
Fine-Grained Fault Tolerance
using Device Checkpoints

Asim Kadav
with Matthew Renzelmann and Michael M. Swift

University of Wisconsin-Madison

Thursday, March 7, 13

The (old) elephant in the room

2

device
drivers

3rd party developers

+

OS
kernel

Thursday, March 7, 13

The (old) elephant in the room

2

device
drivers

3rd party developers

+

OS
kernel

Thursday, March 7, 13

The (old) elephant in the room

2

device
drivers

3rd party developers

+

OS
kernel

Recipe
for

disaster

Thursday, March 7, 13

Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

New functionality Shadow driver migration [OSR09] 1 1 1

RevNIC [Eurosys 10] 1 1 1

Reliability Nooks [SOSP 03] 6 1 2

XFI [OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Static analysis tools Windows SDV [Eurosys 06] All All All

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

3

Past work mostly looks at detection and isolation

Thursday, March 7, 13

Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

New functionality Shadow driver migration [OSR09] 1 1 1

RevNIC [Eurosys 10] 1 1 1

Reliability Nooks [SOSP 03] 6 1 2

XFI [OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Static analysis tools Windows SDV [Eurosys 06] All All All

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

3

Large kernel subsystems and validity of few device types
result in limited adoption of research solutions

Past work mostly looks at detection and isolation

Thursday, March 7, 13

Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

New functionality Shadow driver migration [OSR09] 1 1 1

RevNIC [Eurosys 10] 1 1 1

Reliability Nooks [SOSP 03] 6 1 2

XFI [OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Static analysis tools Windows SDV [Eurosys 06] All All All

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

3

Limited kernel changes + Applicable to lots of drivers =>
Real Impact

Past work mostly looks at detection and isolation

Thursday, March 7, 13

Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

New functionality Shadow driver migration [OSR09] 1 1 1

RevNIC [Eurosys 10] 1 1 1

Reliability Nooks [SOSP 03] 6 1 2

XFI [OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Static analysis tools Windows SDV [Eurosys 06] All All All

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

3

Limited kernel changes + Applicable to lots of drivers =>
Real Impact

Goal: Improve recovery with complete solutions
that can be applied to many drivers

Past work mostly looks at detection and isolation

Thursday, March 7, 13

State of the art in recovery: Shadow drivers

• Carburizer calls generic recovery
service if check fails

• Low cost transparent recovery
★ Based on shadow drivers
★ Records state of driver at all times
★ Transparently restarts and replays

recorded state on failure

Shadow
Driver

Device
Driver

Device

Taps

Driver-Kernel
Interface

4

Swift [OSDI ’04]

Thursday, March 7, 13

Recovery Performance: Device initialization is slow

5

Module
Registration

Allocate device
structures

Map BAR
and I/O ports

Register device
operations

Detect chipset
capabilities

Cold boot hardware,
flash device memory

Perform EEPROM
checsumming

Set chipset
specific ops

Optional self
test on boot

Allocate driver
structures

Configure device to
working state

Device ready
for requests

Allocate device structures

Module registration

Map BAR and I/O ports

Register device operations

Detect chipset capabilities

Self test?
Self test on boot

Cold boot the device

Verify EEPROM checksum

Set chipset specific ops

Allocate driver structures

Configure device

Device ready
for requests★ Multi-second device probe

★ Identify device
★ Cold boot device
★ Setup device/driver

structures
★ Configuration/Self-test

Thursday, March 7, 13

Recovery Performance: Device initialization is slow

5

Module
Registration

Allocate device
structures

Map BAR
and I/O ports

Register device
operations

Detect chipset
capabilities

Cold boot hardware,
flash device memory

Perform EEPROM
checsumming

Set chipset
specific ops

Optional self
test on boot

Allocate driver
structures

Configure device to
working state

Device ready
for requests

Allocate device structures

Module registration

Map BAR and I/O ports

Register device operations

Detect chipset capabilities

Self test?
Self test on boot

Cold boot the device

Verify EEPROM checksum

Set chipset specific ops

Allocate driver structures

Configure device

Device ready
for requests★ Multi-second device probe

★ Identify device
★ Cold boot device
★ Setup device/driver

structures
★ Configuration/Self-test

★ What does it hurt?
★ Fault tolerance: Driver recovery
★ Virtualization: Live migration,

cloning, consolidation
★ OS functions: Boot, upgrade,

NVM checkpoints

Thursday, March 7, 13

Driver Code
Characteristics

6
★ “Understanding Modern Device Drivers” ASPLOS 2012

Thursday, March 7, 13

uwb
net

in!niband
atm
scsi
mtd
md
ide
block
ata

watchdog
video
tty

sound
serial
pnp

platform
parport
misc

message
media
leds
isdn
input
hwmon
hid
gpu
gpio
!rewire
edac
crypto
char
cdrom
bluetooth
acpi

init cleanup ioctl con!g power error proc core intr

0

10

20

30

40

50

Percent-
age of LOC

uwb
net

in!niband
atm
scsi
mtd
md
ide
block
ata

watchdog
video
tty

sound
serial
pnp

platform
parport
misc

message
media
leds
isdn
input
hwmon
hid
gpu
gpio
!rewire
edac
crypto
char
cdrom
bluetooth
acpi

init cleanup ioctl con!g power error proc core intr

0

10

20

30

40

50

Percent-
age of LOCch

ar
 d

riv
er

s
bl

oc
k

dr
iv

er
s

ne
t d

riv
er

s

Driver Code
Characteristics

6
★ “Understanding Modern Device Drivers” ASPLOS 2012

Thursday, March 7, 13

uwb
net

in!niband
atm
scsi
mtd
md
ide
block
ata

watchdog
video
tty

sound
serial
pnp

platform
parport
misc

message
media
leds
isdn
input
hwmon
hid
gpu
gpio
!rewire
edac
crypto
char
cdrom
bluetooth
acpi

init cleanup ioctl con!g power error proc core intr

0

10

20

30

40

50

Percent-
age of LOC

uwb
net

in!niband
atm
scsi
mtd
md
ide
block
ata

watchdog
video
tty

sound
serial
pnp

platform
parport
misc

message
media
leds
isdn
input
hwmon
hid
gpu
gpio
!rewire
edac
crypto
char
cdrom
bluetooth
acpi

init cleanup ioctl con!g power error proc core intr

0

10

20

30

40

50

Percent-
age of LOCch

ar
 d

riv
er

s
bl

oc
k

dr
iv

er
s

ne
t d

riv
er

s

★Initialization/cleanup – 36%
★Core I/O & interrupts – 23%
★Device configuration – 15%
★Power management – 7.4%
★Device ioctl – 6.2%

Driver Code
Characteristics

6
★ “Understanding Modern Device Drivers” ASPLOS 2012

Thursday, March 7, 13

uwb
net

in!niband
atm
scsi
mtd
md
ide
block
ata

watchdog
video
tty

sound
serial
pnp

platform
parport
misc

message
media
leds
isdn
input
hwmon
hid
gpu
gpio
!rewire
edac
crypto
char
cdrom
bluetooth
acpi

init cleanup ioctl con!g power error proc core intr

0

10

20

30

40

50

Percent-
age of LOC

uwb
net

in!niband
atm
scsi
mtd
md
ide
block
ata

watchdog
video
tty

sound
serial
pnp

platform
parport
misc

message
media
leds
isdn
input
hwmon
hid
gpu
gpio
!rewire
edac
crypto
char
cdrom
bluetooth
acpi

init cleanup ioctl con!g power error proc core intr

0

10

20

30

40

50

Percent-
age of LOCch

ar
 d

riv
er

s
bl

oc
k

dr
iv

er
s

ne
t d

riv
er

s

★Initialization/cleanup – 36%
★Core I/O & interrupts – 23%
★Device configuration – 15%
★Power management – 7.4%
★Device ioctl – 6.2%

Driver Code
Characteristics

Initialization code dominates driver
LOC and adds to complexity

6
★ “Understanding Modern Device Drivers” ASPLOS 2012

Thursday, March 7, 13

Recovery works by interposing class defined entry points

7

★ Class definition includes:
★ Callbacks registered with the bus,

device and kernel subsystem

network
driver

bus

net device
subsystem

kernel

probe

xmit

config
network

card

Thursday, March 7, 13

Recovery works by interposing class defined entry points

7

How many drivers follow class behavior?

★ Class definition includes:
★ Callbacks registered with the bus,

device and kernel subsystem

network
driver

bus

net device
subsystem

kernel

probe

xmit

config
network

card

Thursday, March 7, 13

Restart/replay doesn’t work with all drivers

★ Non-class behavior stems from:
- Load time parameters, procfs and sysfs interactions, unique ioctls

...	
 qlcnic_sysfs_write_esw_config	
 (...)	
 	
 {
	
 	
 ...
	
 switch	
 (esw_cfg[i].op_mode)	
 {
	
 case	
 QLCNIC_PORT_DEFAULTS:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 qlcnic_set_eswitch_...(...,&esw_cfg[i]);
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ...
	
 case	
 QLCNIC_ADD_VLAN:
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 qlcnic_set_vlan_config(...,&esw_cfg[i]);
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ...
	
 case	
 QLCNIC_DEL_VLAN:
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 esw_cfg[i].vlan_id	
 =	
 0;
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 qlcnic_set_vlan_config(...,&esw_cfg[i]);
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ...
Drivers/net/qlcnic/qlcnic_main.c:	
 Qlogic	
 driver(network	
 class)

8★ “Understanding Modern Device Drivers” ASPLOS 2012

Thursday, March 7, 13

Restart/replay doesn’t work with all drivers

★ Non-class behavior stems from:
- Load time parameters, procfs and sysfs interactions, unique ioctls

8

★ Results as measured by our analyses:
★ 36% of drivers use load time parameters
★ 16% of drivers use proc /sysfs support

★ Overall, 44% of drivers do not conform to class
behavior and recovery will not work correctly for
these drivers

★ “Understanding Modern Device Drivers” ASPLOS 2012

Thursday, March 7, 13

Limitations of restart/replay recovery

Shadow
Driver

Device
Driver

Device

Taps

Driver-Kernel
Interface

9

★ Device save/restore limited to
restart/replay
★ Slow: Device initialization is

complex (multiple seconds)
★ Incomplete: Unique device

semantics not captured
★ Hard: Need to be written for

every class of drivers
★ Large changes: Introduces new

large kernel subsystems

Thursday, March 7, 13

Limitations of restart/replay recovery

Shadow
Driver

Device
Driver

Device

Taps

Driver-Kernel
Interface

9

★ Device save/restore limited to
restart/replay
★ Slow: Device initialization is

complex (multiple seconds)
★ Incomplete: Unique device

semantics not captured
★ Hard: Need to be written for

every class of drivers
★ Large changes: Introduces new

large kernel subsystems

Checkpoint/restore of device and driver state
removes the need to reboot device and replay state

Thursday, March 7, 13

Fine-Grained Fault Tolerance (FGFT)

10

Goal: Fault isolation and recovery system based on “pay as
you go” failure model

 Fine-Grained Isolation

★ Ability to run select entry points as transactions

Checkpoint based recovery
★ Provides fast and correct recovery semantics

★ Requires incremental changes to drivers and has
low overhead

Thursday, March 7, 13

Outline

11

Introduction

Conclusion

Fine-grained isolation

Checkpoint based recovery

Thursday, March 7, 13

Outline

12

Introduction

Conclusion

Fine-grained isolation

Checkpoint based recovery

Thursday, March 7, 13

FGFT overview

If	
 (c==0)	
 {
.
print	
 (“Driver	

init”);
}
.
.

Driver with
checkpoint support

Static modifications
13

Thursday, March 7, 13

FGFT overview

If	
 (c==0)	
 {
.
print	
 (“Driver	

init”);
}
.
.

Driver with
checkpoint support

Static modifications
13

User supplied
annotations

Source transformation
(adds driver transactions)

Thursday, March 7, 13

FGFT overview

If	
 (c==0)	
 {
.
print	
 (“Driver	

init”);
}
.
.

Driver with
checkpoint support

Static modifications
13

If	
 (c==0)	
 {
.
print	
 (“Driver	

init”);
}
.
.

If	
 (c==0)	
 {
.
print	
 (“Driver	

init”);
}
.
.

User supplied
annotations

Source transformation
(adds driver transactions)

Main driver
module

SFI driver
module

SFI = software fault
isolated

Thursday, March 7, 13

FGFT overview

If	
 (c==0)	
 {
.
print	
 (“Driver	

init”);
}
.
.

Driver with
checkpoint support

Static modifications Run-time support
13

If	
 (c==0)	
 {
.
print	
 (“Driver	

init”);
}
.
.

If	
 (c==0)	
 {
.
print	
 (“Driver	

init”);
}
.
.

User supplied
annotations

Source transformation
(adds driver transactions)

Main driver
module

SFI driver
module

SFI = software fault
isolated

Thursday, March 7, 13

FGFT overview

If	
 (c==0)	
 {
.
print	
 (“Driver	

init”);
}
.
.

Driver with
checkpoint support

Communication
and recovery

support

Static modifications Run-time support
13

If	
 (c==0)	
 {
.
print	
 (“Driver	

init”);
}
.
.

If	
 (c==0)	
 {
.
print	
 (“Driver	

init”);
}
.
.

1200 LOC

User supplied
annotations

Source transformation
(adds driver transactions)

Object tracking

Marshaling/
Demarshaling

Kernel
undo log

Main driver
module

SFI driver
module

SFI = software fault
isolated

Thursday, March 7, 13

Fault model in FGFT

14

network
driver

network
card

probe

xmit

config

★ Can be applied to untested code, statically and dynamically
detected suspicious entry points

★ Detect and recover from:
★ Memory errors like NULL pointer accesses
★ Structural errors like malformed structures
★ Processor exceptions like divide by zero, stack corruption

Thursday, March 7, 13

Fault model in FGFT

14

★ Provide fault tolerance to specific driver entry points

network
driver

network
card

probe

xmit

config

★ Can be applied to untested code, statically and dynamically
detected suspicious entry points

★ Detect and recover from:
★ Memory errors like NULL pointer accesses
★ Structural errors like malformed structures
★ Processor exceptions like divide by zero, stack corruption

Thursday, March 7, 13

Transactional support through code generation

15

★ Generate code to run driver invocations on a separate
stack with a copy of parameters

★ Reduce copy overhead by copying only referenced fields
in driver and kernel structures to a range table

★ Instrument all memory references in SFI module to
compare accesses against copied fields in range table

Range Table

SFI
network

driver

network
driver

get ringparam

netdev->priv->tx_ring
netdev->priv->rx_ring

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Thursday, March 7, 13

Resource access during isolated execution

16

★ Device registers and I/O memory
★ Grant drivers full access to devices
★ Restore device checkpoint in case of failure

★ Locks: Spinlocks and semaphores
★ Grants read access to locks
★ Maintain kernel log of locks acquired
★ Release locks at the end of entry point/failures

★ Kernel resources like memory
★ All allocations generate range table entry
★ Maintain kernel log of all acquired resources
★ Free resources on failures

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Range Tablemalloc	
 ()

Thursday, March 7, 13

Outline

17

Introduction

Conclusion

Fine-grained isolation

Checkpoint based recovery

Thursday, March 7, 13

Checkpointing drivers is hard
★Existing mechanisms limited to capturing memory state

18

network
driver

network
card

Thursday, March 7, 13

Checkpointing drivers is hard
★Existing mechanisms limited to capturing memory state

18

network
driver

network
card

checkpoint

Thursday, March 7, 13

Checkpointing drivers is hard
★Existing mechanisms limited to capturing memory state

18

network
driver

network
card

checkpoint

★ Device state is not captured
★ Device configuration space

Thursday, March 7, 13

Checkpointing drivers is hard
★Existing mechanisms limited to capturing memory state

18

network
driver

network
card

checkpoint

★ Device state is not captured
★ Device configuration space
★ Internal device registers and counters

Thursday, March 7, 13

Checkpointing drivers is hard
★Existing mechanisms limited to capturing memory state

18

network
driver

network
card

checkpoint

★ Device state is not captured
★ Device configuration space
★ Internal device registers and counters
★ Memory buffer addresses used for DMA

Thursday, March 7, 13

Checkpointing drivers is hard
★Existing mechanisms limited to capturing memory state

18

network
driver

network
card

checkpoint

★ Device state is not captured
★ Device configuration space
★ Internal device registers and counters
★ Memory buffer addresses used for DMA
★ Unique for every class, bus and vendor

Thursday, March 7, 13

Device checkpoint/restore from PM code

19

Save config state

Save register state

Disable device

Copy-out s/w state

Suspend device

Restore config state

Restore register state

Restore s/w state &
reset

Re-attach/Enable
device

Device Ready

Suspend Resume

Thursday, March 7, 13

Device checkpoint/restore from PM code

19

Save config state

Save register state

Copy-out s/w state

Suspend device

Restore config state

Restore register state

Restore s/w state &
reset

Re-attach/Enable
device

Device Ready

Suspend Resume

Thursday, March 7, 13

Device checkpoint/restore from PM code

19

Save config state

Save register state

Copy-out s/w state

Restore config state

Restore register state

Restore s/w state &
reset

Re-attach/Enable
device

Device Ready

Suspend Resume

Thursday, March 7, 13

Device checkpoint/restore from PM code

19

Save config state

Save register state

Copy-out s/w state

Restore config state

Restore register state

Restore s/w state &
reset

Re-attach/Enable
device

Device Ready

Suspend Resume

Thursday, March 7, 13

Device checkpoint/restore from PM code

19

Save config state

Save register state

Copy-out s/w state

Restore config state

Restore register state

Restore s/w state &
reset

Re-attach/Enable
device

Device Ready

Resume Checkpoint

Thursday, March 7, 13

Device checkpoint/restore from PM code

19

Save config state

Save register state

Copy-out s/w state

Restore config state

Restore register state

Restore s/w state &
reset

Re-attach/Enable
device

Resume Checkpoint

Thursday, March 7, 13

Device checkpoint/restore from PM code

19

Save config state

Save register state

Copy-out s/w state

Restore config state

Restore register state

Restore s/w state &
reset

Resume Checkpoint

Thursday, March 7, 13

Device checkpoint/restore from PM code

19

Save config state

Save register state

Copy-out s/w state

Restore config state

Restore register state

Restore s/w state &
reset

RestoreCheckpoint

Thursday, March 7, 13

Device checkpoint/restore from PM code

19

Save config state

Save register state

Copy-out s/w state

Restore config state

Restore register state

Restore s/w state &
reset

Suspend/resume code provides device
checkpoint functionality

RestoreCheckpoint

Thursday, March 7, 13

Intuition with power management

20

Thursday, March 7, 13

Intuition with power management

20

★ Intuition: Power management code captures device
specific state for every driver
★ Our study: Present in 76% of all common classes

Thursday, March 7, 13

Intuition with power management

20

★ Intuition: Power management code captures device
specific state for every driver
★ Our study: Present in 76% of all common classes

Linux
driver Device

Thursday, March 7, 13

Intuition with power management

20

★ Intuition: Power management code captures device
specific state for every driver
★ Our study: Present in 76% of all common classes

Linux
driver Device

 RAM

Thursday, March 7, 13

Intuition with power management

20

★ Intuition: Power management code captures device
specific state for every driver
★ Our study: Present in 76% of all common classes

Linux
driver Device

 RAM

suspend()

Thursday, March 7, 13

Intuition with power management

20

★ Intuition: Power management code captures device
specific state for every driver
★ Our study: Present in 76% of all common classes

Linux
driver Device

 RAM

suspend()
resume()

Thursday, March 7, 13

Intuition with power management

20

★ Intuition: Power management code captures device
specific state for every driver
★ Our study: Present in 76% of all common classes

★ Refactor power management code for device checkpoints
★ Correct: Developer captures unique device semantics
★ Fast: Avoids probe and latency critical for applications

Linux
driver Device

 RAM

suspend()
resume()

Thursday, March 7, 13

Synergy of isolation and recovery

21

★ Goal: Improve driver recovery with minor changes to drivers

★ Solution: Run drivers as transactions using device checkpoints

Thursday, March 7, 13

Synergy of isolation and recovery

21

★ Goal: Improve driver recovery with minor changes to drivers

★ Solution: Run drivers as transactions using device checkpoints

C R

★ Developers export
checkpoint/restore
in drivers

Device state

Thursday, March 7, 13

Synergy of isolation and recovery

21

★ Goal: Improve driver recovery with minor changes to drivers

★ Solution: Run drivers as transactions using device checkpoints

C R

★ Developers export
checkpoint/restore
in drivers

Device state Driver state

★ Run drivers invocations as
memory transactions

★ Use source transformation
to copy parameters and
run on separate stack

SFI
network

driver

network
driver

Thursday, March 7, 13

Synergy of isolation and recovery

21

★ Goal: Improve driver recovery with minor changes to drivers

★ Solution: Run drivers as transactions using device checkpoints

C R

★ Developers export
checkpoint/restore
in drivers

Device state Driver state

★ Run drivers invocations as
memory transactions

★ Use source transformation
to copy parameters and
run on separate stack

SFI
network

driver

network
driver

Execution model

★ Checkpoint device

★ Execute driver code as
memory transactions

★ On failure, rollback
and restore device

★ Re-use existing device
locks in the driver

Thursday, March 7, 13

SFI
network

driver

Example transactional execution

22

network
driver

probe

xmit

get config

get ringparam

Thursday, March 7, 13

SFI
network

driver

Example transactional execution

22

network
driver

probe

xmit

get config

get ringparam netdev

Thursday, March 7, 13

SFI
network

driver

Example transactional execution

22

network
driver

probe

xmit

get config

get ringparam

C

netdev

Thursday, March 7, 13

SFI
network

driver

Example transactional execution

22

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ringC

netdev

Thursday, March 7, 13

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Example transactional execution

22

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range TableC

netdev

Thursday, March 7, 13

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Example transactional execution

22

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range TableC

netdev

Thursday, March 7, 13

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Example transactional execution

22

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range TableC

netdev

Thursday, March 7, 13

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Example transactional execution

22

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range Table

netdev->priv->tx_ring
netdev->priv->rx_ring

result

Kernel
Log

alloc

C

netdev

Thursday, March 7, 13

SFI
network

driver

Example failed transaction

23

network
driver

probe

xmit

get config

get ringparam

Thursday, March 7, 13

SFI
network

driver

Example failed transaction

23

network
driver

probe

xmit

get config

get ringparam netdev

Thursday, March 7, 13

SFI
network

driver

Example failed transaction

23

network
driver

probe

xmit

get config

get ringparam

C

netdev

Thursday, March 7, 13

SFI
network

driver

Example failed transaction

23

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ringC

netdev

Thursday, March 7, 13

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Example failed transaction

23

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range TableC

netdev

Thursday, March 7, 13

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Example failed transaction

23

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range TableC

netdev

Thursday, March 7, 13

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Example failed transaction

23

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range TableC

netdev

Thursday, March 7, 13

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Example failed transaction

23

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range Table

Kernel
Log

alloc

C

netdev

Thursday, March 7, 13

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Example failed transaction

23

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range Table

Kernel
Log

alloc

C

netdev

Thursday, March 7, 13

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Example failed transaction

23

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range Table

Kernel
Log

alloc

C

netdev

Thursday, March 7, 13

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Example failed transaction

23

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range TableC

netdev

Thursday, March 7, 13

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Example failed transaction

23

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range Table

err

C

netdev

Thursday, March 7, 13

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Example failed transaction

23

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range Table

err

C

R

netdev

Thursday, March 7, 13

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Example failed transaction

23

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range Table

err

C

R

FGFT provides transactional
execution of driver entry points

netdev

Thursday, March 7, 13

Outline

24

Introduction

Evaluation & Conclusions

Fine-grained isolation

Checkpoint based recovery

Thursday, March 7, 13

Outline

25

Introduction

Evaluation & Conclusion

Fine-grained isolation

Checkpoint based recovery

Thursday, March 7, 13

Recovery speedup

Driver Class Bus Restart
recovery

FGFT
recovery

Speedup

8139too net PCI 0.31s 70μs 4400
e1000 net PCI 1.80s 295ms 6
r8169 net PCI 0.12s 40μs 3000

pegasus net USB 0.15s 5ms 30

ens1371 sound PCI 1.03s 115ms 9

psmouse input serio 0.68s 410ms 1.65

26

FGFT provides significant
speedup in driver recovery

Thursday, March 7, 13

Static and dynamic fault injection

Driver Injected
Faults

Benign
Faults

Native
Crashes

FGFT
Crashes

8139too 43 0 43 NONE
e1000 47 0 47 NONE

r8169 36 0 36 NONE
pegasus 34 1 33 NONE
ens1371 22 1 21 NONE

psmouse 46 0 46 NONE
TOTAL 258 2 256 NONE

27

FGFT survives multiple static and dynamic faults

Thursday, March 7, 13

Programming effort

Driver LOC Isolation annotationsIsolation annotations Recovery additionsRecovery additions

Driver
annotations

Kernel
annotations

LOC Moved LOC
Added

8139too 1, 904 15 20 26 4

e1000 13, 973 32 32 10
r8169 2, 993 10 17 5
pegasus 1, 541 26 12 22 5
ens1371 2, 110 23 66 16 6
psmouse 2, 448 11 19 19 6

28

FGFT requires limited programmer effort
and needs only 38 lines of new kernel code

Thursday, March 7, 13

Throughput with isolation and recovery

Native
FGFT-­‐off-­‐I/O
FGFT-­‐I/O-­‐1/2
FGFT-­‐I/O-­‐all

netperf on Intel quad-core machines
29

Thursday, March 7, 13

Throughput with isolation and recovery

0

25

50

75

100

T
hr

ou
gh

pu
t

%
ag

e
(B

as
el

in
e

84
4

M
bp

s)

e1000 Network Card

Native
FGFT-­‐off-­‐I/O
FGFT-­‐I/O-­‐1/2
FGFT-­‐I/O-­‐all

netperf on Intel quad-core machines
29

Thursday, March 7, 13

Throughput with isolation and recovery

0

25

50

75

100
100

T
hr

ou
gh

pu
t

%
ag

e
(B

as
el

in
e

84
4

M
bp

s)

e1000 Network Card

Native
FGFT-­‐off-­‐I/O
FGFT-­‐I/O-­‐1/2
FGFT-­‐I/O-­‐all

netperf on Intel quad-core machines
29

CPU: 2.4%

Thursday, March 7, 13

Throughput with isolation and recovery

0

25

50

75

100
100 100

T
hr

ou
gh

pu
t

%
ag

e
(B

as
el

in
e

84
4

M
bp

s)

e1000 Network Card

Native
FGFT-­‐off-­‐I/O
FGFT-­‐I/O-­‐1/2
FGFT-­‐I/O-­‐all

netperf on Intel quad-core machines
29

CPU: 2.4% 2.4%

Thursday, March 7, 13

Throughput with isolation and recovery

0

25

50

75

100
100 100

96

T
hr

ou
gh

pu
t

%
ag

e
(B

as
el

in
e

84
4

M
bp

s)

e1000 Network Card

Native
FGFT-­‐off-­‐I/O
FGFT-­‐I/O-­‐1/2
FGFT-­‐I/O-­‐all

netperf on Intel quad-core machines
29

CPU: 2.4% 2.4% 2.9%

Thursday, March 7, 13

Throughput with isolation and recovery

0

25

50

75

100
100 100

96 93

T
hr

ou
gh

pu
t

%
ag

e
(B

as
el

in
e

84
4

M
bp

s)

e1000 Network Card

Native
FGFT-­‐off-­‐I/O
FGFT-­‐I/O-­‐1/2
FGFT-­‐I/O-­‐all

netperf on Intel quad-core machines
29

CPU: 2.4% 2.4% 2.9% 3.4%

Thursday, March 7, 13

Throughput with isolation and recovery

0

25

50

75

100
100 100

96 93

T
hr

ou
gh

pu
t

%
ag

e
(B

as
el

in
e

84
4

M
bp

s)

e1000 Network Card

Native
FGFT-­‐off-­‐I/O
FGFT-­‐I/O-­‐1/2
FGFT-­‐I/O-­‐all

netperf on Intel quad-core machines
29

CPU: 2.4% 2.4% 2.9% 3.4%

FGFT can isolate and recover high bandwidth devices
at low overhead without adding kernel subsystems

Thursday, March 7, 13

Summary

30

Thursday, March 7, 13

Summary

30

★ Fine-Grained Fault tolerance based on a pay-
as-you go model
★ Provides fault tolerance at incremental

performance costs and programmer efforts

★ Introduces fast checkpointing for drivers
★ Device checkpoints average ~20micros
★ Reduces recovery time significantly
★ Should be explored in other domains apart from

fault tolerance like fast reboot, upgrade etc.

Thursday, March 7, 13

Questions

 Asim Kadav
★ http://cs.wisc.edu/~kadav
★ kadav@cs.wisc.edu

Thursday, March 7, 13

http://cs.wisc.edu/~kadav
http://cs.wisc.edu/~kadav
mailto:kadav@cs.wisc.edu
mailto:kadav@cs.wisc.edu

