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Abstract
Device drivers are the the operating system’s interface to
the outside world. Drivers have been a constant source of
unreliability and security problems in modern operating
systems due to (1) driver development process compris-
ing of thousands of developers and (2) driver architecture
which gives drivers privileged access to system resources
to provide maximum functionality. Both these factors
have led to significant reliability research on drivers.
This research has primarily looked at the driver-kernel
interface and has applied coarse grained isolation tech-
niques over device drivers. In my thesis proposal, I seek
to improve the state of modern device drivers against
the backdrop of reliability through three different tech-
niques. First, I improve the tolerance of modern drivers
against unreliable hardware and make drivers more ro-
bust by automatically patching driver code. Second, I
will study the current isolation and recovery techniques
and wish to demonstrate the effectiveness of using a finer
grained driver isolation and low overhead recovery so-
lutions. And finally, I will study the functional part of
driver code, its workings, form and its abstraction archi-
tecture and propose some guidelines on how drivers can
improve by organizing themselves better.

1 Introduction
Reliability remains a paramount problem for operating
systems. As computers are further embedded within
our lives, we demand higher reliability because there are
fewer opportunities to compensate for their failure. At
the same time, computers are increasingly dependent on
attached devices for the services they provide.

Consequently, driver research over the past decade has
significantly focused on reliability problems using soft-
ware/hardware fault isolation techniques, bug detection
tools, using special programming languages or environ-
ments for surviving crashes in modern operating systems
due to faulty or malicious device drivers [4, 8, 9, 10, 11,
12, 17, 20, 31, 34, 41, 47, 51, 52, 53, 58, 64, 67, 69, 70].
However, there are some issues which this body of work
fails to address.

Almost all reliability solutions, target the driver kernel
interface and do not address reliability problems due to

hardware issues. The device and driver interact through
a protocol specified by the hardware. Failure in adher-
ence to this protocol, or in its implementation can lead
to serious security and reliability issues since drivers op-
erate in privileged domain in modern operating systems.
While most research has focused on problems in device
drivers, there has been little research on bugs arising due
to faulty hardware. Some failures are caused by wear-
out or electrical interference [36]. In addition, internal
software failures can occur in devices that execute em-
bedded firmware, sometimes up to millions of lines of
code [72]. Hence, we need to address issues arising out
of hardware bugs. Applying the same solutions as used
for driver software bugs do not address reliability due to
unreliable hardware. Hence, it is important to assess the
nature of hardware unreliability issues that plague mod-
ern drivers and design stronger detection schemes to ad-
dress these issues.

One also needs to review the isolation and recov-
ery mechanisms proposed by state of the art driver re-
search. Driver isolation systems have not been popular
because they impose significant overheads and also re-
quire interposing driver-kernel architecture that gives rise
to maintainability issues. Ever since Nooks [64] demon-
strated that drivers can be isolated and recovered auto-
matically, most research has proposed newer isolation
techniques applied indiscriminately to the whole driver.
An exception to this rule is microdrivers [23]. Micro-
drivers isolates all functions in user-space except per-
formance critical routines like interrupt handlers, which
also cannot be supported in user-space. Furthermore,
there have been no recovery techniques proposed to re-
cover drivers at finer granularity, with all of them un-
loading/reloading the driver and replaying previous state
before crash. Hence, drivers and devices lack the ability
of isolating and recovering at a finer granularity. Such a
functionality, should impose lower overheads and can be
leveraged by numerous bug detection tools which detect
bugs in drivers but do little to fix them.

Additionally, most research has focused on developing
techniques to detect and fix driver bugs but one needs
to understand drivers beyond the bugs. This will help
us better understand the cause of these bugs and un-



reliability problems due to driver design. While sys-
tems researchers are broadly aware of the functionality of
drivers, little is known about the huge functional part of
driver code beyond these bugs or about few drivers from
basic driver classes. Hence, studying code from all driver
classes can be a useful exercise and can help us develop
new insights on how to improve driver code. One reason
to understand all drivers is to review if the driver research
solutions being developed are applicable to all classes
of drivers. Second, existing reliability and bug finding
tools treat bugs as problems and either fix them in place
or tolerate them at runtime. However, some times bugs
are not the problems but they represent symptoms [38]
of broader issues. To better understand and detect design
issues, one needs to analyze the code with a broader goal.

In this dissertation proposal, I address three issues re-
lating to device driver reliability. First, I develop tech-
niques to identify drivers susceptible to hardware failures
and how to fix them. Next, I describe techniques to im-
prove the current isolation and recovery mechanisms in
drivers. We review the problem to driver security to de-
scribe the utility of my solution. Finally, we will study
the driver source code of modern operating to understand
this protocol better and propose specific solutions to im-
prove the device-driver-kernel protocol.

Tolerating hardware device failures in software To
address the above problem, we have developed Carbur-
izer, a code-manipulation tool and associated runtime
that improves system reliability in the presence of faulty
devices. Carburizer analyzes driver source code to and
locations where the driver incorrectly trusts the hardware
to behave. Carburizer identified almost 1000 such bugs
in Linux drivers with a false positive rate of less than
8 percent. With the aid of shadow drivers for recovery,
Carburizer can automatically repair 840 of these bugs
with no programmer involvement. To facilitate proactive
management of device failures, Carburizer can also lo-
cate existing driver code that detects device failures and
inserts missing failure-reporting code. Finally, the Car-
burizer runtime can detect and tolerate interrupt-related
bugs, such as stuck or missing interrupts.

On demand isolation To address performance issues
due to isolation, we develop fine grained isolation and
recovery mechanisms. To demonstrate the usability of
such a problem, we address the problem of driver se-
curity against malicious hardware and userspace calls.
First, I demonstrate that isolation at a finer granularity
can indeed be useful. Then I discuss techniques that en-
able us to provide fine grained isolation in a single ker-
nel address space. Finally, I demonstrate recovery tech-
niques that does not require reloading and unloading the
driver. I also explain how the driver isolation techniques

does not require interposition on the driver-kernel inter-
face which can be a source of maintainability issues.

Understanding and improving modern driver code
To understand and improve driver code, we wish to study
the source code of Linux drivers to determine whether
assumptions made by most driver research, such as that
all drivers belong to a class, are indeed true. I also de-
velop a set of static-analysis tools to slice driver code
across various axes. Broadly, the study addresses three
important questions: (i) what is the function of all this
driver code,(ii) what is the form of the driver code and
can we get rid of some of the code by providing better
interfaces? and (iii) can the driver be abstracted in a bet-
ter way given the modern trends of hardware.

2 Tolerating Hardware Device Failures in
Software

The first aspect of this proposal deals with developing
techniques to make the modern hardware more robust in
handling transient hardware failures.

2.1 Problem

Studies of Windows servers at Microsoft demonstrate the
scope of the problem of transient hardware failures [2].
In one study of Windows servers, eight percent of sys-
tems suffered from a storage or network adapter fail-
ure [2]. Many of these failures are transient: hardware
vendors repeatedly report that the majority of returned
devices operate correctly and retrying an operation often
succeeds [1, 3, 49]. In total, 9% of all unplanned reboots
of servers at Microsoft during a separate study were
caused by adapter or hardware failures. Most impor-
tantly, when running platforms withthe same adapters
and software that tolerates hardware faults, reported de-
vice failures rates drop from 8 percent to 3 percent [2].
This evidence suggests that (1)device failure is a major
cause of system crashes, (2) transient device failures are
common, and (3)drivers that tolerate device failures can
improve reliability. Without addressing this problem, the
reliability of operating systems is limited by the reliabil-
ity of devices.

The Linux kernel mailing list contains numerous re-
ports of drivers waiting forever and reminders from ker-
nel experts to avoid infinite waits [37]. Nevertheless, this
code persists. For example, the code below from the
3c59x.c network driver in the Linux 2.6.18.8 kernel will
loop forever if the device never returns the right value:

while (ioread16(ioaddr + Wn7_MasterStatus))

& 0x8000)

;

2.2 Carburizer

Major OS vendors provide recommendations to driver
writers on how to tolerate device failures [2, 24, 29, 61].
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Figure 1: The carburizer architecture. Existing kernel
drivers are converted to hardened drivers and execute with
runtime support for failure detection and recovery.

Validation
Input validation. Check pointers, array indexes, packet

lengths, and status data received from hardware [61, 24, 29].
F
Unrepeatable reads.Read data from hardware once. Do not
reread as it may be corrupt later [61]
DMA protection.Ensure that the device only writes to valid
DMA memory [61, 29]
Data corruption. Use CRCs to detect data corruption if

higher layers will not also check [61, 29]
Timing
Infinite polling. Ensure that spinning while waiting on the

hardware can time out, and bound all loops [61, 29, 24]. F
Stuck interrupts. Handle interrupts that cannot be dis-

missed [26, 61] F
Lost request.Use a watchdog to verify hardware respon-

siveness [2, 24] F
Excessive delay.Avoid delaying the OS, busy waiting, and

holding locks for extended periods [2, 24]
Unexpected events.Handle out-of-sequence events [29, 24]
Reporting
Report hardware failures.Notify the operating system of

errors, log all useful information [2, 24, 29, 61] F
Recovery
Handle all failures. Handle error conditions, including

generic and hardware-specific errors [2, 24, 61] F
Cleanup properly. Ensure the driver cleans up resources

after a fault [61, 29] F
Conceal failure. Hide recoverable faults from applica-

tions [24] F
Do not crash.Avoid halting the system [2, 24, 29, 55] F
Test drivers.Test driver using fault injection [76, 26, 29]
Wrap I/O memory access.Use only wrapper functions to

perform programmed/memory-mapped I/O [61, 29, 55]

Table 1: Vendor recommendations for hardening drivers
against hardware failures. Recommendations addressed by
Carburizer are marked with a F.

Table1 summarizes the recommendations of Microsoft,
IBM, Intel, and Sun on how to prevent faulty hardware
from causing system failures. The advice can be con-
densed to four major actions:

1. Validate. All input from a device should be treated
as suspicious and validated to make sure that values
lie within range.

2. Timeout. All interaction with a device should be
subject to timeouts to prevent waiting forever when
the device is not responsive.

3. Report.All suspect behavior should be reported to
an OS service, allowing centralized detection and
management of hardware failures.

4. Recover.The driver should recover from any device
failure, if necessary by restarting the device.

To solve the above problem, we have developed a
system calledCarburizer that will implement the above
recommendations automatically. Carburizer is a code-
manipulation tool with an associated runtime that au-
tomatically hardens drivers. A hardened driver is one
that can survive the failure of its device and if possi-
ble, return the device to its full function. Carburizer im-
plements three major hardening recommendations: (1)
validate inputs from the device, (2) verify device re-
sponsiveness, and (3) report hardware failures so that an
administrator can proactively manage the failing hard-
ware [2, 24, 29, 61].

Carburizer comprises of a static analysis component
and a runtime The static analysis component runs on
commodity drivers to detect where the driver uses data
from device in critical control or data paths that can po-
tentially cause the system to crash or hang if the de-
vice generates corrupt values. We categorize such uses
as hardware dependence bugs. Carburizer also repairs
this code by ensuring necessary bounds, range and time-
out checks on device data before its risky use. Addition-
ally, Carburizer statically checks for missing error report-
ing information in drivers about device failures and fixes
them. Error reporting information about device failures
be useful for central fault management systems to diag-
nosis system failures and save debugging time. The re-
sult of the static analysis phase is a hardened binary that
executes with a runtime component of Carburizer. The
runtime component ensures that stuck or missing inter-
rupts do not occur by monitoring driver execution and
device responses. We intend to resort to polling if an in-
terrupt related bug is detected at runtime. The final piece
of the runtime component provides online recovery. We
leverage past work on shadow drivers [66, 32] to pro-
vide this functionality without any dependence on any
performance reducing isolation mechanisms. Figure1
describes the architecture of the above described system.

2.3 Results

We successfully implemented Carburizer [31] and were
able to find 992 hardware dependence bugs in the Linux



2.6.18.8 driver tree. We also found approximately 1100
cases where the driver was missing error reporting infor-
mation. Also, Carburizer hardened driver and runtime
imposed less than one half percent CPU overhead when
compared to a regular system [31].

3 On-demand isolation
Modern driver isolation systems are yet to be widely
adopted and we suspect this is due to two primary rea-
sons. First, driver isolation systems inflict performance
overhead over driver execution. Second, drivers have a
very inter-twined interaction with the kernel, which re-
quires writing wrappers over the driver-kernel interface
that bloats the isolation system as more and more drivers
are supported. This poses maintainability issues that de-
ters adoption of such systems. Furthermore, an uncon-
ventional way of interacting with the kernel, such as di-
rectly manipulating kernel data structures, either breaks
the kernel or the reliability mechanisms.

We presentOn-demand isolation, a system that de-
tects vulnerable entrypoints in the drivers and isolates
them within the same address space. This isolation en-
ables one to perform protection mechanisms exclusively
on the vulnerable component, limiting the performance
penalties of isolation. We also introduce zero overhead
recovery, a technique that uses existing driver code to re-
store the driver and device to a previous consistent state
without restarting the whole driver. In this proposal, we
demonstrate the applicability of the solution in the con-
text of driver security.

3.1 The problem of driver security

Device drivers represent a unique threat to system se-
curity and reliability because they (1) run in the ker-
nel, where they have unfettered access to hardware and
operating system data, and (2) interact with the outside
world, outside the control of the OS. For example, there
have been recent attacks demonstrated against USB de-
vices, in which merely plugging a device into a USB
port can compromise a system [44], and WIFI drivers,
in which receiving a certain packet can similarly result
in compromises. Furthermore, there are many known
vulnerabilities in drivers from unprivileged user-mode
code. A vulnerability in a Windows driver can enable
remote code execution just by visiting a malicious web-
page [43]. Also, devices have full access to system mem-
ory by virtue of DMA capability. In absence of any pro-
tection via IOMMUs, devices can DMA anywhere and
bring the system down or execute any code in the system.
These violations occur due to malicious inputs from the
user-level or from the device. [15, 16, 19, 30]

Compounding the problem, device driver code is of-
ten provided by third-party device manufacturers or ven-
dors, and hence does not reach the same level of assur-

ance as other kernel code. We propose to address the
problem of insecure drivers with a two prong approach:
First, we detect suspicious code using static analysis.
These results can be augmented by programmers to in-
clude untested code. Second, we perform isolation and
recovery of these selected portions. The selective isola-
tion ensures zero overhead to the system when running
non-vulnerable code. Our isolation and recovery tech-
niques can also be extended to untested driver code or
recovery code.

To solve the above problem, we present a solution that
is performant. We present a solution that isolates vulner-
able driver entry points. The subsequent recovery mech-
anism also does not reload the driver but just reinitalizes
the device to a consistent state.

As described earlier, drivers become vulnerable when
they use values from hardware and user space that cor-
rupts the privileged domain. Table2 describes vulnera-
bility types and how they occur in the context of device
drivers. These vulnerabilities lead to denial of service
attacks or lead to executing arbitrary code in the kernel.

Existing solutions of moving drivers to user-space
or isolating them are too slow and require intrusive
changes that are incompatible with existing driver code
base [64, 70]. Most of these solutions also interpose
on the standard driver-kernel interface, which is not a
scalable approach. The isolation is also broken when
drivers do not conform to class interfaces and provide
non-standard ioctls, proc/sysfs entry points and module
parameters. This is not uncommon. Our solution is
aimed at automatically detecting the vulnerability and
minimizing its effects of isolating a part of driver code
rather than reducing the damage caused by this vulnera-
bility by reducing privileges of the entire driver domain.

3.2 Threat Model

We focus improving the security of benign but buggy
drivers, which unprivileged attackers either outside the
kernel or outside the computer can exploit. While
openly malicious drivers pose much greater problems,
that problem is better solved by securing the distribution
of drivers. Furthermore, the protocol between a driver
and a device is private and not known to the operating
system. Thus, the kernel cannot mediate access between
the driver and device to prevent the driver or device from
compromising security. For example, a driver may sur-
reptitiously communicate with the device in ways un-
known to the kernel: a compromised network driver
could send a copy of every packet to an attacker, and
a storage driver could intentionally corrupt key files or
copy private data into public locations. Hence, we focus
our efforts on vulnerable device drivers. The problems of
driver security are broader than driver reliability. Apart
from preventing kernel crashes, we also need mecha-



Problem Manifestation in hardware Driver vulnerability
Format string Device/user passes unexpected values.Driver prints device registers, ioctl params from user space.

Buffer overflow Device/user passes unexpected values. Driver performs memory operations using device values.
Interrupt Storm Device sets the interrupt pin indefinitely. Driver cannot detect interrupt storms.

Driver bugs Device creates unexpected conditions. Driver cannot handle timing delays from the device.
Live locks Device or user keeps the driver waiting. Driver uses device values for critical control flows.

Resource drain out Device consumes kernel resources. Driver allocates resources of device/ioctl value sizes.
Resource use after free Device access dangling pointers. Driver provides interface to freed resources.

DMA Issues User/device overwrites kernel memory. Driver does not use kernel provided addresses for DMA.

Table 2:Manifestation of security problems in device drivers.

nisms to prevent eavesdropping of kernel data structures
and attacks involving code injections.

3.3 On-demand isolation

We intend to provide a solution that is performant and
does not isolate the whole driver. It also should not in-
terpose between kernel and driver, to avoid maintainabil-
ity problems from supporting different driver classes and
all drivers from a particular class. The recovery in case
of a crash should also be non-intrusive and should not
unload/re-load the whole driver. This is done by isolat-
ing small vulnerable portions of driver code called asOn-
demand isolation.

3.3.1 Propagation from vulnerability to crash

Providing On-demand isolation and recovery makes
sense when the distance from vulnerability to crash is
short. Prior work [25] has found this distance to be short
in the kernel code. Additionally, around 96% of faults
from hardware are shown to be detected or masked out
within a short instruction window in the operating sys-
tem [36]. In case of the problem of driver security from
malicious user or hardware inputs, we suspect this dis-
tance to be even smaller. This is because drivers tend to
read a value from device or userspace and tend to use
it immediately instead of passing it along across differ-
ent kernel subsystems or accessing it later. These results
are encouraging. Moving selected vulnerable code por-
tions like the WIFI handshake code path or the previ-
ously known bugs of USB device registration with the
kernel can improve driver security without compromis-
ing performance of the whole system.

3.3.2 Determining isolation boundaries

In order to provide the benefit of minimal isolation, we
need to automatically detect correct boundaries of iso-
lation. We need to ensure that the boundaries of iso-
lation are minimal enough to let the remaining system
provide good performance yet large enough to support
adequate driver and device recovery. We propose detect-
ing isolation boundaries automatically when the system
consumes device/user information in a potentially unsafe
manner or through programming annotations from the

user based on her apriori knowledge of vulnerability or
untested code.

To meet the above goal, we develop a static analy-
sis tool that marks appropriate isolation boundary given
an approximate location of the bug. This tool can work
with any auxiliary static analysis tools that detect vul-
nerability or can use programmer annotations. The tool
is based on data flow analysis that detects when the ma-
licious data is inserted into the system with respect to
the vulnerability and generates the isolation boundaries.
We use language based taint propagation techniques to
detect driver code which uses device data in vulnera-
ble scenarios. To do so, we re-use the Carburizer taint
tracking infrastructure that uses taint propagation across
inter-function boundaries for corrupt device inputs for
detection of infinite loops, memory de-reference, array
indexing and system panics [31]. We extended the exist-
ing Carburizer infrastructure to provide support to detect
user and hardware security bugs and also support (1) taint
propagation via procedure arguments (2) insecure uses
of these tainted argument and 3)detection of tainted data
from more functions and procedures rather than simple
read/write from register or memory mapped I/O.

The above step helps us detect vulnerable components
in a driver. Additionally, the programmer can also man-
ually annotate untested code or code which has been de-
clared vulnerable but has not yet been patched [13]. We
use these techniques and mark the appropriate driveren-
trypointas safe or vulnerable(hence isolated). Entrypoint
granularity enables us to discard the state of a thread in
the driver in case of a failure eliminating the need to
maintain driver state.

3.3.3 On-demand isolation

The goal of our isolation mechanism is to provide mem-
ory protection guarantees for a small part of the driver
code. In order to isolate selected parts of driver, we in-
tend to split driver code into safe and vulnerable parts as
shown in Figure2. The vulnerable driver component lies
in a single contiguous address space along with all its re-
quired data structures and memory referenced. Further-
more, the vulnerable component is subjected to memory
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Figure 2:On-demand isolation architecture. Existing ker-
nel drivers are split into safe and unsafe components. The
vulnerable component runs in a separate contiguous mem-
ory location with bounds check and separate stacks for re-
turn addresses. On failure, recovery is provided by discard-
ing the execuion of vulnerable component and restoring the
device to a known good state using existing suspend-resume
functionality in the driver.

bounds check on each operation using techniques like
segmentation or software fault isolation. The vulnerable
component also executes with a separate stack for return
addresses.

The two components communicate using procedure
calls wrapped by stubs. In the safe component, direct
calls to functions implemented in the vulnerable com-
ponent are replaced with upcalls through stubs. Stubs
marshal data structures accessed by the called function
and unmarshal them when the call returns. A symmetric
downcall mechanism enables the user-mode component
to invoke kernel functions. On-demand isolation does
not update the kernel data structures concurrently. Up-
dates to kernel data structures are withheld until the iso-
lated portion of driver code finishes. This is also true
for data structures representing the driver state shared
by other entry points. Hence, the vulnerable component
maintains copies of resources requested and those shared
by the whole driver in its own contiguous address space.
An object tracker, similar to the one used by Nooks [65],
synchronizes copies of a data structures across the two
components.

To split drivers, we used a modified version of Driver-
Slicer from microdrivers [23]. The goal of microdrivers
was to move maximum functionality into user-space i.e.
in a separate address space. The core driver components
which cannot be handled in user-space, like interrupt
handler remained in the kernel. However, On-demand
isolation aims to provide isolation for minimal portion
of driver code within the same address space. The com-
munication between different components in On-demand
isolation is simple procedure calls instead of RPC, since
On-demand isolation operates within the same address
space. This also helps retain interrupt functionality even
in the isolated component, unlike microdrivers.

In the above architecture safety is ensured by 1)Ex-
ecuting vulnerable component in a separate contiguous
space, 2) the marshaling properties and call by value-
result semantics give automatic validation to the struc-
tural properties of kernel data structures. Marshaling
data also ensures that data from user/device or from
driver execution is only copied onto specific areas in ker-
nel memory as controlled by marshal ling.

3.4 No overhead Recovery

Existing recovery mechanisms clean up the whole
drivers and unload and reload the driver and replay the
state [17, 67, 64]. These solutions are too drastic and
since drivers require significant time to initialize [32]
these solutions are slow. As mentioned earlier, we pro-
pose providing recovery at entrypoint granularity. Upon
failure we discard the entry point state and restore the
device to last good state without unregistering the driver
with the kernel. There are several issues which need to be
addressed while providing such a recovery mechanism in
drivers:

(i) We need a mechanism to save and restore state
of a running device that works across a range of de-
vices/drivers. Often, devices have specific nuances that
require special considerations while starting/stopping the
driver.

(ii) Since such a recovery is provided on a running
driver, we need to ensure that the other threads access-
ing the device are dealt with appropriately and do not
corrupt themselves, device state or the recovery process.

(iii) Devices can also make persistent, irreversible
changes that cannot be recovered. We need to identify
such code early on and not provide any recovery guaran-
tees for such code.

To solve the first issue, I propose reusing thesuspend
andresumefunctions in existing drivers. These functions
already save device configuration state and suspend to
RAM. Upon resume, this code restores state and already
handles device specific “quirks” to get the device to a
previous working state. We intend to automatically gen-
erate recovery code by re-using this code from drivers
and stripping off code that suspends the device. The
I/O memory and address space are saved before being
mapped to the address space of the isolated process and
restore prior to restoring the configuration registers and
invoking resume.

When we attempt to recover the driver to a known
state and reinitialize device configuration, other threads
may be running inside the driver if the driver is de-
signed to be multi-threaded. In this case, we need to
leverage existing locks in the driver to stall other driver
threads them until the recovery finishes. For threads al-
ready running, we mark driver code pages as no-execute.
When threads execute and raise an exception for running



non-executable code, we trap the exception and halt the
threads in the driver temporarily. We, however, allow the
recovery threads to continue and restore the device. This
method of restoring the driver is safe because the ker-
nel and driver state is unaffected by the isolated vulner-
able component in the event of a failure. While access-
ing the device, drivers ensure that they synchronize op-
erations with other threads using kernel synchronization
constructs likespin lock irq save. While the driver
synchronization constructs ensure that multiple threads
do not clobber device state, the object tracker constructs
ensures that these locks are removed in the event of a
recovery to ensure other threads do not remain blocked.

To ensure that we do not make recovery guarantees for
a non-recoverable case, we can detect when the isolation
boundaries lie on such irreversible path and warn the user
at compile time and during code execution.

4 Understanding and improving modern
driver code

Device drivers are the single largest contributor to operat-
ing system kernel code with over 5 million lines of code
in the Linux kernel and cause significant complexity, un-
reliability, and development cost. Recent years have seen
a flurry of research aimed at improving the reliability and
simplifying the development of drivers. However, little
is known about what constitutes this huge body of code
apart from few bugs that appear in these research studies.

In this part of my thesis, we study the source code of
Linux drivers to determine whether assumptions made
by most driver research, such as that all drivers belong
to a class, are indeed true. We also review driver code
and abstractions to review whether drivers can benefit
from code re-organization or changing hardware trends.
We develop a set of static-analysis tools to slice driver
code across various axes. Broadly, our study addresses
looks at three aspects of driver code (i) what is the func-
tion of driver code to find out what does all this driver
code do,(ii) what is the abstraction of driver code, i.e.
how does the driver code interact with the kernel and
the driver code (iii) what is the form of driver code, are
there similarities that can cause driver cause reduction.
We make certain hypothesis in all three aspects of driver
code and review if they hold true through our studies.

4.1 Overview

Modern computer systems are communicating with in-
creasing number of devices, each of which requires a
driver. For example, a modern desktop PC may have
tens of devices, including keyboard, mouse, display, stor-
age, and USB controller. Several studies have shown that
drivers are the dominant cause of OS crashes [21, 46].
As a result, there has been a recent surge of interest in
techniques to tolerate faults in drivers [20, 64, 67, 74], to

improve the quality of driver code [10, 33], and for new
driver architectures that remove driver code from the ker-
nel [8, 22, 34, 40, 51, 70].

However, most research on device drivers focuses on
a small set of devices, often a network card, sound card,
and storage device, all using the PCI bus. However, these
are but a small set of all drivers, and results from these
devices may not generalize to the full set of drivers. For
example, many devices for consumer PCs are connected
over USB. Similarly, the tested devices are fairly mature
and have standardized interfaces, but many other devices
may have significant functionality differences. Further-
more, there are over sixty classes of drivers in Linux, so
any small number may not generalize well.

This part of my dissertation presents a study overall
the driver code in the Linux kernel in order to broadly
characterize driver code. We focus on (i) what driver
code does, meaning what is the function of the mil-
lions of lines of code comprising drivers, (ii) where are
there opportunities for abstracting driver functionality
into common libraries or subsystems?, and (iii) what
are the oppurtunites in providing different abstractions
to driver code given the demands of isolation and chang-
ing technology trends. We use two sets of static analysis
tools to obtain above results. To understand function of
driver code, we develop a control-flow analysis tool that
detects properties of drivers at the granularity of func-
tions. We also develop a a tool based onshape analy-
sis [39] for detecting similar code.

Through this study, we seek to

• Show a high-level taxonomy of Linux drivers by in-
terface, identify active areas of driver development.

• Find the characteristics of functionality provided by
different parts of driver code and verify whether
modern driver research applies to all drivers.

• Find instances of driver functionalities that are sub-
stantially similar across multiple drivers and deter-
mine the best way to abstract these commonalities.

• Discuss the driver-device communication and dis-
cuss trade-offs of abstracting drivers using different
driver architectures.

4.2 Modern device drivers

Driver /Device Taxonomy The core operating system
kernel interacts with device drivers through a small set of
interfaces that abstract the fundamental nature of the de-
vice. In Linux, the three categories of drivers arecharac-
ter drivers, which are byte-stream oriented;blockdrivers,
which support random-access to blocks; andnetwork
drivers, which support streams of packets. However, be-
low these top-level interfaces, support libraries provide
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Figure 3: The Linux driver taxonomy in terms of basic
driver classes. The size (in percentage of lines of code) is
mentioned for 5 biggest classes. Not all driver classes are
mentioned.

common interfaces for many other families of devices,
such as keyboards and mice within character drivers.

Figure3 shows the hierarchy of drivers in Linux ac-
cording to their interfaces, starting from basic driver
types (i.e., char, block and net). Note that while Linux
organizes related drivers in directories, this taxonomy is
not the same as the Linux directory organization: all net-
work drivers are under thedrivers/netdirectory, but block
drivers are split by their interfaces underdrivers/scsi,
drivers/ideand others.

We detect the class of a driver not by the location
of its code, but by the interfaces it registers:e.g.,
register netdev indicates a driver is a network device.
We consider a single driver as a module of code that can
be compiled independently of other code. Hence, a sin-
gle driver can span multiple files, and a single driver can
serve multiple pieces of hardware. We consider all de-
vice drivers, bus drivers and virtual drivers that constitute
the driver directories in Linux.

In contrast to the rich diversity of Figure3, most re-
search neglects the heavy tail of character devices that
represent driver code. For example, video and GPU
drivers contribute significantly towards driver code, but
are untouched by driver research.

4.3 Research assumptions

Most research makes some simplifying assumptions
about the problem being solved, and driver research is
no different. For example, Shadow Drivers [64] assume
that all drivers are members of a class and there are no

unique interfaces to them. Similarly, the Termite driver-
synthesis system assumes that drivers are state machines
and perform no computations [53].

Systems that interpose on driver/device communica-
tion, such as Nooks [67], typically assume that com-
munication occurs over procedure calls and not shared
memory. Similarly, Shadow Drivers assume that the
complete state of the device is available in the driver, by
capturing kernel/driver interactions [64]. However, net-
work cards that do TCP-offload may have significant pro-
tocol state that is only available in the device, and hence
cannot be captured by monitoring the kernel/driver inter-
face.

Recent efforts at synthesizing drivers from a formal
specification look at generating a driver for a single
chipset [53]. However, many drivers support more than
one chipset. Hence, synthesizing the replacement for
a single driver may require many more drivers. Simi-
larly, enforcing safety properties for specific devices [70]
may be cumbersome if many chipsets must be supported
for each driver. Other efforts at reverse engineering
drivers [11] may also be complicated by the support of
many chipsets with different hardware interfaces. Fur-
thermore, these synthesis and verification systems as-
sume that the device always behaves correctly, and may
fail unpredictably with faulty hardware. An overwhelm-
ing support for chipsets would also indicate driver inter-
face support for multiple chipsets.

Another assumption made by driver research is that
drivers are largely a conduit for communicating data and
signaling to the device, and that they perform little pro-
cessing. Neither, RevNIC [11] nor Termite [53] support
data processing with the driver, because it is too complex
to model as a simple state machine.

While these assumptions all hold true for many
drivers, this research seeks to quantify their generality.
If these assumptions are true for all drivers, then these
research ideas have broad applicability. If not, then per-
haps new research is needed to address the outliers.

4.4 Driver Code Functionality

We seek to develop an understanding of what driver code
does. The goal of this study is to verify the driver as-
sumptions described in the previous section, and to iden-
tify major driver functions that could benefit from addi-
tional research. We also review how the driver subsytems
developed are applicable to all drivers.

Methodology To study the driver code, we developed
static analysis tools using CIL [45] to detect code prop-
erties in individual drivers. The tool takes as input un-
modified drivers in the Linux kernel source tree and a
list of driver data-structure types and driver entry points.
As drivers only execute when invoked from the kernel,
these entry points allow us to determine the purpose of



particular driver functions. We then construct a control-
flow graph of the driver that allows us to determine all
the functions reachable through each entry point.

We use ataggingapproach to labeling driver code: the
tool tags a function with the label of each entry point
from which it is reachable. Thus, a function called only
during initialization will be labeled initialization only,
while code common to initialization and shutdown will
receive both labels. Through our studies, we should be
able to prove or disprove the following hypotheses.

1. Device drivers cannot be completely synthesized be-
cause (i) Not all drivers can be completely defined
by the class definition of drivers, (ii) A single driver
supports multiple chipsets and (iii) Drivers perform
significant processing rather than just being a con-
duit of data.

2. A significantly small amount of driver code is dedi-
cated to perform the core I/O functionality.

To test the above hypotheses, we answer the following
questions about driver code using our static analysis.

Do drivers belong to classes? Driver research often
assumes that drivers belong to class. However, many
drivers support proprietary extensions to the class inter-
face. In Linux drivers, these manifest as privateioctl
commands, options exported through/proc or /sysfs,
and as load-time parameters. If a driver has none of these
code features, we assume it implements only the spec-
ified class functionality. However, drivers with one or
more of these extensions may have additional behaviors
not captured by the class.

Do drivers to significant processing? As devices be-
come more powerful and features processors of their
own, it is often assumed that drivers perform little pro-
cessing and simply shuttle data between the OS and the
device. However, if drivers require substantial CPU time,
for example to compute parity for RAID, checksums for
networking, or computing display data for video drivers
then processing power must be reserved.

How many chipsets does a single driver support?
We measure the number of chipsets supports by each
Linux driver by counting the number of PCI, USB or
other bus device IDs (i.e., i2c, ieee1394) that the driver
recognizes. This will help us know the efficiency of
driver code and also how applicable are the driver syn-
thesis techniques.

Where is the driver code changing? Over time, the
focus of new driver development shifts as new device
classes become popular. This guides driver research,
by showing what driver code is actively developed and
likely to benefit from new reliability, security, and per-
formance techniques.

How is the functionality provided by device drivers
distributed? We measure the amount of code dedi-
cated to the functionality provided by device drivers
across driver classes such as initialization, cleanup, er-
ror handling, configuration, I/O, power management.

4.5 Driver code form

Given that all the drivers for a class perform essentially
the same task, one may ask why so much code is needed.
In some cases, such as SCSI and IDE devices, related de-
vices share most of the code with a small amount of per-
device code. Most drivers, though, replicate most driver
functionality for every device. Without a global view of
drivers and the type of sharing going on, it can be difficult
to tell whether there are yet more opportunities to share
common code. In this section, we hypothise thathun-
dreds of drivers repeat most functionality and one can
replace significant amounts of driver code and replace
them with a table or domain specific language.

To address this question, we will develop a tool for
discovering similar code patterns at function granularity
across related drivers and applied it to Linux drivers. The
goal of this work is to find driver entry points with sub-
stantially similar code, indicating that perhaps the com-
mon code could be abstracted into a library and removed
from all drivers.

Methodology Our similarity tool is based onshape
analysis[39]. The tool generates a set of multidimen-
sional coordinates using static analysis for every function
in every driver, and then detects as related two functions
whose coordinate sets (itsshape) are nearby. The sim-
ilarity tool processes a driver function and adds a point
to the driver’s shape for every loop, kernel function call,
device interaction, variable assignment, and return state-
ment. The coordinates of the point are the offset into
the function (line number) and the statement type. Thus,
the shape of each driver function is a cloud of points on
plane.

To simplify comparison of two driver functions, we
further reduce the shape of a driver down to a singlesig-
naturevalue. We compute the signature as a function of
the Euclidean distance between all the points in the code
cluster obtained above. Thus, two functions with identi-
cal code will have identical signatures, and code that is
similar, in that it has a similar structure of loops and I/O
operations, will have nearby signatures.

Our preliminary results demonstrate that there are
large swaths of driver code that are virtually identical
across drivers. This code is unnecessarily complicated,
and its repetition causes extra work when kernel/driver
interfaces changes.



4.6 Driver Code Abstractions

The preceding section focused on thefunctionof driver
code, and here we turn to theform of driver code. We
review whether it is possible to move all driver code
to user-space to provide benefits of isolation and addi-
tional processing power. We look at the patterns of in-
teraction between the driver, the kernel and the device,
with a focus on (i) the patterns of kernel interactions and
(ii)resource consumption, and (iii) the patterns of device
interaction. The goal of this study is to investigate the
architectureof drivers, to design new architectures that
achieve better reliability, higher performance, or lower
complexity.

Methodology We apply the static-analysis tool from
the previous section again. However, while the preceding
section was a top-down analysis of the call graph, prop-
agating labels from driver entrypoints through all driver
functions, here we start at the bottom: kernel and de-
vice interactions. Using a list of known kernel functions
and device I/O methods supporting memory-mapped I/O,
port I/O, and DMA, we label driver functions accord-
ing to the methods they invoke. Through our studies,
we should be able to prove or disprove the following hy-
potheses.

1. Most modern devices provide enough resources to
execute drivers of their corresponding class.

2. USB drivers provide the best trade-offs between
functionality and isolation in modern driver archi-
tectures.

To test the above hypotheses, we review the follow-
ing questions to understand the resource allocation and
the granularity of device and kernel accesses by device
drivers.

How often do drivers talk to devices? We review
what mechanisms to access the devices remain relevant
and also how frequent is the device functionality in-
voked. The nature of interaction should guide us in un-
derstanding the abstraction of the driver architectures.

What is the kernel resource usage of drivers?
Drivers use memory, CPU and support of kernel services
for their own functioning. We review the kernel resource
usage of the drivers and try to ascertain how much per-
centage of devices can support the processing and mem-
ory requirements to run their corresponding drivers.

Both the questions above will help us better under-
stand the tradeoffs of isolation, functionality and per-
formance. Too frequent interactions, too many resource
requirements such as memory, CPU and kernel services
prohibhit moving driver code out of the kernel.

What is the concurrency model for drivers? We also
investigate the programming styles for drivers: do they
tend towards threaded code, saving state on the stack and
blocking for events, or toward event-driven code, regis-
tering callbacks either as completion routines (for USB
drivers) or interrupt handlers and timers for PCI devices.
Threaded code is usually error prone and leads to con-
currency bugs and crashes especially when handling in-
terrupt code.

Which bus architecture best isolates drivers? We re-
view the PCI, USB and Xenbus architecture and review
the trade-off between the isolation provided by the driver
versus the functionality exposed in these drivers.

4.7 Conclusion

Through this study, we understand how much the as-
sumptions made by different researchers apply to driver
code. We also intend to propose some insight on driver
functionality, abstraction and form that will help us bet-
ter understand device drivers.

5 Related work
My dissertation draws inspiration from past projects on
driver reliability, bug finding, automatic patch genera-
tion, device interface specification, and recovery.

Driver isolation Past work on driver reliability has fo-
cused on preventing driver bugs from crashing the sys-
tem. Much of this work can apply to hardware fail-
ures, as they manifest as a bug causing the driver to
access invalid memory or consume too much CPU. In
contrast to our mechanisms, these tools are all heavy-
weight: they require new operating systems (Singular-
ity [58], Minix [ 27], Nexus [70]), VINO [54], new
driver models (Windows UMDF [42], Linux user-mode
drivers [35]), runtime instrumentation of large amounts
of code (XFI [69] and SafeDrive [75]), adoption of a hy-
pervisor (Xen [20] and iKernel [68]), or a new subsystem
in the kernel (Nooks [67]).

Apart from these source level isolation approaches,
there are binary approaches that provide software fault
isolation. However, trying to segregate driver kernel
boundaries at binary level may be too late for drivers
where driver and kernel memory are heavily intertwined
with callbacks. Hence, these approaches have been lim-
ited to user-space programs [48, 73].

In comparison, the tools introduced in my proposal
are light weight. Carburizer instead fixes specific bugs,
which reduces the code needed in the kernel to just re-
covery and not fault detection or isolation. On-demand
isolation also attempts to isolate only the vulnerable
components in the driver to reduce isolation costs. Mi-
crodrivers [23] isolates all functions in user-space ex-
cept performance critical routines like interrupt han-
dlers, which cannot be supported in user-space. Due



to their limited overheads, we feel that Carburizer and
On-demand isolation may be easier to integrate into ex-
isting kernel development processes. Furthermore, our
mechanisms detects hardware failures and breaches be-
fore they cause corruption, while driver reliability sys-
tems using memory detection mentioned may not de-
tect it until much later, after the corruption propagates
through the system.

Bug finding Tools for finding bugs in OS code through
static analysis [5, 6, 18] have focused on enforcing
kernel-programming rules, such as proper memory al-
location, locking and error handling. However, these
tools enforce kernel API protocols, but do not address
the hardware protocol. Furthermore, these tools only find
bugs but do not automatically fix them.

Hardware dependence errors are commonly found
through synthetic fault injection [2, 26, 61, 76]. This
approach requires a machine with the device installed,
while Carburizer and On-demand fault isolation oper-
ates only on source code. Furthermore, fault injection is
time consuming, as it requires injection of many possible
faults into each I/O operation made by a driver.

Automatic patch generation Carburizer is comple-
mentary to prior work on repairing broken error handling
code found through fault injection [62]. Error handling
repair is an alternate means of recovering when a hard-
ware failure occurs by re-using existing error handling
code instead of invoking a generic recovery function.
Other work on automatically patching bugs has focused
on security exploits [14, 56, 57]. These systems also ad-
dress how to generate repair code automatically, but fo-
cus on bugs used for attacks, such as buffer overruns, and
not the infinite loop problems caused by devices.

Hardware Interface specification Several projects,
such as Devil [41], Dingo [52], HAIL [ 60], Nexus [70],
Laddie [71] and others, have focused on reducing faults
on the driver/device interface by specifying the hardware
interface through a domain specific language. These lan-
guages improve driver reliability by ensuring that the
driver follows the correct protocol for the device. How-
ever, these systems all assume that the hardware is per-
fect and never misbehaves. Without runtime checking
they cannot verify that the device produces correct out-
put.

Recovery Carburizer relies on shadow drivers [63] for
recovery which was one of the first systems to propose
driver recovery. However, Carburizer’s implementation
of shadow drivers does not integrate any isolation mech-
anism, the overhead of recovery support is very low.
Other systems that recover from driver failure, including
SafeDrive [75], and Minix [27], rely on similar mecha-
nisms to restore the kernel to a consistent state and re-
lease resources acquired by the driver could be used as

well. CuriOS provides transparent recovery and further
ensures that client session state can be recovered [17].
However, CuriOS is a new operating system and requires
specially written code to take advantage of its recovery
system, while our mechanisms work with existing driver
code in existing operating systems. The recovery system
proposed by On-demand isolation is much fine grained
and light weight and offers a new perspective that drivers
already provide much of the necessary functionality to
provide recovery mechanisms.

To achieve high reliability in the presence of hard-
ware failures, fault tolerant systems often use multiple
instances of a hardware device and switch to a new de-
vice when one fails [7, 28, 59]. These systems provide an
alternate recovery mechanism to shadow drivers. How-
ever, this approach still relies on drivers to detect fail-
ures, and the tools proposed in this proposal improves
that ability.

6 Timeline
This section outlines the timeline of finishing the remain-
ing work:

1. Spring 2011: Work on driver study.

2. Summer 2011: Internship

3. Fall 2011: Work on on-demand isolation and driver
study.

4. Spring 2012: Work on on-demand isolation.

5. Summer 2012: Finish dissertation.

7 Other Research
In this section I briefly describe other research performed
as a graduate student that is not a part of my disserta-
tion. To improve functionality of virtual machines, I de-
veloped a system, called shadow driver migration, that
enables live migration of guest operating systems that
are directly attached to physical devices(for performance
reasons). Without this work, virtual machines that lever-
age the performance advantage of direct access to I/O
devices cannot reap the benefit of migration. My ap-
proach saves the state of a device in a shadow driver,
that reconnects the OS to the local devices after migra-
tion. Shadow driver migration provides a low overhead,
transparent migration mechanism that can be incorpo-
rated with moderate implementation efforts [8]. It also
demonstrates that in order to make devices virtualization
ready, vendors need to reduce device initialization time
which can be a critical bottleneck in migration scenar-
ios [32].

More recently, I looked at how to test device drivers
without hardware using SymDrive, a system to test de-
vice drivers using symbolic execution. Symbolic exe-



cution provides provides the ability to test a driver com-
pletely without requiring any of the different device hard-
ware the driver supports. The system also consists of
a specification system that allows the developer to test
a set of conditions each time the driver interacts with
the kernel. This allows for thorough testing of drivers
rather than just bug-finding. I worked on this project
to support testing for USB drivers and developed an in-
kernel USB subsystem for user mode linux, a USB trace
record/replay system and did testing for PCI and USB
network drivers [50].

8 Conclusion
The research described in this proposal will significantly
improve the systems of tomorrow. It improves existing
drivers, through improved tolerance of hardware failures,
and proposes new isolation and recovery mechanisms to
improve driver security. The dissertation proposal fo-
cuses on device drivers, these techniques are broadly ap-
plicable to most operating system extensions. I also hope
that our driver study shapes future driver research and de-
velopment in the right direction.
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[69] Úlfar Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. Xfi: software guards for system address
spaces. InProc. of the 7th USENIX OSDI, 2006.

[70] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B.
Schneider. Device driver safety through a reference val-
idation mechanism. InProc. of the 8th USENIX OSDI,
2008.

[71] L. Wittie, C. Hawblitzel, and D. Pierret. Generating a
statically-checkable device driver I/O interface. InWork-
shop on Automatic Program Generation for Embedded
Systems, Oct. 2007.

[72] J. Yang. Zero-penalty RAID controller memory leak
detection and isolation method and system utilizing se-
quence numbers, 2007. Patent application 11715680.

[73] B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar. Native
client: A sandbox for portable, untrusted x86 native code.
In 2009 30th IEEE Symposium on Security and Privacy.
IEEE, 2009.

[74] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals,
M. Harren, G. Necula, and E. Brewer. SafeDrive: Safe
and recoverable extensions using language-based tech-
niques. InProc. of the 7th USENIX OSDI, 2006.

[75] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals,
M. Harren, G. Necula, and E. Brewer. SafeDrive: Safe
and recoverable extensions using language-based tech-
niques. InProc. of the 7th USENIX OSDI, Nov. 2006.

[76] L. Zhuang, S. Wang, and K. Gao. Fault injection test
harness. InProc. of the Ottawa Linux Symposium, June
2003.


	Introduction
	Tolerating Hardware Device Failures in Software
	Problem
	Carburizer
	Results

	On-demand isolation
	The problem of driver security
	Threat Model
	On-demand isolation
	Propagation from vulnerability to crash
	Determining isolation boundaries
	On-demand isolation

	No overhead Recovery

	Understanding and improving modern driver code
	Overview
	Modern device drivers
	Research assumptions
	Driver Code Functionality
	Driver code form
	Driver Code Abstractions
	Conclusion

	Related work
	Timeline
	Other Research
	Conclusion

