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Abstract
This paper presents a new mechanism that enables applications
to run correctly when device drivers fail. Because device drivers
are the principal failing component in most systems, reducing
driver-induced failures greatly improves overall reliability. Ear-
lier work has shown that an operating system can survive driver
failures [33], but the applications that depend on them cannot.
Thus, while operating system reliability was greatly improved,
application reliability generally was not.

To remedy this situation, we introduce a new operating sys-
tem mechanism called ashadow driver. A shadow driver mon-
itors device drivers and transparently recovers from driver fail-
ures. Moreover, it assumes the role of the failed driver during
recovery. In this way, applications using the failed driver, as
well as the kernel itself, continue to function as expected.

We implemented shadow drivers for the Linux operating
system and tested them on over a dozen device drivers. Our re-
sults show that applications and the OS can indeed survive the
failure of a variety of device drivers. Moreover, shadow drivers
impose minimal performance overhead. Lastly, they can be in-
troduced with only modest changes to the OS kernel and with
no changes at all to existing device drivers.

1 Introduction

Improving reliability is one of the greatest challenges for
commodity operating systems. System failures are com-
monplace and costly across all domains: in the home,
in the server room, and in embedded systems, where the
existence of the OS itself is invisible. At the low end,
failures lead to user frustration and lost sales. At the high
end, an hour of downtime from a system failure can result
in losses in the millions [16].

Most of these system failures are caused by the oper-
ating system’s device drivers. Failed drivers cause 85%
of Windows XP crashes [30], while Linux drivers have
seven times the bug rate of other kernel code [14]. A
failed driver typically causes the application, the OS ker-
nel, or both to crash or stop functioning as expected.
Hence, preventing driver-induced failures improves over-
all system reliability.

Earlier failure-isolation systems within the kernel
were designed to prevent driver failures from corrupting
the kernel itself [33]. In these systems, the kernel unloads
a failed driver and then restarts it from a safe initial state.
While isolation techniques can reduce the frequency of
system crashes,applicationsusing the failed driver can
still crash. These failures occur because the driver loses
application state when it restarts, causing applications to
receive erroneous results. Most applications are unpre-
pared to cope with this. Rather, they reflect the conven-
tional failure model: drivers and the operating system ei-
ther fail together or not at all.

This paper presents a new mechanism, called a
shadow driver, that improves overall system reliability
by concealing a driver’s failure from its clients while re-
covering from the failure. During normal operation, the
shadow tracks the state of the real driver by monitoring all
communication between the kernel and the driver. When
a failure occurs, the shadow inserts itselftemporarily in
place of the failed driver, servicing requests on its behalf.
While shielding the kernel and applications from the fail-
ure, the shadow driver restores the failed driver to a state
where it can resume processing requests.

Our design for shadow drivers reflects four principles:

1. Device driver failures should be concealed from the
driver’s clients.If the operating system and applica-
tions using a driver cannot detect that it has failed,
they are unlikely to fail themselves.

2. Recovery logic should be centralized in a single sub-
system.We want to consolidate recovery knowledge
in a small number of components to simplify the im-
plementation.

3. Driver recovery logic should be generic.The in-
creased reliability offered by driver recovery should
not be offset by potentially destabilizing changes to
the tens of thousands of existing drivers. There-
fore, the architecture must enable a single shadow
driver to handle recovery for a large number of de-
vice drivers.



4. Recovery services should have low overhead when
not needed.The recovery system should impose rel-
atively little overhead for the common case (that is,
when drivers are operating normally).

Overall, these design principles are intended to minimize
the cost required to make and use shadow drivers while
maximizing their value in existing commodity operating
systems.

We implemented the shadow driver architecture for
sound, network, and IDE storage drivers on a version
of the Linux operating system. Our results show that
shadow drivers: (1) mask device driver failures from ap-
plications, allowing applications to run normally during
and after a driver failure, (2) impose minimal perfor-
mance overhead, (3) require no changes to existing ap-
plications and device drivers, and (4) integrate easily into
an existing operating system.

This paper describes the design, implementation and
performance of shadow drivers. The following section re-
views general approaches to protecting applications from
system faults. Section 3 describes device drivers and the
shadow driver design and components. Section 4 presents
the structure of shadow drivers and the mechanisms re-
quired to implement them in Linux. Section 5 presents
experiments that evaluate the performance, effectiveness,
and complexity of shadow drivers. The final section sum-
marizes our work.

2 Related Work

This section describes previous research on recovery
strategies and mechanisms. The importance of recovery
has long been known in the database community, where
transactions [19] prevent data corruption and allow ap-
plications to manage failure. More recently, the need for
failure recovery has moved from specialized applications
and systems to the more general arena of commodity sys-
tems [28].

A general approach to recovery is to run application
replicas on two machines, a primary and a backup. All
inputs to the primary are mirrored to the backup. After
a failure of the primary, the backup machine takes over
to provide service. The replication can be performed
by the hardware [21], at the hardware-software inter-
face [8], at the system call interface [2, 5, 7], or at a mes-
sage passing or application interface [4]. Shadow drivers
similarly replicate all communication between the ker-
nel and device driver (the primary), sending copies to the
shadow driver (the backup). If the driver fails, the shadow
takes over temporarily until the driver recovers. How-
ever, shadows differ from typical replication schemes in
several ways. First, because our goal is to tolerate only
driver failures, not hardware failures, both the shadow
and the “real” driver run on the same machine. Second,

and more importantly, the shadow isnot a replica of the
device driver: it implements only the services needed to
manage recovery of the failed driver and to shield appli-
cations from the recovery. For this reason, the shadow is
typically much simpler than the driver it shadows.

Another common recovery approach is to restart ap-
plications after a failure. Many systems periodically
checkpoint application state [26, 27, 29], while others
combine checkpoints with logs [2, 5, 31]. These sys-
tems transparently restart failed applications from their
last checkpoint (possibly on another machine) and re-
play the log if one is present. Shadow drivers take a
similar approach by replaying a log of requests made to
drivers. Recent work has shown that this approach is
limited when recovering fromapplication faults: appli-
cations often become corrupted before they fail; hence,
their logs or checkpoints may also be corrupted [10, 25].
Shadow drivers reduce this potential by logging only a
small subset of requests. Furthermore, application bugs
tend to be deterministic and recur after the application is
restarted [11]. Driver faults, in contrast, often cause tran-
sient failures because of the complexities of the kernel
execution environment [34].

Another approach is simply to reboot the failed com-
ponent, for example, unloading and reloading failed ker-
nel extensions, such as device drivers [33]. Rebooting
has been proposed as a general strategy for building high-
availability software [9]. However, rebooting forcesap-
plicationsto handle the failure, for example, reinitializing
state that has been lost by the rebooted component. Few
existing applications do this [9], and those that do not
share the fate of the failed driver. Shadow drivers trans-
parently restore driver state lost in the reboot, invisibly to
applications.

Shadow drivers rely on device driver isolation to
prevent failed drivers from corrupting the OS or ap-
plications. Isolation can be provided in various ways.
Vino [32] encapsulates extensions using software fault
isolation [35] and uses transactions to repair kernel state
after a failure. Nooks [33] and Palladium [13] isolate ex-
tensions in protection domains enforced by virtual mem-
ory hardware. Microkernels [23, 38, 39] and their deriva-
tives [15, 17, 20] force isolation by executing extensions
in user mode.

Rather than concealing driver failures, these systems
all reflect arevealingstrategy, one in which the applica-
tion or user is made aware of the failure. The OS typi-
cally returns an error code, telling the application that a
system call failed, but little else (e.g., it does not indicate
which component failed or how the failure occurred). The
burden of recovery then rests on the application, which
must decide what steps to take to continue executing. As
previously mentioned, most applications cannot handle
the failure of device drivers [37], since driver faults typ-



ically crash the system. When a driver failure occurs,
these systems expose the failure to the application, which
may then fail. By impersonating device drivers during
recovery, shadow drivers conceal errors caused by driver
failures and thereby protect applications.

Several systems have narrowed the scope of recovery
to focus on a specific subsystem or component. For ex-
ample, the Rio file cache [12] provides high performance
by isolating a single system component, the file cache,
from kernel failures. Phoenix [3] provides transparent
recovery after the failure of a single problematic compo-
nent type, database connections in multi-tier applications.
Similarly, our shadow driver research focuses on recov-
ery for a single OS component type, the device driver,
which is the leading cause of OS failure. By abandoning
general-purpose recovery, we transparently resolve a ma-
jor cause of application and OS failure while maintaining
a low runtime overhead.

3 Device Drivers and Shadow Driver
Design

A device driver is a kernel-mode software component that
provides an interface between the OS and a hardware de-
vice1. The driver converts requests from the kernel into
requests to the hardware. Drivers rely on two interfaces:
the interface that driversexportto the kernel that provides
access to the device, and the kernel interface that drivers
import from the operating system. For example, Figure 1
shows the kernel calling into a sound driver to play a tone;
in response, the sound driver converts the request into a
sequence of I/O instructions that direct the sound card to
emit sound.

In practice, most device drivers are members of a
class, which is defined by its interface. For example,
all network drivers obey the same kernel-driver interface,
and all sound-card drivers obey the same kernel-driver
interface. This class orientation simplifies the introduc-
tion of new drivers into the operating system, since no
OS changes are required to accommodate them.

In addition to processing I/O requests, drivers also
handle configuration requests. Applications may config-
ure the device, for example, by setting the bandwidth of a
network card or the volume for a sound card. Configura-
tion requests may change both driver and device behavior
for future I/O requests.

3.1 Driver Faults

Most drivers fail due to bugs that result from unexpected
inputs or events [34]. For example, a driver may corrupt
a data structure if an interrupt arrives during a sensitive

1This paper uses the terms “device driver” and “driver” interchange-
ably; similarly, we use the terms “shadow driver” and “shadow” inter-
changeably.
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Figure 1:A sample device driver. The device driverexports
the services defined by the device’s class interface andim-
portsservices from the kernel’s interface.

portion of request processing. Device drivers may crash
in response to (1) the stream of requests from the kernel,
both configuration and I/O, (2) messages to and from the
device, and (3) the kernel environment, which may raise
or lower power states, swap pages of memory, and inter-
rupt the driver at arbitrary times. A driver bug triggered
solely by a sequence of configuration or I/O requests is
called adeterministicfailure. No generic recovery tech-
nique can transparently recover from this type of bug, be-
cause any attempt to complete an offending request may
trigger the bug [11]. In contrast,transient failures are
triggered by additional inputs from the device or the op-
erating system and occur infrequently.

A driver failure that is detected and stopped by the
system before any OS, device, or application state is af-
fected is termedfail-stop. More insidious failures may
corrupt the system or application and never be detected.
The system’s response to failure determines whether a
failure is fail-stop. For example, a system that detects
and prevents accidental writes to kernel data structures
exhibits fail-stop behavior for such a bug, whereas one
that allows corruption does not.

Appropriate OS techniques can ensure that drivers ex-
ecute in a fail-stop fashion [32, 33, 36]. For example, in
earlier work we described Nooks [33], a kernel reliability
subsystem that executes each driver within its own in-
kernel protection domain. Nooks detects faults through
memory protection violations, excessive CPU usage, and
certain bad parameters passed to the kernel. When Nooks
detects a failure, it stops execution within the driver’s pro-
tection domain and triggers a recovery process. We re-
ported that Nooks was able to detect approximately 75%
of failures in synthetic fault-injection tests [33].

Shadow drivers can recover only from failures that are
both transient and fail-stop. Deterministic failures may
recur when the driver recovers, again causing a failure.



In contrast, transient failures are triggered by environ-
mental factors that are unlikely to persist during recov-
ery. In practice, many drivers experience transient fail-
ures, caused by the complexities of the kernel execution
environment (e.g. asynchrony, interrupts, locking proto-
cols, and virtual memory) [1], which are difficult to find
and fix. Deterministic driver failures, in contrast, are
more easily found and fixed in the testing phase of de-
velopment because the failures are repeatable [18]. Re-
coverable failures must also be fail-stop, because shadow
driversconcealfailures from the system and applications.
Hence, shadow drivers require a reliability subsystem to
detect and stop failures before they are visible to applica-
tions or the operating system. Although shadow drivers
may use any mechanism that provides these services, our
implementation uses Nooks.

3.2 Shadow Drivers

A shadow driveris a kernel agent that improves relia-
bility for a single device driver. It compensates for and
recovers from a driver that has failed. When a driver
fails, its shadow restores the driver to a functioning state
in which it can process I/O requests made before the fail-
ure. While the driver recovers, the shadow driver services
its requests.

Shadow drivers execute in one of two modes: pas-
sive or active. Inpassivemode, used during normal
(non-faulting) operation, the shadow driver monitors all
communication between the kernel and the device driver
it shadows. This monitoring is achieved via replicated
procedure calls: a kernel call to a device driver func-
tion causes an automatic, identical call to a correspond-
ing shadow driver function. Similarly, a driver call to a
kernel function causes an automatic, identical call to a
corresponding shadow driver function. These passive-
mode calls are transparent to the device driver and the
kernel. They are not intended to provide any service to
either party and exist only to track the state of the driver
as necessary for recovery.

In activemode, which occurs during recovery from a
failure, the shadow driver performs two functions. First,
it “impersonates” the failed driver, intercepting and re-
sponding to calls from the kernel. Therefore, the ker-
nel and higher-level applications continue operating in as
normal a fashion as possible. Second, the shadow driver
impersonates the kernel to restart the failed driver, inter-
cepting and responding to calls from the restarted driver
to the kernel. In other words, in active mode the shadow
driver looks like the kernel to the driver and like the driver
to the kernel. Only the shadow driver is aware of the de-
ception. This approach hides recovery details from the
driver, which is unaware that it is being restarted by a
shadow driver after a failure.

Once the driver has restarted, the active-mode shadow
reintegrates the driver into the system. It re-establishes
any application configuration state downloaded into the
driver and then resumes pending requests.

A shadow driver is a “class driver,” aware of the in-
terface to the drivers it shadows butnot of their imple-
mentations. A single shadow driver implementation can
recover from a failure of any driver in the class. The class
orientation has three key implications. First, an operat-
ing system can leverage a few implementations of shadow
drivers to recover from failures in a large number of de-
vice drivers. Second, implementing a shadow driver does
not require a detailed understanding of the internals of the
drivers it shadows. Rather, it requires only an understand-
ing of those drivers’ interactions with the kernel. Finally,
if a new driver is loaded into the kernel, no new shadow
driver is requiredas long asa shadow for that class al-
ready exists. For example, if a new network interface card
and driver are inserted into a PC, the existing network
shadow driver can shadow the new driver without change.
Similarly, drivers can be patched or updated without re-
quiring changes to their shadows. Shadow updating is
required only to respond to a change in the kernel-driver
programming interface.

3.3 Taps

As we have seen, a shadow driver monitors communi-
cation between a functioning driver and the kernel and
impersonates one component to the other during failure
and recovery. These activities are made possible by a
new mechanism, called atap. Conceptually, a tap is a
T-junction placed between the kernel and its drivers. It
can be set to replicate calls during passive mode and redi-
rect them during recovery.

A tap operates in passive or active mode, correspond-
ing to the state of the shadow driver attached to it. During
passive-mode operation, the tap: (1) invokes the original
driver, then (2) invokes the shadow driver with the pa-
rameters and results of the call. This operation is shown
in Figure 2.

On failure, the tap switches to active mode, shown in
Figure 3. In this mode, it: (1) terminates all communica-
tion between the driver and kernel, and (2) redirects all in-
vocations to their corresponding interface in the shadow.
In active mode, both the kernel and the recovering device
driver interact only with the shadow driver. Following
recovery, the tap returns to its passive-mode state.

Taps depend on the ability to dynamically dispatch all
communication between the driver and the OS. Conse-
quently, all communication into and out of a driver be-
ing shadowed must be explicit, such as through a proce-
dure call or a message. Most drivers operate this way,
but some do not and cannot be shadowed. For example,
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Figure 2: A sample shadow driver operating in passive
mode. Taps inserted between the kernel and sound driver
ensure that all communication between the two is passively
monitored by the shadow driver.
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Figure 3:A sample shadow driver operating in active mode.
The taps redirect communication between the kernel and
the failed driver directly to the shadow driver.

kernel video drivers often communicate with usermode
applications through shared memory regions [22].

3.4 The Shadow Manager

Recovery is supervised by theshadow manager, which is
a kernel agent that interfaces with and controls all shadow
drivers. The shadow manager instantiates new shadow
drivers and injects taps into the call interfaces between
the device driver and kernel. It also receives notifica-
tion from the fault-isolation subsystem that a driver has
stopped due to a failure.

When a driver fails, the shadow manager transitions
its taps and shadow driver to active mode. In this mode,

requests for the driver’s services are redirected to an ap-
propriately prepared shadow driver. The shadow manager
then initiates the shadow driver’s recovery sequence to
restore the driver. When recovery ends, the shadow man-
ager returns the shadow driver and taps to passive-mode
operation so the driver can resume service.

3.5 Summary

Our design simplifies the development and integration of
shadow drivers into existing systems. Each shadow driver
is a single module written with knowledge of the behav-
ior (interface) of a class of device drivers, allowing it to
conceal a driver failure and restart the driver after a fault.
A shadow driver, normally passive, monitors communi-
cation between the kernel and the driver. It becomes an
active proxy when a driver fails and then manages its re-
covery.

4 Shadow Driver Implementation

This section describes the implementation of shadow
drivers in the Linux operating system [6]. We have imple-
mented shadow drivers for three classes of device drivers:
sound card drivers, network interface drivers, and IDE
storage drivers.

4.1 General Infrastructure

All shadow drivers rely on a generic service infrastructure
that provides three functions. Anisolation servicepre-
vents driver errors from corrupting the kernel by stopping
a driver on detecting a failure. A transparentredirection
mechanismimplements the taps required for transparent
shadowing and recovery. Lastly, anobject tracking ser-
vice tracks kernel resources created or held by the driver
so as to facilitate recovery.

Our shadow driver implementation uses Nooks to pro-
vide these functions. Through its fault isolation subsys-
tem, Nooks [33] isolates drivers within separate kernel
protection domains. The domains use memory protec-
tion to trap driver faults and ensure the integrity of kernel
memory. Nooks interposes proxy procedures on all com-
munication between the device driver and kernel. We in-
sert our tap code into these Nooks proxies to replicate
and redirect communication. Finally, Nooks tracks ker-
nel objects used by drivers to perform garbage collection
of kernel resources during recovery.

Our implementation adds a shadow manager to the
Linux operating system. In addition to receiving failure
notifications from Nooks, the shadow manager handles
the initial installation of shadow drivers. In coordina-
tion with the kernel’s module loader, which provides the
driver’s class, the shadow manager creates a new shadow
driver instance for a driver. Because a single shadow
driver services a class of device drivers, there may be
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Figure 4: The Linux operating system with several device
drivers and the driver recovery subsystem. New code com-
ponents include the taps, the shadow manager and a set of
shadow drivers, all built on top of the Nooks driver fault
isolation subsystem.

several instances of a shadow driver executing if there
is more than one driver of a class present. The new in-
stance shares the same code with all other instances of
that shadow driver class.

Figure 4 shows the driver recovery subsystem, which
contains the Nooks fault isolation subsystem, the shadow
manager, and a set of shadow drivers, each of which can
monitor one or more device drivers.

4.2 Passive-Mode Monitoring

In passive mode, a shadow driver records several types
of information. First, it tracks requests made to the
driver, enabling pending requests to execute correctly af-
ter recovery. For connection-oriented drivers, the shadow
driver records the state of each active connection, such as
offset or positioning information. For request-oriented
drivers, the shadow driver maintains alog of pending
commands and arguments. An entry remains in the log
until the corresponding request has been handled.

The shadow driver also records configuration and
driver parameters that the kernel passes into the driver.
During recovery, the shadow uses this information to act
in the driver’s place, returning the same information that
was passed in previously. This information also assists in
reconfiguring the driver to its pre-failure state when it is
restarted. For example, the shadow sound driver keeps a
log of ioctl calls (command numbers and arguments)
that configure the driver. This log makes it possible to:
(1) act as the device driver by remembering the sound
formats it supports, and (2) recover the driver by reset-
ting properties, such as the volume and sound format in
use.

The shadow driver maintains only theconfiguration
of the driver in its log. For stateful devices, such as frame
buffers or storage devices, it does not create a copy of the
device state. Instead, a shadow driver depends on the fail-

stop assumption to preserve persistent state (e.g., on disk)
from corruption. It can restore transient state (state that
is lost when the device resets) if it can force the device’s
clients to recreate that state, for example, by redrawing
the contents of a frame buffer.

Lastly, the shadow tracks all kernel objects that the
driver allocated or received from the kernel. These ob-
jects would otherwise be lost when the driver fails, caus-
ing a memory leak. For example, the shadow must record
all timer callbacks registered and all hardware resources
owned, such as interrupt lines and I/O memory regions.

In many cases, passive-mode calls do no work and the
shadow returns immediately to the caller. For example,
the dominant calls to a sound-card driver areread and
write , which record or play sound. In passive mode,
the shadow driver implements these calls asno-ops, since
there is no need to copy the real-time sound data flowing
through the device driver. For anioctl call, however,
the sound-card shadow driver logs the command and data
for the connection. Similarly, the shadow driver for an
IDE disk does little or no work in passive mode, since the
kernel and disk driver handle all I/O and request queu-
ing. Finally, for the network shadow driver, much of the
work is already performed by the Nooks object-tracking
system, which keeps references to outstanding packets.

4.3 Active-Mode Recovery

A driver typically fails by generating an illegal memory
reference or passing an invalid parameter across a ker-
nel interface. The kernel-level failure detector notices the
failure and invokes the shadow manager, which locates
the appropriate shadow driver and directs it to recover the
failed driver. The three steps of recovery are: (1) stop-
ping the failed driver, (2) reinitializing the driver from a
clean state, and (3) transferring relevant shadow driver
state into the new driver.

4.3.1 Stopping the Failed Driver

The shadow manager begins recovery by informing the
responsible shadow driver that a failure has occurred. It
also switches the taps, isolating the kernel and driver from
one another’s subsequent activity during recovery. Af-
ter this point, the tap redirects all kernel requests to the
shadow until recovery is complete.

Informed of the failure, the shadow driver first dis-
ables execution of the failed driver. It also disables the
hardware device to prevent it from interfering with the OS
while not under driver control. For example, the shadow
disables the driver’s interrupt request line. Otherwise, the
device may continuously interrupt the kernel and prevent
recovery. On hardware platforms with I/O memory map-
ping, the shadow also removes the device’s I/O mappings
to prevent DMAs into kernel memory.



To prepare for restarting the device driver, the shadow
garbage collects resources held by the driver. It retains
objects that the kernel uses to request driver services, to
ensure that the kernel does not see the driver “disappear”
as it is restarted. The shadow releases the remaining re-
sources.

4.3.2 Reinitializing the Driver

The shadow driver next “reboots” the driver from a clean
state. Normally, restarting a driver requires reloading the
driver from disk. However, we cannot assume that the
disk is functional during recovery. For this reason, when
creating a new shadow driver instance, the shadow man-
ager caches in the shadow instance a copy of the device
driver’s initial, clean data section. These sections tend to
be small. The driver’s code is kernel-read-only, so it is
not cached and can be reused from memory.

The shadow restarts the driver by initializing the
driver’s state and then repeating the kernel’s driver ini-
tialization sequence. For some driver classes, such as
sound card drivers, this consists of a single call into the
driver’s initialization routine. Other drivers, such as net-
work interface drivers, require additional calls to connect
the driver into the network stack.

As the driver restarts, the shadow reattaches the driver
to its pre-failure kernel resources. During driver reboot,
the driver makes a number of calls into the kernel to dis-
cover information about itself and to link itself into the
kernel. For example, the driver calls the kernel to reg-
ister itself as a driver and to request hardware and ker-
nel resources. The taps redirect these calls to the shadow
driver, which reconnects the driver to existing kernel data
structures. Thus, when the driver attempts to register with
the kernel, the shadow intercepts the call and reuses the
existing driver registration, avoiding the allocation of a
new one. For requests that generate callbacks, such as a
request to register the driver with the PCI subsystem, the
shadow emulates the kernel, making the same callbacks
to the driver with the same parameters. The driver also
acquires hardware resources. If these resources were pre-
viously disabled at the first step of recovery, the shadow
re-enables them, e.g., enabling interrupt handling for the
device’s interrupt line. In essence, the shadow driver ini-
tializes the recovering driver by calling and responding as
the kernel would when the driver starts normally.

4.3.3 Transferring State to the New Driver

The final recovery step restores the driver state that ex-
isted at the time of the fault, permitting it to respond to
requests as if it had never failed. Thus, any configuration
that either the kernel or an application had downloaded
to the driver must be restored. The details of this final

state transfer depend on the device driver class. Some
drivers are connection oriented. For these, the state con-
sists of the state of the connections before the failure. The
shadow re-opens the connections and restores the state of
each active connection with configuration calls. Other
drivers are request oriented. For these, the shadow re-
stores the state of the driver and then resubmits to the
driver any requests that were outstanding when the driver
crashed.

As an example, for a failed sound card driver, the
shadow driver resets the sound driver and all its open
connections back to their pre-failures state. Specifically,
the shadow scans its list of open connections and calls
the open function in the driver to reopen each connec-
tion. The shadow then walks its log of configuration com-
mands and replays any commands that set driver proper-
ties.

For some driver classes, the shadow cannot com-
pletely transfer its state into the driver. However, it may
be possible to compensate in other, perhaps less elegant,
ways. For example, a sound driver that is recording sound
stores the number of bytes it has recorded since the last
reset. After recovery, the sound driver initializes this
counter to zero. Because no interface call is provided to
change the counter value, the shadow driver must insert
its “true” value into the return argument list whenever the
application reads the counter to maintain the illusion that
the driver has not crashed. The shadow can do this be-
cause it receives control (on its replicated call) before the
kernel returns to user space.

After resetting driver and connection state, the
shadow must handle requests that were either outstanding
when the driver crashed or arrived while the driver was
recovering. Unfortunately, shadow drivers cannot guar-
antee exactly-once behavior for driver requests and must
rely on devices and higher levels of software to absorb
duplicate requests. For example, if a driver crashes after
submitting a request to a device but before notifying the
kernel that the request has completed, the shadow cannot
know whether the request was actually processed. Dur-
ing recovery, the shadow driver has two choices: restart
in-progress requests and risk duplication, or cancel the re-
quest and risk lost data. For some device classes, such as
disks or networks, duplication is acceptable. However,
other classes, such as printers, may not tolerate dupli-
cates. In these cases, the shadow driver cancels outstand-
ing requests, which may limit its ability to mask failures.

After this final step, the driver has been reinitial-
ized, linked into the kernel, reloaded with its pre-failure
state, and is ready to process commands. At this point,
the shadow driver notifies the shadow manager, which
sets the taps to restore kernel-driver communication and
reestablish passive-mode monitoring.



4.4 Active-Mode Proxying of Kernel Requests

While a shadow driver is restoring a failed driver, it is also
acting in place of the driver to conceal the failure and
recovery from applications and the kernel. The shadow
driver’s response to a driver request depends on the driver
class and request semantics. In general, the shadow will
take one of five actions: (1) respond with information that
it has recorded, (2) silently drop the request, (3) queue the
request for later processing, (4) block the request until the
driver recovers, or (5) report that the driver is busy and the
kernel or application should try again later. The choice of
strategy depends on the caller’s expectations of the driver.

Writing a shadow driver that proxies for a failed driver
requires knowledge of the kernel-driver interface, inter-
actions, and requirements. For example, the kernel may
require that some driver functions never block, while oth-
ers always block. Some kernel requests are idempotent
(e.g., manyioctl commands), permitting duplicate re-
quests to be dropped, while others return different results
on every call (e.g., manyread requests). The shadow
for a driver class uses these requirements to select the re-
sponse strategy.

Active proxying is simplified for driver interfaces that
support a notion of “busy.” By reporting that the device is
currently busy, shadow drivers instruct the kernel or ap-
plication to block calls to a driver. For example, network
drivers in Linux may reject requests and turn themselves
off if their queues are full. The kernel then refrains from
sending packets until the driver turns itself back on. Our
shadow network driver exploits this behavior during re-
covery by returning a “busy” error on calls to send pack-
ets. IDE storage drivers support a similar notion when
request queues fill up. Sound drivers can report that their
buffers are temporarily full.

Our shadow sound-card driver uses a mix of all five
strategies for emulating functions in its service interface.
The shadow blocks kernelread and write requests,
which play or record sound samples, until the failed
driver recovers. It processesioctl calls itself, either by
responding with information it captured or by logging the
request to be processed later. Forioctl commands that
are idempotent, the shadow driver silently drops dupli-
cate requests. Finally, when applications query for buffer
space, the shadow responds that buffers are full. As a
result, many applications block themselves rather than
blocking in the shadow driver.

4.5 Limitations

As previously described, shadow drivers have limita-
tions. First, shadow drivers rely on dynamic unloading
and reloading of device drivers. If a driver cannot be
reloaded dynamically, or will not reinitialize properly,
then a shadow cannot recover the driver. Second, shadow

drivers rely on explicit communication between the de-
vice driver and kernel. If driver-kernel communication
takes place through an ad-hoc interface, such as shared
memory, the shadow driver cannot monitor it. Third,
shadow drivers assume that driver failure does not cause
irreversible side effects. If a corrupted driver stores per-
sistent state (e.g., printing a bad check or writing bad data
on a disk), the shadow driver will not be able to correct
that action.

The effectiveness of shadow drivers is also limited by
the abilities of the isolation and failure-detection subsys-
tem. If this layer cannot prevent kernel corruption, then
shadow drivers cannot facilitate system recovery. In ad-
dition, if the fault-isolation subsystem does not detect a
failure, then shadow drivers will not be properly invoked
to perform recovery, and applications may fail. Detecting
failures is difficult because drivers are complex and may
respond to application requests in many ways. It may
be impossible to detect a valid but incorrect return value;
for example, a sound driver may return incorrect sound
data when recording. As a result, no failure detector can
detect every device driver failure. However, we support
class-based failure detectors that can detect violations of
a driver’s programming interface and reduce the number
of undetected failures.

Finally, shadow drivers may not be suitable for ap-
plications with real-time demands. During recovery, a
device may be unavailable for several seconds without
notifying the application of a failure. These applications,
which should be written to tolerate failures, would be bet-
ter served by a solution that restarts the driver but does not
perform active proxying.

4.6 Summary

This section presented the details of our Linux shadow
driver implementation. The shadow driver concept is
straightforward: passively monitor normal operations,
proxy during failure, and reintegrate during recovery. Ul-
timately, the value of shadow drivers depends on the de-
gree to which they can be implemented correctly, effi-
ciently, and easily in an operating system. The following
section evaluates some of these questions both qualita-
tively and quantitatively.

5 Evaluation

This section evaluates four key aspects of shadow drivers.

1. Performance.What is the performance overhead of
shadow drivers during normal, passive-mode oper-
ation (i.e., in the absence of failure)? This is the
dynamic cost of our mechanism.



Class Driver Device

Network e1000 Intel Pro/1000 Gigabit Ethernet
pcnet32 AMD PCnet32 10/100 Ethernet
3c59x 3COM 3c509b 10/100 Ethernet
e100 Intel Pro/100 Ethernet
epic100 SMC EtherPower 10/100 Ethernet

Sound audigy SoundBlaster Audigy sound card
emu10k1 SoundBlaster Live! sound card
sb SoundBlaster 16 sound card
es1371 Ensoniq sound card
cs4232 Crystal sound card
i810 audio Intel 810 sound card

Storage ide-disk IDE disk
ide-cd IDE CD-ROM

Table 1:The three classes of shadow drivers and the Linux
drivers tested. We present results for the boldfaced drivers
only, as the others behaved similarly.

2. Fault-Tolerance.Can applications that use a device
driver continue to run even after the driver fails?
We evaluate shadow driver recovery in the presence
of simple failures to show the benefits of shadow
drivers compared to a system that provides failure
isolation alone.

3. Limitations.How reasonable is our assumption that
driver failures are fail-stop? Using synthetic fault in-
jection, we evaluate how likely it is that driver fail-
ures are fail-stop.

4. Code size.How much code is required for shadow
drivers and their supporting infrastructure? We eval-
uate the size and complexity of the shadow driver
implementation to highlight the engineering cost in-
tegrating shadow drivers into an existing system.

Based on a set of controlled application and driver ex-
periments, our results show that shadow drivers: (1) im-
pose relatively little performance overhead, (2) keep ap-
plications running when a driver fails, (3) are limited by
a system’s ability to detect that a driver has failed, and (4)
can be implemented with a modest amount of code.

The experiments were run on a 3 GHz Pentium 4 PC
with 1 GB of RAM and an 80 GB, 7200 RPM IDE disk
drive. We built and tested three Linux shadow drivers for
three device-driver classes: network interface controller,
sound card, and IDE storage device. To ensure that our
generic shadow drivers worked consistently across device
driver implementations, we tested them on thirteen differ-
ent Linux drivers, shown in Table 1. Although we present
detailed results for only one driver in each class (e1000,
audigy, andide-disk), behavior across all drivers was sim-
ilar.

Device Driver Application Activity

Sound • mp3 player (zinf) playing 128kb/s audio
(audigy driver) • audio recorder (audacity) recording from

microphone
• speech synthesizer (festival) reading a

text file
• strategy game (Battle of Wesnoth)

Network • network send (netperf) over TCP/IP
(e1000 driver) • network receive (netperf) over TCP/IP

• network file transfer (scp) of a 1GB file
• remote window manager (vnc)
• network analyzer (ethereal) sniffing packets

Storage • compiler (make/gcc) compiling 788 C files
(ide-disk driver) • encoder (LAME) converting 90 MB file .wav

to .mp3
• database (mySQL) processing theWisconsin

Benchmark

Table 2: The applications used for evaluating shadow
drivers.

5.1 Performance

To evaluate performance, we produced three OS configu-
rations based on the Linux 2.4.18 kernel:

1. Linux-Nativeis the unmodified Linux kernel.

2. Linux-Nooksis a version ofLinux-Native that in-
cludes the Nooks fault isolation subsystem but no
shadow drivers. When a driver fails, this system
restarts the driver but does not attempt to conceal
its failure.

3. Linux-SDis a version ofLinux-Nooksthat includes
our entire recovery subsystem, including the Nooks
fault isolation subsystem, the shadow manager, and
our three shadow drivers.

We selected a variety of common applications that
depend on our three device driver classes and measured
their performance. The application names and behaviors
are shown in Table 2.

Different applications have different performance
metrics of interest. For the disk and sound drivers, we ran
the applications shown in Table 2 and measured elapsed
time. For the network driver, throughput is a more useful
metric; therefore, we ran the throughput-orientednetwork
sendand network receivebenchmarks. For all drivers,
we also measured CPU utilization while the programs
ran. All measurements were repeated several times and
showed a variation of less than one percent.

Figure 5 shows the performance ofLinux-Nooksand
Linux-SD relative toLinux-Native. Figure 6 compares
CPU utilization for execution of the same applications
on the three OS versions. Both figures make clear that
shadow drivers impose only a small performance penalty
compared to running with no isolation at all, andno
no additional penalty beyond that imposed by isolation
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Figure 5: Comparative application performance, relative
to Linux-Native, for three configurations. The X-axis crosses
at 80%.
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Figure 6: Absolute CPU utilization by application for three
configurations.

alone. Across all nine applications, performance of the
system with shadow drivers averaged 99% of the system
without, and was never worse than 97%.

The low overhead of shadow drivers can be explained
in terms of its two constituents: fault isolation and the
shadowing itself. As mentioned previously, fault isola-
tion runs each driver in its own domain, leading to over-
head caused by domain crossings. Each domain crossing
takes approximately 3000 cycles, mostly to change page
tables and execution stacks. As a side effect of chang-
ing page tables, the Pentium 4 processor flushes the TLB,
resulting in TLB misses that can noticeably slow down
drivers [33].

For example, the kernel calls the driver approximately
1000 times per second when runningaudio recorder.
Each invocation executes only a small amount of code.
As a result, isolating the sound driver adds only negligi-

bly to CPU utilization, because there are not many cross-
ings and not much code to slow down. For the most disk-
intensive of the IDE storage applications, thedatabase
benchmark, the kernel and driver interact only 290 times
per second. However, each call into theide-diskdriver
results in substantial work to process a queue of disk re-
quests. The TLB-induced slowdown doubles the time
databasespent in the driver relative toLinux-Nativeand
increases the application’s CPU utilization from 21% to
27%. On the other hand, thenetwork sendbenchmark
transmits 45,000 packets per second, causing 45,000 do-
main crossings. The driver does little work for each
packet, but the overall impact is visible in Figure 6, where
CPU utilization for this benchmark increases from 28%
to 57% with driver fault isolation.

In the case the actual shadowing, we see from a com-
parison of theLinux-Nooksand Linux-SDbars in Fig-
ures 5 and 6 that the cost is small or negligible. As noted
in Section 4.2, many passive-mode shadow-driver func-
tions are no-ops. As a result, the incremental passive-
mode performance cost over basic fault isolation is low
or unmeasurable in many cases.

In summary, then, the overall performance penalty of
shadow drivers during failure-free operation is low, sug-
gesting that shadow drivers could be used across a wide
range of applications and environments.

5.2 Fault-Tolerance

Regardless of performance, the crucial question for
shadow drivers is whether an application can continue
functioning following the failure of a device driver on
which it relies. To answer this question, we tested 10
applications on the three configurations,Linux-Native,
Linux-Nooks, and Linux-SD. For the disk and sound
drivers, we again ran the applications shown in Table 2.
Because we were interested in the response to, not per-
formance, we substitutednetwork file copy, remote win-
dow manager, andnetwork analyzerfor the networking
benchmarks.

We simulated common bugs by injecting a software
fault into a device driver while an application using
that driver was running. Because both Linux-Nooks
and Linux-SD depend on the same isolation and failure-
detection services, we differentiate their recovery capa-
bilities by simulating failures that are easily isolated and
detected. To generate realistic synthetic driver bugs, we
analyzed patches posted to the Linux Kernel Mailing
List [24]. We found 31 patches that contained the strings
“patch,” “driver,” and “crash” or “oops” (the Linux term
for a kernel fault) in their subject lines. Of the 31 patches,
we identified 11 that fix transient bugs (i.e., bugs that oc-
cur occasionally or only after a long delay from the trig-
gering test). The most common cause of failure (three in-
stances) was a missing check for a null pointer, often with



Application Behavior
Device Driver Application Activity Linux-Native Linux-Nooks Linux-SD

Sound mp3 player CRASH MALFUNCTION
√

(audigy driver) audio recorder CRASH MALFUNCTION
√

speech synthesizer CRASH
√ √

strategy game CRASH MALFUNCTION
√

Network network file transfer CRASH
√ √

(e1000 driver) remote window manager CRASH
√ √

network analyzer CRASH MALFUNCTION
√

IDE compiler CRASH CRASH
√

(ide-disk driver) encoder CRASH CRASH
√

database CRASH CRASH
√

Table 3:The observed behavior of several applications following the failure of the device drivers on which they rely. There
are three behaviors: a checkmark (

√
) indicates that the application continued to operate normally; CRASH indicates that

the application failed completely (i.e., it terminated); MALFUNCTION indicates that the application continued to run, but
with abnormal behavior.

a secondary cause of missing or broken synchronization.
We also found missing pointer initialization code (two in-
stances) and bad calculations (two instances) that led to
endless loops and buffer overruns. Because these faults
are detected by Nooks, they cause fail-stop failures on
Linux-NooksandLinux-SD.

We injected a null-pointer dereference bug derived
from these patches into our three drivers. We ensured
that the synthetic bug was transient by inserting the bug
into uncommon execution paths, such as code that han-
dles unusual hardware conditions. These paths are rarely
executed, so we accelerated the occurrence of faults by
also executing the bug at random intervals. The fault code
remains active in the driver during and after recovery.

Table 3 shows the three application behaviors we
observed. When a driver failed, each application ei-
ther continued to run normally (

√
), failed completely

(“CRASH”), or continued to run but behaved abnormally
(“MALFUNCTION”). In the latter case, manual inter-
vention was typically required to reset or terminate the
program.

This table demonstrates that shadow drivers (Linux-
SD) enable applications to continue running normally
even when device drivers fail. In contrast, all applica-
tions onLinux-Nativefailed when drivers failed. Most
programs running onLinux-Nooksfailed or behaved ab-
normally, illustrating that Nooks’ kernel-focused recov-
ery system does not extend to applications. For example,
Nooks isolates the kernel from driver faults and reboots
(unloads, reloads, and restarts) the driver. However, it
lacks two key features of shadow drivers: (1) it does not
advance the driver to its pre-fail state, and (2) it has no
component to “pinch hit” for the failed driver during re-
covery. As a result,Linux-Nookshandles driver failures
by returning an error to the application, leaving it to re-
cover by itself. Unfortunately, few applications can do

this.
Some applications onLinux-Nookssurvived the driver

failure but in a degraded form. For example,mp3 player,
audio recorderandstrategy gamecontinued running, but
they lost their ability to input or output sound until the
user intervened. Similarly,network analyzer, which in-
terfaces directly with the network device driver, lost its
ability to receive packets once the driver was reloaded.

A few applications continued to function properly
after driver failure onLinux-Nooks. One application,
speech synthesizer, includes the code to reestablish its
context within an unreliable sound card driver. Two of the
network applications survived onLinux-Nooksbecause
they access the network device driver through kernel ser-
vices (TCP/IP and sockets) that are themselves resilient
to driver failures.

Linux-SDrecovers transparently from disk driver fail-
ures. Recovery is possible because the IDE storage
shadow driver instance maintains the failing driver’s ini-
tial state. During recovery the shadow copies back the
initial data and reuses the driver code, which is already
stored read-only in the kernel. In contrast,Linux-Nooks
illustrates the risk of circular dependencies from reboot-
ing drivers. Following these failures, Nooks, which had
unloaded theide-diskdriver, was then required to reload
the driver off the IDE disk. The circularity could only be
resolved by a system reboot. While a second (non-IDE)
disk would mitigate this problem, few machines are con-
figured this way.

In general, programs that directly depend on driver
state but are unprepared to deal with its loss benefit the
most from shadow drivers. In contrast, those that do not
directly depend on driver state or are able to reconstruct
it when necessary benefit the least. Our experience sug-
gests that few applications are as fault-tolerant asspeech
synthesizer. Were future applications to be pushed in this



direction, software manufacturers would either need to
develop custom recovery solutions on a per-application
basis or find a general solution that could protect any ap-
plication from the failure of a kernel device driver. Cost
is a barrier to the first approach. Shadow drivers are a
path to the second.

Application Behavior During Driver Recovery

Although shadow drivers can prevent application failure,
they are not “real” device drivers and do not provide com-
plete device services. As a result, we often observed a
slight timing disruption while the driver recovered. At
best, output was queued in the shadow driver. At worst,
input was lost by the device. The length of the delay was
primarily determined by the recovering device driver it-
self, which, on initialization, must first discover, and then
configure, the hardware.

Few device drivers implement fast reconfiguration,
which can lead to brief recovery delays. For example,
the temporary loss of thee1000network device driver
prevented applications from receiving packets for about
five seconds.2 Programs using files stored on the disk
managed by theide-diskdriver stalled for about four sec-
onds during recovery. In contrast, the normally smooth
sounds produced by theaudigy sound card driver were
interrupted by a pause of about one-tenth of one second,
which sounded like a slight click in the audio stream.

Of course, the significance of these delays depends
on the application. Streaming applications may become
unacceptably “jittery” during recovery. Those processing
input data in real-time might become lossy. Others may
simply run a few seconds longer in response to a disk
that appears to be operating more sluggishly than usual.
In any event, a short delay during recovery is best con-
sidered in light of the alternative: application and system
failure.

5.3 Limits to Recovery

The previous section assumed that failures were fail-stop.
However, driver failures experienced in deployed systems
may exhibit a wider variety of behaviors. For exam-
ple, a driver may corrupt state in the application, ker-
nel, or device without being detected. In this situation,
shadow drivers may not be able to recover or mask fail-
ures from applications. This section uses fault injection
experiments in an attempt to generate faults that may not
be fail-stop.

2This driver is particularly slow at recovery. The other network
drivers we tested recovered in less than a second.
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Figure 7: Results of fault-injection experiments on Linux-
SD. We show (1) the percentage of failures that are automat-
ically detected by the fault isolation subsystem, and (2) the
percentage of failures that shadow drivers successfully re-
covered. The total number of failures experienced by each
application is shown at the top of the chart.

Non-fail-stop Failures

If driver failures are not fail stop, then shadow drivers
may not be useful. To evaluate whether device driver fail-
ures are indeed fail-stop, we performed large-scale fault-
injection tests of our drivers and applications running on
Linux-SD. For each driver and application combination,
we ran 350 fault-injection trials.3 In total, we ran 2100
trials across the three drivers and six applications. Be-
tween trials, we reset the system and reloaded the driver.
For each trial, we injected five random errors into the
driver while the application was using it. We ensured the
errors were transient by removing them during recovery.
After injection, we visually observed the impact on the
application and the system to determine whether a fail-
ure or recovery had occurred. For each driver, we tested
two applications with significantly different usage scenar-
ios. For example, we chose one sound-playing applica-
tion (mp3 player) and one sound-recording application
(audio recorder).

If we observed a failure, we then assessed the trial on
two criteria: whether the fault was detected, and whether
the shadow driver could mask the failure and subsequent
recovery from the application. For undetected failures,
we triggered recovery manually. Note that a user may
observe a failure that an application does not, for exam-
ple, by testing the application’s responsiveness.

Figure 7 shows the results of our experiments. For
each application, we show the percentage of failures
that the Nooks subsystem detected and the percentage of
failures from which shadow drivers correctly recovered.
Only 18% of the injected faults caused a visible failure.

3For details on the fault injector see [33].



Shadow Driver Device Driver Shadowed Class Size Class Size
Driver Class Lines of Code Lines of Code # of Drivers Lines of Code

Sound 666 7,381 (audigy) 48 118,981
Network 198 13,577 (e1000) 190 264,500
Storage 321 5,358 (ide-disk) 8 29,000

Table 4:Size and quantity of shadows and the drivers they shadow.

In our tests, 390 failures occurred across all applica-
tions. The sytem automatically detected 65% of the fail-
ures. In every one of these cases, shadow drivers were
able to mask the failure and facilitate driver recovery. The
system failed to detect 35% of the failures. In these cases,
we manually triggered recovery. Shadow drivers recov-
ered from nearly all of these failures (127 out of 135).
Recovery was unsuccessful in the remaining 8 cases be-
cause either the system had crashed (5 cases) or the driver
had corrupted the application beyond the possibility of re-
covery (3 cases). It is possible that recovery would have
succeeded had these failures been detected earlier with a
better failure detector.

Across all applications and drivers, we found three
major causes of undetected failure. First, the system did
not detect application hangs caused by I/O requests that
never completed. Second, the system did not detect errors
in the interactions between the device and the driver, e.g.,
incorrectly copying sound data to a sound card. Third,
the system did not detect certain bad parameters, such
as incorrect result codes or data values. Detecting these
three error conditions would require that the system better
understand the semantics of each driver class. For exam-
ple, 68% of the sound driver failures withaudio recorder
went undetected. This application receives data from the
driver in real time and is highly sensitive to driver output.
A small error or delay in the results of a driver request
may cause the application to stop recording or record the
same sample repeatedly.

Our results demonstrate a need for class-based failure
detectors that can detect violations of the driver interface
to achieve high levels of reliability. However, driver fail-
ures need not be detected quickly to be fail-stop. There
was a significant delay between the failure and the sub-
sequent manual recovery in our tests, and yet the appli-
cations survived the vast majority of undetected failures.
Thus, even a slow failure detector can be effective at im-
proving application reliability.

Non-transient Failures

Shadow drivers can recover from transient failures only.
In contrast, deterministic failures may recur during recov-
ery when the shadow configures the driver. While unable
to recover, shadow drivers are still useful for these fail-

ures. When a failure recurs during recovery, the sequence
of shadow driver recovery events creates a detailed re-
production scenario that aids diagnosis. This record of
recovery contains the driver’s calls into the kernel, re-
quests to configure the driver, and I/O requests that were
pending at the time of failure. This information enables a
software engineer to find and fix the offending bug more
efficiently.

5.4 Code Size

The preceding sections evaluated theefficiencyand ef-
fectivenessof shadow drivers. This section examines the
complexityof shadow drivers in terms of code size, which
can serve as a proxy for complexity.

Table 4 shows, for each class, the size in lines of
code of the shadow driver for the class. For compari-
son, we show the size of the driver from the class that
we tested and the total number and cumulative size of
existing Linux device drivers in that class in the 2.4.18
kernel. The total code size is an indication of the lever-
age gained through the shadow’s class-driver structure.
Furthermore, the table shows that a shadow driver is sig-
nificantly smaller than the device driver it shadows. For
example, our sound-card shadow driver is only 9% of the
size of theaudigydevice driver it shadows. The IDE stor-
age shadow is only 6% percent of the size of the Linux
ide-diskdevice driver.

The Nooks driver fault isolation subsystem we built
upon contains about 23,000 lines of code. In total, we
added about 3300 lines of new code to Nooks to support
our three class drivers. Otherwise, we made no changes
to the remainder of the Linux kernel. Shadow drivers re-
quired the addition of approximately 600 lines of code for
the shadow manager, 800 lines of common code shared
by all shadow drivers, and another 750 lines of code for
general utilities. Of the 177 taps we inserted, only 31
required actual code; the remainder were no-ops.

5.5 Summary

This section examined the performance, fault-tolerance,
limits, and code size of shadow drivers. Our re-
sults demonstrate that: (1) the performance overhead of
shadow drivers during normal operation is small, partic-
ularly when compared to a purely isolating system, (2)



applications that failed in any form onLinux-Nativeor
Linux-Nooksran normally with shadow drivers, (3) the
reliability provided by shadow drivers is limited by the
system’s ability to detect failures, and (4) shadow drivers
are small, even relative to single device driver. Overall,
these results indicate that shadow drivers have the poten-
tial to significantly improve the reliability of applications
on modern operating systems with only modest cost.

6 Conclusions

Improving the reliability of modern systems demands that
we increase their resilience. To this end, we designed and
implementedshadow drivers, which mask device driver
failures from both the operating system and applications.

Our experience shows that shadow drivers improve
application reliability, by concealing a driver’s failure
while facilitating recovery. A single shadow driver can
enable recovery for an entire class of device drivers.
Shadow drivers are also efficient, imposing little perfor-
mance degradation. Finally, they are transparent, requir-
ing no code changes to existing drivers.
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