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Abstract
DRAM has become one of the significant consumers of
power, accounting for a large percentage of total power
in servers. While many hardware technologies for im-
proving power efficiency have emerged, energy propor-
tionality of DRAMs cannot be achieved. This is because
modern operating systems continuously occupy all avail-
able memory as file cache and spread active pages across
memory making consolidation for power savings impos-
sible.

In this paper, we propose OS support for energy
proportional memory consumption by supporting low-
powered unreliable memory in operating systems, with
mercurial caches. Mercurial caches provide a copy-
in/out interface to memory running at low refresh rates
and support large system caches such as the clean pages
from OS page cache.

We describe our design of how mercurial caches can
be integrated in current operating systems. Through an
analytical model, we demonstrate that it can provide en-
ergy savings proportional to the DRAM under active us-
age ranging from 1-19%, while requiring no changes to
existing applications.

1 Introduction
DRAM consumes significant power, accounting for up
to 25 - 57% in servers [3, 10, 18]. With modern servers
provisioned with tens of gigabytes of memory, DRAM
power is increasingly dominating the power cost of idle
servers. As a result, many existing research projects pro-
vide hardware and software support to reduce this power
draw [9, 10, 17, 18].

A common goal for reducing idle or off-peak power is
through energy proportionality. Energy proportionality
strives to provide power efficiency by only using as much
power as required by the running applications [2]. This
has been possible in modern processors with existing fre-
quency and voltage scaling techniques. However, energy
proportionality in DRAM is limited to time multiplexing
DRAM usage. This is usually achieved through mod-
ifications to DRAM devices or micro-controllers, with
support for memory power “naps” but impose significant
exit penalties [10].

Partial Array Self Refresh (PASR) [5] provides the
ability to vary refresh rates of parts of DRAM and save
energy by only refreshing actively used memory. How-
ever, such techniques cannot be directly used with ex-
isting applications. Operating systems manage system
wide memory and prevent any power savings for two rea-
sons. First, existing operating systems are designed to
use all possible memory for performance reasons. Since
most paging algorithms only approximate the applica-
tion memory consumption patterns, all free memory is
used to cache disk pages that may be referenced in fu-
ture. Second, a running operating system over time frag-
ments physical memory making memory consolidation
expensive. Since the OS does not need more than few
MBs of contiguous memory, support for de-fragmenting
memory is not available inside OS. However, PASR re-
quires contiguous free pages adding up to at least 1/16th
of a DIMM (up to 1 GB) to reduce power in DRAMs.

In this paper, we provide energy proportionality for
main memory by providing support formercurialcaches.
A mercurial cache is a low power cache with support for
software error detection to survive corruption from low
refresh DRAM. Mercurial cache stores clean pages from
OS caching subsystems such as the page cache in low
power DRAM. As pages age out in the page cache, they
are moved into low power DRAM. If these pages are ref-
erenced again they are copied back into regular DRAM
and refreshed at regular rates. Since low power caches
are inherently error prone (some cells may lose data
when running at low refresh rates [16]), mercurial caches
use software checksums for error detection each time
pages are copied from mercurial cache. Hence, a mer-
curial cache enables operating systems to use all avail-
able memory but performs caching in low power DRAM.
Furthermore, mercurial caches also provide policies that
decide which pages in the OS should move to the mercu-
rial cache and provides mechanisms that prevent system
memory from being fragmented.

In this paper, we describe our proposed design and
evaluate it using an analytical model. We find the po-
tential cost savings resulting from supporting mercurial
caches range from 1-19% of DRAM power, depending
on the amount of memory being used.



2 Background
In this section we describe how the OS manages and con-
sumes memory and describe the existing hardware tech-
nologies to save DRAM power.

2.1 OS memory management

Modern operating systems are designed for best perfor-
mance and the memory consumption pattern is best sum-
marized by the following quote:

“Free memory is bad memory”

– Attributed to Linus Torvalds [1]

This quote emphasizes that free memory represents
wasted memory because it can be used to improve sys-
tem performance. Hence, Linux and other modern oper-
ating systems are designed to use all available memory.
This is because the cost of of disk accesses is signifi-
cantly more than accessing data from memory. Further-
more, power has only recently been a first order design
constraint and most OS decisions are largely guided by
performance. Hence, operating systems try to cache as
much data as possible to service page requests quickly
to avoid the disk penalty. They cache substantially more
pages than required by the running applications’ work-
ing set. For example, while bringing in new pages, the
LRU approximation algorithm [4], which tries to predict
future page references, also prefetches additional pages
that may be referenced in the future. Similarly, when an
application terminates, its pages are not freed immedi-
ately but aged out of the cache to avoid re-reading the
disk in case of a future reference. Hence, over a period
of time the OS occupies all available memory except for
a limited amount of reserved memory used to allocate
memory in interrupt contexts. Reclaim mechanisms en-
sure that memory can be quickly reclaimed from these
caches when free memory is required by the system.

Another characteristic of memory management in
modern operating systems is fragmentation of physi-
cal addresses. Due to frequent small memory alloca-
tions, the physical memory gets fragmented over time.
Since requests to allocate physically contiguous mem-
ory are rare (like super pages) and are often of the or-
der of few MBs, fragmentation is not a problem for any
existing system or application functions. Hence, de-
fragmentation adds little value to OS and only adds up
as a cost if it is performed periodically. Furthermore, the
OS may pin certain pages in memory such as for DMA.
Hence, these pages remain locked-in and create holes in
memory making de-fragmentation difficult.

The above two problems hamstring using current hard-
ware technologies to save DRAM power, such as turn-
ing off unused memory, since consolidation of physical
memory becomes difficult.

DRAM
technology

Data re-
tention

Granularity Latency Power
savings

ACPI S4 No All DRAM > 1 s 100%
Deep
power-
down

No All DRAM 200µs 95%

Self-refresh Yes All DRAM 1 µs 95%
Clock-stop Yes All DRAM 200µs 83%
TCSR Yes All DRAM 10 ns 60%
PASR Flaky 1/16th DIMM 10 ns 22%

Table 1: Comparison of different DRAM power saving
technologies. Many technologies in the figure can co-exist.
TCSR savings are for 40C drop for 64MB DIMM.

2.2 Available hardware technologies

In this sub-section, we review available techniques to re-
duce DRAM power in server class DDR2/DDR3 mem-
ories and also mobile class LPDDR2 DRAM. DRAMs
store data in the form of capacitive charge. Since ca-
pacitors leak charge over time, this charge must be peri-
odically refreshed or else the data stored is slowly lost.
DRAM refresh times are dependent on external factors
such as temperature, capacity. Recent work has shown
that most DRAM configurations are programmed with
significantly higher refresh rates than required and a re-
fresh time of the order of seconds only marginally affects
error rates [9, 16, 17]. Hence, many DRAM vendors of-
fer technologies to lengthen the refresh times by expos-
ing this control knob to applications.

1. ACPI S4 state: The most extreme technique to save
DRAM power is to use the ACPI S4 orhibernationstate
which turns all DRAM off and stores memory contents to
persistent storage. However, this solution is drastic and
only saves DRAM power in completely idle systems [6].

2. Deep Power Down: Deep power down cuts off power
to DRAM and reduces leakage current independent of
the rest of the system. Applications that do not re-
quire data retention can utilize this DRAM power state
in LPDDR2 DRAM [11].

3. Self-refresh DRAM: Self-refresh mode, supported in
server DDR2/DDR3 and mobile LPDDR2 class mem-
ories, enables refreshing memory contents without in-
volvement the DRAM controller. This saves DRAM
power when CPU is idle for short intervals, but imposes
short exit penalties for mobile RAMs and long penalties
for DDR2/3 class memories [12].

4. Clock-stop DRAM: Clock stop DRAM provides
power savings by stopping the DRAM clock when there
are no memory transactions in progress or when trans-
actions can be processed at lower speeds. Clock stop
is a software controlled feature available in LPDDR2
DRAM [12].



5. TCSR DRAM : Temperature Control Self-Refresh al-
lows DRAM to adjust DRAM refresh rates based on tem-
perature measured by an on-chip sensor. Hence, DRAM
power can be saved by by reducing the refresh rate when
ambient temperature is low. This feature is available in
LPDDR2 DRAM [12].

6. PASR DRAM: Partial Array Self-Refresh(PASR) is
an enhancement to self-refresh which provides the ability
to refresh memory at different granularities, upto 1/16th
of a bank [11] and is supported in LPDDR2 and DDR3
DRAM specifications. Simple extensions to these con-
trollers can allow arbitrary refresh times to different areas
of memory DIMMs [5, 9, 11]. When the system memory
consumption is low, PASR can be used with appropriate
OS support to reduce DRAM power.

Comparing these technologies as shown in Table1,
the last technique, PASR DRAM, looks promising. It
exposes control knobs to reduce DRAM power based
on memory usage and can be used to provide energy-
proportional RAM usage. In the next section, we
describe how one can provide OS support for PASR
DRAM.

3 Proposed solution: Mercurial Caches
To reduce power consumption proportional to memory
usage without reducing the amount of available memory,
we introducemercurial caches. These caches provide
the ability to cache clean pages at low refresh rates while
other pages such as OS and applications use memory re-
freshed at normal rates. Mercurial caches use PASR sup-
port that allows DRAM in multiples of 1/16th of DIMM
to be refreshed at lower rates. However, this requires the
support for physically contiguous pages in memory and
software error detection.

PASR DRAM support can also be provided in OS by
constraining memory usage by using existing memory
stealing techniques such as memory hotplug and bal-
looning [15] or compression [8]. This memory can be
turned off to save power. However, this technique re-
duces the amount of memory available to the OS and will
degrade the overall performance of the system. Mercu-
rial caches adopt a middle ground by using slightly more
power than turning off the DRAM but do not degrade
performance. They tradeoff power for reliability (instead
of performance), and verify correctness using software
checksums.

Supporting mercurial cache requires addressing three
challenges. First, mercurial caches need to provide an
interface to store and retrieve pages in a fail safe man-
ner. Second, they need to identify what pages in memory
management code should be served by mercurial caches.
Finally, mercurial cache support needs to provide mech-

anisms that will help consolidate memory to move it to a
low power state.

1. Mercurial Cache Interface: Mercurial caches pro-
vide an interface to store and retrieve 4K pages
into the low powered memory (mcache get page and
mcache put page). These operations require pages to
be copied to/from regular memory. However, since the
low powered memory is unreliable, mercurial caches
compute the page checksum during store and retrieve op-
erations. If the checksums do not match, indicating that
the page has become corrupt, then the retrieve operation
(mcache get page), may fail. This behavior is similar
to transcendental memory in Linux [14], which provides
memory consolidation for virtual machines where mem-
ory used by a virtual machine using the transcenden-
tal API may be re-allocated to another virtual machine.
Hence, we intend to re-use the existing transcendental
memory interface in Linux (our choice of OS for im-
plementation) to provide support for Mercurial caches.
The cost of copying pages can be reduced by using hard-
ware support [7] and we evaluate the software cost of
copy/checksum in the next sub-section.

2. OS support to migrate pages to Mercurial caches:
Mercurial cache support requires modification to the OS
memory management algorithms in Linux. We identify
the page cache as one of the largest consumers of mem-
ory. We intend to modify the LRU approximation al-
gorithm in Linux. The LRU algorithm stores pages in
active and in-active lists depending on the frequency of
page usage. Pages are aged out from the active to in-
active list and finally to the disk. We intend to move
clean pages from the in-active list into the mercurial
caches. If the mercurial cache returns a corrupt page,
the page fault handler can re-read the page from the disk.
Hence, we introduce additional transitions in the LRU
algorithm where clean inactive pages are moved to mer-
curial caches and are moved to the active list (upon ref-
erence) or evicted (after timeout).

While the page cache represents one of the largest con-
sumers of idle memory, we also intend to investigate
other system caches that can provide power savings from
using the mercurial cache. For example, the swap cache,
which stores a portion of swap space in memory. An-
other use case can be proving a memory allocation zone
for the user to directly allocate memory from mercurial
caches. A common use of memory is as a cache for file
system contents: for example, the memcached service is
used as a distributed cache of read-only data. The con-
tents of the cache, though, are always stored persistently
on disk to survive a power failure and can be re-fetched
from storage.



Model variables
Total memory 8 GB/DIMM

CPU power/core 16.25W
Power per DIMM 3W
Low power/DIMM 2.34W

Page copy time 0.00000097 sec
Page checksum time 0.000000027 sec

Table 2: I /P parameters for analytical model. DRAM
PASR savings are from Flikker [9] and page copy/checksum
times are measurements on a Pentium-D 3.0Ghz machine.

3. Coalescing memory to accomodate Mercurial
Cache: In order to provide power savings, the memory
allocated for a mercurial cache needs to be physically
contiguous. To use the existing PASR hardware and
move pages in/out offmercurial cache dynamically, mer-
curial caches need to allocate and release physically con-
tiguous memory dynamically. This memory allocation
needs to be in chunks of minimum DRAM size that can
be partially refreshed (currently 1/16th of DIMM size).
To ensure fragmentation does not become a bottleneck,
we modify the OS memory management to ensure such
an allocation is possible. First, we mark pages in mer-
curial cache as non-pinnable for long term usage (such
as by usingGFP MOVABLE flag). This ensures that we do
not have holes that can prevent coalescing of memory.
Second, when the amount of free contiguous memory is
low, we re-map pages and de-fragment the physical ad-
dress space. This ensures that we can dynamically en-
able/disable mercurial caches.

Hence, mercurial caches save memory by moving clean
memory pages into low power memory. Low power
memory saves power because it is refreshed at long in-
tervals. However, it also introduces additional cost of
checksum and copy-in to regular memory during refer-
ence. In the next section, we evaluate the benefits of us-
ing PASR for caching in OS.

4 Evaluation
We construct an analytical model to understand the
power savings from mercurial cache. We model our
results on PASR enabled RAM for memory such as
LPDDR2, which are used in mobile systems. Recent re-
search projects have also demonstrated that they can be
reliably used in servers [18]. To model PASR behavior,
we use PASR values from Flikker [9], and pick a refresh
rate of 1 second, which gives us 22% reduction in power
and error rate probability of 4x10−8 per bit. Other pa-
rameters of the analytical model are given in Table 1.

We calculate the total power consumed by a single
DIMM at any instant as the sum total of power consumed
by memory under normal refresh rate and the power
consumed by memory under low refresh rate (mercu-
rial cache) and the additional power spent on copying
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Figure 1:Power savings for different amounts of DRAM at
1 million words/sec reference rate.

the page in/out of mercurial cache and checksum when
pages in mercurial caches are referenced.

PDIMM = Pre f resh mcache + Pre f resh other +

Pchecksum&copyxRe f erences/sec

We calculate the CPU power consumed for calculating
checksum and copy operations as the product of the time
to execute these operations with the CPU power and the
mercurial cache reference rate.

PDIMM = RAMmcache/RAMtotal ∗ PPAS R f raction∗ PDIMM +

(RAMtotal−RAMmcache)/RAMtotal∗PDIMM+2∗Timechecksum&copy∗

PCPU ∗ Re fpagecachesec

We model the above equation in Figure1 for different
amounts of DRAM under mercurial cache for an 8GB
DIMM. The figure represents power savings for a single
DIMM when different amounts of memory are moved
into a mercurial cache at a reference rate of 1 million
words/second. We see that using a mercurial cache re-
sults in memory savings even when a small amount of
memory is being unused (˜1% savings for 500MB out
of 8GB total) and offers proportional savings as more
memory is moved into mercurial cache (19% savings for
7 out of 8GB). We also calculate the number of refer-
ences to mercurial cache can sustain to provide power
savings before the cost of checksum takes over the sav-
ings from DRAM. We alter the mercurial cache reference
rate while keeping the mercurial cache size constant at
50% of total DRAM size in in Figure2. We find that mer-
curial caches can sustain a reference rate of around 1.2
million words/second before the cost of checksum/copy
dominates over the savings from DRAM power.

Reliability tradeoff: Mercurial caches serves 4K
pages with error probability of 1.6x10−4 per page. If in-
stead of using caches, we just turned off the cache, the
amount of available memory to OS is reduced, and the
reference rate drops to zero. This will result in excessive
page faults and may cause thrashing.
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Figure 2: Power savings at 50% DRAM in low power for
different mercurial cache reference rates.

We are in the process of building our OS subsystem
to support mercurial cache. Through an OS implemen-
tation, we will be able to quantify benefits and com-
pare different policies for caching OS pages and memory
reservation.

5 Related work
Mercurial caches build on existing work in applica-
tion and OS support to provide energy efficient DRAM.
Flickker [9], proposes application changes to split ap-
plications into critical and fault tolerant components and
stores fault tolerant data (such as images) into low refresh
DRAM. However, Flickker requires application changes
and qualitatively effects application output. Furthermore,
Flickker models memory savings on application behav-
ior which is not representative of system wide memory
consumption in environments such as servers. Mercu-
rial caches propose OS level changes to reduce power,
with no changes to applications or their outputs and re-
duces power consumption from idle/inactive memory.
RAPID [16], proposes saving DRAM power by prioritiz-
ing low refresh DRAM rows while allocating OS pages
since different DRAM rows have different refresh thresh-
olds for safely storing data. However, once all low re-
fresh DRAM rows are filled, RAPID is not able to of-
fer any further power saving benefits. RAPID, also does
not address complications due to fragmentation and pin-
ning of OS pages in its trace based evaluation. Super-
pages [13] deals with fragmentation issues in memory
in order to provide pages of large sizes to mitigate TLB
pressure. Superpages dealt with rather smaller chunks of
contiguous pages (upto 4MB) while mercurial caches re-
quire large size contiguous memory and will need more
aggressive memory reservation policies.

6 Conclusion
In this paper, we introduce OS support for memory en-
ergy proportionality based on DRAM utilization. We

identify that current operating systems utilize all avail-
able memory for caching purposes and propose a low
power memory consolidation technique that provides
an abstraction for low powered caches called mercurial
caches. Mercurial caches store clean disk pages at low
refresh rates that retains performance gains from caches
and provides energy proportional power savings.

References
[1] Andi Kleen, SUSE Labs. Where is the memory going? memory

usage in the 2.6 kernel.http://halobates.de/memory.pdf.

[2] L.A. Barroso and U. Holzle. The case for energy-proportional
computing.Computer, 40(12):33–37, 2007.
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