may portend future failures [31]. As
a result, OS and hardware vendors recommend monitoring
hardware failures to allow proactive device repair or replace-
ment. For example, the Solaris Fault Management Architec-
ture [40] feeds errors reported by device drivers and other
system components into a diagnosis engine. The engine cor-
relates failures from different components and can recom-
mend a high-level action, such as disabling or replacing a
device. In reading driver code, we found Linux drivers only
report a subset of errors and often omit the failure details.
When Carburizer repairs a hardware dependence bug, it

also inserts error-reporting code. Thus, a centralized fault
management system can track hardware errors and correlate
hardware failures to other system reliability or performance
problems. Currently, we use printk to write to the system
log, as Linux does not have a failure monitoring service.
To support administrative management of hardware fail-

ures, Carburizer will also insert monitoring code into exist-
ing drivers where the driver itself detects a failure. Car-
burizer in this case relies on the driver to detect hardware
failures, through the timeouts and sanity checks. Figure 9
shows code where the driver detects a failure with a time-
out and returns an error, but does not report any failure.
In this case, Carburizer will insert logging code where the
error is returned and include standard information, such as
the driver name, location in the code, and error type (time-
out or corruption). If the driver already reports an error,
then we assume its report is sufficient and Carburizer does
not introduce additional reporting.



1 static int phy_reset(...) {
2 .
3 while (miicontrol & BMCR_RESET) {
4 msleep(10);
5 miicontrol = mii_rw(...);
6 if (tries++ > 100)
7 return -1;
8 }
9 .

10 }

Figure 9: The forcedeth network driver polls the

BMCR RESET device register until it changes state or

until a timeout occurs. The driver reports only a generic

error message at a higher level and not the specific failure

where it occurred.

We implement analyses in Carburizer to detect when the
driver either detects a failure of the hardware or returns an
error specifically because of a value read from the hardware.
These analyses depend on the bug-finding capabilities from
the preceding section to find sensitive code. In this case,
what would have been a false positive, because the failure is
handled by the driver, becomes the condition to search.

4.1 Reporting Device Timeouts
Carburizer detects locations where a driver correctly times
out of a polling loop. This code indicates that a device
failure has occurred because the device did not output the
correct value within the specified time. This analysis is the
same as the false-positive analysis used for pruning results
for infinite loops, except that the false positives are now
the code we seek. Figure 9 shows an example of code that
loops until either a timeout is reached or the device produces
the necessary value. Carburizer detects whether a logging
statement, which we consider a function taking a string as
a parameter, occurs either before breaking out of the loop
or just after breaking out. If so, Carburizer determines that
the driver already reports the failure.
Once loops that timeout are detected, Carburizer identi-

fies the predicate that holds when the loop breaks due of a
timeout. Carburizer identifies any return statements based
on such predicates and places a reporting statement just be-
fore the return. The resulting code is shown in Figure 10.
If the test is incorporated into while or for loop predicate
then Carburizer inserts code into the loop to report a failure
if the expression holds. CIL converts for loops into while(1)

loops with break statements so that code can be inserted
between the variable update and the condition evaluation.
Thus, the driver will test the expression, report a failure,
test the expression again, and break out of the loop.

4.2 Reporting Incorrect Device Outputs
Carburizer analyzes driver code to find driver functions that
return errors due to hardware failures. This covers range
tests on array indices and explicit comparisons of status or
state values. Carburizer identifies that a hardware failure
has occurred when the driver returns an error as a result of
reading data from a device. Specifically, it identifies code
where three conditions hold: (a) a driver function returns a
negative integer constant; (b) the error return value is only
returned based on the evaluation of a conditional expression,
and (c), the expression references variables that were read
from the device. We further expand the analysis to detect

1 static int phy_reset(...) {
2 .
3 while (miicontrol & BMCR_RESET) {
4 msleep(10);
5 miicontrol = mii_rw(...);
6 if (tries++ > 100) {
7 printk("...");
8 return -1;
9 }

10 }
11 .
12 }

Figure 10: Carburizer inserts a reporting statement au-

tomatically in the case of a timeout, which indicates the

device is not operating according to specification.

Driver Device Timeout Incorrect Output
Class found/fixed found/fixed

net 483/321 249/97
scsi 302/249 137/110
sound 359/297 81/53
other 411/268 361/207

Total 1555/1135 828/467

Table 3: Instances of device-reporting code inserted

by Carburizer. Each entry shows the number of device

failures detected by the driver, followed by the number

where the driver did not report failures and Carburizer

inserted reporting code.

sites where an error variable is set, such as when the driver
sets the return value and jumps to common cleanup code.
If these conditions hold, Carburizer inserts a call to the re-
porting function just before the return statement to signify
a hardware failure.

4.3 Results
Table 3 shows the result of our analysis. In total, Carburizer
identified 1555 locations where drivers detect a timeout. Of
these, drivers reported errors only 420 times, and Carbur-
izer inserted error-reporting code 1135 times. Carburizer
detected 828 locations where the driver detected a failure
with comparisons or range tests. Of these, the driver re-
ported a failure 361 times and Carburizer inserted an error
report 467 times.
We evaluate the effectiveness of Carburizer at introduc-

ing error-reporting code by performing the same analysis by
hand to see whether it finds all the locations where drivers
detect a hardware failure. For the drivers listed in Table 4,
we identified every location where the original driver detects
a failure and whether it reports the failure through logging.
We manually examined the three drivers, one from each

major class, and counted as an error any code that clearly in-
dicated the hardware was operating outside of specification.
This code performs any of the following actions on the basis
of a value read from the device: (1) returning a negative
value, (2) printing an error message indicating a hardware
failure, or (3) detecting a failed self-test. We did not count
errors found in any code removed during preprocessing, such
as ASSERT statements.
Table 4 shows the number of failures the driver detects

(according to our manual analysis), whether reported or not,
compared with the number of errors reported by Carburizer.



Driver Class Actual errors Reported Errors

bnx2 net 24 17
mptbase scsi 28 17
ens1371 sound 10 9

Table 4: Instances of fault-reporting code inserted by

Carburizer compared against all errors detected in the

driver. Each entry shows the actual number of errors

detected in the driver followed by the number of errors

reported using Carburizer.

In these three drivers, Carburizer did not produce any false
positives: all of the errors reported did indicate a device mal-
function. However, Carburizer missed several places where
the driver detected a failure. Out of 62 locations where the
driver detected a failure, Carburizer identified 43.
We found three reasons for these false negatives. First,

some drivers, such as the bnx2 network driver, wrap several
low-level read operations in a single function, and return
the tainted data via an out parameter. Carburizer does not
propagate taint through out parameters. Second, Carbur-
izer’s analysis is not sophisticated enough to track tainted
structure members across procedure boundaries. The mpt-
base SCSI driver reads data into a member variable in one
procedure and returns an error based on its value in an-
other, and we do not detect the member as tainted where
the failure is returned. Finally, some drivers detect a hard-
ware failure and print a message but do not subsequently
return an error. Thus, Carburizer does not identify that a
hardware failure was detected.
To verify the operation of the reporting statements, we in-

jected targeted faults designed to cause the carburized driver
to report a failure. We tested four drivers with fault injec-
tion to ensure they reported failures. We injected synthetic
faults into the ens1371 sound driver and the de4x5, 8139cp,
and 8139too network drivers using the tool from Section 3.
We verified that targeted fault injection triggered every re-
porting statement that applies to these hardware devices.
The only false positive we found occurred in the 8139too

network driver during during device initialization. This driver
executes a loop that is expected to time out, and Carburizer
falsely considers this a hardware fault. The other carburized
drivers do not report any false positives. We injected faults
with a fixed probability every time the driver invoked a port
or I/O memory read operation, both during driver initial-
ization and while running a workload. The drivers did not
report any additional errors compared to unmodified drivers
under these conditions, largely because none of the injected
faults would lead to a system crash. As future work, we plan
to examine the problem of reporting if a device is malfunc-
tioning even if the malfunction does not cause a crash.
Overall, we found that Carburizer was effective at intro-

ducing additional error logging to drivers where logging did
not previously exist. While it does not detect every hard-
ware failure, Carburizer increases the number of failures
logged and can therefore improve an administrator’s ability
to detect when hardware is failing, as compared to driver
failures caused by software.

5. RUNTIME FAULT TOLERANCE
The Carburizer runtime provides two key services. First,
it provides an automatic recovery service to restore drivers
and devices to a functioning state when a failure occurs.
Second, it detects classes of failures that cannot be addressed
by static analysis and modification of driver code, such as
tolerating stuck interrupts.

5.1 Automatic Recovery
Static analysis tools have proved useful as bug finding tools.
But, programmers must still write code to repair the bugs
that are found. Carburizer circumvents this limitation by
relying on automatic recovery to restore drivers and devices
to a functioning state when a failure is detected. The driver
may invoke a recovery function at any time, which will reset
the driver to a known-good state. For stuck-at hardware
failures, resetting the device can often correct the problem.
We rely on the same mechanism to recover from transient
failures, although a full reset may not be required in every
case.
We leverage shadow drivers [43] to provide automatic re-

covery because they conceal failures from applications and
the OS. A shadow driver is a kernel agent that monitors and
stores the state of a driver by intercepting function calls be-
tween the driver and the kernel. During normal operation,
the shadow driver taps all function calls between the driver
and the kernel. In this passive mode, the shadow driver
records operations that change the state of the driver, such
as configuration operations and requests currently being pro-
cessed by the driver.
Shadow drivers are class drivers, in that they are cus-

tomized to the driver interface but not to its implementa-
tion. Thus, a separate shadow driver is needed to recover
from failures in each unique class, such as network, sound,
or SCSI. We have only implemented recovery for network
drivers so far, although other work shows that they work
effectively for sound, storage [43] and video drivers [23] .
When the driver invokes the recovery function, the shadow

driver transitions into active mode, where it performs two
functions. First, it proxies for the device driver, fielding
requests from the kernel until the driver recovers. This pro-
cess ensures that the kernel and application software is un-
aware that the device failed. Second, shadow drivers un-
load and release the state of the driver and then restart the
driver, causing it to reinitialize the device. When starting
this driver, the shadow driver uses its log to configure the
driver to its state prior to recovery, including resubmitting
pending requests. Once this is complete, the shadow driver
transitions back to passive mode, and the driver is available
for use.
The shadow driver recovery model works when resetting

the device clears a device failure. For devices that fail per-
manently or require a full power cycle to recover, shadow
drivers will detect that the failure is not transient when re-
covery fails and can notify a management agent.
We obtained the shadow driver implementation used for

virtual machine migration [22] and ported the recovery func-
tions for network device drivers to the 2.6.18.8 kernel. How-
ever, we did not port the entire Nooks driver isolation sub-
system [44]. Nooks prevents memory corruption and detects
failures through hardware traps, which are unnecessary for
tolerating hardware failures. Nooks’ isolation also causes a
performance drop from switching protection domains, which



Carburizer avoids. The remaining code consists of wrappers
around the kernel/driver interface, code to log driver re-
quests, and code to restart and restore driver state after a
failure. In addition, we export the __shadow_recover function
from the kernel, which a driver may call to initiate recovery
after a hardware failure.

5.2 Tolerating Missing Interrupts
In addition to providing a recovery service, the Carbur-
izer runtime also detects failures that cannot be detected
through static modifications of driver code. Devices may
fail by generating too many interrupts or by not generating
any. The first case causes a system hang, because no useful
work can occur while the interrupt handler is running, while
the second case can result in an inoperable device.
To address the scenario in which the device stops gener-

ating interrupts, Carburizer monitors the driver and invokes
the interrupt handler automatically if necessary. With mon-
itoring, an otherwise operative device need not generate in-
terrupts to provide service. Unlike other hardware errors,
we do not force the driver to recover in this case because we
cannot detect precisely whether an interrupt is missing. In-
stead, the Carburizer runtime pro-actively calls the driver’s
interrupt handler to process any pending requests
The Carburizer runtime increments a counter each time

a driver’s interrupt handler is called. Periodically, a low
priority kernel thread checks this counter. If the counter
value has changed, Carburizer does nothing since the device
appears to be working normally. If, however, the interrupt
handler has not been executed, the device may not be de-
livering interrupts.
The Carburizer runtime detects whether there has been

recent driver activity that should have caused an interrupt
by testing whether driver code has been executed. Rather
than recording every driver invocation, Carburizer polls the
reference bits on the driver’s code pages. If any of the code
pages have been referenced, Carburizer assumes that a re-
quest may have been made and that the interrupt handler
should be called soon.
Because every driver is different, Carburizer implements

a dynamic approach to increase or decrease the polling in-
terval exponentially, depending on whether previous calls
were productive or not. By default, Carburizer checks the
referenced bits every 16ms. We chose this value because it
provides a relatively good response time in the event of a
single missing interrupt. If Carburizer’s call to the inter-
rupt handler returns IRQ_NONE, indicating the interrupt was
spurious, then Carburizer doubles the polling interval, up
to a maximum of one second. Conversely, if the interrupt
handler returns IRQ_HANDLED, indicating that there was work
for the driver, then Carburizer decreases the polling interval
to a minimum of 4ms. Thus, Carburizer calls the interrupt
handler repeatedly only if it detects that the driver is doing
useful work during the handler.
Relying on the handler return value to detect whether

the handler was productive works for devices that support
shared interrupts. Spurious interrupt handler invocations
can occur with shared interrupts because the kernel cannot
detect which of the devices sharing the interrupt line needs
service. However, some drivers report IRQ_HANDLED even if
the device does not require service, leading Carburizer to
falsely detect that it has missed an interrupt. We are ex-
amining alternate mechanisms to distinguish productive and

unproductive calls to interrupt handlers to improve perfor-
mance and reduce unnecessary polling, such as timing the
duration of the handler or detecting which code pages are
accessed during the handler.
Carburizer’s polling mechanism adds some overhead when

the kernel invokes a driver but does not cause the device
to generate an interrupt. For network drivers, this occurs
when the kernel invokes an ethtool management function.
The Carburizer runtime will call the interrupt handler even
though it is not necessary for correct operation. The driver
treats this call to its interrupt handler as spurious. Because
Carburizer decreases the polling interval in these cases, there
is little unnecessary polling even when many requests are
made of a driver that do not generate interrupts.
Some Linux network drivers, through the napi interface,

already support polling. In addition, many network drivers
implement a watchdog function to detect when the device
stops working. For these drivers, it may be sufficient to
direct the kernel to poll rather than relying on a separate
mechanism. However, this approach only works for network
drivers, while the Carburizer runtime approach works across
all driver classes.

5.3 Tolerating Stuck Interrupts
The Carburizer runtime detects stuck interrupts and recov-
ers by converting the device from interrupts to polling by
periodically calling the driver’s exported interrupt function.
A stuck interrupt occurs when the device does not lower the
interrupt request line even when directed to do so by the
driver. The Carburizer runtime detects this failure when a
driver’s interrupt handler has been called many times with-
out intervening progress of other system functions, such as
the regular timer interrupt. The Linux kernel can detect
unhandled interrupts [27], but it recovers by disabling the
device rather than enabling it to make progress.
Similar to missing interrupts, the Carburizer runtime does

not trigger full recovery here (although that is possible), but
instead disables the interrupt request line with disable_IRQ.
It then relies on the polling mechanism previously described
to periodically call the driver’s interrupt handler.

5.4 Results
We experiment with stuck and missing interrupts using fault
injection on the E1000 gigabit Ethernet driver, the ens1371
sound driver, and a collection of interdependent storage driv-
ers: ide-core, ide-generic, and ide-disk. On all three de-
vices, we simulate missing interrupts by disabling the de-
vice’s interrupt request line. We simulate stuck interrupts
with the E1000 by inserting a command to generate an in-
terrupt from inside the interrupt handler. For E1000, we
compare throughput and CPU utilization between an un-
modified driver, a driver undergoing monitoring for stuck-
/disabled interrupts, and a driver whose interrupt line has
been disabled.
In the case of E1000, we found that the Carburizer run-

time was able to detect both failures promptly, and that the
driver continued running in polling mode. Because inter-
rupts occur only once every 4ms in the steady state, receive
throughput drops from 750 Mb/s to 130 Mb/s. With more
frequent polling, the throughput would be higher. Similarly,
Carburizer detected both failures for the IDE driver. The
IDE disk operated correctly in polling mode but through-
put decreased by 50%. The ens1371 driver in polling mode



NVIDIA MCP55 Pro gigabit NIC (forcedeth)
System Throughput CPU Utilization

Linux 2.6.18.8 Kernel 940 Mb/s 31%
Carburizer Kernel 935 Mb/s 36%

(with shadow driver)

Intel Pro/1000 gigabit NIC (E1000)
System Throughput CPU Utilization

Native Kernel 721 Mb/s 16%
Carburizer Kernel 720 Mb/s 16%

(with shadow driver)

Table 5: TCP streaming send performance with net-

perf for regular and carburized drivers with automatic

recovery mechanism for the E1000 and forcedeth drivers.

Intel Pro/1000 gigabit NIC (E1000)
System Throughput CPU %

Native Kernel - TCP 750 Mb/s 19%
Carburizer Monitored - TCP 751 Mb/s 19%
Native Kernel - UDP-RR 7328 Tx/s 6%

Carburizer Monitored - UDP-RR 7310 Tx/s 6%

Table 6: TCP streaming and UDP request-response re-

ceive performance comparison of the E1000 between the

native Linux kernel and a kernel with the Carburizer

runtime monitoring the driver’s interrupts.

played back sound with a little distortion, but otherwise op-
erated normally. These tests demonstrate that Carburizer’s
stuck and missing interrupt detection mechanism works and
can keep devices functioning in the presence of a failure.

6. OVERHEAD EVALUATION
The primary cost of using Carburizer is the time spent run-
ning the tool and fixing bugs that cannot be automatically
repaired. However, the code transformations introduced by
Carburizer, shadow driver recovery, and interrupt monitor-
ing introduce a small runtime cost. In this section we mea-
sure the overhead of running carburized drivers.
We measure the performance overhead on gigabit Ether-

net drivers, as they are the most performance-intensive of
our devices: a driver may receive more than 75,000 pack-
ets to deliver per second. Thus, any overhead of Carbur-
izer’s mechanisms will show up more clearly than on lower-
bandwidth devices. Past work on Nooks and shadow storage
drivers showed a greater difference in performance than for
the network, but the CPU utilization differences were far
greater for network drivers [43].
We measure performance with netperf [21] between two

Sun Ultra 20 workstation with 2.2Ghz AMD Opteron pro-
cessors and 1GB of RAM connected via a crossover cable.
We configure netperf to run enough experiments to report
results accurate to 2.5% with 99% confidence.
Table 5 shows the throughput and CPU utilization for

sending TCP data with a native Linux kernel and one with
the Carburizer runtime with shadow driver recovery enabled
and a carburized network driver. The network throughput
with Carburizer is within one-half percent of native perfor-
mance, and CPU utilization increases only five percentage
points for forcedeth and not at all for the E1000 driver.
These results demonstrate that supporting the generic re-
covery service, even for high-throughput devices, has very
little runtime cost.
Table 6 shows performance overhead of interrupt moni-

toring but with no shadow driver recovery. The table shows

the TCP receive throughput and CPU utilization for the
E1000 driver on the native Linux kernel, and on a kernel
with Carburizer interrupt monitoring enabled. The TCP
receive and transmit socket buffers were left at their default
sizes of 87,380 and 655,360 bytes, respectively. The table
also shows UDP request-response performance with 1-byte
packets, a test designed to highlight driver latency. While
these results are for receiving packets, we also compared per-
formance with TCP and UDP-RR transmit benchmarks and
found similar results: the performance of the native kernel
and the kernel with monitoring are identical.
These two sets of experiments demonstrate that the cost

of tolerating hardware failures in software, either through
explicit invocation of a generic recovery service or through
run-time interrupt monitoring, is low. Given this low over-
head, Carburizer is a practical approach to tolerate even
infrequent hardware failures.

7. RELATED WORK
Carburizer draws inspiration from past projects on driver
reliability, bug finding, automatic patch generation, device
interface specification, and recovery.

Driver reliability.
Past work on driver reliability has focused on preventing
driver bugs from crashing the system. Much of this work
can apply to hardware failures, as they manifest as a bug
causing the driver to access invalid memory or consume too
much CPU. In contrast to Carburizer, these tools are all
heavyweight: they require new operating systems (Singular-
ity [37], Minix [18], Nexus [48]), new driver models (Win-
dows UMDF [29], Linux user-mode drivers [24]), runtime
instrumentation of large amounts of code (XFI [46] and
SafeDrive [51]), adoption of a hypervisor (Xen [13] and iKer-
nel [45]), or a new subsystem in the kernel (Nooks [44]). Car-
burizer instead fixes specific bugs, which reduces the code
needed in the kernel to just recovery and not fault detection
or isolation. Thus, Carburizer may be easier to integrate
into existing kernel development processes. Furthermore,
Carburizer detects hardware failures before they cause cor-
ruption, while driver reliability systems using memory detec-
tion may not detect it until much later, after the corruption
propagates through the system.

Bug finding.
Tools for finding bugs in OS code through static analysis [5,
6, 12] have focused on enforcing kernel-programming rules,
such as proper memory allocation, locking and error han-
dling. However, these tools enforce kernel API protocols,
but do not address the hardware protocol. Furthermore,
these tools only find bugs but do not automatically fix them.
Hardware dependence errors are commonly found through

synthetic fault injection [2, 17, 41, 52]. This approach re-
quires a machine with the device installed, while Carburizer
operates only on source code. Furthermore, fault injection
is time consuming, as it requires injection of many possible
faults into each I/O operation made by a driver.

Automatic patch generation.
Carburizer is complementary to prior work on repairing bro-
ken error handling code found through fault injection [42].
Error handling repair is an alternate means of recovering



when a hardware failure occurs by re-using existing error
handling code instead of invoking a generic recovery func-
tion. Other work on automatically patching bugs has fo-
cused on security exploits [10, 35, 36]. These systems also
address how to generate repair code automatically, but fo-
cus on bugs used for attacks, such as buffer overruns, and
not the infinite loop problems caused by devices.

Hardware Interface specification.
Several projects, such as Devil [28], Dingo [33], HAIL [39],
Nexus [48], Laddie [49] and others, have focused on reducing
faults on the driver/device interface by specifying the hard-
ware interface through a domain specific language. These
languages improve driver reliability by ensuring that the
driver follows the correct protocol for the device. However,
these systems all assume that the hardware is perfect and
never misbehaves. Without runtime checking they cannot
verify that the device produces correct output.

Recovery.
Carburizer relies on shadow drivers [43] for recovery. How-
ever, since our implementation of shadow drivers does not
integrate any isolation mechanism, the overhead of recov-
ery support is very low. Other systems that recover from
driver failure, including SafeDrive [51], and Minix [18], rely
on similar mechanisms to restore the kernel to a consistent
state and release resources acquired by the driver could be
used as well. CuriOS provides transparent recovery and fur-
ther ensures that client session state can be recovered [11].
However, CuriOS is a new operating system and requires
specially written code to take advantage of its recovery sys-
tem, while Carburizer works with existing driver code in
existing operating systems.
To achieve high reliability in the presence of hardware

failures, fault tolerant systems often use multiple instances
of a hardware device and switch to a new device when one
fails [7, 19, 38]. These systems provide an alternate recovery
mechanism to shadow drivers. However, this approach still
relies on drivers to detect failures, and Carburizer improves
that ability.

8. CONCLUSIONS
System reliability is limited by the reliability of devices. Ev-
idence suggests that device failures cause a measurable frac-
tion of system failures, and that most hardware failures are
transient and can be tolerated in software. Carburizer im-
proves reliability by automatically hardening drivers against
device failures without new programming languages, pro-
gramming models, operating systems, or execution environ-
ments. Carburizer finds and repairs hardware dependence
bugs in drivers, where the driver will hang or crash if the
hardware fails. In addition, Carburizer inserts logging code
so that system administrators can proactively repair or re-
place hardware that fails.
In an analysis of the Linux kernel, Carburizer identified

over 992 hardware dependence bugs with fewer than 8%
false postives. Discounting for false positives, Carburizer
could automatically repair approximately 845 real bugs by
inserting code to detect when a failure occurs and invoke
a recovery service. Repairs made to false positives have no
correctness impact. In performance tests, hardening drivers
had almost no visible performance overhead.

There are still more opportunities to improve device drivers.
Carburizer assumes that if a driver detects a hardware fail-
ure, it correctly responds to that failure. In practice, we find
this is often not the case. In addition, Carburizer does not
assist drivers in handling unexpected events; we have seen
code that crashes when the device returns a flag before the
driver is prepared. Thus, there are yet more opportunities
to improve driver quality.
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[28] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for hardware programming. In
Proc. of the 4th USENIX OSDI, Oct. 2000.

[29] Microsoft Corporation. Introduction to the WDF
user-mode driver framework. http:
//www.microsoft.com/whdc/driver/wdf/umdf_intro.mspx,
May 2006.

[30] G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer.
CIL: Intermediate language and tools for analysis and
transformation of C programs. In Proc. of the 11th
International Conference on Compiler Construction, 2002.

[31] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure
trends in a large disk drive population. In Proc. of the 5th
FAST, 2007.

[32] H. Post and W. Kuchlin. Integrated static analysis for
Linux device driver verification. In Proc. of the 6th
International Conference on Integrated Formal Methods,
July 2007.

[33] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo:
Taming device drivers. In Proc. of the 200 EuroSys
Conference, Apr. 2009.

[34] T. Shureih. HOWTO: Linux device driver dos and don’ts.
http:
//janitor.kernelnewbies.org/docs/driver-howto.html,
Mar. 2004.

[35] S. Sidiroglou and A. D. Keromytis. Countering network
worms through automatic patch generation. IEEE Security
and Privacy, 3(6):41–49, 2005.

[36] A. Smirnov and Tzi-ckerChiueh. Automatic patch
generation for buffer overflow attacks. In Proc. of the 3rd
Symposium on Information Assurance and Security, 2007.

[37] M. Spear, T. Roeder, O. Hodson, G. Hunt, and S. Levi.

Solving the starting problem: Device drivers as
self-describing artifacts. In Proc. of the 2006 EuroSys
Conference, Apr. 2006.

[38] S. Y. H. Su and R. J. Spillman. An overview of
fault-tolerant digital system architecture. In Proc. of the
National Computer Conference (AFIPS), 1977.

[39] J. Sun, W. Yuan, M. Kallahalla, and N. Islam. HAIL: A
language for easy and correct device access. In Proc. of the
5th ACM International Conference on Embedded Software,
Sept. 2005.

[40] Sun Microsystems. Opensolaris community: Fault
management. http://opensolaris.org/os/community/fm/.

[41] Sun Microsystems. Solaris Express Software Developer
Collection: Writing Device Drivers, chapter 13: Hardening
Solaris Drivers. Sun Microsystems, 2007.
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Abstract
Device drivers are the single largest contributor to operating-system
kernel code with over 5 million lines of code in the Linux kernel,
and cause significant complexity, bugs and development costs. Re-
cent years have seen a flurry of research aimed at improving the re-
liability and simplifying the development of drivers. However, little
is known about what constitutes this huge body of code beyond the
small set of drivers used for research.

In this paper, we study the source code of Linux drivers to un-
derstand what drivers actually do, how current research applies to
them and what opportunities exist for future research. We deter-
mine whether assumptions made by driver research, such as that
all drivers belong to a class, are indeed true. We also analyze driver
code and abstractions to determine whether drivers can benefit from
code re-organization or hardware trends. We develop a set of static-
analysis tools to analyze driver code across various axes. Broadly,
our study looks at three aspects of driver code (i) what are the char-
acteristics of driver code functionality and how applicable is driver
research toall drivers, (ii) how do drivers interact with the kernel,
devices, and buses, and (iii) are there similarities that can be ab-
stracted into libraries to reduce driver size and complexity?

We find that many assumptions made by driver research do not
apply to all drivers. At least 44% of drivers have code that is not
captured by a class definition, 28% of drivers support more than
one device per driver, and 15% of drivers do significant computa-
tion over data. From the driver interactions study, we find that the
USB bus offers an efficient bus interface with significant standard-
ized code and coarse-grained access, ideal for executing drivers in
isolation. We also find that drivers for different buses and classes
have widely varying levels of device interaction, which indicates
that the cost of isolation will vary by class. Finally, from our driver
similarity study, we find 8% of all driver code is substantially sim-
ilar to code elsewhere and may be removed with new abstractions
or libraries.

Categories and Subject DescriptorsD.4.7 [Operating Systems]:
Organization and Design

General Terms Measurement, Design

Keywords Device Drivers, Measurement
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1. Introduction
Modern computer systems are communicating with an increasing
number of devices, each of which requires a driver. For example, a
modern desktop PC may have tens of devices, including keyboard,
mouse, display, storage, and USB controllers. Device drivers con-
stitute 70% of the Linux code base [32], and likely are a greater
fraction of the code written for the Windows kernel, which sup-
ports many more devices. Several studies have shown that drivers
are the dominant cause of OS crashes in desktop PCs [14, 28]. As
a result, there has been a recent surge of interest in techniques to
tolerate faults in drivers [12, 38, 39, 47], to improve the quality of
driver code [20]; and in creating new driver architectures that im-
prove reliability and security [4, 15, 21, 23, 24, 31, 44].

However, most research on device drivers focuses on a small
subset of devices, typically a network card, sound card, and storage
device, all using the PCI bus. These are but a small subset of all
drivers, and results from these devices may not generalize to the
full set of drivers. For example, many devices for consumer PCs
are connected over USB. Similarly, the devices studied are fairly
mature and have standardized interfaces, but many other devices
may have significant functionality differences.

Thus, it is important to study all drivers to review how the driver
research solutions being developed are applicable to all classes of
drivers. In addition, a better understanding of driver code can lead
to new abstractions and interfaces that can reduce driver complexity
and improve reliability.

This paper presents a comprehensive study of all the drivers in
the Linux kernel in order to broadly characterize their code. We
focus on (i) what driver code does, including where driver develop-
ment work is concentrated, (ii) the interaction of driver code with
devices, buses, and the kernel, and (iii) new opportunities for ab-
stracting driver functionality into common libraries or subsystems.
We use two static analysis tools to analyze driver code. To under-
stand properties of driver code, we developed DrMiner, which per-
forms data-flow analyses to detect properties of drivers at the granu-
larity of functions. We also developed the DrComp tool, which uses
geometric shape analysis [3] to detect similar code across drivers.
DrComp maps code to points in coordinate space based on the
structure of individual driver functions, and similar functions are
at nearby coordinates.

The contributions of this paper are as follows:

• First, we analyze what driver code does in order to verify com-
mon assumptions about driver code made by driver research.
We show that while these assumptions hold for most drivers,
there are a significant number of drivers that violate these as-
sumptions. We also find that several rapidly growing driver
classes are not being addressed by driver research.

• Second, we study driverinteractionswith the kernel and de-
vices, to find how existing driver architecture can adapt to a
world of multicore processors, devices with high-power pro-
cessors and virtualized I/O. We find that drivers vary widely



by class, and that USB drivers are more efficient in supporting
multiple chipsets than PCI drivers. Furthermore, we find that
XenBus drivers may provide a path to executing drivers outside
the kernel and potentially on the device itself.

• Third, we study driver codecontentsto find opportunities to
reduce or simplify driver code. We develop new analysis tools
for detecting similar code structures and their types that detect
over 8% of Linux driver code is very similar to other driver
code, and offer insights on how this code can be reduced.

In the remainder of this paper, we first discuss device driver
background and develop a taxonomy of drivers. We then present the
three broad classes of results on driver behavior in Sections3 and
4. In Section5 we present results showing the extent of repeated
code in drivers. Section6 discusses our findings.

2. Background
A device driver is a software component that provides an interface
between the OS and a hardware device. The driver configures and
manages the device, and converts requests from the kernel into re-
quests to the hardware. Drivers rely on three interfaces: (i) the inter-
face between the driver and the kernel, for communicating requests
and accessing OS services; (ii) the interface between the driver and
the device, for executing operations; and (iii) the interface between
the driver and the bus, for managing communication with the de-
vice.

2.1 Driver/Device Taxonomy

The core operating system kernel interacts with device drivers
through a set of interfaces that abstract the fundamental nature of
the device. In Linux, the three categories of drivers arecharac-
ter drivers, which are byte-stream oriented;block drivers, which
support random-access to blocks; andnetworkdrivers, which sup-
port streams of packets. Below these top-level interfaces, support
libraries provide common interfaces for many other families of de-
vices, such as keyboards and mice within character drivers.

In order to understand the kinds of drivers Linux supports, we
begin by taxonomizing drivers according to their interfaces. We
consider a single driver as a module of code that can be com-
piled independently of other code. Hence, a single driver can span
multiple files. We consider all device drivers, bus drivers and
virtual drivers that constitute the driver directories (/sound and
/drivers ) in the Linux 2.6.37.6 kernel, dated April, 2011. We
perform our analyses on all drivers that compile on the x86 plat-
form, using the kernel build option to compile all drivers. Overall,
we consider 3,217 distinct drivers. While there are a significant
number of Linux drivers that are distributed separately from the
kernel, we do not consider them for this work.

We detect the class of a driver not by the location of its code,
but by the interfaces it registers:e.g., register netdev indicates
a driver is a network device. We further classify the classes into
sub-categories to understand the range of actual device types sup-
ported by them through manual classification, using the device op-
erations they register, the device behavior and their location. While
Linux organizes related drivers in directories, this taxonomy is
not the same as the Linux directory organization: network drivers
are split underdrivers/net, drivers/atmand other directories. How-
ever, block drivers are split by their interfaces underdrivers/scsi,
drivers/ideand other directories

Figure1 shows the hierarchy of drivers in Linux according to
their interfaces, starting from basic driver types i.e. char, block and
net. We identify 72 unique classes of drivers. The majority (52%)
of driver code is in character drivers, spread across 41 classes.
Network drivers account 25% of driver code, but have only 6
classes. In contrast to the rich diversity of Figure1, Table1 lists the
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Figure 1. The Linux driver taxonomy in terms of basic driver classes.
The size (in percentage of lines of code) is mentioned for 5 biggest
classes. Not all driver classes are mentioned.

driver types used in research. Most driver research (static-analysis
tools excepted) neglects the heavy tail of character devices. For
example, video and GPU drivers contribute significantly towards
driver code (almost 9%) due to complex devices with instruction
sets that change each generation, but these devices are largely
ignored by driver research due to their complexity.

We also looked at low-level buses, which provide connectivity
to devices and discover the devices attached to a system. The
majority of devices are either PCI (36% of all device identifiers) or
USB (35%), while other buses support far fewer: I2C represents 4%
of devices, PCMCIA is 3% and HID is 2.5% (mostly USB devices).
The remaining devices were supported by less popular or legacy
buses such as ISA or platform devices. We also found that 8% of
devices perform low-level I/O without using a bus, interconnect, or
support virtual devices. Higher-level protocols such as SCSI (8.5%)
and IDE (2%) use one of these underlying low-level buses such as
PCI and USB. While PCI drivers still constitute the greatest fraction
of drivers, the number of devices supported by USB is similar to
PCI. Hence, driver research should validate their performance and
reliability claims on USB devices as well.

2.2 Driver Research Assumptions

Most research makes some simplifying assumptions about the
problem being solved, and driver research is no different. For ex-
ample, Shadow Drivers [38] assume that all drivers are members
of a class and there are no unique interfaces to a driver. Similarly,
the Termite driver-synthesis system assumes that drivers are state
machines and perform no computations [33]. Table2 lists the as-
sumptions made by recent research into device drivers.

We separate these assumptions into two categories: (i)inter-
actionsrefers to assumptions about how drivers interact with the
kernel, and (ii)architecturerefers assumptions about the role of
the driver: is it a conduit for data, or does it provide more sub-
stantial processing or services? Interaction assumptions relate to
how the kernel and driver interact. For example, systems that in-
terpose on driver/device communication, such as Nooks [39], typ-
ically assume that communication occurs over procedure calls and
not shared memory. Nooks’ isolation mechanism will not work oth-
erwise. Similarly, Shadow Drivers assume that the complete state
of the device is available in the driver by capturing kernel/driver in-



Improvement
type

System Driver classes tested Drivers
tested

New
functionality

Shadow driver
migration [19]

net 1

RevNIC [6] net 4

Reliability
(H/W
Protection)

CuriOS [9] serial port, NOR flash 2
Nooks [39] net, sound 6
Palladium [7] custom packet filter 1
Xen [12] net, sound 2

Reliability
(Isolation)

BGI [5] net, sound, serial,
ramdisk, libs

16

Shadow
Drivers [38]

net, sound, IDE 13

XFI [40] ram disk, dummy 2

Specification

Devil [25] scsi, video 2
Dingo [32] net 2
Laddie [45] net, UART, rtc 3
Nexus [44] net, sound, USB-mouse,

USB-storage
4

Termite [33] net, mmc 2

Static analysis
tools

Carburizer [18] All/net All/3
Cocinelle [29] Various All
SDV [2] basic ports, storage,

USB, 1394-interface,
126

mouse, keyboard, PCI
battery

Type safety
Decaf
Drivers [31]

net, sound, USB con-
troller, mouse

5

Safedrive [47] net, USB, sound, video 6
Singularity [37] Disk 1

User-level
device drivers

Micro-
drivers [15]

net, sound, USB con-
troller

4

SUD [4] net, wireless, sound,
USB controllers, USB

6/1

User-level
drivers [21]

net, disk (ata) 2

Table 1. Research projects on drivers, the improvement type, and the
number and class of drivers used to support the claim end to end. Few
projects test all driver interfaces thoroughly. Static analysis tools that
do not require driver modifications are available to check many more
drivers. Also, some solutions, like Carburizer [18], and SUD [4] support
the performance claims on fewer drivers.

Driver interactions
Class membership:Drivers belong to common set of classes, and the
class completely determines their behavior.
Procedure calls:Drivers always communicate with the kernel through
procedure calls.
Driver state:The state of the device is completely captured by the

driver.
Device state:Drivers may assume that devices are in the correct state.
Driver architecture
I/O: Driver code functionality is only dedicated to converting requests
from the kernel to the device.
Chipsets:Drivers typically support one or a few device chipsets.
CPU Bound:Drivers do little processing and mostly act as a library

for binding different interfaces together.
Event-driven:Drivers execute only in response to kernel and device

requests, and to not have their own threads.

Table 2. Common assumptions made in device driver research.

teractions [38]. However, network cards that do TCP-offload may
have significant protocol state that is only available in the device,
and cannot be captured by monitoring the kernel/driver interface.

Several recent projects assume that drivers support a single
chipset, such as efforts at synthesizing drivers from a formal
specification [33]. However, many drivers support more than one

chipset. Hence, synthesizing the replacement for a single driver
may require many more drivers. Similarly, enforcing safety proper-
ties for specific devices [44] may be cumbersome if many chipsets
must be supported for each driver. Other efforts at reverse engi-
neering drivers [6] similarly may be complicated by the support
of many chipsets with different hardware interfaces. Furthermore,
these synthesis and verification systems assume that devices al-
ways behave correctly, and their drivers may fail unpredictably
with faulty hardware.

Another assumption made by driver research is that drivers are
largely a conduit for communicating data and for signaling the
device, and that they perform little processing. Neither RevNIC [6])
nor Termite [33] support data processing with the driver, because it
is too complex to model as a simple state machine.

While these assumptions all hold true for many drivers, this re-
search seeks to quantify their real generality. If these assumptions
are true for all drivers, then these research ideas have broad appli-
cability. If not, then new research is needed to address the outliers.

3. What Do Drivers Do?
Device drivers are commonly assumed to primarily perform I/O. A
standard undergraduate OS textbook states:

“A device driver can be thought of a translator. Its input consists
of high-level commands such as “retrieve block 123.” Its output
consists of low-level, hardware-specific instructions that are used
by the hardware controller, which interfaces the I/O device to the
rest of the system.”

Operating Systems Concepts[36]

However, this passage describes the functions of only the small por-
tion of driver code that which actually performs I/O. Past work re-
vealed that the bulk of driver code is dedicated to initialization and
configuration for a sample of network, SCSI and sound drivers [15].

We seek to develop a comprehensive understanding of what
driver code does: what are the tasks drivers perform, what are the
interfaces they use, and how much code does this all take. The goal
of this study is to verify the driver assumptions described in the
previous section, and to identify major driver functions that could
benefit from additional research.

3.1 Methodology

To study the driver code, we developed theDrMiner static anal-
ysis tool using CIL [27] to detect code properties in individual
drivers. DrMiner takes as input unmodified drivers and a list of
driver data-structure types and driver entry points. As drivers only
execute when invoked from the kernel, these entry points allow us
to determine the purpose of particular driver functions. For exam-
ple, we find the different devices and chipsets supported by ana-
lyzing thedevice id structures registered (e.g., pci device id ,
acpi device id etc.) with the kernel. We also identify the driver
entry points from the driver structure registered (e.g., pci driver ,
pnp device ) and the device operations structure registered (e.g.,
net device ). DrMiner analyzes the function pointers registered
by the driver to determine the functionality of each driver. We then
construct a control-flow graph of the driver that allows us to deter-
mine all the functions reachable through each entry point, including
through function pointers.

We use atagging approach to labeling driver code: DrMiner
tags a function with the label of each entry point from which it is
reachable. Thus, a function called only during initialization will be
labeled initialization only, while code common to initialization and
shutdown will receive both labels. In addition, DrMiner identifies
specific code features, such as loops indicating computation.
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Figure 2. The percentage of driver code accessed during different
driver activities across driver classes.

We run these analyses over the entire Linux driver source and
store the output in a SQL database. The database stores informa-
tion about each driver as well as each function in the driver. The
information about the driver consists of name, path, size, class,
number of chipsets, module parameters, and interfaces registered
with the kernel. The information about each driver function consists
of function name, size, labels, resources allocated (memory, locks
etc.), and how it interacts with the kernel and the device. From the
database, determining the amount of code dedicated to any func-
tion is a simple query. In our results, we present data for about 25
classes with the most code.

3.2 What is the function breakdown of driver code?

Drivers vary widely in how much code they use for different pur-
poses; a simple driver for a single chipset may devote most of its
code to processing I/O requests and have a simple initialization rou-
tine. In contrast, a complex driver supporting dozens of chipsets
may have more code devoted to initialization and error handling
than to request handling.

Figure 2 shows the breakdown of driver code across driver
classes. The figure shows the fraction of driver code invoked during
driver initialization, cleanup, ioctl processing, configuration, power
management, error handling,/proc and/sys handling, and most
importantly, core I/O request handling (e.g., sending packet for
network devices, or playing audio for sound card) and interrupt
handling across different driver classes.

The largest contributors to driver code are initialization and
cleanup, comprising almost 36% of driver code on average, error
handling (5%), configuration (15%), power management (7.4%)
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Figure 3. The change in driver code in terms of LOC across different
driver classes between the Linux 2.6.0 and Linux 2.6.39 kernel.

and ioctl handling (6.2%). On average, only 23.3% of the code in a
driver is dedicated to request handling and interrupts.

Implications: These results indicate that efforts at reducing the
complexity of drivers should not only focus on request handling,
which accounts for only one fourth of the total code, but on bet-
ter mechanisms for initialization and configuration. For example,
as devices become increasingly virtualization aware, quick ways to
initialize or reset are critical for important virtualization features
such as re-assignment of devices and live migration [19]. Drivers
contain significant configuration code (15%), specifically in net-
work (31%) and video (27%) drivers. As devices continue to be-
come more complex, driver and OS research should look at efficient
and organized ways of managing device configuration [35].

3.3 Where is the driver code changing?

Over time, the focus of driver development shifts as new device
classes become popular. We compared the breakdown of driver
code between the 2.6.0 and 2.6.39 for new source lines of code
added annually to different driver classes. We obtain the source
lines of code across different classes in 9 intermediate revisions
(every December since 2.6.0) using sloccount [43].

Figure 3 shows the growth in driver across successive years
from the 2.6.0 baseline for 8 major driver classes. Overall, driver
code has increased by 185% over the last eight years. We iden-
tify three specific trends in this growth. First, there is additional
code for new hardware. This code includes wimax, GPU, media,
input devices and virtualization drivers. Second, there is increasing
support for certain class of devices, including network (driven by
wireless), media, GPU and SCSI. From 2.6.13 to 2.6.18, the devices
supported by a vendor (QLogic) increased significantly. Since, they
were very large multi-file SCSI drivers, the drivers where coalesced
to a single driver, reducing the size of SCSI drivers in the driver
tree. In Section5, we investigate whether there are opportunities
to reduce driver code in the existing code base. Third, there is minor
code refactoring. For example, periodically, driver code is moved
away from the driver or bus library code into the respective classes
where they belong. For example, drivers from the i2c bus directory
were moved to misc directory.

Implications: While Ethernet and sound, the common driver
classes for research, are important, research should look further
into other rapidly changing drivers, such as media, GPU and wire-
less drivers.



drivers/ide/ide-cd.c:
static int cdrom_read_tocentry(...) {

// Read table of contents data
for (i = 0; i <= ntracks; i++) {

if (drive->atapi_flags &
IDE_AFLAG_TOCADDR_AS_BCD) {

if (drive->atapi_flags &
IDE_AFLAG_TOCTRACKS_AS_BCD)

toc->ent[i].track =
bcd2bin(toc->ent[i].track);

msf_from_bcd(&toc->ent[i].addr.msf);}
toc->ent[i].addr.lba =

msf_to_lba(toc->ent[i].addr.msf.minute,
toc->ent[i].addr.msf.second,
toc->ent[i].addr.msf.frame);

}
}

Figure 4. The IDE CD-ROM driver processes table-of-contents en-
tries into a native format.

3.4 Do drivers belong to classes?

Many driver research projects assume that drivers belong to a class.
For example, Shadow Drivers [38] must be coded with the seman-
tics of all calls into the driver so it can replay them during recovery.
However, many drivers support proprietary extensions to the class
interface. In Linux drivers, these manifest as privateioctl options,
/proc or /sys entries, and as load-time parameters. If a driver has
one of these features, it may have additional behaviors not captured
by the class.

We use DrMiner to identify drivers that have behavior outside
the class by looking for load-time parameters and code to register
/proc or /sys entries. We do not identify uniqueioctl options.
Overall, we find that most driver classes have substantial amounts
of device-specific functionality. Code supporting/proc and/sys
is present in 16.3% of drivers. Also, 36% of drivers have load-
time parameters to control their behavior and configure options not
available through the class interface. Overall, 44% of drivers use
atleast one of the two non-class features. Additionally,ioctl code
comprises 6.2% of driver code, can also cause non-class behavior.

As an example of how these class extensions are used, the
e1000 gigabit network driver has 15 load-time parameters that al-
low control over interrupt processing and transmit/receive ring siz-
ing, and interrupt throttling rate. This feature is not part of any
standard network device interface and is instead specific to this de-
vice. Similarly, the i915 DRM GPU driver supports load parameters
for down-clocking the GPU, altering graphic responsibilities from
X.org to the kernel, and power saving. These parameters change the
code path of the driver during initialization as well as during regular
driver operations. While the introduction of these parameters does
not affect the isolation properties of the reliability solutions, as the
interfaces for setting and retrieving these options are standard, it
limits the ability to restart and restore the driver to a previous state
since the semantics of these options are not standardized.

Implications: While most driver functionality falls into the class
behavior, many drivers have significant extensions that do not.
Attempts to recover driver state based solely on the class inter-
face [38] or to synthesize drivers from common descriptions of
the class [6, 33] may not work for a substantial number of drivers.
Thus, future research should explicitly consider how to accommo-
date unique behaviors efficiently.

3.5 Do drivers do significant processing?

As devices become more powerful and feature processors of their
own, it is often assumed that drivers perform little processing and
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Figure 5. The average number of chipsets supported by drivers in
each class.

simply shuttle data between the OS and the device. However, if
drivers require substantial CPU processing, for example to com-
pute parity for RAID, checksums for networking, or display data
for video drivers, then processing power must be reserved. Further-
more, in a virtualized setting, heavy I/O from one guest VM could
substantially reduce CPU availability for other guest VMs.

DrMiner detects processing in drivers by looking for loops that
(i) do no I/O, (ii) do not interact with the kernel, and (iii) are on core
data paths, such as sending/receiving packets or reading/writing
data. This ensures that polling loops, common in many drivers, are
not identified as performing processing.

We find that 15% of drivers have at least one function that
performs processing, and that processing occurs in 1% of all driver
functions. An even higher fraction (28%) of sound and network
drivers do processing. Wireless drivers, such as ATH, perform
processing to interpolate power levels of the device under different
frequencies and other conditions. Many network drivers provide the
option of computing checksums on the outgoing/incoming packets.
Finally, even CD-ROM drivers, which largely read data off the
device, do computation to analyze the table of content information
for CD-ROMs, as shown in Figure4.

Implications: A substantial fraction of drivers do some form of
data processing. Thus, efforts to generate driver code automatically
must include mechanisms for data processing, not just converting
requests from the OS into requests to the device. Furthermore, vir-
tualized systems should account for the CPU time spent processing
data when this processing is performed on behalf of a guest VM.
These results also point to new opportunities for driver and device
design: given the low cost of embedded processors, can all the com-
putation be offloaded to the device, and is there a performance or
power benefit to doing so?

3.6 How many device chipsets does a single driver support?

Several driver research projects require or generate code for a spe-
cific device chipset. For example, Nexus requires a safety specifi-
cation that is unique to each device interface [44]. If a driver sup-
ports only a single device, this requirement may not impose much
burden. However, if a driver supports many devices, each with a
different interface or behavior, then many specifications are needed
to fully protect a driver.

We measure the number of chipsets or hardware packagings
supported by each Linux driver by counting the number of PCI,
USB or other bus device IDs (i.e., i2c, ieee1394) that the driver
recognizes. These structures are used across buses to identify (and
match) different devices or packagings that are supported by the



static int __devinit cy_pci_probe(...)
{

if (device_id == PCI_DEVICE_ID_CYCLOM_Y_Lo) {
...

if (pci_resource_flags(pdev,2)&IORESOURCE_IO){
..

if (device_id == PCI_DEVICE_ID_CYCLOM_Y_Lo ||
device_id == PCI_DEVICE_ID_CYCLOM_Y_Hi) {

..
}else if (device_id==PCI_DEVICE_ID_CYCLOM_Z_Hi)

....
if (device_id == PCI_DEVICE_ID_CYCLOM_Y_Lo ||

device_id == PCI_DEVICE_ID_CYCLOM_Y_Hi) {
switch (plx_ver) {

case PLX_9050:
...

default: / * Old boards, use PLX_9060 * /
...

}

Figure 6. The cyclades character drivers supports eight chipsets that
behaves differently at each phase of execution. This makes driver code
space efficient but extremely complex to understand.

driver. Figure5 shows the average number of chipsets supported
by each driver in each driver class. While most drivers support only
a few different devices, serial drivers support almost 36 chipsets on
average, and network drivers average 5. The Radeon DRM driver
supports over 400 chipsets, although many of these may indicate
different packagings of the same internal chipset. Generic USB
drivers such as usb-storage and usb-audio support over 200 chipsets
each, and the usb-serial driver supports more than 500 chipsets.
While not every chipset requires different treatment by the driver,
many do. For example, the3c59x 100-megabit Ethernet driver sup-
ports 37 chipsets, 17 sets of features that vary between chipsets, and
two complete implementations of the core send/receive functional-
ity. Overall, we find that 28% of drivers support more than one
chipset and these drivers support 83% of the total devices.

In order to measure the effects of number of chipsets on driver
code size, we measured the least-square correlation coefficient be-
tween the number of chipsets support by a driver and the amount of
code in the driver and found them to be weakly correlated (0.25),
indicating that drivers supporting more chipsets were on average
larger than those that did not. However, this does not completely
explain the amount of initialization code, as the correlation between
the number of chipsets and the percentage of initialization code was
0.07, indicating that the additional chipsets increased the amount of
code throughout the driver.

Implications: These results indicate that Linux drivers support
multiple chipsets per driver and are relatively efficient, supporting
14,070 devices with 3,217 device and bus drivers, for an average of
approximately 400 lines of code per device. Any system that gener-
ates unique drivers for every chipset or requires per-chipset manual
specification may lead to a great expansion in driver code and com-
plexity. Furthermore, there is substantial complexity in support-
ing multiple chipsets, as seen in Figure6, so better programming
methodologies, such as object-oriented programming [31] and au-
tomatic interface generation, similar to Devil [25], should be inves-
tigated.

3.7 Discussion

The results in this section indicate that while common assumptions
about drivers are generally true, given the wide diversity of drivers,
one cannot assume they always hold. Specifically, many drivers
contain substantial amounts of code that make some of the existing
research such as automatic generation of drivers difficult, due to
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Figure 7. The average kernel library, memory, synchronization, ker-
nel device library, and kernel services library calls per driver (bottom
to top in figure) for all entry points.

code unique to that driver and not part of the class, code that
processes data, and code for many chip sets.

4. Driver Interactions
The preceding section focused on thefunctionof driver code, and
here we turn to theinteractionsof driver code: how do drivers
use the kernel, and how do drivers communicate with devices? We
see three reasons to study these interactions. First, extra process-
ing power on devices or extra cores on the host CPU provide an
opportunity to redesign the driver architecture for improved relia-
bility and performance. For example, it may be possible to move
many driver functions out of the kernel and onto the device itself.
Or, in virtualized systems, driver functionality may execute on a
different core in a different virtual machine. Second, much of the
difficulty in moving drivers between operating systems comes from
the driver/kernel interface, so investigating what drivers request of
the kernel can aid in designing more portable drivers. Third, the
cost of isolation and reliability are proportional to the size of the
interface and the frequency of interactions, so understanding the
interface can lead to more efficient fault-tolerance mechanisms.

We examine the patterns of interaction between the driver, the
kernel and the device, with a focus on (i) which kernel resources
drivers consume, (ii) how and when drivers interact with devices,
(iii) the differences in driver structure across different I/O buses,
and (iv) the threading/synchronization model used by driver code.

4.1 Methodology

We apply the DrMiner tool from Section3 to perform this analysis.
However, rather than propagating labels down the call graph from
entry points to leaf functions, here we start at the bottom with ker-
nel and device interactions. Using a list of known kernel functions,
bus functions, and I/O functions, we label driver functions accord-
ing to the services or I/O they invoke. Additionally, we compute
the number of invocations of bus, device and kernel invocations
for each function in a driver. These call counts are also propagated
to determine how many such static calls could be invoked when a
particular driver entry point is invoked.



4.2 Driver/Kernel Interaction

Drivers vary widely in how they use kernel resources, such as
memory, locks, and timers. Here, we investigate how drivers use
these resources. We classify all kernel functions into one of five
categories:

1. Kernel library (e.g., generic support routines such as reporting
functions,1 timers, string manipulation, checksums, standard
data structures)

2. Memory management (e.g., allocation)

3. Synchronization (e.g., locks)

4. Device library (e.g., subsystem libraries supporting a class of
device and other I/O related functions)

5. Kernel services (e.g., access to other subsystems including files,
memory, scheduling)

The first three are generic library routines that have little interaction
with other kernel services, and could be re-implemented in other
execution contexts. The fourth category, device library, provides
I/O routines supporting the driver but does not rely other kernel
services, and is very OS dependent. The final category provides
access to other kernel subsystems, and is also OS dependent.

Figure7 shows, for each class of drivers, the total number of
function calls made by drivers in every class. The results demon-
strate several interesting features of drivers. First, the majority of
kernel invocations are for kernel library routines, memory manage-
ment and synchronization. These functions are primarilylocal to
a driver, in that they do not require interaction with other kernel
services. Thus, a driver executing in a separate execution context,
such as in user mode or a separate virtual machine, need not call
into the kernel for these services. There are very few calls into ker-
nel services, as drivers rarely interact with the rest of the kernel.

The number of calls into device-library code varies widely
across different classes and illustrates the abstraction level of
the devices: those with richer library support, such as network
and SCSI drivers, have a substantial number of calls into device
libraries, while drivers with less library support, such as GPU
drivers, primarily invoke more generic kernel routines.

Finally, a number of drivers make very little use of kernel ser-
vices, such as ATA, IDE, ACPI, and UWB drivers. This approach
demonstrates another method for abstracting driver functionality
when there is little variation across drivers: rather than having a
driver that invokes support library routines, these drivers are them-
selves a small set of device-specific routines called from a much
larger common driver. This design is termed a “miniport” driver in
Windows. Thus, these drivers benefit from a common implementa-
tion of most driver functionality, and only the code differences are
implemented in the device-specific code. These drivers are often
quite small and have little code that is not device specific.

These results demonstrate a variety of interaction styles between
drivers and the kernel: drivers with little supporting infrastructure
demonstrate frequent interactions with the kernel for access to
kernel services but few calls to device support code. Drivers with a
high level of abstraction demonstrate few calls to the kernel over
all. Drivers with a support library demonstrate frequent calls to
kernel generic routines as well as calls to device support routines.

Implications: Drivers with few calls into device libraries may
have low levels of abstraction, and thus are candidates for extract-
ing common functionality. Similarly, drivers with many kernel in-
teractions and device library interaction may benefit from convert-
ing to a layered on “miniport” architecture, where more driver func-
tionality is extracted into a common library.

1 We leave outprintk to avoid skewing the numbers from calls to it.
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Figure 8. The device interaction pattern representing port I/O, mem-
ory mapped I/O, bus resources (bottom to top) invoked via all driver
entry points.

Furthermore, a large fraction of driver/kernel interactions are
for generic routines (memory, synchronization, libraries) that do
not involve other kernel services. Thus, they could be implemented
by a runtime environment local to the driver. For example, a driver
executing in a separate virtual machine or on the device itself can
make use of its local OS for these routines, and drivers in user space
can similarly invoke user-space versions of these routines, such as
the UML environment in SUD [4].

4.3 Driver/Device Interaction

We next look at interaction between the driver and the device. We
analyzed all functions in all drivers, and if a function does I/O it-
self, or calls a function that results in an I/O, we label it asperform
I/O. We categorize driver/device interactions around the type of in-
teraction: access to memory-mapped I/O (MMIO) regions or x86
I/O ports (port IO) are labeledmmio/portio, DMA is DMA access,
either initiated by the driver or enabled by the driver creating a
DMA mapping for a memory region, and calls to a bus, such as
USB or PCI (bus). We could not determine statically when a de-
vice initiates DMA, although we do count calls to map a page for
future DMA (e.g., pci map single ) as a DMA action. Our analy-
sis can detect memory mapped I/O through accessor routines such
asread/writeX family, ioread/iowrite family of routines and
port I/O using thein/outX family. DrMiner cannot identify di-
rect dereferences of pointers into memory-mapped address ranges.
However, direct dereference of I/O addresses is strongly discour-
aged and most non-conforming drivers have been converted to use
accessor routines instead. We also note that all I/O routines on x86
eventually map down to either port or MMIO. Here, though, we
focus on the I/O abstractions used by the driver.

Figure8 shows, for each class of device, the number of device
interactions in the entire driver. The results demonstrate that driver
classes vary widely in their use of different I/O mechanisms. IDE
and ATA drivers, both block devices, show very different patterns
of interaction: IDE drivers do very little port or MMIO, because
they rely on the PCI configuration space for accessing device reg-
isters. Hence, they show a greater proportion of bus operations.
Additionally, virtual device classes such as md (RAID), do page-
level writes by calling the block subsystem through routines like
submit bio rather than by accessing a device directly.



Kernel Interactions Device Interactions
BUS mem sync dev lib. kern lib. kern services port/mmio dma bus avg devices/driver

PCI 15.6 57.8 13.3 43.2 9.1 125.1 7.0 21.6 7.5
USB 9.6 25.5 5.6 9.9 3.0 0.0 2.22 13.8 13.2
Xen 10.3 8.0 7.0 6.0 2.75 0.0 0.0 34.0 1/All

Table 3. Comparison of modern buses on drivers across all classes. Xen and USB drivers invoke the bus for the driver while PCI drivers invoke the
device directly.

Second, these results demonstrate that the cost of isolating
drivers can vary widely based on their interaction style. Direct in-
teractions, such as through ports or MMIO, can use hardware pro-
tection, such as virtual memory. Thus, an isolated driver can be al-
lowed to access the device directly. In contrast, calls to set up DMA
or use bus routines rely on software isolation, and need to cross
protection domains. Thus, drivers using higher-level buses, like
USB, can be less efficient to isolate, as they can incur a protection-
domain transition to access the device. However, as we show in the
next section, access devices through a bus can often result in far
fewer operations.

Implications: The number and type of device interactions vary
widely across devices. Thus, the cost of isolating drivers, or veri-
fying that their I/O requests are correct (as in Nexus [44]) can vary
widely across drivers. Thus, any system that interposes or protects
the driver/device interaction must consider the variety of interaction
styles. Similarly, symbolic execution frameworks for drivers [20]
must generate appropriate symbolic data for each interaction style.

4.4 Driver/Bus Interaction

The plurality of drivers in Linux are for devices that attach to some
kind of PCI bus (e.g., PCIe or PCI-X). However, several other
buses are in common use: the USB bus for removable devices and
XenBus for virtual devices [46]. Architecturally, USB and Xen
drivers appear to have advantages, as they interact with devices
over a message-passing interface. With USB 3.0 supporting speeds
up to 5 Gbps [42] and Xen supporting 10 Gbps networks [30], it is
possible that more devices will be accessed via USB or XenBus.

In this section, we study the structural properties of drivers for
different buses to identify specific differences between the buses.
We also look for indications that drivers for a bus may have better
architectural characteristics, such as efficiency or support for isola-
tion. We focus on two questions: (i) does the bus support a variety
of devices efficiently, (ii) will it support new software architectures
that move driver functionality out of the kernel onto a device or into
a separate virtual machine? Higher efficiency of a bus interface re-
sults from supporting greater number of devices with standardized
code. Greater isolation results from having less device/driver spe-
cific code in the kernel. If a bus only executes standardized code
in the kernel, then it would be easier to isolate drivers away from
kernel, and execute them inside a separate virtual machine or on
the device itself such as on an embedded processor.

Table3 compares complexity metrics across all device classes
for PCI, USB, and XenBus. First, we look at the efficiency of sup-
porting multiple devices by comparing the number of chipsets sup-
porting by a driver. This indicates the complexity of supporting a
new device, and the level of abstraction of drivers. A driver that sup-
ports many chipsets from different vendors indicates a standardized
interface with a high level of common functionality. In contrast,
drivers that support a single chipset indicate less efficiency, as each
device requires a separate driver.

The efficiency of drivers varied widely across the three buses.
PCI drivers support 7.5 chipsets per driver, almost always from the

2 USB drivers invoke DMA via the bus.

same vendor. In contrast, USB drivers average 13.2, often from
many vendors. A large part of the difference is the effort at stan-
dardization of USB protocols, which does not exist for many PCI
devices. For example, USB storage devices implement a standard
interface [41]. Thus, the main USB storage driver code is largely
common, but includes call-outs to device-specific code. This code
includes device-specific initialization, suspend/resume (not pro-
vided by USB-storage and left as an additional feature requirement)
and other routines that require device-specific code. While there are
greater standardization efforts for USB drivers, it is still not com-
plete

Unlike PCI and USB drivers, XenBus drivers do not access de-
vices directly, but communicate with a back-end driver executing
in a separate virtual machine that uses normal Linux kernel inter-
faces to talk to any driver in the class. Thus, a single XenBus driver
logically supportsall drivers in the class. in a separate domain so
we report them as a single chipset. However, device-specific behav-
ior, described above in Section3.4, is not available over XenBus;
these features must be accessed from the domain hosting the real
driver. XenBus forms an interesting basis for comparison because
it provides the minimum functionality to support a class of devices,
with none of the details specific to the device. Thus, it represents a
“best-case” driver.

We investigate the ability of a bus to support new driver archi-
tectures through its interaction with the kernel and device. A driver
with few kernel interactions may run more easily in other execu-
tion environments, such as on the device itself. Similarly, a driver
with few device or bus interactions may support accessing devices
over other communication channels, such as network attached de-
vices [26]. We find that PCI drivers interact heavily with the kernel
unless kernel resources are provided by an additional higher-level
virtual bus (e.g., ATA). In contrast, Xen drivers have little kernel
interaction, averaging only 34 call sites compared to 139 for PCI
drivers. A large portion of the difference is that Xen drivers need
little initialization or error handling, so they primarily consist of
core I/O request handling.

The driver/device interactions also vary widely across buses:
due to the fine granularity offered by PCI (individual bytes of
memory), PCI drivers average more device interactions (154) than
USB or XenBus devices (14-34). Thus, USB drivers are more
economical in their interactions, as they batch many operations into
a single request packet. XenBus drivers are even more economical,
as they need fewer bus requests during initialization and as many
operations as USB for I/O requests. Thus, USB and XenBus drivers
may efficiently support architectures that access drivers over a
network, because access is less frequent and coarse grained.

Implications: These results demonstrate that the flexibility and
performance of PCI devices comes with a cost: increased driver
complexity, and less interface standardization. Thus, for devices
that can live within the performance limitations of USB or in a vir-
tualized environment for XenBus, these buses offer real architec-
tural advantages to the drivers. With USB, significant standardiza-
tion enables less unique code per device, and coarse-grained access
allows efficient remote access to devices [1, 10, 17].



XenBus drivers push standardization further by removingall
device-specific code from the driver and executing it elsewhere.
For example, it may be possible to use XenBus drivers to access
a driver running on the device itself rather than in a separate virtual
machine; this could in effect remove many drivers from the kernel
and host processor.

The mechanism for supporting non-standard functionality also
differs across these buses: for PCI, a vendor may write a new
driver for the device to expose its unique features. For USB, a
vendor can add functionality to the existing common drivers just
for the features. For XenBus, the features must be accessed from
the domain executing the driver and are not available to a guest OS.

4.5 Driver Concurrency

Another key requirement of drivers in all modern operating sys-
tems is the need to multiplex access to the device. For example, a
disk controller driver must allow multiple applications to read and
write data at the same time, even if these applications are not oth-
erwise related. This requirement can complicate driver design, as
it increases the need for synchronization among multiple indepen-
dent threads. We investigate how drivers multiplex access across
long-latency operations: do they tend towards threaded code, sav-
ing state on the stack and blocking for events, or toward event-
driven code, registering callbacks either as completion routines for
USB drivers or interrupt handlers and timers for PCI devices. If
drivers are moved outside the kernel, the driver and kernel will
communicate with each other using a communication channel and
supporting event-driven concurrency may be more natural.

We determine that a driver entry point requires a threaded pro-
gramming style if it makes blocking calls into the kernel, or busy-
waits for a device response usingmsleep() which enables block-
ing. All other entry points are considered “event friendly”, in that
they do not suspend the calling thread. We did not detect specific
routines that use event-based synchronization, as they often rely
on the device to generate the callback via an interrupt rather than
explicitly registering with the kernel for a callback .

The results, shown in Figure9 in the bars labeledevent friendly
and threaded, show that the split of threaded and event-friendly
code varies widely across driver classes. Overall, drivers exten-
sively use both methods of synchronization for different purposes.
Drivers use threaded primitives to synchronize driver and device
operations while initializing the driver, and updating driver global
data structures, while event-friendly code is used for core I/O re-
quests. Interestingly, network drivers and block drivers, which are
not invoked directly by user-level code, have a similar split of
code to sound drivers, which are invoked directly from application
threads. This arises because of the function of most driver code, as
reported in Section3.2: initialization and configuration. This code
executes on threads, often blocking for long-latency initialization
operations such as device self-test.

Implications: Threaded code is difficult to run outside the ker-
nel, where the invoking thread is not available. For example, Mi-
crodrivers [16] executes all driver code in an event-like fashion, re-
stricting invocation to a single request at a time. Converting drivers
from threads to use event-based synchronization internally would
simplify such code. Furthermore, events are a more natural fit when
executing driver code either in separate virtual machine or on a de-
vice itself, as they naturally map to a stream of requests arising over
a communication channel [34].

5. Driver Redundancy
Given that all the drivers for a class perform essentially the same
task, one may ask why so much code is needed. In some cases,
such as IDE devices, related devices share most of the code with
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Figure 9. The percentage of driver entry points under coverage of
threaded and event friendly synchronization primitives.

DrComp signature: 1.798865
static int hpt374_fn1_cable_detect(....)
{

struct pci_dev * pdev = to_pci_dev(...);

unsigned int mcrbase = 0x50
+ 4 * ap->port_no;

u16 mcr3;
u8 ata66;

/ * Do the extra channel work * /
pci_read_config_word(pdev,

mcrbase+2,&mcr3);
/ * Set bit 15 of 0x52 to enable .. * /
pci_write_config_word(pdev,

mcrbase + 2,..);
pci_read_config_byte(pdev,

0x5A,&ata66);
/ * Reset TCBLID/FCBLID to output * /
pci_write_config_word(pdev,

mcrbase+2,mcr3);
if (ata66 & (2 >> ap->port_no))

return ATA_CBL_PATA40;
else

return ATA_CBL_PATA80;
}

DrComp signature: 1.8
static int hpt37x_cable_detect(...)
{

struct pci_dev * pdev = to_pci_dev(...);

u8 scr2, ata66;

pci_read_config_byte(pdev,
0x5B, &scr2);

pci_write_config_byte(pdev,
0x5B,...);

udelay(10); / * debounce * /

/ * Cable register now active * /
pci_read_config_byte(pdev,

0x5A,&ata66);
/ * Restore state * /
pci_write_config_byte(pdev,

0x5B,scr2);
if (ata66 & (2 >> ap->port_no))

return ATA_CBL_PATA40;
else

return ATA_CBL_PATA80;
}

Figure 10. Similar code between two different HPT ATA controller
drivers essentially performing the same action. These are among the
least-similar functions that DrComp is able to detect these functions as
related. The boxes show differentiating statements in the two functions
that account for the close signature values.

a small amount of per-device code. Most device classes, though,
replicate functionality for every driver. The problem of writing re-
peated/redundant code is well documented. It causes maintainabil-
ity issues in software development [13], and is also a significant
cause of bugs in the Linux kernel [8, 22, 29]. Providing the right
abstractions also helps in code standardization and integrating ker-
nel services such as power management in a correct fashion across
all drivers. Without a global view of drivers, it can be difficult to
tell whether there are opportunities to share common code.

To address this question, we developed a scalable, code similar-
ity tool for discovering similar code patterns across related drivers
and applied it to Linux drivers. The goal of this work is to find
driver functions with substantially similar code, indicating that the
common code could be abstracted and removed from all drivers to
reduce driver code size and complexity.

5.1 Methodology

We developed a new code-similarity tool to handle the number
of Linux drivers to find similarities rather than exact copies. We



DrComp signature:1.594751
static int nv_pre_reset(......)
{

..struct pci_bits nv_enable_bits[] = {
{ 0x50, 1, 0x02, 0x02 },
{ 0x50, 1, 0x01, 0x01 }

};

struct ata_port * ap = link->ap;
struct pci_dev * pdev = to_pci_dev(...);
if (!pci_test_config_bits

(pdev,&nv_enable_bits[ap->port_no]))
return -ENOENT;

return ata_sff_prereset(..);
}

DrComp signature:1.594751
static int amd_pre_reset(...)
{

..struct pci_bits amd_enable_bits[] = {
{ 0x40, 1, 0x02, 0x02 },
{ 0x40, 1, 0x01, 0x01 }

};

struct ata_port * ap = link->ap;
struct pci_dev * pdev = to_pci_dev(...);
if (!pci_test_config_bits

(pdev,&amd_enable_bits[ap->port_no]))
return -ENOENT;

return ata_sff_prereset(..);
}

Figure 11. The above figure shows identical code that consumes dif-
ferent register values. Such code is present in drivers where multiple
chipsets are supported as well as across drivers of different devices.
The functions are copies except for the constants as shown in the boxes.

needed to parse through the entire driver source tree consisting of
5 million lines of code, with close to a million lines of code in
large classes like network drivers. Most existing clone-detection
tools develop a stream of tokens or tree/graphs and perform ann x
n comparison of all code snippets to detect clones, which given the
size of the driver classes, is not possible. In addition, we needed
a similarity detector for finding code that that is closely related
but not identical. With more control over how similar regions are
detected using information from the semantics of drivers, we are
able to detect more useful similar code. For example, while parsing
function calls, we treat calls to the device and kernel differently,
improving the accuracy of our similarity-detection tool.

Our similarity tool,DrComp, is based onshape analysis3 [11].
This is a method to determine whether clusters of points have a
similar shape and variants of these technique are often used to
cluster data, to determine nature of data distribution, and to detect
identical shapes in computer vision [3].

DrComp generates a set of multidimensional coordinates for ev-
ery function in every driver. It then detects as similar two func-
tions whose coordinate sets (shape) are similar. DrComp processes
a driver function and adds a point to the function’s shape for every
statement or action in statement for loop, kernel interaction, con-
ditionals, device interaction, variable assignment, break and return
statements. The coordinates of the point are the offset into the func-
tion (line number) and the statement type. To improve accuracy, it
is important that the generated shape of the code emphasizes the
important characteristics of the function. Hence, we also reinforce
the shape of the function by weighting statements that are important
yet sparse, such as a function returns and calls to kernel functions.
The shape of each driver function is a cloud of points on plane
representing the structure of the program. While we consider only
two dimensions of the code, the statement type and edit distance to
generate the points, our tool can easily be extended to include ad-
ditional dimensions based on code features (such as nesting depth)
or driver features (such as interrupt frequency).

To eliminate complex comparison of two driver functions, we
further reduce the shape of a driver down to a singlesignature
value. We compute the signature as a function of Euclidean dis-
tance between all the points in the code cluster obtained above.
The output of DrComp is a signature for every function in every
driver. Thus, two functions with identical code will have identical
signatures. Furthermore, code that is similar, in that it has a similar
structure of loops and I/O operations, will have similar signatures.

Figure 10 shows an example of some of theleast similarre-
lated code in drivers we found. These two functions have signatures
within 0.05% of each other. DrComp only looks for the code struc-
ture from statement types (also distinguishing kernel and device

3 We perform geometric shape analysis, not the program analysis technique
of the same name.

invocations) and edit distance, so functions may use different argu-
ments (register values), compare against different values or loop on
different conditions, and still be grouped as similar code.

5.2 Redundancy Results

DrComp detected that 8% of all driver code is very similar to
other driver code. The results of our similarity study are shown in
Table4. For classes with many similarities, we show the number of
fragment clusters (sets of similar code), as well as the total number
of functions that are similar to another function. For the results in
above table, we show results within individual driver classes and
not across classes, as they are less likely to benefit from a shared
abstraction.

Overall, we identified similarities within a single driver, across a
subset of drivers in a class, and in some cases across most drivers in
a class. Within a single driver, we found that the most common form
of repeated code was wrappers around device I/O, driver library
or kernel functions. These wrappers either convert data into the
appropriate format or perform an associated support operation that
is required before calling the routines but differ from one another
because they lie on a different code path. These wrappers could be
removed if the kernel interface supported the same data types as the
device or if drivers provided appropriate abstractions to avoid such
repeated code.

We also find swaths of similar functions across entire classes of
drivers. The major difference between drivers for different chipsets
of the same device are often constant values, such as device regis-
ters or flag values. For example, ATA disk drivers abstract most of
the code into a core library,libata , and each driver implements a
small set of a device-specific functionality. Commonly, these func-
tions are short and perform one or two memory-mapped I/O reads
or writes, but with different values for every driver. Figure5 shows
two functions from different ATA drivers with substantially similar
code. This practice generates large bodies of very similar drivers
with small differences. Further abstraction could additionally sim-
plify these drivers, for example, replacing these routines with tables
encoding the different constants. Similarly, a hardware specifica-
tion language [25] may be able to abstract the differences between
related devices into a machine-generated library.

Finally, we note similarities across subsets of drivers in a class.
For example, another common class of similarities is wrappers
around kernel functions and driver libraries for that class: the
release method for frame buffers is virtually identical across
many of the drivers, in that it checks a reference count and re-
stores the VGA graphics mode. There are a few small differences,
but refactoring this interface to pull common functionality into a
library could again simplify these drivers.

Implications: Overall, these results demonstrate that there are
many opportunities for reducing the volume of driver code by ab-
stracting similar code into libraries or new abstractions. We visu-
ally inspected all function clusters to determine how a programmer
could leverage the similarity by having a single version of the code.
We see three methods for achieving this reduction: (i) procedural
abstractions for driver sub-classes, (ii) better multiple chipset sup-
port and (iii) table driven programming.

The most useful approach isprocedural abstraction, which
means to move the shared code to a library and provide parameters
covering the differences in implementation. There is significant
code in single drivers or families of drivers with routines perform-
ing similar functions on different code paths. Creating driver-class
or sub-class libraries will significantly reduce this code. Second,
existing driver libraries can be enhanced with new abstractions that
cover the similar behavior. There are many families of drivers that
replicate code heavily, as pointed out in Table4. Abstracting more
code out these families by creating new driver abstractions that



Driver
class

Driver
subclass

Similar
code
fragments

Fragment
clusters

Fragment
size (Avg.
LOC)

Redundancy results and action items to remove redundant code

acpi 64 32 15.1
Procedural abstraction for centralized access to kernel resources and passing
get/set configuration information as arguments for large function pairs.

gpu 234 108 16.9
Procedural abstractions for device access. Code replicated across drivers, like in
DMA buffer code for savage, radeon, rage drivers, can be removed by supporting
more devices per driver.

isdn 277 118 21.0
Procedural abstraction for kernel wrappers. Driver abstraction/common library for
ISDN cards in hisax directories.

char input 125 48 17.23
Procedural abstraction for kernel wrappers. Driver abstraction/common driver for
all touchscreen drivers. Procedural abstraction in Aiptek tablet driver.

media 1116 445 16.5
Class libraries for all Micron image sensor drivers. Procedural abstraction in saa
7164 A/V decoder driver and ALI 5602 webcam driver.

video 201 88 20
Class libraries for ARK2000PV, S3Trio, VIA VT8623drivers in init/cleanup,
power management and frame buffer operations. Procedural abstraction in VESA
VGA drivers for all driver information functions.

sound 1149 459 15.1
Single driver for ICE1712 and ICE1724 ALSA drivers. Procedural abstraction for
invoking sound libraries, instead of repeated code with different flags. Procedural
abstraction for AC97 driver and ALSA driver for RME HDSPM audio interface.

ata 68 29 13.3
Common power management library for ALI 15x3, CMD640 PCI, Highpoint ATA
controllers, Ninja32, CIL 680, ARTOP 867X, HPT3x3, NS87415 PATA drivers
and SIS ATA driver. Table driven programming for device access in these drivers.

block ide 18 9 15.3 Procedural abstraction for the few wrappers around power management routines.

scsi 789 332 25.6
Shared library for kernel/scsi wrappers for Qlogic HBA drivers; pmc sierra and
marvell mvsas drivers. Large redundant wrappers in mp2sas firmware, Brocade
FC port access code.

net
Ethernet/
wireless

1906 807 25.1

Shared library for wireless drivers for talking to device/kernel and wireless rou-
tines. Lot of NICs share code for most routines like configuration, resource allo-
cation and can be moved to a single driver with support for multiple chipsets. A
driver sub-class library for all or vendor specific Ethernet drivers.

infiniband 138 60 15.0 Procedural abstraction for Intel nes driver.

Table 4. The total number of similar code fragments and fragment clusters across driver classes and action items that can be taken to reduce them.

support multiple chipsets can simplify driver code significantly. Fi-
nally, functions that differ only by constant values can be replaced
by table-driven code. This may also be applicable to drivers with
larger differences but fundamentally similar structures, such as net-
work drivers that use ring buffers to send and receive packets. By
providing these abstractions, we believe there is an opportunity to
reduce the amount of driver code, consequently reducing the in-
cidence of bugs and improving the driver development process by
producing concise drivers in the future.

6. Conclusions
The purpose of this study is to investigate the complete set of
drivers in Linux, to avoid generalizing from the small set of drivers
commonly used for research, and to form new generalizations.

Overall, we find several results that are significant to future re-
search on drivers. First, a substantial number of assumptions about
drivers, such as class behavior, lack of computation, are true for
many drivers but by no means all drivers. For example, instead
of request handling, the bulk of driver code is dedicated to initial-
ization/cleanup and configuration, together accounting for 51% of
driver code. A substantial fraction (44%) of drivers have behavior
outside the class definition, and 15% perform significant computa-
tions over data. Thus, relying on a generic frontend network driver,
as in Xen virtualization, conceals the unique features of different
devices. Similarly, synthesizing driver code may be difficult, as this
processing code may not be possible to synthesize. Tools for auto-
matic synthesis of driver code should also consider driver support
for multiple chipset as we find that Linux supports over 14,000 de-
vices with just 3,217 bus and device drivers.

Second, our study of driver/device/kernel interactions showed
wide variation in how drivers interact with devices and the kernel.
At one end, miniport drivers contain almost exclusively device-

specific code that talks to the device, leaving kernel interactions to
a shared library. At the other end, some drivers make extensive calls
to the kernel and very few into shared device libraries. This latter
category may be a good candidate for investigation, as there may be
shared functionality that can be removed. Overall, these results also
show that the cost of isolating drivers may not be constant across
all driver classes.

Third, our investigation of driver/device interaction showed that
USB and XenBus drivers provide more efficient device access than
PCI drivers, in that a smaller amount of driver code supports access
to many more devices, and that coarse-grained access may support
moving more driver functionality out of the kernel, even on the
device itself. Furthermore, many drivers require very little access to
hardware and instead interact almost exclusively with the bus. As a
result, such drivers can effectively be run without privileges, as they
need no special hardware access. We find that USB and Xenbus
provide the opportunity to utilize the extra cycles on devices by
executing drivers on them and can effectively be used to remove
drivers from the kernel leaving only standardized bus code in the
kernel.

Finally, we find strong evidence that there are substantial oppor-
tunities to reduce the amount of driver code. The similarity analysis
shows that there are many instances of similar code patterns that
could be replaced with better library abstractions, or in some cases
with tables. Furthermore, the driver function breakdown in Sec-
tion3shows that huge amounts of code are devoted to initialization;
this code often detects the feature set of different chipsets. Again,
this code is ripe for improvement through better abstractions, such
as object-oriented programing technique and inheritance [31].

While this study was performed for Linux only, we believe
many similar patterns, although for different classes of devices,
will show in other operating systems. It may also be interesting to



compare the differences in driver code across operating systems,
which may demonstrate subtle differences in efficiency or com-
plexity. Our study is orthogonal to most studies on bug detection.
However, correlating bugs with different driver architectures can
provide insight on the reliability of these architectures in real life.
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Abstract
Recovering faults in drivers is difficult compared to other code
because their state is spread across both memory and a device.
Existing driver fault-tolerance mechanisms either restart the driver
and discard its state, which can break applications, or require an
extensive logging mechanism to replay requests and recreate driver
state. Even logging may be insufficient, though, if the semantics
of requests are ambiguous. In addition, these systems either require
large subsystems that must be kept up-to-date as the kernel changes,
or require substantial rewriting of drivers.

We present a new driver fault-tolerance mechanism that pro-
vides fine-grained control over the code protected. Fine-Grained
Fault Tolerance (FGFT) isolates driver code at the granularity of a
single entry point. It executes driver code as a transaction, allow-
ing roll back if the driver fails. We develop a novel checkpointing
mechanism to save and restore device state using existing power-
management code. Unlike past systems, FGFT can be incremen-
tally deployed in a single driver without the need for a large kernel
subsystem, but at the cost of small modifications to the driver.

In the evaluation, we show that FGFT can have almost zero run-
time cost in many cases, and that checkpoint-based recovery can
reduce the duration of a failure by 79% compared to restarting
the driver. Finally, we show that applying FGFT to a driver re-
quires little effort, and the majority of drivers in common classes
already contain the power-management code needed for check-
point/restore.

1. Introduction
In most commodity operating systems, third-party driver code exe-
cutes in privileged mode. Faulty device drivers cause many reliabil-
ity issues in these systems [8, 36]. Hence, there has been significant
research to tolerate driver failures using programming-language
and hardware-protection techniques [3, 6, 15, 16, 22, 25, 44]. These
systems execute the entire driver as a single isolated component.
However, much of this work focuses on detecting failures and iso-
lating drivers from the rest of the system. Few of these systems
address how to restore driver functionality beyond simply reload-
ing the driver, which may leave applications non-functioning.

Most driver-reliability systems do not try to restore device state
and instead completely restart failed drivers [18, 41, 45], effectively
resetting device state to a known-good configuration. The state-
of-the-art mechanism for restoring driver functionality, shadow
drivers [40], logs state-changing operations at the driver/kernel in-
terface. Following a failure, shadow drivers restart the driver and
replay the log in order to restore internal driver and device state.
This resets the driver and device to a state functionally equivalent
to its pre-failure state.

This approach, complete driver isolation and logging for recov-
ery, poses four problems:

1. Too hard: Shadow drivers must be written for every class of
driver and must be updated when the interface changes. This
adds a large body of code to the kernel requiring constant
maintenance, which is a high barrier to adoption. Other systems
require substantially rewriting drivers, which is also a barrier.

2. Not enough: Shadow drivers must encode the semantics of the
kernel/driver interface. However, many drivers have proprietary
commands that cannot be captured by a generic shadow driver,
leading to incomplete recovery. Recent work showed that up to
44% of drivers have non-class behavior [20].

3. Too expensive: Shadow drivers must interpose on and log all
invocations of a driver. Continuous monitoring imposes a per-
formance cost, particularly on high-performance devices such
as SSDs and NICs even when the critical I/O path is bug-free.

4. Too slow: Restarting a driver, the first step of log replay, can be
slow (multiple seconds) due to complex initialization code and
therefore may not be useful in latency-sensitive environments.

A key source of these problems is that prior systems seek com-
pleteness: applying to all driver code at all times. While this re-
duces the per-driver cost, it pushes up both development and run-
time costs.

We developed a new driver fault tolerance mechanism to ad-
dress these shortcomings called Fine-grained Fault Tolerance
(FGFT). Rather than isolating and recovering from the failure of an
entire driver, FGFT executes a driver entry point as a transaction
and uses software-fault isolation to prevent corruption and detect
failures. If the call faults, FGFT rolls back driver state and fails
the call. On entry to a driver, a stub copies parameters to the driver
code. Only if the driver executes correctly are the results copied
back; otherwise, the copy is destroyed.

In order to restore device state modified by a driver before fault-
ing, we developed a novel device state checkpointing mechanism
that can capture the device state. The stub captures a checkpoint be-
fore invoking the driver, and restores the checkpoint on failure. This
mechanism leverages existing power-management code present in
most drivers, which greatly reduces the development cost of adopt-
ing FGFT.

FGFT shifts the cost of driver fault tolerance to the faulty code.
While shadow drivers and whole-driver isolation require up-front
code for any instance of a class of drivers, FGFT instead requires
small changes to the driver itself to support isolation and imple-
ment checkpointing. Where past isolation mechanisms interpose on
all driver code and reduce its performance uniformly, FGFT only
imposes a cost on entry points selected for isolation. Thus, the cost
of executing a single call with fault tolerance may be higher with
FGFT than other systems, but when applied only to code off the
critical path it has much lower overhead because the critical code
is left unchanged. Thus, one possible use for FGFT is to apply it
selectively to vulnerable code suspected or known to have bugs.



The contributions of our work are:

• We build fine-grained fault tolerance, a system consisting of a
static analysis and code generation tool that provides isolation
by executing each driver request on a minimal copy of required
driver state. Our system can be used to isolate specific requests
and we show from a study of published bugs that fine-grained
isolation is practical since bugs only affect 14% of all entry
points in buggy drivers.

• We demonstrate a novel mechanism to create device check-
points on a running system. In a study of six drivers, we show
that taking a checkpoint is fast, averaging only 20 µs.

• We show how to use checkpoints and transactional execution of
driver code to provide fast recovery and remove the permanent
overhead of monitoring all requests.

• We show that the implementation effort of FGFT is small: we
added 38 lines of code to the kernel to trap processor excep-
tions, and found that device checkpoint code can be constructed
with little effort from power-management code present in 76%
of drivers in common driver classes.

We begin with an overview of the FGFT design.

2. Design Overview
Fine-grained Fault Tolerance is a system to tolerate faults in drivers
using a pay-as-you-go model based on checkpoints for recovery.
This system protects code from faults at the granularity of a single
thread executing a single entry point. FGFT recovers from any
failures that occur during the function. This can greatly reduce
the cost of isolating and tolerating faults, because far less code is
affected.

We list four goals of providing fine-grained fault tolerance:

1. Class Independent. Isolation and recovery should be indepen-
dent of the driver-kernel interface and should be able to recover
driver actions from proprietary commands.

2. Low infrastructure. Little new code should be added to the
kernel in support of FGFT.

3. Pay-as-you-go. FGFT should not have a permanent overhead of
isolation or monitoring driver behavior. Furthermore, program-
mer effort should only be required only when fault tolerance is
desired.

4. Fast recovery. FGFT should restore driver functions quickly af-
ter a failure without affecting other threads concurrently exe-
cuting in the driver.

The first goal enables FGFT to apply to a broad range of drivers,
and the second reduces the adoption cost for an operating system.
Pay-as-you-go ensures that for high-performance drivers, tolerating
faults in code off the critical path has little cost. Fast recovery
enables its use in latency-sensitive environments.

The two major components of FGFT are an isolation mecha-
nism to prevent a faulty driver from corrupting the OS and to de-
tect failures, and a recovery mechanism to restore the driver to a
functioning state after a failure. We begin a discussion of our fault
model to motivate our design choices.

2.1 Fault Model
A driver entry point is a driver function invoked by the kernel or
applications to access specific driver functionality. Each driver reg-
isters a set of functions as entry points. FGFT provides fault tol-
erance at the granularity of a single entry point into a driver. In
contrast, past systems treat the entire driver as a component with

internal state. As the driver executes, the FGFT isolation mecha-
nism enforces fine-grained memory safety. It ensures that the driver
is only allowed to access its stack and data passed to the driver; ac-
cess to anything else will be treated as a fault. FGFT detects mem-
ory failures (such as null pointer dereferences) and reading/writing
unintended kernel and driver structures. Furthermore, FGFT also
catches processor exceptions (NULL pointer exception, general
protection fault, alignment fault, divide error (divide by zero), miss-
ing segments, and stack faults) and triggers recovery if they arise
out of isolated portions of driver code.

We design for an open-source environment, and therefore trust
the compiler to produce code that correctly accesses the stack. We
also assume that the driver is unable to hang or damage the device,
although it may misconfigure the device.

In addition to enforcing memory safety, FGFT uses marshaling
to copy data in and out of the driver. Type errors that cause the
marshaling to fail will be detected, although errors with compatible
types (such as treating an array of bytes as an array of longs), will
not be.

FGFT on its own does not provide any semantic checks to
enforce driver invariants. The major consequence of our decision
is that driver faults must be detected within the entry point where
they occur. Otherwise, failures that begin with one entry point
improperly setting a flag that is read by another cannot be tolerated.

A key benefit of FGFT is that by operating on specific entry
points it can be selective about what code should be hardened
against faults. We call the entry points to be isolated suspect. The
suspect code can be executed in isolation while the remainder of the
driver executes in the kernel at full speed. Hence, FGFT is useful
when specific driver code is known to have problems, such as just-
patched code or code with known but un-patched vulnerabilities
and can execute these requests in isolation. We identify at least
three cases where a fine-grained model is useful:

1. Untested code: Device drivers often contain untested code that
are only invoked by specific chipsets or during recovery can be
invoked using FGFT.

2. Statically found bugs: There are many static analysis tools that
identify hard to find/trigger driver bugs with substantial false
positive rates. FGFT can be integrated with existing static anal-
ysis tools until a fix is issued, which often takes considerable
time. This approach limits failures when such code is triggered
under buggy situations, while limiting the overhead at other
times.

3. Runtime monitoring tools: Runtime monitoring tools flag in-
coming requests based on their parameters, such as a spe-
cific ioctl command code, or enabled at run time through
module parameters using run-time monitoring [23] or security
tools [31]. FGFT can dynamically decide whether to execute
code in isolation or at full speeds.

We next describe the two major components of FGFT: isolation
and recovery.

2.2 Fine-Grained Isolation
FGFT provides isolation by forcing suspect code to operate on a
copy of driver and kernel data. This ensures that anything the entry
point does will not be seen by other threads or the kernel until it
successfully completes, and allows quick recovery after a failure
by deleting the copy. Thus, FGFT creates a clean copy of data
needed for a driver entry point on every invocation, which consists
of all data referenced by the entry point: parameters, global driver
variables, and global kernel variables.

We use entry points as the granularity of isolation because it
closely matches internal driver structure: they provide a natural
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Figure 1. Modern devices perform many operations during initializa-
tion such as setting up kernel and device structures based on chipset
and device features, checksumming device ROM data, various device
tests followed by driver initialization and configuration.

boundary for returning errors after a fault, and drivers already syn-
chronize concurrent invocation of entry points. If two driver threads
cannot run concurrently in the driver, then driver synchronization
ensures that one of them blocks until the other successfully com-
pletes. Thus, FGFT reuses existing synchronization mechanisms to
ensure that when suspect code runs, no other threads are active in
the driver. This ensures that any changes to device state will not
be seen until the entry point completes successfully or it fails and
recovery completes.

FGFT provides entry-point isolation with a copy-in/out model
of driver and kernel state when suspicious entry-points are invoked.
FGFT uses static analysis and code-generation to generate another
kernel module that contains suspect entry points instrumented for
memory safety. Furthermore, FGFT generates communication code
containing marshaling routines to copy driver and kernel state nec-
essary for executing these entry points in isolation. Since the static
analysis to marshal the data structures required by the isolated copy
can be imprecise, FGFT requires a programmer to annotate am-
biguous data types in the driver code. In order to provide even finer
control over when to provide fault tolerance, FGFT automatically
inserts taps, which are predicates that can decide at runtime whether
to invoke the normal or fault-tolerant version of an entry point.

FGFT detects faults through run-time memory safety checks
that detect access to unreachable addresses – memory not passed as
a parameter or allocated by the entry point. Since, FGFT generates
the code for copy-in/out, it is able to provide fine-grained memory
safety (base and bound validation [27]). Furthermore, for failure
detection, FGFT also interposes on kernel trap handlers and detects
if the faults originate from the suspicious entry-points and if FGFT
needs to provide recovery.

2.3 Checkpoint based Recovery
FGFT relies on checkpoints prior to a driver entry point for re-
covery. Unlike log-based recovery, which requires knowing how to
replay requests, checkpoints can restore state independent of how
a function modifies driver state. For example, a checkpoint of a de-
vice prior to an ioctl call allows its state to be recovered no matter
what the call does.

Log-based recovery is also slow enough that the technique may
not be useful in latency-sensitive environments. The primary delay
comes from probing the device all over again which cold boots the
device and performs the initialization steps as shown in Figure 1.
For example, during initialization a network driver probes for the
device, verifies EEPROM contents, tests the device, and registers
the device with the kernel.

The checkpoint of the driver’s state in memory is captured
automatically through the copy-in/out model of invocation. Suspect
code always executes on a copy of the driver state, so the original
data is unmodified and need not be restored. The major challenge,
though, is the device state, which may be modified unpredicatbly
by the driver. We therefore require that drivers provide a facility for
capturing and restoring device state. Prior to invoking suspect code,
FGFT can take a checkpoint, and following a failure, it can restore
the checkpoint.

An appealing approach is to treat devices like memory and copy
memory-mapped I/O regions. However, reading registers may have
side effects such as clearing counters. In addition, some devices
overlay two logical registers, one for read and one for write, at
the same address. Instead, we take inspiration from code already
present in many drivers that must perform nearly the same task as
checkpoint/restore: power management.

The functionality provided by power management, to suspend a
device before entering the low power mode and restoring it when
transitioning to high power mode, is similar to what is required
to support device checkpoints. We reuse the suspend/resume code
by identifying code that supports saving state to memory from the
code that actually suspends the device. Similarly, we identify code
required for restoring this state. In Section 4, we describe in detail
how power management code can be re-factored to support check-
point/ restore in device drivers and how existing driver synchro-
nization can be used to arbitrate device access.

2.4 Design Summary
FGFT improves the state of art in driver recovery and meets
its goals. FGFT provides class-independent driver recovery with
checkpoints as opposed to restarting the driver. Hence, FGFT dis-
cards failed requests and retains proprietary driver state such as
ioctls that were issued before the failure.

FGFT requires very little kernel code, as the code for isolation
is generated automatically and the recovery code requires only
small modifications to existing driver code. The annotation cost for
isolation and recovery is only required when a driver needs fault
tolerance. Only when a suspicious request executes does FGFT
execute it in isolation, thus limiting isolation overhead to these
requests. Compared to FGFT, Nooks [41] and SUD [3] require
a new kernel subsystem and writing and maintaining wrappers
around the driver-kernel interface.

There is also no recovery overhead of monitoring the correctly
executing requests at all times since driver recovery is based on
checkpoints. Finally, FGFT provides fast recovery since it does
not restart the driver and re-execute the complicated device probe
routines. Since the device state is restored from a checkpoint, the
recovery times are an order of magnitude shorter as we demonstrate
in our evaluation in Section 5.

3. Fine-Grained Isolation
Isolation ensures that the driver and kernel changes made by a re-
quest are not propagated if the request fails. We need the following
properties from an isolation mechanism:

1. Transactional execution: We need to execute the driver entry
points in a transactional fashion that keeps a clean copy of all
data modified by the driver.

2. Memory safety and fault detection: We need to ensure a driver
cannot corrupt the kernel or other threads in the driver and
provide mechanisms that detect when a driver has failed.

3. Synchronization: Threads executing in the driver need to syn-
chronize with other threads to ensure they do not corrupt shared
state in the kernel, driver, or device.
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Figure 2. Fine-grained fault tolerance replicates driver entry points
into a normal driver and an SFI driver module. A runtime support
module provides communication and recovery support.

To achieve these goals, we rely on well-understood compile-
time software fault isolation (SFI) [43]. As a driver entry point op-
erates on data shared with the rest of the driver, the SFI mechanism
must allow access to such data but prevent its corruption. FGFT
therefore executes isolated code on a minimal copy of the driver and
kernel, which is a copy of data referenced from an entry point but
not entire structures. If the entry point does not fail, FGFT merges
the copy back into the real driver and kernel structures. On a fail-
ure, the copy is discarded. This in effect executes the suspect entry
point as a transaction using lazy version management [21].

However, not all data can be copied. Structures shared with
the device, such as network transmit and receive rings, cannot be
copied because the device will not share the copied structure. In-
stead, FGFT grants suspect code direct read and/or write access to
these structures and relies on device-state checkpointing to restore
these structures following a failure. Furthermore, driver code used
for recovery cannot be isolated and must be trusted.

Since FGFT must copy all data accessed by a driver, its isolation
will incur a performance overhead when invoked frequently, such
as by high-bandwidth devices that handle thousands of requests
per second. For such scenarios, using hardware support such as
transactional memory [33] can reduce the overhead of copying for
every request.

We implemented FGFT for the Linux 2.6.29 kernel. Figure 2
shows the components of FGFT. We next describe how FGFT
provides isolation, communicates with isolated code, and detects
failures.

3.1 Software Fault Isolation
As FGFT targets open-source Linux device drivers, we implement
SFI using a source-code rewriting tool called FGFT Isolator writ-
ten using CIL [30]. It generates isolation code into the driver and
produces communication code, described below, for communicat-
ing with the isolated code.

Isolator generates an additional driver module called the SFI
module that contains a copy of the suspect entry points and all
functions transitively called from those functions, instrumented for
SFI. In addition, Isolator generates a new version of the driver that
invokes the SFI module entry points. At the top of the existing entry
points, Isolator inserts a test to see whether to execute normally or
in isolation, and if so invokes the SFI module.

The decision to invoke a given entry point in isolation can also
be made in one of three ways. First, a developer can use the attribute
attribute ((isolate)) to manually specify which func-

tions to isolate. This causes the function to always execute with
isolation. Second, FGFT can automatically use any static analysis
tool to identify buggy code and which entry points are affected.
These entry points are then always executed with isolation. Finally,
the decision can be made at run time. A fault management sys-
tem, such as the Solaris Fault management Daemon [38], can call
into the SFI module and specify which functions to execute with
isolation. Furthermore, a fault management system can register a

function pointer at run time that takes the same arguments as the
suspicious function and returns a decision of whether to isolate or
not.

In addition to producing the SFI driver code, Isolator also pro-
duces communication code that invokes the SFI driver and copies
in the minimal driver and kernel state needed by the suspect entry
points, copies out any changes made by the SFI driver, and initiates
recovery following a detected failure. Isolator manages resource
allocation, synchronization and I/O across the two copies. Isolator
only detects memory failures. For other failures, such as arithmetic
exceptions, we trap processor exceptions and check if they origi-
nate from SFI module.

Isolator uses CIL’s memory tracking module [30] to instru-
ment all memory references in the driver. It inserts a call to our
memcheck function that verifies the target of a load/store is valid.
If not, it detects a failure and invokes the recovery mechanism. The
memcheck routine consults a range table to verify memory refer-
ences and provide fine-grained memory protection by only allow-
ing access to driver and kernel data as identified at compile time.
This table contains the addresses and lengths of copied data struc-
tures and buffers shared with the device. The range table is created
on every invocation of a suspect entry point and flushed on return.

We do not add all local variables to the range table because we
trust the compiler to generate correct code for moving variables
between registers and the stack. However, if the driver ever takes
the address of a local variable, or it creates an array as a local
variable, then Isolator adds a call in the instrumented SFI driver
to add the variable’s address and length to the range table and
remove it from the range table when the variable goes out of scope.
Similarly, we trust the compiler to produce valid control transfers
and do not instrument branch or call instructions.

3.1.1 Communication Code for Entry Points
FGFT Isolator generates stub code to invoke suspect entry points
that copies into and out of the driver. Similar to RPC stubs, these
stubs create a copy of the parameters passed to the suspect code,
but also copy any driver or kernel global variables it uses. When
the suspect entry point completes, stub code copies modified data
structures and return values back to the regular driver and kernel
in the current thread. An alternative approach would be to rely on
transactional-memory techniques to dynamically create a copy of
data as it is referenced, which may have lower copying costs but
higher run-time costs [2].

Isolator automatically identifies the minimal data needed for an
entry point through static analysis. This includes the structure fields
from parameters referenced by the entry point or functions it calls
plus fields of global variables referenced. As they copy data, stubs
update the range table with the address and length of each object.
For objects that cannot be copied (such as those shared with the
device), stubs fill in the existing address of the field, its length, and
whether the entry point needs read, write, or read/write access.

If suspect code callbacks invoke the kernel, Isolator generates
stubs for kernel functions that copy parameters to the kernel and
copies kernel return values back to suspect code. The SFI driver
may pass in fields from its parameters to the kernel as arguments.
To avoid creating a new copy of these fields, as would be done by
RPC, FGFT maintains an object tracker that maps the address of
kernel and regular driver objects to the address of objects in the SFI
driver. Stub code consults the object tracker when calling into the
kernel to determine whether arguments refer to a new or existing
object. If an object exists, stubs copy the argument back to the
existing object and otherwise temporarily allocate a new object.
To support recovery, stubs may generate a compensation entry in a
kernel undo log. This log records operations that must be reversed
on failure, such as freeing memory allocations.



The stub code must know the layout of data structures and
whether data is shared with the driver in order to correctly copy
data. As driver code often contains ambiguous data structures such
as void * pointers or list pointers (e.g., struct list head), we
rely on programmer-provided annotations to disambiguate such
code [45]. These annotations also declare which structure fields or
parameters are shared with the device and should not be copied. In
Section 5, we evaluate the difficulty of providing annotations.

Some driver functions trigger synchronous callbacks. For ex-
ample, the pci register driver function causes a callback on
the same thread to the driver’s probe function. FGFT treats the
callback as a nested transaction: it causes another isolated call op-
erating on a second copy of the data.

3.1.2 Resource Access from SFI module
Some resources cannot be copied into the driver because they attach
additional semantics or behavior to memory.

I/O memory. Driver entry points may communicate with the de-
vice by writing to I/O memory. Stubs grant the SFI driver read/write
access to memory-mapped I/O regions and memory shared with
the device via dma alloc coherent. Isolator identifies these re-
gions with annotations and creates stubs that grant drivers direct
read/write access. SFI threads also re-synchronize with device
(usually accomplished by sleeping for the device) since the SFI
thread accesses the device directly and any changes are immedi-
ately visible.

Locks. Drivers may synchronize with other threads using spin
locks and mutexes. Stubs pass locks through without copying but
only allow read access. Suspect code must call back into the kernel
to acquire a lock. After acquiring a lock, the SFI driver copies its
parameters back from the kernel. The stub code for kernel locking
routines add a compensation entry to the kernel undo log to release
the lock after a failure. To ensure that changes made by suspect
code are not seen by the rest of the kernel, the lock stubs defer
releasing locks until after the entry point returns to the kernel.

The above mechanism protects shared structures across differ-
ent driver threads. However, the suspicious thread can also block
waiting for data to arrive on shared structures that have been copied
over from other driver threads. In such cases, FGFT requires extra
annotations to provide read access on the shared structures/fields
which can be cumbersome for the developer.

Memory allocation. Stubs for allocators invoke the kernel alloca-
tor, add the returned memory region to the range table and generate
a compensation entry to free the memory on failure. The newly al-
located memory is not copied into the driver because its contents
do not need to be preserved.

3.2 Failure Detection
In addition to protecting the kernel and regular driver code from
corruption, isolation provides the primary means to detect failures.
FGFT’s SFI mechanism implements spatial memory safety [27]:
every memory reference must be within an object made accessible
during the copy process. Thus, references outside the range table
indicate a failure.

Stubs can detect additional failures when copying data back to
the kernel. For example, if the driver writes an invalid address into
a data structure, the copying code will dereference that address and
generate an exception.

We also modified the Linux kernel exception handlers to detect
unexpected traps from the SFI driver as failures. If one occurs, the
trap handler sets the instruction pointer to the recovery routine. This
is the only change to the Linux kernel, and required only 38 lines
of code.

The detection mechanisms may miss several categories of fail-
ures. First, if the driver violates its own data structure invariants,
stubs may not detect the problem. Recent work on identifying and
verifying data structure invariants could detect these faults [5]. For
example, if a suspect entry point sets a flag indicating that a field is
valid but does not set the field, then corruption will leak out of the
SFI driver. Second, the driver does not provide strong type safety,
so the driver may assign a structure field to the wrong type of data.
While this may be detected when stub copies data, it is not guar-
anteed. Finally, FGFT does not enforce kernel restrictions on the
range of scalar values, such as valid packet lengths.

4. Checkpoint-based recovery
The FGFT system is built around checkpoint-based recovery. While
checkpointing and restoring memory state is simple using tech-
niques such as transactional memory or copy-on-write, it has not
previously been possible to capture the state of a device. Without
this, restoring memory state will lead to a driver that is inconsistent
with respect to its device, believing incorrectly that it has performed
an action or is operating in a different mode. We first describe de-
vice state checkpointing, which is the basis of FGFT’s recovery
mechanism. We then describe how FGFT uses device checkpoints
to recover in case of a failure.

4.1 Device state checkpointing
To be useful, a device checkpoint mechanism should fulfill the
following goals:

1. Lightweight. There should be no continuous monitoring or
long-latency operations.

2. Broad. The mechanism must work with a wide range of de-
vices/drivers, including those with unique behavior.

3. Consistent. Drivers are often invoked on multiple threads, and
checkpoints must be a consistent view of device state.

We identified the suspend/resume code already present in many
drivers as having much of the functionality needed to implement
checkpoint and restore. We next describe how power management
for drivers works, and then describe how to reuse the functionality
for driver recovery with checkpoints.

4.1.1 Suspend/Resume Background
Modern operating systems can dynamically reduce their power
consumption to provide a hot standby mode, also called suspend
to RAM, which disables processors and devices but leaves state
in memory. One major component of reducing power is to disable
devices. Thus, operating systems direct devices to switch to a low-
power state when the system goes into standby mode. The behavior
of devices is specified by the ACPI specification for the platform
and by buses, such as PCI and USB.

In order to transition quickly between standby and full-power
mode, drivers implement a power-management interface to save
device state before entering standby mode, and to restore device
state when leaving standby mode [12, 13]. These operations must
be quick to allow fast transitions. The system-wide suspend-to-
RAM mechanism saves the memory state of the driver, and the
driver is responsible for saving and restoring any volatile device
state.

Drivers implement a power management interface with meth-
ods to save and restore state. For example, Linux PCI devices im-
plement these two methods:

int (*suspend) (struct pci dev *dev,
pm message t state);

int (*resume) (struct pci dev *dev);



(a) (b) (c)

int rtl8139_suspend ( ... )

/* save PCI config state */
pci_save_state (pdev);

/* disable device */
if (!netif_running (dev))

return 0;
netif_device_detach (dev);

spin_lock_irqsave
(&tp->lock, flags);

/* Disable interrupts,
stop Tx/Rx. */

RTL_W16 (IntrMask, 0);
RTL_W8 (ChipCmd, 0);

/* Copy out device state. */
dev->stats.rx_missed_errors +=

RTL_R32 (RxMissed);
RTL_W32 (RxMissed, 0);
spin_unlock_irqrestore

(&tp->lock, flags);

/* Suspend device */
pci_set_power_state (pdev, PCI_D3hot);

int rtl8139_checkpoint ( ... )

spin_lock_irqsave
(&tp->lock, flags);

/* save PCI config state */
pci_save_state (pdev);

/* Copy out device state. */
dev->stats.rx_missed_errors +=

RTL_R32 (RxMissed);

spin_unlock_irqrestore
(&tp->lock, flags);

int rtl8139_restore (...)

spin_lock_irqsave
(&tp->lock, flags);

/* disable device */
netif_device_detach (dev);

/* restore bus state */
pci_restore_state (pdev);

/* restart device */
if (!netif_running (dev))

return 0;
rtl8139_init_ring (dev);
rtl8139_hw_start (dev);

RTL_W32 (RxMissed, 0);

/* re-enable device */
netif_device_attach (dev);
spin_unlock_irqrestore

(&tp->lock, flags);

Figure 1: The above figures show the original suspend routine and refactored checkpoint and restore routines in rtl8139
driver. Driver checkpoint a consistent snapshot, while the heavy work of stopping and starting the device is moved to
restore.Drivers may also save non-standard registers during suspend which should be done during checkpoint.

4. Addresses of memory bu↵ers shared with the driver,
such as the DMA ring bu↵ers use by network
drivers to send or receive packets.

We note that a checkpoint may not actually contain the
full state of the device. Rather, it must contain enough
information that functionality can later be restored with-
out a↵ecting applications. Thus, device state that can
be recreated or recomputed need not be saved. Further-
more, the checkpoint only contains the device state. To
be restored properly, it requires a consistent copy of the
driver state taken at the same. Thus, it must be paired
with mechanisms such as transactional memory or copy-
on-write to save the driver’s state.
The configuration state is the easiest to save. Most

buses provide a method to save configuration infor-
mation. For example, PCI drivers in Linux use
pci save state, save includes a set of standard registers
and the base address registers (BARs). The remaining
state, though, must be handled separately by each driver.
The driver explicitly saves register contents and coun-

ters in an internal driver structure. The di↵erence be-
tween registers and counters arises during recovery, de-
scribed below, because counter values cannot be written
back to the device.
Memory bu↵ers shared with the device can be recre-

ated. As a result, most device drivers do not include the
address of these bu↵ers in a checkpoint. Instead, they
free bu↵ers during suspend and re-allocates them during
resume.

Figure 2(a) diagrams the tasks performed by suspend
and resume, and shows how that code is shu✏ed to cre-
ate checkpoint and restore functionality. Of the suspend
code, checkpointing reuses all the functionality except
detaching the device with the kernel and suspending the
device. As an example, Figure 2(b) shows the code to
checkpoint the 8139too driver.
It may be necessary to checkpoint a driver while it is

in use. Existing suspend routines assume the device is
quiescent when the device state is saved. Checkpoint,
though, may be called at any time. Thus, it must be syn-
chronized with other threads using the driver. However,
because device state checkpointing must be coordinated
with other mechanisms for capturing driver state, we do
put synchronization code in checkpoint. Instead, we re-
quire that the caller of checkpoint synchronize with other
threads. In Section 4 we show how this can be done with
existing driver locks.
3.3 Restore
The restore operation can be constructed from a mix of
suspend and resume code. Normally the resume function
is invoked when the device just returned to full power
needs to be re-configured. In the case of a checkpoint,
though, the device is already running at full power. Thus,
resume invokes the bottom half of the suspend routine to
disable the device before restoring state.
The restore operation proceeds in four steps:
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Device suspend
Save configuration state

Save device registers

Disable device

Copy s/w device state

Suspend device

Device resume

Restore config state

Restore registers

Re-start device

Attach device

Device ready

Device checkpoint

Save configuration state

Save device registers

Lock device 

Unlock device

Device restore

Restore config state

Restore registers/state

Lock device 

Unlock device

Copy s/w device state

Disable device

Re-start/Enable device

Figure 3. Our device state checkpointing mechanism refactors code from existing suspend-resume routines to create checkpoint and restore for
drivers as shown in Figure (a). The checkpoint routine only stores a consistent device snapshot to memory while the restore loads the saved state and
re-initializes the device. Figures (b) and (c) show checkpoint and restore routines in the rtl8139 driver.

When saving device state to memory, the driver may invoke
the bus to save bus configuration data, as well as explicitly save
the contents of select device registers that are not captured by the
configuration state. The driver then instructs the device to suspend
itself. Simple devices that have no state may simply disable the
device.

Upon resume, drivers wake the device, optionally perform a
soft reset, restore their saved state. Since the latency of a system
to respond post-resume is critical, the initialization is lightweight
compared to restarting the driver, as it assumes the device has not
changed. Similar to suspend, simple devices may just re-enable the
device without restoring state.

For a system to support standby mode, all drivers must support
power management. While not all drivers do (Linux is notorious
for incomplete support [26]), it is widely implemented by Windows
and MacOS drivers, and support in Linux drivers is improving.

The functionality provided by driver power management is very
similar to what is needed for device state checkpointing. First, it
provides the ability to save device state to memory in a way that
allows applications to continue functioning. Second, even though
the device may continue to receive power, the soft reset that oc-
curs when re-enabling a device ensures that any previous state is
replaced by the restored state. Finally, power management is im-
plemented by most commonly used drivers. However, it is not di-
rectly usable for checkpointing: power management routines lack
the ability to continue executing after suspending a device because
the device has been disabled.

4.1.2 Checkpoint
Device state checkpointing is constructed from a subset of the
device suspend support already present in drivers. A device may
have many distinct forms of state, each of which require a different
mechanism for checkpoint:

1. Device configuration information published through the bus
configuration space.

2. Device registers with configuration data specific to the device.

3. Counters and statistics exported by the device and aggregated
by the driver.

4. Addresses of memory buffers shared with the driver, such as the
DMA ring buffers used by network drivers to send or receive
packets.

We note that a checkpoint may not actually contain the full state
of the device. Rather, it must contain enough information that
functionality can later be restored without affecting applications.
Thus, device state that can be recreated or recomputed need not
be saved. Furthermore, the checkpoint only contains the device
state. To be restored properly, it requires a consistent copy of the
driver state taken at the same time. Thus, it must be paired with
mechanisms such as transactional memory or copy-on-write to save
the driver’s state.

The configuration state is the easiest to save. Most buses provide
a method to save configuration information. For example, PCI
drivers in Linux use pci save state, that saves a set of standard
registers and the base address registers (BARs) to memory. Each
driver, though, must handle the remaining state, separately.

The driver explicitly saves register contents and counters in
an internal driver structure. The difference between registers and
counters arises during recovery, described below, because counter
values cannot be written back to the device.

Memory buffers shared with the device can be recreated. As
a result, most device drivers do not include the address of these
buffers in a checkpoint. Instead, they free buffers during suspend
and re-allocate them during resume.

Figure 3(a) diagrams the tasks performed by suspend and re-
sume, and shows how that code is shuffled to create checkpoint and
restore functionality. Of the suspend code, checkpointing reuses all
the functionality except detaching the device with the kernel and
suspending the device. As an example, Figure 3(b) shows the code
to checkpoint the 8139too driver.

It may be necessary to checkpoint a driver while it is in use.
Existing suspend routines assume the device is quiescent when the
device state is saved. Checkpoint, though, may be called at any
time. Thus, it must be synchronized with other threads using the
driver. Because device state checkpointing must be coordinated
with other mechanisms for capturing driver state, we do not put
our own synchronization code in the checkpoint routine but re-
use existing device locks in the driver. Device locks protect against
conflicting configuration operations, or operations like resetting the
device when I/O operations are in progress. This ensures that we



do not corrupt device state assumed by another thread in progress
when we reset device state in case of a failure.

4.1.3 Restore
The restore operation can be constructed from a mix of suspend
and resume code. Normally the resume function is invoked when
the device returns to full power and needs to be reconfigured. In the
case of a checkpoint, though, the device is already running at full
power. Thus, resume invokes the bottom half of the suspend routine
to disable the device before restoring state.

The restore operation proceeds in four steps:

1. Disable the device to put it in a quiescent, known state.

2. Restore bus configuration state

3. Re-enable the device

4. Restore device-specific state

Figure 3(c) shows the code to restore state for a simple network
driver.

Of the four categories of driver state, only configuration state
and saved device registers can be reloaded. Counters, which can-
not be written back to the device, are restored by adjusting the
driver’s version of the counter. Typically, the driver will read the
device counter and update a copy in memory, and reset the device’s
counter. To restore the device’s counter state, the driver only resets
the device’s counter; the in-memory copy of the counter must be
saved as part of the driver’s memory state.

To restore shared buffers, the driver releases existing shared
buffers after disabling the device. As part of re-enabling the device,
it recreates shared buffers and notifies the device of their new ad-
dresses. While this slows restore, it makes checkpoint very efficient
because only irretrievable state is saved.

Unlike suspend-resume, it may be useful to use device state
checkpointing from interrupt contexts, where sleeping is not al-
lowed. As a result, checkpoint and restore code must convert sleeps
to busy waits (udelay in Linux) and use memory allocation flags
safe for interrupt context (GFP ATOMIC in Linux)

Compared to full-driver restart, resume improves performance
because it does not re-invoke device probe, often the lengthiest part
of starting a device normally. Furthermore, drivers for newer buses
such as USB and IEEE394 do not restart the device because the
bus handles this operation. This further reduces restore times. For
PCI devices, a further optimization is to avoid changing the power
mode of the device. However, we observed that many drivers do
not require actually powering down the device before performing
restore. For these drivers, restore can be sped up by skipping these
unnecessary power mode changes.

4.1.4 Discussion
Device state checkpointing provides several benefits compared
with a logging approach to capturing driver/device state. First, it
can be invoked at any time and has no cost until invoked. Thus,
it has no overhead for infrequent uses. Second, it handles state
unique to a device, such as configuration options. Correct standby
operation demands that devices remain correctly configured across
standby, and hence drivers must already save and restore any re-
quired state. However, device state checkpointing relies on power
management code, which may not be present in all devices. It also
requires a programmer to implement checkpoint/restore for every
driver. We evaluate these concerns in Section 5.

Limitations. There is a risk in utilizing a mechanism for an un-
intended purpose: the driver continues running following a check-
point and may thus further modify the device state. In contrast, de-
vices are normally idle between suspend and resume. Thus, it is

Fault Tolerance
Device recovery: Current recovery mechanisms require writing

wrappers to track all device state and full device restart results in
long latency.
OS functionality
Fast reboot: Restarting system requires probing all bus and device

drivers.
NVM Operating systems: Providing persistent state of a running

system requires ability to checkpoint a running device.
I/O Virtualization
Device consolidation: Re-assignment of passthrough devices across
different VMs needs to wait for device initialization.
Live migration: Live migration of pass-through devices converts the
millisecond latency of migrations to multiple seconds due to device
initialization.
Clone VMs: Ability to launch many cloned VMs very quickly is

limited by device initialization.

Table 1. Other uses for fast device state checkpointing.

possible that the state saved is insufficient to fully restore the de-
vice to correct operation. However, the power management spec-
ifications require drivers to fully capture device state in software
since devices can transition to an even lower power state where the
device is powered off. In such cases, drivers must be able to be re-
store their original state, following a full reset. Thus, suspend must
store enough information to restore from any state.

In the case of drivers with persistent internal state, such as disks
and other storage devices, restore will only restore the transient
device state and not the persistent state, such as the contents of
files. As a result, use of checkpoints must be coordinated with
higher-level recovery mechanisms, such as Membrane [39], to keep
persistent data consistent.

Other uses for device state checkpointing. In addition to fault
tolerance, device state checkpoints have other uses. Table 1 lists
five possible uses. Within an operating system, checkpoints sup-
port fast reboot after upgrading system software by restoring de-
vice state from a checkpoint rather than reinitializing the driver.
Similarly, operating systems using non-volatile memory to survive
power failures [1, 29] can restart drivers from a checkpoint rather
than reinitializing the device. In virtualized settings, pass-through
and virtualization-aware devices [32] allow drivers in guest op-
erating systems to interact with physical hardware. Device state
checkpoints enable virtual-machine checkpoints to a passthrough
device [24] and live migration, because the device state from the
source can be extracted and restored on identical hardware at the
destination. With virtual devices, the latency of live migration can
be as low as 60ms [10], so a 2 second delay to initialize a device
adds significant downtime. Finally, device state checkpointing en-
ables dynamic fault tolerance at fine granularity as demonstrated
by FGFT.

4.2 Recovery with checkpoints
We now describe how FGFT uses isolation and device checkpoints
to perform recovery from failures. When a failure is detected,
communication stubs call a recovery routine that is responsible for
restoring correct driver operation.

Failure anticipation. To prepare for an eventual recovery, gener-
ated stubs create a device checkpoint before invoking a suspect en-
try point. They invoke the checkpoint routine. In addition, stubs
for kernel functions log compensation entries to undo their effects
in the kernel undo log. Driver state is not explicitly checkpointed;
instead, suspect code operates on a copy of driver state as described
in Section 3. In addition, the stub saves its processor register state,
allowing a jump right into the stub if the driver fails.
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Figure 4. FGFT behavior during successful and failed entry point executions.

Recovery steps. In case a failure is detected by SFI or processor
exceptions originating from suspect module, the recovery routine
restores driver operation through a sequence of steps:

1. Unwind thread. If not already in the stub, the instruction pointer
is set to the address of the recovery code in the entry point’s
stub, which reloads the saved registers. As noted above, nested
calls to drivers are logically handled as separate transactions,
so there is no need to unwind the thread to the outermost entry
point.

2. Restore device state checkpoint. The stub recovery code calls
the driver’s restore routine to restore the device state.

3. Free call state. All temporary structures created for the suspect
entry point call such as the range table, object tracker, and
copies of kernel/driver structures are released.

4. Release locks. Any locks acquired before or during the call to
the SFI driver are released, allowing other threads to execute.

If a driver entry point fails, the stub returns an appropriate er-
ror indicator, such as a NULL pointer or an error code, and relies
on higher-level code to handle the failure. As only the single entry
point fails, this failure has little impact on applications. All applica-
tion state relating to the device, such as open handles, remain valid.
Furthermore, other threads in the driver continue to run as soon as
the recovery process completes and releases all acquired locks.

Compared to other driver isolation systems, the recovery pro-
cess is much simpler because only one thread is affected, so other
threads are not unwound. In addition, the driver state is left unmod-
ified, so it is not saved and restored. Finally, device state is restored
quickly from a checkpoint rather than by replaying a log. Hence,
we see that checkpointing device state results in quicker and sim-
pler recovery semantics for driver recovery.

4.3 Implementation effort
A key goal for FGFT is to reduce the implementation effort to iso-
late a driver. FGFT consists of minimal modifications to the kernel
exception handlers (38 lines of code), a kernel module containing
the object tracker, range table, and recovery support, and the Isola-
tor tool in OCaml. The module is 1,200 lines of C code, and Iso-
lator is 9700 lines of OCaml that implement: SFI isolation (400
lines), stub generation (7,800 lines), and static analysis of refer-
ences to parameter fields (1,500 lines). In comparison, Nooks adds
23,000 lines of kernel code (85x more than FGFT) to isolate and
reload device drivers and shadow drivers add another 1,100 lines of
code for recovery. FGFT also does not require any wrappers around
the driver interface. Nooks required 14,000 lines of manually writ-
ten wrappers, which are hard to maintain as the kernel interface

changes. FGFT’s isolator tool automatically generates similar code
for stubs.

5. Evaluation
We implemented device state checkpoint and fine-grained fault tol-
erance for the Linux 2.6.29 kernel for six drivers across three buses.
All experiments were performed on a dual-core 3 GHz Intel Pen-
tium D with 1GB of memory and an Intel 82541PI gigabit NIC.
We note this is a somewhat old machine and a more recent ma-
chine would likely show lower performance costs. The evaluation
examines the following aspects of FGFT:

1. Fault Resilience. What failures can fine-grained fault tolerance
can handle? We evaluate FGFT using a series of fault injection
experiments and report our results.

2. Performance. What is the performance loss of fine-grained fault
tolerance on steady-state operation? We report the performance
cost for applying FGFT on support and core I/O routines.

3. Recovery Time. What is the downtime caused by a driver fail-
ure? We compare the time taken by FGFT to restore the device
and cleanup the failed driver thread state with the time taken to
unload and reload a driver.

4. Usefulness of FGFT. Is selectively isolating entry points useful?
We evaluate whether suspect entry points can be identified in
drivers and whether they reduce the amount of code isolated.

5. Device Checkpoint Support. Is re-using existing power manage-
ment functionality reasonable? We examine the frequency of
power management support in existing drivers that facilitates
device checkpoints.

6. Developer Effort. What is the overhead to the developer to
enforce isolation in the system? We measure the effort needed
to annotate a driver for isolation and add checkpoint/recovery
code.

Unless otherwise specified, we compare FGFT against unmodified
drivers running on an unmodified 2.6.29 Linux kernel.

5.1 Fault Resilience
We first evaluate how well FGFT can handle driver bugs using a
combination of dynamic and static fault injection over six drivers.
These tests evaluate both the ability of fine-grained fault toler-
ance to isolate and recover driver state as well as the ability of
device state checkpointing to restore device functionality. Table 2
describes the types of faults inserted in the SFI module. Static fault
injection modifies the driver source code to emulate programming



Fault Type Description of fault
Corrupt pointers Dynamic: Corrupt all pointers referenced

in a function to random values.
Corrupt stack Dynamic: corrupt execution stack by copy-

ing large chunks of data over stack variable
addresses.

Corrupt expressions Static: corrupt arithmetic instructions by
adding invalid operations (like divide by
zero).

Skip assignment Static: remove assignment operations in a
function.

Skip parameters Dynamic: zero incoming parameters in a
function.

Table 2. Faults injected to test failure resilience represent runtime
and programming errors. Dynamic faults are inserted by invoking an
ioctl, and static faults by making an additional pass to inject faults
while converting the driver to support FGFT.

Driver Injected
Faults

Benign
Faults

Native
crashes

FGFT
crashes

8139too 43 0 43 NONE
e1000 47 0 47 NONE
ens1371 36 0 36 NONE
pegasus 34 1 33 NONE
psmouse 22 1 21 NONE
r8169 46 0 46 NONE
Total 258 2 256 NONE

Table 3. Fault injection table with number of unique faults injected
per driver. FGFT is able to correctly restore the driver state and device
state in every case.

bugs, while dynamic fault injection modifies driver data while run-
ning to emulate run time errors. We perform a sequence of trials
that test each fault site separately.

During each experiment, we run applications that use the driver
to detect whether a driver failure causes the application to fail.
For network, we use ssh, and netperf; for sound we use aplay,
arecord from the ALSA suite. We tested the mouse by scrolling
the device manually as we performed the fault injection experi-
ments. After each injection experiment, we determine if there is
an OS/driver crash or the application malfunctions. We re-invoke
the failed entry point without the fault to ensure that it continues
to work, and that resources such as locks have been appropriately
released.

We injected a total of 258 unique faults in the native and FGFT
drivers. Table 3 shows the number of faults injected for every driver
and the outcome. For the native driver, all but two faults crashed
the driver or resulted in kernel panics. The two benign faults were
missing assignments.

In contrast, when we injected faults into driver entry points pro-
tected by FGFT, the driver and the OS remain available for every
single fault. Furthermore, in every case, applications continue to
execute correctly following the fault. For example, the sound appli-
cation aplay skips for a few milliseconds during driver recovery
but continued to play normally. The shell notes this disruption with
the message “ALSA buffer underrun.”

We also verify that internal driver and device state is correctly
recovered using the ethtool interface for network drivers. We find
that when failures happen during a call to change configuration
settings, re-reading settings after a crash always returns the correct
values.

Finally, we verify that changes to drivers made using non-class
interfaces, such as the proc and sys file systems, before any
failures persist. In contrast, shadow drivers cannot replay these
actions since they cannot capture non-class driver interactions.

5.2 Performance
The primary cost of using FGFT is the time spent copying data
in and out of the SFI module and creating device checkpoints.
We measure performance with a gigabit Ethernet driver, as it may
send or receive receive more than 75,000 packets per second. Thus,
the overhead of FGFT will show up more clearly than on low-
bandwidth devices.

We evaluate the runtime costs of using FGFT and regular ver-
sions of drivers in six configurations:

1. Native: Unmodified e1000 driver.

2. FGFT static: Statically choose 75% of code (all off I/O-path)
to isolate.

3. FGFT dynamic: Dynamically choose at runtime whether to
isolate off-I/O-path code.

4. FGFT 1/10: Isolate I/O path code for every 10th packet.

5. FGFT all: Isolate I/O path code for every packet

The dynamic experiment measures the additional cost of choos-
ing at runtime whether to invoke the regular or SFI version of a
function. The 1/10 test measures the performance benefit of dy-
namically choosing whether to isolate based on parameters, such
as packets from an untrusted process or destined for an untrusted
network. Finally, the all test represents the worst case of invoking
the SFI module on the I/O path for a high-bandwidth device.

We measure performance with netperf [19] by connecting our
test machine to another machine with 1.2 GHz Intel Celeron pro-
cessor and a Belkin NIC with a crossover cable. Table 4 reports the
average of 5 runs.

In the static and dynamic tests where code off the I/O-path code
is isolated, performance and CPU utilization are unaffected. These
results demonstrate that FGFT achieves the goal of only imposing
a cost on isolated code. The added cost of dynamically choosing
to isolate is in the noise. For the 1/10 test that isolates entry points
on the I/O path (the packet send routine) for every tenth packet,
bandwidth dropped 0.6% and CPU utilization increased negligibly.
Thus, selectively applying isolation, even on critical I/O paths, can
have a small impact.

The performance only drops appreciably when we isolate crit-
ical path code on every request since we copy shared driver and
kernel data across modules for each packet being transmitted. In
the all test, the system consumes 100% of the CPU on one core
(50% total CPU utilization), and bandwidth drops by 39%. This
CPU utilization occurs because interrupts on other processors must
spin until the copying and call completes, which drives up CPU
utilization. FGFT is designed to limit isolation costs to specific re-
quests and hence pays a cost of isolation because it needs to setup
isolation (create copies) as each packet requests isolation. Isolation
techniques that isolate the entire driver, such as Nooks [41] and
SUD [3], may prove better for isolating I/O path code for high-
performance devices because they copy less data per request. How-
ever, if the buggy code is off the I/O path, those techniques impose
a much higher cost than FGFT does on I/O path.

Overall, these results show that FGFT performs well for the vast
majority of devices that are low bandwidth, and can also be applied
at low cost to high bandwidth devices off the I/O path. In addition,
if the driver can dynamically detect which calls may be error prone
to reduce the frequency of calls to the SFI driver, it can also be
applied on the I/O path.

5.3 Recovery Time
A major benefit of checkpoint-based recovery is the speed of restor-
ing service. Table 5 lists the time taken by the driver to recover us-
ing FGFT and by unloading and reloading the driver. We measure



Intel Pro/1000 gigabit NIC (E1000)

System Throughput CPU
Utilization

Native 751.5 Mb/s 5.1%
FGFT static 751.1 Mb/s 5.0%
FGFT dynamic 751.1 Mb/s 5.2%
FGFT 1/10 745.3 Mb/s 5.4%
FGFT all 454.0 Mb/s 50.0%

Table 4. TCP streaming send performance with netperf for regular
and FGFT drivers with checkpoint based recovery.

Driver Class Bus Restart
recovery

FGFT
recovery Speedup

8139too net PCI 0.31s 70µs 4400
e1000 net PCI 1.80s 295ms 6
r8169 net PCI 0.12s 40µs 3000
pegasus net USB 0.15s 5ms 30
ens1371 sound PCI 1.03s 115ms 9
psmouse input serio 0.68s 410ms 1.65

Table 5. Comparison of FGFT and restart based recovery times.
Restart-based recovery requires additional time to replay logs running
over the lifetime of the driver. FGFT does not affect concurrently exe-
cuting threads in the system.

Driver Class Bus Checkpoint
times

Restore
times

8139too net PCI 33µs 62µs
e1000 net PCI 32µs 280ms
r8169 net PCI 26µs 30µs
pegasus net USB 0µs 4ms
ens1371 sound PCI 33µs 111ms
psmouse input serio 0µs 390ms

Table 6. Latency for device state checkpoint/restore.

recovery times by recording the time from detection of failure to
completion of the restore routine. Overall, FGFT is between 1.6
and 4,400 times faster than restart recovery, and between 145ms
and 1.5s faster. The drivers with the largest speedup have compli-
cated probe routines that are avoided by restoring from a check-
point. Hence, FGFT provides low-latency recovery and frequently
offers an order-of-magnitude lower recovery latencies.

Checkpoint/restore latency. We examine the device checkpoint
latencies to understand the source of our recovery performance in
the previous section. Table 6 shows the latency of a checkpoint or
restore for the same six drivers. Checkpointing is very fast, taking
only 20µs on average and 33µs at worst. Thus, it is fast enough to
be called frequently, such as before the invocation of most driver
entry points. Restore times are longer, with a range from 30µs
for the r8169 network driver to 390ms for psmouse. USB drivers
store less state because the USB bus controller stores configuration
information instead of the driver. Thus, during a normal resume, the
bus restores configuration state before calling the driver to resume.
The psmouse driver represents a legacy device and does not support
suspend/resume. Instead, we re-use existing device code to reset the
mouse.

5.4 Usefulness of being fine-grained
We evaluate whether selectively isolating specific entry points is
useful by looking for evidence that driver bugs are confined to
one or a few entry points. If the functions with bugs are reachable
through a large number of entry points, then full driver isolation is
more useful than per-entry point isolation. For example, if a bug
occurs in a low level read routine, then the bug will affect a large
number of entry points.

In order to have a large data set, we use a published list of
hardware dependence bugs that represent one of the larger number

Class Bus Drivers
reviewed Drivers with PM

net PCI 104 68 65%
net USB 32 27 84%
net PCMCIA 4 4 100%
sound PCI 72 63 88%
sound USB 3 1 33%
sound PCMCIA 2 2 100%
ATA PCI 61 45 74%
SCSI USB 1 1 100%
SCSI PCMCIA 5 5 100%
Total - 284 216 76%

Table 7. List of drivers with and without power management as an-
alyzed with static analysis tools. USB devices (audio and storage) sup-
port hundreds of devices with a common driver, and provide support
for suspend and resume.

of unfixed bugs in the drivers [11]. We were able to map these bugs
in 210 drivers (541 total bugs) to our kernel under analysis. For each
driver, we calculate the number of entry points and the fraction of
code in the driver that must be isolated.

We find that the bugs are reachable through 643 entry points,
for an average of 3 per driver. As a comparison, these drivers have
a total of 4,460 entry points (21 per driver), so only 14% of entry
points must be isolated. The code reachable from these entry points
comprises only 18% of the code in these drivers. These results
indicate that at least some classes of driver bugs are confined to
a single entry point, and therefore fine-grained fault tolerance can
reduce the cost of fault tolerance as compared to isolating the entire
driver.

5.5 Device Checkpoint Support
Device state checkpointing relies on existing power-management
code. We measure how broadly it applies to Linux drivers by
counting the number of drivers with power-management support.
While modern ACPI-compliant systems require that all devices
support power management, many legacy drivers do not.

We perform a simple static analysis over all network, sound,
and storage drivers using the PCI, USB, and PCMCIA bus in
Linux 2.6.37.6. The analysis scans driver entry points and iden-
tifies power management callbacks. Table 7 shows the number of
drivers scanned by class and bus and the number that support power
management.

Overall, we found that 76% of the drivers support power man-
agement. Of the drivers that do not support power management,
most were either very old, from before Linux supported power
management, or worked with very simple devices. Only two mod-
ern devices, both Intel 10gb Ethernet cards, did not provide sus-
pend/resume. Thus, we find that nearly all modern devices support
power management and can therefore support device state check-
pointing.

5.6 Developer effort
The primary development cost in using FGFT is adding annota-
tions, which describe how to copy data between the kernel and the
SFI module. Table 8 shows the number of annotations needed to
apply FGFT to every function in each of the tested drivers. We sep-
arate annotations into driver annotations, which are made to the
driver code, and kernel-header annotations, which are a one-time
effort common to all drivers in the class. These annotations are the
incremental cost of making a driver fault tolerant, and the imple-
mentation effort of Isolator and the kernel code described in Sec-
tion 4 are the up-front cost.

Overall, drivers averaged 20 annotations, with more annotations
for drivers with more complex data structures. Most driver classes



Driver Driver LoC
Isolation annotations

Driver
Annotations

Kernel
Annotations

8139too 1,904 15
20e1000 13,973 32

r8169 2,993 10
pegasus 1,541 26 12
ens1371 2,110 23 66
psmouse 2,448 11 19

Table 8. Annotations required in FGFT isolation mechanisms for
correct marshaling. Kernel annotations are common to a class, and
driver annotations are specific to a single driver.

Driver Recovery additions
LOC Moved LOC Added

8139too 26 4
e1000 32 10
r8169 17 5

pegasus 22 4
ens1371 16 6
psmouse 19 6

Table 9. Developer effort for checkpoint/restore driver callbacks.

required 20 or fewer kernel-header annotations except for sound
drivers, which have a more complex interface and required 66 an-
notations. Thus, the effort to annotate a driver is only modest, as an-
notations touch only a small fraction of driver code. In comparison,
SafeDrive [45] changed 260 lines of code in the e1000 driver for
isolation and another 270 lines for recovery. Nooks [41] required
23,000 lines of code to isolate and reload drivers. Thus, these small
annotations to drivers may be much simpler than adding a large
new subsystem to the kernel.

Checkpointing implementation. We evaluated the ease of imple-
menting device state checkpointing by adding support to the six
drivers listed in Table 9. For each driver we show the amount of
code we copied from suspend/resume to create checkpoint/restore
as well as the number of new lines added. On average, we moved
22 lines code and added six lines. The new code adds support for
checkpoint/restore in interrupt contexts and avoids nested locks
when the routines are invoked with a lock held. Even though
device state checkpointing requires adding new code, the effort
is mostly moving existing code. In comparison, implementing a
shadow driver requires (i) building a model of driver behavior and
(ii) writing a wrapper for every function in the driver/kernel inter-
face to log state changes.

6. Related work
Fine-grained fault tolerance draws inspiration from past projects on
driver reliability, program partitioning and software fault isolation
systems.

Device driver recovery. Prior driver-recovery systems, including
Nooks [41], Shadow drivers [40], SafeDrive [45] and Minix 3 [18]
all unload and restart a failed driver. In contrast, FGFT takes a
checkpoint prior to invoking the driver, and then rolls back to the
most recent checkpoint, which is much faster. CuriOS provides
transparent recovery and further ensures that client session state
can be recovered [14]. However, CuriOS is a new operating system
and requires specially written code to take advantage of its recovery
system, while FGFT works with existing driver code in existing op-
erating systems. ReViveI/O [28], and similar systems [34] provide
whole-system checkpoint/restore by buffering I/O and only letting
it reach the device after the next memory checkpoint. However, this
approach does not work with polling, where I/O operations cannot
be buffered and applied later.

Driver isolation systems. Driver isolation systems rely on hard-
ware protection (Nooks [41] and Xen [15]) or strong in-situ de-
tection mechanisms (BGI [6], LXFI [25] and XFI [42]) to detect
failures in driver execution. However, in latter systems if the fail-
ure is detected after any state shared with the kernel has been
modified then these systems cannot rollback to a last good state.
Other driver isolation systems such as SUD [3] and Linux user-
mode drivers [22], require writing class-specific wrappers in the
kernel that are hard to maintain as the kernel evolves. FGFT differs
from existing isolation systems by providing fine-grained isolation
semantics and limits the runtime overheads only to suspect code.
Prior work on fast software fault isolation, such as BGI [6], would
benefit FGFT by improving its performance on I/O-intensive work-
loads.

Software fault tolerance. Existing SFI techniques use program-
mer annotations (SafeDrive [45] or API contracts (LXFI [25]) to
provide type safety. XFI [42] transforms code binaries to provide
inline software guards and stack protection. In contrast, FGFT op-
erates on source code and allows drivers to operate on a copy of
shared data. FGFT marshals the minimum required data and uses
range hash to provide spatial safety.

Transactional kernels. FGFT executes drivers as a transaction by
buffering their state changes until they complete. VINO [37] sim-
ilarly encapsulated extensions with SFI and used a compensation
log to undo kernel changes. However, VINO applied to an entire
extension and did not address recovering device state. In addition,
it terminated faulty extensions, while most users want to continue
using devices following a failure. FGFT is complementary to other
transactional systems such as TxLinux [35], that provide transac-
tional semantics for system calls. These techniques could be ap-
plied to driver calls into the kernel instead of using a kernel undo
log of compensation records.

Program Partitioning Program partitioning has been used for
security [4, 7] and remote code execution [9]. Existing program
partitioning tools statically partition user mode code or move driver
code to user mode [17]. FGFT is the first system to partition
programs within the kernel and is hence able to provide partitioning
benefits to kernel specific components such as interrupt delivery
and critical I/O path code. Furthermore, instead of partitioning code
in any one domain, FGFT replicates its entry points and decides on
a runtime basis whether a particular thread should run in isolation.

7. Conclusions
The performance and development costs of existing driver fault-
tolerance mechanisms have restricted their adoption. In this paper,
we presented fine-grained fault tolerance, a pay-as-you-go model
for tolerating driver failures that can be dynamically invoked for
specific requests. Fine-grained fault tolerance is made possible due
to device checkpoints. This functionality is often considered to re-
quire a significant re-engineering of device drivers. However, we
demonstrate that checkpoint functionality is already provided by
existing suspend/resume code. While we only applied checkpoints
to fault tolerance, there are more opportunities to use device check-
point/restore, such as OS migration, fast reboot, and persistent op-
erating systems that should be explored.
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