
Understanding and Improving 
Device Access Complexity

Asim Kadav
(with Prof. Michael M. Swift)

University of Wisconsin-Madison



Devices enrich computers

2

★ Keyboard
★ Sound
★ Printer
★ Network
★ Storage

★ Keyboard
★ Flash storage
★ Graphics
★ WIFI
★ Headphones
★ SD card
★ Camera
★ Accelerometers
★ GPS
★ Touch display
★ NFC



 Heterogeneous O/S 
support: 10G ethernet vs 

card readers 

Huge growth in number of devices

3

New I/O devices: 
accelerometers, GPUS, 

GPS, touch

Many buses: USB, PCI-e, 
thunderbolt



Device drivers: OS interface to devices

4

device drivers

applications

OS

devices

buses

Allow diverse set of applications and OS 
services to access diverse set of devices

Expose device 
abstractions and hide 

device complexity
Expose kernel 

abstractions and 
hide OS complexity



Simplicity

Reliability

Complexity hurts efficient device access

5

Growth in 
number and 

diversity 

Run in 
challenging 

environments

Low 
latency

Complex 
firmware and 
configuration 

modes

Hardware 
failures (like 
CMOS issues)

Tools and mechanisms to address 
increasing device complexity 

Cost
effective

 Efficient device 
support in OS

 Evolution of devices



Complexity hurts understanding of drivers

6

device drivers

applications

OS

devices

buses

device 
drivers OS

kernel

Contribute 60% of Linux kernel code
and more than 90% in Windows

0 1750000 3500000 5250000 7000000
60,000

66,000

760,000

6,700,000

memory mgmt

kernel

file systems

drivers

Lines of code in Linux 3.8

 Understand and improve this rapidly 
growing body of code 



Last decade: Reliability of the driver-kernel interface

7

device 
drivers

3rd party developers

+

OS
kernel

Recipe 
for 

disaster



Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

New functionality Shadow driver migration [OSR09] 1 1 1

RevNIC [Eurosys 10] 1 1 1

Reliability Nooks [SOSP 03] 6 1 2

XFI [ OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Static analysis tools Windows SDV [Eurosys 06] All All All

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

Re-use lessons from existing driver research

8

Large kernel subsystems and validity of few device types 
result in limited adoption of research solutions

Limited kernel changes + Applicable to lots of drivers => 
Real Impact



Goal

9

Increasing hardware 
complexity

Increasing hardware 
complexity

Reliability against 
hardware failures

Low latency 
device availability 1 2

3Better understanding
of driver code

★Make device access efficient and reliable in the 
face of rising hardware and software complexity

Increasing software
 complexity



My approach

10

Tolerate device failures

Transactional approach for 
low latency recovery

Understand drivers and 
potential opportunities

Take a narrow view and solve 
specific problems in all drivers

Take a broad approach and have a 
holistic view of all drivers

Take a known approach and apply 
to all drivers

Minimize kernel changes and apply to all drivers



Contributions/Outline

11

Tolerate device failures

Transactional approach for 
low latency recovery

Understand drivers and 
potential opportunities

First research consideration of 
hardware failures in drivers

Largest study of drivers to 
understand their behavior and 
verify research assumptions

Introduce checkpoint/restore in 
drivers for low latency 

fault tolerance

SOSP ’09

ASPLOS ’12

ASPLOS ’13



What happens when devices misbehave?

12

★ Drivers make it better
★ Drivers make it worse

Early example: Apollo 11 1969

★ Hardware design bug almost 
aborted the landing

★ Assumptions about antenna in 
driver led to extra CPU 

★ Scientists on-board had to 
manually prioritize critical 
tasks



Current state of OS-hardware interaction

while&(ioread16(ioaddr&+&Wn7_MasterStatus))
& & &&0x8000);

13

Hardware dependence bug: Device 
malfunction can crash the system

HANG!

★ Many device drivers often assume device perfection
- Common Linux network driver: 3c59x.c

2013



Sources of hardware misbehavior

★ Firmware/Design bugs
★ Device wear-out, 

insufficient burn-in
★ Bridging faults
★ Electromagnetic 

radiation

14

★ Sources of hardware 
misbehavior

Device

Bus

Cache

Firmware

Electrical

Mechanical

Driver



Sources of hardware misbehavior

★ Firmware/Design bugs
★ Device wear-out, 

insufficient burn-in
★ Bridging faults
★ Electromagnetic 

radiation

15

★ Sources of hardware 
misbehavior

★ Results of misbehavior

★ Corrupted/stuck-at inputs
★ Timing errors/incorrect 

memory access 
★ Interrupt storms/missing 

interrupts



An evidence:

[1] Fault resilient drivers for Longhorn server, May 2004. Microsoft Corp.

16

Transient hardware failures caused 8% of all crashes and 

9% of all unplanned reboots [1]
★ Systems work fine after reboots
★  Vendors report returned device was faultless

Existing solution is hand-coded hardened drivers
★ Crashes reduce from 8% to 3% 



How do hardware dependence bugs manifest?

17

printk(“%s”,msg[inb(regA)]);Drivers use device
data in critical control and data paths

1

if&(inb(regA)!=&5)&&{
&&return;&//do&nothing
}

Drivers do not report device 
malfunction to system log

if&(inb(regA)!=&5)&{
&panic();

}
Drivers do not detect or recover from 

device failures

2

3



Vendor recommendations for driver developers
Recommendation Summary Recommended byRecommended byRecommended byRecommended by

Intel Sun MS Linux
Validation Input validation ! ! !

Read once& CRC data ! ! !

DMA protection ! !

Timing Infinite polling ! ! !

Stuck interrupt !

Lost request !
Avoid excess delay in OS !
Unexpected events ! !

Reporting Report all failures ! ! !

Recovery Handle all failures ! !

Cleanup correctly ! !

Do not crash on failure ! ! !

Wrap I/O memory access ! ! ! !

18

Goal: Automatically implement as many 
recommendations as possible in commodity drivers



Carburizer [SOSP ’09]

19

Goal:  Tolerate hardware device failures in software through 
hardware failure detection and recovery

 Static analysis component

★ Detect and fix hardware 
dependence bugs

★ Detect and generate 
missing error reporting 
information

Runtime component

★ Detect interrupt 
failures

★ Provide automatic 
recovery



 

Carburizer architecture

  OS Kernel

If&(c==0)&{
.
print&(“Driver&
init”);
}
.
.

Driver

Carburizer

If&(c==0)&{
.
print&(“Driver&init”);
}
.
.

Bug detection and
automatic fix generation

Recovery and interrupt 
watchdog

Hardened 
Driver Binary

Faulty Hardware

Carburizer 
Runtime

Kernel Interface

Compiler

20



Hardening drivers

• Goal: Remove hardware dependence bugs 
★ Find driver code that uses data from device
★ Ensure driver performs validity checks

• Carburizer detects and fixes hardware bugs :

21

Unsafe 
array 

reference

Unsafe 
pointer 

reference

System 
panic 
calls

Infinite 
polling



Finding sensitive code

int&test&()& {
& a&=&readl();
& b&=&inb();
& c&=&b;
& d&=&c&+&2;
& return&d;
}
int&set()& {
&&&&&&&e&=&test();
}

Tainted&Variables

a
b
c
d

test()
e

22

★ First pass: Identify tainted variables that contain 
data from device

network card

OS
Types of device I/O

★ Port I/O :!inb/outb
★ Memory-mapped I/O : readl/writel
★ DMA buffers
★ Data from USB packets



Detecting risky uses of tainted variables

★ Finding sensitive code
★ Second pass: Identify risky uses of tainted variables

★ Example: Infinite polling
★ Driver waiting for device to enter particular state
★ Solution: Detect loops where all terminating conditions 

depend on tainted variables

23



Infinite polling

static&int&amd8111e_read_phy(………)
{
&...
&&reg_val&=&readl(mmio&+&PHY_ACCESS);
&&while&(reg_val&&&PHY_CMD_ACTIVE)
& reg_val&=&readl(mmio&+&PHY_ACCESS)
&&...
}

AMD&8111e&network&driver(amd8111e.c)

24

★ Infinite polling of devices can cause system lockups



Hardware data used in array reference

static&void&__init&attach_pas_card(...)
{
&&&if&((pas_model&=&pas_read(0xFF88)))&
&&&{&
&&&&&...
&&&&&sprintf(temp,&“%s&rev&%d”,&
&&&&&&&pas_model_names[(int)&pas_model],&pas_read(0x2789));&
&&&&&...
}

Pro&Audio&Sound&driver&(pas2_card.c)
25

★ Tainted variables used as array indexes 



Experience with the Linux kernel

★ Extra analyses to reduce false positives
★ Detect counters, range and not NULL checks
★ Detect taint lifetimes

★ Analyzed drivers in 2.6.18.8 Linux kernel
★ 6300 driver source files
★ 2.8 million lines of code
★ 37 minutes to analyze and compile code

26



★ Found 992 hardware dependence bugs in driver code
★ False positive rate: 7.4%  (manual sampling of 190 bugs)

Analysis results over the Linux kernel
Driver class Infinite polling Static array Dynamic array Panic calls

net 117 2 21 2

scsi 298 31 22 121

sound 64 1 0 2

video 174 0 22 22

other 381 9 57 32

Total 860 43 89 179

27

Lightweight and usable technique to 
find hardware dependence bugs



Repairing drivers

★ Carburizer automatically generates repair code
★ Inserts failure detection and recovery service callout

28

Unsafe 
array 

reference

Unsafe 
pointer 

reference

System 
panic 
calls

Infinite 
polling

Timeout 

checks Array bounds 

check
Not null 

checks

Call recovery service



Runtime fault recovery

• Carburizer calls generic recovery 
service if check fails

• Low cost transparent recovery
★ Based on shadow drivers
★ Records state of driver
★ Transparent restart and state 

replay on failure

• No isolation required (like Nooks)

Shadow 
Driver

Device 
Driver

Device

Taps

Driver-Kernel 
Interface

29

Swift [OSDI ’04]



Carburizer automatically fixes infinite loops

timeout&=&rdtscll(start)&+&(cpu/khz/HZ)*2;
reg_val&=&readl(mmio&+&PHY_ACCESS);
while&(reg_val&&&PHY_CMD_ACTIVE)& {
& reg_val&=&readl(mmio&+&PHY_ACCESS);&

& if&(_cur&<&timeout)&
& &&&&rdtscll(_cur);
& else
& &&&&__recover_driver();

}

*Code/simplified/for/presentation/purposes

Timeout code 
added

AMD&8111e&network&driver(amd8111e.c)

30



Carburizer automatically adds bounds checks

static&void&__init&attach_pas_card(...)
{

&&if&((pas_model&=&pas_read(0xFF88)))&
&&{&
&&&&...
&&&&if&((pas_model<&0))&||&(pas_model>=&5))
& __recover_driver();&&&
&&&&&.
&&&&sprintf(temp,&“%s&rev&%d”,&
&&&&&&pas_model_names[(int)&pas_model],&pas_read(0x2789));&

}

*Code/simplified/for/presentation/purposes

Array bounds 
detected and  
check added

Pro&Audio&Sound&driver&(pas2_card.c)

31



Device/
Driver

Original Driver Original Driver CarburizerCarburizerCarburizerDevice/
Driver

Behavior Detection Behavior Detection Recovery

3COM 3C905 CRASH None RUNNING Yes Yes

DEC DC 21x4x CRASH None RUNNING Yes Yes

Fault injection validation

★ Synthetic fault injection on network drivers
★ Results

Carburizer failure detection and transparent 
recovery work well for transient device failures

32



Throughput overhead

0

250

500

750

1000

nVIDIA/MCP/55 Intel/Pro/1000

720

935

721

940

Th
ro
ug

hp
ut
/in

/M
bp

s

Network Card Type

Linux/Kernel
Carburizer/Kernel

33
netperf on 2.2 GHz AMD machines

Almost no overhead from hardened drivers and 
automatic recovery

No CPU overhead



Outline

34

Tolerate device failures

Transactional approach for 
cheap recovery

Understand drivers and 
potential opportunities

Hardening drivers
Reporting failures
Runtime Fault tolerance
Results



Outline

35

Tolerate device failures

Transactional approach for 
cheap recovery

Understand drivers and 
potential opportunities

Hardening drivers
Reporting failures
Runtime Fault tolerance
Results



Runtime failure detection

★ Static analysis cannot detect all device failures

36

Missing 
interrupts

Stuck 
interrupts

Interrupt expected 
but never arrives

Interrupt cleared but 
continues to assert



Missing interrupts

37

★ When are requests likely to come?
★ Driver invocation: Use reference bits to 

detect driver activity

Driver

Hardware 
Device

★ How frequently should we poll?
★ Increase frequency if interrupt invocation 

did useful work

OS ★ Device polling on interrupt failures
★ Polling frequently has high overhead
★ Polling infrequently results in throughput loss 



Stuck interrupts

Driver 
Type

Driver Name Native With Carburizer  Runtime

Disk ide-core,ide-
disk, ide-generic

Hang Reduced by 50%

Network e1000 Hang Reduced from 750 Mb/s to 130 Mb/s

Sound ens1371 Hang Sounds plays with distortion

38

Carburizer ensures system makes 
forward progress

★ Driver interrupt handler is called too many times
★ Convert the device from interrupts to polling



Summary

39

Recommendation Summary Recommended byRecommended byRecommended byRecommended by Carburizer 
EnsuresIntel Sun MS Linux Ensures

Validation Input validation ! ! ! !Validation
Read once& CRC data ! ! !

DMA protection ! !

Timing Infinite polling ! ! ! !

Stuck interrupt ! !

Lost request ! !

Avoid excess delay in OS !

Unexpected events ! !

Reporting Report all failures ! ! ! !

Recovery Handle all failures ! ! !

Cleanup correctly ! ! !

Do not crash on failure ! ! ! !

Wrap I/O memory access ! ! ! !

Carburizer improves system reliability by automatically 
ensuring that hardware failures are tolerated in software



Contributions beyond research

★ Informed developers at Plumbers Conference [2011] 

★ LWN Article with paper & list of bugs [Feb ‘12]

★ Released patches to the Linux kernel

★ Tool + source available for download at:                                    
http://bit.ly/carburizer

40



Functionality: Recovery assumes drivers follow class behavior

★ Record state by interposing class 
defined entry points

★ Restart and replay state using class 
semantics when failure happens

41

Shadow 
Driver

Device 
Driver

Device

Taps

Driver-Kernel 
Interface

Non-class behavior can lead to incomplete 
restore after failure



Recovery Performance: Device initialization is slow

42

Module
Registration

Allocate device 
structures 

Map BAR 
and I/O ports

Register device 
operations

Detect chipset 
capabilities

Cold boot hardware, 
flash device memory

Perform EEPROM 
checsumming 

Set chipset 
specific ops 

Optional self 
test on boot

Allocate driver 
structures

Configure device to 
working state

Device ready 
for requests

Allocate device structures

Module registration

Map BAR and I/O ports

Register device operations

Detect chipset capabilities

Self test?
Self test on boot

Cold boot the device

Verify EEPROM checksum

Set chipset specific ops

Allocate driver structures

Configure device

Device ready 
for requests★ Multi-second device probe

★ Identify device
★ Cold boot device
★ Setup device/driver 

structures
★ Configuration/Self-test

★ What does it hurt?
★ Fault tolerance: Driver recovery
★ Virtualization: Live migration, 

cloning, consolidation
★ OS functions: Boot, upgrade, 

NVM checkpoints



Outline

43

Tolerate device failures

Transactional approach for 
cheap recovery

Understand drivers and 
potential opportunities

Overview
Recovery specific results



Our view of drivers is narrow

44

Drivers
6.7 million LOC in 

Linux

Driver
Research 

(avg. 2.2 
drivers/
system)

Bugs

Necessary to review driver 
code in modern settings



Understanding Modern Device Drivers[ASPLOS 2012]

45

Driver 
interaction

Driver 
properties

Driver 
similarity

Study source of all Linux drivers for 
x86 (~3200  drivers)

★ Code properties
★ Verify research 
assumptions

★ Driver kernel & 
device interaction

★ Driver architecture

★ 7 million lines of 
code needed?



Study methodology

46

★ Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

★ Identify driver entry points, kernel 
and bus callouts 
★ Device class, sub-class
★ Driver functions registered as 

entry points (purpose)
★ Bus properties
★ Other properties (module params)

xmit

open

close

probe

Driver entry points

Driver 
properties

For every
merged driver



Study methodology

47

★ Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

★ Identify driver entry points, kernel 
and bus callouts

xmit

open

close

probe

Driver properties

Driver 
interactions

★ Reverse propagate information to 
aggregate bus, device and kernel 
behavior

kmalloc

Driver 
properties



Study methodology

48

Driver 
properties

★ Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

★ Identify driver wide and function 
specific properties of all drivers

Driver 
interactions

★ Reverse propagate information to 
aggregate bus, device and kernel behavior

Driver 
similarity

★ Use statistical clustering techniques and 
static analysis to identify similar code



Some additional results

49

Driver 
properties

★ Many assumptions made by driver research 
does not hold:
★ 15% drivers perform significant processing
★ 28% drivers support multiple chipsets

Driver 
interactions

★ USB bus offers efficient access (as 
compared to PCI, Xen)
★ Supports high # devices/driver 

(standardized code)
★ Coarse-grained access

Driver 
similarity

★ 400, 000 lines of code similar to code 
elsewhere and ripe for improvement via:
★ Procedural abstractions
★ Better multiple chipset support
★ Table driver programming



Contributions/Outline

50

Tolerate device failures

Transactional approach for 
cheap recovery

Understand drivers and 
potential opportunities

Overview
Recovery specific results



uwb
net

in!niband
atm
scsi
mtd
md
ide
block
ata

watchdog
video
tty

sound
serial
pnp

platform
parport
misc

message
media
leds
isdn
input
hwmon
hid
gpu
gpio
!rewire
edac
crypto
char
cdrom
bluetooth
acpi

init cleanup ioctl con!g power error proc core intr

0

10

20

30

40

50

Percent-
age of LOC

uwb
net

in!niband
atm
scsi
mtd
md
ide
block
ata

watchdog
video
tty

sound
serial
pnp

platform
parport
misc

message
media
leds
isdn
input
hwmon
hid
gpu
gpio
!rewire
edac
crypto
char
cdrom
bluetooth
acpi

init cleanup ioctl con!g power error proc core intr

0

10

20

30

40

50

Percent-
age of LOCch

ar
 d

riv
er

s
bl

oc
k 

dr
iv

er
s

ne
t d

riv
er

s

★Core I/O & interrupts – 23%
★Initialization/cleanup –  36 %
★Device configuration – 15%
★Power management – 7.4%
★Device ioctl  – 6.2%

Driver Code 
Characteristics

Initialization code dominates driver 
LOC and adds to complexity

51



Recovery assumes drivers follow class behavior

52

Does driver behavior belong to class definitions?

★ Class definition includes:
★ Callbacks registered with the bus, 

device and kernel subsystem
★ Exported APIs of the kernel to use 

kernel resources and services 

network
driver

bus

net device
subsystem

kernel

probe

xmit

config
network 

card



Do drivers belong to classes?

★ Non-class behavior stems from:
- Load time parameters, unique ioctls, procfs and sysfs interactions

...&qlcnic_sysfs_write_esw_config&(...)&& {
&&...
& switch&(esw_cfg[i].op_mode)&{
& case&QLCNIC_PORT_DEFAULTS:&&&&&&&&&&&&& & &&&
& & qlcnic_set_eswitch_...(...,&esw_cfg[i]);
&&&&&&&&&&&&...
& case&QLCNIC_ADD_VLAN:
&&&&&&&&&&&&qlcnic_set_vlan_config(...,&esw_cfg[i]);
&&&&&&&&&&&&...
& case&QLCNIC_DEL_VLAN:
&&&&&&&&&&&&esw_cfg[i].vlan_id&=&0;
&&&&&&&&&&&&qlcnic_set_vlan_config(...,&esw_cfg[i]);
&&&&&&&&&&&&...
Drivers/net/qlcnic/qlcnic_main.c:&Qlogic&driver(network&class)

53

★ Results as measured by our analyses:
★ 16% of drivers use proc /sysfs support
★ 36% of drivers use load time parameters 
★ 16% of  drivers use ioctl that may include non-standard 

behavior

★ Overall, 44% of drivers do not conform to class 
behavior



Outline

54

Tolerate device failures

Transactional approach for 
cheap recovery

Understand drivers and 
potential opportunities

Checkpoint/restore
FGFT
Future work and conclude



Limitations of restart/replay recovery

Shadow 
Driver

Device 
Driver

Device

Taps

Driver-Kernel 
Interface

55

★ Device save/restore limited to 
restart/replay
★ Slow: Device initialization is 

complex (multiple seconds)
★ Not enough: Incomplete recovery 

due to unique semantics
★ Hard: Need to be written for 

every class of drivers
★ Expensive: Continuous logging of 

all driver operations

Checkpoint/restore of device and driver state 
removes the need to reboot device and replay state



Checkpoint/Restore
★ Checkpoints limited to capturing memory state

56

network
driver

network 
card

checkpoint

★ Device state is not captured
★ Device configuration space
★ Internal device registers and counters
★ Memory buffer addresses used for DMA



Power management in drivers

57

★ Intuition: Power management code captures vendor 
specific state for every device
★ Our study: Present in 76% of all common classes

★ Suspend to RAM: Save state and suspend processors and 
devices

★ Refactor power management code for checkpoint/restore
★ Correct: Driver developer captures unique semantics
★ Fast: Avoids probe and latency critical for applications



Checkpoint/Restore from PM code

58

Save config state

Save device state

Disable device

Copy-out s/w state

Suspend device

Restore config state

Restore register state

Restore s/w state & 
reset 

Re-attach/Enable 
device

Device Ready

Suspend Resume 

Suspend/resume code provides 
checkpoint functionality



Fine-Grained Fault Tolerance[ASPLOS 2013]

★ Use device checkpoints to improve recovery
★ Execute driver entry points as transactions!

★ Take a device checkpoint, run driver as memory transaction
★ If the driver fails, we abort memory transaction and restore 

the checkpoint

★ Provide memory safety and trap processor exceptions
★ Recovery is simple and fast

59

★ Developers export checkpoint/restore in all drivers



SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Fine-Grained Isolation

60

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range Table

netdev->priv->tx_ring
netdev->priv->rx_ring

result

Kernel 
Log

lock

★ Suspect entry point arrives

★ Checkpoint device 

★ Marshal required data in SFI

★ Populate range table 

★ Execute & Populate compensation log

★ Success: Copy back written data

C

Resource access

★ I/O memory: Full access

★ Locks: Read access & locks 
acquired via kernel

★ Memory: Allocate & add to 
range table



SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Fine-Grained Isolation

61

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range Table

err

Kernel 
Log

lock

★ Suspect entry point arrives

★ Checkpoint device and processor state

★ Marshal required data in SFI

★ Populate range table 

★ Execute & Populate compensation log

★ Fail: Restore processor and device state, release locks

C

R

FGFT provides transactional 
execution of driver entry points



Recovery speedup

Driver Class Bus Restart 
recovery

FGFT 
recovery

Speedup

8139too net PCI 0.31s 70μs 4400
e1000 net PCI 1.80s 295ms 6
r8169 net PCI 0.12s 40μs 3000

pegasus net USB 0.15s 5ms 30

ens1371 sound PCI 1.03s 115ms 9

psmouse input serio 0.68s 410ms 1.65

62

FGFT provides speedup in driver 
recovery



Programming effort

Driver LOC Recovery additionsRecovery additions

LOC Moved LOC Added

8139too 1, 904 26 4

e1000 13, 973 32 10

r8169 2, 993 17 5
pegasus 1, 541 22 5

ens1371 2, 110 16 6
psmouse 2, 448 19 6

63

FGFT requires limited annotation support 
and needs only 38 lines of new kernel code



Throughput overhead

0

25

50

75

100

e1000

9396
100100

T
hr

ou
gh

pu
t 

%
ag

e 
(B

as
el

in
e 

84
4 

M
bp

s)

Network Card Type

Native
FGFTPstatic
FGFTPdynamicP1/2
FGFTPdynamicPall

netperf on Intel quad-core machines
64

CPU:  2.4% 2.4% 2.9% 3.4%



Summary

65

★ Investigated the problem of device failures in OS

★ Developed static and runtime solutions, contributed 
patches and a talk to developer community

★ Took a holistic view of research solutions and identified 
new research opportunities

★ Addressed one of these findings, and introduced 
checkpoint/restore in modern drivers for fast recovery



Outline

66

Tolerate device failures

Transactional approach for 
cheap recovery

Understand drivers and 
potential opportunities

Checkpoint/restore
FGFT
Other/Future Work



Other work 

Live Migration 
[OSR ‘09]

FGFT 
[ASPLOS ‘13]

SymDrive 
[OSDI ‘12]

Carburizer 
[SOSP ‘09]

Driver study 
[ASPLOS ‘12]

Differential RAID 
[Eurosys ‘10]

Papers at http://cs.wisc.edu/~kadav 67

Drivers

Storage

Reliability Performance Measurement

ThinCloud
[Under Submission]

GPFS



Build 
real 

systems

Future Work

68

Measure
real 

impact

Improve 

Solve 
new 

problems

★ Operating Systems
★ Distributed Systems
★ Software Reliability
★ Program Analysis

★ Use prior experience in



Future Work: Lessons from reliability research

★Distributed Systems: Identify and automatically fix 
cluster specific issues: expired leases, stale views, 
flooding (cascading failures)

★ Distributed Systems: How to create lightweight, 
broad and consistent checkpoints?

★ Automatically fix problems in other plugin based 
architectures like app stores, browsers

69



Future Work: Investigate OS-hardware co-design

★ Co-design: Co-design OS and device abstractions
★ Integrating energy proportional DRAM in OS 
★  Use special purpose workloads to accelerate 

cloud workloads
★ Re-design I/O in clusters for remote access

★ Co-verification: Device protocol violations 
★ Extend existing work on device failures to detect 

inconsistencies in software-device interaction

70



Example: Energy Proportional DRAM

★ Goal: Co-design virtual memory and newer low power 
DRAM (such as Partial Array Self-Refresh)

★ Evidence:
★ Workloads heterogenous show huge variance in 

memory demands (Google [SOCC ’12])
★ Problem: OS aggressively uses memory for performance

★ Consumes all memory as page cache
★ Fragments address space making consolidation difficult

★ How do we re-design OS and DRAM chips to save 
power?
★ Where?:  Reliable last level cache interface 
★ Virtual memory integration: Ensure transparency
★ De-fragmentation: Energy-aware page migration

71



Questions?

 Asim Kadav
★ http://cs.wisc.edu/~kadav

Thanks to 
★ Michael Swift
★ Matt Renzelmann
★ Mahesh Balakrishnan
★ Dahlia Malkhi
★ Vijayan Prabhakaran
★ Ed Nightingale
★ Jeremy Elson
★ James Mickens
★ Rathijit Sen


