THE UNIVERSITY

WISCONSIN

MADIS ON

Introduction

What happens when the device fails while this device

driver code executes (drivers/net/3c59x.c)?

while (ioreadl6o(ioaddr + Wn7 MasterStatus)
& Ox8000)

Unreliable devices are a major source of system
downtime. One study indicates that drivers designed
with fault tolerance reduced reboot rates due to faulty
hardware from 8% to 3%. In addition, transient device
failures are common [1, 3, 6]

and stem from the sources Device Failures = Crashes

(sjhpwndat right. QdS |' Bit flip faults ~ Wear out
FVEr GESIEN BUIBEINES, gt uck-at faults Insufficient
shown at far right, :
burn in

outline how to harden

drivers manually. Bridging faults Firmware

bugs
Electromagnetic Interference

Hardening Drivers

Carburizer corrects or reports four categories of bugs
in device drivers: infinite polling, invalid array
accesses, invalid pointer use, and calls to the kernel’s
panic() routine.

Bug Bug description Carburizer’s Resolution

Insert a timeout to ensure
all hardware-dependent
loops terminate

Infinite Driver waits indefinitely
Polling for hardware device
register to change

Invalid Driver uses a potentially- Insert a bounds check if
array bad value read from the possible and reports the
access device as an array index error

Invalid Driver dereferences a Insert a not-null check and
pointer potentially-invalid pointer reports the error to

use read from the device developer
Calls Driver crashes the system Replace calls to panic ()
panic() with a generic driver

recovery function

reg val = readl(mmio + PHY ACCESS);
while (reg val & PHY CMD ACTIVE)
reg val = readl(mmio + PHY ACCESS);

Validation

* Input validation

Timing
* Infinite polling
 Stuck interrupts

Carburizer inserts a
timeout, and calls the
recovery mechanism if

the device malfunctions

Driver loops forever if the

device malfunctions or is
disconnected

e
\

unsigned long long delta = (cpu/khz/HZ)*2;
unsigned long long start =0, cur = 0;

timeout rdstcll(start) + delta;

reg val = readl(mmio + PHY ACCESS);

while (reg val & PHY CMD ACTIVE) {
reg val = readl(mmio + PHY ACCESS);

if (cur < timeout) rdstcll(cur);
else recover driver ();

}

if ((pas model = pas read(OxFF88))) {
char temp[100];

sprintf(temp, "%s rev %d",
pas model names[(int) pas model],
pas read(0x2789));

Hardware Device Failures

Driver Design Guidelines [4, 7, 5]
Reporting

* Report hardware
failures

Recovery

* Handle all failures
* Cleanup properly
* Conceal failure

* Do not crash

* Lost request

Recommendations addressed by Carburizer are in black

Reporting Hardware
Failures

Transient hardware failures often precede permanent
failures [6]. Reporting recoverable errors can allow
proactive replacement of failure-prone devices.
Carburizer locates driver code that detects hardware
failures, and ensures the error is reported. If not,
Carburizer inserts a reporting routine at the location
of each detected hardware malfunction, including
device timeouts and conditionally returning negative
constants based on values read from the hardware.

while (miicontrol & BMCR RESET) {
msleep(10);
miicontrol = mii rw(...);

if (tries++ > 100)
return -1;

Carburizer automatically
reports the timeout to
the centralized fault
management system

Driver already detects
the timeout, but does
not report it

, /

while (miicontrol & BMCR RESET) {
msleep(10);
miicontrol = mii rw(...);
if (tries++ > 100) {
sys report("...“, module name,
device 1id);
return -1;
}
}

Hardware-Dependence Bugs in Linux

500

M Net
A 400 m SCSI
= @ Sound
E 300 M Video
S @ Other
2200
g
=2 100 - I
0 | I —_‘ | ol

Infinite Polling Static Array Dynamic Array Panic

Carburizer calculates the
array’s size, inserts a
bounds check, and calls
recovery on failure

Driver accesses invalid

memory if the device
malfunctions

/ /

if ((pas model = pas read(OxFF88))) {
char temp[100];

if (pas model < O || pas model >= 5)
recover driver();

sprintf(temp, "%s rev %d",
pas model names[(int) pas model],
pas read(0x2789)); ..

Reporting Timeouts and Incorrect Outputs

600 Il Found
7))
‘g 500 MW Fixed
§' 400 -
© 300 -
2 200 -
g 100
E -
O _
Net SCSI Sound Other Net SCSI Sound Other

Device Timeout Incorrect Device Output

Tolerating Hardware Device Failures in Software

Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift

Carburizer

Carburizer automatically implements many driver design
guidelines and provides runtime support to recover
failed drivers. It relies on static code analysis and
runtime support to harden drivers against device failure,
and to report bugs to developers.

Compile-time components Run-time components

. Kernel Interface
[:Carbunzer]

! "

[Compiler]) \ Carburizer]

[Hardened J Runtime

[Driver] Dr|ver¢B|nary

!

Faulty
Hardware

Runtime Fault Tolerance

The Carburizer runtime recovery system is based on
Shadow Drivers [8]. The runtime also recovers from
stuck and missing interrupts.

Dynamic Polling

Normally, devices generate interrupts in response to
requests made of the driver. If interrupt activity
stops, but requests continue, the runtime polls the
interrupt handler. The runtime uses its return value
to determine whether the call was productive. The
polling rate doubles if the call was productive;
otherwise, it halves. The runtime corrects interrupt
storms by disabling the IRQ line and using the same
polling mechanism.

Driver Activity via Referenced Bits

The runtime uses the referenced bits on the pages
containing the driver’s code to determine when
driver requests are made. If referenced bits are set,
the driver has been invoked, so an interrupt is
expected. If the interrupt handler is not called, it may
indicate a missing interrupt. The following flow chart

outlines the polling algorithm.

\

Problem
Yes pending? No

IRQ handler IRQ handler
called? Yes Yes called?
No Problem No

pending = no

Call Interrupt Referenced
handler No bits set?
Yes
Productive? Sl

Yes No pending = yes

Timer length Timer length
/=2)

References

[1] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Failstutter fault tolerance. In Proc. of
the Eighth IEEE HOTOS, May 2001.

[2] S. Arthur. Fault resilient drivers for Longhorn server, May 2004. Microsoft
Corporation, WinHec 2004 Presentation DW04012.

[3] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J. Schindler. An Analysis of
Latent Sector Errors in Disk Drives. In Proc. of the 7th SIGMETRICS, June 2007.

[4] S. Graham. Writing drivers for reliability, robustness and fault tolerant systems.
http://www.microsoft.com/whdc/archive/FTdrv.mspx, Apr. 2004.

[5] Intel Corporation and IBM Corporation. Device driver hardening design specification
draft release 0.5h. http://hardeneddrivers.sourceforge.net/downloads/DDH-Spec-
0.5h.pdf, Aug. 2002.

[6] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large disk drive
population. In Proc. of the 5t FAST, 2007.

[7] Sun Microsystems. Solaris Express Software Developer Collection: Writing Device
Drivers, chapter 13: Hardening Solaris Drivers. Sun Microsystems, 2007.

[8] M. Swift, M. Annamalau, B. N. Bershad, and H. M. Levy. Recovering device drivers.
ACM Transactions on Computer Systems, 24(4), Nov. 2006.

