Recovering Device Drivers
Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and Henry M. Levy

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195 USA
{mikesw,muthu,bershad,levy }@cs.washington.edu

Abstract Earlier failure-isolation systems within the kernel
This paper presents a new mechanism that enables applicati(yvgre designed to prevent driver failures from corrupting

to run correctly when device drivers fail. Because device drivergHe kernel itselfl[3B]. In these systems, the kernel unloads

are the principal failing component in most systems, reducing failed driver and then restarts it from a safe initial state.
driver-induced failures greatly improves overall reliability. Ear-While isolation techniques can reduce the frequency of
lier work has shown that an operating system can survive drivéystem crashegpplicationsusing the failed driver can
failures [33], but the applications that depend on them cannostill crash. These failures occur because the driver loses
Thus, while operating system reliability was greatly improvedapplication state when it restarts, causing applications to
application reliability generally was not. receive erroneous results. Most applications are unpre-
To remedy this situation, we introduce a new operating sysared to cope with this. Rather, they reflect the conven-
tem mechanism calledshadow driver A shadow driver mon- +jona| fajlure model: drivers and the operating system ei-

itors device drivers and transparently recovers from driver f‘f’“lfher fail together or not at all.

ures. Moreover, it assumes the role of the failed driver during This paper presents a new mechanism. called a
recovery. In this way, applications using the failed driver, as had g _p PE) . I ’ liabili
well as the kernel itself, continue to function as expected. shadow drivey that improves overall system reliability

We implemented shadow drivers for the Linux operaﬂnday concealing a driver’s failure from its clients while re-
system and tested them on over a dozen device drivers. Our €oVvering from the failure. During normal operation, the
sults show that applications and the OS can indeed survive tisadow tracks the state of the real driver by monitoring all
failure of a variety of device drivers. Moreover, shadow drivercommunication between the kernel and the driver. When
impose minimal performance overhead. Lastly, they can be ira failure occurs, the shadow inserts itselnporarilyin
troduced with only modest changes to the OS kernel and withjace of the failed driver, servicing requests on its behalf.

no changes at all to existing device drivers. While shielding the kernel and applications from the fail-
_ ure, the shadow driver restores the failed driver to a state
1 Introduction where it can resume processing requests.

Improving reliability is one of the greatest challenges for Our design for shadow drivers reflects four principles:

commodity operating systems. System failures are com-1. Device driver failures should be concealed from the
monplace and costly across all domains: in the home, driver's clients.If the operating system and applica-
in the server room, and in embedded systems, where the tions using a driver cannot detect that it has failed,
existence of the OS itself is invisible. At the low end, they are unlikely to fail themselves.

failures lead to user frustration and lost sales. At the high
end, an hour of downtime from a system failure can result =
in losses in the millions [16].

Most of these system failures are caused by the oper-
ating system’s device drivers. Failed drivers cause 85%
of Windows XP crashes [30], while Linux drivers have 3. Driver recovery logic should be genericThe in-
seven times the bug rate of other kernel cade [14]. A creased reliability offered by driver recovery should
failed driver typically causes the application, the OS ker- not be offset by potentially destabilizing changes to
nel, or both to crash or stop functioning as expected. the tens of thousands of existing drivers. There-
Hence, preventing driver-induced failures improves over- fore, the architecture must enable a single shadow
all system reliability. driver to handle recovery for a large number of de-

vice drivers.

Recovery logic should be centralized in a single sub-
systemWe want to consolidate recovery knowledge
in a small number of components to simplify the im-
plementation.

4. Recovery services should have low overhead whemd more importantly, the shadownst a replica of the
not neededThe recovery system should impose rel-device driver: it implements only the services needed to
atively little overhead for the common case (that ismanage recovery of the failed driver and to shield appli-
when drivers are operating normally). cations from the recovery. For this reason, the shadow is

. e typically much simpler than the driver it shadows.
Overall, these design principles are intended to minimizé " A qther common recovery approach is to restart ap-

the cost required to make and use shadow drivers whilgications after a failure. Many systems periodically
maximizing their value in existing commaodity Operat'ngcheckpoint application staté [26.127.129], while others

system§.)) combine checkpoints with log§1[2] 5,131]. These sys-
We implemented the shadow driver architecture fofe s transparently restart failed applications from their
sound, r_1etwork, an_d IDE storage drivers on a Versiop gt checkpoint (possibly on another machine) and re-
of the Linux operating system. Our results show thafay the Iog if one is present. Shadow drivers take a
shadow drivers: (1) mask device driver failures from apgmiiar approach by replaying a log of requests made to
plications, alloyving applications_ to run nqrmally duringgrivers. Recent work has shown that this approach is
and after a driver failure, (2) impose minimal perfor-jimiteq when recovering fronapplicationfaults: appli-
mance overhead, (3) require no changes to existing apsiions often become corrupted before they fail: hence,
pllcat|_0ns and dev_lce drivers, and (4) integrate easily intg, iy logs or checkpoints may also be corrupfed [10, 25].
an existing operating system. Shadow drivers reduce this potential by logging only a

This paper describes the design, implementation angn | supset of requests. Furthermore, application bugs
performance of shadow drivers. The following section reggn tg e deterministic and recur after the application is

views general approaches to protecting applications frofiarted11]. Driver faults, in contrast, often cause tran-

system faults. Sectidrj 3 describes device drivers and tag, ¢ fajlures because of the complexities of the kemel
shadow driver design and components. Se¢fjon 4 preseriscution environmenit [34].

the structure of shadow drivers and the mechanisms re- apother approach is simply to reboot the failed com-

quired to implement them in Linux. Sectifh 5 present$snent, for example, unloading and reloading failed ker-

experiments that evaluate the performance, effectivenes| extensions, such as device drivérs [33]. Rebooting

and_complexny of shadow drivers. The final section SUMp 55 heen proposed as a general strategy for building high-

marizes our work. availability software[[9]. However, rebooting forcap-
plicationsto handle the failure, for example, reinitializing

2 Related Work state that has been lost by the rebooted component. Few

This section describes previous research on recoveffiSting applications do this [9], and those that do not
strategies and mechanisms. The importance of recoverya'® the fate of the failed driver. Shadow drivers trans-
has long been known in the database community, Whepéalre_ntly. restore driver state lost in the reboot, invisibly to
transactions [19] prevent data corruption and allow ag2Pplications. , o
plications to manage failure. More recently, the need for Shadow drivers rely on device driver isolation to
failure recovery has moved from specialized applicationgrévent failed drivers from corrupting the OS or ap-
and systems to the more general arena of commodity s __|cat|ons. Isolation can be pr.owded in various ways.
tems [28]. ylno [32] epcapsulates extensions using spftware fault
A general approach to recovery is to run applicatithOIat'on [35] and uses transactions to repair kernel state

replicas on two machines, a primary and a backup. Afifter a failure. Nooks [33] and Palladium [13] isolate ex-
inputs to the primary are mirrored to the backup. Aftef€nsions in protection domains enforced by virtual mem-

a failure of the primary, the backup machine takes ovef"y hardware. Microkernels [23, 38.139] and their deriva-

to provide service. The replication can be performe&ves [15)17[20] force isolation by executing extensions

by the hardware[]21], at the hardware-software inter! US€r mode. , . ,
face [8], at the system call interfade [2[5, 7], or ata mes- Rather than concealing driver failures, these systems

sage passing or application interface [4]. Shadow drive@! réflect arevealingstrategy, one in which the applica-

similarly replicate all communication between the kerliOn Or user is made aware of the failure. The OS typi-

nel and device driver (the primary), sending copies to the?!ly réturns an error code, telling the application that a
shadow driver (the backup). If the driver fails, the shadowystem call failed, but little else (e.qg., it does not indicate

takes over temporarily until the driver recovers. How- Which component failed or how the failure occurred). The

ever, shadows differ from typical replication schemes iffurden of recovery then rests on the application, which
several ways. First, because our goal is to tolerate on[USt decide what steps to take to continue executing. As
driver failures, not hardware failures, both the shadok"€Viously mentioned, most applications cannot handle
and the “real” driver run on the same machine. Secon&*?e failure of device drivers [37], since driver faults typ-

ically crash the system. When a driver failure occurs,

these systems expose the failure to the application, which o8 Komel
. Kernel Interface

may then fail. By impersonating device drivers during
recovery, shadow drivers conceal errors caused by driver ¢ T
failures and thereby protect applications. E—

Several systems have narrowed the scope of recovery Class Interface
to focus on a specific subsystem or component. For ex- Sound Card
ample, the Rio file cach& [12] provides high performance Device Driver
by isolating a single system component, the file cache, N —
from kernel failures. Phoenix[3] provides transparent A4
recovery after the failure of a single problematic compo- Sound Card

nent type, database connections in multi-tier applications.
Similarly, our shadow driver research focuses on recov-
ery for a single OS component type, the device driveffigure 1:A sample device driver. The device driverexports
which is the leading cause of OS failure. By abandoninghe services defined by the device’s class interface arih-
general-purpose recovery, we transparently resolve a mgartsservices from the kernel’s interface.

jor cause of application and OS failure while maintaining

low runtime overh
a low runtime overhead portion of request processing. Device drivers may crash

. . . in response to (1) the stream of requests from the kernel,
3 Dev_lce Drivers and Shadow Driver both configuration and 1/0, (2) messages to and from the
Design device, and (3) the kernel environment, which may raise

A device driver is a kernel-mode software component th&t" lower power state_s, swap pages of_memory, qnd inter-
provides an interface between the OS and a hardware d&Pt the driver at arbitrary times. A driver bug triggered
vicd]] The driver converts requests from the kernel intg €Y by @ sequence of configuration or I/O requests is
requests to the hardware. Drivers rely on two interface§.‘,"llled adeterministiciailure. No generic recovery tech-
the interface that driversportto the kernel that provides Nidue can transparently recover from this type of bug, be-
access to the device, and the kernel interface that drivef@US€ any attempt to complete an offending request may
importfrom the operating system. For example, Figire jrigger the bug([11]. In contrastransientfailures are

shows the kernel calling into a sound driver to play a tond'99€red by additional inputs from the device or the op-

in response, the sound driver converts the request intoS52tiNg Systém and occur infrequently.
A driver failure that is detected and stopped by the

sequence of I/O instructions that direct the sound card to) . .
emit sound system before any OS, device, or application state is af-

In practice, most device drivers are members of gected is termedail-stop More_ insidious failures may
class which is defined by its interface. For example,corrUpt the system or application and never be detected.

all network drivers obey the same kernel-driver interface] '€ SYStem's response to failure determines whether a
ilure is fail-stop. For example, a system that detects

and all sound-card drivers obey the same kernel-drivé?

interface. This class orientation simplifies the introduc2Nd Prevents accidental writes to kemel data structures
xhibits fail-stop behavior for such a bug, whereas one

tion of new drivers into the operating system, since n&

OS changes are required to accommodate them. that allows corruption does not. _
In addition to processing /O requests, drivers also A\PPropriate OS techniques can ensure that drivers ex-

handle configuration requests. Applications may configgCute in a fail-stop fashion [32. 33.136]. For example, in

ure the device, for example, by setting the bandwidth of §2/ier work we described Nooks [33], a kernel reliability
network card or the volume for a sound card. ConfiguraUPSystem that executes each driver within its own in-

tion requests may change both driver and device behavi§f el protectlon domam. Nooks det_ects faults through
for future 1/O requests. memory protection violations, excessive CPU usage, and

certain bad parameters passed to the kernel. When Nooks
31 Driver Faults detgcts a fallu_re, it stops execution within the driver’s pro-
_ _ tection domain and triggers a recovery process. We re-

Most drivers fail due to bugs that result from unexpecte@orted that Nooks was able to detect approximately 75%
inputs or events [34]. For example, a driver may corrupgf failures in synthetic fault-injection tesfs [33].
a data structure if an interrupt arrives during a sensitive Shadow drivers can recover only from failures that are

1This paper uses the terms “device driver” and “driver”interchange!JOth transient and_ fail-stop. Determ.lnlstlc ff”“lures may
ably; similarly, we use the terms “shadow driver” and “shadow” inter-f€CUr when the driver recovers, again causing a failure.
changeably.

In contrast, transient failures are triggered by environ- Once the driver has restarted, the active-mode shadow
mental factors that are unlikely to persist during recovreintegrates the driver into the system. It re-establishes
ery. In practice, many drivers experience transient failany application configuration state downloaded into the
ures, caused by the complexities of the kernel executiadriver and then resumes pending requests.

environment (e.g. asynchrony, interrupts, locking proto- A shadow driver is a “class driver,” aware of the in-
cols, and virtual memory) [1], which are difficult to find terface to the drivers it shadows hubt of their imple-

and fix. Deterministic driver failures, in contrast, arementations. A single shadow driver implementation can
more easily found and fixed in the testing phase of deaecover from a failure of any driver in the class. The class
velopment because the failures are repeatable [18]. Rerentation has three key implications. First, an operat-
coverable failures must also be fail-stop, because shadamg system can leverage a few implementations of shadow
driversconcealfailures from the system and applications.drivers to recover from failures in a large number of de-
Hence, shadow drivers require a reliability subsystem teice drivers. Second, implementing a shadow driver does
detect and stop failures before they are visible to applicarot require a detailed understanding of the internals of the
tions or the operating system. Although shadow driverdrivers it shadows. Rather, it requires only an understand-
may use any mechanism that provides these services, ang of those drivers’ interactions with the kernel. Finally,

implementation uses NoOOKs. if a new driver is loaded into the kernel, no new shadow
driver is requiredas long asa shadow for that class al-
3.2 Shadow Drivers ready exists. For example, if a new network interface card

and driver are inserted into a PC, the existing network
. . . . hadow driver can shadow the new driver without change.
bility for a single device driver. It compensates for and... . . .
. . . Similarly, drivers can be patched or updated without re-
recovers from a driver that has failed. When a driver

fails, its shadow restores the driver to a functioning statg'""Y changes to their shadows. S_hadow updatlng IS
required only to respond to a change in the kernel-driver

in which it can process I/O requests made before the fails 7
ure. While the driver recovers, the shadow driver servicd¥ 09ramming interface.
its requests.
Shadow drivers execute in one of two modes: pas:“'j'3 Taps
sive or active. Inpassivemode, used during normal As we have seen, a shadow driver monitors communi-
(non-faulting) operation, the shadow driver monitors altation between a functioning driver and the kernel and
communication between the kernel and the device drivémpersonates one component to the other during failure
it shadows. This monitoring is achieved via replicatec&nd recovery. These activities are made possible by a
procedure calls: a kernel call to a device driver funchew mechanism, called ap. Conceptually, a tap is a
tion causes an automatic, identical call to a correspond-junction placed between the kernel and its drivers. It
ing shadow driver function. Similarly, a driver call to a can be set to replicate calls during passive mode and redi-
kernel function causes an automatic, identical call to eect them during recovery.
corresponding shadow driver function. These passive- A tap operates in passive or active mode, correspond-
mode calls are transparent to the device driver and thieg to the state of the shadow driver attached to it. During
kernel. They are not intended to provide any service tpassive-mode operation, the tap: (1) invokes the original
either party and exist only to track the state of the drivedriver, then (2) invokes the shadow driver with the pa-
as necessary for recovery. rameters and results of the call. This operation is shown
In activemode, which occurs during recovery from ain Figure[2.
failure, the shadow driver performs two functions. First, On failure, the tap switches to active mode, shown in
it “impersonates” the failed driver, intercepting and re-Figure[3. In this mode, it: (1) terminates all communica-
sponding to calls from the kernel. Therefore, the kertion between the driver and kernel, and (2) redirects all in-
nel and higher-level applications continue operating in agocations to their corresponding interface in the shadow.
normal a fashion as possible. Second, the shadow drivier active mode, both the kernel and the recovering device
impersonates the kernel to restart the failed driver, intedriver interact only with the shadow driver. Following
cepting and responding to calls from the restarted driveecovery, the tap returns to its passive-mode state.
to the kernel. In other words, in active mode the shadow Taps depend on the ability to dynamically dispatch all
driver looks like the kernel to the driver and like the drivercommunication between the driver and the OS. Conse-
to the kernel. Only the shadow driver is aware of the dequently, all communication into and out of a driver be-
ception. This approach hides recovery details from thing shadowed must be explicit, such as through a proce-
driver, which is unaware that it is being restarted by aure call or a message. Most drivers operate this way,
shadow driver after a failure. but some do not and cannot be shadowed. For example,

A shadow driveris a kernel agent that improves relia-

0S Kermel requests for the driver’s services are redirected to an ap-
propriately prepared shadow driver. The shadow manager

Kernel Interface

z then initiates the shadow driver’s recovery sequence to
g3 ‘ restore the driver. When recovery ends, the shadow man-
SE : ager returns the shadow driver and taps to passive-mode
Sa //’ aps . . .
Shadou | & § 4 Copies | operation so the driver can resume service.
Sound L
Driver Pras
_gla” 3.5 Summary
Red Sound Driver . . - . .
é s Class Interface Our design simplifies the development and integration of
B Sound Card shadow drivers into existing systems. Each shadow driver
Device Driver is a single module written with knowledge of the behav-
[} ior (interface) of a class of device drivers, allowing it to
v conceal a driver failure and restart the driver after a fault.
Sound Card A shadow driver, normally passive, monitors communi-

cation between the kernel and the driver. It becomes an

.) o) active proxy when a driver fails and then manages its re-
Figure 2: A sample shadow driver operating in passive

mode. Taps inserted between the kernel and sound driver covery.
ensure that all communication between the two is passively .]
monitored by the shadow driver. 4 Shadow Driver Implementation
S, This section describes the implementation of shadow
0S Kemel drivers in the Linux operating systefn [6]. We have imple-
Kernel Interface mented shadow drivers for three classes of device drivers:
8 ¢ sound card drivers, network interface drivers, and IDE
£ storage drivers.
o2
- £
Sg Taps
Shadow | ® & / 4.1 General Infrastructure
Sound
Driver / ¢ All shadow drivers rely on a generic service infrastructure
gé Sound Driver that provides three functions. Amolation servicepre-
22 Classlintertace vents driver errors from corrupting the kernel by stopping
Sound Card a driver on detecting a failure. A transpareadirection
Device Driver PO .
mechanisnimplements the taps required for transparent
— p psreq p

v shadowing and recovery. Lastly, abject tracking ser-
vicetracks kernel resources created or held by the driver
Sound Card so as to facilitate recovery.
Our shadow driver implementation uses Nooks to pro-
Figure 3:A sample shadow driver operating in active mode. Vide these functions. Through its fault isolation subsys-
The taps redirect communication between the kerel and tem, Nooks|[33] isolates drivers within separate kernel
the failed driver directly to the shadow driver. protection domains. The domains use memory protec-
tion to trap driver faults and ensure the integrity of kernel
) i i) memory. Nooks interposes proxy procedures on all com-
kerngl \{|deo drivers often communlcate.wnh usermOd?nunication between the device driver and kernel. We in-
applications through shared memory regians [22]. sert our tap code into these Nooks proxies to replicate
and redirect communication. Finally, Nooks tracks ker-
3.4 The Shadow Manager nel objects used by drivers to perform garbage collection
Recovery is supervised by teeadow managerhichis of kernel resources during recovery.
a kernel agent that interfaces with and controls all shadow Our implementation adds a shadow manager to the
drivers. The shadow manager instantiates new shaddvnux operating system. In addition to receiving failure
drivers and injects taps into the call interfaces betweemotifications from Nooks, the shadow manager handles
the device driver and kernel. It also receives notificathe initial installation of shadow drivers. In coordina-
tion from the fault-isolation subsystem that a driver hasion with the kernel’s module loader, which provides the
stopped due to a failure. driver’s class, the shadow manager creates a new shadow
When a driver fails, the shadow manager transitiondriver instance for a driver. Because a single shadow
its taps and shadow driver to active mode. In this modealriver services a class of device drivers, there may be

stop assumption to preserve persistent state (e.g., on disk)

from corruption. It can restore transient state (state that
Tinux Kernel is lost when the device resets) if it can force the device'’s
clients to recreate that state, for example, by redrawing
the contents of a frame buffer.
Device Lastly, the shadow tracks all kernel objects that the
Device driver allocated or received from the kernel. These ob-

jects would otherwise be lost when the driver fails, caus-

%es | Qe ing a memory leak. For example, the shadow must record
T v re——— all timer callbacks registered and all hardware resources
owned, such as interrupt lines and I/O memory regions.

Figure 4: The Linux operating system with several device Inmany cases, passive-mode calls do no work and the
drivers and the driver recovery subsystem. New code com- Shadow returns immediately to the caller. For example,
ponents include the taps, the shadow manager and a set of the dominant calls to a sound-card driver e¢ad and
shadow drivers, all built on top of the Nooks driver fault ~ write , which record or play sound. In passive mode,
isolation subsystem. the shadow driver implements these callpasops since
there is no need to copy the real-time sound data flowing
through the device driver. For aactl call, however,

several instances of a shadow driver executing if therg . <1\ nd-card shadow driver logs the command and data

is more than one driver of a class present. The new o1 the connection. Similarly, the shadow driver for an

stance shares _the same code with all other Instances Bl yisk does little or no work in passive mode, since the
that shadow driver class. E]

Recovery Subsystem

Driver
| Shadow Manager |—>| Shadow Driver
I Driver

Device

Driver

Nooks Fault Isolation Subsystem

Device

Hag

Domains

U0

!
' | Protection

| ' Driver

. h he dri b hi ernel and disk driver handle all /O and request queu-
Figure[4 shows the driver recovery subsystem, whicf *inaly for the network shadow driver, much of the

contains the Nooks fault isolation subsystem, the shadoyy, . is already performed by the Nooks object-tracking

manage, and a set of shadow drivers, each of which C%g}stem, which keeps references to outstanding packets.
monitor one or more device drivers.

. . 4.3 Active-Mode Recover

4.2 Passive-Mode Monitoring y
)) A driver typically fails by generating an illegal memory

In passive mode, a shadow driver records several YPRSterence or passing an invalid parameter across a ker-

of information. First, it tracks requests made to th‘?1e|interface. The kernel-level failure detector notices the

driver, enabling pending Feq“E"?ts to exe_cute correctly aféilure and invokes the shadow manager, which locates
ter recovery. For connection-oriented drivers, the shadoglo oo riate shadow driver and directs it to recover the
driver records the state of each active connection, such 88, 4 4 ar The three steps of recovery are: (1) stop-
offset or positioning information. For request-orlentecjziiig the failed driver, (2) reinitializing the driver from a

drivers, the shadow driver maintainslag Of. pendlng clean state, and (3) transferring relevant shadow driver
commands and arguments. An entry remains in the 104 into the new driver

until the corresponding request has been handled.
The shadow driver also records configuration and ing th iied Dri
driver parameters that the kernel passes into the driv¢=f¥‘.3'1 Stopping the Failed Driver

During recovery, the shadow uses this information to a.q.'he shadow manager begins recovery by informing the
in the driver’s place, returning the same information thaesponsible shadow driver that a failure has occurred. It
was passed in previously. This information also assists @lso switches the taps, isolating the kernel and driver from
reconfiguring the driver to its pre-failure state when it isone another’s subsequent activity during recovery. Af-
restarted. For example, the shadow sound driver keepsget this point, the tap redirects all kernel requests to the
log of ioctl calls (command numbers and argumentsghadow until recovery is complete.
that configure the driver. This log makes it possible to: |nformed of the failure, the shadow driver first dis-
(1) act as the device driver by remembering the sounghles execution of the failed driver. It also disables the
formats it supports, and (2) recover the driver by resetardware device to prevent it from interfering with the OS
ting properties, such as the volume and sound format ighile not under driver control. For example, the shadow
use. disables the driver’s interrupt request line. Otherwise, the
The shadow driver maintains only tlenfiguration device may continuously interrupt the kernel and prevent
of the driver in its log. For stateful devices, such as framgacovery. On hardware platforms with I/O memory map-

buffers or storage devices, it does not create a copy of thgng, the shadow also removes the device’s I/O mappings
device state. Instead, a shadow driver depends on the fair prevent DMAs into kernel memory.

To prepare for restarting the device driver, the shadostate transfer depend on the device driver class. Some
garbage collects resources held by the driver. It retairdrivers are connection oriented. For these, the state con-
objects that the kernel uses to request driver services, $ests of the state of the connections before the failure. The
ensure that the kernel does not see the driver “disappeafiadow re-opens the connections and restores the state of
as it is restarted. The shadow releases the remaining ach active connection with configuration calls. Other

sources. drivers are request oriented. For these, the shadow re-
stores the state of the driver and then resubmits to the

4.3.2 Reinitializing the Driver driver any requests that were outstanding when the driver
crashed.

The shadow driver next “reboots” the driver from a clean As an example, for a failed sound card driver, the

state. Normally, restarting a driver requires reloading thehadow driver resets the sound driver and all its open
driver from disk. However, we cannot assume that thgonnections back to their pre-failures state. Specifically,
disk is functional during recovery. For this reason, whehe shadow scans its list of open connections and calls
creating a new shadow driver instance, the shadow magie open function in the driver to reopen each connec-
ager caches in the shadow instance a copy of the deviggn. The shadow then walks its log of configuration com-
driver’s |n|t|a|, clean data section. These sections tend tﬁlands and rep'ays any commands that set driver proper-
be small. The driver's code is kernel-read-only, so it igjes.
not cached and can be reused from memory. For some driver classes, the shadow cannot com-
The shadow restarts the driver by initializing thepjetely transfer its state into the driver. However, it may
driver's state and then repeating the kernel's driver inipe possible to compensate in other, perhaps less elegant,
tialization sequence. For some driver classes, such @gys. For example, a sound driver that is recording sound
sound card drivers, this consists of a single call into thetores the number of bytes it has recorded since the last
driver’s initialization routine. Other driVerS, such as netTeset_ After recovery, the sound driver initializes this
work interface drivers, require additional calls to connecgounter to zero. Because no interface call is provided to
the driver into the network stack. change the counter value, the shadow driver must insert
As the driver restarts, the shadow reattaches the drivgg “true” value into the return argument list whenever the
to its pre-failure kernel resources. During driver rebootapplication reads the counter to maintain the illusion that
the driver makes a number of calls into the kernel to disthe driver has not crashed. The shadow can do this be-

cover information about itself and to link itself into the cause it receives control (on its replicated call) before the
kernel. For eXampIe, the driver calls the kernel to regkerne| returns to user space.

ister itself as a driver and to request hardware and ker- after resetting driver and connection state, the

nel resources. The taps redirect these calls to the shadgWadow must handle requests that were either outstanding
driver, which reconnects the driver to existing kernel dat@;nen the driver crashed or arrived while the driver was
structures. ThUS, when the driver a’[tempts to register Wi%covering_ Unfortunate|y, shadow drivers cannot guar-
the kernel, the shadow intercepts the call and reuses thgtee exactly-once behavior for driver requests and must
existing driver registration, avoiding the allocation of arely on devices and higher levels of software to absorb
new one. For requests that generate callbacks, such aglicate requests. For example, if a driver crashes after
request to register the driver with the PCI subsystem, thg,pmitting a request to a device but before notifying the
shadow emulates the kernel, making the same callbackgrnel that the request has completed, the shadow cannot
to the driver with the same parameters. The driver alsghow whether the request was actually processed. Dur-
acquires hardware resources. If these resources were pgy recovery, the shadow driver has two choices: restart
viously disabled at the first step of recovery, the shadoyy-progress requests and risk duplication, or cancel the re-
re-enables them, e.g., enabling interrupt handling for thguest and risk lost data. For some device classes, such as
device’s interrupt line. In essence, the shadow driver inhisks or networkS, dup“cation is acceptab|e_ However,
tializes the recovering driver by calling and responding agther classes, such as printers, may not tolerate dupli-

the kernel would when the driver starts normally. cates. In these cases, the shadow driver cancels outstand-
ing requests, which may limit its ability to mask failures.
4.3.3 Transferring State to the New Driver After this final step, the driver has been reinitial-

. . ized, linked into the kernel, reloaded with its pre-failure
The final recovery step restores the driver state that ®%ate. and is ready to process commands. At this point

isted at the t.”T‘e of the fauIt,. permitting it to respond e shadow driver notifies the shadow manager, which
requests as if it had never failed. Thus, any configuratio ets the taps to restore kernel-driver communication and

that elthe_zr the kernel or an application ha!d down_loa_de%establish passive-mode monitoring.
to the driver must be restored. The details of this final

4.4 Active-Mode Proxying of Kernel Requests drivers rely on explicit communication between the de-
. A vice driver and kernel. If driver-kernel communication
While a shadow driver is restoring a failed driver, it is als .
3akes place through an ad-hoc interface, such as shared

acting in place of the driver to conceal the failure an . S .
L memory, the shadow driver cannot monitor it. Third,
recovery from applications and the kernel. The shadow, . .)
o . -~ shadow drivers assume that driver failure does not cause
driver’s response to a driver request depends on the driver

. |rfeversible side effects. If a corrupted driver stores per-
class and request semantics. In general, the shadow will

take one of five actions: (1) respond with information '[haFIStent state (€.g., printing a bad check or writing bad data

it has recorded, (2) silently drop the request, (3) queue tifﬁna?ailg’lgzl’ the shadow driver will not be able to correct

request for later processing, (4) block the request until the The effectiveness of shadow drivers is also limited by

driver recovers, or (5) report that the driver is busy and th s
o . . %e abilities of the isolation and failure-detection subsys-
kernel or application should try again later. The choice o

g i . tem. If this layer cannot prevent kernel corruption, then
strategy depends on the caller’'s expectations of the driver, . -)
Writina a shadow driver that proxies for a failed driverShadOW drivers cannot facilitate system recovery. In ad
riting Proxies for .~ dition, if the fault-isolation subsystem does not detect a
requires knowledge of the kernel-driver interface, mterfailure then shadow drivers will not be properly invoked
actions, and requirements. For example, the kernel m ' S .)
require that some driver functions never block, while oth? perform recovery, and applications may fail. Detecting

. fatilures is difficult because drivers are complex and may
ers always block. Some kernel requests are idempoten

(e.g., manyioctl commands), permitting duplicate re- respond tq application requgsts iq many ways. It may
ques,ts t0 be dropped, while otﬁers return different resulfe impossible to detect a valid but incorrect return value;

or example, a sound driver may return incorrect sound
on every call (e.g., mansead requests). The shadow . :
. ; data when recording. As a result, no failure detector can
for a driver class uses these requirements to select the

Hetect every device driver failure. However, we support
sponse strategy. ; o
. L N class-based failure detectors that can detect violations of
Active proxying is simplified for driver interfaces that - S
a driver’s programming interface and reduce the number

support a notion of “busy.” By reporting that the device IS ¢ undetected failures.

currently busy, shadow drivers instruct the kernel or ap- . . .
L . Finally, shadow drivers may not be suitable for ap-
plication to block calls to a driver. For example, network
. L . lications with real-time demands. During recovery, a
drivers in Linux may reject requests and turn themselv . . :
evice may be unavailable for several seconds without

off if their queues are full. The kernel then refrains from_ "~ L : o
.) . . notifying the application of a failure. These applications,
sending packets until the driver turns itself back on. Our . : .
) which should be written to tolerate failures, would be bet-
shadow network driver exploits this behavior during re- : .
. B i ter served by a solution that restarts the driver but does not
covery by returning a “busy” error on calls to send pack- erform active proxvin
ets. IDE storage drivers support a similar notion wheR proxying.
request queues fill up. Sound drivers can report that thejlr
buffers are temporarily full.)
Our shadow sound-card driver uses a mix of all fivelhis section presented the details of our Linux shadow
strategies for emulating functions in its service interfacedriver implementation. The shadow driver concept is
The shadow blocks kernekad andwrite requests, straightforward: passively monitor normal operations,
which play or record sound samples, until the failecoroxy during failure, and reintegrate during recovery. Ul-
driver recovers. It processaxctl calls itself, either by timately, the value of shadow drivers depends on the de-
responding with information it captured or by logging thegree to which they can be implemented correctly, effi-
request to be processed later. kmtl commands that ciently, and easily in an operating system. The following
are idempotent, the shadow driver silently drops duplisection evaluates some of these questions both qualita-
cate requests. Finally, when applications query for buffetively and quantitatively.
space, the shadow responds that buffers are full. As a
result, many applications block themselves rather thap Evaluation

blocking in the shadow driver.

6 Summary

This section evaluates four key aspects of shadow drivers.

4.5 Limitations 1. PerformanceWhat is the performance overhead of

As previously described, shadow drivers have limita- shadow drivers during normal, passive-mode oper-
tions. First, shadow drivers rely on dynamic unloading ation (i.e., in the absence of failure)? This is the
and reloading of device drivers. If a driver cannot be dynamic cost of our mechanism.

reloaded dynamically, or will not reinitialize properly,

then a shadow cannot recover the driver. Second, shadow

[Class [Driver [Device | [Device Driver [Application Activity]

Network [1000 Intel Pro/1000 Gigabit Ethernet Sound e mp3 player ¢inf) playing 128kb/s audio
pcnet32 AMD PCnet32 10/100 Ethernet (audigy driver) || e audio recordergudacity recording from
microphone
3c59x 3COM 3c509b 10/100 Ethernet « speech synthesizefetiva) reading a
el00 Intel Pro/100 Ethernet text file
epic100 SMC EtherPower 10/100 Ethernet o strategy gameHattle of Wesnoth

Sound | audigy SoundBlaster Audigy sound card Network o network sendrfetperj over TCP/IP

= (e1000 driver) || e network receiverfetperj over TCP/IP
emulOkl | SoundBlaster Live! sound card « network file transferscy) of a 1GB file

sb SoundBlaster 16 sound card « remote window managevic)

es1371 Ensoniq sound card o network analyzerdtherea) sniffing packets

cs4232 Crystal sound card Storage o compiler make/gckcompiling 788 C files

i810_audio | Intel 810 sound card (ide-disk driver) || e encoder (AME) converting 90 MB file .wav
Storage | ide-disk IDE disk to .mp3) i .

de-cd IDE CD-ROM e databaseniySQI) processing th&Visconsin

Benchmark

Table 1:The three classes of shadow drivers and the Linux Tgple 2: The applications used for evaluating shadow
drivers tested. We present results for the boldfaced drivers yivers.
only, as the others behaved similarly.

5.1 Performance
2. Fault-Tolerance.Can applications that use a device i
driver continue to run even after the driver fails?10 evaluate performance, we produced three OS configu-
We evaluate shadow driver recovery in the presend@tions based on the Linux 2.4.18 kernel:
of simple failures to show the benefits of shadow 7 | jnx-Nativeis the unmodified Linux kernel.
drivers compared to a system that provides failure
isolation alone. 2. Linux-Nooksis a version ofLinux-Nativethat in-

o)) cludes the Nooks fault isolation subsystem but no
3. Limitations. How reasonable is our assumption that 50w drivers. When a driver fails. this system

driver failures are fail-stop? Using synthetic fault in- restarts the driver but does not attempt to conceal
jection, we evaluate how likely it is that driver fail- its failure.

ures are fail-stop.
. .) 3. Linux-SDis a version ofLinux-Nooksthat includes
4. Code size.How much code is required for shadow our entire recovery subsystem, including the Nooks

drivers and their supporting infrastructure? We eval- 51t isolation subsystem, the shadow manager, and
uate the size and complexity of the shadow driver 4 three shadow drivers.

implementation to highlight the engineering cost in-
tegrating shadow drivers into an existing system. We selected a variety of common applications that
depend on our three device driver classes and measured
Based on a set of controlled application and driver extheir performance. The application names and behaviors
periments, our results show that shadow drivers: (1) imare shown in Tablgl2.
pose relatively little performance overhead, (2) keep ap- Different applications have different performance
plications running when a driver fails, (3) are limited bymetrics of interest. For the disk and sound drivers, we ran
a system’s ability to detect that a driver has failed, and (4he applications shown in Tall¢ 2 and measured elapsed
can be implemented with a modest amount of code. time. For the network driver, throughput is a more useful
The experiments were run on a 3 GHz Pentium 4 P@hetric; therefore, we ran the throughput-oriemetivork
with 1 GB of RAM and an 80 GB, 7200 RPM IDE disk sendand network receivebenchmarks. For all drivers,
drive. We built and tested three Linux shadow drivers fove also measured CPU utilization while the programs
three device-driver classes: network interface controlleran. All measurements were repeated several times and
sound card, and IDE storage device. To ensure that oghowed a variation of less than one percent.
generic shadow drivers worked consistently across device Figure[$ shows the performance ldfiux-Nooksand
driver implementations, we tested them on thirteen differtinux-SDrelative to Linux-Native Figure[¢ compares
ent Linux drivers, shown in Tabfg 1. Although we presenCPU utilization for execution of the same applications
detailed results for only one driver in each clas$Q0Q on the three OS versions. Both figures make clear that
audigy, andide-disR, behavior across all drivers was sim-shadow drivers impose only a small performance penalty
ilar. compared to running with no isolation at all, and
no additional penalty beyond that imposed by isolation

sound Relative Pe:;:,“::("‘:e sorage ply to CPU utilization, because there are not many cross-
R ings and not much code to slow down. For the most disk-
intensive of the IDE storage applications, tti@tabase
benchmark, the kernel and driver interact only 290 times
per second. However, each call into tide-diskdriver
results in substantial work to process a queue of disk re-
quests. The TLB-induced slowdown doubles the time
databasespent in the driver relative thinux-Nativeand
increases the application’s CPU utilization from 21% to
27%. On the other hand, theetwork sendenchmark

N
o
o

|

I

|

©
o
f
i
i

Relative Performance (%)
o] ©
(9] o
f
I
I

80 4+

g %g S Eg E? §§ 5 ;g 2 transmits 45,000 packets per second, causing 45,000 do-
S 83 g5 L8 8% 88 - s main crossings. The driver does little work for each
g © packet, but the overall impact is visible in Fig{ite 6, where
[OLinux-Native @ Linux-Nooks mLinux-SD] CPU utilization for this benchmark increases from 28%
to 57% with driver fault isolation.
Figure 5: Comparative application performance, relative In the case the actual shadowing, we see from a com-

to Linux-Native, for three configurations. The X-axis crosses parison of theLinux-Nooksand Linux-SD bars in Fig-

at 80%. ureg’% an{l}6 that the cost is small or negligible. As noted
CPU Utilization in Sectior[4.2, many passive-mode shadow-driver func-
Sound Network Storage tions are no-ops. As a result, the incremental passive-
100 — ; ; iR i
— mode performance cost over basic fault isolation is low
S 80 or unmeasurable in many cases.
F In summary, then, the overall performance penalty of
§ 60 shadow drivers during failure-free operation is low, sug-
= 0 gesting that s_haqlow drivers c_ould be used across a wide
g | range of applications and environments.
20 B
5.2 Fault-Tolerance
’ 8 ofF 82 Be B¢ B2 } g % 3 Regardless_ of performance, the prugial question. for
s 3 é 2% £5 § 8 § - 2 § shadow drivers is whether an application can continue
g © functioning following the failure of a device driver on

[DLinux-Native B Linux-Nooks B Linux-SD] which it relies. To answer this question, we tested 10
applications on the three configuratiorisnux-Native

Figure 6: Absolute CPU utilization by application for three Linux-Nooks and Linux-SD For the disk and sound
configurations. drivers, we again ran the applications shown in Table 2.
Because we were interested in the response to, not per-
formance, we substitutenktwork file copyremote win-
Gow managerandnetwork analyzefor the networking
Btnchmarks.
We simulated common bugs by injecting a software

system with shadow drivers averaged 99% of the syste
without, and was never worse than 97%.

. The low (_)verhead of s_hadow drlvers_ can pe explame%ult into a device driver while an application using
in terms of its two constituents: fault isolation and the, .. river was running. Because both Linux-Nooks
ghadowing itself.. As_m_entioned pre_/iously, .fault iSOIa'and Linux-SD depend on the same isolation and failure-
tion runs each driver in its own domain, leading to OVe€Tetection services, we differentiate their recovery capa-

head caused by domain crossings. Each domain Crossiiflies by simulating failures that are easily isolated and

nalyzed patches posted to the Linux Kernel Mailing
ist [24]. We found 31 patches that contained the strings
patch,” “driver,” and “crash” or “oops” (the Linux term

for a kernel fault) in their subject lines. Of the 31 patches,
Yve identified 11 that fix transient bugs (i.e., bugs that oc-

. X cur occasionally or only after a long delay from the trig-
Each invocation executes only a small amount of cod y y g y g

As a result. isolating the sound driver adds onlv negliais ering test). The most common cause of failure (three in-
Uit | Ny u v y neg Iglstances) was a missing check for a null pointer, often with

ing page tables, the Pentium 4 processor flushes the TL
resulting in TLB misses that can noticeably slow down,
drivers [33].

For example, the kernel calls the driver approximatel
1000 times per second when runniagdio recorder

Application Behavior

Device Driver Application Activity Linux-Native [Linux-Nooks [Linux-SD
Sound mp3 player CRASH MALFUNCTION v
(audigy driver) || audio recorder CRASH MALFUNCTION Vv
speech synthesizer CRASH Vv Vv
strategy game CRASH MALFUNCTION vV
Network network file transfer CRASH Vv Vv
(e1000 driver) || remote window manage CRASH Vv vV
network analyzer CRASH MALFUNCTION vV
IDE compiler CRASH CRASH Vv
(ide-disk driver) || encoder CRASH CRASH N4
database CRASH CRASH vV

Table 3:The observed behavior of several applications following the failure of the device drivers on which they rely. There
are three behaviors: a checkmark {/) indicates that the application continued to operate normally; CRASH indicates that
the application failed completely (i.e., it terminated); MALFUNCTION indicates that the application continued to run, but
with abnormal behavior.

a secondary cause of missing or broken synchronizatiothis.

We also found missing pointer initialization code (twoin- Some applications oninux-Nooksurvived the driver
stances) and bad calculations (two instances) that led failure but in a degraded form. For exampiep3 player
endless loops and buffer overruns. Because these faudtgdio recorderandstrategy gameontinued running, but
are detected by Nooks, they cause fail-stop failures diey lost their ability to input or output sound until the
Linux-NooksandLinux-SD user intervened. Similarlypetwork analyzerwhich in-

We injected a null-pointer dereference bug derivederfaces directly with the network device driver, lost its
from these patches into our three drivers. We ensureaability to receive packets once the driver was reloaded.
that the synthetic bug was transient by inserting the bug A few applications continued to function properly
into uncommon execution paths, such as code that haafter driver failure onLinux-Nooks One application,
dles unusual hardware conditions. These paths are raralyeech synthesizeincludes the code to reestablish its
executed, so we accelerated the occurrence of faults bgntext within an unreliable sound card driver. Two of the
also executing the bug at random intervals. The fault codeetwork applications survived ohinux-Nooksbecause
remains active in the driver during and after recovery. they access the network device driver through kernel ser-

Table[3 shows the three application behaviors weices (TCP/IP and sockets) that are themselves resilient
observed. When a driver failed, each application eito driver failures.
ther continued to run normally\(), failed completely Linux-SDrecovers transparently from disk driver fail-
(“CRASH?"), or continued to run but behaved abnormallyures. Recovery is possible because the IDE storage
(“MALFUNCTION?"). In the latter case, manual inter- shadow driver instance maintains the failing driver’s ini-
vention was typically required to reset or terminate théial state. During recovery the shadow copies back the
program. initial data and reuses the driver code, which is already

This table demonstrates that shadow drivéiisx- stored read-only in the kernel. In contralsipux-Nooks
SD) enable applications to continue running normallyillustrates the risk of circular dependencies from reboot-
even when device drivers fail. In contrast, all applicaing drivers. Following these failures, Nooks, which had
tions onLinux-Nativefailed when drivers failed. Most unloaded théde-diskdriver, was then required to reload
programs running ohinux-Nookdfailed or behaved ab- the driver off the IDE disk. The circularity could only be
normally, illustrating that Nooks’ kernel-focused recov-resolved by a system reboot. While a second (non-IDE)
ery system does not extend to applications. For exampldisk would mitigate this problem, few machines are con-
Nooks isolates the kernel from driver faults and rebootgured this way.

(unloads, reloads, and restarts) the driver. However, it In general, programs that directly depend on driver
lacks two key features of shadow drivers: (1) it does nattate but are unprepared to deal with its loss benefit the
advance the driver to its pre-fail state, and (2) it has nmost from shadow drivers. In contrast, those that do not
component to “pinch hit” for the failed driver during re- directly depend on driver state or are able to reconstruct
covery. As a resultl.inux-Nookshandles driver failures it when necessary benefit the least. Our experience sug-
by returning an error to the application, leaving it to re-gests that few applications are as fault-tolerartf@esech
cover by itself. Unfortunately, few applications can dasynthesizerWere future applications to be pushed in this

Fault Injection Outcomes

direction, software manufacturers would either need t
Sound Network Storage

develop custom recovery solutions on a per-applicatio 100
basis or find a general solution that could protect any aj
plication from the failure of a kernel device driver. Cost$ *°
is a barrier to the first approach. Shadow drivers are
path to the second.

78 44 96 76 38 58

o
o
I
\

Percent of Failu
S
o
‘

Application Behavior During Driver Recovery

N
o
I
\

Although shadow drivers can prevent application failure | ‘ ‘ ‘
they are not “real” device drivers and do not provide com mp3 player audio network network compiler database
plete device services. As a result, we often observed recorder _flle transfer _analyzer

slight timing disruption while the driver recovered. At
best, output was queued in the shadow driver. At worst,.) L) _
input was lost by the device. The length of the delay Waglgure 7: Results of fault-injection e?(perlments on Linux-

. SD. We show (1) the percentage of failures that are automat-
prlmarlly determ!neq by. the recov_erlng_ device driver It'ically detected by the fault isolation subsystem, and (2) the
self, _Wh'Ch' on initialization, must first discover, and ther‘bercentage of failures that shadow drivers successfully re-
configure, the hardware. covered. The total number of failures experienced by each

Few device drivers implement fast reconﬁguratiOnappncation is shown at the top of the chart.
which can lead to brief recovery delays. For example,
the temporary loss of the1000network device driver
prevented applications from receiving packets for abodfon-fail-stop Failures

five secondE} I.:’rogr.ams.using files stored on the diSkIf driver failures are not fail stop, then shadow drivers
managed by thele-diskdriver stalled for about four sec- may not be useful. To evaluate whether device driver fail-

ondsddurlngdrec%v%ry. In g_ontrast, ;he ngr(rjn_ally smootty o5 are indeed fail-stop, we performed large-scale fault-
sounds produced by theudigy sound card driver Were i tion tests of our drivers and applications running on
mtgrrupted by a pause ,Of abqut (_)ne—tenth _Of one SeconIgnux-SD. For each driver and application combination,

which sounded like a slight click in the audio stream. | o0 350 fault-injection triad. In total, we ran 2100

fals across the three drivers and six applications. Be-

on the application. Streaming applications may becomg,een trials, we reset the system and reloaded the driver.
unacceptably “jittery” during recovery. Those processing each trial, we injected five random errors into the
input data in real-time might become lossy. Others magr

‘ ODetected M Recovered ‘

imol ds | . di river while the application was using it. We ensured the
simply run a few secon $ onger in response to a dis rors were transient by removing them during recovery.
that appears to be operating more sluggishly than usu%!fter injection, we visually observed the impact on the

In any event, a short delay during recovery is best corgpjication and the system to determine whether a fail-
sidered in light of the alternative: application and systeMya or recovery had occurred. For each driver, we tested

failure. two applications with significantly different usage scenar-
ios. For example, we chose one sound-playing applica-
tion (mp3 playey and one sound-recording application
The previous section assumed that failures were fail-stofaudio recordey.

However, driver failures experienced in deployed systems If we observed a failure, we then assessed the trial on
may exhibit a wider variety of behaviors. For examiwo criteria: whether the fault was detected, and whether
ple, a driver may corrupt state in the application, kerthe shadow driver could mask the failure and subsequent
nel, or device without being detected. In this situationfecovery from the application. For undetected failures,
shadow drivers may not be able to recover or mask faiwe triggered recovery manually. Note that a user may
ures from applications. This section uses fault injectio@bserve a failure that an application does not, for exam-
experiments in an attempt to generate faults that may npte, by testing the application’s responsiveness.

be fail-stop. Figure[T shows the results of our experiments. For
each application, we show the percentage of failures
that the Nooks subsystem detected and the percentage of
failures from which shadow drivers correctly recovered.
Only 18% of the injected faults caused a visible failure.

5.3 Limits to Recovery

2This driver is particularly slow at recovery. The other network
drivers we tested recovered in less than a second.

3For details on the fault injector sée [33].

Shadow Driver | Device Driver Shadowed || Class Size Class Size
Driver Class|| Lines of Code Lines of Code # of Drivers | Lines of Code
Sound 666 7,381 audigy) 48 118,981
Network 198 13,577 €1000Q 190 264,500
Storage 321 5,358 {de-disk 8 29,000

Table 4:Size and quantity of shadows and the drivers they shadow.

In our tests, 390 failures occurred across all applicaires. When a failure recurs during recovery, the sequence
tions. The sytem automatically detected 65% of the failef shadow driver recovery events creates a detailed re-
ures. In every one of these cases, shadow drivers wagpeoduction scenario that aids diagnosis. This record of
able to mask the failure and facilitate driver recovery. Theecovery contains the driver's calls into the kernel, re-
system failed to detect 35% of the failures. In these caseguests to configure the driver, and 1/O requests that were
we manually triggered recovery. Shadow drivers recoyending at the time of failure. This information enables a
ered from nearly all of these failures (127 out of 135)software engineer to find and fix the offending bug more
Recovery was unsuccessful in the remaining 8 cases befficiently.
cause either the system had crashed (5 cases) or the driver
had corrupted the application beyond the possibility of re5.4 Code Size

covery (3 cases). Itis p(_)ssmle that recovery wou_ld ha.v‘lehe preceding sections evaluated #féiciencyand ef-
succeeded had these failures been detected earlier with a_.

. fectivenes®sf shadow drivers. This section examines the
better failure detector.

L . complexityof shadow drivers in terms of code size, which
Across all applications and drivers, we found three :

. . X can serve as a proxy for complexity.
major causes of undetected failure. First, the system di Table[3 shows, for each class, the size in lines of

not detect application hangs caused bY VO requests thé%de of the shadow driver for the class. For compari-
never completed. Second, the system did not detect erraors

.) .) . sOon, we show the size of the driver from the class that
in the interactions between the device and the driver, e.g.) .

. . . IWe tested and the total number and cumulative size of
incorrectly copying sound data to a sound card. Thir

. . existing Linux device drivers in that class in the 2.4.18
the system did not detect certain bad parameters, su o S
. . ernel. The total code size is an indication of the lever-
as incorrect result codes or data values. Detecting thesé . , .
. . age gained through the shadow’s class-driver structure.
three error conditions would require that the system bett ST
) . urthermore, the table shows that a shadow driver is sig-
understand the semantics of each driver class. For exammz . v smaller than the device driver it shadows. For
ple, 68% of the sound driver failures wittudio recorder y '

- I i 0,
went undetected. This application receives data from th%xample, our sound-card shadow driver is only 9% of the

S . L o . size of theaudigydevice driver it shadows. The IDE stor-
driver in real time and is highly sensitive to driver output. . .)
. . ge shadow is only 6% percent of the size of the Linux
A small error or delay in the results of a driver reques

may cause the application to stop recording or record tng-diskdevice driver.
y pp P 9 The Nooks driver fault isolation subsystem we built

same sample repeatedly. . .
P P y .. upon contains about 23,000 lines of code. In total, we
Our results demonstrate a need for class-based failur !
S T added about 3300 lines of new code to Nooks to support
detectors that can detect violations of the driver interface . .
) . - . .our three class drivers. Otherwise, we made no changes
to achieve high levels of reliability. However, driver fail-

to the remainder of the Linux kernel. Shadow drivers re-

ures need not be detected quickly to be fail-stop. Thereuired the addition of approximately 600 lines of code for

was a significant delay between the failure and the su o .
sequent manual recovery in our tests, and yet the app e shadow managetr, 800 lines of common code shared
’ y all shadow drivers, and another 750 lines of code for

cations survived the vast majority of undetected fallures.eneral utilities. Of the 177 taps we inserted, only 31

Thus, even a slow failure detector can be effective at i e) ;
, T - required actual code; the remainder were no-ops.
proving application reliability.

) . 5.5 Summary
Non-transient Failures

_ _ _ This section examined the performance, fault-tolerance,
Shadow drivers can recover from transient failures onlyimits, and code size of shadow drivers. Our re-
In contrast, deterministic failures may recur during recovsyjts demonstrate that: (1) the performance overhead of
ery when the shadow configures the driver. While unablgnadow drivers during normal operation is small, partic-
to recover, shadow drivers are still useful for these faily|arly when compared to a purely isolating system, (2)

applications that failed in any form odninux-Nativeor
Linux-Nooksran normally with shadow drivers, (3) the
reliability provided by shadow drivers is limited by the [10]

system’s ability to detect failures, and (4) shadow drivers
are small, even relative to single device driver. Overall
these results indicate that shadow drivers have the pot

tial to significantly improve the reliability of applications

Jad]

on modern operating systems with only modest cost.

6 Conclusions

[12]

Improving the reliability of modern systems demands that
we increase their resilience. To this end, we designed and

implementedshadow driverswhich mask device driver

failures from both the operating system and applications.
Our experience shows that shadow drivers improvg3]

application reliability, by concealing a driver’s failure
while facilitating recovery. A single shadow driver can

enable recovery for an entire class of device drivers.
Shadow drivers are also efficient, imposing little perfor-

ing no code changes to existing drivers.

Acknowledgments

[15]

This work was supported in part by the National Sci-
ence Foundation under grants ITR-0085670 and CCR-
0121341. We would also like to thank our shepherd, Peter

Chen, who provided many valuable insights.

References
[1] S. Arthur.

Fault resilient drivers for Longhorn server.

[16]

[17]

Technical Report WinHec 2004 Presentation DW04012(18]

Microsoft Corporation, May 2004.
(2]

(3]

Proceedings of the USENIX Mach Symposi@ut. 1990.

tees for general multi-tier applications. International
Conference on Data Engineering002. IEEE.

[4] J.F. Bartlett. A NonStop kernel. IRroceedings of the 8th
ACM Symposium on Operating Systems Princijplec.
1981.

[5] A. Borg, W. Balu, W. Graetsch, F. Herrmann, and

W. Oberle. Fault tolerance under UNIXACM Trans-
actions on Computer Systeni$l):1-24, Feb. 1989.

D. P. Bovet and M. Cesati. Inside the Linux Kernel
O'Reilly & Associates, 2002.

(6]

O. Babaglu. Fault-tolerant computing based on Mach. In

[19]

R. Barga, D. Lomet, and G. Weikum. Recovery guaran-

[20]

[21]

[22]

[7] T.C. Bressoud. TFT: A software system for application-[23]

transparent fault tolerance. Proceedings of the 28th
Symposium on Fault-Tolerant Computindune 1998.
IEEE.

[8] T. C. Bressoud and F. B. Schneider.

14(1):80-107, Feb. 1996.
9]

the reboot sledgehammer into a scalpel.Phaceedings

[24]

Hypervisor-based

fault tolerance ACM Transactions on Computer Systems
25] D. E. Lowell, S. Chandra, and P. M. Chen.

G. Candea and A. Fox. Recursive restartability: Turning

of the Eighth IEEE Workshop on Hot Topics in Operating
SystemsMay 2001.

S. Chandra and P. M. Chen. How fail-stop are faulty pro-
grams? InProceedings of the 28th Symposium on Fault-
Tolerant ComputingJune 1998. IEEE.

S. Chandra and P. M. Chen. Whither generic recovery
from application faults? A fault study using open-source
software. InProceedings of the 2000 IEEE International
Conference on Dependable Systems and Netwdtkse
2000.

P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Ra-
jamani, and D. Lowell. The Rio file cache: Surviving
operating system crashes. Pnoceedings of the Seventh
ACM International Conference on Architectural Support
for Programming Languages and Operating SysteD.
1996.

T. Chiueh, G. Venkitachalam, and P. Pradhan. Integrat-
ing segmentation and paging protection for safe, efficient
and transparent software extensionsP?taceedings of the
17th ACM Symposium on Operating Systems Principles
Dec. 1999.

mance degradation. Finally, they are transparent, requit4l A- Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An

empirical study of operating system errors. Rroceed-
ings of the 18th ACM Symposium on Operating Systems
Principles Oct. 2001.

D. R. Engler, M. F. Kaashoek, and J. O. Jr. Exokefnel:
an operating system architecture for application-level re-
source management. IRroceedings of the 15th ACM
Symposium on Operating Systems Principlsc. 1995.

W. Feng. Making a case for efficient supercomputing.
ACM Queuel(7), Oct. 2003.

B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. The Flux OSKit: a substrate for OS language
and research. IRroceedings of the 16th ACM Symposium
on Operating Systems Principle3ct. 1997.

J. Gray.| Why do computers stop and what can be done
aboutit? Technical Report 85-7, Tandem Computers, June
1985.

J. Gray and A. ReuteiTransaction Processing: Concepts
and TechniguesMorgan Kaufmann, 1993.

S. M. Hand. Self-paging in the Nemesis operating system.
In Proceedings of the 3rd USENIX Symposium on Operat-
ing Systems Design and Implementatibab. 1999.

D. Jewett. Integrity S2: A fault-tolerant Unix platform.
In Proceedings of the 21st Symposium on Fault-Tolerant
Computing June 1991. IEEE.

M. J. Kilgard, D. Blythe, and D. Hohn. System support
for OpenGL direct rendering. IRroceedings of Graphics
Interface May 1995. Canadian Human-Computer Com-
munications Society.

J. Liedtke.| Onu-kernel constructign. IfProceedings of
the 15th ACM Symposium on Operating Systems Princi-
ples Dec. 1995.

Linux Kernel Mailing List. Available at|http:
/lwww.uwsg.indiana.edu/hypermail/

linux/kernel

Exploring
failure transparency and the limits of generic recovery. In
Proceedings of the 4th USENIX Symposium on Operating

http://www.acm.org/pubs/articles/proceedings/ops/224056/p251-engler/p251-engler.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p251-engler/p251-engler.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p251-engler/p251-engler.pdf
http://www.hpl.hp.com/techreports/tandem/TR-85.7.html
http://www.hpl.hp.com/techreports/tandem/TR-85.7.html
http://www.acm.org/pubs/articles/proceedings/ops/224056/p237-liedtke/p237-liedtke.pdf
http://www.uwsg.indiana.edu/hypermail/linux/kernel
http://www.uwsg.indiana.edu/hypermail/linux/kernel
http://www.uwsg.indiana.edu/hypermail/linux/kernel

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Systems Design and Implementati@gt. 2000.

D. E. Lowell and P. M. Chen. Discount checking: Trans-
parent, low-overhead recovery for general applications.
Technical Report CSE-TR-410-99, University of Michi-
gan, Nov. 1998.

G. Muller, M. Baratre, N. Peyrouze, and B. Rochat.
Lessons from FTM: An experiment in design and imple-
mentation of a low-cost fault-tolerant systelBEE Trans-
actions on Software Engineering5(2):332-339, June
1996.

D. Patterson, A. Brown, P. Broadwell, G. Candea,
M. Chen, J. Cutler, P. Enriquez, A. Fox, Ey¢yman,

M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff,
J. Traupman, and N. Treuhaft. Recovery-Oriented Com-
puting (ROC): Motivation, definition, techniques, and
case studies. Technical Report CSD-02-1175, UC Berke-
ley Computer Science, Mar. 2002.

J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent checkpointing under Unix.Rroceedings of
the 1995 Winter USENIX Conferendan. 1995.

R. Short, Vice President of Windows Core Technology,
Microsoft Corp. private communication, 2003.

M. Russinovich, Z. Segall, and D. Siewiorek. Applica-
tion transparent fault management in Fault Tolerant Mach.
In Proceedings of the 23rd Symposium on Fault-Tolerant
Computing June 1993. IEEE.

M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
with disaster: Surviving misbehaved kernel extensions. In
Proceedings of the 2nd USENIX Symposium on Operating
Systems Design and Implementati@gct. 1996.

M. M. Swift, B. N. Bershad, and H. M. Levy. Improv-
ing the reliability of commodity operating systen&CM
Transactions on Computer Syster22(4), Nov. 2004.

V. Orgovan, Systems Crash Analyst, Windows Core OS
Group, Microsoft Corp. private communication, 2004.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. Rroceedings of
the 14th ACM Symposium on Operating Systems Princi-
ples Dec. 1993.

R. S. Wahbe and S. E. Lucco. Methods for safe and effi-
cient implementation of virtual machines, June 1998. US
Patent 5,761,477.

J. A. Whittaker. Software’s invisible userdEEE Soft-
ware, 18(3):84-88, May 2001.

W. A. Wulf. Reliable hardware-software architecture. In
Proceedings of the International Conference on Reliable
Software 1975.

M. Young, M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, and A. Tevanian. Mach: A new kernel founda-
tion for UNIX development. IrProceedings of the 1986
Summer USENIX Conferenchine 1986.

http://www.usenix.org/publications/library/proceedings/osdi96/full_papers/seltzer/seltzer.ps
http://www.usenix.org/publications/library/proceedings/osdi96/full_papers/seltzer/seltzer.ps
http://www.acm.org/pubs/articles/proceedings/ops/168619/p203-wahbe/p203-wahbe.pdf

	Introduction
	Related Work
	Device Drivers and Shadow Driver Design
	Driver Faults
	Shadow Drivers
	Taps
	The Shadow Manager
	Summary

	Shadow Driver Implementation
	General Infrastructure
	Passive-Mode Monitoring
	Active-Mode Recovery
	Stopping the Failed Driver
	Reinitializing the Driver
	Transferring State to the New Driver

	Active-Mode Proxying of Kernel Requests
	Limitations
	Summary

	Evaluation
	Performance
	Fault-Tolerance
	Limits to Recovery
	Code Size
	Summary

	Conclusions

