
Fine-Grained Fault Tolerance using Device Checkpoints

Asim Kadav, Matthew J. Renzelmann, Michael M. Swift
Computer Sciences Department, University of Wisconsin-Madison

{kadav, mjr, swift} @cs.wisc.edu

Abstract
Recovering faults in drivers is difficult compared to other code
because their state is spread across both memory and a device.
Existing driver fault-tolerance mechanisms either restart the driver
and discard its state, which can break applications, or require an
extensive logging mechanism to replay requests and recreate driver
state. Even logging may be insufficient, though, if the semantics
of requests are ambiguous. In addition, these systems either require
large subsystems that must be kept up-to-date as the kernel changes,
or require substantial rewriting of drivers.

We present a new driver fault-tolerance mechanism that pro-
vides fine-grained control over the code protected. Fine-Grained
Fault Tolerance (FGFT) isolates driver code at the granularity of a
single entry point. It executes driver code as a transaction, allow-
ing roll back if the driver fails. We develop a novel checkpointing
mechanism to save and restore device state using existing power-
management code. Unlike past systems, FGFT can be incremen-
tally deployed in a single driver without the need for a large kernel
subsystem, but at the cost of small modifications to the driver.

In the evaluation, we show that FGFT can have almost zero run-
time cost in many cases, and that checkpoint-based recovery can
reduce the duration of a failure by 79% compared to restarting
the driver. Finally, we show that applying FGFT to a driver re-
quires little effort, and the majority of drivers in common classes
already contain the power-management code needed for check-
point/restore.

Categories and Subject Descriptors D.4.5 [Operating Systems]:
Reliability

General Terms Design, Reliability

Keywords Device Drivers, Checkpoints

1. Introduction
In most commodity operating systems, third-party driver code exe-
cutes in privileged mode. Faulty device drivers cause many reliabil-
ity issues in these systems [8, 36]. Hence, there has been significant
research to tolerate driver failures using programming-language
and hardware-protection techniques [3, 6, 15, 16, 22, 25, 45]. These
systems execute the entire driver as a single isolated component.
However, much of this work focuses on detecting failures and iso-
lating drivers from the rest of the system. Few of these systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’13, March 16−20, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1870-9/13/03$10.00.. . . $10.00

address how to restore driver functionality beyond simply reload-
ing the driver, which may leave applications non-functioning.

Most driver-reliability systems do not try to restore device state
and instead completely restart failed drivers [17, 41, 47], effectively
resetting device state to a known-good configuration. The state-
of-the-art mechanism for restoring driver functionality, shadow
drivers [40], logs state-changing operations at the driver/kernel in-
terface. Following a failure, shadow drivers restart the driver and
replay the log in order to restore internal driver and device state.
This resets the driver and device to a state functionally equivalent
to its pre-failure state. This approach, complete driver isolation and
logging for recovery, poses four problems:

1. Too hard: Shadow drivers must be written for every class of
driver and must be updated when the interface changes. This
adds a large body of code to the kernel requiring constant
maintenance, which is a high barrier to adoption. Other systems
require substantially rewriting drivers, which is also a barrier.

2. Not enough: Shadow drivers must encode the semantics of the
kernel/driver interface. However, many drivers have proprietary
commands that cannot be captured by a generic shadow driver,
leading to incomplete recovery. Recent work showed that up to
44% of drivers have non-class behavior [20].

3. Too expensive: Shadow drivers must interpose on and log all
invocations of a driver. Continuous monitoring imposes a per-
formance cost, particularly on high-performance devices such
as SSDs and NICs even when the critical I/O path is bug-free.

4. Too slow: Restarting a driver, the first step of log replay, can be
slow (multiple seconds) due to complex initialization code and
therefore may not be useful in latency-sensitive environments.

A key source of these problems is that prior systems seek com-
pleteness: applying to all driver code at all times. While this re-
duces the per-driver cost, it pushes up both development and run-
time costs.

We developed a new driver fault tolerance mechanism to ad-
dress these shortcomings called Fine-grained Fault Tolerance
(FGFT). Rather than isolating and recovering from the failure of an
entire driver, FGFT executes a driver entry point as a transaction
and uses software-fault isolation to prevent corruption and detect
failures. If the call faults, FGFT rolls back driver state and fails
the call. On entry to a driver, a stub copies parameters to the driver
code. Only if the driver executes correctly are the results copied
back; otherwise, the copy is destroyed.

In order to restore device state modified by a driver before fault-
ing, we developed a novel device state checkpointing mechanism
that can capture the device state. The stub captures a checkpoint be-
fore invoking the driver, and restores the checkpoint on failure. This
mechanism leverages existing power-management code present in
most drivers, which greatly reduces the development cost of adopt-
ing FGFT.

FGFT shifts the cost of driver fault tolerance to the faulty code.
While shadow drivers and whole-driver isolation require up-front
code for any instance of a class of drivers, FGFT instead requires
small changes to the driver itself to support isolation and imple-
ment checkpointing. Where past isolation mechanisms interpose on
all driver code and reduce its performance uniformly, FGFT only
imposes a cost on entry points selected for isolation. Thus, the cost
of executing a single call with fault tolerance may be higher with
FGFT than other systems, but when applied only to code off the
critical path it has much lower overhead because the critical code
is left unchanged. Thus, one possible use for FGFT is to apply it
selectively to vulnerable code suspected or known to have bugs.

The contributions of our work are:

• We build fine-grained fault tolerance, a system consisting of a
static analysis and code generation tool that provides isolation
by executing each driver request on a minimal copy of required
driver state. Our system can be used to isolate specific requests
and we show from a study of published bugs that fine-grained
isolation is practical since bugs only affect 14% of all entry
points in buggy drivers.

• We demonstrate a novel mechanism to create device check-
points on a running system. In a study of six drivers, we show
that taking a checkpoint is fast, averaging only 20 µs.

• We show how to use checkpoints and transactional execution of
driver code to provide fast recovery and remove the permanent
overhead of monitoring all requests.

• We show that the implementation effort of FGFT is small: we
added 38 lines of code to the kernel to trap processor excep-
tions, and found that device checkpoint code can be constructed
with little effort from power-management code present in 76%
of drivers in common driver classes.

We begin with an overview of the FGFT design.

2. Design Overview
FGFT is a system to tolerate faults in drivers using a pay-as-you-
go model based on checkpoints for recovery. This system protects
code from faults at the granularity of a single thread executing
a single entry point. FGFT recovers from any failures that occur
during the function. This can greatly reduce the cost of isolating
and tolerating faults, because far less code is affected.

We list four goals of providing fine-grained fault tolerance:

1. Class Independent. Isolation and recovery should be indepen-
dent of the driver-kernel interface and should be able to recover
driver actions from proprietary commands.

2. Low infrastructure. Little new code should be added to the
kernel in support of FGFT.

3. Pay-as-you-go. FGFT should not have a permanent overhead of
isolation or monitoring driver behavior. Furthermore, program-
mer effort should only be required only when fault tolerance is
desired.

4. Fast recovery. FGFT should restore driver functions quickly af-
ter a failure without affecting other threads concurrently exe-
cuting in the driver.

The first goal enables FGFT to apply to a broad range of drivers,
and the second reduces the adoption cost for an operating system.
Pay-as-you-go ensures that for high-performance drivers, tolerating
faults in code off the critical path has little cost. Fast recovery
enables its use in latency-sensitive environments.

The two major components of FGFT are an isolation mecha-
nism to prevent a faulty driver from corrupting the OS and to de-

tect failures, and a recovery mechanism to restore the driver to a
functioning state after a failure. We begin a discussion of our fault
model to motivate our design choices.

2.1 Fault Model
A driver entry point is a driver function invoked by the kernel
or applications to access specific driver functionality. Each driver
registers a set of functions as entry points such as to initialize the
device or transmit a packet. Driver entry points can be invoked
by applications multiple times in arbitrary order. Hence, drivers
should not make assumptions about the order or past history of
these invocations. FGFT provides fault tolerance at the granularity
of a single entry point into a driver. In contrast, past systems treat
the entire driver as a component with internal state.

As the driver executes, the FGFT isolation mechanism enforces
fine-grained memory safety. It ensures that the driver entry point is
only allowed to access its stack and data passed to the driver; ac-
cess to anything else will be treated as a fault. FGFT detects faults
in driver entry points in three ways. First, FGFT detects memory
failures (such as null pointer dereferences) and reading/writing un-
intended kernel and driver structures. Second, FGFT uses marshal-
ing to copy data in and out of the driver. Type errors and malformed
structures that cause the marshaling to fail will be detected, al-
though errors with compatible types (such as treating an array of
bytes as an array of longs), will not be. FGFT on its own does not
provide any semantic checks to enforce driver invariants. Hence,
driver faults must be detected within the entry point where they oc-
cur. Otherwise, failures that begin with one entry point improperly
setting a flag that is read by another cannot be tolerated. Third,
FGFT also catches processor exceptions which includes NULL
pointer exception, general protection fault, alignment fault, divide
error (divide by zero), missing segments, and stack faults and trig-
gers recovery if they arise out of isolated driver entry points.

We design for an open-source environment, and therefore trust
the compiler to produce code that correctly accesses the stack. We
also assume that the driver is unable to hang or damage the device,
although it may misconfigure the device.

A key benefit of FGFT is that by operating on specific entry
points it can be selective about what code should be hardened
against faults. We call the entry points to be isolated suspect. The
suspect code can execute in isolation while the remainder of the
driver executes in the kernel at full speed. Hence, FGFT is useful
when specific driver code is known to have problems, such as just-
patched code or code with known but un-patched vulnerabilities.
We identify at least three cases where a fine-grained model is
useful:

1. Untested code: Device drivers often contain untested code such
as chipset specific code or recovery code that can be invoked
using FGFT.

2. Statically found bugs: Often static analysis tools identify hard
to find/trigger driver bugs with substantial false positive rates.
FGFT can be integrated with existing static analysis tools until
a fix is issued, which often takes considerable time. This ap-
proach limits failures when such code is triggered under buggy
situations, while limiting the overhead at other times.

3. Runtime monitoring tools: Runtime monitoring tools flag in-
coming requests based on their parameters, such as a spe-
cific ioctl command code, or enabled at run time through
module parameters using run-time monitoring [23] or security
tools [31]. FGFT can dynamically decide whether to execute
code in isolation or at full speeds.

Furthermore, in our evaluation we analyze a list of bugs and find
that they only affect 14% of all driver entry points. Hence, limiting

Module
Registration

Allocate device
structures

Map BAR
and I/O ports

Register device
operations

Detect chipset
capabilities

Cold boot hardware,
flash device memory

Perform EEPROM
checsumming

Set chipset
specific ops

Optional self
test on boot

Allocate driver
structures

Configure device to
working state

Device ready
for requests

Allocate device structures

Module registration

Map BAR and I/O ports

Register device operations

Detect chipset capabilities

Self test?
Self test on boot

Cold boot the device

Verify EEPROM checksum

Set chipset specific ops

Allocate driver structures

Configure device

Device ready
for requests

Figure 1. Modern devices perform many operations during initializa-
tion such as setting up kernel and device structures based on chipset
and device features, checksumming device ROM data, various device
tests followed by driver initialization and configuration.

the cost of fault tolerance to affected entry points can be useful. We
now describe the two major components of FGFT: isolation and
recovery.

2.2 Fine-Grained Isolation
FGFT provides isolation by forcing suspect code to operate on a
copy of driver and kernel data. This ensures that anything the entry
point does will not be seen by other threads or the kernel until it
successfully completes, and allows quick recovery after a failure
by deleting the copy. Thus, FGFT creates a clean copy of data
needed for a driver entry point on every invocation, which consists
of all data referenced by the entry point: parameters, global driver
variables, and global kernel variables.

We use entry points as the granularity of isolation because it
closely matches internal driver structure: they provide a natural
boundary for returning errors after a fault, and drivers already syn-
chronize concurrent invocation of entry points. If two driver threads
cannot run concurrently in the driver, then driver synchronization
ensures that one of them blocks until the other successfully com-
pletes. Thus, FGFT reuses existing synchronization mechanisms to
ensure that when suspect code runs, no other threads are active in
the driver. This ensures that any changes to device state will not
be seen until the entry point completes successfully or it fails and
recovery completes.

FGFT provides entry-point isolation with a copy-in/out model
of driver and kernel state when suspicious entry-points are invoked.
FGFT uses static analysis and code-generation to generate another
kernel module that contains suspect entry points instrumented for
memory safety. Furthermore, FGFT generates communication code
containing marshaling routines to copy driver and kernel state nec-
essary for executing these entry points in isolation. Since the static
analysis to marshal the data structures required by the isolated copy
can be imprecise, FGFT requires a programmer to annotate am-
biguous data types in the driver code. In order to provide even finer
control over when to provide fault tolerance, FGFT automatically
inserts taps, which are predicates that can decide at runtime whether
to invoke the normal or fault-tolerant version of an entry point.

FGFT detects faults through run-time memory safety checks
that detect access to unreachable addresses – memory not passed
as a parameter or allocated by the entry point. Since, FGFT gen-
erates the code for copy-in/out, it is able to provide fine-grained
memory safety (base and bound validation [27]). Furthermore, for
failure detection, FGFT interposes on kernel trap handlers and de-
tects if the faults originate from the suspicious entry-points and ac-
cordingly triggers recovery.

2.3 Checkpoint based Recovery
FGFT relies on checkpoints prior to a driver entry point for re-
covery. Unlike log-based recovery, which requires knowing how to
replay requests, checkpoints can restore state independent of how
a function modifies driver state. For example, a checkpoint of a de-
vice prior to an ioctl call allows its state to be recovered no matter
what the call does.

Log-based recovery is also slow enough that the technique may
not be useful in latency-sensitive environments. The primary delay
comes from probing the device all over again which cold boots the
device and performs the initialization steps as shown in Figure 1.
For example, during initialization a network driver probes for the
device, verifies EEPROM contents, tests the device, and registers
the device with the kernel.

The checkpoint of the driver’s state in memory is captured
automatically through the copy-in/out model of invocation. Suspect
code always executes on a copy of the driver state, so the original
data is unmodified and need not be restored. The major challenge,
though, is the device state, which may be modified unpredictably
by the driver. We therefore require that drivers provide a facility for
capturing and restoring device state. Prior to invoking suspect code,
FGFT can take a checkpoint, and following a failure, it can restore
the checkpoint.

An appealing approach is to treat devices like memory and copy
memory-mapped I/O regions. However, reading registers may have
side effects such as clearing counters. In addition, some devices
overlay two logical registers, one for read and one for write, at
the same address. Instead, we take inspiration from code already
present in many drivers that must perform nearly the same task as
checkpoint/restore: power management.

The functionality provided by power management, to suspend a
device before entering the low power mode and restoring it when
transitioning to high power mode, is similar to what is required
to support device checkpoints. We reuse the suspend/resume code
by identifying code that supports saving state to memory from the
code that actually suspends the device. Similarly, we identify code
required for restoring this state. In Section 4, we describe in detail
how power management code can be re-factored to support check-
point/restore in device drivers and how existing driver synchroniza-
tion can be used to arbitrate device access.

2.4 Design Summary
FGFT improves the state of art in driver recovery and meets
its goals. FGFT provides class-independent driver recovery with
checkpoints as opposed to restarting the driver. Hence, FGFT dis-
cards failed requests and retains proprietary driver state such as
ioctls that were issued before the failure.

FGFT requires very little kernel code, as the code for isolation
is generated automatically and the recovery code requires only
small modifications to existing driver code. The annotation cost for
isolation and recovery is only required when a driver needs fault
tolerance. Only when a suspicious request executes does FGFT
execute it in isolation, thus limiting isolation overhead to these
requests. Compared to FGFT, Nooks [41] and SUD [3] require
a new kernel subsystem and writing and maintaining wrappers
around the driver-kernel interface.

There is also no recovery overhead of monitoring the correctly
executing requests at all times since driver recovery is based on
checkpoints. Finally, FGFT provides fast recovery since it does
not restart the driver and re-execute the complicated device probe
routines. Since the device state is restored from a checkpoint, the
recovery times are an order of magnitude shorter as we demonstrate
in our evaluation in Section 5.

Execution ComponentsCompile-time Components

Original
Driver
Source

Main driver module

FGFT
Isolator

Static Analysis and
Code Generation

Communication &
recovery support

User supplied
Annotations

SFI driver module

Marshaling/
Demarshaling

Object
tracking

Kernel
Undo Log

Stubs

Figure 2. FGFT replicates driver entry points into a normal driver
and an SFI driver module. A runtime support module provides com-
munication and recovery support.

3. Fine-Grained Isolation
Isolation ensures that the driver and kernel changes made by a re-
quest are not propagated if the request fails. We need the following
properties from an isolation mechanism:

1. Transactional execution: We need to execute the driver entry
points in a transactional fashion to keep a clean copy of all data
modified by the driver.

2. Memory safety and fault detection: We need to ensure a driver
cannot corrupt the kernel or other threads in the driver and
provide mechanisms that detect when a driver has failed.

3. Synchronization: Threads executing in the driver need to syn-
chronize with other threads to ensure they do not corrupt shared
state in the kernel, driver, or device.

To achieve these goals, we rely on well-understood compile-
time software fault isolation (SFI) [44]. As a driver entry point
operates on data shared with the rest of the driver, the SFI mech-
anism must allow access to such data but prevent its corruption.
FGFT therefore executes isolated code on a minimal copy of the
driver and kernel, which is a copy of data referenced from an entry
point but not entire structures. For example, when a network driver
issues an ioctl to update its transmit ring parameters, FGFT uses
points-to analysis and pre-determines the fields touched, such as
netdev→priv→tx ring and netdev→priv→rx ring
and will only generate marshaling code to copy in/out only these
fields to reduce the generated code and the unnecessary copying
of unused fields. If the entry point does not fail, FGFT merges the
copy back into the real driver and kernel structures. On a failure,
the copy is discarded. This in effect executes the suspect entry point
as a transaction using lazy version management [21].

However, not all data can be copied. Structures shared with
the device, such as network transmit and receive rings, cannot be
copied because the device will not share the copied structure. In-
stead, FGFT grants suspect code direct read and/or write access to
these structures and relies on device-state checkpointing to restore
these structures following a failure. Furthermore, driver code used
for recovery cannot be isolated and must be trusted.

We implemented FGFT for the Linux 2.6.29 kernel. Figure 2
shows the components of FGFT. We describe how FGFT provides
isolation, communicates with isolated code, and detects failures.

3.1 Software Fault Isolation
As FGFT targets open-source Linux device drivers, we implement
SFI using a source-code rewriting tool called FGFT Isolator writ-
ten using CIL [30]. It generates isolation code into the driver and
produces communication code, described below, for communicat-
ing with the isolated code.

Isolator generates an additional driver module called the SFI
module that contains a copy of the suspect entry points and all
functions transitively called from those functions, instrumented for

SFI. In addition, Isolator generates a new version of the driver that
invokes the SFI module entry points. At the top of the existing entry
points, Isolator inserts a test to see whether to execute normally or
in isolation, and if so invokes the SFI module.

The decision to invoke a given entry point in isolation can also
be made in one of three ways. First, a developer can use the attribute
attribute ((isolate)) to manually specify which func-

tions to isolate. This causes the function to always execute with
isolation. Second, FGFT can automatically use any static analysis
tool to identify buggy code and which entry points are affected.
These entry points are then always executed with isolation. Finally,
the decision can be made at run time. A fault management system,
such as the Solaris Fault management Daemon [38], can call into
the SFI module and specify which functions to execute with isola-
tion. Furthermore, it can register a function pointer at run time that
takes the same arguments as the suspicious function and returns a
decision of whether to isolate or not.

In addition to producing the SFI driver code, Isolator also pro-
duces communication code that invokes the SFI driver and copies
in the minimal driver and kernel state needed by the suspect entry
points, copies out any changes made by the SFI driver, and initiates
recovery following a detected failure. Isolator manages resource
allocation, synchronization and I/O across the two copies. Isolator
only detects memory failures. For other failures, such as arithmetic
exceptions, we trap processor exceptions and check if they origi-
nate from SFI module.

Isolator uses CIL’s memory tracking module [30] to instru-
ment all memory references in the driver. It inserts a call to our
memcheck function that verifies the target of a load/store is valid.
If not, it detects a failure and invokes the recovery mechanism. The
memcheck routine consults a range table to verify memory refer-
ences and provide fine-grained memory protection by only allow-
ing access to driver and kernel data as identified at compile time.
This table contains the addresses and lengths of copied data struc-
tures and buffers shared with the device. The range table is created
on every invocation of a suspect entry point and flushed on return.

We do not add all local variables to the range table because we
trust the compiler to generate correct code for moving variables
between registers and the stack. However, if the driver ever takes
the address of a local variable, or it creates an array as a local
variable, then Isolator adds a call in the instrumented SFI driver
to add the variable’s address and length to the range table and
remove it from the range table when the variable goes out of scope.
Similarly, we trust the compiler to produce valid control transfers
and do not instrument branch or call instructions.

3.1.1 Communication Code for Entry Points
FGFT Isolator generates stub code to invoke suspect entry points
that copies into and out of the driver. Similar to RPC stubs, these
stubs create a copy of the parameters passed to the suspect code,
but also copy any driver or kernel global variables it uses. When
the suspect entry point completes, stub code copies modified data
structures and return values back to the regular driver and kernel
in the current thread. An alternative approach would be to rely on
transactional-memory techniques to dynamically create a copy of
data as it is referenced, which may have lower copying costs but
higher run-time costs [2].

Isolator automatically identifies the minimal data needed for an
entry point through static analysis. This includes the structure fields
from parameters referenced by the entry point or functions it calls
plus fields of global variables referenced. As they copy data, stubs
update the range table with the address and length of each object.
For objects that cannot be copied (such as those shared with the
device), stubs fill in the existing address of the field, its length, and
whether the entry point needs read, write, or read/write access.

If suspect code callbacks invoke the kernel, Isolator generates
stubs for kernel functions that copy parameters to the kernel and
copies kernel return values back to suspect code. The SFI driver
may pass in fields from its parameters to the kernel as arguments.
To avoid creating a new copy of these fields, as would be done by
RPC, FGFT maintains an object tracker that maps the address of
kernel and regular driver objects to the address of objects in the SFI
driver. Stub code consults the object tracker when calling into the
kernel to determine whether arguments refer to a new or existing
object. If an object exists, stubs copy the argument back to the
existing object and otherwise temporarily allocate a new object.
To support recovery, stubs may generate a compensation entry in a
kernel undo log. This log records operations that must be reversed
on failure, such as freeing memory allocations.

The stub code must know the layout of data structures and
whether data is shared with the driver in order to correctly copy
data. As driver code often contains ambiguous data structures such
as void * pointers or list pointers (e.g., struct list head), we
rely on programmer-provided annotations to disambiguate such
code [47]. These annotations also declare which structure fields or
parameters are shared with the device and should not be copied. In
Section 5, we evaluate the difficulty of providing annotations.

Some driver functions trigger synchronous callbacks. For ex-
ample, the pci register driver function causes a callback on
the same thread to the driver’s probe function. FGFT treats the
callback as a nested transaction: it causes another isolated call op-
erating on a second copy of the data.

3.1.2 Resource Access from SFI module
Some resources cannot be copied into the driver because they attach
additional semantics or behavior to memory.

I/O memory. Driver entry points may communicate with the de-
vice by writing to I/O memory. Stubs grant the SFI driver read/write
access to memory-mapped I/O regions and memory shared with
the device via dma alloc coherent. Isolator identifies these re-
gions with annotations and creates stubs that grant drivers direct
read/write access.

Locks. Drivers may synchronize with other threads using spin
locks and mutexes. Stubs pass locks through without copying but
only allow read access. Suspect code must call back into the kernel
to acquire a lock. After acquiring a lock, the SFI driver copies its
parameters back from the kernel. The stub code for kernel locking
routines add a compensation entry to the kernel undo log to release
the lock after a failure. To ensure that changes made by suspect
code are not seen by the rest of the kernel, the lock stubs defer
releasing locks until after the entry point returns to the kernel.

The above mechanism protects shared structures across differ-
ent driver threads. However, the suspicious thread can also block
waiting for data to arrive on shared structures that have been copied
over from other driver threads. This re-synchronization across
driver threads is uncommon and we measure using static analy-
sis the driver entry points, where the driver thread waits for another
thread using the Linux’s completion family of functions or by
sleeping in a loop waiting for kernel data to arrive.

Overall, we find driver resynchronization occurs in 2.7% of
drivers and 1.4% of all entry points. We now characterize the source
of these re-synchronizations: Most re-synchronizations occur dur-
ing communication with the device; drivers wait for a device oper-
ation to finish and a device callback sets the completion structure.
In most cases, only the completion structure responsible for de-
vice notifications needs to be annotated. However, complex drivers
that communicate with devices using a layered interface (such as
SCSI, WIFI) may wait for lower layers to communicate with device
and also update the appropriate drivers structures with the result of

the operation. In such cases, annotations required for completion
structures and shared device structures for the driver to work cor-
rectly. Finally, driver threads also sleep inside loops waiting for
other threads to finish by polling reference counts or driver struc-
tures before invoking device operations such as disconnecting the
device. If these threads modify state across threads, then FGFT will
not recover correctly for this fraction of drivers/entrypoints.

Memory allocation. Stubs for allocators invoke the kernel alloca-
tor, add the returned memory region to the range table and generate
a compensation entry to free the memory on failure. The newly al-
located memory is not copied into the driver because its contents
do not need to be preserved. For kernel callbacks that implicitly
allocate memory an appropriate compensation entry is generated.

3.2 Failure Detection
In addition to protecting the kernel and regular driver code from
corruption, isolation provides the primary means to detect failures.
FGFT’s SFI mechanism implements spatial memory safety [27]:
every memory reference must be within an object made accessible
during the copy process. Thus, references outside the range table
indicate a failure.

Stubs can detect additional failures when copying data back to
the kernel. For example, if the driver writes an invalid address into
a data structure, the copying code will dereference that address and
generate an exception. We also modified the Linux kernel exception
handlers to detect unexpected traps from the SFI driver as failures.
If one occurs, the trap handler sets the instruction pointer to the
recovery routine. This is the only change to the Linux kernel, and
required only 38 lines of code.

The detection mechanisms may miss several categories of fail-
ures. First, if the driver violates its own data structure invariants,
stubs may not detect the problem. Recent work on identifying and
verifying data structure invariants could detect these faults [5]. For
example, if a suspect entry point sets a flag indicating that a field is
valid but does not set the field, then corruption will leak out of the
SFI driver. Second, the driver does not provide strong type safety,
so the driver may assign a structure field to the wrong type of data.
While this may be detected when stub copies data, it is not guar-
anteed. Finally, FGFT does not enforce kernel restrictions on the
range of scalar values, such as valid packet lengths.

4. Checkpoint-based recovery
FGFT is built around checkpoint-based recovery. While check-
pointing and restoring memory state is simple using techniques
such as transactional memory or copy-on-write, it has not previ-
ously been possible to capture the state of a device. Without this,
restoring memory state will lead to a driver that is inconsistent with
respect to its device, believing incorrectly that it has performed an
action or is operating in a different mode. We first describe device
state checkpointing, which is the basis of FGFT’s recovery mech-
anism. We then describe how FGFT uses device checkpoints to re-
cover in case of a failure.

4.1 Device state checkpointing
To be useful, a device checkpoint mechanism should fulfill the
following goals:

1. Lightweight. There should be no continuous monitoring or
long-latency operations.

2. Broad. The mechanism must work with a wide range of de-
vices/drivers, including those with unique behavior.

3. Consistent. Drivers are often invoked on multiple threads, and
checkpoints must be a consistent view of device state.

(a) (b) (c)

int rtl8139_suspend (...)

/* save PCI config state */
pci_save_state (pdev);

/* disable device */
if (!netif_running (dev))

return 0;
netif_device_detach (dev);

spin_lock_irqsave
(&tp->lock, flags);

/* Disable interrupts,
stop Tx/Rx. */

RTL_W16 (IntrMask, 0);
RTL_W8 (ChipCmd, 0);

/* Copy out device state. */
dev->stats.rx_missed_errors +=

RTL_R32 (RxMissed);
RTL_W32 (RxMissed, 0);
spin_unlock_irqrestore

(&tp->lock, flags);

/* Suspend device */
pci_set_power_state (pdev, PCI_D3hot);

int rtl8139_checkpoint (...)

spin_lock_irqsave
(&tp->lock, flags);

/* save PCI config state */
pci_save_state (pdev);

/* Copy out device state. */
dev->stats.rx_missed_errors +=

RTL_R32 (RxMissed);

spin_unlock_irqrestore
(&tp->lock, flags);

int rtl8139_restore (...)

spin_lock_irqsave
(&tp->lock, flags);

/* disable device */
netif_device_detach (dev);

/* restore bus state */
pci_restore_state (pdev);

/* restart device */
if (!netif_running (dev))

return 0;
rtl8139_init_ring (dev);
rtl8139_hw_start (dev);

RTL_W32 (RxMissed, 0);

/* re-enable device */
netif_device_attach (dev);
spin_unlock_irqrestore

(&tp->lock, flags);

Figure 1: The above figures show the original suspend routine and refactored checkpoint and restore routines in rtl8139
driver. Driver checkpoint a consistent snapshot, while the heavy work of stopping and starting the device is moved to
restore.Drivers may also save non-standard registers during suspend which should be done during checkpoint.

4. Addresses of memory bu↵ers shared with the driver,
such as the DMA ring bu↵ers use by network
drivers to send or receive packets.

We note that a checkpoint may not actually contain the
full state of the device. Rather, it must contain enough
information that functionality can later be restored with-
out a↵ecting applications. Thus, device state that can
be recreated or recomputed need not be saved. Further-
more, the checkpoint only contains the device state. To
be restored properly, it requires a consistent copy of the
driver state taken at the same. Thus, it must be paired
with mechanisms such as transactional memory or copy-
on-write to save the driver’s state.
The configuration state is the easiest to save. Most

buses provide a method to save configuration infor-
mation. For example, PCI drivers in Linux use
pci save state, save includes a set of standard registers
and the base address registers (BARs). The remaining
state, though, must be handled separately by each driver.
The driver explicitly saves register contents and coun-

ters in an internal driver structure. The di↵erence be-
tween registers and counters arises during recovery, de-
scribed below, because counter values cannot be written
back to the device.
Memory bu↵ers shared with the device can be recre-

ated. As a result, most device drivers do not include the
address of these bu↵ers in a checkpoint. Instead, they
free bu↵ers during suspend and re-allocates them during
resume.

Figure 2(a) diagrams the tasks performed by suspend
and resume, and shows how that code is shu✏ed to cre-
ate checkpoint and restore functionality. Of the suspend
code, checkpointing reuses all the functionality except
detaching the device with the kernel and suspending the
device. As an example, Figure 2(b) shows the code to
checkpoint the 8139too driver.
It may be necessary to checkpoint a driver while it is

in use. Existing suspend routines assume the device is
quiescent when the device state is saved. Checkpoint,
though, may be called at any time. Thus, it must be syn-
chronized with other threads using the driver. However,
because device state checkpointing must be coordinated
with other mechanisms for capturing driver state, we do
put synchronization code in checkpoint. Instead, we re-
quire that the caller of checkpoint synchronize with other
threads. In Section 4 we show how this can be done with
existing driver locks.
3.3 Restore
The restore operation can be constructed from a mix of
suspend and resume code. Normally the resume function
is invoked when the device just returned to full power
needs to be re-configured. In the case of a checkpoint,
though, the device is already running at full power. Thus,
resume invokes the bottom half of the suspend routine to
disable the device before restoring state.
The restore operation proceeds in four steps:

4

Device suspend
Save configuration state

Save device registers

Disable device

Copy s/w device state

Suspend device

Device resume

Restore config state

Restore registers/state

Re-start/enable device

Attach device

Device ready

Device checkpoint

Save configuration state

Save device registers

Lock device

Unlock device

Device restore

Restore config state

Restore registers/state

Lock device

Unlock device

Copy s/w device state

Disable device

Re-start/enable device

Figure 3. Our device state checkpointing mechanism refactors code from existing suspend-resume routines to create checkpoint and restore for
drivers as shown in Figure (a). The checkpoint routine only stores a consistent device snapshot to memory while the restore loads the saved state and
re-initializes the device. Figures (b) and (c) show checkpoint and restore routines in the rtl8139 driver.

We identified the suspend/resume code already present in many
drivers as having much of the functionality needed to implement
checkpoint and restore. We next describe how power management
for drivers works, and then describe how to reuse the functionality
for driver recovery with checkpoints.

4.1.1 Suspend/Resume Background
Modern operating systems can dynamically reduce their power
consumption to provide a hot standby mode, also called suspend
to RAM, which disables processors and devices but leaves state
in memory. One major component of reducing power is to disable
devices. Thus, operating systems direct devices to switch to a low-
power state when the system goes into standby mode. The behavior
of devices is specified by the ACPI specification for the platform
and by buses, such as PCI and USB.

In order to transition quickly between standby and full-power
mode, drivers implement a power-management interface to save de-
vice state before entering standby mode, and to restore device state
when leaving standby mode [12, 13]. These operations must be
quick to allow fast transitions. The system-wide suspend-to-RAM
mechanism saves the memory state of the driver, and the driver
is responsible for saving and restoring any volatile device state.
Drivers implement a power management interface with methods to
save and restore state. For example, Linux PCI devices implement
these two methods:

int (*suspend) (struct pci dev *dev,
pm message t state);

int (*resume) (struct pci dev *dev);

When saving device state to memory, the driver may invoke
the bus to save bus configuration data, as well as explicitly save
the contents of select device registers that are not captured by the
configuration state. The driver then instructs the device to suspend
itself. Simple devices that have no state may simply disable the
device.

Upon resume, drivers wake the device, optionally perform a
soft reset, restore their saved state. Since the latency of a system
to respond post-resume is critical, the initialization is lightweight
compared to restarting the driver, as it assumes the device has not
changed. Similar to suspend, simple devices may just re-enable the
device without restoring state.

For a system to support standby mode, all drivers must support
power management. While not all drivers do (Linux is notorious
for incomplete support [26]), it is widely implemented by Windows
and MacOS drivers, and support in Linux drivers is improving.

The functionality provided by driver power management is very
similar to what is needed for device state checkpointing. First, it
provides the ability to save device state to memory in a way that
allows applications to continue functioning. Second, even though
the device may continue to receive power, the soft reset that oc-
curs when re-enabling a device ensures that any previous state is
replaced by the restored state. Finally, power management is im-
plemented by most commonly used drivers. However, it is not di-
rectly usable for checkpointing: power management routines lack
the ability to continue executing after suspending a device because
the device has been disabled.

4.1.2 Checkpoint
Device state checkpointing is constructed from a subset of the
device suspend support already present in drivers. A device may
have many distinct forms of state, each of which require a different
mechanism for checkpoint:

1. Device configuration information published through the bus
configuration space.

2. Device registers with configuration data specific to the device.

3. Counters and statistics exported by the device and aggregated
by the driver.

4. Addresses of memory buffers shared with the driver, such as the
DMA ring buffers used by network drivers to send or receive
packets.

We note that a checkpoint may not actually contain the full state
of the device. Rather, it must contain enough information that
functionality can later be restored without affecting applications.
Thus, device state that can be recreated or recomputed need not
be saved. Furthermore, the checkpoint only contains the device
state. To be restored properly, it requires a consistent copy of the
driver state taken at the same time. Thus, it must be paired with
mechanisms such as transactional memory or copy-on-write to save
the driver’s state.

The configuration state is the easiest to save. Most buses provide
a method to save configuration information. For example, PCI
drivers in Linux use pci save state, that saves a set of standard
registers and the base address registers (BARs) to memory. Each
driver, though, must handle the remaining state, separately.

The driver explicitly saves register contents and counters in
an internal driver structure. The difference between registers and
counters arises during recovery, described below, because counter
values cannot be written back to the device.

Memory buffers shared with the device can be recreated. As
a result, most device drivers do not include the address of these
buffers in a checkpoint. Instead, they free buffers during suspend
and re-allocate them during resume.

Figure 3(a) diagrams the tasks performed by suspend and re-
sume, and shows how that code is shuffled to create checkpoint and
restore functionality. Of the suspend code, checkpointing reuses all
the functionality except detaching the device with the kernel and
suspending the device. As an example, Figure 3(b) shows the code
to checkpoint the 8139too driver.

It may be necessary to checkpoint a driver while it is in use.
Existing suspend routines assume the device is quiescent when the
device state is saved. Checkpoint, though, may be called at any
time. Thus, it must be synchronized with other threads using the
driver. Because device state checkpointing must be coordinated
with other mechanisms for capturing driver state, we do not put
our own synchronization code in the checkpoint routine but re-
use existing device locks in the driver. Device locks protect against
conflicting configuration operations, or operations like resetting the
device when I/O operations are in progress. This ensures that we
do not corrupt device state assumed by another thread in progress
when we reset device state in case of a failure.

4.1.3 Restore
The restore operation can be constructed from a mix of suspend
and resume code. Normally the resume function is invoked when
the device returns to full power and needs to be reconfigured. In the
case of a checkpoint, though, the device is already running at full
power. Thus, resume invokes the bottom half of the suspend routine
to disable the device before restoring state.

The restore operation proceeds in four steps:

1. Disable the device to put it in a quiescent, known state.

2. Restore bus configuration state

3. Re-enable the device

4. Restore device-specific state

Figure 3(c) shows the code to restore state for a simple network
driver. Of the four categories of driver state, only configuration
state and saved device registers can be reloaded. Counters, which
cannot be written back to the device, are restored by adjusting the
driver’s version of the counter. Typically, the driver will read the
device counter and update a copy in memory, and reset the device’s
counter. To restore the device’s counter state, the driver only resets
the device’s counter; the in-memory copy of the counter must be
saved as part of the driver’s memory state.

To restore shared buffers, the driver releases existing shared
buffers after disabling the device. As part of re-enabling the device,
it recreates shared buffers and notifies the device of their new ad-
dresses. While this slows restore, it makes checkpoint very efficient
because only irretrievable state is saved.

Unlike suspend-resume, it may be useful to use device state
checkpointing from interrupt contexts, where sleeping is not al-
lowed. As a result, checkpoint and restore code must convert sleeps
to busy waits (udelay in Linux) and use memory allocation flags
safe for interrupt context (GFP ATOMIC in Linux).

Fault Tolerance
Device recovery: Current recovery mechanisms require writing

wrappers to track all device state and full device restart results in
long latency.
OS functionality
Fast reboot: Restarting system requires probing all bus and device

drivers.
NVM Operating systems: Providing persistent state of a running

system requires ability to checkpoint a running device.
I/O Virtualization
Device consolidation: Re-assignment of passthrough devices across
different VMs needs to wait for device initialization.
Live migration: Live migration of pass-through devices converts the
millisecond latency of migrations to multiple seconds due to device
initialization.
Clone VMs: Ability to launch many cloned VMs very quickly is

limited by device initialization.

Table 1. Other uses for fast device state checkpointing.

Compared to full-driver restart, resume improves performance
because it does not re-invoke device probe, often the lengthiest part
of starting a device normally. Furthermore, drivers for newer buses
such as USB and IEEE394 do not restart the device because the
bus handles this operation. This further reduces restore times. For
PCI devices, a further optimization is to avoid changing the power
mode of the device. However, we observed that many drivers do
not require actually powering down the device before performing
restore. For these drivers, restore can be sped up by skipping these
unnecessary power mode changes.

4.1.4 Discussion
Device state checkpointing provides several benefits compared
with a logging approach to capturing driver/device state. First, it
can be invoked at any time and has no cost until invoked. Thus,
it has no overhead for infrequent uses. Second, it handles state
unique to a device, such as configuration options. Correct standby
operation demands that devices remain correctly configured across
standby, and hence drivers must already save and restore any re-
quired state. However, device state checkpointing relies on power
management code, which may not be present in all devices. It also
requires a programmer to implement checkpoint/restore for every
driver. We evaluate these concerns in Section 5.

Limitations. There is a risk in utilizing a mechanism for an un-
intended purpose: the driver continues running following a check-
point and may thus further modify the device state. In contrast, de-
vices are normally idle between suspend and resume. Thus, it is
possible that the state saved is insufficient to fully restore the de-
vice to correct operation. However, the power management spec-
ifications require drivers to fully capture device state in software
since devices can transition to an even lower power state where the
device is powered off. In such cases, drivers must be able to be re-
store their original state, following a full reset. Thus, suspend must
store enough information to restore from any state.

In the case of drivers with persistent internal state, such as disks
and other storage devices, restore will only restore the transient
device state and not the persistent state, such as the contents of
files. As a result, use of checkpoints must be coordinated with
higher-level recovery mechanisms, such as Membrane [39], to keep
persistent data consistent.

Other uses for device state checkpointing. In addition to fault
tolerance, device state checkpoints have other uses. Table 1 lists
five possible uses. Within an operating system, checkpoints sup-
port fast reboot after upgrading system software by restoring de-
vice state from a checkpoint rather than reinitializing the driver.
Similarly, operating systems using non-volatile memory to survive

Fine-grained fault tolerance
selects requests to run in SFI if
they meets certain static or
dynamic predicates using taps
over entry points.!

Main
Module!

SUCCESS: EXECUTION OF UNSAFE REQUEST IN SFI!

X!

X!

 FAILURE: REQUEST FAILS AND TRAPS IN SFI!

Notation Used: !

 ! Control Flow!

 ! Application process!

4. De-marshal result and updated
drivers structures back to main
module. Release all locks.!

 App Checkpoint device !!

N dir Restore device!

Kernel undo log to
compensate kernel calls!

 !
REQUEST ARRIVES:!
ISOLATE ONDEMAND!

Main module! SFI module!

App!

Demarshal!

C

R

K log!
!

K log!
!

Main module! SFI module!

K log!
!

R

1. Checkpoint
device state.!

2. Replay kernel
log to restore
kernel state.!

3. Restore device state using
our fast device resume.!

4. Return error to main
module w/o de-marshaling.
Release all locks.!

C

Marshal! 2. Marshal minimal data
required by request into
SFI module.!

3. Execute request in SFI. Kernel
undo log updated to record kernel
calls such as locks, other resources.!

1. Trap on fault, restore CPU
registers to recovery routine,
unwind stack and start recovery.!

SFI module!
Request runs within software fault isolated part of
kernel module with spatial type checking and
hardware fault detectors (processor exceptions).!

App! App!
App!

5. Return error to
app. for this request!

App!

Figure 4. FGFT behavior during successful and failed entry point executions.

power failures [1, 29] can restart drivers from a checkpoint rather
than reinitializing the device. In virtualized settings, pass-through
and virtualization-aware devices [32] allow drivers in guest op-
erating systems to interact with physical hardware. Device state
checkpoints enable virtual-machine checkpoints to a passthrough
device [24] and live migration, because the device state from the
source can be extracted and restored on identical hardware at the
destination. With virtual devices, the latency of live migration can
be as low as 60ms [10], so a 2 second delay to initialize a device
adds significant downtime. Finally, device state checkpointing en-
ables dynamic fault tolerance at fine granularity as demonstrated
by FGFT.

4.2 Recovery with checkpoints
We now describe how FGFT uses isolation and device checkpoints
to perform recovery from failures. When a failure is detected,
communication stubs call a recovery routine that is responsible for
restoring correct driver operation.

Failure anticipation. To prepare for an eventual recovery, gener-
ated stubs create a device checkpoint before invoking a suspect en-
try point. They invoke the checkpoint routine. In addition, stubs
for kernel functions log compensation entries to undo their effects
in the kernel undo log. Driver state is not explicitly checkpointed;
instead, suspect code operates on a copy of driver state as described
in Section 3. In addition, the stub saves its processor register state,
allowing a jump right into the stub if the driver fails.

Recovery steps. In case a failure is detected by SFI or processor
exceptions originating from suspect module, the recovery routine
restores driver operation through a sequence of steps as shown in
Figure 4:

1. Unwind thread. If not already in the stub, the instruction pointer
is set to the address of the recovery code in the entry point’s
stub, which reloads the saved registers. Nested calls to drivers
are logically handled as separate transactions, so there is no
need to unwind the thread to the outermost entry point.

2. Restore device state checkpoint. The stub recovery code calls
the driver’s restore routine to restore the device state.

3. Free call state. All temporary structures created for the suspect
entry point call such as the range table, object tracker, and
copies of kernel/driver structures are released.

4. Release locks. Any locks acquired before or during the call to
the SFI driver are released, allowing other threads to execute.

If a driver entry point fails, the stub returns an appropriate er-
ror indicator, such as a NULL pointer or an error code, and relies

on higher-level code to handle the failure. As only the single entry
point fails, this failure has little impact on applications. All applica-
tion state relating to the device, such as open handles, remain valid.
Furthermore, other threads in the driver continue to run as soon as
the recovery process completes and releases all acquired locks.

Compared to other driver isolation systems, the recovery pro-
cess is much simpler because only one thread is affected, so other
threads are not unwound. In addition, the driver state is left unmod-
ified, so it is not saved and restored. Finally, device state is restored
quickly from a checkpoint rather than by replaying a log. Hence,
we see that checkpointing device state results in quicker and sim-
pler recovery semantics for driver recovery.

4.3 Implementation effort
A key goal for FGFT is to reduce the implementation effort to iso-
late a driver. FGFT consists of minimal modifications to the kernel
exception handlers (38 lines of code), a kernel module containing
the object tracker, range table, and recovery support, and the Isola-
tor tool in OCaml. The module is 1,200 lines of C code, and Iso-
lator is 9700 lines of OCaml that implement: SFI isolation (400
lines), stub generation (7,800 lines), and static analysis of refer-
ences to parameter fields (1,500 lines). In comparison, Nooks adds
23,000 lines of kernel code (85x more than FGFT) to isolate and
reload device drivers and shadow drivers add another 1,100 lines of
code for recovery. FGFT also does not require any wrappers around
the driver interface. Nooks required 14,000 lines of manually writ-
ten wrappers, which are hard to maintain as the kernel interface
changes. FGFT’s isolator tool automatically generates similar code
for stubs.

5. Evaluation
We implemented device state checkpoint and fine-grained fault
tolerance for the Linux 2.6.29 kernel for six drivers across three
buses. The evaluation examines the following aspects of FGFT:

1. Fault Resilience. What failures can fine-grained fault tolerance
handle? We evaluate FGFT using a series of fault injection
experiments and report our results.

2. Performance. What is the performance loss of fine-grained fault
tolerance on steady-state operation? We report the performance
cost for applying FGFT on support and core I/O routines.

3. Recovery Time. What is the downtime caused by a driver fail-
ure? We compare the time taken by FGFT to restore the device
and cleanup the failed driver thread state with the time taken to
unload and reload a driver.

Fault Type Description of fault
Corrupt pointers Dynamic: Corrupt all pointers referenced

in a function to random values.
Corrupt stack Dynamic: corrupt execution stack by copy-

ing large chunks of data over stack variable
addresses.

Corrupt expressions Static: corrupt arithmetic instructions by
adding invalid operations (like divide by
zero).

Skip assignment Static: remove assignment operations in a
function.

Skip parameters Dynamic: zero incoming parameters in a
function.

Table 2. Faults injected to test failure resilience represent runtime
and programming errors. Dynamic faults are inserted by invoking an
ioctl, and static faults by making an additional pass to inject faults
while converting the driver to support FGFT.

Driver Injected
Faults

Benign
Faults

Native
crashes

FGFT
crashes

8139too 43 0 43 NONE
e1000 47 0 47 NONE
ens1371 36 0 36 NONE
pegasus 34 1 33 NONE
psmouse 22 1 21 NONE
r8169 46 0 46 NONE
Total 258 2 256 NONE

Table 3. Fault injection table with number of unique faults injected
per driver. FGFT is able to correctly restore the driver state and device
state in every case.

4. Usefulness of FGFT. Is selectively isolating entry points useful?
We evaluate whether suspect entry points can be identified in
drivers and whether they reduce the amount of code isolated.

5. Device Checkpoint Support. Is re-using existing power manage-
ment functionality reasonable? We examine the frequency of
power management support in existing drivers that facilitates
device checkpoints.

6. Developer Effort. What is the overhead to the developer to
enforce isolation in the system? We measure the effort needed
to annotate a driver for isolation and to add checkpointing code.

Unless otherwise specified, we compare FGFT against unmodified
drivers running on an unmodified 2.6.29 Linux kernel.

5.1 Fault Resilience
We first evaluate how well FGFT can handle driver bugs using a
combination of dynamic and static fault injection over six drivers.
These tests evaluate both the ability of fine-grained fault toler-
ance to isolate and recover driver state as well as the ability of
device state checkpointing to restore device functionality. Table 2
describes the types of faults inserted in the SFI module. Static fault
injection modifies the driver source code to emulate programming
bugs, while dynamic fault injection modifies driver data while run-
ning to emulate run time errors. We perform a sequence of trials
that test each fault site separately.

During each experiment, we run applications that use the driver
to detect whether a driver failure causes the application to fail. For
network, we use ssh, and netperf, whereas for sound we use
aplay, arecord from the ALSA suite. We tested the mouse by
scrolling the device manually as we performed the fault injection
experiments. After each injection experiment, we determine if there
is an OS/driver crash or the application malfunctions. We re-invoke
the failed entry point without the fault to ensure that it continues to
work, and that resources such as locks have been released.

We injected a total of 258 unique faults in the native and FGFT
drivers. Table 3 shows the number of faults injected for every driver
and the outcome. For the native driver, all but two faults crashed
the driver or resulted in kernel panics. The two benign faults were
missing assignments.

In contrast, when we injected faults into driver entry points pro-
tected by FGFT, the driver and the OS remain available for every
single fault. Furthermore, in every case, applications continue to
execute correctly following the fault. For example, the sound appli-
cation aplay skips for a few milliseconds during driver recovery
but continued to play normally. The shell notes this disruption with
the message “ALSA buffer underrun.”

We also verify that internal driver and device state is correctly
recovered using the ethtool interface for network drivers. We find
that when failures happen during a call to change configuration
settings, re-reading settings after a crash always returns the correct
values.

Finally, we verify that changes to drivers made using non-class
interfaces, such as the proc and sys file systems, before any
failures persist. In contrast, shadow drivers cannot replay these
actions since they cannot capture non-class driver interactions.

5.2 Performance
The primary cost of using FGFT is the time spent copying data
in and out of the SFI module and creating device checkpoints.
We measure performance with a gigabit Ethernet driver, as it may
send or receive receive more than 75,000 packets per second. Thus,
the overhead of FGFT will show up more clearly than on low-
bandwidth devices. We evaluate the runtime costs of using FGFT
and regular versions of drivers in six configurations:

1. Native: Unmodified e1000 driver.

2. FGFT static: Statically isolate 75% of code (all off I/O-path).

3. FGFT dyn-1/2: Dynamically isolate every other packet in I/O
path.

4. FGFT dyn-all: Dynamically isolate every packet in I/O path.

The dynamic experiment measures the additional cost of choosing
at runtime whether to invoke the regular or SFI version of a func-
tion. Finally, the dyn-all test represents the worst case of invoking
the SFI module on the I/O path for a high-bandwidth device.

Our test machine consists of a 2.5 GHz Intel Core 2 Quad sys-
tem congured with 4 GB DDR2 DRAM and an Intel 82541PI giga-
bit NIC running FGFT. We measure performance with netperf [18]
by connecting our test machine to another machine with 1.2 GHz
Intel Celeron processor and a Belkin NIC with a crossover cable.
Table 4 reports the average of 5 runs.

In the static test where code off the I/O-path code is isolated,
performance and CPU utilization are unaffected. These results
demonstrate that FGFT achieves the goal of only imposing a cost
on isolated code.

For the dyn-1/2 test that isolates at runtime, entry points on the
I/O path (the packet send routine) for every other packet, bandwidth
dropped 4% and CPU utilization increased 0.5%. Thus, selectively
applying isolation, even on critical I/O paths, has a small impact.

The performance drops further when we isolate critical path
code on every request since we copy shared driver and kernel
data across modules for each packet being transmitted. We find a
7.5% performance drop and 1% higher CPU utilization. FGFT is
designed to limit isolation costs to specific requests and hence pays
a cost of isolation because it needs to setup isolation (create copies)
as each packet requests isolation. Overall, these results show that
FGFT can be applied at no cost to high bandwidth devices off the
I/O path and at marginal cost on the I/O path.

Single Threaded
System Throughput CPU

Native 843.6 Mb/s 2.5%
FGFT static 843.6 Mb/s 2.5%
FGFT dyn-1/2 811.5 Mb/s 2.9%
FGFT dyn-all 784.4 Mb/s 3.4%

Ten Threads
System Throughput CPU

Native 847.7 Mb/s 3.0%
FGFT dyn-all 791.4 Mb/s 4.2%

Table 4. TCP streaming send performance with netperf for regular
and FGFT drivers with checkpoint based recovery.

Driver Class Bus Restart
recovery

FGFT
recovery Speedup

8139too net PCI 0.31s 70µs 4400
e1000 net PCI 1.80s 295ms 6
r8169 net PCI 0.12s 40µs 3000
pegasus net USB 0.15s 5ms 30
ens1371 sound PCI 1.03s 115ms 9
psmouse input serio 0.68s 410ms 1.65

Table 5. Comparison of FGFT and restart based recovery times.
Restart-based recovery requires additional time to replay logs running
over the lifetime of the driver. FGFT does not affect concurrently exe-
cuting threads in the system.

Driver Class Bus Checkpoint
times

Restore
times

8139too net PCI 33µs 62µs
e1000 net PCI 32µs 280ms
r8169 net PCI 26µs 30µs
pegasus net USB 0µs 4ms
ens1371 sound PCI 33µs 111ms
psmouse input serio 0µs 390ms

Table 6. Latency for device state checkpoint/restore.

Device Locking: We run netperf using ten threads and find that
the device locks introduced for entry point isolation do not impose
extra overhead. We also test the ens1371 sound driver and find that
playing multiple overlapping sound files does not result in any lags
or distortions.

5.3 Recovery Time
A major benefit of checkpoint-based recovery is the speed of restor-
ing service. Table 5 lists the time taken by the driver to recover us-
ing FGFT and by unloading and reloading the driver. We measure
recovery times by recording the time from detection of failure to
completion of the restore routine. Overall, FGFT is between 1.6
and 4,400 times faster than restart recovery, and between 145ms
and 1.5s faster. The drivers with the largest speedup have compli-
cated probe routines that are avoided by restoring from a check-
point. Hence, FGFT provides low-latency recovery and frequently
offers an order-of-magnitude lower recovery latencies.

Checkpoint/restore latency. We examine the device checkpoint
latencies to understand the source of our recovery performance in
the previous section. Table 6 shows the latency of a checkpoint or
restore for the same six drivers. Checkpointing is very fast, taking
only 20µs on average and 33µs at worst. Thus, it is fast enough to
be called frequently, such as before the invocation of most driver
entry points. Restore times are longer, with a range from 30µs
for the r8169 network driver to 390ms for psmouse. USB drivers
store less state because the USB bus controller stores configuration
information instead of the driver. Thus, during a normal resume, the
bus restores configuration state before calling the driver to resume.
The psmouse driver represents a legacy device and does not support

Class Bus Drivers
reviewed Drivers with PM

net PCI 104 68 65%
net USB 32 27 84%
net PCMCIA 4 4 100%
sound PCI 72 63 88%
sound USB 3 1 33%
sound PCMCIA 2 2 100%
ATA PCI 61 45 74%
SCSI USB 1 1 100%
SCSI PCMCIA 5 5 100%
Total - 284 216 76%

Table 7. List of drivers with and without power management as an-
alyzed with static analysis tools. USB devices (audio and storage) sup-
port hundreds of devices with a common driver, and provide support
for suspend and resume.

suspend/resume. Instead, we re-use existing device code to reset the
mouse.

5.4 Usefulness of being fine-grained
We evaluate whether selectively isolating specific entry points is
useful by looking for evidence that driver bugs are confined to
one or a few entry points. If the functions with bugs are reachable
through a large number of entry points, then full driver isolation is
more useful than per-entry point isolation. For example, if a bug
occurs in a low level read routine, then the bug will affect a large
number of entry points.

In order to have a large data set, we use a published list of
hardware dependence bugs [19] that represent one of the larger
number of unfixed bugs in the drivers [11]. We were able to map
these bugs in 210 drivers (541 total bugs) to our kernel under
analysis. For each driver, we calculate the number of entry points
and the fraction of code in the driver that must be isolated.

We find that the bugs are reachable through 643 entry points,
for an average of 3 per driver. As a comparison, these drivers have
a total of 4,460 entry points (21 per driver), so only 14% of entry
points must be isolated. The code reachable from these entry points
comprises only 18% of the code in these drivers. These results
indicate that at least some classes of driver bugs are confined to a
single entry point, and therefore FGFT can reduce the cost of fault
tolerance as compared to isolating the entire driver.

5.5 Device Checkpoint Support
Device state checkpointing relies on existing power-management
code. We measure how broadly it applies to Linux drivers by
counting the number of drivers with power-management support.
While modern ACPI-compliant systems require that all devices
support power management, many legacy drivers do not.

We perform a simple static analysis over all network, sound,
and storage drivers using the PCI, USB, and PCMCIA bus in
Linux 2.6.37.6. The analysis scans driver entry points and iden-
tifies power management callbacks. Table 7 shows the number
of drivers scanned by class and bus and the number that support
power management. Overall, we found that 76% of the drivers sup-
port power management. Of the drivers that do not support power
management, most were either very old, from before Linux sup-
ported power management, or worked with very simple devices.
Only two modern devices, both Intel 10gb Ethernet cards, did not
provide suspend/resume. Thus, we find that nearly all modern de-
vices support power management and can therefore support device
state checkpointing.

Driver Driver LoC
Isolation annotations

Driver
Annotations

Kernel
Annotations

8139too 1,904 15
20e1000 13,973 32

r8169 2,993 10
pegasus 1,541 26 12
ens1371 2,110 23 66
psmouse 2,448 11 19

Table 8. Annotations required in FGFT isolation mechanisms for
correct marshaling. Kernel annotations are common to a class, and
driver annotations are specific to a single driver.

Driver Recovery additions
LOC Moved LOC Added

8139too 26 4
e1000 32 10
r8169 17 5

pegasus 22 4
ens1371 16 6
psmouse 19 6

Table 9. Developer effort for checkpoint/restore driver callbacks.

5.6 Developer effort
The primary development cost in using FGFT is adding annota-
tions, which describe how to copy data between the kernel and the
SFI module. Table 8 shows the number of annotations needed to
apply FGFT to every function in each of the tested drivers. We sep-
arate annotations into driver annotations, which are made to the
driver code, and kernel-header annotations, which are a one-time
effort common to all drivers in the class. These annotations are the
incremental cost of making a driver fault tolerant, and the imple-
mentation effort of Isolator and the kernel code described in Sec-
tion 4 are the up-front cost.

Overall, drivers averaged 20 annotations, with more annotations
for drivers with more complex data structures. Most driver classes
required 20 or fewer kernel-header annotations except for sound
drivers, which have a more complex interface and required 66 an-
notations. Thus, the effort to annotate a driver is only modest, as an-
notations touch only a small fraction of driver code. In comparison,
SafeDrive [47] changed 260 lines of code in the e1000 driver for
isolation and another 270 lines for recovery. Nooks [41] required
23,000 lines of code to isolate and reload drivers. Thus, these small
annotations to drivers may be much simpler than adding a large
new subsystem to the kernel.

Checkpointing implementation. We evaluated the ease of imple-
menting device state checkpointing by adding support to the six
drivers listed in Table 9. For each driver we show the amount of
code we copied from suspend/resume to create checkpoint/restore
as well as the number of new lines added. On average, we moved
22 lines code and added six lines. The new code adds support for
checkpoint/restore in interrupt contexts and avoids nested locks
when the routines are invoked with a lock held. Even though
device state checkpointing requires adding new code, the effort
is mostly moving existing code. In comparison, implementing a
shadow driver requires (i) building a model of driver behavior and
(ii) writing a wrapper for every function in the driver/kernel inter-
face to log state changes.

6. Related work
FGFT draws inspiration from past projects on driver reliability,
program partitioning and software fault isolation systems.

Device driver recovery. Prior driver-recovery systems, including
Nooks [41], Shadow drivers [40], SafeDrive [47] and Minix 3 [17]

all unload and restart a failed driver. In contrast, FGFT takes a
checkpoint prior to invoking the driver, and then rolls back to the
most recent checkpoint, which is much faster. CuriOS provides
transparent recovery and further ensures that client session state
can be recovered [14]. However, CuriOS is a new operating system
and requires specially written code to take advantage of its recovery
system, while FGFT works with existing driver code in existing op-
erating systems. ReViveI/O [28], and similar systems [34] provide
whole-system checkpoint/restore by buffering I/O and only letting
it reach the device after the next memory checkpoint. However, this
approach does not work with polling, where I/O operations cannot
be buffered and applied later.

Driver isolation systems. Driver isolation systems rely on hard-
ware protection (Nooks [41] and Xen [15]) or strong in-situ detec-
tion mechanisms (BGI [6], LXFI [25], Mondrix [46] and XFI [42])
to detect failures in driver execution. However, in latter systems
if the failure is detected after any state shared with the kernel has
been modified then these systems cannot rollback to a last good
state. Other driver isolation systems such as SUD [3] and Linux
user-mode drivers [22], require writing class-specific wrappers in
the kernel that are hard to maintain as the kernel evolves. FGFT
differs from existing isolation systems by providing transactional
semantics and limits the runtime overheads only to suspect code.

Software fault tolerance. Existing SFI techniques use program-
mer annotations (SafeDrive [47]) or API contracts (LXFI [25]) to
provide type safety. XFI [42] transforms code binaries to provide
inline software guards and stack protection. In contrast, FGFT op-
erates on source code and allows drivers to operate on a copy of
shared data. FGFT marshals the minimum required data and uses
range hash to provide spatial safety.

Transactional kernels. FGFT executes drivers as a transaction
by buffering their state changes until they complete. VINO [37]
similarly encapsulated extensions with SFI and used a compensa-
tion log to undo kernel changes. However, VINO applied to an en-
tire extension and did not address recovering device state. In addi-
tion, it terminated faulty extensions, while most users want to con-
tinue using devices following a failure. FGFT is complementary
to other transactional systems such as TxLinux [35], that provide
transactional semantics for system calls. These techniques could
be applied to driver calls into the kernel instead of using a kernel
undo log of compensation records. Currently, these systems do not
perform device I/O transactionally and either rely on higher-level
atomicity techniques (TxOS [33] and xCalls [43]) or serialize trans-
actions with a lock (TxLinux [35]).

Program Partitioning Program partitioning has been used for
security [4, 7] and remote code execution [9]. Existing program
partitioning tools statically partition user mode code or move driver
code to user mode [16]. FGFT is the first system to partition
programs within the kernel and is hence able to provide partitioning
benefits to kernel specific components such as interrupt delivery
and critical I/O path code. Furthermore, instead of partitioning code
in any one domain, FGFT replicates its entry points and decides on
a runtime basis whether a particular thread should run in isolation.

7. Conclusions
The performance and development costs of existing driver fault-
tolerance mechanisms have restricted their adoption. In this paper,
we presented fine-grained fault tolerance, a pay-as-you-go model
for tolerating driver failures that can be dynamically invoked for
specific requests. Fine-grained fault tolerance is made possible due
to device checkpoints. This functionality is often considered to re-
quire a significant re-engineering of device drivers. However, we

demonstrate that checkpoint functionality is already provided by
existing suspend/resume code. While we only applied checkpoints
to fault tolerance, there are more opportunities to use device check-
point/restore, such as OS migration, fast reboot, and persistent op-
erating systems that should be explored.

Acknowledgements
TBD

References
[1] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy. Operating system

implications of fast, cheap, non-volatile memory. In Proc. of the 13th
HOTOS, 2011.

[2] A. Birgisson, U. E. Mohan Dhawan, V. Ganapathy, and L. Iftode. En-
forcing authorization policies using transactional memory introspec-
tion. In Proc. of the 15th ACM CCS, Oct. 2008.

[3] S. Boyd-Wickizer and N. Zeldovich. Tolerating malicious device
drivers in linux. In USENIX ATC, 2010.

[4] D. Brumley and D. Song. Privtrans: Automatically partitioning pro-
grams for privilege separation. In Proc. of the 13th USENIX Security
Symposium, 2004.

[5] S. Butt, V. Ganapathy, M. Swift, and C.-C. Chang. Protecting com-
modity OS kernels from vulnerable device drivers. In Proc. of 25th
ACSAC, Dec. 2009.

[6] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Don-
nelly, P. Barham, and R. Black. Fast byte-granularity software fault
isolation. In Proc. of the 22nd ACM SOSP, 2009.

[7] S. Chong et. al. Secure web applications via automatic partitioning.
In Proc. of the 21st ACM SOSP, 2007.

[8] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical
study of operating system errors. In Proc. of the 18th ACM SOSP,
2001.

[9] B. Chun and P. Maniatis. Augmented smartphone applications through
clone cloud execution. In Proc. of the 12th USENIX HotOS. USENIX
Association, 2009.

[10] C. Clark et. al. Live migration of virtual machines. In Proc of the 2nd
USENIX NSDI, 2005.

[11] J. Corbet. Trusting the hardware too much. http://lwn.net/
Articles/479653/. LWN February 2012.

[12] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers,
3rd Edition. O’Reilly Associates, Feb. 2005.

[13] M. Corp. Power management and ACPI - architecture and driver sup-
port. msdn.microsoft.com/en-us/windows/hardware/
gg463220.

[14] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell. CuriOS:
Improving reliability through operating system structure. In Proc. of
the 8th USENIX OSDI, December 2008.

[15] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the Xen virtual machine
monitor. In OASIS Workhop, 2004.

[16] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift, and
S. Jha. The design and implementation of microdrivers. In Proc. of
the 13th ACM ASPLOS, Mar. 2008.

[17] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum.
Failure resilience for device drivers. In Proc. of the 2007 IEEE DSN,
June 2007.

[18] R. Jones. Netperf: A network performance benchmark, version 2.1,
1995. Available at http://www.netperf.org.

[19] A. Kadav, M. J. Renzelmann, and M. M. Swift. Tolerating hardware
device failures in software. In Proc. of the 22nd ACM SOSP, 2009.

[20] A. Kadav and M. M. Swift. Understanding modern device drivers. In
Proc. of 17th ACM ASPLOS, 2012.

[21] J. R. Larus and R. Rajwar. Transactional Memory. Morgan &
Claypool Publishers, 2007.

[22] B. Leslie et. al. User-level device drivers: Achieved performance. Jour.
Comp. Sci. and Tech., 20(5), 2005.

[23] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. In Proc of the 26th ACM PLDI, 2005.

[24] M. Mahalingam and R. Brunner. I/O Virtualization (IOV) For Dum-
mies. labs.vmware.com/download/80/. VMworld 2007.

[25] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. Kaashoek.
Software fault isolation with api integrity and multi-principal modules.
In Proc. of the 23rd ACM SOSP, 2011.

[26] P. Mochel. The Linux power management summit. lwn.net/
Articles/181888/, 2006.

[27] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. Softbound:
highly compatible and complete spatial memory safety for c. In Proc.
of the 30th ACM PLDI, 2009.

[28] J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas. Re-
ViveI/O: Efficient handling of i/o in highly-available rollback-
recovery servers. In Proc. of the 12th HPCA, 2006.

[29] D. Narayanan and O. Hodson. Whole-system persistence. In Proc. of
the 17th ACM ASPLOS, March 2012.

[30] G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer. CIL: Intermedi-
ate language and tools for analysis and transformation of C programs.
In Proc. of the 11th CC, 2002.

[31] V. Paxson. Bro: a system for detecting network intruders in real-time.
In Proc. of the 7th USENIX Security Symposium, 1998.

[32] PCI-SIG. I/O virtualization. http://www.pcisig.com/
specifications/iov/, 2007.

[33] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and E. Witchel.
Operating systems transactions. In Proc. of the 22nd ACM SOSP,
2009.

[34] P. Ramachandran. Detecting and Recovering from In-Core Hardware
Faults Through Software Anomaly Treatment. PhD thesis, University
of Illinois, Urbana-Champaign, 2011.

[35] C. J. Rossbach et. al. TxLinux: Using and managing hardware trans-
actional memory in an operating system. In Proc. of the 21st ACM
SOSP, 2007.

[36] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: Taming device
drivers. In Proc. of the 4th ACM Eurosys, Apr. 2009.

[37] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing with disaster:
Surviving misbehaved kernel extensions. SIGOPS Operating Systems
Review, 30:213–228, 1996.

[38] Sun Microsystems. Opensolaris community: Fault management.
http://opensolaris.org/os/community/fm/.

[39] S. Sundararaman et. al. Membrane: Operating system support for
restartable file systems. In Proc. of the 8th USENIX FAST, 2010.

[40] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy. Recov-
ering device drivers. In Proc. of the 6th USENIX OSDI, 2004.

[41] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the reliability
of commodity operating systems. In Proc. of the 19th ACM SOSP, Oct.
2003.

[42] Úlfar Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula.
Xfi: software guards for system address spaces. In Proc. of the 7th
USENIX OSDI, 2006.

[43] H. Volos, A. Tack, N. Goyal, M. Swift, and A. Welc. xcalls: safe i/o in
memory transactions. In Proc of the 4th ACM Eurosys. ACM, 2009.

[44] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In Proc. of the 14th ACM SOSP, Dec.
1993.

[45] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B. Schneider.
Device driver safety through a reference validation mechanism. In
Proc. of the 8th USENIX OSDI, 2008.

[46] E. Witchel, J. Rhee, and K. Asanovic. Mondrix: Memory isolation for
Linux using Mondriaan memory protection. In Proc. of the 20th ACM
SOSP, 2005.

[47] F. Zhou et. al. SafeDrive: Safe and recoverable extensions using
language-based techniques. In Proc. of the 7th USENIX OSDI, 2006.

http://lwn.net/Articles/479653/
http://lwn.net/Articles/479653/
msdn.microsoft.com/en-us/windows/hardware/gg463220
msdn.microsoft.com/en-us/windows/hardware/gg463220
http://www.netperf.org
http://www.netperf.org
labs.vmware.com/download/80/
lwn.net/Articles/181888/
lwn.net/Articles/181888/
http://www.pcisig.com/specifications/iov/
http://www.pcisig.com/specifications/iov/
http://opensolaris.org/os/community/fm/
http://www.acm.org/pubs/articles/proceedings/ops/168619/p203-wahbe/p203-wahbe.pdf
http://www.acm.org/pubs/articles/proceedings/ops/168619/p203-wahbe/p203-wahbe.pdf

	Introduction
	Design Overview
	Fault Model
	Fine-Grained Isolation
	Checkpoint based Recovery
	Design Summary

	Fine-Grained Isolation
	Software Fault Isolation
	Communication Code for Entry Points
	Resource Access from SFI module

	Failure Detection

	Checkpoint-based recovery
	Device state checkpointing
	Suspend/Resume Background
	Checkpoint
	Restore
	Discussion

	Recovery with checkpoints
	Implementation effort

	Evaluation
	Fault Resilience
	Performance
	Recovery Time
	Usefulness of being fine-grained
	Device Checkpoint Support
	Developer effort

	Related work
	Conclusions

