Understanding and Improving Device Access Complexity

Asim Kadav (with Prof. Michael M. Swift) University of Wisconsin-Madison

Devices enrich computers

- *** Keyboard**
- ***** Sound
- ***** Printer
- * Network
- * Storage

Devices enrich computers

- *** Keyboard**
- ***** Sound
- ***** Printer
- * Network
- * Storage

- * Keyboard
- Flash storage
- ***** Graphics
- * WIFI
- *** Headphones**
- * SD card
- * Camera
- ***** Accelerometers
- ***** GPS
- *** Touch display**
- *** NFC**

Huge growth in number of devices

New I/O devices: accelerometers, GPUS, GPS, touch

Huge growth in number of devices

New I/O devices: accelerometers, GPUS, GPS, touch

Many buses: USB, PCI-e, thunderbolt

Huge growth in number of devices

New I/O devices: accelerometers, GPUS, GPS, touch

Many buses: USB, PCI-e, thunderbolt

Heterogeneous OS support: IOG ethernet vs card readers

Device drivers: OS interface to devices

Device drivers: OS interface to devices

Expose device abstractions and hide device complexity

Device drivers: OS interface to devices

Allow diverse set of applications and OS services to access diverse set of devices

Efficient device support in OS

Evolution of devices

Lines of code in Linux 3.8

Lines of code in Linux 3.8

Understand the software complexity and improve driver code

Last decade: Focus on the driver-kernel interface

+

3rd party developers

device drivers

OS kernel

7

Last decade: Focus on the driver-kernel interface

Last decade: Focus on the driver-kernel interface

Improvement	System	Validation		
		Drivers	Bus	Classes
New functionality	Shadow driver migration ^[OSR09]	I	I	I
	RevNIC [Eurosys 10]	I	I	I
Reliability	Nooks ^[SOSP 03]	6	I	2
	XFI [OSDI 06]	2	I	- 1
	CuriOS ^[OSDI 08]	2	I	2
Type Safety	SafeDrive [OSDI 06]	6	2	3
	Singularity ^[Eurosys 06]	I	I	I
Specification	Nexus ^[OSDI 08]	2	I	2
	Termite ^[SOSP 09]	2	I	2
Static analysis tools	Windows SDV [Eurosys 06]	Many	Many	Many
	Coverity [CACM 10]	All	All	All
	Cocinelle ^[Eurosys 08]	All	All	All

Improvement	System	Validation		
		Drivers	Bus	Classes
New functionality	Shadow driver migration ^[OSR09]	I	I	1
	RevNIC [Eurosys 10]	I	-	
Reliability	Nooks ^[SOSP 03]	6	I	2
	XFI [OSDI 06]	2	I	
	CuriOS ^[OSDI 08]	2	I	2
Type Safety	SafeDrive [OSDI 06]	6	2	3
	Singularity ^[Eurosys 06]	I	I	_ I _
Specification	Nexus ^[OSDI 08]	2	I	2
	Termite ^[SOSP 09]	2	I	2

Large kernel subsystems and validity of few device types result in limited adoption of research solutions

Improvement	System	Validation			
		Drivers	Bus	Classes	
New functionality	Shadow driver migration ^[OSR09]	I	I	I	
	RevNIC [Eurosys 10]	I	I	I	
Reliability	Nooks ^[SOSP 03]	6	I	2	
	XFI [OSDI 06]	2	I	I.	
	CuriOS [OSDI 08]	2	I	2	
Type Safety	SafeDrive [OSDI 06]	6	2	3	
Limited kernel changes + Applicable to lots of drivers => Real Impact					
Static analysis tools	Windows SDV [Eurosys 06]	Many	Many	Many	
	Coverity [CACM 10]	All	All	All	
	Cocinelle ^[Eurosys 08]	All	All	All	

Improvement	System	Validation			
		Drivers	Bus	Classes	
New functionality	Shadow driver migration ^[OSR09]	I	I	I	
	RevNIC [Eurosys 10]	I	I	I	
Reliability	Nooks ^[SOSP 03]	6	I	2	
	XFI [OSDI 06]	2	I	I	
	CuriOS ^[OSDI 08]	2	I	2	
Type Safety	SafeDrive ^[OSDI 06]	6	2	3	
Limited kernel changes + Applicable to lots of drivers => Real Impact					
Static analysis tools	Mindows SDV [Eurosys 06]		Many	Мару	
Design goal: Complete solution that limits kernel changes and applies to all drivers					

* Understand and improve device access in the face of rising hardware and software complexity

* Understand and improve device access in the face of rising hardware and software complexity

Increasing hardware complexity

Reliability against hardware failures

* Understand and improve device access in the face of rising hardware and software complexity

ncreasing hardware complexity

Reliability against hardware failures Increasing hardware complexity

Low latency device availability

9

* Understand and improve device access in the face of rising hardware and software complexity

Increasing hardware complexity

Reliability against hardware failures ncreasing hardware complexity

3

Low latency device availability

Increasing software complexity

Better understanding of driver code

Contributions/Outline

SOSP '09

First research consideration of hardware failures in drivers

Tolerate device failures

Largest study of drivers to understand their behavior and verify research assumptions

ASPLOS'12

Understand drivers and potential opportunities

ASPLOS '13

Introduce checkpoint/restore in drivers for low latency fault tolerance

Transactional approach for low latency recovery

***** Drivers make it better

Drivers make it better
Drivers make it worse

Drivers make it better
Drivers make it worse

Early example: Apollo 11 1969

- Hardware design bug almost aborted the landing
- Assumptions about antenna in driver led to extra CPU
- Scientists on-board had to manually prioritize critical tasks

Current state of OS-hardware interaction 2013

Current state of OS-hardware interaction 2013

Many device drivers often assume device perfection
 Common Linux network driver: 3c59x.c

Current state of OS-hardware interaction 2013

Many device drivers often assume device perfection
 Common Linux network driver: 3c59x.c

while (ioread16(ioaddr + Wn7_MasterStatus)) & 0x8000);

Current state of OS-hardware interaction 2013

Many device drivers often assume device perfection
 Common Linux network driver: 3c59x.c

while (ioread16(ioaddr + Wn7_MasterStatus)) & 0x8000);

Current state of OS-hardware interaction 2013

Many device drivers often assume device perfection
 Common Linux network driver: 3c59x.c

while (ioread16(ioaddr + Wn7_MasterStatus)) & 0x8000);

Hardware dependence bug: Device malfunction can crash the system

* Sources of hardware misbehavior

- * Sources of hardware misbehavior
- *** Firmware/Design bugs**

- * Sources of hardware misbehavior
- ***** Firmware/Design bugs
- * Device wear-out, insufficient burn-in
- *** Bridging faults**

- * Sources of hardware misbehavior
- *** Firmware/Design bugs**
- * Device wear-out, insufficient burn-in
- *** Bridging faults**
- * Electromagnetic interference, radiation, heat

- * Sources of hardware misbehavior
 - *** Firmware/Design bugs**
 - Device wear-out, insufficient burn-in
 - *** Bridging faults**
 - * Electromagnetic interference, radiation, heat

***** Results of misbehavior

- *** Corrupted/stuck-at inputs**
- ***** Timing errors
- * Interrupt storms/missing interrupts
- * Incorrect memory access

Transient hardware failures caused 8% of all crashes and 9% of all unplanned reboots [1]

Transient hardware failures caused 8% of all crashes and

- of all unplanned reboots [1]
 - ★ Systems work fine after reboots
 - * Vendors report returned device was faultless

Transient hardware failures caused 8% of all crashes and
% of all unplanned reboots [1]
* Systems work fine after reboots
* Vendors report returned device was faultless

Existing solution is hand-coded hardened drivers

* Crashes reduce from 8% to 3%

Drivers use device data in critical control and data paths

printk("%s",msg[inb(regA)]);

Drivers use device data in critical control and data paths

printk("%s",msg[inb(regA)]);

Drivers do not report device malfunction to system log

2

if (inb(regA)!= 5) {
 return; //do nothing
}

Drivers use device data in critical control and data paths

printk("%s",msg[inb(regA)]);

2

3

Drivers do not report device malfunction to system log if (inb(regA)!= 5) {
 return; //do nothing
}

Drivers do not detect or recover from device failures

if (inb(regA)!= 5) { panic();

Recommendation	Summary	Recommended by			
		Intel	Sun	MS	Linux
Validation	Input validation	•	•		
	Read once& CRC data	•	•		•
	DMA protection	•	•		
Timing	Infinite polling	•			
	Stuck interrupt				
	Lost request				
	Avoid excess delay in OS				
	Unexpected events	•			
Reporting	Report all failures	•	•		
Recovery	Handle all failures		•		
	Cleanup correctly	•	•		
	Do not crash on failure	•			•
	Wrap I/O memory access	•			•

Recommendation	Summary	Recommended by			
		Intel	Sun	MS	Linux
Validation	Input validation	•			
•	Read once& CRC data	•	•		
	DMA protection	•	•		
Timing	Infinite polling				
	Stuck interrupt				
	Lost request				
	Avoid excess delay in OS				
	Unexpected events				
Reporting	Report all failures	•	•	•	
Recovery	Handle all failures		•	•	
	Cleanup correctly	•	•		
	Do not crash on failure	•		•	•
	Wrap I/O memory access				

Recommendation	Summary	Recommended by			
		Intel	Sun	MS	Linux
Validation	Input validation	•			
	Read once& CRC data	•	•		•
	DMA protection	•	•		
Timing	Infinite polling				
	Stuck interrupt				
[Lost request				
	Avoid excess delay in OS				
	Unexpected events	•		•	
Reporting	Report all failures	•	•	•	
Recovery	Handle all failures		•	•	
	Cleanup correctly	•	•		
	Do not crash on failure	•		•	•
	Wrap I/O memory access	•			•

Recommendation	Summary	Recommended by				
		Intel	Sun	MS	Linux	
Validation	Input validation	•				
	Read once& CRC data	•	•			
	DMA protection	•	•			
Timing	Infinite polling	•				
	Stuck interrupt					
	Lost request					
	Avoid excess delay in OS					
	Unexpected events	•				
Reporting	Report all failures	•		•		
Recovery	Handle all failures		•			
	Cleanup correctly	•	•			
	Do not crash on failure	•			•	
	Wrap I/O memory access				•	

Recommendation	Summary	Recommended by			
		Intel	Sun	MS	Linux
Validation	Input validation	•			
	Read once& CRC data	•	•		•
	DMA protection	•	•		
Timing	Infinite polling	•			
	Stuck interrupt				
	Lost request				
	Avoid excess delay in OS				
	Unexpected events	•			
Reporting	Report all failures	•			
Recovery	Handle all failures		•	•	
	Cleanup correctly	•	•		
	Do not crash on failure	•		•	•
	Wrap I/O memory access	•	•	•	

Recommendation	Summary	Recommended by			
		Intel	Sun	MS	Linux
Validation	Input validation	•			
	Read once& CRC data	•			•
	DMA protection	•	•		
Timing	Infinite polling				
	Stuck interrupt				
	Lost request				
	Avoid excess delay in OS				
	Unexpected events	•		•	
Reporting	Report all failures	•			
Recovery	Handle all failures				

Goal: Automatically implement as many recommendations as possible in commodity drivers

Carburizer [SOSP '09]

Goal: Tolerate hardware device failures in software through hardware failure detection and recovery

Carburizer [SOSP '09]

Goal: Tolerate hardware device failures in software through hardware failure detection and recovery

Static analysis component

* Detect and fix hardware dependence bugs

* Detect and generate missing error reporting information

Carburizer [SOSP '09]

Goal: Tolerate hardware device failures in software through hardware failure detection and recovery

Static analysis component

- * Detect and fix hardware dependence bugs
- * Detect and generate missing error reporting information

Runtime component

 Detect interrupt failures

* Provide automatic recovery

Bug detection and automatic fix generation

Bug detection and automatic fix generation

Goal: Remove hardware dependence bugs
 * Find driver code that uses data from device
 * Ensure driver performs validity checks

- Goal: Remove hardware dependence bugs
 * Find driver code that uses data from device
 * Ensure driver performs validity checks
- Carburizer detects and fixes hardware bugs :

- Goal: Remove hardware dependence bugs
 * Find driver code that uses data from device
 * Ensure driver performs validity checks
- Carburizer detects and fixes hardware bugs :

Infinite polling

Goal: Remove hardware dependence bugs
 * Find driver code that uses data from device
 * Ensure driver performs validity checks

Carburizer detects and fixes hardware bugs :

Goal: Remove hardware dependence bugs
 * Find driver code that uses data from device
 * Ensure driver performs validity checks

Carburizer detects and fixes hardware bugs :

Infinite polling Unsafe array reference Unsafe pointer reference

Hardening drivers

Goal: Remove hardware dependence bugs
 * Find driver code that uses data from device
 * Ensure driver performs validity checks

Carburizer detects and fixes hardware bugs :

Infinite polling Unsafe array reference Unsafe pointer reference

System panic calls

 First pass: Identify tainted variables that contain data from device

Types of device I/O

Port I/O: inb/inw
Memory-mapped I/O: readl/readw
DMA buffers
Data from USB packets

First pass: Identify tainted variables that contain data from device

First pass: Identify tainted variables that contain data from device

First pass: Identify tainted variables that contain data from device

First pass: Identify tainted variables that contain data from device

int test () {
 a = readl();
 b = inb();

First pass: Identify tainted variables that contain data from device

int test () {
 a = readl();
 b = inb();

<u>Tainted Variables</u> a b

First pass: Identify tainted variables that contain data from device

```
int test () {
    a = readl();
    b = inb();
    c = b;
```


First pass: Identify tainted variables that contain data from device

```
int test () {
    a = readl();
    b = inb();
    c = b;
```

Tainted Variables a b **(**

First pass: Identify tainted variables that contain data from device

```
int test () {
    a = readl();
    b = inb();
    c = b;
    d = c + 2;
```

Tainted Variablesabc

First pass: Identify tainted variables that contain data from device

```
int test () {
    a = readl();
    b = inb();
    c = b;
    d = c + 2;
```

Tainted Variables a b c d

First pass: Identify tainted variables that contain data from device

```
int test () {
    a = readl();
    b = inb();
    c = b;
    d = c + 2;
    return d;
```

Tainted Variables a b c

d

First pass: Identify tainted variables that contain data from device

```
int test () {
    a = readl();
    b = inb();
    c = b;
    d = c + 2;
    return d;
```

Tainted Variables a b c d test()

First pass: Identify tainted variables that contain data from device

```
int test () {
    a = readl();
    b = inb();
    c = b;
    d = c + 2;
    return d;
```

}

Tainted Variables a b c d test()

First pass: Identify tainted variables that contain data from device

```
int test () {
    a = readl();
    b = inb();
    c = b;
    d = c + 2;
    return d;
}
int set() {
```

Tainted Variables a b c d test()

First pass: Identify tainted variables that contain data from device

```
int test () {
    a = readl();
    b = inb();
    c = b;
    d = c + 2;
    return d;
}
int set() {
    e = test();
```


First pass: Identify tainted variables that contain data from device

```
int test () {
    a = readl();
    b = inb();
    c = b;
    d = c + 2;
    return d;
}
int set() {
    e = test();
```

Tainted Variables a b c d test() e

First pass: Identify tainted variables that contain data from device

```
int test () {
    a = readl();
    b = inb();
    c = b;
    d = c + 2;
    return d;
}
int set() {
    e = test();
}
```

Tainted Variables a b c d test() e

Detecting risky uses of tainted variables

* Second pass: Identify risky uses of tainted variables

* Example: Infinite polling

- *** Driver waiting for device to enter particular state**
- * Solution: Detect loops where all terminating conditions depend on tainted variables
- *** Extra analyses to existing timeouts**

Infinite polling

* Infinite polling of devices can cause system lockups

```
static int amd8111e_read_phy(.....)
{
    ....
    reg_val = readl(mmio + PHY_ACCESS);
    while (reg_val & PHY_CMD_ACTIVE)
        reg_val = readl(mmio + PHY_ACCESS);
    ....
}
```

AMD 8111e network driver(amd8111e.c)

Hardware data used in array reference

Tainted variables used as array indexes
 Detect existing range/not NULL checks

```
static void __init attach_pas_card(...)
{
    if ((pas_model = pas_read(0xFF88)))
    {
        ...
        sprintf(temp, "%s rev %d",
        pas_model_names[(int) pas_model], pas_read(0x2789));
        ...
}
```

Pro Audio Sound driver (pas2_card.c)

Analysis results over the Linux kernel

Driver class	Infinite polling	Static array	Dynamic array	Panic calls
net	117	2	21	2
scsi	298	31	22	121
sound	64	I	0	2
video	174	0	22	22
other	381	9	57	32
Total	860	43	89	179

* Analyzed/Built 6300 driver files (2.8 million LOC) in 37 min * Found 992 hardware dependence bugs in driver code * False positive rate: 7.4% (manual sampling of 190 bugs)

Analysis results over the Linux kernel

Driver class	Infinite polling	Static array	Dynamic array	Panic calls	
net	117	2	21	2	
scsi	298	31	22	121	
sound	Lightweight	and usable	technique te	ο	
video	find hardware dependence bugs 2				
other	381	9	5/	32	
Total	860	43	89	179	

* Analyzed/Built 6300 driver files (2.8 million LOC) in 37 min * Found 992 hardware dependence bugs in driver code * False positive rate: 7.4% (manual sampling of 190 bugs)

* Carburizer automatically generates repair code

*** Inserts failure detection and recovery service callout**

* Carburizer automatically generates repair code

*** Inserts failure detection and recovery service callout**

Infinite
pollingUnsafe
array
referenceUnsafe
pointer
pointer
referenceSystem
panic
calls

* Carburizer automatically generates repair code * Inserts failure detection and recovery service callout

System panic calls

Runtime fault recovery : Shadow drivers

- Carburizer calls generic recovery service if check fails
- Low cost transparent recovery
 - *** Based on shadow drivers**
 - *** Records state of driver at all times**
 - * Transparently restarts and replays recorded state on failure
- No isolation required (like Nooks)

Carburizer automatically fixes infinite loops

*Code simplified for presentation purposes

Carburizer automatically adds bounds checks

*Code simplified for presentation purposes

***** Synthetic fault injection on network drivers

***** Synthetic fault injection on network drivers

Device/	Original Driver		Carburizer		
Driver	Behavior	Detection	Behavior	Detection	Recovery
3COM 3C905	CRASH	None	RUNNING	Yes	Yes
DEC DC 21x4x	CRASH	None	RUNNING	Yes	Yes

***** Synthetic fault injection on network drivers

Device/	Original Driver		Carburizer		
Driver	Behavior	Detection	Behavior	Detection	Recovery
3COM 3C905	CRASH	None	RUNNING	Yes	Yes
DEC DC 21x4x	CRASH	None	RUNNING	Yes	Yes

* < 0.5% throughput overhead and no CPU overhead with network drivers

***** Synthetic fault injection on network drivers

Device/	Original Driver		Carburizer		
Driver	Behavior	Detection	Behavior	Detection	Recovery
3COM 3C905	CRASH	None	RUNNING	Yes	Yes
DEC DC 21x4x	CRASH	None	RUNNING	Yes	Yes

* < 0.5% throughput overhead and no CPU overhead with network drivers

Carburizer failure detection and transparent recovery works and has very low overhead

Summary

Recommendation	Summary	Recommended by				Carburizer
		Intel	Sun	MS	Linux	Ensures
Validation	Input validation					
	Read once& CRC data	•	•		•	
	DMA protection	•	•			
Timing	Infinite polling	•	•	•		
	Stuck interrupt					
	Lost request			•		
	Avoid excess delay in OS			•		
	Unexpected events	•		•		
Reporting	Report all failures	•	•	•		•
Recovery	Handle all failures		•			
	Cleanup correctly					
	Do not crash on failure	•		•	•	
	Wrap I/O memory access					

Summary

Recommendation	Summary	Recommended by				Carburizer
		Intel	Sun	MS	Linux	Ensures
Validation	Input validation					
	Read once& CRC data	•				
	DMA protection	•	•			
Timing	Infinite polling	•	•			
	Stuck interrupt					
	Lost request					
	Avoid excess delay in OS					
	Unexpected events	•				
Reporting	Report all failures	•		•		

Carburizer improves system reliability by automatically ensuring that hardware failures are tolerated in software

Contributions beyond research

 Linux Plumbers Conference [Sep '11]
 LWN Article with paper & list of bugs [Feb '12]
 Released patches to the Linux kernel
 Tool + source available for download at: http://bit.ly/carburizer

Recovery performance: device initialization is slow

- *** Identify device**
- *** Cold boot device**
- * Setup device/driver structures
- *** Configuration/Self-test**

Recovery performance: device initialization is slow

* What does slow device re-initialization hurt?

- ***** Fault tolerance: Driver recovery
- ***** Virtualization: Live migration, cloning
- *** OS functions: Boot, upgrade**

Recovery functionality: assumes drivers follow class behavior

- Kernel exports standard entry points for every class (like "packet send" for network class)
- Shadow drivers records state by interposing class defined entry points
- Recovery = Restart and replay of captured state
- * Do drivers have additional state?

Recovery functionality: assumes drivers follow class behavior

- Kernel exports standard entry points for every class (like "packet send" for network class)
- Shadow drivers records state by interposing class defined entry points
- Recovery = Restart and replay of captured state
- * Do drivers have additional state?

How many drivers obey class behavior?

Outline

Tolerate device failures

Understand drivers and potential opportunities

Overview Recovery specific results

Transactional approach for cheap recovery

Drivers 6.7 million LOC in Linux

Drivers 6.7 million LOC in Linux

Driver Research (avg. 2.2 drivers/ system)

Drivers 6.7 million LOC in Linux

Necessary to review driver code in modern settings

Driver Research (avg. 2.2 drivers/ system)

Understanding Modern Device Drivers^[ASPLOS 2012]

Study source of all Linux drivers for x86 (~3200 drivers)

Study source of all Linux drivers for x86 (~3200 drivers)

Driver properties

 Code properties
 Verify research assumptions

* Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

* Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

Driver properties Identify driver entry points, kernel and bus callouts

* Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

- * Identify driver entry points, kernel and bus callouts
 - ***** Device class, sub-class, chipsets

* Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

- * Identify driver entry points, kernel and bus callouts
 - ***** Device class, sub-class, chipsets
 - * Bus properties & other properties (like module params)

* Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

- * Identify driver entry points, kernel and bus callouts
 - ***** Device class, sub-class, chipsets
 - * Bus properties & other properties (like module params)
 - * Driver functions registered as entry points (purpose)

* Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

- * Identify driver entry points, kernel and bus callouts
 - ***** Device class, sub-class, chipsets
 - * Bus properties & other properties (like module params)
 - * Driver functions registered as entry points (purpose)

* Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

- * Identify driver entry points, kernel and bus callouts
 - ***** Device class, sub-class, chipsets
 - * Bus properties & other properties (like module params)
 - * Driver functions registered as entry points (purpose)

* Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

Driver properties

Driver

* Identify driver entry points, kernel and bus callouts

* Reverse propagate information to aggregate bus, device and kernel behavior

* Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

Driver properties

Driver

* Identify driver entry points, kernel and bus callouts

 Reverse propagate information to aggregate bus, device and kernel behavior

* Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

Contributions/Outline

Tolerate device failures

Understand drivers and potential opportunities

Overview Recovery specific results

Transactional approach for cheap recovery

Initialization/cleanup - 36%
Core I/O & interrupts - 23%
Device configuration - 15%
Power management - 7.4%
Device ioctl - 6.2%

Initialization/cleanup – 36% **Core I/O & interrupts – 23% Device configuration – 15% * Power management – 7.4% Device ioctl** – 6.2%

42

Problem 2: Shadow drivers assume drivers follow class behavior

***** Class definition includes:

 Callbacks registered with the bus, device and kernel subsystem Problem 2: Shadow drivers assume drivers follow class behavior

***** Class definition includes:

 Callbacks registered with the bus, device and kernel subsystem

How many drivers follow class behavior and how much code does this add?

Problem 2(a): Drivers do behave outside class definitions

- *** Non-class behavior in device drivers:**
 - module parameters, unique ioctls, procfs/sysfs interactions

DW1520 Wireless-N WLAN Half-Mini Card Properties								
General	Advanced	Driver	Details	Power	Management			
The following properties are available for this network adapter. Click the property you want to change on the left, and then select its value on the right.								
Property:				1	Value:			
Disable Upon Wired Connect Fragmentation Threshold IBSS 54g(tm) Protection Mode IBSS Mode Locally Administered MAC Address			le		USA		•	
PLCP H Priority & Rate (80	n Power Con eader WLAN	sumptior	E					

Windows WLAN card config via private ioctls

Linux sound card config via sysfs

Problem 2(a): Drivers do behave outside class definitions

- *** Non-class behavior in device drivers:**
 - module parameters, unique ioctls, procfs/sysfs interactions

DW1520 Wireless-N WLAN Half-Mini Card Properties								
General	Advanced	Driver	Details	Pow	er Management			
The following properties are available for this network adapter. Click the property you want to change on the left, and then select its value on the right.								
Property:	:				Value:			
Fragmer IBSS 54 IBSS M	Upon Wired ntation Three Ig(tm) Protec ode Administered	shold tion Mod	le	•	USA		•	
PLCP H Priority & Rate (80	n Power Cor leader & VLAN	nsumptior		E				

Windows WLAN card config via private ioctls

Linux sound card config via sysfs

Overall 44% of drivers have non-class behavior and research making this assumption will not apply

Problem 2(b): Too many classes

***** "Understanding Modern Device Drivers" ASPLOS 2012

Problem 2(b): Too many classes

Class-specific driver recovery leads to a large kernel recovery subsystem

* "Understanding Modern Device Drivers" ASPLOS 2012

Few other results

Driver	 * Many assumptions made by driver research
properties	does not hold: * 44% of drivers do not obey class behavior * 15% drivers perform significant processing * 28% drivers support multiple chipsets
Driver interactions	 * USB bus offers efficient access (as compared to PCI, Xen) * Supports high # devices/driver (standardized code) * Coarse-grained access
Driver	 * 400, 000 lines of code similar to code
similarity	elsewhere and ripe for improvement via: * Procedural abstractions * Better multiple chipset support * Table driver programming

* More results in "Understanding Modern Device Drivers" ASPLOS 2012

Outline

Tolerate device failures

Understand drivers and potential opportunities

Transactional approach for cheap recovery

Checkpoint/restore FGFT Future work and conclude

Limitations of restart/replay recovery

- Device save/restore limited to restart/replay
 - * Slow: Device initialization is complex (multiple seconds)
 - * Incomplete: Unique device semantics not captured
 - * Hard: Need to be written for every class of drivers
 - Large changes: Introduces new, large kernel subsystem

Limitations of restart/replay recovery

- Device save/restore limited to restart/replay
 - * Slow: Device initialization is complex (multiple seconds)
 - * Incomplete: Unique device semantics not captured
 - * Hard: Need to be written for every class of drivers
 - * Large changes: Introduces new, large kernel subsystem

Checkpoint/restore of device and driver state removes the need to reboot device and replay state

★Easy to capture memory state

★Easy to capture memory state

★Easy to capture memory state

***** Device state is not captured

*** Device configuration space**

★Easy to capture memory state

* Device state is not captured

- *** Device configuration space**
- *** Internal device registers and counters**

★Easy to capture memory state

* Device state is not captured

- *** Device configuration space**
- *** Internal device registers and counters**
- *** Memory buffer addresses used for DMA**

★Easy to capture memory state

* Device state is not captured

- *** Device configuration space**
- *** Internal device registers and counters**
- *** Memory buffer addresses used for DMA**
- *** Unique for every device**

★Easy to capture memory state

- * Internal device registers and counters
- * Memory buffer addresses used for DMA
- *** Unique for every device**

Intuition with power management

***** Refactor power management code for device checkpoints

- *** Correct: Developer captures unique device semantics**
- *** Fast: Avoids probe and latency critical for applications**
- ***** Ask developers to export checkpoint/restore in their drivers

Suspend

Restore config state
Restore register state
Restore or reset DMA state
Re-attach/Enable device
Device Ready

Suspend

Resume

Save DMA state

Suspend device

Restore config state
Restore register state
Restore or reset DMA state
Re-attach/Enable device
Device Ready

Suspend

Resume

Save DMA state

Restore config state
Restore register state
Restore or reset DMA state
Re-attach/Enable device
Device Ready

Suspend

Restore config state
Restore register state
Restore or reset DMA state
Re-attach/Enable device
Device Ready

Checkpoint

Save config state
Save register state
Save DMA state

Restore config state
Restore register state
Restore or reset DMA state
Re-attach/Enable device
Device Ready

Checkpoint

Save config state
Save register state
Save DMA state

Restore config state
Restore register state
Restore or reset DMA state
Re-attach/Enable device

Checkpoint

Save config state
Save register state
Save DMA state

Restore config state
Restore register state
Restore or reset
DMA state

Checkpoint

Restore

Restore config state
Restore register state
Restore or reset DMA state

Checkpoint

Restore

Restore config state
Restore register state
Restore or reset DMA state

Suspend/resume code provides device checkpoint functionality

***** Goal: Improve driver recovery with minor changes to drivers

* Solution: Run drivers as transactions using device checkpoints

- ***** Goal: Improve driver recovery with minor changes to drivers
- ***** Solution: Run drivers as transactions using device checkpoints

Device state

 Developers export checkpoint/restore in drivers

- ***** Goal: Improve driver recovery with minor changes to drivers
- * Solution: Run drivers as transactions using device checkpoints

Device state

Developers export
 checkpoint/restore
 in drivers

CR

Driver state

- Run drivers invocations as memory transactions
- Use source transformation to copy parameters and run on separate stack

- **★** Goal: Improve driver recovery with minor changes to drivers
- ***** Solution: Run drivers as transactions using device checkpoints

Device state

 Developers export checkpoint/restore in drivers

Driver state

- Run drivers invocations as memory transactions
- Use source transformation to copy parameters and run on separate stack

Execution model

- ***** Checkpoint device
 - Execute driver code as memory transactions
- * On failure, rollback and restore device
- Re-use existing device locks in the driver

Driver with checkpoint support

Static modifications

Static modifications

Transactional execution of drivers get ringparam SFI network network driver driver

Transactional execution of drivers get ringparam netdev SFI network network driver driver

Transactional execution of drivers

Transactional execution of drivers

- ***** Detects and recovers from:
 - * Memory errors like invalid pointer accesses
 - *** Structural errors like malformed structures**
 - ***** Processor exceptions like divide by zero, stack corruption

FGFT provides transactional execution of driver entry points

- ***** Atomicity: All or nothing execution
 - * Driver state: Run code in SFI module
 - *** Device state: Explicitly checkpoint/restore state**

- ***** Atomicity: All or nothing execution
 - * Driver state: Run code in SFI module
 - *** Device state: Explicitly checkpoint/restore state**
- ***** Isolation: Serialization to hide incomplete transactions
 - ***** Re-use existing device locks to lock driver
 - *** Two phase locking**

- ***** Atomicity: All or nothing execution
 - * Driver state: Run code in SFI module
 - *** Device state: Explicitly checkpoint/restore state**

***** Isolation: Serialization to hide incomplete transactions

- ***** Re-use existing device locks to lock driver
- *** Two phase locking**

* Consistency: Only valid (kernel, driver and device) states

- ***** Higher level mechanisms to rollback external actions
- ***** At most once device action guarantee to applications

Recovery times		Recovery speedup				
2,000ms					start rec FT reco	-
1,500ms	-					
1,000ms	-					
500ms						
0ms	8139too	e1000	pegasus	r8169	ens1371	psmouse

Programming effort

Driver	LOC	Checkpoint/restore effort		
		LOC Moved	LOC Added	
8139too	I, 904	26	4	
e1000	13,973	32	10	
r8169	2, 993	17	5	
pegasus	1,541	22	5	
ens I 37 I	2,110	16	6	
psmouse	2, 448	19	6	

FGFT requires limited programmer effort and needs only 38 lines of new kernel code

e1000 Network Card

FGFT can isolate and recover high bandwidth devices at low overhead without adding kernel subsystems

Talk summary

SOSP '09

First research consideration of hardware failures in drivers

Released tool, patches & informed developers

Largest study of drivers to understand their behavior and verify research assumptions ASPLOS '12

Measured driver behavior & identified new directions

ASPLOS'13

Introduced checkpoint/restore in drivers for low latency fault tolerance

Fast & correct recovery with incremental changes to drivers

Questions

Asim Kadav * http://cs.wisc.edu/~kadav * kadav@cs.wisc.edu