
MALT: Distributed Data-Parallelism for existing ML applications

Hao Li ∗, Asim Kadav, Erik Kruus, Cristian Ungureanu
NEC Labs, Princeton

{hli, asim, kruus, cristian}@nec-labs.com

Abstract
Machine learning methods, such as SVM and neural net-
works, often improve their accuracy by using models with
more parameters trained on large numbers of examples.
Building such models on a single machine is often impracti-
cal because of the large amount of computation required.

We introduce MALT, a machine learning library that inte-
grates with existing machine learning software and provides
data parallel learning.

:::::::
machine

::::::::
learning.

:
MALT provides

abstractions for fine-grained in-memory updates , supports
sparse and asynchronous dissemination of model updates to
all nodes over

::::
using

:
one-sided RDMA, uses configurable

dataflow for balancing computation
::::::
limiting

::::
data

:::::::::
movement

::::
costs

::::::
during

:::::::::
incremental

:::::::::::
computation.

:
MALT

:::::
allows

:::::::
machine

:::::::
learning

:::::::::
developers

:
to
:::::::
specify

::
the

::::::::
dataflow

:::
and

:::::
apply

:::::::::::::
communication

and communication, and handles failures gracefully.
:::::::::::
representation

:::::::::::
optimizations.

:
Through its general-purpose API, we show

that MALT can be used to provide data-parallelism to ex-
isting applications such as

:::
ML

::::::::::
applications

:::::::
written

::
in

::::
C++

:::
and

::::
Lua

:::
and

:::::
based

::
on

:
SVM, matrix factorization and neural

networks. In our results, we show that MALT provides fault
tolerance, network efficiency and parallel speedup to these
applications.

1. Introduction
Machine learning (ML) is becoming increasingly popular
due to a confluence of factors: an abundance of data pro-
duced and captured in digital form [30]; an abundance of
compute power and convenient access to it from various
devices; advances in the ML field, making it applicable to
an ever growing number of situations [28]. The acceptance
and success of ML, from natural language processing to im-
age recognition to others, comes from the increasing accu-

∗ Work done as NEC Labs intern. Currently at U. Maryland.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’15, April 21−25, 2015, Bordeaux, France.
Copyright c© 2015 ACM 978-1-4503-3238-5/15/04. . . $15.00

racy achieved by ML applications. This accuracy is achieved
partly through advances in ML algorithms, but also through
using known algorithms with larger models trained on larger
datasets [28]. Building these models on a single machine is
often impractical because of the large amount of computa-
tion required, or may even be impossible for very large mod-
els such as those in state-of-the-art image recognition.

Existing data-parallel frameworks such as the map-reduce
model have proven to be tremendously useful and popular
paradigm for large-scale batch computations. However, ex-
isting frameworks are a poor fit for long running machine
learning tasks. Machine learning algorithms such as gra-
dient descent are iterative, and make multiple iterations to
refine the output before converging to an acceptable value.
Machine learning tasks have all of the following properties:

• Fine-grained and Incremental : Machine learning tasks
perform repeated model updates over new input data.
Most existing processing frameworks lack abstractions to
perform iterative computations over small modifications
efficiently. This is because in existing map-reduce mod-
els, jobs synchronize using the file-system [23] or main-
tain in-memory copies of intermediate data [?]

::::
[53] . For

computations with large number of iterations and small
modifications, techniques such as these are sub-optimal.

• Asynchronous : Machine learning tasks running concurrently
in a cluster

:::
that

:::
run

::
in

:::::::
parallel

:
may communicate asyn-

chronously. As an example, models that train in parallel
may synchronize model parameters in this fashion

:::::::::::::
asynchronously.

Enforcing determinism on
:
in
:
the order of parameter up-

dates can cause unnecessary performance overhead.
• Approximate : Machine learning tasks can be approximate.

They may perform computation stochastically and often
an approximation of the trained model is good enough.
Existing solutions

::::::::
sufficient.

:::::::
Existing

:::::::
general

:::::::
purpose

::::::
systems

:
rarely provide abstractions for trading off strong

guarantees such as fault tolerance or accuracy for per-
formance (reduced job times). General purpose systems
impose strong guarantees such as determinism which
may slow down machine learning algorithms which may
not need these guarantees.

• Need Rich Developer Environment: Developing ML ap-
plications require a rich set of ML libraries, developer

tools and graphing abilities which is non-existent in
the recent

::::
often

:::::::
missing

:::
in

:::::
many

:
highly scalable sys-

tems. Furthermore, existing ML software such as sci-
kit [2], Torch [31], RAPID [43], R [3] provide an effi-
cient single-system library that performs well over mul-
tiple cores. However, most existing distributed learning
tasks requires developers to re- write

::::
force

:::::::::
developers

::
to

::::::
re-write

:
their existing libraries in a new software stack

and expose an unfamiliar environment
::
to

:::
the

:::::::::
developers.

To address these properties, we propose a system called
as MALT (stands for distributed Machine Learning Toolset),
that allows ML developers to run their existing ML soft-
ware in a distributed fashion. MALT provides an efficient
shared memory abstraction that runs existing ML soft-
ware in parallel and allows them to communicate updates
periodically. MALT exports a scatter-gather API,
that allows pushing model parameters or model param-
eter updates (called as gradients) to its parallel replicas.
The

::::::
parallel

::::::
model

::::::::
replicas.

:::::
These

::::::::
replicas

::::
then

:::::::
process

::
the

::::::::
received

::::::
values

::
by

::::::::
invoking

::
a
:::::::::::
user-supplied

:::::::::
gather

:::::::
function

:::::::
locally.

:::::::::::
Additionally,

::::
the

:
API allows develop-

ers to specify the dataflow across these replicas and also
specify representation optimizations (such as compression,
sparsenessetc.). Furthermore,

:::::::::
sparseness).

:
MALT communi-

cation is based over
:::::::
designed

:::::
using one-sided RDMA writes

(no reads for one-half round- trip times
:::::
faster

:::::::::
round-trip

::::
times

:::::
[34]) and provides mechanisms

:::::::::
abstractions

:
for asyn-

chronous model training.
Our parallel, peer-to-peer model communication com-

plements the recent master-slave style parameter server ap-
proach [22, 36]

::::::::::
[21, 22, 36] . In MALT, parallel model repli-

cas send model updates to one-another instead of a cen-
tral parameter server. This reduces network costs because
the machines only communicate model updates instead of
complete models. A peer-to-peer model also simplifies fault
tolerance. There is no central master component, and

::::
back

:::
and

::::
forth

::::::
instead

::
of
::::
full

::::::
models.

:::::::::::
Furthermore,

:
implementing

MALT, does not require
::::::
writing

:::::::
separate

:::::::::::
master/slave

::::
code

::
or dealing with complex recover

:::::::
recovery protocols to deal

with master failures.
The contributions of this paper are as follows:

• We describe a general data-parallel machine learning
framework that provides simple and flexible API for par-
allel learning. MALT provides APIs for sending model
parameter updates, designing the data flow of the com-
munication, and making this communication synchronous
or asynchronous. Furthermore, MALT abstracts RDMA
programming, and deals with system issues like recover-
ing from unresponsive or failed nodes.

• MALT provides ML developers data-parallelism in their
existing ML software. We demonstrate how MALT can
transform existing ML software written in procedural
or scripting languages with reasonable developer efforts.

This allows developers to incorporate data-parallelism in
their applications in a familiar environment and

:::
use rich

developer tools provided within their ML software.
• We demonstrate a network efficient, parallel learning

implementation of MALT where we trade-off model
freshness at replicas with faster model training times,
for the same

::::
final accuracy. We use MALT to speedup

three applications using gradient descent: SVM [10],
matrix factorization[46] and neural networks [43] with
reasonable developer efforts and speedup over existing
methods [16].

:::
We

::::::::::
demonstrate

::::
that MALT

:::::::::
outperforms

:::::
single

::::::::
machine

:::::::::::
performance

:::
for

:::::
small

::::::::::
workloads

:::
and

:::
can

::::::::
efficiently

:::::
train

::::::
models

::::
over

:::::
large

:::::::
datasets

:::
that

::::
span

:::::::
multiple

::::::::
machines.

:

We now present background on machine learning.

2. Distributed Machine Learning
Machine learning algorithms generalize from data. Machine
learning algorithms train over data to create a model repre-
sentation that can predict outcomes (regression or classifica-
tion) for new unseen data. More formally, given a training
set ((~x1,~y1),(~x2, ~y2), ...(~xn, ~yn), the goal of model training
is to determine the distribution function f such that ~y=f(~x).
The input ~x may consist of different features and the model
consists of parameters ~w, representing the weights of indi-
vidual features to compute ~y. The goal of model training is
to estimate the values of model parameters ~w. During model
testing, this model is tested using an unseen set of ~xt to
compare against ground truth (already known ~yt), to deter-
mine the model accuracy. Thus, machine learning algorithms
train to optimize the minimization of the

::::::::
minimize

:::
the loss,

which represents some function that evaluates the difference
between estimated and true values for the test data.

Model training algorithms are iterative, and the algorithm
starts with an initial guess of the model parameters and
learns incrementally over data, and refines the model ev-
ery iteration, to converge to a final acceptable value of the
model parameters. Model training time can take from hours

:::
last

::::
from

:::::::
minutes to weeks and is often the most timing con-

suming aspect of the learning process. Model training time
also hurts model refinement process since longer training
times limit the number of times the model configuration pa-
rameters (called as hyper-parameters) can be tuned through
re-execution.

Machine learning algorithms can benefit from a scale-out
computing platform support in multiple ways: First, these al-
gorithms train on large amounts of data, that improves model
accuracy [28]. Second, they can train large models that have
hundreds of billions of parameters or require large compu-
tation (such as requiring lots of layers in a neural network)

::::
such

::
as

::::
very

:::::
large

::::::
neural

::::::::
networks

:
for large- scale image

classification or genomic applications [15]. Training with
more data is done by data parallelism, which requires repli-

cating the model over different machines and synchroniz-
ing the model parameters after a fixed number of iterations.
Training large models requires the model to be split across
multiple machines, and is referred to as model parallelism.

MALT
::::
API limits itself to data parallelism because mod-

els that learn over vast amounts of training data are more
common than models with 100 billion parameters [7]. Fur-
thermore, a single machine can process models of the or-
der of 10 billion parameters in-memory (about 80 GB for
dense representation; a server with 128GB DRAM costs
about 3000$). This is sufficient for most large machine learn-
ing models. Second, even though exposing a distributed,
replicated, shared array is fairly straight-forward, efficiently
providing model parallelism in existing applications is non-
trivial. It requires exposing APIs and modifying machine
learning algorithms to ensure that the model is split such that
the communication costs are limited within each iteration
(this is zero for data-parallelism). This is feasible for sys-
tems that focus on specific algorithms that are amenable to
such splits like convolution networks [15, 22] or systems that
write their own algorithms [36]. MALT’s goal is to provide
a simple, general purpose API that integrates easily with ex-
isting software, with a wide-variety of algorithms with rea-
sonable developer efforts.

With datasets getting larger, there has been a recent fo-
cus to investigate online algorithms that can process data-
sets incrementally such as the gradient descent family of
algorithms. Gradient descent algorithms compute the gra-
dient of the

:
a
:

loss function over the entire set of training
examples. This gradient is used to update model parameters
to minimize the loss function [9]. Stochastic Gradient De-
scent(SGD) is a variant of the above algorithm that trains
over one single example at time. With each example, the pa-
rameter vector is updated until the loss function yields an
acceptable (low) value. SGD and its variants are preferred
algorithms to train over large data-sets because it can pro-
cess large training datasets in batches. Furthermore, gradient
descent can be used for a wide-range of algorithms such as
regression, k-means, SVM, matrix- factorization and neural
networks [11, 17].

In data-parallel machine learning, model replicas train
over multiple machines. Each replica trains over a subset of
data. There are several ways in which the individual model
parameters can be synchronized. We describe three such
methods. First, models may train independently and syn-
chronize parameters when all parallel models finish train-
ing by exhausting their training data. This

::::
These

:
methods

are commonly used to train over Hadoop where communi-
cation costs are prohibitive. In addition,

::::
while

:
these models

may train quickly due to
:::::::
because

::
of limited communication

between replicas, they may require more passes over train-
ing data (each pass

:::
over

:::::::
training

::::
data is called an epoch) for

acceptable convergence. Furthermore, for non-convex prob-
lems, this method may not converge, since the parallel repli-

cas may be trapped in a different local minimas, and aver-
aging these diverging models may return a model with low
accuracy.

The second method is the parameter server approach [22,
36]. Here, individual models send their updates to a central
parameter server (or a group of parameter servers) and re-
ceive an updated model from them. A third method is the
peer-to-peer approach (used in MALT), where parameters
from model replicas train in parallel and are mixed every (or
every few) iteration [39]. The last two methods achieve good
convergence, even when the parameters are synchronized

::::::::::::
communicated

:
asynchronously [29, 37]. With MALT

:
,
:
we

perform asynchronous parameter mixing with multiple par-
allel instances of model replicas. This design allows devel-
opers to write code once, that runs everywhere on parallel
replicas (no separate code for parameter server and client).
This design also simplifies fault tolerance – a failed replica is
removed from the parameter mixing step and its data is redis-
tributed to other replicas. Finally, instead of performing sim-
ple gradient descent, MALT can be used to implement aver-
aging of gradients from its peers, which provides speedup in
convergence [51] .

::
for

::::::
certain

:::::::::
workloads

::::::::
[11, 51] .

The goal of our work is to provide distributed-machine
learning over existing ML systems. MALT exposes an asyn-
chronous parameter mixing API that can be integrated into
existing ML applications to provide data-parallel learning.
Furthermore, this API is general enough to incorporate dif-
ferent communication and representation choices as desired
by the machine learning developer. MALT provides peer-to-
peer learning by interleaving gradient (changes to parame-
ters) updates with parameter values to limit network costs.
In the next section, we describe MALT design.

3. MALT Architecture
Figure 1 describes MALT architecture. Model replicas train
in parallel on different cores (or sets of cores) across differ-
ent nodes using existing ML libraries. ML libraries use the
MALT vector library to create model parameters or gradi-
ents (updates to parameters) that need to be synchronized
across machines. These vectors communicate over DiS-
Tributed One-sided Remote Memory or dstorm. Further-
more, like other data-parallel frameworks, MALT loads data
in model-replicas from a distributed file-system such as NFS
or HDFS. Developers use the MALT API to shard data in-
put across replicas and send/receive gradients. Furthermore,
developers can also specify the dataflow across replicas and
make their algorithms fully asynchronous. We now describe
the shared memory design, the MALT API that allows de-
velopers access to shared memory, MALT fault tolerance
and a flexible network communication design that allows
developers to balance communication and computation.

vector object library

dstorm (distributed one-sided remote memory)

HDFS/NFS (for loading training data)

SGD using
V1 as primary
model param

V1 V2 Vn

SGD using
V2 as primary
model param

SGD using
Vn as primary
model param

V1 V2 Vn V1 V2 Vn

Replica 1 Replica 2 Replica n

Figure 1. MALT architecture. Existing applications run with
modified gradient descent algorithms that receive model up-
date(V) from replicas training on different data. Model vectors
are created using a Vector Object Library that allows creation
of shared objects. Each replica scatters its model update af-
ter every (or every few) iteration and gathers all received up-
dates before the next iteration.

3.1 Abstractions for Shared Memory with dstorm

Machine learning models train in parallel over shard-ed

::::::
sharded

:
data and periodically share model updates after few

iterations. The parallel replicas may do so synchronously
(referred to as the bulk-synchronous processing [48]). How-
ever, this causes the training to proceed at the speed of the
slowest machine in that iteration. Relaxing the synchronous
requirement speeds up model training but may affect the
accuracy of the generated model. Since model weights are
approximate, applications developers and researchers pick a
point in this trade-off space (accuracy vs speed) depending
on their application and system guarantees [20, 46]. Further-
more, this accuracy can be improved by training for multiple
epochs or increasing the amount of data at

::
for

:::::::
training each

model replica.
The original map-reduce design communicates results

over GFS/HDFS. However, using disk for communication,
results in poor performance especially for machine learn-
ing applications which may communicate as often as every
iteration. Spark [53] provides immutable objects (RDDs)
for an efficient in-memory representation across machines.
Spark provides fault tolerance using lineage of RDDs as
they are transformed across operations. However, this en-
forces determinism in the order of operations. As a result, the
immutabiluty

::::::::::
immutability

:
and determinism makes it less

suitable for fine-grained, asynchronous operations [49, 53].
Furthermore, machine learning applications may contain
multiple updates to large sparse matrices or model updates
may propagate

::::
may

::::
need

::
to
:::::::::
propagate

:::::
model

:::::::
updates

:
asyn-

chronously across machines requiring
:::
and

:::::
need first-class

support for fine-grained and asynchronous operations.

MALT’s design provides efficient mechanisms to trans-
mit model updates. There has been recent trend of wide
availability of cheap and fast infiniband hardware and they
are being explored for applications beyond HPC environ-
ments [24, 40]. RDMA over infiniband allows low latency
networking of the order of 1-3 micro-seconds

::
by using user-

space networking libraries and by re-implementing a portion
of the network stack in hardware. Furthermore, the RDMA
protocol does not interrupt the remote host CPU while ac-
cessing remote memory. RDMA is also available over Ether-
net with the newer RDMA over Converged Ethernet (ROCE)
NICs that have comparable performance to Infiniband. In-
finiband NICs are priced competitively with 10G NICs, cost-
ing around 500$ for 40Gbps

::
40

::::
Gbps

:
NICs and 800$ for

56Gbps
::
56

:::::
Gbps NICs (as of mid 2014). Finally, writes are

faster than reads since they incur half the
:::::
lower round trip-

times (RTTs)
::::
[34] . MALT uses one-sided RDMA writes to

propagate model updates across replicas.
In MALT, every machine can create a shared memory

abstraction called as
:::::::::
abstractions

::::::
called

::::::::
segments

::::
via

:
a

dstorm object (dstorm stands for DiSTributed One-sided
Remote Memory). Each dstorm object

::::::
segment

::
is cre-

ated by supplying the object size and a directed dataflow
graph. To facilitate one-sided writes, when a dstorm object

:::::::
segment is created, the nodes in dataflow synchronously cre-
ate a distributed shared memory object. dstorm registers a
portion of memory on every node with the infiniband in-
terface to facilitate one-sided RDMA operations. When a
dstorm object

:::::::
segment is transmitted by the sender, it ap-

pears at all its receivers (as described by the dataflow), with-
out interrupting any of the receiver’s CPU. We call this op-
eration as scatter. Hence,

:
a dstorm

:::::::
segment allocates space

(a receive queue), for every sender in every machine to fa-
cilitate the scatter operation. We use per-sender receive
queues to avoid invoking the receiver CPU for resolving any
write-write conflicts arising from multiple incoming model
updates from different senders.

:::::
Hence,

::::
our

::::::
design

:::::
uses

::::
extra

:::::
space

::::
with

:::
the

::::::::::
per-sender

::::::
receive

::::::
queues

::
to

::::::::
facilitate

::::::
lockless

::::::
model

::::::::::
propagation

::::::
using

::::::::
one-sided

:::::::
RDMA.

:::::
Both

::::
these

:::::::::::
mechanisms,

::::
the

::::
one

:::::
sided

:::::::
RDMA

::::
and

:::::::::
per-sender

::::::
receive

::::::
queues

::::::
ensure

:::
that

:::
the

:
scatter

::::::::
operation

::::
does

:::
not

:::::
invoke

:::
the

::::::::::
receive-side

::::::
CPUs.

Once the received objects arrive in local per-sender re-
ceive queues, it

:::
they

:
can be read with a local gather op-

eration. The gather function uses a user-defined function
(UDF), such as an average, to collect the incoming updates.
We also use queues on the sender side, allowing senders
to perform writes asynchronously. Additionally, the sender-
side queues maintain a back-pressure in the network to avoid
congestion [47].

The receiver does not know when its per-sender receive
queues get filled unless the receiver is actively polling and
consuming these items. When the receive queue is full, the
default behavior of dstorm is to over- write

::::::::
over-write

previously sent items in the queue. We discuss the con-
sistency behavior after we describe the vector abstraction
to create shared vectors or tensors (multi- dimensional

:::::::::::::::
multi-dimensional vectors) over the dstorm object.

3.2 Vector Object Library: Programming Dstorm for
Machine Learning

We build a vector object library (VOL) over dstorm that al-
lows creating vector objects over shared memory. The goal
of VOL is to 1) Expose a vector abstraction instead of shared
memory abstraction (dstorm) and 2) to provide communi-
cation and representation optimizations. ML developers can
specify gradients or parameters as a VOL vector (or tensor)
and specify its representation (sparse or dense). They also
specify a dataflow graph describing how the updates should
be propagated in the cluster which is used to create the un-
derlying dstorm object.

Hence, creating a vector in-turn creates a dstorm object

:::::::
segment that allows this vector to be propagated to all ma-
chines as described in the dataflow graph. This dataflow de-
scribes which machines may send updates to one another (in
the simplest case, everyone may send update

:::
their

:::::::
updates to

everyone). Hence, an edge in the graph from node A to node

:::::
nodes B and C implies that when node A pushes a model
update, it is received by nodes B and node C. As different
machines compute model updates, they may scatter this to
other remote nodes without acquiring any locks or invoking
any operations at the receiver. However, if a machine sends
too many updates before the previous ones are consumed,
the previous updates are over-written.

VOL inherits scatter and gather calls from dstorm to
send the vector to remote machine and gather all the received
updates (from local memory). Developers can also specify
where to spend the model updates within scatter calls.
This provides fine-grained access to data-flow to the devel-
opers, allowing greater flexibility [41]. Table 1 describes the
VOL API. In Section 4, we describe how this API can be
used to easily convert serial ML algorithms to data-parallel.

Consistency guarantees: We now describe the consis-
tency guarantees that MALT provides when transmitting
model updates to other replicas. With machine learning ap-
plications, which are stochastic in nature, model updates
maybe be over-written or updated locklessly without affect-
ing overall accuracy of the model output significantly. For
example, Hogwild demonstrates that asynchronous, lockless

:::::::
lock-less

:
model updates lead to models that ultimately con-

verge to acceptable accuracy [46]. Hence, MALT need not
provide strict consistency guarantees when sending model
updates over infiniband (ex. as in key-value stores [24]).
However, since MALT is a general-purpose API, it provides
mechanisms to enforce consistency.

1. Torn reads: When a model replica sends a model update
to another model replica, the sender may overwrite the
model update while the receiver is reading it in the case

where the replicas operate asynchronously and the re-
ceive queue is full. MALT provides an additional atomic
gather which reads the shared memory in an atomic
fashion.

2. Bounded staleness: Model updates carry an iteration

count information in the header. When a receiver real-
izes that a specific model update is arriving too slowly,
the receiver may stall its operations until the sender
catches up. This design is similar to the bounded-staleness
approach explored by recent work [20].

If stricter guarantees are required, the model replicas can
train synchronously in bulk-synchronous fashion and use the
barrier construct to do so. The barrier construct is a
conventional barrier which waits for all model replicas to
arrive at a specific point in the training process.

3.3 Fault tolerance
MALT has a straight-forward model for fault tolerance. The
training data is present on all machines in a distributed file
system. The model replicas train in parallel and perform one-
sided writes to all peers in the communication. A fault moni-
tor (similar to a watchdog timer) on every node examines the
return values of asynchronous writes on sender-side queues.
If the fault monitor observes failed writes, it performs a syn-
chronous health check of the cluster with other monitors on
other nodes. A node is considered dead if the node is cor-
rupt (the shared memory or the queue has failed) and the
remote fault monitor reports this, or

:
if

:
the node is unreach-

able by any of the other healthy nodes fault monitors. Local

::::::::::
Furthermore,

:::
to

:::::
detect

::::::
failure

:::::
cases

::::
that

:::
do

:::
not

:::::
result

::
in
::

a

:::::::::::::
machine/process

::::::
crash,

::::
local

:
fault monitors can detect pro-

cessor exceptions (such as divide by zero, stack corruption,
invalid instructions) and segmentation faults and terminate
the local training process.

In case of failure, the working fault monitors create a
group of survivor nodes to ensure that all future group opera-
tions such as barrierto

:
, skip the failed nodes. The RDMA

interface is registered again (with old memory descriptors)
and the queues are re-built. This is to avoid a zombie situa-
tion where a dead node may come back and attempt to write
to

:::
one

::
of

:
the previously registered queues. Finally, the send

and receive lists of all model replicas are rebuilt to skip the
failed nodes and the training is resumed.

After recovery, if a convergence with an acceptable loss
value is not achieved, the training continues on the sur-
vivor replicas with more

::::::::
additional

:
training examples un-

til the models converge. This causes a slowdown in the
training process proportional to the missing machines apart
from a short delay to synchronize and perform recovery (of
the order of seconds). MALT only provides fail-stop fault
tolerance, i.e. it can only handles failures where a node
self-reports

:::
fault

:::::::
monitor

::::::
detects

:
corruption or is unrespon-

sive because of the MALT process being killed or a machine
failure or a network failure. MALT cannot handle Byzantine

Data!

Data!

Data!

Data!

Data!

Data!

Node%1%

Node%2%

Node%3%

Node%4%

Node%5%

Node%6%

Model%Parameter%6%

Model%Parameter%5%

Model%Parameter%4%

Model%Parameter%3%

Model%Parameter%2%

Model%
Parameter%1%

Figure 2. All-reduce exchange of model updates. All arrows
indicate bi-directional communication. As number of nodes(N)
grow, total number of updates transmitted increases O(N2).

failures such as when a machine sends corrupt gradients or
software corruption of scalar values that cannot be detected
by local fault monitors. However, the local fault monitors
can be extended to protect against these failures [13].

MALT can afford such simple fault tolerance model be-
cause it only provides data parallelism and does not split
the model across multiple machines. Furthermore, the model
training is stochastic and does not depend on whether the
training examples are processed in a specific order, or the
training examples are processed more than once, or whether
all the training examples have been processed, as long as the
model achieves an acceptable accuracy. Furthermore, MALT
implements peer-to-peer learning and does not have a central
master. As a result, it does not need complex protocols like
Paxos [14] to recover from master failures.

3.4 Communication Efficiency in MALT
MALT’s flexible API can model different training configu-
rations such as parameter server [36], mini-batching [19, 38]
and peer-peer parameter mixing [39].

When MALT is trained using a
:::
the peer-to-peer approach,

each machine can sends its update to all other machines to
ensure that each model receives

::
the

:
most recent updates. We

refer to this configuration as MALTall-all. As the number of
nodes (N) increases, the gradient communication overhead
in MALTall-all increases O(N2) times, in a naı̈ve all-reduce
implementation. Efficient all-reduce primitives such as but-
terfly [12] or tree style all-reduce [5], reduce the commu-
nication cost by propagating model updates in a tree style.
However, this increases the latency by a factor of the height
of the tree. Furthermore, if the intermediate nodes are af-
fected by stragglers or failures, an efficient all-reduce makes
recovery complex.

Data!

Data!

Data!

Data!

Data!

Data!

Node%1%

Node%2%

Node%3%

Node%4%

Node%5%

Node%6%

Model%Parameter%5%

Model%Parameter%6%

Model%Parameter%4%

Model%Parameter%3%

Model%Parameter%2%

Model%Parameter%1%

Figure 3. Halton series exchange of model updates (N
= 6). Each ith machine sends updates to log(N) (2 for
N = 6) nodes. (to N/2 + i and N/4 + i). As number of
nodes N increases, the outbound nodes follows Halton series
(N/2, N/4, 3N/4, N/8, 3N/8..). All arrows are uni-direction.
As number of nodes(N) grow, total number of updates trans-
mitted increases O(NlogN).

In MALT, we propose an efficient mechanism to prop-
agate model updates, what we refer to as indirect propa-
gation of model updates. A developer may use the MALT
API to send model updates to either all nodes (N) or fewer
nodes k, (1<=k<=N). MALT API facilitates choosing a
value ‘k’ such that a MALT replica (i) disseminate the up-
dates across all the nodes eventually; (ii) optimize specific
goals of the system such as freshness, balanced communica-
tion/computation ratio in the cluster. By eventually, we mean
that all nodes receive a model update from every other node
directly or indirectly via an intermediate node.

::::::::
However,

::::
when

::::::::
choosing

:
a
:::::

value
::::
‘k’,

:::
less

::::
than

:::
N,

:::
the

::::::::
developer

:::::
needs

::
to

::::::
ensure

::::
that

:::
the

::::::::::::::
communication

:::::
graph

:::
of

:::
all

::::::
nodes

::
is

::::::::
connected

:
.

Hence, instead of performing an all-reduce, MALT lim-
its the reduce operation to fewer nodes. However, naı̈vely or
randomly selecting what nodes to send updates to may either
leave out certain nodes from receiving updates from specific
nodes (a partitioned graph of nodes) or may propagate up-
dates that may be too stale (a weakly connected node graph).
This may adversely affect convergence in parallel learning
models. We now describe how MALT can selectively dis-
tribute model updates to ensure low communication costs
and uniform dissemination of model updates.

MALT API provides a pre-existing data-flow that sends
fewer model updates and ensures

:::
that

:
all models send/receive

model updates in a uniform fashion. To do so, every node
picks a node in a uniform fashion to ensure that the updates
are distributed across all nodes. For example, if every node

propagates its updates to k nodes (k < N), we pick the k
node IDs based on a uniform random sequence such as Hal-
ton sequence [1] that generates successive points that cover
the ID range as uniformly as possible for a given k

::::
create

::
a

::::::
k-node

::::
graph

::::
with

:::::
good

::::::::::
information

:::::::
dispersal

:::::::::
properties. We

further propose that each node only send update to log(N)
nodes and maintain a log(N) sized node list. This node
list contains the nodes to send updates to, generated using
the Halton series. Hence, if we mark the individual nodes
in training cluster as 1...N , Node 1 sends its updates to
N/2, N/4, 3N/4, N/8, 3N/8, 5N/8, .. and so on (the Hal-
ton series

:::
with

:::::
base

::
2). Hence, in this scheme, the total

updates sent in every iteration is only O(Nlog(N)). We
refer to this configuration as MALThalton. The MALThalton
scheme ensures that the updates are sent uniformly across
the range of nodes. Figures 2 and 3 show the all-to-all and
Halton communication schemes. In case of a failure with
MALTHalton, the failed node is removed and the send/receive
lists are rebuilt.

Using MALT’s network-efficient parallel model training
results in faster model training times. This happens because
1) The amount of data transmitted is reduced. 2) The amount
of time to compute average of gradients is reduced since the
gradient is received from fewer nodes. 3) In a synchronized
implementation, this design reduces the number of incoming
updates that each node needs to wait for, before going on
to the next iteration. Furthermore, our solution reduces the
need for high bandwidth interfaces, reducing costs or free-
ing up the network for other applications. In Section 6, we
compare the network costs of indirect updates (MALThalton)
with MALTall-all and the parameter server.

Instead of having each node communicate with log(N)
other nodes, developers can program MALT to commu-
nicate with higher (or lower) number of nodes. The key
idea is to balance communication (sending updates) with
computation (computing gradients, applying received gra-
dients). Hence MALT, accepts a dataflow graph as an in-
put while creating vectors for model parameters. How-
ever, this requires that developer to ensure that the graph
of nodes is

::::
needs

:::
to

:::
be

:
connected otherwise the model

updates
::::::::
individual

:::::
model

::::::
update

:::::
from

:
a
::::::
model

::::::
replica

:
may

not get propagated to all nodes, and the model may not
converge

::::::
models

::::
may

::::::
diverge

::::::::::
significantly

:::::
from

:::
one

:::::::
another.

4. Programming Interface
The goal of MALT is to provide data-parallelism to any
machine learning software or algorithm. Given the MALT
library and a list of machines, developers launch multiple
replicas of their existing software that perform data-parallel
learning. Currently, allows programmers to extend or write
programs in C++ and Lua.

MALT exposes an API as shown in Table 1. This API
can be used to create (or port existing) ML applications for
data-parallelism. To do so, the developer creates a param-

eter or gradient
:::::
object

:
using MALT API. Figure 4 shows a

serial SGD algorithm (Algorithm 1) and a parallel SGD writ-
ten using MALT (Algorithm 2). In the serial algorithm, the
training algorithm goes over entire data and for each train-
ing sample, it calculates the associated gradient value. It then
updates the model parameters, based on this gradient value.

In order to perform this training in a data-parallel fashion,
this algorithm can be re-written using MALT API (as shown
in algorithm 2). The programmer specifies the representa-
tion (sparse vs dense) and the dataflow (ALL – which repre-
sents all machines talk

:::::::::::
communicate

:::::
model

:::::::
updates to one-

another, HALTON – which represents the network efficient
API from previous section or the developer may specify a

::
an

::::::::
arbitrary graph – which represents the dataflow graph).

When a job is launched using MALT it runs this code on
each machine. Each machine creates a gradient vector object
using the MALT API, with the required representation prop-
erties (sparse vs dense), and creates communication queues
with other machines based on the dataflow specified, and
creates receiving queues for incoming gradients.

Each machine trains over a subset of training data and
computes the gradient value for each example. For every
sample (or after a bunch of samples

::::
After

:::::::
training

::::
over

::::
each

:::::::
example

:::
(or

:::::
bunch

::
of

:::::::::
examples), this gradient value is sent

using a
:::
the one-sided RDMA operation. The algorithm then

computes an average of the received gradients using the
gather function. Instead of an average, one can pass

::::::
specify

a user-defined function (UDF) to compute the resulting gra-
dient from all incoming gradients. This is useful for algo-
rithms where a simple averaging may not work, such for
SVM and

::
as

::::
SVM

::::
may

:
require an additional re-scaling func-

tion apart from averaging parameters.
:::::::::
performing

::
an

:::::::
average

:::
over

:::
the

::::::::
incoming

::::::::::
parameters.

::::
The

::::::
training

:::::::
finishes

:::::
when

::
all

::::::::
machines

::
in

:::
the

::::::
cluster

:::::
finish

:::::::
training

::::
over

::::
local

:::::::::
examples.

:::
The

::::
final

:::::::::
parameter

::::
value

:::
W

::
is

:::::::
identical

::::::
across

::
all

::::::::
machines

::
in

::
the

:::::::::::
synchronous,

::::::
all-all

::::
case.

::
In

:::::
other

:::::
cases,

::
W

::::
may

:::::
differ

::::::
slightly

::::::
across

::::::::
machines

::::
but

::
is

::::::
within

:::
an

:::::::::
acceptable

::::
loss

:::::
value.

::
In

::::
such

:::::
cases,

:::
the

:::::::::
parameters

:::::
from

:::
any

::::::::
machines

::::
may

::
be

::::
used

:::
as

:::
the

::::
final

::::::
model

::
or

:::
an

:::::::::
additional

::::::
reduce

:::
can

:::
be

::::::::
performed

::::
over

:::
W

::
to

::::::
obtain

::::
final

::::::::
parameter

::::::
values.

:

Algorithm 1
:::::
Serial

::::
SGD

1: procedure SERIALSGD
2:

:::::::
Gradient

::
g;

:

3:
:::::::::
Parameter

:::
W ;

4:
5: for

:::::
epoch

:
=
:::::::::::::
1 : maxEpochs do

6:
7: for

:
i
:
=
:::::::::::
1 : maxData do

8:
:
g
::
=

:::::::::::::::::
cal gradient(data[i]);

:

9:
::
W

::
=

::
W

:
+
::
g;
:

10:
11: return

::
W

MALT API call Purpose of the call

g = createVector(Type)
Creates a globally accessible shared model parameter or gradient
(model update) vector. Type signifies sparse or dense.

g.scatter (Dataflow Graph
optional)

Send model (or just model updates) to machines as described in graph
(default sends to all machines).

g.gather (func)
Apply user-defined function func (like average) over model updates
that have arrived (locally) and return a result.

g.barrier () Distributed barrier operation to force synchronization.
load data (f) Shard and load data from HDFS/NFS from file f.

Table 1. The interface exported by the MALT
:::::::
interface. g.scatter() performs one-sided RDMA writes of gradient g to other

machines. g.gather(),
::
a
::::
local

::::::::
operation,

:
applies average to the received gradients. Optional g.barrier() makes the algorithm

synchronous

Algorithm 2
::::::::::
Data-Parallel

:::::
SGD

::::
with

::::::
MALT

1: procedure PARALLELSGD
2:

::::::::::::
maltGradient

::::::::::::::::
g(SPARSE,ALL);

:

3:
:::::::::
Parameter

:::
W ;

4:
5: for

:::::
epoch

:
=
:::::::::::::
1 : maxEpochs do

6:
7: for

:
i
:
=
:::::::::::::::::::::::::
1 : maxData/totalMachines do

8:
:
g
::
=

:::::::::::::::::
cal gradient(data[i]);

:

9:
::::::::::::::
g.scatter(ALL);

:

10:
::::::::::::::
g.gather(AVG);

:

11:
::
W

::
=

::
W

:
+
::
g;
:

12:
13: return

::
W

Figure 4: Data-parallel machine learning using MALT. The se-
rial code (in Algorithm 1) is converted to data-parallel using
MALT. All machines run the above code (in Algorithm 2). In-
stead of average, user may specify a function to combine in-
coming gradients/parameters. Optionally, g.barrier() may
be used to run the algorithm in a synchronous fashion.

For more complex algorithms, such as neural networks,
which require synchronizing parameters at every layer of
neural network, each layer of parameters is represented
using a separate maltGradient and can have its own
dataflow, representation and synchronous/asynchronous be-
havior.

Finally, it may be difficult to use the maltGradient al-
location for certain legacy applications that use their own
data-structures for parameters or gradients. For such opaque
representations, where MALT cannot perform optimiza-
tions such as sparseness, developers directly use dstorm.
dstorm provides low- level

:::::::
low-level

:
shared memory ac-

cess with scatter and gather operations,
:::::
allows

:
man-

aging the dataflow and controlling the synchronization.
Furthermore, the opaque data-structures need to provide a
serialization/de-serialization methods to copy-in/out from
dstorm.

:::::::::
Developers

:::
can

::::
also

:::::::::
implement

:::::::::::::::
model-parallelism

::
by

::::::::
carefully

:::::::
sharding

::::
their

::::::
model

:::::::::
parameters

:::::
overs

:::::::
multiple

dstorm
:
.

Serial SGD Gradient g; Parameter W ; epoch = 1 : maxEpochsi
= 1 : maxData g = cal gradient(data[i]); W = W + g; W

Data-Parallel SGD with MALT maltGradient g(SPARSE,ALL);
Parameter W ; epoch = 1 : maxEpochsi = 1 : maxData/totalMachines
g = cal gradient(data[i]); g.scatter(ALL); g.gather(AVG);
W = W + g; W

4.1 Applications
We use the MALT API to make the following algorithms
data-parallel.

::::::::
Currently, MALT

:::::
allows

:::::::::::
programmers

::
to

::::::
extend

::
or

::::
write

::::::::
programs

::
in
::::
C++

::::
and

::::
Lua.

4.1.1 Support Vector Machines
We first explore distributed stochastic gradient descent algo-
rithms over simple linear and convex problems like

::::
using

Support Vector Machines(SVM). We use Leon Bottou’s
SVM-SGD [10]. Each machine calculates the partial gra-
dient and sends

:
it to other machines. Each machine averages

the received gradients and updates its model weight (w) vec-
tor locally.

4.1.2 Matrix Factorization
Matrix factorization involves partitioning a large matrix into
its two smaller matrices. This is useful for data composed
of two sets of objects, in such a way that observations
are observations of couples and their interactions needs
to be quantified. As an example, news personalization

:::::
movie

::::::
ratings

:
data contains interactions between users and

stories, and the interactions between these entities needs
to be quantified. Large-scale

::::::
movies.

:::
By

::::::::::::
understanding

::::
their

:::::::::
interactions

::::
and

:::::::::
calculating

:::
the

:::::::::
underlying

::::::
features

:::
for

:::::
every

::::
user,

::::
one

:::
can

:::::::::
determine

::::
how

::
a
::::

user
:::::

may
::::
rate

:::
an

::::::
unseen

:::::
movie.

:::
To

::::
scale

::::::
better,

:::::::::
large-scale matrix factorization is not

exact, and algorithms approximate the factorizations [26].
SGD gives good performance for matrix factorizations on
a single machine [35], and we perform matrix factorization
using SGD across multiple machines. We use Hogwild [46]
and extend it from a multi-core implementation to a multi-
node using MALT.

::::
With

::::::::
Hogwild,

:::
the

::::::
gather

:::::::
function

::
is
::

a
replace

::::::::
operation

:::
that

:::::::::
overwrites

::::::::::
parameters.

4.1.3 Neural Networks
We train neural networks for text learning. The computation
in a neural network occurs over multiple layers forming a
network. The training happens in a forward-pass and back-
ward pass. In the forward pass, the input samples are pro-
cessed at each layer and fed forward into the network, finally
returning a predicted result at the end of the network. The
difference in the ground truth and this predicted result is used
in the back-propagation phase to update model weights us-
ing gradient descent. Parallel training over neural networks
is more difficult than SVM for two reasons. First, a data-
parallel neural network requires synchronizing parameters
for every layer. Second, finding the model weights for neural
networks is a non-convex problem. Hence, just sending the
gradients is not sufficient as parallel model replicas maybe
training

::::
stuck

:
in different local minimasand .

:::::::
Hence, gradi-

ent synchronization needs to be interleaved with the whole
parameters synchronization. We use RAPID [43], and ex-
tend its neural-network library with MALT. RAPID is simi-
lar in architecture to Torch [31], and provides a C++ libraries
with Lua front-end for scripting. MALT exports its calls with
Lua bindings and integrates with RAPID.

5. Implementation
MALT is implemented as a library, and is provided as a
package to SVM-SGD and RAPID [43], allowing develop-
ers to use and extend MALT.

::::::
dstorm is implemented over

GASPI [6], that allows programming shared memory over
infiniband. GASPI exposes shared memory segments and
supports one-sided RDMA operations. We build dstorm
over GASPI, that implements object creation, scatter, gather
and other operations.

::::::
dstorm

:::::
hides

:::
all

:::::::
GASPI

::::::::
memory

::::::::::
management

:::::
from

:::
the

:::::
user

:::
and

::::::::
provides

:::::
APIs

:::
for

::::::
object

:::::::
creation,

:::::::::::
scatter/gather

:::
and

::::::::
dataflow.

:::
We

::::::
choose

::::::
GASPI

::::
over

::::
other

::::::
shared

:::::::
address

:::::
space

:::::::::::::::
implementations

::::
such

:::
as

::::
MPI

::::
since

::::::
unlike

:::::
MPI,

::::::
GASPI

::::::::
provides

::::
fault

::::::::
tolerance

::::
and

:::
has

:::::::
superior

::::::::::
performance

:::::
[27] .

We also implement the vector object library
::::
over

::::::
dstorm

that provides vector abstractions, and provides other APIs
for loading data, sparse and dense representations. Overall,
MALT library is only 2366 LOC. To integrate with Lua, we
have written Lua bindings (in Lua and C++) consisting of
1722 LOC. In Section 6.3, we evaluate the costs of integrat-
ing individual applications to MALT.

6. Evaluation
We evaluate MALT along the following criteria:

1. Speedup with MALT: What is the speedup provided by
using MALT ?

2. Network Optimizations: How do the different MALT net-
work optimizations benefit training time?

3. Developer Effort: What is the developer effort required to
port existing ML applications?

4. Fault Resilience: How does MALT behave in the pres-
ence of failures?

We use MALT to implement SVM SGD, matrix factorization
and SSI

::::::
modify

::::::::::
SVM-SGD,

:::::::
HogWild

:::::::
(matrix

:::::::::::
factorization)

:::
and

:::::::
RAPID (neural networks). Table 2 lists the application

and the datasets used. We perform all experiments on a 8
machine research cluster connected via an infiniband back-
plane. We run multiple processes, across these 8 machines,
and we refer each process as a rank (from

:::
the

:
HPC termi-

nology).
:::
We

:::
run

:::::::
multiple

:::::
ranks

:::
on

::::
each

:::::::
machine,

:::::::::
especially

::
for

:::::::
models

::::
with

::::
less

::::
than

::::
1M

::::::::::
parameters,

::::::
where

:
a
::::::

single

:::::
model

::::::
replica

::
is
::::::

unable
:::

to
:::::::
saturate

:::
the

:::::::
network

::::
and

:::::
CPU.

Each machine has an Intel Xeon 8-core, 2.2 GHz Ivy-
Bridge processor with support for SSE 4.2/AVX instruc-
tions, and 64 GB DDR3 DRAM. Each machine is con-
nected via Mellanox Connect-V3 56 Gbps infiniband card
and all machines are connected using a Mellanox managed-
switch with copper cables.

:::
Our

:::
56

::::
Gbps

:::::::::
infiniband

:::::::
network

:::::::::
architecture

::::::::
provides

:
a
:::::

peak
:::::::::
throughput

:::
of

::::::
slightly

::::
over

:::
40

::::
Gbps

:::::
after

::::::::::
accounting

:::
for

:::
the

:::::::::::
bit-encoding

:::::::::
overhead

:::
for

::::::
reliable

:::::::::::
transmission.

:
All machines share storage using a

10TB
::
10

::::
TB

:
NFS partition that we use for loading input

data. For all our experiments, we randomize the input data
and assign random subsets to each node. All reported times
do not account the initial one- time

:::::::
one-time cost for the

loading the data-sets in memory.
::
All

:::::
times

:::
are

::::::::
reported

::
in

:::::::
seconds.

We perform our experiments on applications as described
in Table 2. We perform data-parallel learning for SVM, ma-
trix factorization and neural networks.

:::
We

:::
use

:::::
small

::::
and

::::
large

::::::::
datasets.

::::
The

:::::
small

::::::::
datasets

:::::
have

::::
well

::::::::::
understood

::::::::::
convergence

:::::::
behavior

::::
and

:::::
allow

::
us

::
to

:::::
verify

::::::::::
correctness

:::
and

:::::::
measure

:::::::
speedup

::::
over

::::::
single

:::::::::
machines.

::::
The

:::::
large

::::::
dataset

:::
help

:::
us

:::::::
evaluate

:::::::::
scalability. To evaluate SVM, we use RCV1,

PASCAL and webspam [4] datasets
::::
suite

::::::
(alpha,

:::::::::
webspam,

:::::
DNA)

:::
and

:::::
splice

:::::::
datasets

::::
[4] . The compressed dataset sizes

are RCV1 – 340MB , PASCAL
:::::
(700M

::::::::::::::
uncompressed),

:::::::
PASCAL

:::::
alpha

:
– 1.3 GB and

::
(2

:::
GB

:::::::::::::
uncompressed),

:
web-

spam – 3.3 GB .
::
(12

::::
GB

::::::::::::::
uncompressed),

:::::
DNA

:::
2.5

::::
GB

:::
(35

::::
GB

:::::::::::::
uncompressed)

::::
and

:::::
splice

::
–
:::::

110
:::
GB

:::::
(250

::::
GB

:::::::::::::
uncompressed).

:::
The

:::::
splice

::::::
dataset

::::
does

:::
not

::
fit

::
in

:
a
:::::::::::::
single-machine

:::
and

:::::::
requires

:::
the

::::
entire

::::::
dataset

:::
for

::
an

:::::::
accurate

::::::
model

::::::::::::
(sub-sampling

::
of

::::
data

:::
is

::::::::::
unhelpful).

:
For matrix factorization, we use

the Netflix dataset (1.5 GB uncompressed). For neural
networks

:::::::::::::
neural-networks, we perform click-through rate

(CTR) prediction based on the Tencent data released with
KDD Cup 2012 challenge [33]. The neural network is a
three-layer fully- connected neural network that performs
supervised-semantic indexing (SSI) [8]. The training step
requires

:::
SSI

::::::
model

:::::
trains

:::
on

::
2
::::
GB

::
of

:
processed training

data of about 2GB in size.

::::
(5.1

:::
GB

:::::::::::::
uncompressed).

6.1 Speedup

Application Dataset
of

training
items

of
testing
items

Model Params

Document
classification RCV1 781K 23K SVM 47,152

Image
classification PASCAL 250K 250K SVM 500

:::
DNA

: :::
DNA

:::
23M

: ::::
250K

:::
SVM

: ::
800

:

:::::
Genome

::::::
detection

:::::::
Splice-site

:::
10M

: ::::
111K

:::
SVM

: :::
11M

:

Webspam
detection Webspam 250K 100K SVM 16.6M

Collaborate

:::::::::
Collaborative
filtering

Netflix 100M 2.8M MF 14.9M

CTR
prediction KDD12 150M 100K SSI 12.8M

Table 2. MALT applications and dataset properties.

100 102

0.15

0.16

0.17

0.18

0.19

0.2

0.21

training samples (10000)

lo
ss

sync gradavg all commbatch=5000

desired goal 0.145
single machine sgd
10 ranks 7.3X

100 102

0.15

0.16

0.17

0.18

0.19

0.2

0.21

time (0.01)

lo
ss

sync gradavg all commbatch=5000

desired goal 0.145
single machine sgd
10 ranks 6.7X

Figure 4. This figure shows convergence for RCV1 workload
for MALTall-all with a single machine workload. We find that
MALTall-all converges quicker to achieve the desired accuracy.

::
In

:::
this

:::::::
section,

::
we

::::::::
compare

:::
the

:::::::
speedup

::
of

:::::::
different

:::::::
datasets

:::
over

::
a
:::::
single

:::::::
machine

:::
and

:::::::
existing

::::::::
methods.

:::
We

:::
also

:::::::
evaluate

::
the

:::::
time

:::::
spent

::::::
across

::::::::
different

::::::::::
processing

:::::
tasks

::::
and

:::
the

:::::
benefit

:::
of

:::::::
different

:::::::::::::
synchronization

::::::::
methods.

We compare speedup of the systems under test by running
them until they reach the same loss value

:::
and

::::::::
compare

:::
the

::::
time

:::
and

:::::::
number

::
of

:::::::
samples

:::::::::
processed. Figure 4 compares

the speedup of MALTall-all with a single machine for RCV1
dataset [10], for a communication batch size or cb size of
1000.

:::::
5000. By cb size of 1000

::::
5000, we mean that every

model processes 1000
::::
5000 examples from the dataset and

then propagates the model updates to all other machines. We
find that MALTall-all provides a speedup with good conver-
gence. By 10 ranks, we mean 10 processes, that span our our
eight machine cluster. The low latency and lock-free update
communication framework allows frequent communication
and with peers that aids speedup

::
For

::::::
RCV1

:::
and

:::::
other

::::::
smaller

:::::::::
workloads,

:::
we

:::
find

::::
that

:::
we

::
do

::::
not

::::::
saturate

:::
the

::::::::
network

:::
and

::::
CPU

::::
with

::
a
:::::
single

:::::::
replica,

::::
and

:::
run

::::::::
multiple

:::::::
replicas

::
on

::
a

:::::
single

:::::::
machine.

50

300

0

50

100

150

200

250

Runtime configurations

Sp
ee

du
p

ov
er

 s
in

gl
e

SG
D

 fo
r

 fi
x

lo
ss

MR-SVM

MALT-SVM

Figure 5. This figure shows convergence with PASCAL work-
load for MALTall-all SVM with MR-SVM. We achieve super-
linear speedup

::
for

:::::
some

:::::::::
workloads because of the averaging

effect from parallel replicas [51]. We find that MALTall-all SVM
is about 3X faster than map-reduce SVM implemented over in-
finiband.

We now compare MALT-SVM performance with existing
algorithms over

:::::::
designed

:::
for

:
map- reduce SGD algorithm

(MR-SVM) [16].
:::::::::
MR-SVM

::
is

:::::
based

::
on

:::::::
Hadoop

::::
and

:::::
hence

::::::::::::
communicates

::::::::
gradients

::::
after

:::::
every

:::::
epoch

::::
and

:::::
needs

:::::
more

:::::::
iterations

:::
to

::::::::
converge. We implement these algorithms over

the MALT library .
:::
and

:::
run

::
it
::::
over

::::
our

:::::::::
infiniband

::::::
cluster.

::::::::
MR-SVM

:::::
uses

::::::::
one-shot

:::::::::
averaging

::
at

::::
the

::::
end

:::
of

:::::
every

:::::
epoch

::
to
::::::::::::

communicate
:::::::::::

parameters.
:
Figure 5 shows the

time to converge for one- workload for MR-SVM (imple-
mented over MALT) and MALTall- all. We find that both
workloads achieve super-linear speedup over a single ma-
chine SGD using the PASCAL dataset. The underlying
library implements averaged SGD that provides this speedup

::::
With

:::
the

::::::::
PASCAL

::::::
alpha

:::::::
dataset,

:::
we

:::::::
observe

::::::::::
super-linear

:::::::
speedup.

:::::
This

:::::::
happens

::::::::
because

::::
the

:::::::::
averaging

:::::
effect

:::
of

:::::::
gradients

::::::::
provides

:::::::::
super-linear

:::::::
speedup

:::
for

::::::
certain

:::::::
datasets [51].

In addition, we find that MALT provides 3X speedup over
MR-SVM. MALT converges faster since it is designed over
low latency communication, and sends gradients more fre-
quently. MR-SVM is based on Hadoop and hence communicates
gradients after every epoch and needs more iterations to
converge

::::
This

:::::
result

:::::
shows

::::
that

::::::
existing

:::::::::
algorithms

::::::::
designed

::
for

::::::::::
map-reduce

:::::
may

:::
not

::::::
provide

::::
the

::::
most

:::::::
optimal

:::::::
speedup

::
for

::::
low

::::::
latency

::::::::::
frameworks

::::
such

::
as

:
MALT.

Figure 6 shows the time to process examples with
neural networks.The neural network is a three-layer fully
connectedneural network, and is trained for text learning
(click prediction). Neural networks need

:::::::
speedup

::::
w.r.t

::::
time

::
for

:::::::::::
convergence

:::
for

:::::::
ad-click

:::::::::
prediction

:::::::::::
implemented

:::::
using

:
a
:::::
fully

:::::::::
connected,

:::::
three

:::::
layer

::::::
neural

::::::::
network.

::::
This

:::::
three

::::
layer

:::::::
network

:::::
needs to synchronize parameters at each layer.

Furthermore, due to computation in forward and reverse
direction,

::::
these

::::::::
networks

::::
have

:::::
dense

:::::::::
parameters

::::
and

::::
there

::
is

0 500 1000 1500 2000 2500 3000

0.55

0.6

0.65

0.7

time

KDD2012, all, BSP, modelavg, nodes=8
A

U
C

desired goal 0.7
single machine sgd
cb=15000 1.13X
cb=20000 1.5X
cb=25000 1.24X

Figure 6. This figure shows the
::::
AUC

:::::
(area

:::::
under

::::::
curve)

::
vs

time taken to speedup
::
(in

:::::::
seconds)

:::
for a three layer neural net-

work for text learning (click prediction).We find that provides
speedup over a single node.

60 1 2 3 4

200

0

20

40

60

80

100

120

140

160

180

Runtime Configurations

Ti
m

e
to

 r
un

 1
00

 e
po

ch
s

fo
r

w
eb

 s
pa

m
 w

or
kl

oa
d

Halton-grad-avg PS-model-avg PS-grad-avgHalton-model avg

loss=0.05

loss=0.03

loss=0.05

loss=0.04

Wait

Compute

Figure 7. This figure shows the time taken to speedup matrix
factorization network

:::::::
compares

:
MALThalton :::

with
:::::::::

parameter
:::::
server

::::
(PS)

:
for the Netflix dataset. We train asynchronously

over two machines
:::::::::
distributed

:::::
SVM

:::
for

::::::::
webspam

::::::::
workload

::
for

:::::::::::
asynchronous

:::::::
training, and use function

:::
with

::::::::
achieved

:::
loss

:::::
values

::
for

:::
20

:::::
ranks.

::::::::::
computation

::
in

:::
the

:::::::
forward

:::
and

:::
the

::::::
reverse

::::::::
direction.

::::::
Hence,

:::::::::::::
fully-connected neural networks are hard to scale

:::::
harder

::
to

::::
scale

::::
than

::::::::::
convolution

::::::::
networks [22]. We show the number

of examples processed by every node in
::::::
speedup

:::
by

:::::
using

MALT all-all to train over KDD-2012 data on 10 processes

:
8
::::::::
processes

:::::
over

:::::
single

::::::::
machine. We obtain 1.7

::
up

:::
to

:::
1.5x

speedup with 10 processes
:
8
:::::
ranks. The speedup is limited

as compared to SVM because 1) SSI is non-convex and re-
quires high-dimensional model communication as opposed
to gradient and 2) text processing in a neural network re-
quires very little

:::::
limited

:
computation and communication

costs dominate.
Figure 12 shows the time to process examples on each

machine with matrix factorization. This algorithm computes
the examples asynchronously across different machines.
Each example represents different rows and columns of the
original matrix to be factorized. We use as the function that

emulates Hogwild [46] . We show speedup in processing
examples for different communication batch sizes.

:::
We

::::
now

::::::::
evaluate

:::
the

::::
time

:::::
spent

:::
by

:
MALT

:
in
::::::::

different

::::
steps

::::
such

:::
as

:::::::::
computing

:::
the

::::::::
gradient,

:::::::
pushing

:::
the

:::::::
gradient

::::::
values,

:::::::
updating

:::
the

:::::::
gradient

:::::
from

:::::::
received

::::::
values,

:::
etc.

:
Fig-

ure 8 shows the time spent for different ML tasks for 20
ranks (when operating synchronously). We find that MALT
balances computation with communication and nodes spend
most of their time computing gradients and pushing them (as
opposed to blocking). In async workloads, MALT configura-
tions do not wait while parameter server clients need to wait
for updated models to arrive after sending their gradients as
shown in Figure 7. Figure 7 also shows the efficiency of us-
ing gradient updates instead of sending whole models over
the network. In case of parameter server , even though clients

:::
The

:::::
slaves

::
in
:::
the

:::::::::
parameter

:::::
server

:
may send gradients to the

server, the server needs to send whole models, and hence

:::
but

::::
need

:::
to

:::::::
receive

:::
full

::::::
model

:::::::::::
parameters.

:::::::::::
Furthermore,

::
the

:::::::::
parameter

::::::
server

::::
has

::::
wait

:::::
times

::::
for

::::::::::::::
model-averaging

::::
even

::
in

:::
the

:::::::::::
asynchronous

:::::
case

::::::
because

:::
the

:::::::
workers

:::::
need

::
to

:::
wait

:::
for

::::::
model

::::::::::
parameters

::
to

:::::
arrive

:::::
from

:::
the

:::::
server

::::::
before

:::::::::
proceeding

:::
to

:::
the

:::::
next

::::::::
iteration.

::::::
Hence,

:
it suffers from

higher network costs for high-dimensional models
::::
such

::
as

::::::::
webspam.

::::::
Figure

::
9
::::::

shows
:::
the

::::::::
speedup

::::
with

:::::::::::
synchronous

::::::
(BSP),

:::::::::::
asynchronous

::::::
(ASP)

:::
and

::::::::::::::::
bounded-staleness

:::::
(SSP)

:::::::
models

::
for

:::
the

::::::
splice

::::::
dataset.

::::
This

:::::::
training

::::::
dataset

:::::::
consists

:::
of

::::
10M

::::::::
examples

::::
(250

::::
GB)

:::
and

:::::
does

:::
not

::
fit

::
in

:::::
single

::::::::
machine.

::::
Our

:::::::::::::
implementation

::
of

::::::::
bounded

:::::::
staleness

:::::
only

::::::
merges

:::::::
updates

:
if
::::
they

:::
are

::::::
within

::
a
::::::
specific

::::::
range

::
of

:::::::
iteration

::::::
counts

::
of

:::
its

::::::::
neighbor.

::::::::::
Furthermore,

::
if
::
a

::::::
specific

::::
rank

::::
lags

:::
too

:::
far

::::::
behind,

::::
other

:::::
ranks

::::
stall

:::::::
training

:::
for

::
it
:::

to
:::::
catch

:::
up.

:::
For

::::
the

:::::
splice

::::::
dataset,

:::
we

:::
find

::::
that

::::
SSP

::::::::
converges

::
to

:::
the

::::::
desired

:::::
value

::::
first,

:::::::
followed

:::
by

::::
ASP

:::
and

::::
BSP.

:

To summarize, we find that MALT(all-all and halton)
achieves reasonable speedup over single machine and

MR-SVM
:
a
::::::
single

:::::::
machine

:::::::
despite

:::
the

:::::::::
additional

:::::
costs

::
of

:::::::::
distributed

::::::::
computing. Furthermore, MALT API is general-purpose

and can implement a wide-variety of algorithms and applications
:::
can

::::::
process

:::::
large

:::::::
datasets

::::
and

:::::::
models

:::::
with

:::::
large

:::::::::
parameter

:::::
values

::
in

::
a

:::::::::
reasonable

::::::
amount

::
of

::::
time.

6.2 Network Optimizations

:::
We

::::
now

:::::::
evaluate

:::
the

::::::
benefit

::
of

::::
our

:::::::
network

::::::::::::
optimizations.

Figure 10 shows the model convergence trends
:::::
graph

:
for

MALTall-all and MALThalton to reach the required loss value
for

:::
the RCV1 dataset. We find that MALThalton converges

more slowly than MALT-all, in terms of convergence per it-
eration. However, the time taken for every iteration

:::::
overall

::::
time

::
to

::::::::
converge

:
is less because: First, parallel nodes (N)

only communicate with fewer (log(N)) machines. Second,
each node performs model averaging of fewer (log(N)) in-
coming models. Hence, even though MALThalton may require
more iterations than MALTall- all, the overall time required
for every iteration is less, and overall convergence time to

all halton

0

0.5

1

1.5

2

2.5

3

communication method

se
c

RCV1 gradavg commbatch=5000 20 ranks

Total
Grad
Push
Update
Barrier

Figure 8. This figure shows the time consumed by different
steps in distributed SVM for RCV1 workload for synchronous
training.

0 50 100 150

0.015

0.02

0.025

0.03

0.035

time

splice−site, all, modelavg, cb=5000, nodes=8

lo
ss

desired goal 0.0125
BSP
ASYNC
SSP

Figure 9. This figure compares with parameter server
:::::
shows

::
the

::::::::::
convergence

:::
for

:::::::::::::::
bulk-synchronous (PS

:::
BSP)for distributed

SVM for webspam workload for asynchronous training, with
achieved loss values for 20 ranks. PS has wait times for
model-averaging even in asynchronous mode because the
workers need to wait

::::::::
processing

:::::
(ASP)

::::
and

::::
stale

::::::::::
synchronous

::::::::
processing

:::::
(SSP)

:
for parameters to arrive from the server

before proceeding to the next iteration
:::::
splice

:::::::
workload.

10
0

10
2

0.15

0.16

0.17

0.18

0.19

0.2

0.21

time (0.01)

lo
ss

sync gradavg all 10 ranks

desired goal 0.145
single machine sgd
cb=1000 5.23X
cb=5000 6.7X
cb=10000 5.53X

10
0

10
2

0.15

0.16

0.17

0.18

0.19

0.2

0.21

time (0.01)

lo
ss

sync gradavg halton 10 ranks

desired goal 0.145
single machine sgd
cb=1000 5.86X
cb=5000 8.1X
cb=10000 5.69X

Figure 10. This figure shows convergence
::::
(loss

::
vs

:::::
time

::
in

::::::
seconds)

:
for RCV1 dataset for MALT-all (left) and MALT-

halton(right) for different communication batch sizes. We find
that MALThalton converges faster than MALTall.

0 50 100 150 200

0.015

0.02

0.025

0.03

0.035

time

modelavg, cb=5000, nodes=8

lo
ss

desired goal 0.0125
BSP all
ASYNC all 3.1X
ASYNC halton 4.1X

Figure 11.
::::
This

:::::
figure

:::::
shows

:::::::::::
convergence

::::
(loss

::
vs

:::::
time

::
in

::::::
seconds)

:::
for

:::::
splice

::::::
dataset

::
for

:
MALT

::
-all

::::
and MALT

::::::
-halton.

:::
We

:::
find

::::
that MALThalton ::::::::

converges
::::
faster

::::
than

:
MALTall:.

0 500 1000 1500 2000 2500

0.9

0.95

1

1.05

1.1

time

Netflix, modelrep−mat−alldata−multi, cb=5000, nodes=8

te
st

 R
M

S
E

desired goal 0.943
single machine sgd
ASYNC all 1.8X
ASYNC halton 2.1X

Figure 12.
::::
This

:::::
figure

::::::
shows

::::
the

::::
test

:::::
error

:::
vs

::::
time

:::
in

::::::
seconds

::::::::
processed

:::
for

:::::::
matrix

::::::::::
factorization

:::::
with

:::
the

::::::
Netflix

::::::
dataset.

:::
We

::::
train

:::::::::::::
asynchronously

:::
over

:::::
eight

::::::::
machines,

:::
and

:::
use

grad-replace gather
:::::::
function.

reach the desired accuracy is less. Finally, since MALThalton
spreads out its updates across all nodes, that aids faster con-
vergence.

::::::
Figure

::
11

:::::
shows

::::::
model

::::::::::
convergence

:::
for

:::
the

:::::
splice

::::::
dataset.

::::
From

::::
the

::::::
figure,

:::
we

:::
see

::::
that

:
MALThalton ::::::::

converges
:::::
faster

:::
than

:
MALTall- all.:::::::::::

Furthermore,
::::

we
::::
find

:::
that

::::
that

:::::
over

:::
the

:::::
course

::
of

:::
32

::::::
epochs,

:::::
with

:
8
::::::
nodes,

::::
each

::::
node

::
in

:
MALTall- all

::::
sends

::::
out

:::
305

::::
GB

::
of

:::::::
updates,

:::::
while

:
MALThalton ::::

only
:::::
sends

:::
131

::::
GB

::
of
:::::

data.
::::

As
:::
the

:::::::
number

:::
of

:::::
nodes

:::::::::
increase,

:::
the

:::::::::
logarithmic

:::::::
fan-out

::
of
:

MALThalton ::::::
should

:::::
result

:::
in

:::::
lower

:::::::
amounts

::
of

::::
data

:::::::::
transferred

:::
and

:::::
faster

:::::::::::
convergence.

:

::::::
Figure

::
12

:::::
shows

:::
the

::::::::
examples

::::::::
processed

:::
on

::::
each

:::::::
machine

::::
with

::::::
matrix

::::::::::::
factorization.

:::::
This

::::::::
algorithm

:::::::::
computes

::::
the

::::::::
examples

:::::::::::::
asynchronously

::::::
across

:::::::
different

:::::::::
machines.

:::::
Each

:::::::
example

::::::::
represents

:::::::
different

:::::
rows

:::
and

:::::::
columns

::
of

:::
the

:::::::
original

:::::
matrix

::
to
:::
be

:::::::::
factorized.

:::
We

:::
use

:
replace

::
as

:::
the gather()

:::::::
function

::::
that

::::::::
emulates

::::::::
Hogwild

:::::
[46] .

:::
We

::::::
show

:::::::
speedup

::
in

:::::::::
processing

::::::::
examples

:::
for

::::::::
different

:::::::::::::
communication

:::::
batch

::::
sizes.

::::
We

::::
find

::::
that

:
MALT

:::::::
provides

::::::::
speedup

::::
over

::::::
single

:::::::
machine,

::::
and

:::::
using

:
MALThalton ::::::

provides
:::::::::

additional
:::::

14%

:::::::
speedup.

:

MALT halton ::::::::
trades-off

::::::::
freshness

::
of

::::::
updates

::
at

::::
peer

:::::::
replicas

::::
with

:::::::
savings

::
in

::::::::
network

:::::::::::::
communication

:::::
time.

:
For mod-

els where the cost of a single iteration is not significant
(small model sizes, low averaging costs)

:::::
model

:
is
::::::

dense
:::
and

:::::::
network

::::::::::::
communication

:::::
costs

:::
are

:::::
small

::::::::
compared

::
to

::::::
update

::::
costs, MALTall-all configuration may be used with higher
number of nodes than (log(N)). Since,

::::::
provide

:::::::
similar

::
or

:::::
better

:::::
results

::::
over

:
MALT is a general purpose API, it allows

developers to balance communication and computation by
providing a DAG for pushing updateshalton.

:::
For

::::::::
example,

:::
for

::
the

::::
SSI

::::::::
workload,

::::::
which

::
is

::::
fully

:::::::::
connected

:::::
neural

::::::::
network,

::
we

:::::
only

:::
see

:
a
:::::
1.1X

:::::::
speedup

:::
for

:
MALThalton ::::

over
:
MALTall.

::::::::
However,

::
as

:::
the

:::::::
number

::
of

:::::
nodes

:::
and

::::::
model

::::
sizes

::::::::
increase,

::
the

::::
cost

:::
of

:::::::::::::
communication

::::::
begins

::
to
:::::::::

dominate,
::::
and

:::::
using

MALThalton :
is

::::::::
beneficial.

Figure 13 shows the network time spent for MALTall-all,
MALThalton, and parameter server for the entire network,
for webspam workload. We find that MALThalton is most
network efficient. Webspam is a high-dimensional work-
load. MALTonly sends updates. halton only sends updates
to log(N) nodes. Parameter server sends gradients and but
needs to receive the whole model from the central server.
We note that other optimizations such as compression, and
other filters can further reduce the network costs as noted
in [36]. Furthermore, when the parameter server is repli-
cated for high-availability, there is more network traffic for
additional N (asynchronous) messages for N − way chain
replication of the parameters.

Overall
::
To

::::::::::
summarize, we find that MALT provides send-

ing gradients (instead of sending the model) that saves net-
work costs. Furthermore, MALT halton is network efficient
and achieves acceptable convergence

::::::
speedup

:::::
over

:
MALT

all-all.

:::::::
Network

:::::::::
saturation

:::::
tests:

::
We

:::::::
perform

:::::::::
infiniband

:::::::
network

:::::::::
throughput

:::::
tests,

:::
and

::::::::
measure

:::
the

::::
time

::
to

:::::
push

:::::::
updates

::
in

::::
ALL

::::
case

::::
with

:::
the

:::::
SVM

::::::::
workload.

::
In

:::
the

:::::::::::
synchronous

::::
case,

::
we

::::
find

::::
that

:::
all

:::::
ranks

:::::::
operate

:::
in

:
a
::::

log
::::
step

:::::::
fashion,

::::
and

:::::
during

:::
the

:
scatter

:::::
phase,

:::
all

::::::::
machines

:::::
send

::::::
models

::
at
::::

line

:::
rate

::::::
(about

:::::::
5GB/s).

::::::::::
Specifically,

:::
for

:::
the

::::::::
webspam

::::::::
workload

::::::
(Figure

::::
13),

:::
we

:::
see

:::::
about

:::
5.1

::::
GB/s

:::
(40

:::::
Gb/s)

::::::
during

::::::
scatter.

::
In

:::
the

:::::::::::
asynchronous

::::
case,

::
to

:::::::
saturate

:::
the

:::::::
network,

:::
we

::::::
needed

::
to

:::
run

::::::::
multiple

:::::::
replicas

::
on

::::::
every

::::::::
machine.

:::::
When

::::
we

:::
run

::::
three

:::::
ranks

:::
on

:::::
every

::::::::
machine,

:::
we

::::
find

::::
that

::::
each

::::::::
machine

::::
sends

::::::
model

::::::
updates

::
at
:::
4.2

:::::
GB/s

:
(
::
33

:::::
Gb/s)

:::
for

:::
the

::::::::
Webspam

::::::
dataset.

:::::
These

::::
tests

::::::::::
demonstrate

::::
that

:::::
using

:
a
::::
large

:::::::::
bandwidth

:::::::
network

:
is
:::::::::
beneficial

:::
for

::::::
training

:::::::
models

::::
with

::::
large

:::::::
number

::
of

:::::::::
parameters.

:

6.3 Developer Effort
We evaluate the ease of implementing parallel learning in
MALT by adding support to the four applications listed in
Table 3. For each application we show the amount of code
we copied from suspend/resume to create checkpoint/restore

:::::::
modified

:
as well as the number of new lines added. On

2 4 10 20

0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

ranks

M
B

s

Webspam gradavg commbatch=5000

all
halton
para−server

Figure 13. This figure shows the network costs for MALTall-all,
MALThalton and parameter server for the whole network for
webspam workload. We find that MALT halton reduces network
communication costs and provides fast convergence.

Application Dataset
MALT annotations

LOC
Modified

LOC Added

SVM RCV1 105 107
Matrix
Factorization Netflix 76 82

SSI KDD2012 82 130

Table 3. Developer effort for converting serial applications to
data-parallel with MALT.
average, we moved 87 lines of code and added 106 lines,
representing about 15% of overall code. In Section 4 we de-
scribed the specific changes required. The new code adds
support for creating MALT objects, scattering the updates,
gathering and averaging the received updates. In compari-
son, implementing a whole new algorithm takes hundreds of
lines new code assuming underlying data parsing and arith-
metic libraries are provided by the processing framework.

::
On

::::::::
average,

::
we

::::::
moved

:::
87

::::
lines

::
of

::::
code

::::
and

:::::
added

:::
106

:::::
lines,

::::::::::
representing

:::::
about

::::
15%

::
of

::::::
overall

:::::
code.

6.4 Fault Tolerance
We evaluate the time required for convergence when a node
fails. When

::
the

:
MALT

::::
fault

:::::::
monitor

:
in a specific node re-

ceives a time-out from a failed node, it removes that node
from send/receive lists. We run MALT-SVM on a 10 ma-
chine cluster to train over PASCAL-DNA [4] dataset. We
inject faults on MALT jobs on one of the machines and ob-
serve recovery and subsequent convergence. We inject faults
through an external script and also inject programmer errors
such as divide by zero.

We find that in each case, MALT fault monitors detected
the unreachable failed mode, triggered a recovery process
to synchronize with the remaining nodes and continued to
train. We also observe that subsequent group operations only
execute on the survived node. Finally, we verify that the
models converge to an acceptable accuracy in each of the
failed cases. We also find that local fault monitors were able
to trap processor exceptions and terminate the local training
replica. We note that MALT cannot detect corruption of

50

400

0

50

100

150

200

250

300

350

Runtime configurations

T
im

e
to

p
ro

ce
ss

 5
0

 e
p
oc

hs fault-free
1-node failure

Figure 14. This figure shows the time taken to converge for
DNA dataset with 10 nodes in fault-free and a single process
failure case. We find that MALT is able to recover from the
failure and train the model with desired accuracy.
scalar values or Byzantine failures. Figure 14 shows one
instance of failure recovery, and the time to converge is
proportional to the number of remaining nodes in the cluster.

7. Related work
Our work is inspired from past work on data-parallel pro-
cessing, ML specific platforms, ML optimizations and RDMA
based key-value stores.

Existing data-parallel frameworks: Batch processing sys-
tems based on map-reduce [23, 50] perform poorly for ma-
chine learning jobs because the iterative nature of these al-
gorithms require frequent communication using disks. Fur-
thermore, the data-flow model provided by map-reduce is
restrictive, and limits the flexibility of expressing commu-
nication across tasks. Spark [53] provides an efficient in-
memory representation to synchronize data across iterations.
Spark provides copy-on-write, in- memory structures that
improve performance for batch workloads that transform
all-data. It also provides fault tolerance using lineage (re-
computation) that enforces determinism. However, this is
less efficient for

::::::
certain

:
machine learning algorithms that

make fine-grained and asynchronous updates. Dryad[32] and
CIEL [42] provide a more flexible data-parallel communi-
cation API to write any arbitrary data flow but share data
across tasks through disks. MPI [25] provides a low-level
message passing constructs, and a system similar to MALT
can be built over MPI. However, MPI does not provide
any fault tolerance

:::::::::
capabilities. Picollo [45] provides a dis-

tributed, master-slave key-value store, and resolves writes
conflicts with

:::::
using user-defined functions. Picollo provides

strong fault tolerance, consistency and determinism guaran-
tees that can be relaxed in MALT for performance. MALT
is completely asynchronous, and allows senders to transmit
data with one-sided write operations. Furthermore, unlike
Picollo, MALT provides a more expressive communication

API, allowing
:::
that

::::::
allows the programmer to control where

the updates may reside and how they may propagate.

ML frameworks: Parameter-server [36], Project Adam [15],
DistBelief [22] use a master-client style communication with
the parameter server, that complements MALT. MALT is a
general purpose API, designed to train models in a peer-peer
fashion. MALT’s peer-peer style simplifies fault-tolerance,
and only requires writing code once that executes over
all machines. Furthermore, most existing parallel learning
frameworks require a re-write of applications and libraries.
Vowpal Wabbit [52] provides data- parallel learning, where
individual model replicas train in parallel and average the
gradients using the LBFGS algorithm. However, it runs over
Hadoop and lacks efficient shared memory semantics that
MALT provides. Presto [49], has a similar goal to ours, to
provide a rich developer environment for parallel learning.
It provides a parallel R, since R is a common data analysis
tool. Presto provides a large distributed array abstraction to
shard data and removes scalability bottlenecks in R imple-
mentation. MALT library can be used to parallelize many
existing learning frameworks. There are also many GPU
based frameworks [18]. However, GPU speedups are limited
for datasets exceeding its memory sizes (<10 GB) and train-
ing multiple-GPUs over the network incurs significant com-
munication costs. Furthermore, programming GPUs is hard,
and requires developers to worry about hiding the GPU-CPU
latency apart from ML algorithm specific issues.

ML optimizations: We now discuss prior work to optimize
distributed machine learning to reduce synchronization and
improve convergence. Many researchers have explored im-
proving stochastic gradient descent over distributed systems
by providing mini-batching [19]. This reduces the amount of
communication overhead since each model processes more
examples before sending out updates. However, both ASGD
and mini-batching show poor converance rates and are not
very computationally efficient [29]. HogWild [46] provides
a single shared parameter vector and allows parallel work-
ers to update model parameters without any locking (in a
single machine). However, this method only works when
updates are sparse and there is limited overlap. HogWild
can also generate lots of network traffic when adopted in
a distributed setting. Bounded-staleness [20] limits stale up-
dates from stragglers by slowing down the forerunners. Iter-
ative parameter mixing (used by MALT) has been shown to
provide high-accuracy models over map-reduce [29]. Opti-
mistic Concurrency Control [44] uses database style coordi-
nation free model updates for distributed machine learning.
MALT also provides coordination free updates by allocating
a per-receiver queue at sender and also avoids invoking the
remote CPU by using one-sided RDMA.

RDMA systems: MALT uses one-sided RDMA writes to
communicate gradients for every batch (and no reads). Re-
cently, infiniband hardware has been used to build

:::::::::
transactions

::
on

::::::
objects

::
in

::::::
shared

::::::
address

:::::
space

::
in

::::::
FARM

:::::::
[24] and

:
client-

server based key-value stores with Pilaf [40]and distributed
symmetric shared-memory systems in FARM [24] . These
systems provide efficient PUT/GET semantics.

:
. Pilaf pro-

vides consistency using checksums, while FARM orders

:::::::
provides

::::::::::
consistency

::
by

::::::::
ordering DMA writes. MALT pro-

vides a finite per-sender queue at the receiver to avoid write-
write conflicts. Older gradients maybe over-written by a fast
sender and the receiver averages (or any other user defined
function) the incoming model updates for conflict resolution.

8. Conclusion
Existing map-reduce frameworks are optimized for batch
processing systems and ill-suited for tasks that are itera-
tive, fine-grained and asynchronous. Recent scalable ML
platforms force developers to learn a new programming
environment and rewrite their ML software. The goal of
MALT is to efficiently provide data-parallelism to existing
ML software. Given a list of machines and MALT library,
we demonstrate that one can program ML algorithms, con-
trol the data-flow and synchrony. We provide MALT library
interface for procedural (C++) and scripting (Lua) languages
and demonstrate data-parallel benefits with SVM, matrix
factorization and neural networks. MALT

:::
uses

:::::::::
one-sided

::::::
RDMA

:::::::::
primitives

::::
that

:::::::
reduces

::::::::
network

:::::::::
processing

:::::
costs

:::
and

:::::::::::
transmission

::::::::
overhead.

::::
The

::::
new

:::::::::
generation

::
of

:::::::
RDMA

:::::::
protocols

:::::::
provide

::::::::
additional

:::::::::::
opportunities

:::
for

::::::::::::
optimizations.

::::::::
Primitives

::::
such

:::
as fetch and add

:::
can

::
be

:::::
used

::
to

:::::::
perform

:::::::
gradient

::::::::
averaging

:::
in

::::::::
hardware

::::
and

:::::::
further

::::::::
decrease

:::
the

:::::
model

::::::::
training

::::
costs

::
in

::::::::
software.

:

:::::::::::::::::::
Acknowledgments
:::
We

:::::
would

::::
like

::
to

:::::
thank

:::
our

::::::::
shepherd

:::::
Derek

:::::::
Murray

:::
and

:::
the

:::::::::
anonymous

::::::::
reviewers

:::
for

:::
the

:::::
useful

::::::::
feedback.

:::
We

::::
also

:::::
thank

:::
Igor

::::::::::
Durdanovic

:::
for

:::::::
helping

:::
us

:::
port

:
MALT

::
to

::::::
RAPID

::::
and

:::::::::
Hans-Peter

::::
Graf

:::
for

:::
his

::::::
support

::::
and

:::::::::::::
encouragement.

References
[1] Halton sequence. en.wikipedia.org/wiki/Halton

sequence.

[2] Machine Learning in Python.
http://scikit-learn.org/.

[3] The R Project for Statistical Computing.
www.r-project.org/.

[4] PASCAL(Pattern Analysis, Statistical Modelling and Com-
putational Learning) Large Scale Learning Challenge.
http://largescale.ml.tu-berlin.de/about/,
2009.

[5] A. Agarwal, O. Chapelle, M. Dudı́k, and J. Langford. A
reliable effective terascale linear learning system. Journal of
Machine Learning Research, 2014.

[6] T. Alrutz, J. Backhaus, T. Brandes, V. End, T. Gerhold,
A. Geiger, D. Grünewald, V. Heuveline, J. Jägersküpper,
A. Knüpfer, et al. Gaspi–a partitioned global address space

programming interface. In Facing the Multicore-Challenge
III, pages 135–136. Springer, 2013.

[7] K. Bache and M. Lichman. UCI machine learning repository,
2013.

[8] B. Bai, J. Weston, D. Grangier, R. Collobert, K. Sadamasa,
Y. Qi, O. Chapelle, and K. Weinberger. Supervised semantic
indexing. In Proceedings of the 18th ACM conference on
Information and knowledge management. ACM, 2009.

[9] C. M. Bishop et al. Pattern recognition and machine learning,
volume 1. springer New York, 2006.

[10] L. Bottou. Large-scale machine learning with stochastic gra-
dient descent. In Y. Lechevallier and G. Saporta, editors, Pro-
ceedings of the 19th International Conference on Computa-
tional Statistics (COMPSTAT’2010), August 2010. Springer.

[11] L. Bottou. Stochastic gradient descent tricks. In Neural
Networks: Tricks of the Trade, pages 421–436. Springer, 2012.

[12] J. Canny and H. Zhao. Butterfly mixing: Accelerating
incremental-update algorithms on clusters. In SDM’13, 2013.

[13] M. Castro and B. Liskov. Proactive recovery in a byzantine-
fault-tolerant system. In Proceedings of the 4th conference on
Symposium on Operating System Design & Implementation-
Volume 4. USENIX Association, 2000.

[14] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made
live: an engineering perspective. In Proceedings of the twenty-
sixth annual ACM symposium on Principles of distributed
computing. ACM, 2007.

[15] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman.
Project adam: Building an efficient and scalable deep learning
training system. In OSDI, 2014.

[16] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun. Map-reduce for machine learning on multicore.
Advances in neural information processing systems, 19:281,
2007.

[17] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson,
K. Keeton, and E. Xing. Solving the straggler problem with
bounded staleness. HotOS. USENIX Association, 2013.

[18] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and
N. Andrew. Deep learning with cots hpc systems. In Pro-
ceedings of The 30th International Conference on Machine
Learning, 2013.

[19] A. Cotter, O. Shamir, N. Srebro, and K. Sridharan. Better
mini-batch algorithms via accelerated gradient methods. In
Advances in Neural Information Processing Systems, 2011.

[20] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei,
W. Dai, G. R. Ganger, P. B. Gibbons, et al. Exploiting bounded
staleness to speed up big data analytics. 2014.

[21]
::
W.

::::
Dai,

:
J.
::::

Wei,
:::
X.

:::::
Zheng,

::
J.
::
K.

:::::
Kim,

::
S.

:::
Lee,

::
J.
::::
Yin,

::
Q.

:::
Ho,

:::
and

::
E.

:
P.
:::::
Xing.

::::::
Petuum:

::
A

::::::::
framework

:::
for

::::::::::::::
iterative-convergent

::::::::
distributed

::
ml.

:::::
arXiv

::::::
preprint

:::::::::::::
arXiv:1312.7651

:
,
::::
2013.

[22] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V.
Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A. Tucker, et al.
Large scale distributed deep networks. In NIPS, 2012.

[23] J. Dean and S. Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

http://archive.ics.uci.edu/ml
http://leon.bottou.org/papers/bottou-2010
http://leon.bottou.org/papers/bottou-2010

[24] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro.
Farm: fast remote memory. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 14), 2014.

[25] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,
J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lums-
daine, et al. Open mpi: Goals, concept, and design of a next
generation mpi implementation. In Recent Advances in Par-
allel Virtual Machine and Message Passing Interface, pages
97–104. Springer, 2004.

[26] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-
scale matrix factorization with distributed stochastic gradient
descent. In Proceedings of the 17th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining.
ACM, 2011.

[27]
::::
GPI2:

:::::::::::
Programming

:::::
Next

::::::::::
Generation

:::::::::::::
Supercomputers.

:

:::::::::
Benchmarks.

:

[28] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effec-
tiveness of data. Intelligent Systems, IEEE, 24(2):8–12, 2009.

[29] K. B. Hall, S. Gilpin, and G. Mann. Mapreduce/bigtable for
distributed optimization. In NIPS LCCC Workshop, 2010.

[30] M. Hilbert and P. López. The worlds technological capacity
to store, communicate, and compute information. Science,
332(6025):60–65, 2011.

[31] IDIAP Research Institute, New York University and NEC
Laboratories America. Torch7:Scientific computing for Lu-
aJIT. http://torch.ch/.

[32] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In Proceedings of the 2nd ACM european conference
on Computer Systems, 2007.

[33] Kaggle. Tencent 2012 KDD Cup.
https://www.kddcup2012.org, 2012.

[34]
::
A.

:::::
Kalia,

::
M.

::::::::
Kaminsky,

::::
and

::
D.

::
G.

::::::::
Andersen.

:::::
Using

::::::
RDMA

:::::::
efficiently

:::
for

:::::::
key-value

:::::::
services.

::
In

::::::::::
Proceedings

::
of

::
the

::::
2014

::::
ACM

::::::::
conference

::
on

:::::::::
SIGCOMM.

:::::
ACM,

:::::
2014.

[35] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42(8):30–
37, 2009.

[36] M. Li, D. Andersen, A. Smola, J. Park, A. Ahmed, V. Josi-
fovski, J. Long, E. Shekita, and B.-Y. Su. Scaling distributed
machine learning with the parameter server. In OSDI, 2014.

[37] M. Li, D. G. Andersen, and A. Smola. Distributed delayed
proximal gradient methods. In NIPS Workshop on Optimiza-
tion for Machine Learning, 2013.

[38] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-
batch training for stochastic optimization. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’14. ACM, 2014.

[39] R. McDonald, K. Hall, and G. Mann. Distributed training
strategies for the structured perceptron. In Human Language
Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Lin-
guistics. Association for Computational Linguistics, 2010.

[40] C. Mitchell, Y. Geng, and J. Li. Using one-sided rdma reads
to build a fast, cpu-efficient key-value store. In Proceedings
of the 2013 USENIX Annual Technical Conference, USENIX
ATC, volume 13, 2013.

[41] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: a timely dataflow system. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles. ACM, 2013.

[42] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith,
A. Madhavapeddy, and S. Hand. Ciel: A universal execu-
tion engine for distributed data-flow computing. In NSDI, vol-
ume 11, 2011.

[43] NEC Laboratories America. MiLDE: Ma-
chine Learning Development Environment.
http://www.nec-labs.com/research-departments
/machine-learning/machine-learning-software/
Milde.

[44] X. Pan, J. E. Gonzalez, S. Jegelka, T. Broderick, and M. Jor-
dan. Optimistic concurrency control for distributed unsuper-
vised learning. In Advances in Neural Information Processing
Systems, 2013.

[45] R. Power and J. Li. Piccolo: Building fast, distributed pro-
grams with partitioned tables. In OSDI, 2010.

[46] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-
free approach to parallelizing stochastic gradient descent. In
Advances in Neural Information Processing Systems, 2011.

[47] J. R. Santos, Y. Turner, and G. Janakiraman. End-to-end con-
gestion control for infiniband. In INFOCOM 2003. Twenty-
Second Annual Joint Conference of the IEEE Computer and
Communications. IEEE Societies, volume 2. IEEE, 2003.

[48] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, 1990.

[49] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and R. S.
Schreiber. Presto: distributed machine learning and graph pro-
cessing with sparse matrices. In Proceedings of the 8th ACM
European Conference on Computer Systems. ACM, 2013.

[50] T. White. Hadoop: The definitive guide. ” O’Reilly Media,
Inc.”, 2009.

[51] W. Xu. Towards optimal one pass large scale learning
with averaged stochastic gradient descent. arXiv preprint
arXiv:1107.2490, 2011.

[52] Yahoo Corp. Vowpal Wabbit.
http://hunch.net/ vw/.

[53] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX con-
ference on Networked Systems Design and Implementation.
USENIX Association, 2012.
M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: cluster computing with working sets. In
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing, 2010.

	Introduction
	Distributed Machine Learning
	MALT Architecture
	Abstractions for Shared Memory with dstorm
	Vector Object Library: Programming Dstorm for Machine Learning
	Fault tolerance
	Communication Efficiency in MALT

	Programming Interface
	Applications
	Support Vector Machines
	Matrix Factorization
	Neural Networks

	Implementation
	Evaluation
	Speedup
	Network Optimizations
	Developer Effort
	Fault Tolerance

	Related work
	Conclusion

