
int rtl8139_suspend (...)

/* save PCI config state */
pci_save_state (pdev);

/* disable device */
if (!netif_running (dev))

return 0;
netif_device_detach (dev);

spin_lock_irqsave
(&tp->lock, flags);

/* Disable interrupts,
stop Tx/Rx. */

RTL_W16 (IntrMask, 0);
RTL_W8 (ChipCmd, 0);

/* Copy out device state. */
dev->stats.rx_missed_errors +=

RTL_R32 (RxMissed);
RTL_W32 (RxMissed, 0);
spin_unlock_irqrestore

(&tp->lock, flags);

/* Suspend device */
pci_set_power_state (pdev, PCI_D3hot);

int rtl8139_checkpoint (...)

spin_lock_irqsave
(&tp->lock, flags);

/* save PCI config state */
pci_save_state (pdev);

/* Copy out device state. */
dev->stats.rx_missed_errors +=

RTL_R32 (RxMissed);

spin_unlock_irqrestore
(&tp->lock, flags);

int rtl8139_restore (...)

spin_lock_irqsave
(&tp->lock, flags);

/* disable device */
netif_device_detach (dev);

/* restore bus state */
pci_restore_state (pdev);

/* restart device */
if (!netif_running (dev))

return 0;
rtl8139_init_ring (dev);
rtl8139_hw_start (dev);

RTL_W32 (RxMissed, 0);

/* re-enable device */
netif_device_attach (dev);
spin_unlock_irqrestore

(&tp->lock, flags);

Figure 1: The above figures show the original suspend routine and refactored checkpoint and restore routines in rtl8139
driver. Driver checkpoint a consistent snapshot, while the heavy work of stopping and starting the device is moved to
restore.Drivers may also save non-standard registers during suspend which should be done during checkpoint.

4. Addresses of memory bu↵ers shared with the driver,
such as the DMA ring bu↵ers use by network
drivers to send or receive packets.

We note that a checkpoint may not actually contain the
full state of the device. Rather, it must contain enough
information that functionality can later be restored with-
out a↵ecting applications. Thus, device state that can
be recreated or recomputed need not be saved. Further-
more, the checkpoint only contains the device state. To
be restored properly, it requires a consistent copy of the
driver state taken at the same. Thus, it must be paired
with mechanisms such as transactional memory or copy-
on-write to save the driver’s state.
The configuration state is the easiest to save. Most

buses provide a method to save configuration infor-
mation. For example, PCI drivers in Linux use
pci save state, save includes a set of standard registers
and the base address registers (BARs). The remaining
state, though, must be handled separately by each driver.
The driver explicitly saves register contents and coun-

ters in an internal driver structure. The di↵erence be-
tween registers and counters arises during recovery, de-
scribed below, because counter values cannot be written
back to the device.
Memory bu↵ers shared with the device can be recre-

ated. As a result, most device drivers do not include the
address of these bu↵ers in a checkpoint. Instead, they
free bu↵ers during suspend and re-allocates them during
resume.

Figure 2(a) diagrams the tasks performed by suspend
and resume, and shows how that code is shu✏ed to cre-
ate checkpoint and restore functionality. Of the suspend
code, checkpointing reuses all the functionality except
detaching the device with the kernel and suspending the
device. As an example, Figure 2(b) shows the code to
checkpoint the 8139too driver.
It may be necessary to checkpoint a driver while it is

in use. Existing suspend routines assume the device is
quiescent when the device state is saved. Checkpoint,
though, may be called at any time. Thus, it must be syn-
chronized with other threads using the driver. However,
because device state checkpointing must be coordinated
with other mechanisms for capturing driver state, we do
put synchronization code in checkpoint. Instead, we re-
quire that the caller of checkpoint synchronize with other
threads. In Section 4 we show how this can be done with
existing driver locks.
3.3 Restore
The restore operation can be constructed from a mix of
suspend and resume code. Normally the resume function
is invoked when the device just returned to full power
needs to be re-configured. In the case of a checkpoint,
though, the device is already running at full power. Thus,
resume invokes the bottom half of the suspend routine to
disable the device before restoring state.
The restore operation proceeds in four steps:

4

