Mercurial Caches: OS Support for Low Power DRAM

Asim Kadav, Rathijit Sen, Michael M. Swift

Computer Sciences Department, University of Wisconsin-Madison
{kadav, rathijit, swift} @cs.wisc.edu

Abstract

DRAM is a significant consumer of power, accounting for a
large percentage of total power in servers. While many hard-
ware technologies to improve DRAM power efficiency exist,
achieving energy proportionality for memory is still difficult.
Modern operating systems lack the mechanisms and abstrac-
tions to use low-power technologies. For example, they use
idle memory to aggressively cache file data, and they allow
physical memory to become fragmented, making it impossi-
ble to turn off memory banks without losing data.

In this paper, we describe mercurial caches, which are an

operating system mechanism to achieving energy-proportionality

for memory. Mercurial caches provide a copy-in/out inter-
face to low powered memory and act as a new level between
the file cache and storage.

We show how mercurial caches can be integrated in cur-
rent operating systems and demonstrate that they provide
substantial power savings when memory is idle with min-
imal performance overhead. Through an analytical model,
we demonstrate that it can provide DRAM energy savings
proportional to the DRAM under active usage.

FIXME [Real results]???

1. Introduction

DRAM consumes significant power, accounting for up to
25-57% in servers [3, 11, 23]. With modern servers pro-
visioned with tens of gigabytes of memory, DRAM power
increasingly dominates the power cost of idle servers. As
a result, many research projects provide hardware and soft-
ware support to reduce memory draw [9, 11, 21, 23].

A common goal for reducing idle or off-peak power
is through energy proportionality. Energy proportionality
strives to provide power efficiency by only using as much
power as required by the running applications [2]. This
has been possible in modern processors with existing fre-
quency and voltage-scaling techniques [?]. However, energy
proportionality in DRAM is limited to time multiplexing
DRAM usage. This is usually achieved through modifica-
tions to DRAM devices or micro-controllers, with support
for memory power “naps” but impose latency to transition
in and out low-power states [11].

Large compute clusters such as those used by Google [19]
and Condor [6] run heterogeneous workloads with different
memory requirements. Hence, low power memory saving
technologies based on time multiplexing DRAM usage are
insufficient when workloads only partially consume avail-
able memory.

Power-saving hardware techniques such as Deep Power
Down (DPD), Partial Array Self Refresh (PASR) [5], or re-
ducing the refresh rates (Low Refresh) can be used to save
energy by selectively applying them to unused memory por-
tions in a system. However, such techniques cannot be di-
rectly used with existing operating systems for two reasons.
First, most operating systems use idle memory to cache file
data to avoid expensive disk accesses. Thus, there is little
memory that is completely empty. Second, a operating sys-
tems allow physical memory to become fragmented over
time because there is little need for contiguity. However,
power-saving hardware such as PASR requires contiguous
free regions at least at least 1/16th of a DIMM long (up to 1
GB).

We provide energy proportionality for memory by pro-
viding support for mercurial caches. A mercurial cache is
a region of DRAM in a low-power state that can store in-
frequently accessed clean data. Compared to normal mem-
ory, the latency of accessing data from a mercurial cache is
higher, and it may be discarded by the cache to save power.
Thus, the techniques described above that reduce power can
be applied to a portion of memory to achieve energy pro-
portionality: only the fraction of DRAM needed for actively
used memory need be fully powered.

We modify the Linux virtual memory system to automat-
ically move unused page cache into a mercurial cache. If
these pages are referenced again they are copied back into
regular DRAM. We also implement mechanisms that prevent
system memory from being fragmented when power savings
are desired.

In addition, mercurial caches support unreliable memory
technologies. A primary use of power in DRAM is refresh,
and reducing refresh rates can reduce power use at the risk of
data corruption [20]. When used with such technology, mer-
curial caches use software checksums to augment hardware
ECC.

FIXME [Say there are multiple techniques to save
power with different trade offs, including power savings,
latency of access and reliability. We do something with
them]???.

Using an analytic model, we show that different memory
references patterns are best served by different power-saving
techniques, and that FIXME [some other conclusions]???.

The contribution of this paper is as follows:

® We demonstrate how DRAM power saving technologies
can be used in an OS and identify the challenges in
providing such support in an operating system.

e We analyze the available technologies and potential
power savings through an analytical model. Our model
demonstrates that space multiplexing DRAM usage pro-
vides power savings even when DRAM usage is high.

e Through a real OS implementation and emulated DRAM
controller hardware, we measure the power benefits and
performance overheads.

2. Motivation and Background

In this section we describe how the OS manages and con-
sumes memory and describe the existing hardware technolo-
gies to save DRAM power.

2.1 OS memory management

Modern operating systems are designed for high perfor-
mance and the memory consumption pattern is best summa-
rized by the following quote:

“Free memory is bad memory”
— Attributed to Linus Torvalds [1]

This quote emphasizes that free memory represents wasted
memory because it can be used to improve system perfor-
mance. Hence, Linux and other modern operating systems
are designed to use all available memory. This is because
the cost of of disk accesses is significantly more than ac-
cessing data from memory. Furthermore, power has only
recently been a first order design constraint and most OS
decisions are largely guided by performance. Hence, op-
erating systems try to cache as much data as possible to
avoid the disk penalty. They cache substantially more pages
than required by the running applications’ working set. For
example, while bringing in new pages, the LRU approx-
imation algorithm [4], which tries to predict future page
references, also prefetches additional pages that may be ref-
erenced in the future. Similarly, when an application termi-
nates, its pages are not freed immediately but aged out of the
cache to avoid re-reading the disk in case of a future refer-
ence. Hence, over a period of time the OS occupies all avail-
able memory except for a limited amount of reserved mem-
ory used to allocate memory in interrupt contexts. Reclaim
mechanisms ensure that memory can be quickly reclaimed

Total Free Active page | In-active
memory memory cache page cache
16GB 1.9GB 0.4GB 13.3GB

Table 1. Memory utilization in a quiesced system with 16GB
DRAM running Linux 3.4.1.

Each
side is a

LL/V Rank
DRAM) . .
controller +—» Device/Die consisting
of many banks
Sa

Segments

Figure 1. DRAM controller and modern DRAM hierarchi-
cal organization into ranks, banks and segments. Low power
DIMMS support refresh granularity of ranks or segments
(bank-segment selective).

from these caches when free memory is required by the sys-
tem by simply discarding cached data. Table 1 represents
memory consumption of a system running for 8 hours, while
occasionally running desktop workloads (kernel-compile,
file reads). We find that memory is dominated with file data
and the amount of free memory is very low.

Another characteristic of memory management in mod-
ern operating systems is fragmentation of physical ad-
dresses. Due to frequent small memory allocations, the phys-
ical memory becomes fragmented over time. Since requests
to allocate physically contiguous memory are rare (such as
super pages) and are often of the order of few MBs, frag-
mentation is not a problem for most system or application
functions. Hence, de-fragmentation is an expensive opera-
tion that adds limited value to OS when run periodically.
Furthermore, the OS may pin certain pages in memory such
as for DMA. Hence, these pages remain locked-in and create
holes in memory making de-fragmentation difficult.

The above two problems hamstring using current hard-
ware technologies to save DRAM power, such as turning off
unused memory, since consolidation of physical memory be-
comes difficult.

2.2 DRAM Background

We briefly describe modern DRAM organization and func-
tion. Figure 1 illustrates a DRAM organization. CPUs
communicate to memory through DRAM controller. Each
DRAM controller transfers data to one or more ranks. Each
rank comprises of multiple DRAM banks. Each bank rep-
resents a memory arrays which maybe further sub-divided
into multiple segments where data is stored in rows and
columns. Data from memory cannot be read out directly
from the memory arrays. Memory accesses initiate the fol-
lowing sequence of events:

1. Activate: The entire selected row is read into row buffers.
This is also referred to opening a page (not related to OS

pages).

DRAM Data re- Granularity Latency| Power

technology | tention savings

ACPI S4 No All DRAM >1s 100%

Deep No Bank 200 95%

power- s

down

Self- Yes Bank 100ns 33%

refresh

Clock-stop Yes All DRAM 200 83%
s

TCSR Yes All DRAM 100 ns 60%

PASR No 1/16th DIMM | 140 ns 25-30%

Low Re- | Partial Any 130ns 42%

fresh

Table 2. Comparison of different DRAM power saving tech-
nologies. Many technologies in the figure can co-exist. TCSR
savings are for 40C drop for 64MB DIMM.

2. Read/Write: Data is accessed from row buffers and trans-
mitted to the memory controller.

3. Precharge: DRAM reads are destructive (the row needs
to be written back) and row buffers are of limited capac-
ity. Before another row can be opened, the data needs to
be written back from the row buffer to the opened row.
For the rest of this paper, we assume a close page policy,
where the row is precharged immediately after complet-
ing the read/write access.

4. Refresh: DRAM memory cells leak capacitive charge,
and hence lose data over time. To prevent data loss, the
memory controller performs periodic refresh operations
(every 3.2ms) for each row.

The first three operations consume power when the
DRAM is in active use. This is called as active power.
The refresh operation, along with the power consumed by
DRAM controller (when idle) constitute background power.
When idle, DRAM power can be saved by reducing refresh
power, as discussed in next section.

2.3 DRAM low power modes

DRAM low power technologies either completely them-
selves off, losing data or alter DRAM refresh rates.

1. ACPI S4 state: The most extreme technique to save
DRAM power is to use the ACPI S4 or hibernation state
which turns all DRAM off and stores memory contents to
persistent storage. However, this solution is drastic and only
saves DRAM power in completely idle systems [7].

2. Deep Power Down: Deep power down cuts off power to
DRAM and reduces leakage current independent of the rest
of the system. Applications that do not require data retention
can utilize this DRAM power state in LPDDR2 DRAM [15].

3. Self-refresh DRAM: Self-refresh mode, supported in
server DDR2/DDR3 and mobile LPDDR?2 class memories,
enables refreshing memory contents without involvement
the DRAM controller. This saves DRAM power when CPU

is idle for short intervals, but imposes short exit penalties for
mobile RAMs and long penalties for DDR2/3 class memo-
ries [16].

4. Clock-stop DRAM: Clock stop DRAM provides power
savings by stopping the DRAM clock when there are no
memory transactions in progress or when transactions can
be processed at lower speeds. Clock stop is a software con-
trolled feature available in LPDDR2 DRAM [16].

5. TCSR DRAM: Temperature Control Self-Refresh allows
DRAM to adjust DRAM refresh rates based on tempera-
ture measured by an on-chip sensor. Hence, DRAM power
can be saved by by reducing the refresh rate when ambi-
ent temperature is low. This feature is available in LPDDR?2
DRAM [16].

6. PASR DRAM: Partial Array Self-Refresh(PASR) is an
enhancement to self-refresh which provides the ability to
refresh memory at different granularity, upto 1/16th of a
bank [15] and is supported in LPDDR2 and DDR3 DRAM
specifications. Simple extensions to these controllers can
allow arbitrary refresh times to different areas of memory
DIMMs [5, 9, 15]. When the system memory consumption
is low, PASR can be used with appropriate OS support to
reduce DRAM power.

7. Low Refresh DRAM: Low refresh DRAM saves power
by reducing the frequency of refresh. Recent work has
shown that most DRAM configurations are programmed
with significantly higher refresh rates than required and a
refresh time of the order of seconds only marginally af-
fects error rates [9, 20, 21]. Reducing refresh rates can lower
the error rates in DRAM. For example, there is a BER of
4.02108 when lowering refresh rates from 3.2ms to 1 second
and 3.2 x 102-6 when refresh rate is reduced to 5 second [22].

Comparing these technologies as shown in Table 2, we ar-
gue selectively applying refresh altering power saving tech-
niques to reduce DRAM power on a rank basis. We use DPD,
PASR and Low Refresh techniques to expose control knobs
to the OS to reduce DRAM power based on memory usage
and can be used to provide energy-proportional RAM usage.
In the next section, we describe the DRAM organization re-
quired to support such a design and analyze its benefits.

3. Mercurial Cache Hardware Support

In order to space multiplex DRAM usage, we examine three
different DRAM usage models that are enabled by PASR as
described in Figure 2; we intend to use the existing PASR
and DPD technologies supported in LPDDR and LPDDR2
DRAMs [12, 15, 16]. Additionally, we propose a low-refresh
(LR) mode that requires support for a programmable refresh
rate in the memory controller, along the lines of prior work
[9, 21]. We assume that these three power-saving modes are
applicable at the granularity of ranks.

DRAM DRAM DRAM

Available for OS Available for OS Available for OS

Copy and checksum

Copy pages from low pages from low

Low power pages

unavailable f power f power
T T
Turned Off Self-refresh Low refresh
Deep power down PASR Low refresh
(a) Deep power down (b) Enable self-refresh for (c) Reduce refresh rates

specific DRAM portions specific DRAM portions | for specific DRAM portions

DRAM —/ All three low power DRAM technologies require
controller EEE identical hardware support present in LPDDR2,
J which adds extra bits for disabling/enabling self-

bit select with refresh for DRAM segments

refresh

Figure 2. Hardware support using existing LPDDR2 technol-
ogy to support low powered caches in OS.

We recommend that regions of memory that are not ac-
tively used be transitioned to power-saving mode. DPD of-
fers maximum power savings for the target memory regions
but may incur additional performance penalty due to in-
creased disk accesses. All data in the target memory de-
vices are lost during DPD. In contrast, during self-refresh
(or PASR(1)), all the data is retained but power savings are
lower. PASR(n) offers further power savings during self-
refresh by stopping refresh to selected banks or parts of
banks within the device. LPDDR2 offers both bank-selective
and segment-selective masking to support PASR(n) [12].
The portions of the device that are refreshed under PASR(n)
are done so at the regular rate of once in 3.2 msec for each
row. This guarantees error-free data retention. Our proposed
LR scheme lowers refresh rate to further save power but
there may be data corruption due to leakage of capacitive
charge. We correct for this by doing error-detection and cor-
rection when accessing the page. Note that for read/write ac-
cesses to happen in DPD/PASR(n), the rank needs to be tran-
sitioned into working mode. This has a non-zero exit latency
of 140 ns for self-refresh/PASR(n) and ~200 psec for DPD
[16?]. New refresh-rate settings for LR take effect after one
refresh interval.

3.1 Analytical Model

We construct an analytical model to understand the power
savings from above DRAM hardware in different low power
modes, as a function of the memory access rate and percent-
age of total memory that is placed in low-power mode. The
analytical model helps us answer the following questions:

1. Power Savings: How much power do we save from dif-
ferent technologies for different amounts of DRAM?
Specifically, active DRAM power dominates the total
DRAM power. Are savings from refresh power substan-
tial when the total DRAM power usage is taken into ac-
count?

2. Reliability Costs: For different memory reference rates,
does the extra copy power between low power and regular
DRAM offset any refresh power savings?

We model three different configurations (i) DPD, where a
portion of memory is turned off (ii) PASR, where a portion
of memory is in self-refresh and (iii) Low Refresh, where
a portion of memory is in self-refresh at low refresh rates.
For power calculations, we use the methodology outlined in
MICRON technical reports [13, 14] and values for operat-
ing currents and command timings from the LPDDR2-S4
datasheet [12]. To the best of our knowledge, this is the first
model to evaluate low power techniques that considers both
active and refresh power.

3.2 Memory Organization

We describe our DRAM memory organization that switches
DRAM to low power states on a rank basis and is the basis
for our analytical model.

Each memory device in our study is a 256MB (2Gb)
x32 (32-pin data interface) LPDDR2-S4 SDRAM. Memory
cells within each device are logically arranged in arrays
of rows and columns. Using connectors similar to recent
work [10], we group multiple devices into ranks such that
all devices within the same rank share addressing, data and
command interfaces. The number of devices in each rank
and the total number of ranks depend on the total memory
capacity to be supported and the total number of ranks that
each memory channel can support without significant loss in
signal integrity. For modeling purposes, we assume that two
devices are grouped together to form an x64 (64-bit wide
data interface) rank of capacity 512MB. The total memory
capacity of 16GB is formed with 32 ranks, spread over the
available memory channels. Each rank can operate in either
working or power-saving mode (Section 3.2.3). The total
memory power is given by

nR

Pyrem = Z Ppri + Pegtra (D

where np is the number of ranks (32), Pg; is the power of
the i*" rank, and P, includes power for additional over-
head operations such as extra copying of pages or checksum
recovery.

3.2.1 Access Timings

Each memory access (read/write) occurs in units of 64 bytes
(cache line size) and is serviced by all devices in a rank. Each
device provides 8 bytes over 8 memory clocks. Since the
memory is DDR, the memory bus is occupied for 4 clocks
for each cache line transfer. We will refer to the memory bus
cycle time as tCK.

Our model assumes LPDDR2-S4 with a data rate of
1066M/s having average memory clock cycle time, tCK,
of 1.875 ns. The datasheet [12] specifies the following la-
tency values: read latency, RL = 8*tCK, is the time when the
first read data is available after activate; minimum row active
time, tRAS = 42ns, is the minimum time between activate
to precharge; precharge command period, tRP = 18ns; row

cycle time, tRC = tRAS+tRP, is the minimum time between
back-to-back activates to the same memory bank. Further-
more, inour baseline system, each row is refreshed every 32
msec, and time between two consecutive refresh operations
is 3.9 usec.

3.2.2 Access Distribution Assumptions

1. Memory accesses are mostly uniformly distributed over
available ranks (512MB bins). The average number of
accesses per rank is inversely proportional to the number
of available ranks.

2. Accesses to the same rank are serialized. While cur-
rent devices do allow parallel accesses to different banks
within a rank (with some delay), such analysis would
require a more sophisticated model that includes fine-
grained address conflict modeling.

3.2.3 Operating Modes

Devices in a rank can be either in working or power-saving
modes. Ranks can be accessed for memory reads/writes only
in working mode. Accesses to ranks in power-saving mode
will cause devices in the rank to transition to working mode
after a non-zero latency. Energy consumption in working
mode has three components:

1. Active energy: This consists of activate, read/write, trans-
mit, and precharge energy.

2. Background energy: This is the energy consumed by the
DRAM circuitry.

3. Refresh energy: This is the energy used during refresh
operations.

When accesses are not needed to some ranks, they can be put
in low power mode. We consider the following power-saving
modes:

1. DPD: all data in the devices in the rank is lost.

2. PASR(n=1,1/2,1/4,1/8): Only fraction n of each device in
the rank holds valid data. The data in the remaining (1-n)
fraction of the device is lost.

3. Low Refresh (LR): The memory arrays are refreshed at a
lower rate than normal resulting in power savings as well
as occasional data retention errors.

3.3 Power Calculations
3.3.1 Working Mode Power Calculation

We calculate power per rank in working mode by calculat-
ing energy consumed over a 1-second interval. This gives
average power consumed over this interval. As discussed in
subsection 3.2.3, energy consumption in this mode has four
components, each of which is discussed in detail below. Ta-
ble 3 lists parameter values used in the calculations.

1. Active energy/rank: Active energy consumed by a rank
for each cache line access is the sum of activation, read/write,

LPDDR2-S4 Parameters

Number of devices per rank (npr) 2
Voltage(Vpp2) 1.2V
Activate-Precharge Current(/ p po2) 65 mA
Active Standby Current(/ p pan2) 24 mA

Pre-Charge Standby Current (/ppan2) 16 mA

Pre-Charge Power-Down Current (Ipp2p2) | 1.6 mA
Burst Read Current (Ippar2) 220 mA
Burst Write Current (Ippaw2) 185 mA
Burst Refresh Current (Ipps2) 130 mA
Deep Power Down Current (Ip ps2) 30 pA
No. of DQs (npg) 18
Capacitive Loading/DQ (Cpq) 20 pF

Table 3. Parameters used to calculate power in LPDDR2-S4
DRAM. Current and DQ values are per device.

transmit and precharge operations per device in the rank. As-
suming that reads and writes are in the ratio 2:1, we have

Er(Active) = npr*
(E(ACT + PRE) + %E(RD) v %E(WR) + E(DQ))

The individual components are calculated as follows:
*E(ACT+PRE): This is the energy consumed by activate

and precharge operations per device in each rank for a
cache line access.

E(ACT + PRE) = Vppox
(IDDOQ *tRC — Ippan2 * tRAS — Ippana * tRP)

sE(RD): This is the energy consumed due to reads per
device in each rank for a cache line read.

E(RD) = VDDQ k (IDD4R2 — IDDSNZ) x4 xtCK

eE(WR): This is the energy consumed due to writes per
device in each rank for a cache line write.

E(WR) =Vpp2 * (Ippaw2 — Ipp3n2) *4 % tCK

*E(DQ): This is the energy used to drive the output pins
(DQs) per device in each rank for a cache line access.

1
E(DQ) =npqg * Cpg *VE2>D2 * (2* tC—K) x4 xtCK

2. Background energy/rank: A rank consumes different
background energy when it is accessed from when it is not.
The total background energy of a rank is thus

Er(BG) =npr * (tace * E(BGacc) + tace * E(BGagsz))

The different components in the above equation are calcu-
lated as follows:

®t,cc 1s the time, measured in units of tRC, that the rank
had a read/write access.

otz is the time, measured in units of tRC, that the rank
had no accesses.

Assuming non-overlapping accesses in close-page mode,
total tRC cycles/second/rank = 7. In that case, tocc =

#accesses per second per rank, and tgez = % — tace.

*E(BG,..): This is the background energy consumed by
a rank over a time period of tRC when there was a
read/write access to the rank.

E(BGace) = Vbop2 * (Ipp3ne * tRAS + Ippana * tRP)

*E(BGgze): This is the background energy consumed by a
rank over a time period of tRC when there was no access
to the rank. We assume that the rank is in precharge
powerdown mode when not accessed.

E(BGW) :VDDQ * [DDQPQ * tRC

3. Refresh energy/rank: Since the interval between con-
secutive refreshes is 3.9 usec, each device in a rank is re-
freshed (1sec/3.9usec) times per second. The refresh energy
per rank is calculated as:

Er(refresh) = npr * x E(refresh)

1
3.9%10-6

eE(refresh): This is the refresh energy per row per device
in each rank for a single refresh operation.

E(refresh) = Vppa * (Ipps2 — Ipp3sn2) * tRFCab

3.3.2 Power-Saving Mode Power Calculation

Config. |Current(mA) |Power/device (mW) | Power/rank (mW)
PASR(1) 2.5 3.00 6.00
PASR(1/2) 2.0 2.40 4.80
PASR(1/4) 1.7 2.04 4.08
PASR(1/8) 1.5 1.80 3.60

Table 4. PASR power calculation. Voltage is 1.2V.
1. DPD power/rank: Deep Power Down offers maximum
savings. The rank under DPD consumes negligible power
(npr * Vpp2 * IDDs2).

2. PASR power/rank: We calculate PASR power from
LPDDR-S4 datasheet as shown in Table 4. We estimate self-
refresh power with PASR(1) power.

3. LR power/rank: We calculate Low Refresh power sim-
ilar to Flikker [9] by linearly interpolating PASR values to
determine the constant power consumed by the DRAM con-
troller circuitry at any refresh rate. From Table 4, PASR(1)-
PASR(1/8)=2.4 mW/rank for 1 — = I part shutdown
(~infinitely slow refresh cycle). Thus, constant power con-
sumed by control circuitry = 6.00 — 2 % 2.40 =~ 3.26
mW/rank. With a different refresh interval of » msec with
LR (as compared to 32 msec interval with the baseline), LR
power/rank = 3.26 + 55 * (6.00 — 3.26) mW/rank.

PASR/LR extra copy power: Compared to the baseline
with only working memory, PASR/LR memory incurs extra
overhead in occasionally copying pages to working memory.
We note that 1 page = 4096 bytes = 64 cache lines. So, the
extra power includes 1 activate + 64 reads from PASR/LR
memory (brought out from PASR) + 64 writes to working
memory - 64 reads from working memory (the reads would
anyway have happened in the baseline) + 1 precharge.

45 Low refresh (0.5s-refresh cycle) \?:ol”o

0,
(O,
40 2y

Pag
R
0,
% illeg i
ith o
'atg,)

% Power Savings

N,
o Regular DRAM (n ings)
0 4 8 12

Memory Usage in GB (16 GB Total)

Figure 3. Power savings for different amounts of DRAM at
3.46 million words/sec reference rate.

3.4 Results

We calculate total memory power using Equation 1 where
the extra power term is non-zero only for PASR/LR modes.
The baseline system has all ranks in working mode. For
the results in this section, we assume that the number of
extra page-copy operations for PASR/LR modes is 1% of
the memory access rate.

3.4.1 Power savings based on DRAM usage

Figure 3 shows percent power savings for different amounts
of DRAM under mercurial cache, with total memory ca-
pacity being 16GB. The figure represents power savings
when different amounts of memory are moved into a mer-
curial cache with a total memory access rate of 3.46 million
words/second. The access rate was measured using hardware
performance counters on a Intel Quad Core i5 1.6 Ghz ma-
chine with 16GB DRAM when running filebench with the
fileserver workload. We find using our model that all three
techniques, DPD, LR, and PASR save power depending on
the amount of DRAM being used. The power savings results
from consolidation of memory ranks under use which only
consume refresh (or self-refresh) power. Apart from savings
resulting from reduction in refresh power, active power is
consumed for fewer banks.

3.4.2 Sustainable Reference Rates

We also calculate the number of references to mercurial
cache can sustain to provide power savings before the cost of
checksum takes over the savings from DRAM. We alter the
mercurial cache reference rate while keeping the mercurial
cache size constant at 50% of total DRAM size in Figure 4.
We find that mercurial caches can sustain very high reference
rates of around 1.2 million words/second while still provid-
ing memory savings.

4. Design Overview

To support the low powered memory hardware, we introduce
mercurial caches in operating systems. Based on the do no

Deep power down (OPD)

% Power Savings
&

Low refresh (at 0.5s refresh interval)
PASR

30 60 90 120
X 1074 ref

Memory Reference Rates to Low Power Memory

Figure 4. Power savings at 50% DRAM in low power for
different mercurial cache reference rates.

harm principle, we list four goals of supporting mercurial
caches:

1. Reliable Interface: Mercurial caches should expose reli-
able software interface. Even if data is stored at low re-
fresh rates, mercurial caches should be able to return data
in a fail-safe manner.

2. Non-interfering: Mercurial caches should not interfere
the VM’s prefetch and caching behavior. They should
also not affect the working set of running programs.

3. Energy Proportional: Mercurial caches should be able
to identify unused or low activity portions of physical
memory and put them in low power state.

4. Little/no-overhead: Mercurial caches should have low
performance overhead and perform much better than sim-
ply turning off DRAM.

5. Hardware Interface: Mercurial caches should expose the
memory controller hardware physically contiguous low
power chunks to be put to low power state.

Mercurial caches appropriately size virtual memory to
switch unused memory in low memory state. Depending on
the type of hardware used, these caches provide the abil-
ity to either switch off memory refresh (DPD), cache clean
pages (PASR) or store them at low refresh rates (LR) while
other pages such as OS and applications use regular memory
refreshed at normal rates to achieve energy proportionality.
Supporting mercurial caches require addressing three chal-
lenges. First, mercurial caches need to provide an interface
to store and retrieve pages in a fail-safe manner. Second, we
need policies to identify automatically the amount of mem-
ory being used and move unused pages to low power state.
Finally, we need to provide mechanisms that will help con-
solidate physical memory to move it to a low power state.

Mercurial Cache Interface: Mercurial caches provide
an interface to store and retrieve 4K pages into the low pow-

ered memory (mcache_get_page andmcache_put_page).

These operations require pages to be copied to/from regular
memory. However, since the low power memory is unre-
liable, mercurial caches compute the page checksum dur-

ing store and retrieve operations. If the checksums do not
match, indicating that the page has become corrupt, then
the retrieve operation (mcache_get _page), may fail. The
cost of copying pages can be reduced by using hardware sup-
port [8] and we evaluate the software cost of copy/checksum.

Make mercurial caches transparent to VM: Mercu-
rial cache support requires modification to VM to address
three challenges. First, how do we ensure that mercurial
caches dynamically occupy memory depending on appli-
cation needs for best performance. We solve this problem
similar to hypervisors by using the free page information
to detect applications working set. Second, mercurial caches
should not appear as allocated memory so that system func-
tions such as prefetching and allocations do not fail. We
modify the VM to account for mercurial caches when calcu-
lating free memory for all system actions. Third, when mer-
curial caches are used to store data, we need policies on what
data to store. Currently, we use mercurial caches as a third
level eviction cache and used evicted page cache informa-
tion in self-refresh or at low refresh rates, when applications
become finish.

Coalescing memory to accommodate Mercurial Cache:
Mercurial caches support dynamic creation and freeing of
pools. This requires sufficient physically contiguous mem-
ory in the system in chunks of minimum DRAM size that can
be partially refreshed. To restrict fragmentation, we modify
the OS memory management to ensure such an allocation
is possible. First, we mark pages in mercurial cache as non-
pinnable for long term usage (GFP_MOVABLE). This ensures
that we do not have holes that can prevent coalescing of
memory. Second, when the available contiguous memory is
low, we migrate pages and de-fragment the physical address
space. This ensures that we can dynamically enable/disable
mercurial caches.

5. Mercurial Cache Implementation

We implemented mercurial cache in Linux 3.4.1.

5.1 Mercurial Cache Interface

Mercurial caches provide an interface to store and retrieve
4K pages into the low powered memory (mcache_get_page
and mcache_put _page). These operations require pages
to be copied to/from regular memory to low power memory.
Both reads and writes are destructive i.e. release the source
when copied over to the destination.

Furthermore, low powered memory can be unreliable(Low
Refresh). Hence, mcache compute the page checksum dur-
ing store and retrieve operations. The cost of copying pages
can be reduced by using hardware support in DRAM or
other hardware [8]. If the checksums do not match, indi-
cating that the page has become corrupt, then the retrieve
operation (mcache_get_page), may fail. This behavior
is similar to transcendental memory in Linux [18], which
provides memory consolidation for virtual machines where

memory used by a virtual machine using the transcendental
API may be re-allocated to another virtual machine. We im-
plement a backend driver for Linux transcendental memory
support, an additional kernel module to manage mercurial
cache pools. The driver using transcendental API to manage
and store evicted pages from the page cache in low pow-
ered memory pools (of 128MB) managed as ring buffer. The
circular ring buffer allocates memory at page granularity
using bitmaps. Since mcache requires extra hardware sup-
port that is not available, as memory is moved in/out of low
power, we appropriately set the specific DRAM segment in
low power using a fake DRAM controller. We use modified
PASR patches in Linux that map physical DRAM locations
to physical memory address chunks [].

5.2 Virtual Memory Integration

Mercurial cache support requires modification to the OS
memory management algorithms in Linux. We have three
challenges of mercurial cache integration in Linux:

1. Mercurial cache sizes should dynamically move from
low power to DRAM memory depending on applications
being run. This requires accurately identifying the appli-
cation’s working set requirements.

2. Mercurial caches should not appear as missing memory
or allocated memory to the VM subsystem. We need to
identify VM functions that use memory accounting for
various decisions and account for mercurial caches.

3. Mercurial caches can be used to store data instead of be-
ing turned off. This data is sparingly used but is still faster
than going to disk when we are not able to accurately
predict the working set. We need appropriate policies on
when a page should be moved to disk.

5.2.1 Dynamically moving DRAM to low power

To identify idle times of memory usage and provide power
benefits, mercurial cache should dynamically grow and
shrink in memory and actively move memory between low
power and normal states.

Mercurial caches use the number of free pages and other
VM signals to identify memory demands in a system in
the following ways. First, when the system boots mercurial
caches spawns a thread every 10 seconds and tries to allocate
as much memory as possible for in mcache pools in 128MB
chunks. It then establishes a high watermark for the number
of free pages that can be safely allocated without triggering
reclamation and a low watermark which indicates the system
is facing memory pressure. The thread periodically wakes
up and checks if there are free pages above this watermark
to safely allocate a mcache pool. Also, if the number of free
pages begin to drop mercurial cache releases a pool. Second,
we modify the VM subsystem to release pools, when alloca-
tions may trigger reclamation (and subsequently retry), even
for page caches. This ensures that spikes of memory demand
are immediately satisfied. As the applications continue to

run and demand more memory, mercurial cache relinquishes
more pools. Finally, as applications finish executing (as indi-
cated by large influx of free pages), mercurial caches attempt
to recover memory back into low power state. Furthermore,
as physical pages are allocated and de-allocated frequently,
physical memory fragmentation can make it harder to allo-
cate mercurial cache pools. Mercurial caches automatically
inflates the low watermark to accommodate fragmentation.
When the fragmentation levels are very high, as indicated
by the low watermark, mercurial cache invokes coalescing
which we describe later in this section.

5.2.2 Pre fetching and allocations

The VM subsystem rapidly dynamically adapts to provide
best performance for a given amount of memory. For ex-
ample, the VM subsystem, prefetches a number of pages in
memory depending on the size of the available memory. The
VM subsystem is modified such that mercurial caches is seen
as free memory, and prefetching decisions are not adversely
affected by mercurial caches.When the system attempts to
allocate memory for page cache or makes large allocations,
mercurial caches release memory to ensure these allocations
are satisfied without triggering a reclamation. We modify
free memory accounting done by Linux VM by modifying
vmstat, which monitors free memory on a system and
Linux memory zone wide basis. Other VM functions such
as allocation, prefetching and other system caching (such as
dentry caching) query the vmstat to obtain this infor-
mation and balance the system. Furthermore, we also modify
allocation routines, such that mcache pools are released if an
allocation would trigger page reclamation to avoid slowing
down memory allocation.

5.2.3 VM changes/When to push pages in mcache

When mercurial caches are used to store data (PASR, LR),
we need to decide which pages to move to mercurial cache.
We identify the page cache as one of the largest consumers
of memory. As pages age out from page cache, file pages are
evicted out as clean pages. We modified the virtual mem-
ory(VM) system to store pages in low power memory. When
the page is referenced again, its read from the low power
cache instead of going to the disk. Having a third level cache
allows us to improve performance, if the VM system is inac-
curate or mercurial cache is not precise enough in calculat-
ing the free space requirements. Furthermore, when applica-
tions finish, mcache re-allocates memory and drains out the
page cache. When running in DPD mode, subsequent runs
of application will hit the disk, but when running PASR or
LR modes, applications can still access data cached in page
cache.

Using these pools as a third level cache does not affect
the existing working set. Since mercurial caches uses its
pools similar to L2ZARC [?]. The pools are maintained as
ring buffer, allocated using a bitmap allocating in fixed size
page granularity. As soon as pages in LRU list are purged

and moved to disk, they are moved to mercurial caches.
Whenever there is memory pressure, mercurial caches are
purged on a pool basis instead of evicting the oldest blocks to
maximize memory savings. While these may favor purging
of newer blocks over older blocks, the hottest blocks are
already maintained in the LRU list.

5.3 Physical Memory Fragmentation

In order to provide power savings, the memory allocated for
a mercurial cache needs to be physically contiguous. This
is because the hardware power saving techniques such as
Deep Power Down and PASR can only be used at minimum
granularity of physically contiguous pages (such as a rank).

To ensure fragmentation does not become a bottleneck,
we modify the OS memory management to ensure such
an allocation is possible. Mercurial caches uses two com-
plimentary techniques to ensure this is possible - (i) Anti-
fragmentation and (ii) Coalescing.

The OS can allocate pages in system memory that are
pinned (unmovable, usually kernel allocations), reclaimable
(such as file mapped pages) or movable (user space pages).
Mercurial caches uses anti-fragmentation by ensuring that
pages are not pinned for long term storage across physical
memory. It marks pages in physical memory as non-pinnable
for long term usage (such as by using GFP_MOVABLE flag).

Second, when the amount of free contiguous memory is
low, mercurial cache re-maps pages and de-fragments the
physical address space. This ensures that we can dynami-
cally enable/disable mercurial caches. As mentioned in sec-
tion FIXME [5.2]???, when the system has large number
of free pages and yet mercurial cache is unable to allocate
memory for low power pools, it triggers coalescing of phys-
ical memory. This is done by scanning physical memory
blocks in memory in fixed size chunks, isolating and mark-
ing them offline and migrating pages away from these blocks
and releasing the memory block as free space to the zone al-
locator.

6. Evaluation
6.1 Hardware PASR model

The evaluation examines the following aspects of mcache:

1. Performance. What is the performance overhead of using
mercurial caches? We report the performance cost of
providing OS support for each of the hardware power
saving techniques.

2. Power Savings. What is the power savings obtained from
using mercurial caches? We evaluate the power saved in
idle situations and while using different workloads.

3. Migration and Reservation Time. How well do our de-
fragmentation techniques work? We evaluate time re-
quired and performance overhead of coalescing chunks
of memory.

Workload Native | Hotplug | DPD | PASR | LR
ImageMagick 36.5 - 35.6 34.0 0
Spin 56.8 - 57.96 57.0 0
Spec]BB 0 - 0 0 0
Table 5. Execution times for different workloads.
Workload| Native Hotplug | DPD | PASR LR
fileserver 225.0 31.3 221.0 222.0 222.0
webserver | 82.6 MB/s 0 82 82.9 83.3%

Table 6. Throughput for different workloads. Mercurial
caches automatically adjust size of memory as the workload ex-
ecutes. PASR, DPD and LR use the same workload prediction
component.

Workload Native | Hotplug | DPD | PASR | LR
ImageMagick 36.5 - 35.6 34.0 0
Spin 56.8 - 57.96 57.0 0
Spec]BB 0 - 0 0 0

Table 7. Power savings for different workloads.

Unless otherwise specified, we compare mcache against an
unmodified 3.4.1 Linux kernel.

6.2 Workloads

We evaluate performance with four memory-intensive appli-
cation workloads with varying working set sizes:

1. filebench, running the fileserver, web server and oltp
workloads.

2. ImageMagick 6.7.5, resizing a large (385MB) TIF image
by 150%.

3. Remote file copy, remotely copies xGB data over xx files.

4. Spin 5.2 [31], an LTL model checker for testing mutual
exclusion and race conditions with a depth of 10 million
states,

5. pseudo-SpecJBB, a modied SpecJBB 2005 benchmark
to measure execution time for 16 concurrent data ware-
houses with 1 GB JVM heap size using Sun JDK 1.6.0.

6.3 Performance

6.4 Power Savings

- sustained power benefits?

- power savings vs energy policies

- we do not just save refresh power, if pages are dis-
tributed throughout memory, we also save active power

6.5 Benefits of PASR

6.6 Migration and Reservation

We evaluate the overhead and time required to de-fragment
different chunk sizes of memory. The de-fragmentation is
done by a separate background thread. Table 9 gives the
time required to perform de-fragmentation after running Im-

Workload Cold cache | Page cache | DPD | PASR | LR
Read File 5.5s 0.22s 5.4s 0.76s Os
(2GB)

Kernel 12m 22m 17m Om
Compile

Table 8. PASR stores data in low power.

Size Time Throughput
128MB 6.4 ms 100%
256MB 13.3ms 100%
512MB 36 ms 100%

Table 9. Throughput for different workloads.

ageMagick workload to resize a 400MB image by 120%
and 200%. We record the time required to de-fragment first
chunk of 128MB or more. We also verify that after de-
fragmentation, mcache/ is able to allocate and put memory
in low power state.

We also execute

7. Related work

Mercurial caches build on existing work in application and
OS support to provide energy efficient DRAM. Flickker [9],
proposes application changes to split applications into crit-
ical and fault tolerant components and stores fault toler-
ant data (such as images) into low refresh DRAM. How-
ever, Flickker requires application changes and qualitatively
effects application output. Furthermore, Flickker models
memory savings on application behavior which is not rep-
resentative of system wide memory consumption in envi-
ronments such as servers. Mercurial caches propose OS
level changes to reduce power, with no changes to applica-
tions or their outputs and reduces power consumption from
idle/inactive memory. RAPID [20], proposes saving DRAM
power by prioritizing low refresh DRAM rows while allo-
cating OS pages since different DRAM rows have different
refresh thresholds for safely storing data. However, once all
low refresh DRAM rows are filled, RAPID is not able to of-
fer any further power saving benefits. RAPID, also does not
address complications due to fragmentation and pinning of
OS pages in its trace based evaluation. Superpages [17] deals
with fragmentation issues in memory in order to provide
pages of large sizes to mitigate TLB pressure. Superpages
dealt with rather smaller chunks of contiguous pages (upto
4MB) while mercurial caches require large size contiguous
memory and will need more aggressive memory reservation
policies.

8. Conclusion

In this paper, we introduce OS support for memory energy
proportionality based on DRAM utilization. We identify that
current operating systems utilize all available memory for
caching purposes and propose a low power memory consol-
idation technique that provides an abstraction for low pow-

ered caches called mercurial caches. Mercurial caches store
clean disk pages at low refresh rates that retains performance
gains from caches and provides energy proportional power
savings.

References

[1] Andi Kleen, SUSE Labs. Where is the memory going? mem-
ory usage in the 2.6 kernel. http://halobates.de/
memory .pdf.

[2] L. Barroso and U. Holzle. The case for energy-proportional
computing. Computer, 40(12):33-37, 2007.

[3] L. Barroso and U. Holzle. The datacenter as a computer: An
introduction to the design of warehouse-scale machines. Syn-
thesis Lectures on Computer Architecture, 4(1):1-108, 2009.

[4] R. W. Carr and J. L. Hennessy. WSCLOCKa simple and
effective algorithm for virtual memory management. In SOSP,
1981.

[5] ELPIDA Inc. Low Power Function of Mobile RAM Partial
Array Self Refresh (PASR). http://www.elpida.com/
pdfs/E0597E10 . pdf, 2005.

[6] J. Frey, T. Tannenbaum, M. Livny, 1. Foster, and S. Tuecke.
Condor-G: A computation management agent for multi-
institutional grids. Cluster Computing, 5(3):237-246, 2002.

[7] Hewlett-Packard Corporation, Intel Corporation, Microsoft
Corporation, Phoenix Technologies Ltd., and Toshiba Corpo-
ration. Advanced configuration and power interface speci-
fication, version 5.0. www.acpi.info/spec.htm, Dec.
2011.

[8] Intel Corporation. Accelerating high-speed networking with
intel i/o acceleration technology. http://download.
intel.com/support/network/sb/98856.pdf,
2006.

[9] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn. Flikker:
Saving refresh-power in mobile devices through critical data
partitioning. ASPLOS, 2011.

[10] K. Malladi, F. Nothaft, K. Periyathambi, B. Lee, C. Kozyrakis,
and M. Horowitz. Towards energy-proportional datacenter
memory with mobile dram. In Computer Architecture (ISCA),
2012 39th Annual International Symposium on, june 2012.

[11] D. Meisner, B. Gold, and T. Wenisch. PowerNap: eliminating
server idle power. ISCA, 2009.

[12] Micron Corporation. 2gb: x16, x32 mobile LPDDR2 SDRAM
s4 features.

[13] Micron Corporation. Tn-41-01: Calculating memory system
power for DDR3.

[14] Micron Corporation. Tn-46-12: Mobile DRAM power-saving
features/calculations.

[15] Micron Corporation. Mobile dram power-saving features
and power calculations. http://www.micron.com/
support/dram/~ /media/Documents/Products/
TechnicalNote/DRAM/184tn4612.ashx, 2005.

[16] Micron Corporation. Low-power versus standard ddr sdram.
http://download.micron.com/pdf/technotes/
DDR/tn4615.pdf, 2007.

http://halobates.de/memory.pdf
http://halobates.de/memory.pdf
http://www.elpida.com/pdfs/E0597E10.pdf
http://www.elpida.com/pdfs/E0597E10.pdf
www.acpi.info/spec.htm
http://download.intel.com/support/network/sb /98856.pdf
http://download.intel.com/support/network/sb /98856.pdf
http://www.micron.com/support/dram/~/media/ Documents/Products/TechnicalNote/DRAM/184tn4612. ashx
http://www.micron.com/support/dram/~/media/ Documents/Products/TechnicalNote/DRAM/184tn4612. ashx
http://www.micron.com/support/dram/~/media/ Documents/Products/TechnicalNote/DRAM/184tn4612. ashx
http://download.micron.com/pdf/ technotes/DDR/tn4615.pdf
http://download.micron.com/pdf/ technotes/DDR/tn4615.pdf

[17] J. Navarro, S. lyer, P. Druschel, and A. Cox. Practical,
transparent operating system support for superpages. ACM
SIGOPS Operating Systems Review, 36(S1):89-104, 2002.

[18] Oracle Corp. Project: Transcendent Memory. https://
oss.oracle.com/projects/tmem, 2010.

[19] C. Reiss, A. Tumanov, G. Ganger, R. Katz, and M. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. In Proc. of the 3nd ACM Symposium on Cloud
Computing, SOCC, volume 12, 2012.

[20] R. Venkatesan, S. Herr, and E. Rotenberg. Retention-aware
placement in DRAM (RAPID): software methods for quasi-
non-volatile dram. In HPCA 2006.

[21] J. Veras and O. Mutlu. RAIDR: Retention-aware intelligent
dram refresh. In ISCA, 2012.

[22] Vimal Bhalodia. SCALE DRAM subsystem power analysis.
Master’s thesis, Massachusetts Institute of Technology, 2005.

[23] D. Yoon, J. Chang, N. Muralimanohar, and P. Ranganathan.

BOOM: Enabling mobile memory based low-power server
DIMMs. In ISCA, June 2012.

https://oss.oracle.com/projects/tmem
https://oss.oracle.com/projects/tmem

	Introduction
	Motivation and Background
	OS memory management
	DRAM Background
	DRAM low power modes

	Mercurial Cache Hardware Support
	Analytical Model
	Memory Organization
	Access Timings
	Access Distribution Assumptions
	Operating Modes

	Power Calculations
	Working Mode Power Calculation
	Power-Saving Mode Power Calculation

	Results
	Power savings based on DRAM usage
	Sustainable Reference Rates

	Design Overview
	Mercurial Cache Implementation
	Mercurial Cache Interface
	Virtual Memory Integration
	Dynamically moving DRAM to low power
	Pre fetching and allocations
	VM changes/When to push pages in mcache

	Physical Memory Fragmentation

	Evaluation
	Hardware PASR model
	Workloads
	Performance
	Power Savings
	Benefits of PASR
	Migration and Reservation

	Related work
	Conclusion

