
Understanding and Improving
Device Access Complexity

Asim Kadav
(with Prof. Michael M. Swift)

University of Wisconsin-Madison

Devices enrich computers

2

★ Keyboard
★ Sound
★ Printer
★ Network
★ Storage

★ Keyboard
★ Flash storage
★ Graphics
★ WIFI
★ Headphones
★ SD card
★ Camera
★ Accelerometers
★ GPS
★ Touch display
★ NFC

 Heterogeneous OS
support: 10G ethernet vs

card readers

Huge growth in number of devices

3

New I/O devices:
accelerometers, GPUS,

GPS, touch

Many buses: USB, PCI-e,
thunderbolt

Device drivers: OS interface to devices

4

device drivers

applications

OS

devices

buses

Allow diverse set of applications and OS
services to access diverse set of devices

Expose device
abstractions and hide

device complexity
Expose kernel

abstractions and
hide OS complexity

diversity

diversity

Simplicity

Reliability

Evolution of devices hurts device access

5

Growth in
number and

diversity

Run in
challenging

environments

Low
latency

Complex
firmware and
configuration

modes

Hardware
failures (like
CMOS issues)

Tools and mechanisms to address
increasing device complexity

Cost
effective

 Efficient device
support in OS

 Evolution of devices

Growth in drivers hurts understanding of drivers

6

device drivers

applications

OS

devices

buses

device
drivers OS

kernel

Contribute 60% of Linux kernel code
and more than 90% in Windows

0 1750000 3500000 5250000 7000000
60,000

66,000

760,000

6,700,000

memory mgmt

kernel

file systems

drivers

Lines of code in Linux 3.8

 Understand the software complexity
and improve driver code

Last decade: Focus on the driver-kernel interface

7

device
drivers

3rd party developers

+

OS
kernel

Recipe
for

disaster

Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

New functionality Shadow driver migration [OSR09] 1 1 1

RevNIC [Eurosys 10] 1 1 1

Reliability Nooks [SOSP 03] 6 1 2

XFI [OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Static analysis tools Windows SDV [Eurosys 06] Many Many Many

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

Re-use lessons from existing driver research

8

Large kernel subsystems and validity of few device types
result in limited adoption of research solutions

Limited kernel changes + Applicable to lots of drivers =>
Real Impact

Design goal: Complete solution that limits kernel
changes and applies to all drivers

Goal: Address software and hardware complexity

9

Increasing hardware
complexity

Increasing hardware
complexity

Reliability against
hardware failures

Low latency
device availability 1 2

3Better understanding
of driver code

★ Understand and improve device access in the
face of rising hardware and software complexity

Increasing software
 complexity

Contributions/Outline

10

Tolerate device failures

Transactional approach for
low latency recovery

Understand drivers and
potential opportunities

First research consideration of
hardware failures in drivers

Largest study of drivers to
understand their behavior and
verify research assumptions

Introduce checkpoint/restore in
drivers for low latency

fault tolerance

SOSP ’09

ASPLOS ’12

ASPLOS ’13

What happens when devices misbehave?

11

★ Drivers make it better
★ Drivers make it worse

Early example: Apollo 11 1969

★ Hardware design bug almost
aborted the landing

★ Assumptions about antenna in
driver led to extra CPU

★ Scientists on-board had to
manually prioritize critical
tasks

Current state of OS-hardware interaction

while	 (ioread16(ioaddr	 +	 Wn7_MasterStatus))
	 	 &	 0x8000);

12

Hardware dependence bug: Device
malfunction can crash the system

HANG!

★ Many device drivers often assume device perfection
- Common Linux network driver: 3c59x.c

2013

Sources of hardware misbehavior

★ Firmware/Design bugs
★ Device wear-out,

insufficient burn-in
★ Bridging faults
★ Electromagnetic

interference, radiation,
heat

13

★ Sources of hardware
misbehavior

Device

Bus

Cache

Firmware

Electrical

Mechanical

Driver

Sources of hardware misbehavior

★ Firmware/Design bugs
★ Device wear-out,

insufficient burn-in
★ Bridging faults
★ Electromagnetic

interference, radiation,
heat

14

★ Sources of hardware
misbehavior

★ Results of misbehavior

★ Corrupted/stuck-at inputs
★ Timing errors
★ Interrupt storms/missing

interrupts
★ Incorrect memory access

An evidence:

[1] Fault resilient drivers for Longhorn server, May 2004. Microsoft Corp.

15

Transient hardware failures caused 8% of all crashes and

9% of all unplanned reboots [1]
★ Systems work fine after reboots
★ Vendors report returned device was faultless

Existing solution is hand-coded hardened drivers
★ Crashes reduce from 8% to 3%

How do hardware dependence bugs manifest?

16

printk(“%s”,msg[inb(regA)]);Drivers use device
data in critical control and data paths

1

if	 (inb(regA)!=	 5)	 	 {
	 	 return;	 //do	 nothing
}

Drivers do not report device
malfunction to system log

if	 (inb(regA)!=	 5)	 {
	 panic();

}

Drivers do not detect or recover from
device failures

2

3

Vendor recommendations for driver developers
Recommendation Summary Recommended byRecommended byRecommended byRecommended by

Intel Sun MS Linux
Validation Input validation � � �

Read once& CRC data � � �

DMA protection � �

Timing Infinite polling � � �

Stuck interrupt �

Lost request �

Avoid excess delay in OS �

Unexpected events � �

Reporting Report all failures � � �

Recovery Handle all failures � �

Cleanup correctly � �

Do not crash on failure � � �

Wrap I/O memory access � � � �

17

Goal: Automatically implement as many
recommendations as possible in commodity drivers

Carburizer [SOSP ’09]

18

Goal: Tolerate hardware device failures in software through
hardware failure detection and recovery

 Static analysis component

★ Detect and fix hardware
dependence bugs

★ Detect and generate
missing error reporting
information

Runtime component

★ Detect interrupt
failures

★ Provide automatic
recovery

Carburizer architecture

 OS Kernel

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

Driver

Carburizer

If	 (c==0)	 {
.
print	 (“Driver	 init”);
}
.
.

Bug detection and
automatic fix generation

Recovery and interrupt
watchdog

Hardened
Driver Binary

Faulty Hardware

Carburizer
Runtime

Kernel Interface

Compiler

19

Hardening drivers

• Goal: Remove hardware dependence bugs
★ Find driver code that uses data from device
★ Ensure driver performs validity checks

• Carburizer detects and fixes hardware bugs :

20

Unsafe
array

reference

Unsafe
pointer

reference

System
panic
calls

Infinite
polling

Finding sensitive code

int	 test	 ()	 {
	 a	 =	 readl();
	 b	 =	 inb();
	 c	 =	 b;
	 d	 =	 c	 +	 2;
	 return	 d;
}
int	 set()	 {
	 	 	 	 	 	 	 e	 =	 test();
}

Tainted	 Variables

a
b
c
d

test()
e

21

★ First pass: Identify tainted variables that contain
data from device

network card

OSTypes of device I/O

★ Port I/O :	 inb/inw
★ Memory-mapped I/O : readl/readw
★ DMA buffers
★ Data from USB packets

Detecting risky uses of tainted variables

★ Second pass: Identify risky uses of tainted variables

★ Example: Infinite polling
★ Driver waiting for device to enter particular state
★ Solution: Detect loops where all terminating conditions

depend on tainted variables
★ Extra analyses to existing timeouts

22

Infinite polling

static	 int	 amd8111e_read_phy(………)
{
	 ...
	 	 reg_val	 =	 readl(mmio	 +	 PHY_ACCESS);
	 	 while	 (reg_val	 &	 PHY_CMD_ACTIVE)
	 reg_val	 =	 readl(mmio	 +	 PHY_ACCESS);
	 	 ...
}

AMD	 8111e	 network	 driver(amd8111e.c)

23

★ Infinite polling of devices can cause system lockups

Hardware data used in array reference

static	 void	 __init	 attach_pas_card(...)
{
	 	 	 if	 ((pas_model	 =	 pas_read(0xFF88)))	
	 	 	 {	
	 	 	 	 	 ...
	 	 	 	 	 sprintf(temp,	 “%s	 rev	 %d”,	
	 	 	 	 	 	 	 pas_model_names[(int)	 pas_model],	 pas_read(0x2789));	
	 	 	 	 	 ...
}

Pro	 Audio	 Sound	 driver	 (pas2_card.c)
24

★ Tainted variables used as array indexes
★ Detect existing range/not NULL checks

★ Analyzed/Built 6300 driver files (2.8 million LOC) in 37 min
★ Found 992 hardware dependence bugs in driver code
★False positive rate: 7.4% (manual sampling of 190 bugs)

Analysis results over the Linux kernel
Driver class Infinite polling Static array Dynamic array Panic calls

net 117 2 21 2

scsi 298 31 22 121

sound 64 1 0 2

video 174 0 22 22

other 381 9 57 32

Total 860 43 89 179

25

Lightweight and usable technique to
find hardware dependence bugs

Repairing drivers

★ Carburizer automatically generates repair code
★ Inserts failure detection and recovery service callout

26

Unsafe
array

reference

Unsafe
pointer

reference

System
panic
calls

Infinite
polling

Timeout

checks Array bounds

check
Not null

checks

Call recovery service

Runtime fault recovery : Shadow drivers

• Carburizer calls generic recovery
service if check fails

• Low cost transparent recovery
★ Based on shadow drivers
★ Records state of driver at all times
★ Transparently restarts and replays

recorded state on failure

• No isolation required (like Nooks)

Shadow
Driver

Device
Driver

Device

Taps

Driver-Kernel
Interface

27

Swift [OSDI ’04]

Carburizer automatically fixes infinite loops

timeout	 =	 rdtscll(start)	 +	 (cpu/khz/HZ)*2;
reg_val	 =	 readl(mmio	 +	 PHY_ACCESS);
while	 (reg_val	 &	 PHY_CMD_ACTIVE)	 {
	 reg_val	 =	 readl(mmio	 +	 PHY_ACCESS);	

	 if	 (_cur	 <	 timeout)	
	 	 	 	 	 rdtscll(_cur);
	 else
	 	 	 	 	 __recover_driver();

}

*Code	 simplified	 for	 presentation	 purposes

Timeout code
added

AMD	 8111e	 network	 driver(amd8111e.c)

28

Carburizer automatically adds bounds checks

static	 void	 __init	 attach_pas_card(...)
{

	 	 if	 ((pas_model	 =	 pas_read(0xFF88)))	
	 	 {	
	 	 	 	 ...
	 	 	 	 if	 ((pas_model<	 0))	 ||	 (pas_model>=	 5))
	 __recover_driver();	 	 	
	 	 	 	 ...
	 	 	 	 sprintf(temp,	 “%s	 rev	 %d”,	
	 	 	 	 	 	 pas_model_names[(int)	 pas_model],	 pas_read(0x2789));	

}

*Code	 simplified	 for	 presentation	 purposes

Array bounds
detected and
check added

Pro	 Audio	 Sound	 driver	 (pas2_card.c)

29

Device/
Driver

Original Driver Original Driver CarburizerCarburizerCarburizerDevice/
Driver

Behavior Detection Behavior Detection Recovery

3COM 3C905 CRASH None RUNNING Yes Yes

DEC DC 21x4x CRASH None RUNNING Yes Yes

Fault injection and performance

★ Synthetic fault injection on network drivers

Carburizer failure detection and transparent
recovery works and has very low overhead

30

★ < 0.5% throughput overhead and no CPU overhead
with network drivers

Summary

31

Recommendation Summary Recommended byRecommended byRecommended byRecommended by Carburizer
EnsuresIntel Sun MS Linux Ensures

Validation Input validation � � � �Validation
Read once& CRC data � � �

DMA protection � �

Timing Infinite polling � � � �

Stuck interrupt � �

Lost request � �

Avoid excess delay in OS �

Unexpected events � �

Reporting Report all failures � � � �

Recovery Handle all failures � � �

Cleanup correctly � � �

Do not crash on failure � � � �

Wrap I/O memory access � � � �

Carburizer improves system reliability by automatically
ensuring that hardware failures are tolerated in software

Contributions beyond research

★ Linux Plumbers Conference [Sep ‘11]

★ LWN Article with paper & list of bugs [Feb ‘12]

★ Released patches to the Linux kernel

★ Tool + source available for download at:
http://bit.ly/carburizer

32

http://bit.ly/carburizer
http://bit.ly/carburizer

Recovery performance: device initialization is slow

33

Module
Registration

Allocate device
structures

Map BAR
and I/O ports

Register device
operations

Detect chipset
capabilities

Cold boot hardware,
flash device memory

Perform EEPROM
checsumming

Set chipset
specific ops

Optional self
test on boot

Allocate driver
structures

Configure device to
working state

Device ready
for requests

Allocate device structures

Module registration

Map BAR and I/O ports

Register device operations

Detect chipset capabilities

Self test?
Self test on boot

Cold boot the device

Verify EEPROM checksum

Set chipset specific ops

Allocate driver structures

Configure device

Device ready
for requests★ Multi-second device probe

★ Identify device
★ Cold boot device
★ Setup device/driver

structures
★ Configuration/Self-test

★ What does slow device re-initialization hurt?
★ Fault tolerance: Driver recovery
★ Virtualization: Live migration, cloning
★ OS functions: Boot, upgrade

Recovery functionality: assumes drivers follow class behavior

★ Kernel exports standard entry points
for every class (like “packet send” for
network class)

★ Shadow drivers records state by
interposing class defined entry points

★ Recovery = Restart and replay of
captured state

★ Do drivers have additional state?

34

Shadow
Driver

Device
Driver

Device

Taps

Driver-Kernel
entrypoints

How many drivers obey class behavior?

Outline

35

Tolerate device failures

Transactional approach for
cheap recovery

Understand drivers and
potential opportunities

Overview
Recovery specific results

Our view of drivers is narrow

36

Drivers
6.7 million LOC in

Linux

Driver
Research

(avg. 2.2
drivers/
system)

Bugs

Necessary to review driver
code in modern settings

Understanding Modern Device Drivers[ASPLOS 2012]

37

Driver
interaction

Driver
properties

Driver
similarity

Study source of all Linux drivers for
x86 (~3200 drivers)

★ Code properties
★ Verify research
assumptions

★ Driver kernel &
device interaction

★ Driver architecture

★ 7 million lines of
code needed?

Study methodology

38

★ Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

★ Identify driver entry points, kernel
and bus callouts
★ Device class, sub-class, chipsets
★ Bus properties & other properties

(like module params)
★ Driver functions registered as

entry points (purpose)

xmit

open

close

probe

Driver entry points

Driver
properties

For every
driver

Study methodology

39

★ Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

★ Identify driver entry points, kernel
and bus callouts

xmit

open

close

probe

Driver entry points

Driver
interactions

★ Reverse propagate information to
aggregate bus, device and kernel
behavior

kmalloc

Driver
properties

Study methodology

40

Driver
properties

★ Static source analysis of 3200 drivers in Linux 2.6.37.6 (May 2011)

★ Identify driver wide and function
specific properties of all drivers

Driver
interactions

★ Reverse propagate information to
aggregate bus, device and kernel behavior

Driver
similarity

★ Use statistical clustering techniques and
static analysis to identify similar code

Contributions/Outline

41

Tolerate device failures

Transactional approach for
cheap recovery

Understand drivers and
potential opportunities

Overview
Recovery specific results

uwb
net

in!niband
atm
scsi
mtd
md
ide
block
ata

watchdog
video
tty

sound
serial
pnp

platform
parport
misc

message
media
leds
isdn
input
hwmon
hid
gpu
gpio
!rewire
edac
crypto
char
cdrom
bluetooth
acpi

init cleanup ioctl con!g power error proc core intr

0

10

20

30

40

50

Percent-
age of LOC

uwb
net

in!niband
atm
scsi
mtd
md
ide
block
ata

watchdog
video
tty

sound
serial
pnp

platform
parport
misc

message
media
leds
isdn
input
hwmon
hid
gpu
gpio
!rewire
edac
crypto
char
cdrom
bluetooth
acpi

init cleanup ioctl con!g power error proc core intr

0

10

20

30

40

50

Percent-
age of LOCch

ar
 d

riv
er

s
bl

oc
k

dr
iv

er
s

ne
t d

riv
er

s

★Initialization/cleanup – 36%
★Core I/O & interrupts – 23%
★Device configuration – 15%
★Power management – 7.4%
★Device ioctl – 6.2%

Driver Code
Characteristics

Initialization code dominates driver
LOC and adds to complexity

42

Problem 2: Shadow drivers assume drivers follow class behavior

43

How many drivers follow class behavior
and how much code does this add?

★ Class definition includes:
★ Callbacks registered with the bus,

device and kernel subsystem

network
driver

bus

net device
subsystem

kernel

probe

xmit

config
network

card

shadow
drivers

Problem 2(a): Drivers do behave outside class definitions

★ Non-class behavior in device drivers:
- module parameters, unique ioctls, procfs/sysfs interactions

44

 Overall 44% of drivers have non-class behavior and
research making this assumption will not apply

$	 echo	 1	 >	 /sys/class/sound/mixer/
device/enable

Windows WLAN card
config via private ioctls

Linux sound card config via sysfs

Problem 2(b): Too many classes

45
★ “Understanding Modern Device Drivers” ASPLOS 2012

ata (1%)

cdrom

ide

md (RAID)

mmc

network RAID

mtd (1.5%)
scsi (9.6%)floppy

tape

acpi
blue tooth

crypto

fire wire

gpu (3.9%)

input
joy stick

key board

mouse

touch screentablet game port

serio

leds

media (10.5%)

isdn (3.4%)

sound (10%)

pcm

midi

mixer

thermal

tty

char (52%)

block (16%)
net (27%)

other (5%)

atm

ethernet

infiniband

wireless

wimax

token ring

Linux

 Device Drivers

gpio

tpm
serial

display

lcd

back light

video (5.2%)

pata

disk

sata

disk

 fiber channel

iscsi

usb-storageosd

raid

drm

vga

bus drivers

xen/lguest

dma/pci libs

video

radio

digital video broadcasting

wan

uwb

driver libraries

Class-specific driver recovery leads to a
large kernel recovery subsystem

Few other results

46

Driver
properties

★ Many assumptions made by driver research
does not hold:
★ 44% of drivers do not obey class behavior
★ 15% drivers perform significant processing
★ 28% drivers support multiple chipsets

Driver
interactions

★ USB bus offers efficient access (as
compared to PCI, Xen)
★ Supports high # devices/driver

(standardized code)
★ Coarse-grained access

Driver
similarity

★ 400, 000 lines of code similar to code
elsewhere and ripe for improvement via:
★ Procedural abstractions
★ Better multiple chipset support
★ Table driver programming

★ More results in “Understanding Modern Device Drivers” ASPLOS 2012

Outline

47

Tolerate device failures

Transactional approach for
cheap recovery

Understand drivers and
potential opportunities

Checkpoint/restore
FGFT
Future work and conclude

Limitations of restart/replay recovery

Shadow
Driver

Device
Driver

Device

Taps

Driver-Kernel
Interface

48

★ Device save/restore limited to
restart/replay
★ Slow: Device initialization is

complex (multiple seconds)
★ Incomplete: Unique device

semantics not captured
★ Hard: Need to be written for

every class of drivers
★ Large changes: Introduces new,

large kernel subsystem

Checkpoint/restore of device and driver state
removes the need to reboot device and replay state

Checkpointing drivers is hard
★Easy to capture memory state

49

network
driver

network
card

checkpoint

★ Device state is not captured
★ Device configuration space
★ Internal device registers and counters
★ Memory buffer addresses used for DMA

★ Unique for every device

Intuition: Operating systems already capture
device state during power management

Intuition with power management

50

★ Refactor power management code for device checkpoints
★ Correct: Developer captures unique device semantics
★ Fast: Avoids probe and latency critical for applications

★ Ask developers to export checkpoint/restore in their drivers

Device checkpoint/restore from PM code

51

Save config state

Save register state

Disable device

Save DMA state

Suspend device

Restore config state

Restore register state

Restore or reset
DMA state

Re-attach/Enable
device

Device Ready

Suspend Resume

Suspend/resume code provides device
checkpoint functionality

RestoreCheckpoint

Fine-Grained Fault Tolerance[ASPLOS 2013]

52

★ Goal: Improve driver recovery with minor changes to drivers

★ Solution: Run drivers as transactions using device checkpoints

C R

★ Developers export
checkpoint/restore
in drivers

Device state Driver state

★ Run drivers invocations as
memory transactions

★ Use source transformation
to copy parameters and
run on separate stack

SFI
network

driver

network
driver

Execution model

★ Checkpoint device

★ Execute driver code as
memory transactions

★ On failure, rollback
and restore device

★ Re-use existing device
locks in the driver

Adding transactional support to drivers

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

Driver with
checkpoint support

Communication
and recovery

support

Static modifications Run-time support
53

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

1200 LOC

User supplied
annotations

Source transformation
(adds driver transactions)

Object tracking

Marshaling/
Demarshaling

Kernel
undo log

Main driver
module

SFI driver
module

SFI = software fault
isolated

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

Transactional execution of drivers

54

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range Table

netdev->priv->tx_ring
netdev->priv->rx_ring

result

Kernel
Log

alloc

C

netdev

★ Detects and recovers from:
★ Memory errors like invalid pointer accesses
★ Structural errors like malformed structures
★ Processor exceptions like divide by zero, stack corruption

SFI
network

driver

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

FGFT: Failed transactions

55

network
driver

netdev->priv->tx_ring

probe

xmit

get config

get ringparam

netdev->priv->rx_ring
Range Table

err

Kernel
Log

alloc

C

R

FGFT provides transactional
execution of driver entry points

netdev

How does this give us transactional execution?

56

★ Atomicity: All or nothing execution
★ Driver state: Run code in SFI module
★ Device state: Explicitly checkpoint/restore state

★ Isolation: Serialization to hide incomplete transactions
★ Re-use existing device locks to lock driver
★ Two phase locking

★ Consistency: Only valid (kernel, driver and device) states
★ Higher level mechanisms to rollback external actions
★ At most once device action guarantee to applications

Recovery speedup

57

FGFT provides significant speedup in driver
recovery and improves system availability

0ms

500ms

1,000ms

1,500ms

2,000ms

8139too e1000 pegasus r8169 ens1371 psmouse

410.00

115.00
0.045.00

295.00

0.07

680.00

1030.00

120.00150.00

1800.00

310.00

Restart recovery
FGFT recovery

Recovery
times

Programming effort

Driver LOC Checkpoint/restore effortCheckpoint/restore effort

LOC Moved LOC Added

8139too 1, 904 26 4

e1000 13, 973 32 10

r8169 2, 993 17 5
pegasus 1, 541 22 5

ens1371 2, 110 16 6
psmouse 2, 448 19 6

58

FGFT requires limited programmer effort
and needs only 38 lines of new kernel code

Throughput with isolation and recovery

0

25

50

75

100 96
100

93
100

T
hr

ou
gh

pu
t

%
ag

e
(B

as
el

in
e

84
4

M
bp

s)

e1000 Network Card

Native
FGFT-‐I/O-‐all
FGFT-‐off-‐I/O
FGFT-‐I/O-‐1/2

netperf on Intel quad-core machines
59

CPU: 2.4% 2.4% 2.9%3.4%

FGFT can isolate and recover high bandwidth devices
at low overhead without adding kernel subsystems

Talk summary

60

Released tool, patches &
informed developers

Fast & correct recovery with
incremental changes to drivers

 Measured driver behavior &
identified new directions

First research consideration of
hardware failures in drivers

Largest study of drivers to
understand their behavior and
verify research assumptions

Introduced checkpoint/restore in
drivers for low latency

fault tolerance

SOSP ’09

ASPLOS ’12

ASPLOS ’13

Questions

 Asim Kadav
★ http://cs.wisc.edu/~kadav
★ kadav@cs.wisc.edu

http://cs.wisc.edu/~kadav
http://cs.wisc.edu/~kadav
mailto:kadav@cs.wisc.edu
mailto:kadav@cs.wisc.edu

